

1 Decoding the genomic landscape of chromatin-associated 2 biomolecular condensates

3
4 Zhaowei Yu^{1,4}, Qi Wang^{1,4}, Guangya Zhu², Jidong Zhu³, Yong Zhang^{1*}

5
6 ¹Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key
7 Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell
8 Research, School of Life Sciences and Technology, Tongji University, Shanghai,
9 200092, China

10 ²Lingang Laboratory, Shanghai, 200031, China

11 ³Etern Biopharma, Shanghai, 201203, China

12 ⁴These authors contributed equally to this work

13 *Correspondence: Yong Zhang Ph.D., 1239 Siping Road, Shanghai 200092, China;
14 Tel: 86-21-65981196; Fax: 86-21-65981041; E-mail: yzhang@tongji.edu.cn

15
16

17 **Abstract**

18 Biomolecular condensates play a significant role in chromatin activities, primarily by
19 concentrating and compartmentalizing proteins and/or nucleic acids. However, their
20 genomic landscapes and compositions remain largely unexplored due to a lack of
21 dedicated computational tools for systematic identification *in vivo*. To address this, we
22 developed CondSigDetector, a computational framework designed to detect
23 condensate-like chromatin-associated protein co-occupancy signatures (CondSigs),
24 to predict genomic loci and component proteins of distinct chromatin-associated
25 biomolecular condensates. Applying this framework to mouse embryonic stem cells
26 (mESC) and human K562 cells enabled us to depict the high-resolution genomic
27 landscape of chromatin-associated biomolecular condensates, and uncover both
28 known and potentially novel biomolecular condensates. Multi-omics analysis and
29 experimental validation further verified the condensation properties of CondSigs.
30 Additionally, our investigation shed light on the impact of chromatin-associated
31 biomolecular condensates on chromatin activities. Collectively, CondSigDetector
32 provides a novel approach to decode the genomic landscape of chromatin-associated
33 condensates, facilitating a deeper understanding of their biological functions and
34 underlying mechanisms in cells.

35

36 **Introduction**

37 Over the last decade, there has been growing appreciation for the biological role of
38 biomolecular condensates, which are membraneless compartments that
39 compartmentalize and concentrate specific proteins and/or nucleic acids^{1,2}. Liquid-

40 liquid phase separation (LLPS) has been proposed as a key organizing principle of
41 biomolecular condensates, driven by weak, multivalent, and highly collaborative
42 molecular interactions². The molecular interactions inside biomolecular condensates
43 usually involve diverse collaborative components that can be categorized into two
44 main groups: scaffolds and clients. Scaffolds drive the formation of condensates, while
45 clients participate by binding to scaffolds³⁻⁶. Biomolecular condensates are implicated
46 in various cellular functions, and their aberrations are associated with numerous
47 diseases^{1,7}. Recently, growing evidences have demonstrated the widespread
48 existence and functional significance of chromatin-associated biomolecular
49 condensates. Many chromatin-associated processes, such as DNA replication⁸, DNA
50 repair⁹, transcription control¹⁰⁻¹³, and chromatin organization¹⁴⁻¹⁷, have been found to
51 take place within biomolecular condensates at chromatin¹⁸ (Supplementary Table S1).
52

53 Understanding chromatin-associated biomolecular condensates, including their
54 genomic loci and collaborative components, is crucial for elucidating their impact on
55 chromatin activities. Although some chromatin-associated biomolecular condensates
56 have been linked to well-characterized chromatin states, such as super-enhancer^{10,11}
57 and heterochromatin¹⁵⁻¹⁷, these connections have generally been reported without
58 comprehensive associations with genome-wide loci, except for a few loci of interest
59 validated by low-throughput experiments. Until now, the genomic landscape of
60 chromatin-associated biomolecular condensates has remained poorly understood.
61 However, no genomic approach has been designed yet to capture the comprehensive
62 genomic landscape of chromatin-associated biomolecular condensates, primarily due
63 to the following challenges. First, the complexity of biomolecular condensates arising
64 from their diverse components¹⁸ and context-specific molecular collaborations among
65 these components along the chromatin¹³, making it difficult to systematically capture
66 chromatin-associated biomolecular condensates by targeting a single factor. Second,
67 even for chromatin-associated protein (CAP) with experimental evidence of
68 condensation^{3-6,19}, distinguishing its condensation-associated binding sites from non-
69 associated binding sites in individual datasets is not a straightforward task.
70

71 With the rapid accumulation of CAP occupancy profiles and proteome-scale
72 characterization of condensation potential, it is now possible to overcome the above
73 challenges of decoding the genomic landscape of chromatin-associated biomolecular
74 condensates by integrating multi-dimensional data. In this study, we introduce
75 CondSigDetector, a computational framework that systematically predicts chromatin-
76 associated biomolecular condensates. This framework overcomes the two challenges
77 mentioned above by utilizing topic modeling to detect genome-wide context-
78 dependent collaborations among CAPs possessing high condensation potential from
79 hundreds of CAP occupancy profiles. These collaborations along the chromatin are

80 termed Condensate-like chromatin-associated protein co-occupancy Signatures
81 (CondSigs). The framework not only identifies the collaborative components of distinct
82 biomolecular condensates, but also assigns them to the associated genomic loci. We
83 applied this computational framework to two cell types with abundant ChIP-seq data,
84 and predicted hundreds of chromatin-associated biomolecular condensates, along
85 with their genomic loci, which are supported by multi-omics data and experimental
86 evidences. To the best of our knowledge, CondSigDetector is the first computational
87 framework for decoding the genomic landscape of chromatin-associated biomolecular
88 condensates, providing a valuable resource for investigating the functional effects and
89 underlying mechanisms of chromatin-associated biomolecular condensates on
90 chromatin activities.

91

92 **Results**

93 **Overall design of CondSigDetector**

94 By integrating ChIP-seq datasets of hundreds of CAPs in the same cell type, we
95 observed frequent co-occupancy of CAPs across the genome (Supplementary Fig.
96 S1a, b). However, most co-occupancy events could not be explained by DNA binding
97 motifs or chromatin accessibility (Supplementary Fig. S1c-f), two known determinants
98 of CAP co-occupancy events²⁰. This suggests that alternative mechanisms may be
99 responsible for organizing genome-wide co-occupancy events of CAPs. Biomolecular
100 condensation at chromatin may partially explain such events, as biomolecular
101 condensates are thought to be mediated by collaborations of components², and
102 condensations of CAPs have been reported to influence their chromatin
103 occupancy^{10,21}. This evidence implies that specific CAP co-occupancy events could
104 be signatures of chromatin-associated biomolecular condensates.

105

106 In this study, we aim to predict chromatin-associated biomolecular condensates by
107 detecting genome-wide context-dependent collaborations of CAPs with high
108 condensation potential, termed CondSig. We developed a computational framework,
109 CondSigDetector, to systematically detect CondSigs by integrating hundreds of ChIP-
110 seq datasets and condensation-related characterizations of CAPs (Fig. 1).
111 CondSigDetector comprises three steps: data processing, co-occupancy signatures
112 identification, and condensation potential filtration.

113

114 In the first step, the input data, *i.e.*, the collected ChIP-seq profiles of all CAPs from
115 an identical cell type, is converted into an occupancy matrix at genome-wide
116 consecutive bins. To address the sparsity of this matrix, CondSigDetector applies an
117 iterative segmentation method for each target CAP, which segments the entire
118 occupancy matrix into smaller sub-matrices (see Methods for details). This

119 segmentation approach can enhance the detection of CAP collaborations in local
120 contexts by substantially increasing the occurrence frequency of co-occupancy events
121 within the sub-matrices (Supplementary Fig. S1g, h).

122

123 In the second step, CondSigDetector utilizes a topic model to identify co-occupancy
124 signatures of CAPs, representing frequent CAP collaborations, from the sub-matrices.
125 Given the significant differences in co-occupancy frequencies between promoter and
126 non-promoter regions (Supplementary Fig. S1a, b), the sub-matrices are categorized
127 into either promoter or non-promoter groups to identify co-occupancy signatures
128 separately. Within the topic model, each sub-matrix is treated as a set of documents,
129 where each genomic bin represents a document and CAPs occupying the bin are
130 considered as words in the document. Intuitively, the topics learned from topic
131 modeling, which indicate specific word combinations, can be interpreted as co-
132 occupancy signatures of CAPs. Since the number of co-occupied CAPs within a bin is
133 typically sparse (Supplementary Fig. S1a, b), CondSigDetector utilizes the bitem topic
134 model, which outperforms traditional models such as Latent Dirichlet Allocation for
135 short text²². It has been confirmed that the co-occupancy signatures of CAPs derived
136 from the bitem topic model exhibit high topic coherence and repeatability among
137 replicates (see Methods for details; Supplementary Fig. S1i-l).

