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 16 
Abstract 17 

Biomolecular condensates play a significant role in chromatin activities, primarily by 18 
concentrating and compartmentalizing proteins and/or nucleic acids. However, their 19 
genomic landscapes and compositions remain largely unexplored due to a lack of 20 
dedicated computational tools for systematic identification in vivo. To address this, we 21 
developed CondSigDetector, a computational framework designed to detect 22 
condensate-like chromatin-associated protein co-occupancy signatures (CondSigs), 23 
to predict genomic loci and component proteins of distinct chromatin-associated 24 
biomolecular condensates. Applying this framework to mouse embryonic stem cells 25 
(mESC) and human K562 cells enabled us to depict the high-resolution genomic 26 
landscape of chromatin-associated biomolecular condensates, and uncover both 27 
known and potentially novel biomolecular condensates. Multi-omics analysis and 28 
experimental validation further verified the condensation properties of CondSigs. 29 
Additionally, our investigation shed light on the impact of chromatin-associated 30 
biomolecular condensates on chromatin activities. Collectively, CondSigDetector 31 
provides a novel approach to decode the genomic landscape of chromatin-associated 32 
condensates, facilitating a deeper understanding of their biological functions and 33 
underlying mechanisms in cells.  34 
 35 

Introduction 36 

Over the last decade, there has been growing appreciation for the biological role of 37 
biomolecular condensates, which are membraneless compartments that 38 
compartmentalize and concentrate specific proteins and/or nucleic acids1,2. Liquid-39 
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liquid phase separation (LLPS) has been proposed as a key organizing principle of 40 
biomolecular condensates, driven by weak, multivalent, and highly collaborative 41 
molecular interactions2. The molecular interactions inside biomolecular condensates 42 
usually involve diverse collaborative components that can be categorized into two 43 
main groups: scaffolds and clients. Scaffolds drive the formation of condensates, while 44 
clients participate by binding to scaffolds3-6. Biomolecular condensates are implicated 45 
in various cellular functions, and their aberrations are associated with numerous 46 
diseases1,7. Recently, growing evidences have demonstrated the widespread 47 
existence and functional significance of chromatin-associated biomolecular 48 
condensates. Many chromatin-associated processes, such as DNA replication8, DNA 49 
repair9, transcription control10-13, and chromatin organization14-17, have been found to 50 
take place within biomolecular condensates at chromatin18 (Supplementary Table S1).  51 
 52 
Understanding chromatin-associated biomolecular condensates, including their 53 
genomic loci and collaborative components, is crucial for elucidating their impact on 54 
chromatin activities. Although some chromatin-associated biomolecular condensates 55 
have been linked to well-characterized chromatin states, such as super-enhancer10,11 56 
and heterochromatin15-17, these connections have generally been reported without 57 
comprehensive associations with genome-wide loci, except for a few loci of interest 58 
validated by low-throughput experiments. Until now, the genomic landscape of 59 
chromatin-associated biomolecular condensates has remained poorly understood. 60 
However, no genomic approach has been designed yet to capture the comprehensive 61 
genomic landscape of chromatin-associated biomolecular condensates, primarily due 62 
to the following challenges. First, the complexity of biomolecular condensates arising 63 
from their diverse components18 and context-specific molecular collaborations among 64 
these components along the chromatin13, making it difficult to systematically capture 65 
chromatin-associated biomolecular condensates by targeting a single factor. Second, 66 
even for chromatin-associated protein (CAP) with experimental evidence of 67 
condensation3-6,19, distinguishing its condensation-associated binding sites from non-68 
associated binding sites in individual datasets is not a straightforward task. 69 
 70 
With the rapid accumulation of CAP occupancy profiles and proteome-scale 71 
characterization of condensation potential, it is now possible to overcome the above 72 
challenges of decoding the genomic landscape of chromatin-associated biomolecular 73 
condensates by integrating multi-dimensional data. In this study, we introduce 74 
CondSigDetector, a computational framework that systematically predicts chromatin-75 
associated biomolecular condensates. This framework overcomes the two challenges 76 
mentioned above by utilizing topic modeling to detect genome-wide context-77 
dependent collaborations among CAPs possessing high condensation potential from 78 
hundreds of CAP occupancy profiles. These collaborations along the chromatin are 79 
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termed Condensate-like chromatin-associated protein co-occupancy Signatures 80 
(CondSigs). The framework not only identifies the collaborative components of distinct 81 
biomolecular condensates, but also assigns them to the associated genomic loci. We 82 
applied this computational framework to two cell types with abundant ChIP-seq data, 83 
and predicted hundreds of chromatin-associated biomolecular condensates, along 84 
with their genomic loci, which are supported by multi-omics data and experimental 85 
evidences. To the best of our knowledge, CondSigDetector is the first computational 86 
framework for decoding the genomic landscape of chromatin-associated biomolecular 87 
condensates, providing a valuable resource for investigating the functional effects and 88 
underlying mechanisms of chromatin-associated biomolecular condensates on 89 
chromatin activities.  90 

