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Abstract

Biomolecular condensates play a significant role in chromatin activities, primarily by
concentrating and compartmentalizing proteins and/or nucleic acids. However, their
genomic landscapes and compositions remain largely unexplored due to a lack of
dedicated computational tools for systematic identification in vivo. To address this, we
developed CondSigDetector, a computational framework designed to detect
condensate-like chromatin-associated protein co-occupancy signatures (CondSigs),
to predict genomic loci and component proteins of distinct chromatin-associated
biomolecular condensates. Applying this framework to mouse embryonic stem cells
(mESC) and human K562 cells enabled us to depict the high-resolution genomic
landscape of chromatin-associated biomolecular condensates, and uncover both
known and potentially novel biomolecular condensates. Multi-omics analysis and
experimental validation further verified the condensation properties of CondSigs.
Additionally, our investigation shed light on the impact of chromatin-associated
biomolecular condensates on chromatin activities. Collectively, CondSigDetector
provides a novel approach to decode the genomic landscape of chromatin-associated
condensates, facilitating a deeper understanding of their biological functions and
underlying mechanisms in cells.

Introduction

Over the last decade, there has been growing appreciation for the biological role of
biomolecular condensates, which are membraneless compartments that
compartmentalize and concentrate specific proteins and/or nucleic acids'?2. Liquid-
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liquid phase separation (LLPS) has been proposed as a key organizing principle of
biomolecular condensates, driven by weak, multivalent, and highly collaborative
molecular interactions?. The molecular interactions inside biomolecular condensates
usually involve diverse collaborative components that can be categorized into two
main groups: scaffolds and clients. Scaffolds drive the formation of condensates, while
clients participate by binding to scaffolds®®. Biomolecular condensates are implicated
in various cellular functions, and their aberrations are associated with numerous
diseases'’. Recently, growing evidences have demonstrated the widespread
existence and functional significance of chromatin-associated biomolecular
condensates. Many chromatin-associated processes, such as DNA replication®, DNA
repair®, transcription control'®-'3, and chromatin organization'#'”, have been found to
take place within biomolecular condensates at chromatin'® (Supplementary Table S1).

Understanding chromatin-associated biomolecular condensates, including their
genomic loci and collaborative components, is crucial for elucidating their impact on
chromatin activities. Although some chromatin-associated biomolecular condensates
have been linked to well-characterized chromatin states, such as super-enhancer'®'
and heterochromatin'>-'”, these connections have generally been reported without
comprehensive associations with genome-wide loci, except for a few loci of interest
validated by low-throughput experiments. Until now, the genomic landscape of
chromatin-associated biomolecular condensates has remained poorly understood.
However, no genomic approach has been designed yet to capture the comprehensive
genomic landscape of chromatin-associated biomolecular condensates, primarily due
to the following challenges. First, the complexity of biomolecular condensates arising
from their diverse components'® and context-specific molecular collaborations among
these components along the chromatin'®, making it difficult to systematically capture
chromatin-associated biomolecular condensates by targeting a single factor. Second,
even for chromatin-associated protein (CAP) with experimental evidence of
condensation3%1°, distinguishing its condensation-associated binding sites from non-
associated binding sites in individual datasets is not a straightforward task.

With the rapid accumulation of CAP occupancy profiles and proteome-scale
characterization of condensation potential, it is now possible to overcome the above
challenges of decoding the genomic landscape of chromatin-associated biomolecular
condensates by integrating multi-dimensional data. In this study, we introduce
CondSigDetector, a computational framework that systematically predicts chromatin-
associated biomolecular condensates. This framework overcomes the two challenges
mentioned above by utilizing topic modeling to detect genome-wide context-
dependent collaborations among CAPs possessing high condensation potential from
hundreds of CAP occupancy profiles. These collaborations along the chromatin are
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termed Condensate-like chromatin-associated protein co-occupancy Signatures
(CondSigs). The framework not only identifies the collaborative components of distinct
biomolecular condensates, but also assigns them to the associated genomic loci. We
applied this computational framework to two cell types with abundant ChlP-seq data,
and predicted hundreds of chromatin-associated biomolecular condensates, along
with their genomic loci, which are supported by multi-omics data and experimental
evidences. To the best of our knowledge, CondSigDetector is the first computational
framework for decoding the genomic landscape of chromatin-associated biomolecular
condensates, providing a valuable resource for investigating the functional effects and
underlying mechanisms of chromatin-associated biomolecular condensates on
chromatin activities.

Results

Overall design of CondSigDetector

By integrating ChlP-seq datasets of hundreds of CAPs in the same cell type, we
observed frequent co-occupancy of CAPs across the genome (Supplementary Fig.
S1a, b). However, most co-occupancy events could not be explained by DNA binding
motifs or chromatin accessibility (Supplementary Fig. S1c-f), two known determinants
of CAP co-occupancy events?°. This suggests that alternative mechanisms may be
responsible for organizing genome-wide co-occupancy events of CAPs. Biomolecular
condensation at chromatin may partially explain such events, as biomolecular
condensates are thought to be mediated by collaborations of components?, and
condensations of CAPs have been reported to influence their chromatin
occupancy'®?!. This evidence implies that specific CAP co-occupancy events could
be signatures of chromatin-associated biomolecular condensates.

In this study, we aim to predict chromatin-associated biomolecular condensates by
detecting genome-wide context-dependent collaborations of CAPs with high
condensation potential, termed CondSig. We developed a computational framework,
CondSigDetector, to systematically detect CondSigs by integrating hundreds of ChlP-
seq datasets and condensation-related characterizations of CAPs (Fig. 1).
CondSigDetector comprises three steps: data processing, co-occupancy signatures
identification, and condensation potential filtration.

In the first step, the input data, i.e., the collected ChIP-seq profiles of all CAPs from
an identical cell type, is converted into an occupancy matrix at genome-wide
consecutive bins. To address the sparsity of this matrix, CondSigDetector applies an
iterative segmentation method for each target CAP, which segments the entire
occupancy matrix into smaller sub-matrices (see Methods for details). This
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segmentation approach can enhance the detection of CAP collaborations in local
contexts by substantially increasing the occurrence frequency of co-occupancy events
within the sub-matrices (Supplementary Fig. S1g, h).

In the second step, CondSigDetector utilizes a topic model to identify co-occupancy
signatures of CAPs, representing frequent CAP collaborations, from the sub-matrices.
Given the significant differences in co-occupancy frequencies between promoter and
non-promoter regions (Supplementary Fig. S1a, b), the sub-matrices are categorized
into either promoter or non-promoter groups to identify co-occupancy signatures
separately. Within the topic model, each sub-matrix is treated as a set of documents,
where each genomic bin represents a document and CAPs occupying the bin are
considered as words in the document. Intuitively, the topics learned from topic
modeling, which indicate specific word combinations, can be interpreted as co-
occupancy signatures of CAPs. Since the number of co-occupied CAPs within a bin is
typically sparse (Supplementary Fig. S1a, b), CondSigDetector utilizes the biterm topic
model, which outperforms traditional models such as Latent Dirichlet Allocation for
short text?. It has been confirmed that the co-occupancy signatures of CAPs derived
from the biterm topic model exhibit high topic coherence and repeatability among
replicates (see Methods for details; Supplementary Fig. S1i-I).