138

139 In the third step, CondSigDetector predicts CondSigs by evaluating the condensation
140 potential for each co-occupancy signature of CAPs. For each genomic bin, 6
141 condensation-related features are calculated: the fraction of occupied CAPs with
142 reported LLPS capacity, the fraction of occupied CAPs co-occurring in the same
143 membraneless organelle (MLO), the fraction of occupied CAPs with predicted
144 intrinsically disordered regions (IDRs), the fraction of occupied CAP pairs having
145 protein-protein interactions (PPIs), the fraction of occupied CAPs predicted as RNA-
146 binding proteins (RBPs), and the RNA-binding strength (RBS) of the bin. Intuitively,
147 for a co-occupancy signature of CAPs, higher values of these condensation-related
148 features at signature-positive bins indicate a greater condensation potential. Co-
149 occupancy signatures with at least 3 condensation-related features strongly and
150 positively correlated with their presence are identified as CondSigs (see Methods for
151 details). Finally, CondSigDetector eliminates redundant CondSigs containing similar
152 CAP components.

153

154 **Identification of CondSigs in mouse and human cell lines**

155 CondSigDetector was applied to two cell types with abundant ChIP-seq data: mESC
156 and human K562 cell line, to identify CondSigs. After stringent quality control, we
157 gathered qualified ChIP-seq data for 189 CAPs in mESC and 216 CAPs in K562
158 (Supplementary Table S2). Due to the lack of a qualified RNA-binding profile for mESC,

159 the RNA binding strength, one of the condensation-related features, was not included
160 in mESC. We identified 25 promoter CondSigs and 36 non-promoter CondSigs in
161 mESC (Fig. 2a), along with 75 promoter CondSigs and 93 non-promoter CondSigs in
162 K562 (Supplementary Fig. S2). Additionally, we identified 14,345 promoter CondSig-
163 positive sites and 24,500 non-promoter CondSig-positive sites in mESC, along with
164 14,201 and 38,963 CondSig-positive sites in K562. To assess the reliability of
165 identified CondSigs, we examined whether their component CAPs are involved in
166 known chromatin-associated biomolecular condensates. Among the identified mESC
167 CondSigs, 92.0% of promoter and 97.2% of non-promoter CondSigs contain at least
168 one component CAP present in known chromatin-associated biomolecular
169 condensates (Fig. 2b). For example, a non-promoter CondSig contains SS18,
170 SMARCA4 (BRG1), and DPF2, which are three known components of the known
171 SS18 cluster²³ (Fig. 2a, Supplementary Fig. S3a, Supplementary Table S1). In K562
172 cells, 49.3% of promoter and 55.9% of non-promoter CondSigs have at least one
173 component CAP found in known chromatin-associated biomolecular condensates (Fig.
174 2b). One example of a non-promoter CondSig includes CBX5 (HP1 α), TRIM28 and
175 CBX1 (HP1 β) (Supplementary Fig. S3b, Supplementary Table S1), with HP1 and
176 TRIM28 were reported to drive LLPS with H3K9me3-modified chromatin
177 cooperatively¹⁵. These results provide support for the reliability of the identified
178 CondSigs.

179
180 Some component CAPs are found in more than one identified CondSig
181 (Supplementary Fig. S3c-d). For example, DDX21, a DEAD-box RNA helicase known
182 to participate in biomolecular condensate²⁴, is present in 8 non-promoter CondSigs in
183 mESC. We examined the similarity of present loci between CondSig pairs containing
184 at least one shared component CAP and found that only 0.6% of mESC pairs and 0.9%
185 of K562 pairs had a Jaccard index higher than 0.7. This suggests a high diversity of
186 present loci of identified CondSigs, even when they share some common components.
187 To investigate the potential roles of component CAPs in CondSigs, we classified all
188 predicted component CAPs into four clusters: “both scaffold and client”, “scaffold-only”,
189 “client-only”, and “none”, according to their calculated potentials for self-assembly or
190 interaction with partners to undergo phase separation²⁵ (see Methods for details). 77.5%
191 and 79.5% of component CAPs in mESC and K562 were classified into “both scaffold
192 and client” or “scaffold-only” clusters (Fig. 2c). Furthermore, we found that component
193 CAPs of CondSigs have a significantly higher fraction of charged amino acid blocks
194 (Fig. 2d), which is an important resource for multivalency²⁶. These results demonstrate
195 that the component CAPs of identified CondSigs have strong capacities to form
196 biomolecular condensates, and may function in a context-dependent manner.

197

198 The previous studies demonstrated that biomolecular condensate can form at super-
199 enhancers, *i.e.*, clusters of enhancers densely occupied by the master regulators and
200 mediators, and these condensates can regulate gene transcription by concentrating
201 transcription machinery^{10,27}. When comparing the genomic loci of super-enhancers
202 and CondSig-positive sites in mESC, we found that 96.1% of super-enhancers overlap
203 with CondSig-positive sites. Furthermore, a recent study introduced DisP-seq, an
204 antibody-independent chemical precipitation assay, to map genome-wide profiles of
205 disordered proteins²⁸. We reanalyzed public DisP-seq data from three human cell lines
206 and compared the DisP-seq peaks with identified CondSig-positive sites in the K562
207 cell line. In SKNMC, MRC5, and H446 cells, 16.1%, 21.0%, and 18.5% of DisP-seq
208 peaks, respectively, were identified as CondSig-positive sites in K562. But among the
209 shared DisP-seq peaks across the three human cell lines, 60.6% were identified as
210 CondSig-positive sites in K562 (Fig. 2e). We further observed much higher DisP-seq
211 signals at CondSig-positive sites in K562 compared to their adjacent regions (Fig. 2f),
212 suggesting that identified CondSig-positive sites are highly occupied by disordered
213 proteins, which have been demonstrated to play important roles in biomolecular
214 condensation². These results point towards the high potential of identified CondSig-
215 positive sites as genomic loci where biomolecular condensates form.

216

217 **Chromatin properties of identified CondSigs**

218 To investigate the chromatin features of identified CondSigs, we first analyzed the
219 concentration levels of the component within CondSigs by calculating ChIP-seq signal
220 strength for each component. We divided the ChIP-seq peaks of each component
221 CAP into CondSig-positive groups and -negative groups based on their overlap with
222 positive sites of CondSigs (see Methods for details), and compared their ChIP-seq
223 signals. As shown in Fig. 3a, most component CAPs displayed significantly higher
224 signal strength at CondSig-positive peaks in mESC, indicating that CondSigs can
225 concentrate their components at target genomic loci. For example, CTCF, a CAP
226 involved in chromatin insulation²⁹, exhibited significantly higher signal strength at
227 CondSig-positive CTCF peaks. To investigate the biological functional effect of CTCF
228 concentration, we re-analyzed Micro-C data in mESC³⁰ and found that CondSig-
229 positive CTCF peaks exhibited significantly higher boundary strength than CondSig-
230 negative CTCF peaks (Fig. 3b), suggesting that CTCF concentration contributes to
231 enhanced chromatin insulation activity. We then merged the adjacent ChIP-seq peaks
232 to obtain domains for each component CAP (see Methods for details), and compared
233 the width distributions of CondSig-positive and -negative domains. As shown in Fig.
234 3c, CondSig-positive domains are wider on average for 95.2% and 93.5% of all
235 component CAPs of promoter and non-promoter CondSigs, and the CondSig-positive
236 domains of RUVBL1, TCF3, CTR9, MTF2 and SUPT6H exceeded 10 kb on average.
237 Additionally, we assessed the component concentration levels and domain widths of

238 CondSigs in K562 and found largely consistent results (Supplementary Fig. S4a, b).
239 These results confirmed the component concentration properties of CondSigs, which
240 is a basic feature of known chromatin-associated biomolecular condensates¹⁸, and
241 suggested a potential association between biomolecular condensation and stronger
242 effects on chromatin activities.

243
244 Based on previous studies that reported spatially proximal chromatin could be involved
245 in the same condensates^{31,32}, we processed to analyze chromatin contact frequencies
246 within and between CondSig-positive and -negative domains for each component CAP.
247 In order to minimize the impact of distinct width distributions between CondSig-positive
248 and -negative domains, we focused on broad domains (width > 5 kb). We used cohesin
249 ChIA-PET data from mESC³³ to measure chromatin interactions between genomic loci,
250 and found that CondSig-positive domains exhibited significantly higher intra-domain
251 interactions than their CondSig-negative counterparts (Fig. 3d). We further calculated
252 the fractions of domains with chromatin interactions within the same group of domains
253 for each component CAP, and found significantly higher frequencies between
254 CondSig-positive domains compared to CondSig-negative domains (Fig. 3e). For
255 each component CAP presented in both promoter and non-promoter CondSigs, we
256 calculated fractions of domains with chromatin interactions between its promoter and
257 non-promoter domains. Our analysis observed that CondSig-positive domains showed
258 significantly higher frequencies between promoter and non-promoter domains relative
259 to CondSig-negative domains (Fig. 3f). We also utilized Pol II ChIA-PET data³⁴ to
260 evaluate the chromatin contact frequencies of CondSigs in K562, and observed largely
261 consistent results (Supplementary Fig. S4c-e). These results confirmed that the
262 components of identified CondSigs can be concentrated in trans through spatially
263 proximal chromatin.