 91 

Results 92 

Overall design of CondSigDetector 93 
By integrating ChIP-seq datasets of hundreds of CAPs in the same cell type, we 94 
observed frequent co-occupancy of CAPs across the genome (Supplementary Fig. 95 
S1a, b). However, most co-occupancy events could not be explained by DNA binding 96 
motifs or chromatin accessibility (Supplementary Fig. S1c-f), two known determinants 97 
of CAP co-occupancy events20. This suggests that alternative mechanisms may be 98 
responsible for organizing genome-wide co-occupancy events of CAPs. Biomolecular 99 
condensation at chromatin may partially explain such events, as biomolecular 100 
condensates are thought to be mediated by collaborations of components2, and 101 
condensations of CAPs have been reported to influence their chromatin 102 
occupancy10,21. This evidence implies that specific CAP co-occupancy events could 103 
be signatures of chromatin-associated biomolecular condensates.  104 
 105 
In this study, we aim to predict chromatin-associated biomolecular condensates by 106 
detecting genome-wide context-dependent collaborations of CAPs with high 107 
condensation potential, termed CondSig. We developed a computational framework, 108 
CondSigDetector, to systematically detect CondSigs by integrating hundreds of ChIP-109 
seq datasets and condensation-related characterizations of CAPs (Fig. 1).  110 
CondSigDetector comprises three steps: data processing, co-occupancy signatures 111 
identification, and condensation potential filtration. 112 
 113 
In the first step, the input data, i.e., the collected ChIP-seq profiles of all CAPs from 114 
an identical cell type, is converted into an occupancy matrix at genome-wide 115 
consecutive bins. To address the sparsity of this matrix, CondSigDetector applies an 116 
iterative segmentation method for each target CAP, which segments the entire 117 
occupancy matrix into smaller sub-matrices (see Methods for details). This 118 
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segmentation approach can enhance the detection of CAP collaborations in local 119 
contexts by substantially increasing the occurrence frequency of co-occupancy events 120 
within the sub-matrices (Supplementary Fig. S1g, h).  121 
 122 
In the second step, CondSigDetector utilizes a topic model to identify co-occupancy 123 
signatures of CAPs, representing frequent CAP collaborations, from the sub-matrices. 124 
Given the significant differences in co-occupancy frequencies between promoter and 125 
non-promoter regions (Supplementary Fig. S1a, b), the sub-matrices are categorized 126 
into either promoter or non-promoter groups to identify co-occupancy signatures 127 
separately. Within the topic model, each sub-matrix is treated as a set of documents, 128 
where each genomic bin represents a document and CAPs occupying the bin are 129 
considered as words in the document. Intuitively, the topics learned from topic 130 
modeling, which indicate specific word combinations, can be interpreted as co-131 
occupancy signatures of CAPs. Since the number of co-occupied CAPs within a bin is 132 
typically sparse (Supplementary Fig. S1a, b), CondSigDetector utilizes the biterm topic 133 
model, which outperforms traditional models such as Latent Dirichlet Allocation for 134 
short text22. It has been confirmed that the co-occupancy signatures of CAPs derived 135 
from the biterm topic model exhibit high topic coherence and repeatability among 136 
replicates (see Methods for details; Supplementary Fig. S1i-l). 137 
 138 
In the third step, CondSigDetector predicts CondSigs by evaluating the condensation 139 
potential for each co-occupancy signature of CAPs. For each genomic bin, 6 140 
condensation-related features are calculated: the fraction of occupied CAPs with 141 
reported LLPS capacity, the fraction of occupied CAPs co-occurring in the same 142 
membraneless organelle (MLO), the fraction of occupied CAPs with predicted 143 
intrinsically disordered regions (IDRs), the fraction of occupied CAP pairs having 144 
protein-protein interactions (PPIs), the fraction of occupied CAPs predicted as RNA-145 
binding proteins (RBPs), and the RNA-binding strength (RBS) of the bin. Intuitively, 146 
for a co-occupancy signature of CAPs, higher values of these condensation-related 147 
features at signature-positive bins indicate a greater condensation potential. Co-148 
occupancy signatures with at least 3 condensation-related features strongly and 149 
positively correlated with their presence are identified as CondSigs (see Methods for 150 
details). Finally, CondSigDetector eliminates redundant CondSigs containing similar 151 
CAP components. 152 
 153 
Identification of CondSigs in mouse and human cell lines 154 
CondSigDetector was applied to two cell types with abundant ChIP-seq data: mESC 155 
and human K562 cell line, to identify CondSigs. After stringent quality control, we 156 
gathered qualified ChIP-seq data for 189 CAPs in mESC and 216 CAPs in K562 157 
(Supplementary Table S2). Due to the lack of a qualified RNA-binding profile for mESC, 158 
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the RNA binding strength, one of the condensation-related features, was not included 159 
in mESC. We identified 25 promoter CondSigs and 36 non-promoter CondSigs in 160 
mESC (Fig. 2a), along with 75 promoter CondSigs and 93 non-promoter CondSigs in 161 
K562 (Supplementary Fig. S2). Additionally, we identified 14,345 promoter CondSig-162 
positive sites and 24,500 non-promoter CondSig-positive sites in mESC, along with 163 
14,201 and 38,963 CondSig-positive sites in K562. To assess the reliability of 164 
identified CondSigs, we examined whether their component CAPs are involved in 165 
known chromatin-associated biomolecular condensates. Among the identified mESC 166 
CondSigs, 92.0% of promoter and 97.2% of non-promoter CondSigs contain at least 167 
one component CAP present in known chromatin-associated biomolecular 168 
condensates (Fig. 2b). For example, a non-promoter CondSig contains SS18, 169 
SMARCA4 (BRG1), and DPF2, which are three known components of the known 170 
SS18 cluster23 (Fig. 2a, Supplementary Fig. S3a, Supplementary Table S1). In K562 171 
cells, 49.3% of promoter and 55.9% of non-promoter CondSigs have at least one 172 
component CAP found in known chromatin-associated biomolecular condensates (Fig. 173 
2b). One example of a non-promoter CondSig includes CBX5 (HP1α), TRIM28 and 174 
CBX1 (HP1β) (Supplementary Fig. S3b, Supplementary Table S1), with HP1 and 175 
TRIM28 were reported to drive LLPS with H3K9me3-modified chromatin 176 
cooperatively15. These results provide support for the reliability of the identified 177 
CondSigs. 178 
 179 
Some component CAPs are found in more than one identified CondSig 180 
(Supplementary Fig. S3c-d). For example, DDX21, a DEAD-box RNA helicase known 181 
to participate in biomolecular condensate24, is present in 8 non-promoter CondSigs in 182 
mESC. We examined the similarity of present loci between CondSig pairs containing 183 
at least one shared component CAP and found that only 0.6% of mESC pairs and 0.9% 184 
of K562 pairs had a Jaccard index higher than 0.7. This suggests a high diversity of 185 
present loci of identified CondSigs, even when they share some common components. 186 
To investigate the potential roles of component CAPs in CondSigs, we classified all 187 
predicted component CAPs into four clusters: “both scaffold and client”, “scaffold-only”, 188 
“client-only”, and “none”, according to their calculated potentials for self-assembly or 189 
interaction with partners to undergo phase separation25 (see Methods for details). 77.5% 190 
and 79.5% of component CAPs in mESC and K562 were classified into “both scaffold 191 
and client” or “scaffold-only” clusters (Fig. 2c). Furthermore, we found that component 192 
CAPs of CondSigs have a significantly higher fraction of charged amino acid blocks 193 
(Fig. 2d), which is an important resource for multivalency26. These results demonstrate 194 
that the component CAPs of identified CondSigs have strong capacities to form 195 
biomolecular condensates, and may function in a context-dependent manner. 196 
 197 
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The previous studies demonstrated that biomolecular condensate can form at super-198 
enhancers, i.e., clusters of enhancers densely occupied by the master regulators and 199 
mediators, and these condensates can regulate gene transcription by concentrating 200 
transcription machinery10,27. When comparing the genomic loci of super-enhancers 201 
and CondSig-positive sites in mESC, we found that 96.1% of super-enhancers overlap 202 
with CondSig-positive sites. Furthermore, a recent study introduced DisP-seq, an 203 
antibody-independent chemical precipitation assay, to map genome-wide profiles of 204 
disordered proteins28. We reanalyzed public DisP-seq data from three human cell lines 205 
and compared the DisP-seq peaks with identified CondSig-positive sites in the K562 206 
cell line. In SKNMC, MRC5, and H446 cells, 16.1%, 21.0%, and 18.5% of DisP-seq 207 
peaks, respectively, were identified as CondSig-positive sites in K562. But among the 208 
shared DisP-seq peaks across the three human cell lines, 60.6% were identified as 209 
CondSig-positive sites in K562 (Fig. 2e). We further observed much higher DisP-seq 210 
signals at CondSig-positive sites in K562 compared to their adjacent regions (Fig. 2f), 211 
suggesting that identified CondSig-positive sites are highly occupied by disordered 212 
proteins, which have been demonstrated to play important roles in biomolecular 213 
condensation2. These results point towards the high potential of identified CondSig-214 
positive sites as genomic loci where biomolecular condensates form. 215 
 216 
Chromatin properties of identified CondSigs 217 
To investigate the chromatin features of identified CondSigs, we first analyzed the 218 
concentration levels of the component within CondSigs by calculating ChIP-seq signal 219 
strength for each component. We divided the ChIP-seq peaks of each component 220 
CAP into CondSig-positive groups and -negative groups based on their overlap with 221 
positive sites of CondSigs (see Methods for details), and compared their ChIP-seq 222 
signals. As shown in Fig. 3a, most component CAPs displayed significantly higher 223 
signal strength at CondSig-positive peaks in mESC, indicating that CondSigs can 224 
concentrate their components at target genomic loci. For example, CTCF, a CAP 225 
involved in chromatin insulation29, exhibited significantly higher signal strength at 226 
CondSig-positive CTCF peaks. To investigate the biological functional effect of CTCF 227 
concentration, we re-analyzed Micro-C data in mESC30 and found that CondSig-228 
positive CTCF peaks exhibited significantly higher boundary strength than CondSig-229 
negative CTCF peaks (Fig. 3b), suggesting that CTCF concentration contributes to 230 
enhanced chromatin insulation activity. We then merged the adjacent ChIP-seq peaks 231 
to obtain domains for each component CAP (see Methods for details), and compared 232 
the width distributions of CondSig-positive and -negative domains. As shown in Fig. 233 
3c, CondSig-positive domains are wider on average for 95.2% and 93.5% of all 234 
component CAPs of promoter and non-promoter CondSigs, and the CondSig-positive 235 
domains of RUVBL1, TCF3, CTR9, MTF2 and SUPT6H exceeded 10 kb on average. 236 
Additionally, we assessed the component concentration levels and domain widths of 237 
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CondSigs in K562 and found largely consistent results (Supplementary Fig. S4a, b). 238 
These results confirmed the component concentration properties of CondSigs, which 239 
is a basic feature of known chromatin-associated biomolecular condensates18, and 240 
suggested a potential association between biomolecular condensation and stronger 241 
effects on chromatin activities. 242 
 243 
Based on previous studies that reported spatially proximal chromatin could be involved 244 
in the same condensates31,32, we processed to analyze chromatin contact frequencies 245 
within and between CondSig-positive and -negative domains for each component CAP. 246 
In order to minimize the impact of distinct width distributions between CondSig-positive 247 
and -negative domains, we focused on broad domains (width > 5 kb). We used cohesin 248 
ChIA-PET data from mESC33 to measure chromatin interactions between genomic loci, 249 
and found that CondSig-positive domains exhibited significantly higher intra-domain 250 
interactions than their CondSig-negative counterparts (Fig. 3d). We further calculated 251 
the fractions of domains with chromatin interactions within the same group of domains 252 
for each component CAP, and found significantly higher frequencies between 253 
CondSig-positive domains compared to CondSig-negative domains (Fig. 3e). For 254 
each component CAP presented in both promoter and non-promoter CondSigs, we 255 
calculated fractions of domains with chromatin interactions between its promoter and 256 
non-promoter domains. Our analysis observed that CondSig-positive domains showed 257 
significantly higher frequencies between promoter and non-promoter domains relative 258 
to CondSig-negative domains (Fig. 3f). We also utilized Pol II ChIA-PET data34 to 259 
evaluate the chromatin contact frequencies of CondSigs in K562, and observed largely 260 
consistent results (Supplementary Fig. S4c-e). These results confirmed that the 261 
components of identified CondSigs can be concentrated in trans through spatially 262 
proximal chromatin. 263 
 264 
Involvement of DDX21 in chromatin-associated biomolecular condensate 265 
Although DDX21 can undergo phase separation and has been reported to participate 266 
in nucleolar condensate for Pol I transcription24,35, additional genomic loci where it may 267 
involve into biomolecular condensate remain to be elucidated. In mESC, we identified 268 
10 CondSigs with DDX21 as a component, with 15,578 DDX21 ChIP-seq peaks as 269 
CondSig-positive. To verify the presence of DDX21-associated biomolecular 270 
condensate at these genomic loci, we assessed the sensitivity of DDX21 occupancy 271 
at these loci to 1,6-hexanediol (1,6-HD), a compound used for disrupting liquid-like 272 
biomolecular condensates36. Cleavage Under Targets and Release Using Nuclease 273 
(CUT&RUN) experiments were conducted for DDX21 in both wild type and 1,6-HD-274 
treated mESC. We observed a significantly greater decrease in DDX21 CUT&RUN 275 
signals at CondSig-positive peaks compared to CondSig-negative peaks (Fig. 4a, b), 276 
which demonstrated the strong effect of biomolecular condensate disruption on 277 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554542doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554542
http://creativecommons.org/licenses/by-nc-nd/4.0/