In the third step, CondSigDetector predicts CondSigs by evaluating the condensation
potential for each co-occupancy signature of CAPs. For each genomic bin, 6
condensation-related features are calculated: the fraction of occupied CAPs with
reported LLPS capacity, the fraction of occupied CAPs co-occurring in the same
membraneless organelle (MLO), the fraction of occupied CAPs with predicted
intrinsically disordered regions (IDRs), the fraction of occupied CAP pairs having
protein-protein interactions (PPls), the fraction of occupied CAPs predicted as RNA-
binding proteins (RBPs), and the RNA-binding strength (RBS) of the bin. Intuitively,
for a co-occupancy signature of CAPs, higher values of these condensation-related
features at signature-positive bins indicate a greater condensation potential. Co-
occupancy signatures with at least 3 condensation-related features strongly and
positively correlated with their presence are identified as CondSigs (see Methods for
details). Finally, CondSigDetector eliminates redundant CondSigs containing similar
CAP components.

Identification of CondSigs in mouse and human cell lines

CondSigDetector was applied to two cell types with abundant ChlP-seq data: mESC
and human K562 cell line, to identify CondSigs. After stringent quality control, we
gathered qualified ChlP-seq data for 189 CAPs in mESC and 216 CAPs in K562
(Supplementary Table S2). Due to the lack of a qualified RNA-binding profile for mESC,
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159 the RNA binding strength, one of the condensation-related features, was not included
160 in mESC. We identified 25 promoter CondSigs and 36 non-promoter CondSigs in
161 mESC (Fig. 2a), along with 75 promoter CondSigs and 93 non-promoter CondSigs in
162 K562 (Supplementary Fig. S2). Additionally, we identified 14,345 promoter CondSig-
163  positive sites and 24,500 non-promoter CondSig-positive sites in mESC, along with
164 14,201 and 38,963 CondSig-positive sites in K562. To assess the reliability of
165 identified CondSigs, we examined whether their component CAPs are involved in
166  known chromatin-associated biomolecular condensates. Among the identified mESC
167 CondSigs, 92.0% of promoter and 97.2% of non-promoter CondSigs contain at least
168 one component CAP present in known chromatin-associated biomolecular
169 condensates (Fig. 2b). For example, a non-promoter CondSig contains SS18,
170 SMARCA4 (BRG1), and DPF2, which are three known components of the known
171  SS18 cluster?? (Fig. 2a, Supplementary Fig. S3a, Supplementary Table S1). In K562
172 cells, 49.3% of promoter and 55.9% of non-promoter CondSigs have at least one
173  component CAP found in known chromatin-associated biomolecular condensates (Fig.
174  2b). One example of a non-promoter CondSig includes CBX5 (HP1a), TRIM28 and
175 CBX1 (HP1B) (Supplementary Fig. S3b, Supplementary Table S1), with HP1 and
176 TRIM28 were reported to drive LLPS with H3K9me3-modified chromatin
177  cooperatively'. These results provide support for the reliability of the identified
178 CondSigs.

179

180 Some component CAPs are found in more than one identified CondSig
181  (Supplementary Fig. S3c-d). For example, DDX21, a DEAD-box RNA helicase known
182  to participate in biomolecular condensate?, is present in 8 non-promoter CondSigs in
183 mESC. We examined the similarity of present loci between CondSig pairs containing
184  atleast one shared component CAP and found that only 0.6% of mESC pairs and 0.9%
185  of K562 pairs had a Jaccard index higher than 0.7. This suggests a high diversity of
186  present loci of identified CondSigs, even when they share some common components.
187 To investigate the potential roles of component CAPs in CondSigs, we classified all
188  predicted component CAPs into four clusters: “both scaffold and client”, “scaffold-only”,
189  “client-only”, and “none”, according to their calculated potentials for self-assembly or
190 interaction with partners to undergo phase separation®® (see Methods for details). 77.5%
191 and 79.5% of component CAPs in mESC and K562 were classified into “both scaffold
192  and client” or “scaffold-only” clusters (Fig. 2c). Furthermore, we found that component
193 CAPs of CondSigs have a significantly higher fraction of charged amino acid blocks
194  (Fig. 2d), which is an important resource for multivalency?®. These results demonstrate
195 that the component CAPs of identified CondSigs have strong capacities to form
196  biomolecular condensates, and may function in a context-dependent manner.

197
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The previous studies demonstrated that biomolecular condensate can form at super-
enhancers, i.e., clusters of enhancers densely occupied by the master regulators and
mediators, and these condensates can regulate gene transcription by concentrating
transcription machinery'®?’. When comparing the genomic loci of super-enhancers
and CondSig-positive sites in mESC, we found that 96.1% of super-enhancers overlap
with CondSig-positive sites. Furthermore, a recent study introduced DisP-seq, an
antibody-independent chemical precipitation assay, to map genome-wide profiles of
disordered proteins?®. We reanalyzed public DisP-seq data from three human cell lines
and compared the DisP-seq peaks with identified CondSig-positive sites in the K562
cell line. In SKNMC, MRC5, and H446 cells, 16.1%, 21.0%, and 18.5% of DisP-seq
peaks, respectively, were identified as CondSig-positive sites in K662. But among the
shared DisP-seq peaks across the three human cell lines, 60.6% were identified as
CondSig-positive sites in K562 (Fig. 2e). We further observed much higher DisP-seq
signals at CondSig-positive sites in K562 compared to their adjacent regions (Fig. 2f),
suggesting that identified CondSig-positive sites are highly occupied by disordered
proteins, which have been demonstrated to play important roles in biomolecular
condensation®. These results point towards the high potential of identified CondSig-
positive sites as genomic loci where biomolecular condensates form.

Chromatin properties of identified CondSigs

To investigate the chromatin features of identified CondSigs, we first analyzed the
concentration levels of the component within CondSigs by calculating ChlP-seq signal
strength for each component. We divided the ChIP-seq peaks of each component
CAP into CondSig-positive groups and -negative groups based on their overlap with
positive sites of CondSigs (see Methods for details), and compared their ChlP-seq
signals. As shown in Fig. 3a, most component CAPs displayed significantly higher
signal strength at CondSig-positive peaks in mESC, indicating that CondSigs can
concentrate their components at target genomic loci. For example, CTCF, a CAP
involved in chromatin insulation?®, exhibited significantly higher signal strength at
CondSig-positive CTCF peaks. To investigate the biological functional effect of CTCF
concentration, we re-analyzed Micro-C data in mESC?° and found that CondSig-
positive CTCF peaks exhibited significantly higher boundary strength than CondSig-
negative CTCF peaks (Fig. 3b), suggesting that CTCF concentration contributes to
enhanced chromatin insulation activity. We then merged the adjacent ChlP-seq peaks
to obtain domains for each component CAP (see Methods for details), and compared
the width distributions of CondSig-positive and -negative domains. As shown in Fig.
3c, CondSig-positive domains are wider on average for 95.2% and 93.5% of all
component CAPs of promoter and non-promoter CondSigs, and the CondSig-positive
domains of RUVBL1, TCF3, CTR9, MTF2 and SUPT6H exceeded 10 kb on average.
Additionally, we assessed the component concentration levels and domain widths of
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CondSigs in K562 and found largely consistent results (Supplementary Fig. S4a, b).
These results confirmed the component concentration properties of CondSigs, which
is a basic feature of known chromatin-associated biomolecular condensates'®, and
suggested a potential association between biomolecular condensation and stronger
effects on chromatin activities.