264
265 **Involvement of DDX21 in chromatin-associated biomolecular condensate**
266 Although DDX21 can undergo phase separation and has been reported to participate
267 in nucleolar condensate for Pol I transcription^{24,35}, additional genomic loci where it may
268 involve into biomolecular condensate remain to be elucidated. In mESC, we identified
269 10 CondSigs with DDX21 as a component, with 15,578 DDX21 ChIP-seq peaks as
270 CondSig-positive. To verify the presence of DDX21-associated biomolecular
271 condensate at these genomic loci, we assessed the sensitivity of DDX21 occupancy
272 at these loci to 1,6-hexanediol (1,6-HD), a compound used for disrupting liquid-like
273 biomolecular condensates³⁶. Cleavage Under Targets and Release Using Nuclease
274 (CUT&RUN) experiments were conducted for DDX21 in both wild type and 1,6-HD-
275 treated mESC. We observed a significantly greater decrease in DDX21 CUT&RUN
276 signals at CondSig-positive peaks compared to CondSig-negative peaks (Fig. 4a, b),
277 which demonstrated the strong effect of biomolecular condensate disruption on

278 CondSig-positive peaks of DDX21. This result supported that DDX21 participates in
279 biomolecular condensates at these loci. We further investigated the potential impact
280 of DDX21-associated biomolecular condensates at these genomic loci. We found that
281 target genes of the CondSig-positive peaks of DDX21 displayed significantly higher
282 expression levels than other genes (Supplementary Fig. S5a), suggesting that
283 DDX21-associated biomolecular condensate may enhance the transcription of target
284 genes.

285

286 **Confirmation of CondSigs regulating transcription elongation**

287 SUPT6H, SUPT5H and CTR9 have been reported to regulate transcription
288 elongation^{37,38}, but it remains unclear whether these CAPs function in the form of
289 condensate. In mESC, we identified two CondSigs containing all or at least three of
290 SUPT6H, SUPT5H, CTR9, and POLR2A simultaneously (Fig. 2a, Supplementary Fig,
291 S5b). Genomic enrichment analysis found that merged CondSig-positive sites of the
292 two CondSigs were primarily located at promoters and gene bodies (especially at
293 exons), and the associated gene bodies were enriched with H3K36me3 modification,
294 a marker for actively transcribed genes (Supplementary Fig. S5c, d). This suggested
295 that SUPT6H, SUPT5H and CTR9 might participate in the same biomolecular
296 condensate to regulate transcription elongation. To confirm the condensation
297 properties of these component CAPs, we performed fixed cell immunofluorescence
298 (IF) with antibodies against SUPT6H, SUPT5H and CTR9 in mESC. We found that all
299 three CAPs can form nuclear puncta in cells (Fig. 4c), which is consistent with a recent
300 study showing the condensation properties of SUPT6H and CTR9 in cells³⁹. To
301 determine whether these CAPs coexist in the same puncta, we conducted co-IF
302 analysis and found their high co-localization in nuclei (Fig. 4c, d). To further verify the
303 presence of the associated biomolecular condensate at these CondSig-positive sites,
304 we conducted CUT&RUN experiments for SUPT6H and CTR9 in both wild type and
305 1,6-HD-treated mESC. We observed that CondSig-positive sites exhibited significantly
306 greater decreases in CUT&RUN signals for both SUPT6H and CTR9 compared to
307 control sites upon 1,6-HD treatment (Fig. 4e, f). These results suggested that SUPT6H,
308 SUPT5H and CTR9 can regulate transcription elongation by forming biomolecular
309 condensate.

310

311 **Effects of biomolecular condensate on chromatin activities**

312 With the availability of CondSig-positive sites, it is possible to investigate the influence
313 of biomolecular condensates on chromatin activities at a genome-wide scale. Our
314 initial analysis for histone modifications at CondSig-positive sites revealed a high
315 enrichment of active histone modifications, such as H3K4me3 and H3K27ac, in both
316 mESC and K562 (Fig. 5a), suggesting a close association between biomolecular
317 condensates and chromatin activities. We predicted the target genes associated with

318 the CondSig-positive sites (see Methods for details), discovering that these genes
319 showed significantly higher expression levels in both mESC and K562 (Supplementary
320 Fig. S6a, b). Given that transcriptional bursting is a common characteristic of gene
321 expression⁴⁰, and it was hypothesized that biomolecular condensation can influence
322 the transcriptional bursting frequencies of target genes⁴¹, we generated single-cell
323 RNA-seq data in wild type and 1,6-HD-treated mESC and K562, from which we
324 inferred transcriptome-wide transcriptional bursting kinetics⁴². Among the genes with
325 inferable transcriptional bursting kinetics, those associated with CondSig-positive sites
326 exhibited significantly higher bursting frequencies in the wild type mESC and K562
327 (Fig. 5b, c). They also displayed a more substantial decrease in transcriptional bursting
328 frequencies upon 1,6-HD treatment compared to other genes (Fig. 5d, e). After
329 assigning genes associated with CondSig-positive sites to individual CondSig, we
330 ranked the CondSigs in mESC according to the decrease level of transcriptional
331 bursting frequencies upon 1,6-HD treatment. As shown in Fig. 5f, the CondSig
332 containing PRDM4, ARID1A, TET2, MED12, MED1, EP300 and SS18 demonstrated
333 the most substantial decrease, suggesting that these CAPs may form biomolecular
334 condensation to enhance the transcriptional bursting frequencies of their target genes.
335 On the contrary, the CondSig containing SUZ12, JARID2, KDM4C, PCGF2, EZH2,
336 RNF2 and CBX7 had the most increase, consistent with their repressive roles in
337 transcription regulation⁴³. And target genes of CondSigs in K562 exhibited decreased
338 burst frequency on average (Supplementary Fig. S6c). These results suggested that
339 biomolecular condensation can regulate gene transcription by influencing
340 transcriptional bursting frequency.

341
342 Notably, several histone modification writers, such as EP300 and KMT2D, were
343 included in the components of identified CondSigs. Given the enrichment of their
344 corresponding histone modifications at CondSig-positive sites (Fig. 5a), we
345 hypothesized that these histone modification writers might exhibit stronger
346 catalyzation activities within biomolecular condensates. We classified each histone
347 modification writer's ChIP-seq peaks into CondSig-positive and -negative peaks, and
348 observed significantly stronger corresponding histone modification products at
349 CondSig-positive peaks (Supplementary Fig. S6d, e), suggesting the formation of
350 biomolecular condensation can boost the catalyzation activities of histone modification
351 writers. Active modifications, such as H3K4me3 and H3K27ac, typically display narrow
352 peaks (width < 2 kb), while a small proportion also exists as broad peaks (width >
353 5kb)^{27,44}. The establishment of these broad histone modification domains remains
354 unclear, hence we next investigated whether the involvement of their writer in
355 biomolecular condensation could play a role. We transformed two histone
356 modifications' peaks to domains by merging adjacent peaks not further than 5 kb.
357 Among 1,217 H3K4me3 broad peaks in mESC, 63.3% of them overlapped with

358 KMT2D-associated CondSig-positive sites, while the percentage is only 38.0% for
359 narrow peaks (Fig. 5g). Similar results were observed for the pair of H3K27ac and
360 EP300, not only in mESC, but also in K562 (Fig. 5g, h). These results demonstrated
361 that the involvement of histone modification writers in biomolecular condensates can
362 alter chromatin activity by catalyzing broad histone modification domains.