CondSig-positive peaks of DDX21. This result supported that DDX21 participates in 278 
biomolecular condensates at these loci. We further investigated the potential impact 279 
of DDX21-associated biomolecular condensates at these genomic loci. We found that 280 
target genes of the CondSig-positive peaks of DDX21 displayed significantly higher 281 
expression levels than other genes (Supplementary Fig. S5a), suggesting that 282 
DDX21-associated biomolecular condensate may enhance the transcription of target 283 
genes.  284 
 285 
Confirmation of CondSigs regulating transcription elongation 286 
SUPT6H, SUPT5H and CTR9 have been reported to regulate transcription 287 
elongation37,38, but it remains unclear whether these CAPs function in the form of 288 
condensate. In mESC, we identified two CondSigs containing all or at least three of 289 
SUPT6H, SUPT5H, CTR9, and POLR2A simultaneously (Fig. 2a, Supplementary Fig, 290 
S5b). Genomic enrichment analysis found that merged CondSig-positive sites of the 291 
two CondSigs were primarily located at promoters and gene bodies (especially at 292 
exons), and the associated gene bodies were enriched with H3K36me3 modification, 293 
a marker for actively transcribed genes (Supplementary Fig. S5c, d). This suggested 294 
that SUPT6H, SUPT5H and CTR9 might participate in the same biomolecular 295 
condensate to regulate transcription elongation. To confirm the condensation 296 
properties of these component CAPs, we performed fixed cell immunofluorescence 297 
(IF) with antibodies against SUPT6H, SUPT5H and CTR9 in mESC. We found that all 298 
three CAPs can form nuclear puncta in cells (Fig. 4c), which is consistent with a recent 299 
study showing the condensation properties of SUPT6H and CTR9 in cells39. To 300 
determine whether these CAPs coexist in the same puncta, we conducted co-IF 301 
analysis and found their high co-localization in nuclei (Fig. 4c, d). To further verify the 302 
presence of the associated biomolecular condensate at these CondSig-positive sites, 303 
we conducted CUT&RUN experiments for SUPT6H and CTR9 in both wild type and 304 
1,6-HD-treated mESC. We observed that CondSig-positive sites exhibited significantly 305 
greater decreases in CUT&RUN signals for both SUPT6H and CTR9 compared to 306 
control sites upon 1,6-HD treatment (Fig. 4e, f). These results suggested that SUPT6H, 307 
SUPT5H and CTR9 can regulate transcription elongation by forming biomolecular 308 
condensate. 309 
 310 
Effects of biomolecular condensate on chromatin activities 311 
With the availability of CondSig-positive sites, it is possible to investigate the influence 312 
of biomolecular condensates on chromatin activities at a genome-wide scale. Our 313 
initial analysis for histone modifications at CondSig-positive sites revealed a high 314 
enrichment of active histone modifications, such as H3K4me3 and H3K27ac, in both 315 
mESC and K562 (Fig. 5a), suggesting a close association between biomolecular 316 
condensates and chromatin activities. We predicted the target genes associated with 317 
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the CondSig-positive sites (see Methods for details), discovering that these genes 318 
showed significantly higher expression levels in both mESC and K562 (Supplementary 319 
Fig. S6a, b). Given that transcriptional bursting is a common characteristic of gene 320 
expression40, and it was hypothesized that biomolecular condensation can influence 321 
the transcriptional bursting frequencies of target genes41, we generated single-cell 322 
RNA-seq data in wild type and 1,6-HD-treated mESC and K562, from which we 323 
inferred transcriptome-wide transcriptional bursting kinetics42. Among the genes with 324 
inferable transcriptional bursting kinetics, those associated with CondSig-positive sites 325 
exhibited significantly higher bursting frequencies in the wild type mESC and K562 326 
(Fig. 5b, c). They also displayed a more substantial decrease in transcriptional bursting 327 
frequencies upon 1,6-HD treatment compared to other genes (Fig. 5d, e). After 328 
assigning genes associated with CondSig-positive sites to individual CondSig, we 329 
ranked the CondSigs in mESC according to the decrease level of transcriptional 330 
bursting frequencies upon 1,6-HD treatment. As shown in Fig. 5f, the CondSig 331 
containing PRDM4, ARID1A, TET2, MED12, MED1, EP300 and SS18 demonstrated 332 
the most substantial decrease, suggesting that these CAPs may form biomolecular 333 
condensation to enhance the transcriptional bursting frequencies of their target genes. 334 
On the contrary, the CondSig containing SUZ12, JARID2, KDM4C, PCGF2, EZH2, 335 
RNF2 and CBX7 had the most increase, consistent with their repressive roles in 336 
transcription regulation43. And target genes of CondSigs in K562 exhibited decreased 337 
burst frequency on average (Supplementary Fig. S6c). These results suggested that 338 
biomolecular condensation can regulate gene transcription by influencing 339 
transcriptional bursting frequency. 340 
 341 
Notably, several histone modification writers, such as EP300 and KMT2D, were 342 
included in the components of identified CondSigs. Given the enrichment of their 343 
corresponding histone modifications at CondSig-positive sites (Fig. 5a), we 344 
hypothesized that these histone modification writers might exhibit stronger 345 
catalyzation activities within biomolecular condensates. We classified each histone 346 
modification writer’s ChIP-seq peaks into CondSig-positive and -negative peaks, and 347 
observed significantly stronger corresponding histone modification products at 348 
CondSig-positive peaks (Supplementary Fig. S6d, e), suggesting the formation of 349 
biomolecular condensation can boost the catalyzation activities of histone modification 350 
writers. Active modifications, such as H3K4me3 and H3K27ac, typically display narrow 351 
peaks (width < 2 kb), while a small proportion also exists as broad peaks (width > 352 
5kb)27,44. The establishment of these broad histone modification domains remains 353 
unclear, hence we next investigated whether the involvement of their writer in 354 
biomolecular condensation could play a role. We transformed two histone 355 
modifications’ peaks to domains by merging adjacent peaks not further than 5 kb. 356 
Among 1,217 H3K4me3 broad peaks in mESC, 63.3% of them overlapped with 357 
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KMT2D-associated CondSig-positive sites, while the percentage is only 38.0% for 358 
narrow peaks (Fig. 5g). Similar results were observed for the pair of H3K27ac and 359 
EP300, not only in mESC, but also in K562 (Fig. 5g, h). These results demonstrated 360 
that the involvement of histone modification writers in biomolecular condensates can 361 
alter chromatin activity by catalyzing broad histone modification domains. 362 
 363 