Based on previous studies that reported spatially proximal chromatin could be involved
in the same condensates®'3?, we processed to analyze chromatin contact frequencies
within and between CondSig-positive and -negative domains for each component CAP.
In order to minimize the impact of distinct width distributions between CondSig-positive
and -negative domains, we focused on broad domains (width > 5 kb). We used cohesin
ChIA-PET data from mESC?3 to measure chromatin interactions between genomic loci,
and found that CondSig-positive domains exhibited significantly higher intra-domain
interactions than their CondSig-negative counterparts (Fig. 3d). We further calculated
the fractions of domains with chromatin interactions within the same group of domains
for each component CAP, and found significantly higher frequencies between
CondSig-positive domains compared to CondSig-negative domains (Fig. 3e). For
each component CAP presented in both promoter and non-promoter CondSigs, we
calculated fractions of domains with chromatin interactions between its promoter and
non-promoter domains. Our analysis observed that CondSig-positive domains showed
significantly higher frequencies between promoter and non-promoter domains relative
to CondSig-negative domains (Fig. 3f). We also utilized Pol Il ChlA-PET data® to
evaluate the chromatin contact frequencies of CondSigs in K562, and observed largely
consistent results (Supplementary Fig. S4c-e). These results confirmed that the
components of identified CondSigs can be concentrated in trans through spatially
proximal chromatin.

Involvement of DDX21 in chromatin-associated biomolecular condensate

Although DDX21 can undergo phase separation and has been reported to participate
in nucleolar condensate for Pol | transcription?#35, additional genomic loci where it may
involve into biomolecular condensate remain to be elucidated. In mESC, we identified
10 CondSigs with DDX21 as a component, with 15,578 DDX21 ChlP-seq peaks as
CondSig-positive. To verify the presence of DDXZ21-associated biomolecular
condensate at these genomic loci, we assessed the sensitivity of DDX21 occupancy
at these loci to 1,6-hexanediol (1,6-HD), a compound used for disrupting liquid-like
biomolecular condensates®. Cleavage Under Targets and Release Using Nuclease
(CUT&RUN) experiments were conducted for DDX21 in both wild type and 1,6-HD-
treated mESC. We observed a significantly greater decrease in DDX21 CUT&RUN
signals at CondSig-positive peaks compared to CondSig-negative peaks (Fig. 4a, b),
which demonstrated the strong effect of biomolecular condensate disruption on
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CondSig-positive peaks of DDX21. This result supported that DDX21 participates in
biomolecular condensates at these loci. We further investigated the potential impact
of DDX21-associated biomolecular condensates at these genomic loci. We found that
target genes of the CondSig-positive peaks of DDX21 displayed significantly higher
expression levels than other genes (Supplementary Fig. S5a), suggesting that
DDX21-associated biomolecular condensate may enhance the transcription of target
genes.

Confirmation of CondSigs regulating transcription elongation

SUPT6H, SUPT5H and CTR9 have been reported to regulate transcription
elongation®”38, but it remains unclear whether these CAPs function in the form of
condensate. In mESC, we identified two CondSigs containing all or at least three of
SUPT6H, SUPTSH, CTR9, and POLR2A simultaneously (Fig. 2a, Supplementary Fig,
S5b). Genomic enrichment analysis found that merged CondSig-positive sites of the
two CondSigs were primarily located at promoters and gene bodies (especially at
exons), and the associated gene bodies were enriched with H3K36me3 modification,
a marker for actively transcribed genes (Supplementary Fig. S5c, d). This suggested
that SUPT6H, SUPT5H and CTR9 might participate in the same biomolecular
condensate to regulate transcription elongation. To confirm the condensation
properties of these component CAPs, we performed fixed cell immunofluorescence
(IF) with antibodies against SUPT6H, SUPT5H and CTR9 in mESC. We found that all
three CAPs can form nuclear puncta in cells (Fig. 4c), which is consistent with a recent
study showing the condensation properties of SUPT6H and CTR9 in cells®. To
determine whether these CAPs coexist in the same puncta, we conducted co-IF
analysis and found their high co-localization in nuclei (Fig. 4c, d). To further verify the
presence of the associated biomolecular condensate at these CondSig-positive sites,
we conducted CUT&RUN experiments for SUPT6H and CTR9 in both wild type and
1,6-HD-treated mESC. We observed that CondSig-positive sites exhibited significantly
greater decreases in CUT&RUN signals for both SUPT6H and CTR9 compared to
control sites upon 1,6-HD treatment (Fig. 4e, f). These results suggested that SUPTG6H,
SUPTS5H and CTR9 can regulate transcription elongation by forming biomolecular
condensate.

Effects of biomolecular condensate on chromatin activities

With the availability of CondSig-positive sites, it is possible to investigate the influence
of biomolecular condensates on chromatin activities at a genome-wide scale. Our
initial analysis for histone modifications at CondSig-positive sites revealed a high
enrichment of active histone modifications, such as H3K4me3 and H3K27ac, in both
mESC and K562 (Fig. 5a), suggesting a close association between biomolecular
condensates and chromatin activities. We predicted the target genes associated with
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the CondSig-positive sites (see Methods for details), discovering that these genes
showed significantly higher expression levels in both mESC and K562 (Supplementary
Fig. S6a, b). Given that transcriptional bursting is a common characteristic of gene
expression?®, and it was hypothesized that biomolecular condensation can influence
the transcriptional bursting frequencies of target genes*', we generated single-cell
RNA-seq data in wild type and 1,6-HD-treated mESC and K562, from which we
inferred transcriptome-wide transcriptional bursting kinetics*2. Among the genes with
inferable transcriptional bursting kinetics, those associated with CondSig-positive sites
exhibited significantly higher bursting frequencies in the wild type mESC and K562
(Fig. 5b, c). They also displayed a more substantial decrease in transcriptional bursting
frequencies upon 1,6-HD treatment compared to other genes (Fig. 5d, e). After
assigning genes associated with CondSig-positive sites to individual CondSig, we
ranked the CondSigs in mESC according to the decrease level of transcriptional
bursting frequencies upon 1,6-HD treatment. As shown in Fig. 5f, the CondSig
containing PRDM4, ARID1A, TET2, MED12, MED1, EP300 and SS18 demonstrated
the most substantial decrease, suggesting that these CAPs may form biomolecular
condensation to enhance the transcriptional bursting frequencies of their target genes.
On the contrary, the CondSig containing SUZ12, JARID2, KDM4C, PCGF2, EZH2,
RNF2 and CBX7 had the most increase, consistent with their repressive roles in
transcription regulation*3. And target genes of CondSigs in K562 exhibited decreased
burst frequency on average (Supplementary Fig. S6¢). These results suggested that
biomolecular condensation can regulate gene transcription by influencing
transcriptional bursting frequency.