363

364 **Discussion**

365 The field of biomolecular condensate research associated with chromatin has made
366 substantial advancements in recent years. However, identifying the involvement of a
367 CAP in chromatin-associated biomolecular condensate only scratches the surface of
368 its regulatory roles due to the following inherent limitations. Firstly, biomolecular
369 condensates typically comprise multiple components, each potentially contributing
370 different regulatory roles. Secondly, profiling the genomic binding sites of a CAP
371 involved in a biomolecular condensate does not necessarily distinguish its
372 condensation-associated and non-associated genomic loci in a straightforward
373 manner. Therefore, there is an urgent need for specialized experimental methods or
374 bioinformatic tools to provide a detailed genomic landscape of chromatin-associated
375 biomolecular condensates. A recent study introduced DisP-seq²⁸, an antibody-
376 independent chemical precipitation assay that maps endogenous DNA-associated
377 disordered proteins at a genomic scale. However, DisP-seq was designed for the
378 broad detection of disordered proteins rather than specifically targeting biomolecular
379 condensates. This could potentially result in both false positives, as not all binding
380 sites of these proteins participate in biomolecular condensates, and false negatives,
381 as disordered protein-guided phase separation is only one mechanism of
382 condensation. Furthermore, DisP-seq cannot identify the exact components present
383 at each locus. In response to these challenges, our study presented CondSigDetector,
384 a computational framework designed to systematically identify CondSigs, *i.e.*, the
385 signatures of condensate-like chromatin-associate protein co-occupancy, and their
386 associated genomic loci. By leveraging the occupancy profiles and condensation-
387 related features of hundreds of CAPs in the same cell type, we can predict the
388 genome-wide loci of biomolecular condensates and the component CAPs of each
389 condensate. Our study both depicted the chromatin properties of the identified
390 CondSigs and experimentally validated the regulatory roles of DDX21, SUPT6H,
391 CTR9 and SUPT5H as components of biomolecular condensates. Our study further
392 delves deeper into the significant effects of chromatin-associated biomolecular
393 condensates on transcriptional bursting and broad active histone modification
394 domains. These findings underscored the critical role that biomolecular condensates
395 play in gene regulation and chromatin activities.

396

397 The CondSigs identified in this study provided a comprehensive, global and genome-
398 wide perspective on distinct chromatin-associated biomolecular condensates, paving
399 the way for further exploration of their biological functions and mechanisms. By
400 distinguishing various biomolecular condensates through the unique component CAPs,
401 the CondSigs can not only aid in discovering additional components of known
402 chromatin-associated biomolecular condensates, but also reveal entirely new ones.
403 Furthermore, by pinpointing specific genomic loci targeted by biomolecular
404 condensates composed of CAPs, CondSigs provide valuable insights into how
405 dysregulation of condensation may contribute to disease. This, in turn, could facilitate
406 the design of potential therapeutic strategies. To benefit future research in this area,
407 we have made the CondSigs identified in mESC and K562 publicly available online
408 and provided the source code of CondSigDetector on GitHub to enable the detection
409 in other biological systems.

410
411 Despite the significant insights provided by our identified CondSigs, there are some
412 limitations to the predictions. One such limitation is the dependence of CondSig
413 detection on accurate occupancy profiles of CAPs. The absence or poor quality of
414 ChIP-seq data could lead to partial or complete omission of biomolecular condensates.
415 For example, we were able to predict a heterochromatin-related condensate
416 consisting of CBX5, TRIM28 and CBX1 in K562, but not in mESC, due to the
417 unavailability of high-quality ChIP-seq data of these CAPs in mESC. However, with
418 the rapid increase of ChIP-seq data, and the implementation of new techniques for
419 occupancy map capture, we anticipate improvements in the sensitivity of CondSigs
420 detection. Another limitation is the reliance of CondSig detection on specific
421 collaborations among CAPs, which may result in the loss of widespread collaborations
422 in a global context. In this study, we used a threshold of 1.3 for the z-score normalized
423 occurrence probability of words in topics to determine the component CAPs of
424 CondSigs. Given the lack of a standard number for components in collaborations, the
425 components listed in CondSig might be incomplete or inaccurate, underscoring the
426 need for further in-depth analysis and experiments to verify the predictions. Finally, a
427 recent study reported that fixation, a common procedure used in X-ChIP, can have
428 diverse effects on biomolecular condensates in living cells⁴⁵. To assess the potential
429 impact of fixation on our prediction results, we selected several component CAPs with
430 additional available data generated by CUT&RUN, a fixation-free technology, to
431 evaluate the concentration levels in CondSigs. We found that, similar to ChIP-seq
432 signals, most component CAPs showed significantly enriched CUT&RUN signals at
433 CondSig-positive peaks (Supplementary Fig. S7), implying that the fixation effect in
434 the X-ChIP procedure is unlikely to significantly impact prediction accuracy. This
435 potential impact could be further mitigated with the rapid accumulation of more
436 CUT&RUN data for CAPs.

437 **Methods**

438 **ChIP-seq data collection and processing**

439 The ChIP-seq data of CAPs were collected from Cistrome Data Browser⁴⁶ and filtrated
440 using quality control procedures as described in the previous study⁴⁷. In brief, only
441 ChIP-seq data that met at least four out of the five quality control metrics (sequence
442 quality, mapping quality, library complexity, ChIP-enrichment, and signal-to-noise ratio)
443 available in Cistrome Data Browser were kept. In cases where more than one qualified
444 ChIP-seq data were available for a given CAP in the same cell type, all qualified ChIP-
445 seq data were sorted based on quality control metrics, and the top-ranked data was
446 kept.

447

448 We downloaded ChIP-seq peak files (in BED format) and signal track files (in bigWig
449 format) from Cistrome Data Brower. Although Cistrome Data Brower stored narrow
450 peaks called by MACS2⁴⁸ for all CAPs, peak window sizes of distinct CAPs could differ
451 significantly. Therefore, to obtain accurate occupancy regions for each CAP,
452 especially CAPs with broad peaks, we first called broad peaks from the signal track
453 using “bdgbroadcall” module of MACS2 (v2.1.3) with default parameters and then
454 merged adjacent peaks within 5 kb. For each CAP, if more than 1,000 newly called
455 peaks were wider than 5 kb, we replaced the original narrow peaks with newly called
456 broad peaks as the accurate occupancy regions.

457

458 **Condensation-related annotation for proteins**

459 Human and mouse proteins with reported LLPS capacity were collected from four
460 databases, DrLLPS⁶, LLPSDB⁵, PhaSepDB (two versions, v1 and v2)³ and PhaSePro⁴.
461 DrLLPS collected all proteins that could potentially be involved in LLPS, including
462 scaffolds, regulators and clients. However, we only regarded scaffolds as LLPS
463 proteins since DrLLPS contains too many regulators and clients. To create an
464 annotation of LLPS proteins, we merged all LLPS proteins from different sources.
465 Notably, since the number of collected mouse LLPS proteins (61) was much lower
466 than human LLPS proteins (437), we also considered mouse orthologs of human LLPS
467 proteins as mouse LLPS proteins.

468

469 Component proteins of MLOs in human and mouse were collected from DrLLPS and
470 PhaSepDB (v1 and v2). Proteins that were assigned to the same MLO in different
471 sources were merged to form a comprehensive list of component proteins for that MLO.
472 Similar to LLPS proteins, mouse orthologs of human proteins assigned to the same
473 MLO was regarded as component proteins of that MLO in mouse.

474

475 Pairwise protein-protein interactions were collected from three databases, BioGRID⁴⁹,
476 MINT⁵⁰ and IntAct⁵¹, only physical associations were kept.

477

478 Intrinsically disordered regions of proteins were predicted by MobiDB-lite (v1.0)⁵². This
479 optimized method uses eight different predictors to derive a consensus, which is then
480 filtered for spurious short predictions in a second step. For each protein, if more than
481 15.3% of its regions were predicted to be disordered by MobiDB-lite, the protein would
482 be regarded as proteins with intrinsically disordered regions. The threshold of 15.3%
483 corresponds to the 20th percentile of disordered region fractions of known human
484 LLPS proteins.

485

486 RNA-binding proteins were predicted by TriPepSVM⁵³, a method to perform *de novo*
487 prediction based on short amino acid motifs, with parameters “-posW 1.8 -negW 0.2 -
488 thr 0.28”.

489

490 **Genome-wide RNA-binding strength**

491 We used genome-wide signals of R-ChIP data, an *in vivo* R-loop profiling approach
492 using catalytically dead RNase H1⁵⁴, to quantify genome-wide RNA-binding strength
493 in K562 cells. Raw sequencing reads from GSE97072⁵⁴ were first aligned to human
494 genome build via default --local mode of Bowtie2 (v2.3.5.1)⁵⁵. Low mapping quality
495 reads (mapping quality < 30) and duplicates were discarded. Then signal tracks were
496 generated using the “genomcov” command in Bedtools software (v2.28.0), and
497 normalized to reads per million mapped reads (RPM).

498

499 **Motif scan**

500 Motif scans were performed using FIMO (v5.0.5)⁵⁶ against the JASPAR core 2020
501 vertebrates database⁵⁷ with the following parameters “--max-stored-scores 1000000”.
502 Motifs with p -value $\leq 1 \times 10^{-5}$ were used for the following analysis.

503

504 **CondSigDetector workflow**

505 The framework consists of three steps, data processing, co-occupancy signature
506 identification and condensation potential filtration.