Discussion 364 

The field of biomolecular condensate research associated with chromatin has made 365 
substantial advancements in recent years. However, identifying the involvement of a 366 
CAP in chromatin-associated biomolecular condensate only scratches the surface of 367 
its regulatory roles due to the following inherent limitations. Firstly, biomolecular 368 
condensates typically comprise multiple components, each potentially contributing 369 
different regulatory roles. Secondly, profiling the genomic binding sites of a CAP 370 
involved in a biomolecular condensate does not necessarily distinguish its 371 
condensation-associated and non-associated genomic loci in a straightforward 372 
manner. Therefore, there is an urgent need for specialized experimental methods or 373 
bioinformatic tools to provide a detailed genomic landscape of chromatin-associated 374 
biomolecular condensates. A recent study introduced DisP-seq28, an antibody-375 
independent chemical precipitation assay that maps endogenous DNA-associated 376 
disordered proteins at a genomic scale. However, DisP-seq was designed for the 377 
broad detection of disordered proteins rather than specifically targeting biomolecular 378 
condensates. This could potentially result in both false positives, as not all binding 379 
sites of these proteins participate in biomolecular condensates, and false negatives, 380 
as disordered protein-guided phase separation is only one mechanism of 381 
condensation. Furthermore, DisP-seq cannot identify the exact components present 382 
at each locus. In response to these challenges, our study presented CondSigDetector, 383 
a computational framework designed to systematically identify CondSigs, i.e., the 384 
signatures of condensate-like chromatin-associate protein co-occupancy, and their 385 
associated genomic loci. By leveraging the occupancy profiles and condensation-386 
related features of hundreds of CAPs in the same cell type, we can predict the 387 
genome-wide loci of biomolecular condensates and the component CAPs of each 388 
condensate. Our study both depicted the chromatin properties of the identified 389 
CondSigs and experimentally validated the regulatory roles of DDX21, SUPT6H, 390 
CTR9 and SUPT5H as components of biomolecular condensates. Our study further 391 
delves deeper into the significant effects of chromatin-associated biomolecular 392 
condensates on transcriptional bursting and broad active histone modification 393 
domains.  These findings underscored the critical role that biomolecular condensates 394 
play in gene regulation and chromatin activities. 395 
 396 
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The CondSigs identified in this study provided a comprehensive, global and genome-397 
wide perspective on distinct chromatin-associated biomolecular condensates, paving 398 
the way for further exploration of their biological functions and mechanisms. By 399 
distinguishing various biomolecular condensates through the unique component CAPs, 400 
the CondSigs can not only aid in discovering additional components of known 401 
chromatin-associated biomolecular condensates, but also reveal entirely new ones. 402 
Furthermore, by pinpointing specific genomic loci targeted by biomolecular 403 
condensates composed of CAPs, CondSigs provide valuable insights into how 404 
dysregulation of condensation may contribute to disease. This, in turn, could facilitate 405 
the design of potential therapeutic strategies. To benefit future research in this area, 406 
we have made the CondSigs identified in mESC and K562 publicly available online 407 
and provided the source code of CondSigDetector on GitHub to enable the detection 408 
in other biological systems.  409 
 410 
Despite the significant insights provided by our identified CondSigs, there are some 411 
limitations to the predictions. One such limitation is the dependence of CondSig 412 
detection on accurate occupancy profiles of CAPs. The absence or poor quality of 413 
ChIP-seq data could lead to partial or complete omission of biomolecular condensates. 414 
For example, we were able to predict a heterochromatin-related condensate 415 
consisting of CBX5, TRIM28 and CBX1 in K562, but not in mESC, due to the 416 
unavailability of high-quality ChIP-seq data of these CAPs in mESC. However, with 417 
the rapid increase of ChIP-seq data, and the implementation of new techniques for 418 
occupancy map capture, we anticipate improvements in the sensitivity of CondSigs 419 
detection. Another limitation is the reliance of CondSig detection on specific 420 
collaborations among CAPs, which may result in the loss of widespread collaborations 421 
in a global context. In this study, we used a threshold of 1.3 for the z-score normalized 422 
occurrence probability of words in topics to determine the component CAPs of 423 
CondSigs. Given the lack of a standard number for components in collaborations, the 424 
components listed in CondSig might be incomplete or inaccurate, underscoring the 425 
need for further in-depth analysis and experiments to verify the predictions. Finally, a 426 
recent study reported that fixation, a common procedure used in X-ChIP, can have 427 
diverse effects on biomolecular condensates in living cells45. To assess the potential 428 
impact of fixation on our prediction results, we selected several component CAPs with 429 
additional available data generated by CUT&RUN, a fixation-free technology, to 430 
evaluate the concentration levels in CondSigs. We found that, similar to ChIP-seq 431 
signals, most component CAPs showed significantly enriched CUT&RUN signals at 432 
CondSig-positive peaks (Supplementary Fig. S7), implying that the fixation effect in 433 
the X-ChIP procedure is unlikely to significantly impact prediction accuracy. This 434 
potential impact could be further mitigated with the rapid accumulation of more 435 
CUT&RUN data for CAPs.  436 
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Methods 437 