Notably, several histone modification writers, such as EP300 and KMT2D, were
included in the components of identified CondSigs. Given the enrichment of their
corresponding histone modifications at CondSig-positive sites (Fig. 5a), we
hypothesized that these histone modification writers might exhibit stronger
catalyzation activities within biomolecular condensates. We classified each histone
modification writer's ChlP-seq peaks into CondSig-positive and -negative peaks, and
observed significantly stronger corresponding histone modification products at
CondSig-positive peaks (Supplementary Fig. S6d, e), suggesting the formation of
biomolecular condensation can boost the catalyzation activities of histone modification
writers. Active modifications, such as H3K4me3 and H3K27ac, typically display narrow
peaks (width < 2 kb), while a small proportion also exists as broad peaks (width >
5kb)?744. The establishment of these broad histone modification domains remains
unclear, hence we next investigated whether the involvement of their writer in
biomolecular condensation could play a role. We transformed two histone
modifications’ peaks to domains by merging adjacent peaks not further than 5 kb.
Among 1,217 H3K4me3 broad peaks in mESC, 63.3% of them overlapped with
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KMT2D-associated CondSig-positive sites, while the percentage is only 38.0% for
narrow peaks (Fig. 5g). Similar results were observed for the pair of H3K27ac and
EP300, not only in mESC, but also in K562 (Fig. 5g, h). These results demonstrated
that the involvement of histone modification writers in biomolecular condensates can
alter chromatin activity by catalyzing broad histone modification domains.

Discussion

The field of biomolecular condensate research associated with chromatin has made
substantial advancements in recent years. However, identifying the involvement of a
CAP in chromatin-associated biomolecular condensate only scratches the surface of
its regulatory roles due to the following inherent limitations. Firstly, biomolecular
condensates typically comprise multiple components, each potentially contributing
different regulatory roles. Secondly, profiling the genomic binding sites of a CAP
involved in a biomolecular condensate does not necessarily distinguish its
condensation-associated and non-associated genomic loci in a straightforward
manner. Therefore, there is an urgent need for specialized experimental methods or
bioinformatic tools to provide a detailed genomic landscape of chromatin-associated
biomolecular condensates. A recent study introduced DisP-seq?®, an antibody-
independent chemical precipitation assay that maps endogenous DNA-associated
disordered proteins at a genomic scale. However, DisP-seq was designed for the
broad detection of disordered proteins rather than specifically targeting biomolecular
condensates. This could potentially result in both false positives, as not all binding
sites of these proteins participate in biomolecular condensates, and false negatives,
as disordered protein-guided phase separation is only one mechanism of
condensation. Furthermore, DisP-seq cannot identify the exact components present
at each locus. In response to these challenges, our study presented CondSigDetector,
a computational framework designed to systematically identify CondSigs, i.e., the
signatures of condensate-like chromatin-associate protein co-occupancy, and their
associated genomic loci. By leveraging the occupancy profiles and condensation-
related features of hundreds of CAPs in the same cell type, we can predict the
genome-wide loci of biomolecular condensates and the component CAPs of each
condensate. Our study both depicted the chromatin properties of the identified
CondSigs and experimentally validated the regulatory roles of DDX21, SUPT6H,
CTR9 and SUPT5H as components of biomolecular condensates. Our study further
delves deeper into the significant effects of chromatin-associated biomolecular
condensates on transcriptional bursting and broad active histone modification
domains. These findings underscored the critical role that biomolecular condensates
play in gene regulation and chromatin activities.
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The CondSigs identified in this study provided a comprehensive, global and genome-
wide perspective on distinct chromatin-associated biomolecular condensates, paving
the way for further exploration of their biological functions and mechanisms. By
distinguishing various biomolecular condensates through the unique component CAPs,
the CondSigs can not only aid in discovering additional components of known
chromatin-associated biomolecular condensates, but also reveal entirely new ones.
Furthermore, by pinpointing specific genomic loci targeted by biomolecular
condensates composed of CAPs, CondSigs provide valuable insights into how
dysregulation of condensation may contribute to disease. This, in turn, could facilitate
the design of potential therapeutic strategies. To benefit future research in this area,
we have made the CondSigs identified in mESC and K562 publicly available online
and provided the source code of CondSigDetector on GitHub to enable the detection
in other biological systems.

Despite the significant insights provided by our identified CondSigs, there are some
limitations to the predictions. One such limitation is the dependence of CondSig
detection on accurate occupancy profiles of CAPs. The absence or poor quality of
ChlP-seq data could lead to partial or complete omission of biomolecular condensates.
For example, we were able to predict a heterochromatin-related condensate
consisting of CBX5, TRIM28 and CBX1 in K562, but not in mESC, due to the
unavailability of high-quality ChlP-seq data of these CAPs in mESC. However, with
the rapid increase of ChlP-seq data, and the implementation of new techniques for
occupancy map capture, we anticipate improvements in the sensitivity of CondSigs
detection. Another limitation is the reliance of CondSig detection on specific
collaborations among CAPs, which may result in the loss of widespread collaborations
in a global context. In this study, we used a threshold of 1.3 for the z-score normalized
occurrence probability of words in topics to determine the component CAPs of
CondSigs. Given the lack of a standard number for components in collaborations, the
components listed in CondSig might be incomplete or inaccurate, underscoring the
need for further in-depth analysis and experiments to verify the predictions. Finally, a
recent study reported that fixation, a common procedure used in X-ChlP, can have
diverse effects on biomolecular condensates in living cells*®. To assess the potential
impact of fixation on our prediction results, we selected several component CAPs with
additional available data generated by CUT&RUN, a fixation-free technology, to
evaluate the concentration levels in CondSigs. We found that, similar to ChIP-seq
signals, most component CAPs showed significantly enriched CUT&RUN signals at
CondSig-positive peaks (Supplementary Fig. S7), implying that the fixation effect in
the X-ChIP procedure is unlikely to significantly impact prediction accuracy. This
potential impact could be further mitigated with the rapid accumulation of more
CUT&RUN data for CAPs.
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Methods

ChlP-seq data collection and processing

The ChlP-seq data of CAPs were collected from Cistrome Data Browser*® and filtrated
using quality control procedures as described in the previous study*’. In brief, only
ChlP-seq data that met at least four out of the five quality control metrics (sequence
quality, mapping quality, library complexity, ChIP-enrichment, and signal-to-noise ratio)
available in Cistrome Data Browser were kept. In cases where more than one qualified
ChlP-seq data were available for a given CAP in the same cell type, all qualified ChlP-
seq data were sorted based on quality control metrics, and the top-ranked data was
kept.