507

508 In the first step, the framework first splits mouse (mm10) or human (hg38) genome
509 into consecutive 1-kb bins. It then generates an occupancy matrix of CAPs over these
510 1-kb bins in the given cell type ($n \times m$), where n denotes the number of 1-kb bins and
511 m denotes the number of CAPs. The occupancy event of CAP at each genome-wide
512 1-kb bin is determined by overlapping its ChIP-seq peaks with the given bin. It
513 excludes CAPs with too few occupancy events (those occupying fewer than 500 bins)
514 to eliminate the effect of low-quality ChIP-seq data. And bins with too many occupancy
515 events (occupied by more than 90% of CAPs) are removed to avoid sequencing bias.
516 Additionally, bins in ENCODE Blacklist genomic regions are also discarded.

517
518 Identifying co-occupancy signatures from the entire occupancy matrix is a complicated
519 task that can result in the loss of low-frequency signatures in the local context. To
520 address this issue, CondSigDetector first segments the entire occupancy matrix into
521 overlapping sub-matrices iteratively. Each sub-matrix only contains occupancy events
522 of partial highly co-occupied CAPs at partial bins. The segmentation process is as
523 follows: (i) In each iteration, a focus CAP is selected and other CAPs highly co-
524 occupied with the focus CAP are identified. The co-occupancy levels of the focus CAP
525 and the other CAPs are evaluated by using the occupancy events of each other CAP
526 to classify occupancy events of the focus CAP. And then an F_1 score measuring the
527 accuracy of the classifier is defined as the co-occupancy score and assigned to each
528 other CAP, where a high co-occupancy score implies a high co-occupancy level. In
529 each sub-matrix, only co-occupancy information of the focus CAP and top $q - 1$ other
530 CAPs ranked by the co-occupancy score are kept, where $q = 50$ by default. (ii) After
531 the selection of partially highly co-occupied CAPs, partial bins that are occupied
532 frequently by these CAPs are screened out to further segment the matrix. For i -th bin,
533 an occupancy score (OS_i) is defined to evaluate the occupancy level of the given CAPs
534 as:

$$OS_i = \sum_{j=1}^q \beta_j X_{ij} \quad (1)$$

535 where $X_{ij} \in \{0, 1\}$ denotes occupancy status of j -th CAP at i -th bin, and β_j denotes z-
536 score normalized co-occupancy score. In each sub-matrix, only p bins with $OS_i > 0$ are
537 kept.

538
539 In the second step, each sub-matrix is classified into promoter and non-promoter
540 contexts. Promoters were defined as upstream 3 kb to downstream 3 kb of
541 transcription start sites. CondSigDetector builds a bitem topic model²² for each
542 context, treating 1-kb bins as documents and occupied CAPs at those bins as words
543 within documents. By training the model, specific combinations of words can be
544 represented by learned topics, which in turn could be interpreted as co-occupancy
545 signatures representing collaborations of CAPs at chromatin. The bitem topic model
546 is implemented in CondSigDetector using source code from the previous study²². As
547 a probabilistic model, the bitem topic model generates two probability distributions,
548 matrix $G_{k \times q}$ representing occurrence probability of q CAPs across k topics and matrix
549 $G_{p \times k}$ representing occurrence probability of k topics across p documents.

550
551 The topic number, k , is a crucial parameter in topic modeling, as it affects the topic
552 distribution. CondSigDetector empirically learns 2~10 topics for each context and then
553 applies an automatic strategy to select the optimal topic number as described in the
554 previous study⁵⁸. The selection principle was based on the idea that the optimal topic

555 number should distinguish between documents with different topics as much as
556 possible. Hence an optimal topic number should match the following two criteria: (i)
557 The occurrence probability of each topic in different documents should be as different
558 as possible, which is measured by the specificity score (SS_k) calculated for all topics
559 under a certain topic number k using Eq. (2). A higher specificity score indicates a
560 better-selected topic number. (ii) The fewer topics that occur in each bin, the better.
561 Such a measurement was defined as a purity score (PS_k) for all topics under a certain
562 topic number k , as calculated in Eq. (3). The larger the purity score, the better the
563 selected topic number. Finally, we defined the combination score (CS_k), which is a
564 weighted average of the specificity score and purity score, as calculated in Eq. (4). We
565 selected the optimal topic number from 2~10 which have the highest combination
566 score.

567

568 The specificity score (SS_k) is calculated as

569

$$SS_k = \log \left(\frac{1}{k} \sum_{j=1}^k \frac{\sigma_j}{\mu_j^2} \right) \quad (2)$$

570 where σ_j and μ_j are the variance and mean, respectively, of the j -th column of $G_{p \times k}$.

571

572 The purity score (PS_k) is calculated as

$$PS_k = \log \left(\frac{1}{p} \sum_{i=1}^p \sigma_i \right) \quad (3)$$

573 where σ_i is the variance of i -th row of $G_{p \times k}$.

574

575 The combination score (CS_k) is calculated as

$$CS_k = \alpha SS_k + (1 - \alpha) PS_k \quad (4)$$

576 where α is calculated as

$$\alpha = \frac{PS_k}{SS_k + PS_k} \quad (5)$$

577

578 After the selection of optimal topic number k , CondSigDetector determined
579 component CAPs of each co-occupancy signature based on matrix $G_{k \times q}$ representing
580 q CAPs' occurrence probability in k co-occupancy signatures. In each signature,
581 CAPs with higher z-score normalized occurrence probability than a certain threshold
582 (1.3 by default, corresponds to about 90th percentile of the standard normal
583 distribution) were determined as components of the signature, and 1-kb bins occupied
584 by more than 80% of components are defined as signature-positive sites. Co-
585 occupancy signatures with fewer than 3 components and fewer than 200 signature-
586 positive sites are discarded.

587

588 In the third step, CondSigDetector screens out CondSigs from all co-occupancy
589 signatures based on the condensation potential of each signature. To evaluate the
590 condensation potential of each signature, we quantify associations between
591 condensation-related features and signature presence at genome-wide bins by
592 performing ROC analysis. Intuitively, the higher condensation-related feature values
593 of occupancy events at signature-positive bins, the higher condensation potential of
594 the signature. In ROC analysis, the positive set is signature-positive bins and the
595 negative set is signature-negative bins. Signature-positive bins were defined in the
596 first step, and signature-negative bins are defined using the following two criteria: (i)
597 The presence of at least t CAPs, where $t = 0.8 \times$ component number of the
598 signature; (ii) The absence of any co-occupancy of components, i.e., count of
599 occupied components of the signature < 2 . For each signature, six condensation-
600 related features are calculated according to co-occupancy events of top q CAPs (see
601 the first step for the definition of top q CAPs): (i) The fraction of occupied CAPs
602 having reported LLPS capacity; (ii) The fraction of occupied CAPs co-occurring in the
603 same MLO; (iii) The fraction of occupied CAPs with predicted IDRs; (iv) The fraction
604 of occupied CAP pairs having protein-protein interactions; (v) The fraction of
605 occupied CAPs predicted as RBPs; (vi) RNA-binding strength of the bin. If at least 3
606 out of 6 condensation-related features exhibit a positive correlation (AUROC > 0.6)
607 with the presence of the signature (mean AUROC of top 3 features > 0.65), the
608 signature would be identified as CondSigs.

609
610 Finally, all CondSigs within the same cell type are pooled and any redundant CondSigs
611 are discarded. Redundancy of CondSigs is measured according to the overlapping
612 level of the top 5 components, these components being ranked by their occurrence
613 probability within the CondSig. We calculate a Jaccard index for all CondSigs using
614 pairwise comparisons, and discard those with a low mean AUROC when the Jaccard
615 index > 0.25 . The threshold of 0.25 corresponds to that 2 out of 5 components are
616 identical in the pairwise CondSigs.

617
618 **Comparison of BTM and HDP**
619 We built HDP and BTM models on the entire occupancy matrix separately, and
620 compared the quality of learned topics. HDP determines the topic number
621 automatically while BTM asks for a given topic number. So we first built an HDP model
622 and generated k topics, then we built a BTM model to generate topics with the given
623 topic number k . The quality of each learned topic was evaluated by the coherence
624 score of the top 5 words, a common quality evaluation metric in topic model^{22,59}. HDP
625 modeling was implemented by using a Python package “tomotopy”.

626
627 **Clustering of component CAPs**

628 We performed a *k*-means clustering for component CAPs in mESC or K562 according
629 to their potentials for self-assembly (PS-Self) or interaction with partners (PS-Part) to undergo phase separation. A recent study employed two machine-learning models, 630 SaPS and PdPS model, to estimate proteins' potentials and provided SaPS and PdPS 631 ranking scores (ranging from 0 to 1) for the human and mouse proteome. We utilized 632 the SaPS and PdPS ranking scores of component CAPs in mESC or K562 to carry 633 out *k*-means clustering. In the clustering, the number of clusters was set as 4, and the 634 initial cluster centroids were set as (0.8, 0.8), (0.8, 0.4), (0.4, 0.8), (0.4, 0.4), which 635 corresponds to four clusters: "both scaffold and client", "scaffold-only", "client-only", 636 and "none", respectively.