ChIP-seq data collection and processing 438 
The ChIP-seq data of CAPs were collected from Cistrome Data Browser46 and filtrated 439 
using quality control procedures as described in the previous study47. In brief, only 440 
ChIP-seq data that met at least four out of the five quality control metrics (sequence 441 
quality, mapping quality, library complexity, ChIP-enrichment, and signal-to-noise ratio) 442 
available in Cistrome Data Browser were kept. In cases where more than one qualified 443 
ChIP-seq data were available for a given CAP in the same cell type, all qualified ChIP-444 
seq data were sorted based on quality control metrics, and the top-ranked data was 445 
kept. 446 
 447 
We downloaded ChIP-seq peak files (in BED format) and signal track files (in bigWig 448 
format) from Cistrome Data Brower. Although Cistrome Data Browser stored narrow 449 
peaks called by MACS248 for all CAPs, peak window sizes of distinct CAPs could differ 450 
significantly. Therefore, to obtain accurate occupancy regions for each CAP, 451 
especially CAPs with broad peaks, we first called broad peaks from the signal track 452 
using “bdgbroadcall” module of MACS2 (v2.1.3) with default parameters and then 453 
merged adjacent peaks within 5 kb. For each CAP, if more than 1,000 newly called 454 
peaks were wider than 5 kb, we replaced the original narrow peaks with newly called 455 
broad peaks as the accurate occupancy regions. 456 
 457 
Condensation-related annotation for proteins 458 
Human and mouse proteins with reported LLPS capacity were collected from four 459 
databases, DrLLPS6, LLPSDB5, PhaSepDB (two versions, v1 and v2)3 and PhaSePro4. 460 
DrLLPS collected all proteins that could potentially be involved in LLPS, including 461 
scaffolds, regulators and clients. However, we only regarded scaffolds as LLPS 462 
proteins since DrLLPS contains too many regulators and clients. To create an 463 
annotation of LLPS proteins, we merged all LLPS proteins from different sources. 464 
Notably, since the number of collected mouse LLPS proteins (61) was much lower 465 
than human LLPS proteins (437), we also considered mouse orthologs of human LLPS 466 
proteins as mouse LLPS proteins.  467 
 468 
Component proteins of MLOs in human and mouse were collected from DrLLPS and 469 
PhaSepDB (v1 and v2). Proteins that were assigned to the same MLO in different 470 
sources were merged to form a comprehensive list of component proteins for that MLO. 471 
Similar to LLPS proteins, mouse orthologs of human proteins assigned to the same 472 
MLO was regarded as component proteins of that MLO in mouse.  473 
 474 
Pairwise protein-protein interactions were collected from three databases, BioGRID49, 475 
MINT50 and IntAct51, only physical associations were kept.  476 
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 477 
Intrinsically disordered regions of proteins were predicted by MobiDB-lite (v1.0)52. This 478 
optimized method uses eight different predictors to derive a consensus, which is then 479 
filtered for spurious short predictions in a second step. For each protein, if more than 480 
15.3% of its regions were predicted to be disordered by MobiDB-lite, the protein would 481 
be regarded as proteins with intrinsically disordered regions. The threshold of 15.3% 482 
corresponds to the 20th percentile of disordered region fractions of known human 483 
LLPS proteins. 484 
 485 
RNA-binding proteins were predicted by TriPepSVM53, a method to perform de novo 486 
prediction based on short amino acid motifs, with parameters “-posW 1.8 -negW 0.2 -487 
thr 0.28”. 488 
 489 
Genome-wide RNA-binding strength 490 
We used genome-wide signals of R-ChIP data, an in vivo R-loop profiling approach 491 
using catalytically dead RNase H154, to quantify genome-wide RNA-binding strength 492 
in K562 cells. Raw sequencing reads from GSE9707254 were first aligned to human 493 
genome build via default --local mode of Bowtie2 (v2.3.5.1)55. Low mapping quality 494 
reads (mapping quality < 30) and duplicates were discarded. Then signal tracks were 495 
generated using the “genomecov” command in Bedtools software (v2.28.0), and 496 
normalized to reads per million mapped reads (RPM). 497 
 498 
Motif scan 499 
Motif scans were performed using FIMO (v5.0.5)56 against the JASPAR core 2020 500 
vertebrates database57 with the following parameters “--max-stored-scores 1000000”. 501 
Motifs with p-value ≤ 1 × 10-5  were used for the following analysis. 502 
 503 
CondSigDetector workflow  504 
The framework consists of three steps, data processing, co-occupancy signature 505 
identification and condensation potential filtration. 506 
 507 
In the first step, the framework first splits mouse (mm10) or human (hg38) genome 508 
into consecutive 1-kb bins. It then generates an occupancy matrix of CAPs over these 509 
1-kb bins in the given cell type (𝑛 × 𝑚), where 𝑛	denotes the number of 1-kb bins and 510 
𝑚	denotes the number of CAPs. The occupancy event of CAP at each genome-wide 511 
1-kb bin is determined by overlapping its ChIP-seq peaks with the given bin. It 512 
excludes CAPs with too few occupancy events (those occupying fewer than 500 bins) 513 
to eliminate the effect of low-quality ChIP-seq data. And bins with too many occupancy 514 
events (occupied by more than 90% of CAPs) are removed to avoid sequencing bias. 515 
Additionally, bins in ENCODE Blacklist genomic regions are also discarded.   516 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554542doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 517 
Identifying co-occupancy signatures from the entire occupancy matrix is a complicated 518 
task that can result in the loss of low-frequency signatures in the local context. To 519 
address this issue, CondSigDetector first segments the entire occupancy matrix into 520 
overlapping sub-matrices iteratively. Each sub-matrix only contains occupancy events 521 
of partial highly co-occupied CAPs at partial bins. The segmentation process is as 522 
follows: (i) In each iteration, a focus CAP is selected and other CAPs highly co-523 
occupied with the focus CAP are identified. The co-occupancy levels of the focus CAP 524 
and the other CAPs are evaluated by using the occupancy events of each other CAP 525 
to classify occupancy events of the focus CAP. And then an F1 score measuring the 526 
accuracy of the classifier is defined as the co-occupancy score and assigned to each 527 
other CAP, where a high co-occupancy score implies a high co-occupancy level. In 528 
each sub-matrix, only co-occupancy information of the focus CAP and top 𝑞 − 1 other 529 
CAPs ranked by the co-occupancy score are kept, where 𝑞 = 50 by default.  (ii) After 530 
the selection of partially highly co-occupied CAPs, partial bins that are occupied 531 
frequently by these CAPs are screened out to further segment the matrix.  For 𝑖-th bin, 532 
an occupancy score (𝑂𝑆!) is defined to evaluate the occupancy level of the given CAPs 533 
as: 534 
 𝑂𝑆! =	/ 𝛽"𝑋!"

#

"$%
 (1) 

where 𝑋!" ∈ {0, 1} denotes occupancy status of 𝑗-th CAP at 𝑖-th bin, and 𝛽" denotes 𝑧-535 
score normalized co-occupancy score. In each sub-matrix, only 𝑝 bins with 𝑂𝑆! > 0 are 536 
kept. 537 
 538 
In the second step, each sub-matrix is classified into promoter and non-promoter 539 
contexts. Promoters  were defined as upstream 3 kb to downstream 3 kb of 540 
transcription start sites. CondSigDetector builds a biterm topic model22 for each 541 
context, treating 1-kb bins as documents and occupied CAPs at those bins as words 542 
within documents. By training the model, specific combinations of words can be 543 
represented by learned topics, which in turn could be interpreted as co-occupancy 544 
signatures representing collaborations of CAPs at chromatin. The biterm topic model 545 
is implemented in CondSigDetector using source code from the previous study22. As 546 
a probabilistic model, the biterm topic model generates two probability distributions, 547 
matrix 𝐺&×# representing occurrence probability of 𝑞 CAPs across 𝑘 topics and matrix 548 

𝐺(×& representing occurrence probability of 𝑘 topics across 𝑝 documents.  549 
 550 
The topic number, 𝑘, is a crucial parameter in topic modeling, as it affects the topic 551 
distribution. CondSigDetector empirically learns 2~10 topics for each context and then 552 
applies an automatic strategy to select the optimal topic number as described in the 553 
previous study58. The selection principle was based on the idea that the optimal topic 554 
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number should distinguish between documents with different topics as much as 555 
possible. Hence an optimal topic number should match the following two criteria: (i) 556 
The occurrence probability of each topic in different documents should be as different 557 
as possible, which is measured by the specificity score (𝑆𝑆&) calculated for all topics 558 
under a certain topic number 𝑘 using Eq. (2). A higher specificity score indicates a 559 
better-selected topic number. (ii) The fewer topics that occur in each bin, the better. 560 
Such a measurement was defined as a purity score (𝑃𝑆&) for all topics under a certain 561 
topic number 𝑘, as calculated in Eq. (3). The larger the purity score, the better the 562 
selected topic number. Finally, we defined the combination score (𝐶𝑆&), which is a 563 
weighted average of the specificity score and purity score, as calculated in Eq. (4). We 564 
selected the optimal topic number from 2~10 which have the highest combination 565 
score. 566 
 567 
The specificity score (𝑆𝑆&) is calculated as  568 
 569 
 

𝑆𝑆& = log	 @
1
𝑘/

𝜎"
𝜇")

&

"$%
C (2) 

where 𝜎" and 𝜇" are the variance and mean, respectively, of the 𝑗-th column of 𝐺(×&.  570 
 571 
The purity score (𝑃𝑆&) is calculated as  572 
 𝑃𝑆& = log	 D

1
𝑝/ 𝜎!