We downloaded ChlP-seq peak files (in BED format) and signal track files (in bigWig
format) from Cistrome Data Brower. Although Cistrome Data Browser stored narrow
peaks called by MACS248 for all CAPs, peak window sizes of distinct CAPs could differ
significantly. Therefore, to obtain accurate occupancy regions for each CAP,
especially CAPs with broad peaks, we first called broad peaks from the signal track
using “bdgbroadcall” module of MACS2 (v2.1.3) with default parameters and then
merged adjacent peaks within 5 kb. For each CAP, if more than 1,000 newly called
peaks were wider than 5 kb, we replaced the original narrow peaks with newly called
broad peaks as the accurate occupancy regions.

Condensation-related annotation for proteins

Human and mouse proteins with reported LLPS capacity were collected from four
databases, DrLLPS®, LLPSDB?®, PhaSepDB (two versions, v1 and v2)3 and PhaSePro*.
DrLLPS collected all proteins that could potentially be involved in LLPS, including
scaffolds, regulators and clients. However, we only regarded scaffolds as LLPS
proteins since DrLLPS contains too many regulators and clients. To create an
annotation of LLPS proteins, we merged all LLPS proteins from different sources.
Notably, since the number of collected mouse LLPS proteins (61) was much lower
than human LLPS proteins (437), we also considered mouse orthologs of human LLPS
proteins as mouse LLPS proteins.

Component proteins of MLOs in human and mouse were collected from DrLLPS and
PhaSepDB (v1 and v2). Proteins that were assigned to the same MLO in different
sources were merged to form a comprehensive list of component proteins for that MLO.
Similar to LLPS proteins, mouse orthologs of human proteins assigned to the same
MLO was regarded as component proteins of that MLO in mouse.

Pairwise protein-protein interactions were collected from three databases, BioGRID*®,
MINT®® and IntAct®, only physical associations were kept.
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Intrinsically disordered regions of proteins were predicted by MobiDB-lite (v1.0)%2. This
optimized method uses eight different predictors to derive a consensus, which is then
filtered for spurious short predictions in a second step. For each protein, if more than
15.3% of its regions were predicted to be disordered by MobiDB-lite, the protein would
be regarded as proteins with intrinsically disordered regions. The threshold of 15.3%
corresponds to the 20th percentile of disordered region fractions of known human
LLPS proteins.

RNA-binding proteins were predicted by TriPepSVM33, a method to perform de novo
prediction based on short amino acid motifs, with parameters “-posW 1.8 -negW 0.2 -
thr 0.28”.

Genome-wide RNA-binding strength

We used genome-wide signals of R-ChlIP data, an in vivo R-loop profiling approach
using catalytically dead RNase H1%*, to quantify genome-wide RNA-binding strength
in K562 cells. Raw sequencing reads from GSE970725* were first aligned to human
genome build via default --local mode of Bowtie2 (v2.3.5.1)%°. Low mapping quality
reads (mapping quality < 30) and duplicates were discarded. Then signal tracks were
generated using the “genomecov” command in Bedtools software (v2.28.0), and
normalized to reads per million mapped reads (RPM).

Motif scan

Motif scans were performed using FIMO (v5.0.5)% against the JASPAR core 2020
vertebrates database®’ with the following parameters “--max-stored-scores 1000000”.
Motifs with p-value < 1 x 10 were used for the following analysis.

CondSigDetector workflow
The framework consists of three steps, data processing, co-occupancy signature
identification and condensation potential filtration.

In the first step, the framework first splits mouse (mm10) or human (hg38) genome
into consecutive 1-kb bins. It then generates an occupancy matrix of CAPs over these
1-kb bins in the given cell type (n X m), where n denotes the number of 1-kb bins and
m denotes the number of CAPs. The occupancy event of CAP at each genome-wide
1-kb bin is determined by overlapping its ChlP-seq peaks with the given bin. It
excludes CAPs with too few occupancy events (those occupying fewer than 500 bins)
to eliminate the effect of low-quality ChlP-seq data. And bins with too many occupancy
events (occupied by more than 90% of CAPs) are removed to avoid sequencing bias.
Additionally, bins in ENCODE Blacklist genomic regions are also discarded.
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Identifying co-occupancy signatures from the entire occupancy matrix is a complicated
task that can result in the loss of low-frequency signatures in the local context. To
address this issue, CondSigDetector first segments the entire occupancy matrix into
overlapping sub-matrices iteratively. Each sub-matrix only contains occupancy events
of partial highly co-occupied CAPs at partial bins. The segmentation process is as
follows: (i) In each iteration, a focus CAP is selected and other CAPs highly co-
occupied with the focus CAP are identified. The co-occupancy levels of the focus CAP
and the other CAPs are evaluated by using the occupancy events of each other CAP
to classify occupancy events of the focus CAP. And then an F4 score measuring the
accuracy of the classifier is defined as the co-occupancy score and assigned to each
other CAP, where a high co-occupancy score implies a high co-occupancy level. In
each sub-matrix, only co-occupancy information of the focus CAP and top g — 1 other
CAPs ranked by the co-occupancy score are kept, where g = 50 by default. (ii) After
the selection of partially highly co-occupied CAPs, partial bins that are occupied
frequently by these CAPs are screened out to further segment the matrix. For i-th bin,
an occupancy score (0S;) is defined to evaluate the occupancy level of the given CAPs
as:

q
05:= > BXy (1)
j=1
where X;; € {0,1} denotes occupancy status of j-th CAP at i-th bin, and $; denotes z-

score normalized co-occupancy score. In each sub-matrix, only p bins with 0S; >0 are
kept.

In the second step, each sub-matrix is classified into promoter and non-promoter
contexts. Promoters were defined as upstream 3 kb to downstream 3 kb of
transcription start sites. CondSigDetector builds a biterm topic model®? for each
context, treating 1-kb bins as documents and occupied CAPs at those bins as words
within documents. By training the model, specific combinations of words can be
represented by learned topics, which in turn could be interpreted as co-occupancy
signatures representing collaborations of CAPs at chromatin. The biterm topic model
is implemented in CondSigDetector using source code from the previous study??. As
a probabilistic model, the biterm topic model generates two probability distributions,
matrix G, representing occurrence probability of ¢ CAPs across k topics and matrix

Gpxk representing occurrence probability of k topics across p documents.

The topic number, k, is a crucial parameter in topic modeling, as it affects the topic
distribution. CondSigDetector empirically learns 2~10 topics for each context and then
applies an automatic strategy to select the optimal topic number as described in the
previous study®8. The selection principle was based on the idea that the optimal topic
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number should distinguish between documents with different topics as much as
possible. Hence an optimal topic number should match the following two criteria: (i)
The occurrence probability of each topic in different documents should be as different
as possible, which is measured by the specificity score (SS;) calculated for all topics
under a certain topic number k using Eq. (2). A higher specificity score indicates a
better-selected topic number. (ii) The fewer topics that occur in each bin, the better.
Such a measurement was defined as a purity score (PS)) for all topics under a certain
topic number k, as calculated in Eq. (3). The larger the purity score, the better the
selected topic number. Finally, we defined the combination score (CSj), which is a
weighted average of the specificity score and purity score, as calculated in Eq. (4). We
selected the optimal topic number from 2~10 which have the highest combination
score.