638

639 **Annotation for charged amino acid blocks**

640 We calculated NCPR (net charge per residue) employing a 10-residue sliding window
641 with a step size of 1. This calculation factored in both positively charged amino acids
642 (R, K and H) and negatively charged amino acids (D and E). Windows with NCPR
643 greater than 0.5 or less than -0.5 were defined as charged amino acid blocks, and
644 overlapping blocks were merged.

645

646 **Identification of CondSig-positive/negative peaks and domains**

647 To identify CondSig-positive / negative peaks for each component CAP, we classified
648 its ChIP-seq peaks into two groups based on overlapping with positive sites of
649 CondSigs which includes the given CAP as a component. To identify CondSig-positive
650 / negative domains, we transformed its peaks into domains by merging adjacent peaks
651 not further than n kb. For component CAPs using narrow peaks as accurate
652 occupancy regions in ChIP-seq data processing procedure, we set $n = 5$, and for
653 component CAPs using broad peaks as accurate occupancy regions, we set $n = 10$.
654 Then domains of each component CAP were classified into CondSig-positive domains
655 and -negative domains based on overlapping with positive sites of CondSigs which
656 includes the given CAP as a component.

657

658 **3D chromatin contact analysis**

659 Public Micro-C data in mESC, ChIA-PET data against SMC1 in mESC, and ChIA-PET
660 data against RNA Pol II in K562 were used in this study. Micro-C contact matrices
661 from 2.6 billion reads were downloaded from GSE130275³⁰, and boundary strength
662 for 400-bp resolution calculated by Cooltools⁶⁰ was used for the following analysis.
663 SMC1 ChIA-PET data in mESC were downloaded from GSE57911³³ and processed
664 with ChIA-PET2⁶¹. RNA Pol II ChIA-PET loops were directly downloaded from
665 ENCSR880DSH³⁴.

666

667 **Definition for target genes of CondSig-positive genomic regions**

668 For each genomic region, genes whose promoter overlaps with the given region or
669 has long-range chromatin contacts with the given region were defined as target genes.
670 Long-range chromatin contacts were determined by ChIA-PET data in the
671 corresponding cell type. In this study, SMC1 ChIA-PET data in mESC and RNA Pol II
672 ChIA-PET data in K562 were used.

673

674 **Cell culture**

675 Mouse embryonic stem cells (mESC), C57BL/6 strain, were purchased from ATCC
676 (SCRC-1002) and cultured on a feeder layer of mitomycin C (Stemcell, 73272) treated
677 mouse embryonic fibroblast (MEF) in tissue culture flask coated with 0.1% gelatin. The
678 cells were grown in complete mESC medium, which was composed of EmbryoMax
679 DMEM (Millipore, SLM-220-B), 15% (v/v) fetal bovine serum (Hyclone, SH30070.03),
680 0.1 mM nonessential amino acids (Millipore, TMS-001-C), 1% (v/v) nucleoside
681 (Millipore, ES-008-D), 2 mM L-glutamine (Millipore, TMS-002-C), 0.1 mM β -
682 mercaptoethanol (Millipore, ES-007-E), and 1000 U/mL recombinant LIF (Millipore,
683 ESG1107).

684

685 **Cell treatment**

686 1,6-hexanediol (Sigma, 240117) was dissolved in a complete mESC medium at a
687 concentration of 15% (w/v) to make a storage solution. mESC were detached using
688 trypsin, pelleted by centrifuging, and then resuspended in a complete mESC
689 medium. The resuspended cells were transferred into a new gelatin-coated flask and
690 cultured in a 37°C incubator for 1hr to remove the feeder cells. The supernatant cells
691 were collected and washed twice with PBS. After cell resuspending with medium, the
692 1,6-hexanediol storage buffer was added at a final concentration of 1.5%. The dish
693 was put into the incubator immediately for 30 min, and treated cells were
694 immediately used for CUT&RUN assay.

695

696 **CUT&RUN**

697 The CUT&RUN assay was conducted on 0.2 million cells per sample, utilizing the
698 Hyperactive pG-MNase CUT&RUN assay kit (Vazyme, HD102) with slight
699 modifications to the manufacturer's protocol. Briefly, cells were harvested and
700 incubated for 10 min at room temperature with Concanavalin A-coated magnetic
701 beads, which had been activated prior to use. Following this, the ConA beads bound
702 cells were collected using a magnet and resuspended in 100 μ l of antibody buffer
703 containing either 2 μ l of DDX21 (Proteintech, 10528-1-AP), 4 μ l of CTR9 (Novus
704 Biologicals, NB100-1718) or 4 μ l of SUPT6 (SUPT6H) (Novus Biologicals, NB100-
705 2582) primary antibody respectively. The samples were then incubated at 4°C
706 overnight on rotator. The next day, cells were washed twice with Dig-wash buffer and
707 resuspended in 100 μ l of a premixed pG-MNase Enzyme solution before incubation

708 at 4°C for 1hr with rotation. Following this, the cells were washed twice with Dig-
709 wash buffer and resuspended in 100 µl of premixed CaCl₂ solution, then incubated
710 for 2hr on ice. Following the stop of the reaction, the cut chromatin was released
711 from cells by incubation at 37 °C for 30 min in the absence of agitation. After
712 centrifuging at 13,400 g for 5 min, the supernatant was collected, and DNA was
713 purified using FastPure gDNA mini columns. The libraries were prepared using
714 NEBNext Ultra II DNA library prep kit (NEB, E7645) with modified amplification
715 condition as 98 °C for 30 sec, 15 cycles of 98 °C for 10 sec and 65°C for 17 sec, and
716 final extension at 65 °C for 2 min and hold at 4°C.

717

718 **Single-cell RNA-seq**

719 Single-cell RNA sequencing (scRNA-seq) libraries were prepared using 6,000 mES
720 cells, either in a wild type state or treatment with 1,6-hexanediol at 1.5% for 2
721 minutes, and K562 cells, either in wild type or treatment with 1,6-hexanediol at 10%
722 for 20 minutes. The libraries were created using the Chromium Single Cell 3' Library
723 and Gel Bead Kit V3.1 (10x Genomics, Catalog No. PN1000268) to create single-cell
724 gel beads in emulsion (GEM). Following preparation, the libraries were sequenced
725 using the Illumina Novaseq 6000 platform in a 150 bp paired-end mode.

726

727 **Immunofluorescence staining**

728 CTR9 antibody and SPT6 (SUPT6H) antibody were labeled with Mix-n-Stain CF488
729 Antibody labeling kit (Sigma, MX488AS20) and Mix-n-Stain CF568 Antibody labeling
730 kit (Sigma, MX568S20) respectively according to the manufacturer's instruction.
731 Mouse ES Cells were grown as mentioned above on pre-coated coverslips and fixed
732 with 4% paraformaldehyde solution (Beyotime, P0099) at room temperature for 10
733 min. permeabilization was performed using 0.5% Triton X-100 (Sigma-Aldrich,
734 93443) in PBS for 10 min. Cells were blocked with IF blocking solution (Beyotime,
735 P0102) for 1 hr at RT, and subsequently incubated with a 1:100 diluted SUPT5
736 (SUPT5H) primary antibody (Abcam, ab126592) in QuickBlock dilution buffer
737 (Beyotime, P0262) at 4 °C overnight. Following three washes, cells were incubated
738 with Alexa Fluor 594 goat anti-rabbit secondary antibody (ThermoFisher, A11037) at
739 a concentration of 1: 1000 in PBST for 1 hr at RT. After three additional washes with
740 PBST, cells were labeled with both CF488-conjugated CTR9 and CF568-conjugated
741 SPT6 antibodies at RT for 2hr. After three washes with PBST, the coverslips were
742 mounted onto glass slides using Vectashield medium with DAPI (Vector
743 Laboratories, H-1200) and sealed with nail polish. Images were acquired using a
744 Zeiss LSM 710 confocal microscope with 100 × oil objective and ZEN acquisition
745 software.