(

!$%
E (3) 

where 𝜎! is the variance of 𝑖-th row of 𝐺(×&. 573 
 574 
The combination score (𝐶𝑆&) is calculated as 575 
 𝐶𝑆& = 𝛼𝑆𝑆& + (1 − 𝛼)𝑃𝑆& (4) 

where 𝛼 is calculated as  576 
 𝛼 =

𝑃𝑆&
𝑆𝑆& + 𝑃𝑆&

 (5) 

 577 
After the selection of optimal topic number 𝑘 , CondSigDetector determined 578 
component CAPs of each co-occupancy signature based on matrix 𝐺&×# representing 579 
𝑞  CAPs’ occurrence probability in 𝑘  co-occupancy signatures. In each signature, 580 
CAPs with higher 𝑧-score normalized occurrence probability than a certain threshold 581 
(1.3 by default, corresponds to about 90th percentile of the standard normal 582 
distribution) were determined as components of the signature, and 1-kb bins occupied 583 
by more than 80% of components are defined as signature-positive sites. Co-584 
occupancy signatures with fewer than 3 components and fewer than 200 signature-585 
positive sites are discarded. 586 
 587 
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In the third step, CondSigDetector screens out CondSigs from all co-occupancy 588 
signatures based on the condensation potential of each signature. To evaluate the 589 
condensation potential of each signature, we quantify associations between 590 
condensation-related features and signature presence at genome-wide bins by 591 
performing ROC analysis. Intuitively, the higher condensation-related feature values 592 
of occupancy events at signature-positive bins, the higher condensation potential of 593 
the signature. In ROC analysis, the positive set is signature-positive bins and the 594 
negative set is signature-negative bins. Signature-positive bins were defined in the 595 
first step, and signature-negative bins are defined using the following two criteria: (i) 596 
The presence of at least 𝑡 CAPs, where 𝑡 = 0.8 × component number of the 597 
signature; (ii) The absence of any co-occupancy of components, i.e., count of 598 
occupied components of the signature < 2. For each signature, six condensation-599 
related features are calculated according to co-occupancy events of top 𝑞 CAPs (see 600 
the first step for the definition of top 𝑞 CAPs ): (i) The fraction of occupied CAPs 601 
having reported LLPS capacity; (ii) The fraction of occupied CAPs co-occurring in the 602 
same MLO; (iii) The fraction of occupied CAPs with predicted IDRs; (iv) The fraction 603 
of occupied CAP pairs having protein-protein interactions; (v) The fraction of 604 
occupied CAPs predicted as RBPs; (vi) RNA-binding strength of the bin. If at least 3 605 
out of 6 condensation-related features exhibit a positive correlation (AUROC > 0.6) 606 
with the presence of the signature (mean AUROC of top 3 features > 0.65), the 607 
signature would be identified as CondSigs. 608 
 609 
Finally, all CondSigs within the same cell type are pooled and any redundant CondSigs 610 
are discarded. Redundancy of CondSigs is measured according to the overlapping 611 
level of the top 5 components, these components being ranked by their occurrence 612 
probability within the CondSig. We calculate a Jaccard index for all CondSigs using 613 
pairwise comparisons, and discard those with a low mean AUROC when the Jaccard 614 
index > 0.25. The threshold of 0.25 corresponds to that 2 out of 5 components are 615 
identical in the pairwise CondSigs. 616 
 617 
Comparison of BTM and HDP 618 
We built HDP and BTM models on the entire occupancy matrix separately, and 619 
compared the quality of learned topics. HDP determines the topic number 620 
automatically while BTM asks for a given topic number. So we first built an HDP model 621 
and generated k topics, then we built a BTM model to generate topics with the given 622 
topic number k. The quality of each learned topic was evaluated by the coherence 623 
score of the top 5 words, a common quality evaluation metric in topic model22,59. HDP 624 
modeling was implemented by using a Python package “tomotopy”. 625 
 626 
Clustering of component CAPs 627 
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We performed a k-means clustering for component CAPs in mESC or K562 according 628 
to their potentials for self-assembly (PS-Self) or interaction with partners (PS-Part) to 629 
undergo phase separation. A recent study employed two machine-learning models, 630 
SaPS and PdPS model, to estimate proteins’ potentials and provided SaPS and PdPS 631 
ranking scores (ranging from 0 to 1) for the human and mouse proteome. We utilized 632 
the SaPS and PdPS ranking scores of component CAPs in mESC or K562 to carry 633 
out k-means clustering. In the clustering, the number of clusters was set as 4, and the 634 
initial cluster centroids were set as (0.8, 0.8), (0.8, 0.4), (0.4, 0.8), (0.4, 0.4), which 635 
corresponds to four clusters: “both scaffold and client”, “scaffold-only”, “client-only”, 636 
and “none”, respectively. 637 
 638 
Annotation for charged amino acid blocks 639 
We calculated NCPR (net charge per residue) employing a 10-residue sliding window 640 
with a step size of 1. This calculation factored in both positively charged amino acids 641 
(R, K and H) and negatively charged amino acids (D and E). Windows with NCPR 642 
greater than 0.5 or less than -0.5 were defined as charged amino acid blocks, and 643 
overlapping blocks were merged. 644 
 645 
Identification of CondSig-positive/negative peaks and domains 646 
To identify CondSig-positive / negative peaks for each component CAP, we classified 647 
its ChIP-seq peaks into two groups based on overlapping with positive sites of 648 
CondSigs which includes the given CAP as a component. To identify CondSig-positive 649 
/ negative domains, we transformed its peaks into domains by merging adjacent peaks 650 
not further than n kb. For component CAPs using narrow peaks as accurate 651 
occupancy regions in ChIP-seq data processing procedure, we set n = 5, and for 652 
component CAPs using broad peaks as accurate occupancy regions, we set n = 10. 653 
Then domains of each component CAP were classified into CondSig-positive domains 654 
and -negative domains based on overlapping with positive sites of CondSigs which 655 
includes the given CAP as a component. 656 
 657 
3D chromatin contact analysis 658 
Public Micro-C data in mESC, ChIA-PET data against SMC1 in mESC, and ChIA-PET 659 
data against RNA Pol II in K562 were used in this study. Micro-C contact matrices 660 
from 2.6 billion reads were downloaded from GSE13027530, and boundary strength 661 
for 400-bp resolution calculated by Cooltools60 was used for the following analysis. 662 
SMC1 ChIA-PET data in mESC were downloaded from GSE5791133 and processed 663 
with ChIA-PET261. RNA Pol II ChIA-PET loops were directly downloaded from 664 
ENCSR880DSH34. 665 
 666 
Definition for target genes of CondSig-positive genomic regions 667 
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For each genomic region, genes whose promoter overlaps with the given region or 668 
has long-range chromatin contacts with the given region were defined as target genes. 669 
Long-range chromatin contacts were determined by ChIA-PET data in the 670 
corresponding cell type. In this study, SMC1 ChIA-PET data in mESC and RNA Pol II 671 
ChIA-PET data in K562 were used. 672 
 673 
Cell culture 674 
Mouse embryonic stem cells (mESC), C57BL/6 strain, were purchased from ATCC 675 
(SCRC-1002) and cultured on a feeder layer of mitomycin C (Stemcell, 73272) treated 676 
mouse embryonic fibroblast (MEF) in tissue culture flask coated with 0.1% gelatin. The 677 