The specificity score (SS;) is calculated as

IOk o)
$S,, = log Ezj ) @
=1Hj

where g; and u; are the variance and mean, respectively, of the j-th column of G, .

The purity score (PS;) is calculated as

PS, =log (%Zilm) (3)

where g; is the variance of i-th row of G, .

The combination score (CS),) is calculated as
CS, = aSS, + (1 — a)PS, (4)
where « is calculated as
PS,

*=5s, + PS,

()

After the selection of optimal topic number k , CondSigDetector determined
component CAPs of each co-occupancy signature based on matrix Gy, representing
q CAPs’ occurrence probability in k co-occupancy signatures. In each signature,
CAPs with higher z-score normalized occurrence probability than a certain threshold
(1.3 by default, corresponds to about 90th percentile of the standard normal
distribution) were determined as components of the signature, and 1-kb bins occupied
by more than 80% of components are defined as signature-positive sites. Co-
occupancy signatures with fewer than 3 components and fewer than 200 signature-
positive sites are discarded.
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In the third step, CondSigDetector screens out CondSigs from all co-occupancy
signatures based on the condensation potential of each signature. To evaluate the
condensation potential of each signature, we quantify associations between
condensation-related features and signature presence at genome-wide bins by
performing ROC analysis. Intuitively, the higher condensation-related feature values
of occupancy events at signature-positive bins, the higher condensation potential of
the signature. In ROC analysis, the positive set is signature-positive bins and the
negative set is signature-negative bins. Signature-positive bins were defined in the
first step, and signature-negative bins are defined using the following two criteria: (i)
The presence of at least t CAPs, where t = 0.8 x component number of the
signature; (ii) The absence of any co-occupancy of components, i.e., count of
occupied components of the signature < 2. For each signature, six condensation-
related features are calculated according to co-occupancy events of top g CAPs (see
the first step for the definition of top g CAPs ): (i) The fraction of occupied CAPs
having reported LLPS capacity; (ii) The fraction of occupied CAPs co-occurring in the
same MLO; (iii) The fraction of occupied CAPs with predicted IDRs; (iv) The fraction
of occupied CAP pairs having protein-protein interactions; (v) The fraction of
occupied CAPs predicted as RBPs; (vi) RNA-binding strength of the bin. If at least 3
out of 6 condensation-related features exhibit a positive correlation (AUROC > 0.6)
with the presence of the signature (mean AUROC of top 3 features > 0.65), the
signature would be identified as CondSigs.

Finally, all CondSigs within the same cell type are pooled and any redundant CondSigs
are discarded. Redundancy of CondSigs is measured according to the overlapping
level of the top 5 components, these components being ranked by their occurrence
probability within the CondSig. We calculate a Jaccard index for all CondSigs using
pairwise comparisons, and discard those with a low mean AUROC when the Jaccard
index > 0.25. The threshold of 0.25 corresponds to that 2 out of 5 components are
identical in the pairwise CondSigs.

Comparison of BTM and HDP

We built HDP and BTM models on the entire occupancy matrix separately, and
compared the quality of learned topics. HDP determines the topic number
automatically while BTM asks for a given topic number. So we first built an HDP model
and generated k topics, then we built a BTM model to generate topics with the given
topic number k. The quality of each learned topic was evaluated by the coherence
score of the top 5 words, a common quality evaluation metric in topic model?2%°. HDP
modeling was implemented by using a Python package “tomotopy”.

Clustering of component CAPs
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We performed a k-means clustering for component CAPs in mESC or K562 according
to their potentials for self-assembly (PS-Self) or interaction with partners (PS-Part) to
undergo phase separation. A recent study employed two machine-learning models,
SaPS and PdPS model, to estimate proteins’ potentials and provided SaPS and PdPS
ranking scores (ranging from 0 to 1) for the human and mouse proteome. We utilized
the SaPS and PdPS ranking scores of component CAPs in mESC or K562 to carry
out k-means clustering. In the clustering, the number of clusters was set as 4, and the
initial cluster centroids were set as (0.8, 0.8), (0.8, 0.4), (0.4, 0.8), (0.4, 0.4), which

corresponds to four clusters: “both scaffold and client”, “scaffold-only”, “client-only”,
and “none’, respectively.

Annotation for charged amino acid blocks

We calculated NCPR (net charge per residue) employing a 10-residue sliding window
with a step size of 1. This calculation factored in both positively charged amino acids
(R, K and H) and negatively charged amino acids (D and E). Windows with NCPR
greater than 0.5 or less than -0.5 were defined as charged amino acid blocks, and
overlapping blocks were merged.

Identification of CondSig-positive/negative peaks and domains

To identify CondSig-positive / negative peaks for each component CAP, we classified
its ChlP-seq peaks into two groups based on overlapping with positive sites of
CondSigs which includes the given CAP as a component. To identify CondSig-positive
/ negative domains, we transformed its peaks into domains by merging adjacent peaks
not further than n kb. For component CAPs using narrow peaks as accurate
occupancy regions in ChlP-seq data processing procedure, we set n = 5, and for
component CAPs using broad peaks as accurate occupancy regions, we set n = 10.
Then domains of each component CAP were classified into CondSig-positive domains
and -negative domains based on overlapping with positive sites of CondSigs which
includes the given CAP as a component.

3D chromatin contact analysis

Public Micro-C data in mESC, ChlA-PET data against SMC1 in mESC, and ChlA-PET
data against RNA Pol Il in K662 were used in this study. Micro-C contact matrices
from 2.6 billion reads were downloaded from GSE130275°%°, and boundary strength
for 400-bp resolution calculated by Cooltools®® was used for the following analysis.
SMC1 ChIA-PET data in mESC were downloaded from GSE579113%3 and processed
with ChlA-PET2%". RNA Pol Il ChIA-PET loops were directly downloaded from
ENCSR880DSH3.

Definition for target genes of CondSig-positive genomic regions
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For each genomic region, genes whose promoter overlaps with the given region or
has long-range chromatin contacts with the given region were defined as target genes.
Long-range chromatin contacts were determined by ChIA-PET data in the
corresponding cell type. In this study, SMC1 ChIA-PET data in mESC and RNA Pol I
ChIA-PET data in K562 were used.

Cell culture

Mouse embryonic stem cells (mESC), C57BL/6 strain, were purchased from ATCC
(SCRC-1002) and cultured on a feeder layer of mitomycin C (Stemcell, 73272) treated
mouse embryonic fibroblast (MEF) in tissue culture flask coated with 0.1% gelatin. The
cells were grown in complete mESC medium, which was composed of EmbryoMax
DMEM (Millipore, SLM-220-B), 15% (v/v) fetal bovine serum (Hyclone, SH30070.03),
0.1 mM nonessential amino acids (Millipore, TMS-001-C), 1% (v/v) nucleoside
(Millipore, ES-008-D), 2mM L-glutamine (Millipore, TMS-002-C), 0.1mM B-
mercaptoethanol (Millipore, ES-007-E), and 1000 U/mL recombinant LIF (Millipore,
ESG1107).