746

747 **Western blot**

748 Cells were lysed using a lysis buffer (Beyotime, P0013J) supplemented with 1 mM
749 PMSF as a protease inhibitor. Cell lysate was run on a 10% Bis- Tris gel at 70 V for
750 ~90 min, followed by 120 V until the dye front reached the end of the gel. Proteins
751 were subsequently dry transferred to a nitrocellulose membrane using the iBlot2
752 western blot transfer system (Thermo Fisher Scientific) under specific conditions: 7
753 min at 20V for CTR9, and 15 min at 25V for SUPT6H. The membrane was then
754 blocked using 5% non-fat milk in TBST for 1 hr at room temperature with shaking.
755 Primary antibody incubations were performed overnight on a shaker at 4°C with the
756 following dilutions: 1:1,000 of anti-CTR9 (Novus Biologicals, NB100-1718) and
757 1:1000 of anti-GAPDH (Invitrogen, MA5-15738) in 5% non-fat milk, 1:1,000 of anti-
758 SUPT6 (Novus Biologicals, NB100-2582) and 1:2000 of anti-lamin B1 (Beyotime,
759 AF1408) in Western dilution buffer (Beyotime, P0023). The following day,
760 membranes were washed three times with TBST for 10 minutes each at room
761 temperature with shaking. Secondary antibody incubations were carried out for 2
762 hours at room temperature using 1:1,000 dilutions of goat anti-rabbit IgG-horseradish
763 peroxidase (HRP) or goat anti-mouse IgG-HRP (Beyotime Technology, A0208, and
764 A0216, respectively) in TBST. Following incubation, membranes were washed three
765 times in TBST for 10 minutes each, and protein bands were visualized by
766 chemiluminescence immunoassay.

767

768 **CUT&RUN, single-cell RNA-seq data processing**

769 CUT&RUN reads were first processed using TrimGalore (v0.6.0) to trim adaptor and
770 low-quality reads. Trimmed reads were then aligned to the mouse genome build mm10
771 or human genome build hg38 using Bowtie2 (v2.3.5.1)⁵⁵ with parameters “--no-mixed
772 --no-discordant --no-unal”. Low mapping quality reads (mapping quality < 30) and
773 duplicates were discarded. Then biological replicates that passed quality control were
774 pooled together. CUT&RUN peaks were called by MACS2 (v2.1.3)⁴⁸. Signal tracks
775 were generated using the “genomcov” command in Bedtools software (v2.28.0), and
776 normalized to reads per million mapped reads (RPM). Single-cell RNA-seq data (10x
777 Genomics) were processed with DrSeq2 (v2.2.0)⁶² and transcriptome-wide
778 transcriptional burst kinetics were inferred using the model from the previous study⁴².

779

780 **Data availability**

781 All the CUT&RUN and scRNA-seq data generated in this study have been deposited
782 in Genome Sequence Archive (<https://bigd.big.ac.cn/gsa/>) under accession
783 CRAXXXXX and HRAXXXXX. All predicted CondSigs and associated genomic loci
784 generated in this study are available at [https://compbio-](https://compbio-zhanglab.org/CondSigDB/index.html)
785 [zhanglab.org/CondSigDB/index.html](https://compbio-zhanglab.org/CondSigDB/index.html).

786

787 **Code availability**

788 The computational framework and statistical analysis were made based on shell,
789 Python and R codes. A command-line tool was developed for the implementation of
790 CondSigDetector, main source codes are available at the GitHub repository
791 (<https://github.com/TongjiZhanglab/CondSig>).
792

793 **Acknowledgments**

794 We would like to thank Shuang Hou and Yanhong Xiong for their assistance in
795 statistical analysis and Mengtan Xing for comments on the experimental design. We
796 also thank the staff members of the Integrated Laser Microscopy System at the
797 National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced
798 Research Institute, Chinese Academy of Sciences, China for sample preparation,
799 data collection and analysis.
800

801 **Funding**

802 This work was supported by the National Natural Science Foundation of China
803 (32030022, 31970642), the National Key Research and Development Program of
804 China (2021YFA1302500), China Postdoctoral Science Foundation (2022M722423),
805 and the GHfund C (202302033256).
806

807 **Author Contributions**

808 Y.Z. conceived and designed the research. Z.Y. developed the computational
809 framework and performed computational analysis. Q. W. performed experiments with
810 the help of G.Z and J.Z.. Z.Y, Q. W., and Y. Z. wrote the manuscript.
811

812 **Competing interest declaration**

813 The authors declare they have no competing interests.
814

815 **References**

- 816 1 Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the
817 functions of biomolecular condensates across scales. *Nat Rev Mol Cell Biol* **22**, 215-
818 235 (2021). <https://doi.org/10.1038/s41580-020-00303-z>
- 819 2 Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates:
820 organizers of cellular biochemistry. *Nat Rev Mol Cell Biol* **18**, 285-298 (2017).
821 <https://doi.org/10.1038/nrm.2017.7>
- 822 3 You, K. *et al.* PhaSepDB: a database of liquid-liquid phase separation related
823 proteins. *Nucleic Acids Res* **48**, D354-D359 (2020).
824 <https://doi.org/10.1093/nar/gkz847>
- 825 4 Meszaros, B. *et al.* PhaSePro: the database of proteins driving liquid-liquid phase
826 separation. *Nucleic Acids Res* **48**, D360-D367 (2020).
827 <https://doi.org/10.1093/nar/gkz848>

828 5 Li, Q. *et al.* LLPSDB: a database of proteins undergoing liquid-liquid phase separation
829 6 in vitro. *Nucleic Acids Res* **48**, D320-D327 (2020). <https://doi.org/10.1093/nar/gkz778>
830 7 Ning, W. *et al.* DrLLPS: a data resource of liquid-liquid phase separation in
831 8 eukaryotes. *Nucleic Acids Res* **48**, D288-D295 (2020).
832 9 <https://doi.org/10.1093/nar/gkz1027>
833 10 Alberti, S. & Dormann, D. Liquid-Liquid Phase Separation in Disease. *Annu Rev Genet*
834 11 **53**, 171-194 (2019). <https://doi.org/10.1146/annurev-genet-112618-043527>
835 12 Parker, M. W. *et al.* A new class of disordered elements controls DNA replication
836 13 through initiator self-assembly. *eLife* **8** (2019). <https://doi.org/10.7554/eLife.48562>
837 14 Altmeyer, M. *et al.* Liquid demixing of intrinsically disordered proteins is seeded by
838 15 poly(ADP-ribose). *Nat Commun* **6**, 8088 (2015).
839 16 <https://doi.org/10.1038/ncomms9088>
840 17 Sabari, B. R. *et al.* Coactivator condensation at super-enhancers links phase
841 18 separation and gene control. *Science* **361** (2018).
842 19 <https://doi.org/10.1126/science.aar3958>
843 20 Cho, W. K. *et al.* Mediator and RNA polymerase II clusters associate in transcription-
844 21 dependent condensates. *Science* **361**, 412-415 (2018).
845 22 <https://doi.org/10.1126/science.aar4199>
846 23 Chong, S. *et al.* Imaging dynamic and selective low-complexity domain interactions
847 24 that control gene transcription. *Science* **361** (2018).
848 25 <https://doi.org/10.1126/science.aar2555>
849 26 Guo, Y. E. *et al.* Pol II phosphorylation regulates a switch between transcriptional and
850 27 splicing condensates. *Nature* **572**, 543-548 (2019). <https://doi.org/10.1038/s41586-019-1464-0>
851 28 Gibson, B. A. *et al.* Organization of Chromatin by Intrinsic and Regulated Phase
852 29 Separation. *Cell* **179**, 470-484 e421 (2019).
853 30 <https://doi.org/10.1016/j.cell.2019.08.037>
854 31 Wang, L. *et al.* Histone Modifications Regulate Chromatin Compartmentalization by
855 32 Contributing to a Phase Separation Mechanism. *Mol Cell* **76**, 646-659 e646 (2019).
856 33 <https://doi.org/10.1016/j.molcel.2019.08.019>
857 34 Larson, A. G. *et al.* Liquid droplet formation by HP1alpha suggests a role for phase
858 35 separation in heterochromatin. *Nature* **547**, 236-240 (2017).
859 36 <https://doi.org/10.1038/nature22822>
860 37 Strom, A. R. *et al.* Phase separation drives heterochromatin domain formation.
861 38 *Nature* **547**, 241-245 (2017). <https://doi.org/10.1038/nature22989>
862 39 Sabari, B. R., Dall'Agnese, A. & Young, R. A. Biomolecular Condensates in the
863 40 Nucleus. *Trends Biochem Sci* **45**, 961-977 (2020).
864 41 <https://doi.org/10.1016/j.tibs.2020.06.007>
865 42 Pancsa, R., Vranken, W. & Meszaros, B. Computational resources for identifying and
866 43 describing proteins driving liquid-liquid phase separation. *Brief Bioinform* **22** (2021).
867 44 <https://doi.org/10.1093/bib/bbaa408>
868 45 Zhou, M., Li, H., Wang, X. & Guan, Y. Evidence of widespread, independent sequence
869 46 signature for transcription factor cobinding. *Genome Res* (2020).
870 47 <https://doi.org/10.1101/gr.267310.120>
871 48 Kent, S. *et al.* Phase-Separated Transcriptional Condensates Accelerate Target-
872 49 Search Process Revealed by Live-Cell Single-Molecule Imaging. *Cell Rep* **33**, 108248
873 50 (2020). <https://doi.org/10.1016/j.celrep.2020.108248>

875 22 Yan, X., Guo, J., Lan, Y. & Cheng, X. in *Proceedings of the 22nd international*
876 *conference on World Wide Web.* 1445-1456.