cells were grown in complete mESC medium, which was composed of EmbryoMax 678 
DMEM (Millipore, SLM-220-B), 15% (v/v) fetal bovine serum (Hyclone, SH30070.03), 679 
0.1 mM nonessential amino acids (Millipore, TMS-001-C), 1% (v/v) nucleoside 680 
(Millipore, ES-008-D), 2 mM L-glutamine (Millipore, TMS-002-C), 0.1 mM β-681 
mercaptoethanol (Millipore, ES-007-E), and 1000 U/mL recombinant LIF (Millipore, 682 
ESG1107).  683 
 684 
Cell treatment 685 
1,6-hexanediol (Sigma, 240117) was dissolved in a complete mESC medium at a 686 
concentration of 15% (w/v) to make a storage solution. mESC were detached using 687 
trypsin, pelleted by centrifuging, and then resuspended in a complete mESC 688 
medium. The resuspended cells were transferred into a new gelatin-coated flask and 689 
cultured in a 37°C incubator for 1hr to remove the feeder cells. The supernatant cells 690 
were collected and washed twice with PBS. After cell resuspending with medium, the 691 
1,6-hexanediol storage buffer was added at a final concentration of 1.5%. The dish 692 
was put into the incubator immediately for 30 min, and treated cells were 693 
immediately used for CUT&RUN assay. 694 
 695 
CUT&RUN 696 
The CUT&RUN assay was conducted on 0.2 million cells per sample, utilizing the 697 
Hyperactive pG-MNase CUT&RUN assay kit (Vazyme, HD102) with slight 698 
modifications to the manufacturer’s protocol. Briefly, cells were harvested and 699 
incubated for 10 min at room temperature with Concanavalin A-coated magnetic 700 
beads, which had been activated prior to use. Following this, the ConA beads bound 701 
cells were collected using a magnet and resuspended in 100 µl of antibody buffer 702 
containing either 2µl of DDX21 (Proteintech, 10528-1-AP), 4 µl of CTR9 (Novus 703 
Biologicals, NB100-1718) or 4 µl of SUPT6 (SUPT6H) (Novus Biologicals, NB100-704 
2582) primary antibody respectively. The samples were then incubated at 4°C 705 
overnight on rotator. The next day, cells were washed twice with Dig-wash buffer and 706 
resuspended in 100 µl of a premixed pG-MNase Enzyme solution before incubation 707 
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at 4°C for 1hr with rotation. Following this, the cells were washed twice with Dig-708 
wash buffer and resuspended in 100 µl of premixed CaCl2 solution, then incubated 709 
for 2hr on ice. Following the stop of the reaction, the cut chromatin was released 710 
from cells by incubation at 37 °C for 30 min in the absence of agitation. After 711 
centrifuging at 13,400 g for 5 min, the supernatant was collected, and DNA was 712 
purified using FastPure gDNA mini columns. The libraries were prepared using 713 
NEBNext Ultra II DNA library prep kit (NEB, E7645) with modified amplification 714 
condition as 98 °C for 30 sec, 15 cycles of 98 °C for 10 sec and 65°C for 17 sec, and 715 
final extension at 65 °C for 2 min and hold at 4°C.  716 
 717 
Single-cell RNA-seq 718 
Single-cell RNA sequencing (scRNA-seq) libraries were prepared using 6,000 mES 719 
cells, either in a wild type state or treatment with 1,6-hexanediol at 1.5% for 2 720 
minutes, and K562 cells, either in wild type or treatment with 1,6-hexanediol at 10% 721 
for 20 minutes. The libraries were created using the Chromium Single Cell 3’ Library 722 
and Gel Bead Kit V3.1 (10x Genomics, Catalog No. PN1000268) to create single-cell 723 
gel beads in emulsion (GEM). Following preparation, the libraries were sequenced 724 
using the Illumina Novaseq 6000 platform in a 150 bp paired-end mode. 725 
 726 
Immunofluorescence staining  727 
CTR9 antibody and SPT6 (SUPT6H) antibody were labeled with Mix-n-Stain CF488 728 
Antibody labeling kit (Sigma, MX488AS20) and Mix-n-Stain CF568 Antibody labeling 729 
kit (Sigma, MX568S20) respectively according to the manufacturer’s instruction.  730 
Mouse ES Cells were grown as mentioned above on pre-coated coverslips and fixed 731 
with 4% paraformaldehyde solution (Beyotime, P0099) at room temperature for 10 732 
min. permeabilization was performed using 0.5% Triton X-100 (Sigma-Aldrich, 733 
93443) in PBS for 10 min. Cells were blocked with IF blocking solution (Beyotime, 734 
P0102) for 1 hr at RT, and subsequently incubated with a 1:100 diluted SUPT5 735 
(SUPT5H) primary antibody (Abcam, ab126592) in QuickBlock dilution buffer 736 
(Beyotime, P0262) at 4 °C overnight. Following three washes, cells were incubated 737 
with Alexa Fluor 594 goat anti-rabbit secondary antibody (ThermoFisher, A11037) at 738 
a concentration of 1: 1000 in PBST for 1 hr at RT. After three additional washes with 739 
PBST, cells were labeled with both CF488-conjugated CTR9 and CF568-conjugated 740 
SPT6 antibodies at RT for 2hr. After three washes with PBST, the coverslips were 741 
mounted onto glass slides using Vectashield medium with DAPI (Vector 742 
Laboratories, H-1200) and sealed with nail polish. Images were acquired using a 743 
Zeiss LSM 710 confocal microscope with 100 × oil objective and ZEN acquisition 744 
software.  745 
 746 
Western blot 747 
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Cells were lysed using a lysis buffer (Beyotime, P0013J) supplemented with 1 mM 748 
PMSF as a protease inhibitor. Cell lysate was run on a 10% Bis- Tris gel at 70 V for 749 
~90 min, followed by 120 V until the dye front reached the end of the gel. Proteins 750 
were subsequently dry transferred to a nitrocellulose membrane using the iBlot2 751 
western blot transfer system (Thermo Fisher Scientific) under specific conditions: 7 752 
min at 20V for CTR9, and 15 min at 25V for SUPT6H. The membrane was then 753 
blocked using 5% non-fat milk in TBST for 1 hr at room temperature with shaking. 754 
Primary antibody incubations were performed overnight on a shaker at 4°C with the 755 
following dilutions: 1:1,000 of anti-CTR9 (Novus Biologicals, NB100-1718) and 756 
1:1000 of anti-GAPDH (Invitrogen, MA5-15738) in 5% non-fat milk, 1:1,000 of anti-757 
SUPT6 (Novus Biologicals, NB100-2582) and 1:2000 of anti-lamin B1 (Beyotime, 758 
AF1408) in Western dilution buffer (Beyotime, P0023). The following day, 759 
membranes were washed three times with TBST for 10 minutes each at room 760 
temperature with shaking. Secondary antibody incubations were carried out for 2 761 
hours at room temperature using 1:1,000 dilutions of goat anti-rabbit IgG-horseradish 762 
peroxidase (HRP) or goat anti-mouse IgG-HRP (Beyotime Technology, A0208, and 763 
A0216, respectively) in TBST. Following incubation, membranes were washed three 764 
times in TBST for 10 minutes each, and protein bands were visualized by 765 
chemiluminescence immunoassay. 766 
 767 
CUT&RUN, single-cell RNA-seq data processing 768 
CUT&RUN reads were first processed using TrimGalore (v0.6.0) to trim adaptor and 769 
low-quality reads. Trimmed reads were then aligned to the mouse genome build mm10 770 
or human genome build hg38 using Bowtie2 (v2.3.5.1)55 with parameters “--no-mixed 771 
--no-discordant --no-unal”. Low mapping quality reads (mapping quality < 30) and 772 
duplicates were discarded. Then biological replicates that passed quality control were 773 
pooled together. CUT&RUN peaks were called by MACS2 (v2.1.3)48. Signal tracks 774 
were generated using the “genomecov” command in Bedtools software (v2.28.0), and 775 
normalized to reads per million mapped reads (RPM). Single-cell RNA-seq data (10x 776 
Genomics) were processed with DrSeq2 (v2.2.0)62 and transcriptome-wide 777 
transcriptional burst kinetics were inferred using the model from the previous study42. 778 
 779 