Cell treatment

1,6-hexanediol (Sigma, 240117) was dissolved in a complete mESC medium at a
concentration of 15% (w/v) to make a storage solution. mMESC were detached using
trypsin, pelleted by centrifuging, and then resuspended in a complete mESC
medium. The resuspended cells were transferred into a new gelatin-coated flask and
cultured in a 37°C incubator for 1hr to remove the feeder cells. The supernatant cells
were collected and washed twice with PBS. After cell resuspending with medium, the
1,6-hexanediol storage buffer was added at a final concentration of 1.5%. The dish
was put into the incubator immediately for 30 min, and treated cells were
immediately used for CUT&RUN assay.

CUT&RUN

The CUT&RUN assay was conducted on 0.2 million cells per sample, utilizing the
Hyperactive pG-MNase CUT&RUN assay kit (Vazyme, HD102) with slight
modifications to the manufacturer’s protocol. Briefly, cells were harvested and
incubated for 10 min at room temperature with Concanavalin A-coated magnetic
beads, which had been activated prior to use. Following this, the ConA beads bound
cells were collected using a magnet and resuspended in 100 pl of antibody buffer
containing either 2ul of DDX21 (Proteintech, 10528-1-AP), 4 pl of CTR9 (Novus
Biologicals, NB100-1718) or 4 ul of SUPT6 (SUPT6H) (Novus Biologicals, NB100-
2582) primary antibody respectively. The samples were then incubated at 4°C
overnight on rotator. The next day, cells were washed twice with Dig-wash buffer and
resuspended in 100 pl of a premixed pG-MNase Enzyme solution before incubation
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at 4°C for 1hr with rotation. Following this, the cells were washed twice with Dig-
wash buffer and resuspended in 100 ul of premixed CaClz solution, then incubated
for 2hr on ice. Following the stop of the reaction, the cut chromatin was released
from cells by incubation at 37 °C for 30 min in the absence of agitation. After
centrifuging at 13,400 g for 5 min, the supernatant was collected, and DNA was
purified using FastPure gDNA mini columns. The libraries were prepared using
NEBNext Ultra 1| DNA library prep kit (NEB, E7645) with modified amplification
condition as 98 °C for 30 sec, 15 cycles of 98 °C for 10 sec and 65°C for 17 sec, and
final extension at 65 °C for 2 min and hold at 4°C.

Single-cell RNA-seq

Single-cell RNA sequencing (scRNA-seq) libraries were prepared using 6,000 mES
cells, either in a wild type state or treatment with 1,6-hexanediol at 1.5% for 2
minutes, and K562 cells, either in wild type or treatment with 1,6-hexanediol at 10%
for 20 minutes. The libraries were created using the Chromium Single Cell 3’ Library
and Gel Bead Kit V3.1 (10x Genomics, Catalog No. PN1000268) to create single-cell
gel beads in emulsion (GEM). Following preparation, the libraries were sequenced
using the lllumina Novaseq 6000 platform in a 150 bp paired-end mode.

Immunofluorescence staining

CTR9 antibody and SPT6 (SUPT6H) antibody were labeled with Mix-n-Stain CF488
Antibody labeling kit (Sigma, MX488AS20) and Mix-n-Stain CF568 Antibody labeling
kit (Sigma, MX568S20) respectively according to the manufacturer’s instruction.
Mouse ES Cells were grown as mentioned above on pre-coated coverslips and fixed
with 4% paraformaldehyde solution (Beyotime, P0O099) at room temperature for 10
min. permeabilization was performed using 0.5% Triton X-100 (Sigma-Aldrich,
93443) in PBS for 10 min. Cells were blocked with IF blocking solution (Beyotime,
P0102) for 1 hr at RT, and subsequently incubated with a 1:100 diluted SUPT5
(SUPTS5H) primary antibody (Abcam, ab126592) in QuickBlock dilution buffer
(Beyotime, P0262) at 4 °C overnight. Following three washes, cells were incubated
with Alexa Fluor 594 goat anti-rabbit secondary antibody (ThermoFisher, A11037) at
a concentration of 1: 1000 in PBST for 1 hr at RT. After three additional washes with
PBST, cells were labeled with both CF488-conjugated CTR9 and CF568-conjugated
SPT6 antibodies at RT for 2hr. After three washes with PBST, the coverslips were
mounted onto glass slides using Vectashield medium with DAPI (Vector
Laboratories, H-1200) and sealed with nail polish. Images were acquired using a
Zeiss LSM 710 confocal microscope with 100 x oil objective and ZEN acquisition
software.

Western blot
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Cells were lysed using a lysis buffer (Beyotime, PO013J) supplemented with 1 mM
PMSF as a protease inhibitor. Cell lysate was run on a 10% Bis- Tris gel at 70 V for
~90 min, followed by 120 V until the dye front reached the end of the gel. Proteins
were subsequently dry transferred to a nitrocellulose membrane using the iBlot2
western blot transfer system (Thermo Fisher Scientific) under specific conditions: 7
min at 20V for CTR9, and 15 min at 25V for SUPT6H. The membrane was then
blocked using 5% non-fat milk in TBST for 1 hr at room temperature with shaking.
Primary antibody incubations were performed overnight on a shaker at 4°C with the
following dilutions: 1:1,000 of anti-CTR9 (Novus Biologicals, NB100-1718) and
1:1000 of anti-GAPDH (Invitrogen, MA5-15738) in 5% non-fat milk, 1:1,000 of anti-
SUPTG6 (Novus Biologicals, NB100-2582) and 1:2000 of anti-lamin B1 (Beyotime,
AF1408) in Western dilution buffer (Beyotime, P0023). The following day,
membranes were washed three times with TBST for 10 minutes each at room
temperature with shaking. Secondary antibody incubations were carried out for 2
hours at room temperature using 1:1,000 dilutions of goat anti-rabbit IgG-horseradish
peroxidase (HRP) or goat anti-mouse IgG-HRP (Beyotime Technology, A0208, and
A0216, respectively) in TBST. Following incubation, membranes were washed three
times in TBST for 10 minutes each, and protein bands were visualized by
chemiluminescence immunoassay.

CUT&RUN, single-cell RNA-seq data processing

CUT&RUN reads were first processed using TrimGalore (v0.6.0) to trim adaptor and
low-quality reads. Trimmed reads were then aligned to the mouse genome build mm10
or human genome build hg38 using Bowtie2 (v2.3.5.1)°° with parameters “--no-mixed
--no-discordant --no-unal”. Low mapping quality reads (mapping quality < 30) and
duplicates were discarded. Then biological replicates that passed quality control were
pooled together. CUT&RUN peaks were called by MACS2 (v2.1.3)*. Signal tracks
were generated using the “genomecov”’ command in Bedtools software (v2.28.0), and
normalized to reads per million mapped reads (RPM). Single-cell RNA-seq data (10x
Genomics) were processed with DrSeq2 (v2.2.0)%2 and transcriptome-wide
transcriptional burst kinetics were inferred using the model from the previous study*2.