Data availability 780 

All the CUT&RUN and scRNA-seq data generated in this study have been deposited 781 
in Genome Sequence Archive (https://bigd.big.ac.cn/gsa/) under accession 782 
CRAXXXXXX and HRAXXXXXX. All predicted CondSigs and associated genomic loci 783 
generated in this study are available at https://compbio-784 
zhanglab.org/CondSigDB/index.html. 785 
 786 

Code availability 787 
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The computational framework and statistical analysis were made based on shell, 788 
Python and R codes. A command-line tool was developed for the implementation of 789 
CondSigDetector, main source codes are available at the GitHub repository 790 
(https://github.com/TongjiZhanglab/CondSig). 791 
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Fig. 1 1010 

 1011 

Fig. 1. Overall design of CondSigDetector. 1012 
a. A schematic illustrates the prediction of chromatin-associated biomolecular 1013 
condensates by detecting genome-wide context-dependent collaborations of CAPs 1014 
with high condensation potential. b. Workflow of CondSigDetector (see Methods for 1015 
details). 1016 
 1017 
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Fig. 2 1018 

 1019 

Fig. 2. CondSigs in mESC and K562. 1020 
a. Heatmaps showing identified CondSigs in mESC at non-promoter (NP) and 1021 
promoter (P)  regions. Each row represents a CondSig and the row name indicates 1022 
the component CAPs of the given CondSig. Each column represents a 1023 
condensation-related feature and the colours represent AUROC. b. The stacked bar 1024 
plots showing the fraction of CondSig with/without components in known chromatin-1025 
associated biomolecular condensates (Supplementary Table S1). c. Heatmaps 1026 
showing k-means clustering for component CAPs in mESC (left) and K562 (right) 1027 
with PS-self and PS-part ranking score (see Methods for details). A high PS-self 1028 
ranking score refers to scaffolds and a high PS-part ranking score refers to clients. 1029 
Four clusters (“Both”: both scaffold and client, “Scaffold”: scaffold-only, “Client”: 1030 
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client-only, and “None”) were shown. d. Box plots showing component CAPs of 1031 
CondSigs have a higher fraction of charged blocks in amino acid sequences (see 1032 
Methods for details) than control (mouse or human proteome) in mESC and K562. 1033 
Significance between groups was evaluated by a two-sided Welch's t-test, **** 1034 
represents p-value < 1 × 10-4.  e. The overlap ratio of DisP-seq peaks from three 1035 
human cell lines with CondSig-positive sites in K562. Conserved peaks represent 1036 
shared peaks across three human cell lines. DisP-seq data were from the previous 1037 
study (GSE19096128). f. Line chart showing average DisP-seq signals around 1038 
CondSig-positive sites. X-axis represents distance to CondSig-positive site centers 1039 
and Y-axis represents average DisP-seq signals calculated by RPM (reads per 1040 
million mapped reads). 1041 
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Fig. 3 1071 

 1072 

Fig. 3.  Chromatin properties of predicted chromatin-associated biomolecular 1073 
condensates. 1074 
a. Volcano plots showing concentration levels of component CAPs in CondSigs in 1075 
mESC. X-axis represents the log2-transformed fold change of ChIP-seq signals at 1076 
CondSig-positive peaks compared to CondSig-negative peaks, while Y-axis 1077 
represents the negative log10-transformed p-value. The vertical dashed line 1078 
corresponds fold change = 1 and the horizontal dashed line corresponds to p-value = 1079 
0.001.  b. Line charts showing boundary strength around CondSig-positive and -1080 
negative CTCF peaks. Boundary strength was calculated using Micro-C data in 1081 
mESC from the previous study (GSE13027530). c. Scatter plots showing width 1082 
comparison of CondSig-positive and -negative domains in mESC. X-axis represents 1083 
the ratio to which the CondSig-positive domain width exceeds the CondSig-negative 1084 
domain width, and Y-axis represents the positive domain width. Component CAPs 1085 
having CondSig-positive domains exceeding 10 kb on average were labeled. d. 1086 
Intra-domain chromatin contacts of CondSig-positive or -negative broad domains in 1087 
mESC. For each component CAP, an average valid paired-end tags count in each 1088 
broad domain (> 5 kb) was calculated to represent intra-domain contacts. Cohesin 1089 
ChIA-PET data used in the analysis was from the previous study (GSE5791333). e. 1090 
Box plots showing intra-group chromatin contacts between CondSig-positive or -1091 
negative domains in mESC. For each component CAP, the fraction of domains 1092 
having at least one valid paired-end tag with other intra-group domains was 1093 
calculated.  f. Box plots showing NP (non-promoter)-P (promoter) chromatin contacts 1094 
between CondSig-positive or -negative domains in mESC. For each component 1095 
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CAP, the fraction of non-promoter domains having at least one valid paired-end tag 1096 
with its promoter domains was calculated. Significance between groups was 1097 
evaluated by a two-sided Welch's t-test, * represents p-value < 0.05, *** represents 1098 
p-value < 1 × 10-3 and **** represents p-value < 1 × 10-4. 1099 
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Fig. 4 1136 

 1137 
Fig. 4.  Experimental validation of potential biomolecular condensates.  1138 
a. Box plots showing log2-transformed fold change of DDX21 CUT&RUN signals at 1139 
CondSig-positive and -negative DDX21 peaks after 1,6-hexanediol treatment in 1140 
contrast to wild type mESC. b. UCSC genome browser view of representative 1141 
CondSig-positive DDX21 peaks. Signals represent RPM and the related CondSig-1142 
positive site was shaded in purple. c. Immunofluorescence images of mESC 1143 
showing that SUPT6H (green) colocalizes with CTR9 (red) and SUPT5H (grey) in 1144 
puncta. DNA was stained with DAPI (blue). Scale bar: 10 𝜇m. d. Line scans of the 1145 
images of a cell co-stained for SUPT6H, CTR9 and SUPT5H, at the position 1146 
depicted by the white line. The direction is from the green tick to the purple tick, and 1147 
the two arrows refer to two representative puncta. e. Box plots showing log2-1148 
transformed fold change of SUPT6H and CTR9 CUT&RUN signals at CondSig-1149 
positive sites and -negative sites after 1,6-hexanediol treatment in contrast to wild 1150 
type mESC. Significance between groups was evaluated by a two-sided Welch's t-1151 
test, **** represents p-value < 1 × 10-4.  f. UCSC genome browser view of 1152 
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representative CondSig-positive sites. Signals represent RPM and the related loci 1153 
were shaded in purple. 1154 
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Fig. 5 1193 

 1194 

Fig. 5. Effect of biomolecular condensates on chromatin activities. 1195 
a. Heatmaps showing histone modification enrichment at CondSig-positive sites in 1196 
mESC and K562. The colours represent log2-transformed fold enrichment of histone 1197 
modification ChIP-seq signals at CondSig-positive sites relative to the genomic 1198 
background. Public ChIP-seq data for histone modifications were from Cistrome 1199 
Data Browser46 and filtered as the previous study described47. b, c. Box plots 1200 
comparing burst frequency of genes targeted by all CondSig-positive sites and other 1201 
genes in mESC (b) and K562 (c). d, e. Box plots compared the burst frequency 1202 
change percentage after 1,6-hexanediol treatment of target genes and other genes 1203 
in mESC (d) and K562 (e). Significance between groups was evaluated by a two-1204 
sided Welch’s t-test, ** represents p-value < 0.01 and **** represents p-value < 1 × 1205 
10-4. f. The bar plots showing change percentages of burst frequency of genes 1206 
targeted by each individual CondSig. And CondSigs showing the maximum decrease 1207 
and increase were specially labeled. g, h. The stacked bar plots showing fractions of 1208 
broad H3K4me3 or H3K27ac peaks in mESC (g) and broad H3K27ac peaks in K562 1209 
(h) overlapping with CondSig-positive sites. 1210 
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