Data availability

All the CUT&RUN and scRNA-seq data generated in this study have been deposited
in Genome Sequence Archive (https://bigd.big.ac.cn/gsa/) under accession
CRAXXXXXX and HRAXXXXXX. All predicted CondSigs and associated genomic loci
generated in this study are available at https://compbio-
zhanglab.org/CondSigDB/index.html.

Code availability


https://bigd.big.ac.cn/gsa/
https://compbio-zhanglab.org/CondSigDB/index.html
https://compbio-zhanglab.org/CondSigDB/index.html
https://doi.org/10.1101/2023.08.23.554542
http://creativecommons.org/licenses/by-nc-nd/4.0/

788
789
790
791
792

793

794
795
796
797
798
799
800

801

802
803
804
805
806

807

808
809
810
811

812

813
814

815

816
817
818
819
820
821
822
823
824
825
826
827

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.23.554542; this version posted August 24, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

The computational framework and statistical analysis were made based on shell,
Python and R codes. A command-line tool was developed for the implementation of
CondSigDetector, main source codes are available at the GitHub repository
(https://github.com/TongjiZhanglab/CondSig).
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1019

1020 Fig. 2. CondSigs in mESC and K562.

1021 a. Heatmaps showing identified CondSigs in mESC at non-promoter (NP) and

1022  promoter (P) regions. Each row represents a CondSig and the row name indicates
1023  the component CAPs of the given CondSig. Each column represents a

1024 condensation-related feature and the colours represent AUROC. b. The stacked bar
1025 plots showing the fraction of CondSig with/without components in known chromatin-
1026  associated biomolecular condensates (Supplementary Table S1). c¢. Heatmaps
1027 showing k-means clustering for component CAPs in mESC (left) and K562 (right)
1028  with PS-self and PS-part ranking score (see Methods for details). A high PS-self
1029 ranking score refers to scaffolds and a high PS-part ranking score refers to clients.
1030  Four clusters (“Both”: both scaffold and client, “Scaffold”: scaffold-only, “Client”:
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1031  client-only, and “None”) were shown. d. Box plots showing component CAPs of
1032  CondSigs have a higher fraction of charged blocks in amino acid sequences (see
1033  Methods for details) than control (mouse or human proteome) in mMESC and K562.
1034  Significance between groups was evaluated by a two-sided Welch's t-test, ****
1035 represents p-value <1 x 10“. e. The overlap ratio of DisP-seq peaks from three
1036  human cell lines with CondSig-positive sites in K562. Conserved peaks represent
1037 shared peaks across three human cell lines. DisP-seq data were from the previous
1038  study (GSE19096128). f. Line chart showing average DisP-seq signals around
1039 CondSig-positive sites. X-axis represents distance to CondSig-positive site centers
1040 and Y-axis represents average DisP-seq signals calculated by RPM (reads per
1041 million mapped reads).
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Fig. 3. Chromatin properties of predicted chromatin-associated biomolecular
condensates.

a. Volcano plots showing concentration levels of component CAPs in CondSigs in
mESC. X-axis represents the logz-transformed fold change of ChIP-seq signals at
CondSig-positive peaks compared to CondSig-negative peaks, while Y-axis
represents the negative logio-transformed p-value. The vertical dashed line
corresponds fold change = 1 and the horizontal dashed line corresponds to p-value =
0.001. b. Line charts showing boundary strength around CondSig-positive and -
negative CTCF peaks. Boundary strength was calculated using Micro-C data in
mESC from the previous study (GSE130275%). c. Scatter plots showing width
comparison of CondSig-positive and -negative domains in mESC. X-axis represents
the ratio to which the CondSig-positive domain width exceeds the CondSig-negative
domain width, and Y-axis represents the positive domain width. Component CAPs
having CondSig-positive domains exceeding 10 kb on average were labeled. d.
Intra-domain chromatin contacts of CondSig-positive or -negative broad domains in
mESC. For each component CAP, an average valid paired-end tags count in each
broad domain (> 5 kb) was calculated to represent intra-domain contacts. Cohesin
ChIA-PET data used in the analysis was from the previous study (GSE57913%). e.
Box plots showing intra-group chromatin contacts between CondSig-positive or -
negative domains in mESC. For each component CAP, the fraction of domains
having at least one valid paired-end tag with other intra-group domains was
calculated. f. Box plots showing NP (non-promoter)-P (promoter) chromatin contacts
between CondSig-positive or -negative domains in mESC. For each component
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1096  CAP, the fraction of non-promoter domains having at least one valid paired-end tag
1097  with its promoter domains was calculated. Significance between groups was
1098 evaluated by a two-sided Welch's t-test, * represents p-value < 0.05, *** represents
1099  p-value <1 x 1023 and **** represents p-value < 1 x 104
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Fig. 4. Experimental validation of potential biomolecular condensates.

a. Box plots showing logo-transformed fold change of DDX21 CUT&RUN signals at
CondSig-positive and -negative DDX21 peaks after 1,6-hexanediol treatment in
contrast to wild type mESC. b. UCSC genome browser view of representative
CondSig-positive DDX21 peaks. Signals represent RPM and the related CondSig-
positive site was shaded in purple. ¢. Immunofluorescence images of mMESC
showing that SUPT6H (green) colocalizes with CTR9 (red) and SUPT5H (grey) in
puncta. DNA was stained with DAPI (blue). Scale bar: 10 um. d. Line scans of the
images of a cell co-stained for SUPT6H, CTR9 and SUPTSH, at the position
depicted by the white line. The direction is from the green tick to the purple tick, and
the two arrows refer to two representative puncta. e. Box plots showing logz-
transformed fold change of SUPT6H and CTR9 CUT&RUN signals at CondSig-
positive sites and -negative sites after 1,6-hexanediol treatment in contrast to wild
type mESC. Significance between groups was evaluated by a two-sided Welch's ¢-
test, **** represents p-value < 1 x 10*. f. UCSC genome browser view of
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representative CondSig-positive sites. Signals represent RPM and the related loci
were shaded in purple.
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Fig. 5. Effect of biomolecular condensates on chromatin activities.

a. Heatmaps showing histone modification enrichment at CondSig-positive sites in
mMESC and K562. The colours represent logo-transformed fold enrichment of histone
modification ChlP-seq signals at CondSig-positive sites relative to the genomic
background. Public ChIP-seq data for histone modifications were from Cistrome
Data Browser*® and filtered as the previous study described*’. b, c. Box plots
comparing burst frequency of genes targeted by all CondSig-positive sites and other
genes in mESC (b) and K562 (c). d, e. Box plots compared the burst frequency
change percentage after 1,6-hexanediol treatment of target genes and other genes
in mESC (d) and K562 (e). Significance between groups was evaluated by a two-
sided Welch'’s t-test, ** represents p-value < 0.01 and **** represents p-value < 1 X
10-4. f. The bar plots showing change percentages of burst frequency of genes
targeted by each individual CondSig. And CondSigs showing the maximum decrease
and increase were specially labeled. g, h. The stacked bar plots showing fractions of
broad H3K4me3 or H3K27ac peaks in mESC (g) and broad H3K27ac peaks in K562
(h) overlapping with CondSig-positive sites.
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