877 23 Kuang, J. *et al.* SS18 regulates pluripotent-somatic transition through phase
878 separation. *Nat Commun* **12**, 4090 (2021). <https://doi.org/10.1038/s41467-021-24373-5>

880 24 Wu, M. *et al.* lncRNA SLERT controls phase separation of FC/DFCs to facilitate Pol I
881 transcription. *Science* **373**, 547-555 (2021). <https://doi.org/10.1126/science.abf6582>

882 25 Chen, Z. *et al.* Screening membraneless organelle participants with machine-learning
883 models that integrate multimodal features. *Proc Natl Acad Sci U S A* **119**,
884 e2115369119 (2022). <https://doi.org/10.1073/pnas.2115369119>

885 26 Boeynaems, S. *et al.* Protein Phase Separation: A New Phase in Cell Biology. *Trends*
886 *Cell Biol* **28**, 420-435 (2018). <https://doi.org/10.1016/j.tcb.2018.02.004>

887 27 Whyte, W. A. *et al.* Master transcription factors and mediator establish super-
888 enhancers at key cell identity genes. *Cell* **153**, 307-319 (2013).
889 <https://doi.org/10.1016/j.cell.2013.03.035>

890 28 Xing, Y. H. *et al.* DisP-seq reveals the genome-wide functional organization of DNA-
891 associated disordered proteins. *Nat Biotechnol* (2023).
892 <https://doi.org/10.1038/s41587-023-01737-4>

893 29 Dixon, J. R. *et al.* Topological domains in mammalian genomes identified by analysis
894 of chromatin interactions. *Nature* **485**, 376-380 (2012).
895 <https://doi.org/10.1038/nature11082>

896 30 Hsieh, T. S. *et al.* Resolving the 3D Landscape of Transcription-Linked Mammalian
897 Chromatin Folding. *Mol Cell* **78**, 539-553 e538 (2020).
898 <https://doi.org/10.1016/j.molcel.2020.03.002>

899 31 Ahn, J. H. *et al.* Phase separation drives aberrant chromatin looping and cancer
900 development. *Nature* **595**, 591-595 (2021). <https://doi.org/10.1038/s41586-021-03662-5>

902 32 Wei, C. *et al.* CTCF organizes inter-A compartment interactions through RYBP-
903 dependent phase separation. *Cell Research* **32**, 744-760 (2022).

904 33 Dowen, J. M. *et al.* Control of cell identity genes occurs in insulated neighborhoods in
905 mammalian chromosomes. *Cell* **159**, 374-387 (2014).
906 <https://doi.org/10.1016/j.cell.2014.09.030>

907 34 Tang, Z. *et al.* CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin
908 Topology for Transcription. *Cell* **163**, 1611-1627 (2015).
909 <https://doi.org/10.1016/j.cell.2015.11.024>

910 35 Hondele, M. *et al.* DEAD-box ATPases are global regulators of phase-separated
911 organelles. *Nature* **573**, 144-148 (2019). <https://doi.org/10.1038/s41586-019-1502-y>

912 36 Lin, Y. *et al.* Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion
913 Target LC Domain Polymers. *Cell* **167**, 789-802 e712 (2016).
914 <https://doi.org/10.1016/j.cell.2016.10.003>

915 37 Kaplan, C. D., Morris, J. R., Wu, C. & Winston, F. Spt5 and spt6 are associated with
916 active transcription and have characteristics of general elongation factors in *D.*
917 *melanogaster*. *Genes Dev* **14**, 2623-2634 (2000). <https://doi.org/10.1101/gad.831900>

918 38 Mueller, C. L. & Jaehning, J. A. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA
919 polymerase II complex. *Mol Cell Biol* **22**, 1971-1980 (2002).
920 <https://doi.org/10.1128/MCB.22.7.1971-1980.2002>

921 39 Lyons, H. *et al.* Functional partitioning of transcriptional regulators by patterned
922 charge blocks. *Cell* **186**, 327-345 e328 (2023).
<https://doi.org/10.1016/j.cell.2022.12.013>

924 40 Fukaya, T., Lim, B. & Levine, M. Enhancer Control of Transcriptional Bursting. *Cell*
925 **166**, 358-368 (2016). <https://doi.org/10.1016/j.cell.2016.05.025>

926 41 Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A Phase
927 Separation Model for Transcriptional Control. *Cell* **169**, 13-23 (2017).
<https://doi.org/10.1016/j.cell.2017.02.007>

929 42 Larsson, A. J. M. *et al.* Genomic encoding of transcriptional burst kinetics. *Nature*
930 **565**, 251-254 (2019). <https://doi.org/10.1038/s41586-018-0836-1>

931 43 Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life.
Nature **469**, 343-349 (2011). <https://doi.org/10.1038/nature09784>

933 44 Benayoun, B. A. *et al.* H3K4me3 Breadth Is Linked to Cell Identity and Transcriptional
934 Consistency. *Cell* **158**, 673-688 (2014). <https://doi.org/10.1016/j.cell.2014.06.027>

935 45 Irgen-Gioro, S., Yoshida, S., Walling, V. & Chong, S. S. Fixation can change the
936 appearance of phase separation in living cells. *Elife* **11** (2022).
<https://doi.org/10.7554/elife.79903.sa0>

938 46 Zheng, R. *et al.* Cistrome Data Browser: expanded datasets and new tools for gene
939 regulatory analysis. *Nucleic Acids Res* **47**, D729-D735 (2019).
<https://doi.org/10.1093/nar/gky1094>

941 47 Hu, S. *et al.* ncHMR detector: a computational framework to systematically reveal
942 non-classical functions of histone modification regulators. *Genome Biol* **21**, 48
943 (2020). <https://doi.org/10.1186/s13059-020-01953-0>

944 48 Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137
945 (2008). <https://doi.org/10.1186/gb-2008-9-9-r137>

946 49 Oughtred, R. *et al.* The BioGRID database: A comprehensive biomedical resource of
947 curated protein, genetic, and chemical interactions. *Protein Sci* **30**, 187-200 (2021).
<https://doi.org/10.1002/pro.3978>

949 50 Licata, L. *et al.* MINT, the molecular interaction database: 2012 update. *Nucleic Acids
950 Res* **40**, D857-861 (2012). <https://doi.org/10.1093/nar/gkr930>

951 51 Del Toro, N. *et al.* The IntAct database: efficient access to fine-grained molecular
952 interaction data. *Nucleic Acids Res* **50**, D648-D653 (2022).
<https://doi.org/10.1093/nar/gkab1006>

954 52 Necci, M., Piovesan, D., Dosztanyi, Z. & Tosatto, S. C. E. MobiDB-lite: fast and highly
955 specific consensus prediction of intrinsic disorder in proteins. *Bioinformatics* **33**,
956 1402-1404 (2017). <https://doi.org/10.1093/bioinformatics/btx015>

957 53 Bressin, A. *et al.* TriPepSVM: de novo prediction of RNA-binding proteins based on
958 short amino acid motifs. *Nucleic Acids Res* **47**, 4406-4417 (2019).
<https://doi.org/10.1093/nar/gkz203>

960 54 Chen, L. *et al.* R-ChIP Using Inactive RNase H Reveals Dynamic Coupling of R-loops
961 with Transcriptional Pausing at Gene Promoters. *Mol Cell* **68**, 745-757 e745 (2017).
<https://doi.org/10.1016/j.molcel.2017.10.008>

963 55 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat
964 Methods* **9**, 357-359 (2012). <https://doi.org/10.1038/nmeth.1923>

965 56 Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given
966 motif. *Bioinformatics* **27**, 1017-1018 (2011).
<https://doi.org/10.1093/bioinformatics/btr064>

968 57 Fornes, O. *et al.* JASPAR 2020: update of the open-access database of transcription
969 factor binding profiles. *Nucleic Acids Res* **48**, D87-D92 (2020).
970 <https://doi.org/10.1093/nar/gkz1001>

971 58 Duan, B. *et al.* Model-based understanding of single-cell CRISPR screening. *Nat
972 Commun* **10**, 2233 (2019). <https://doi.org/10.1038/s41467-019-10216-x>

973 59 Mimno, D., Wallach, H., Talley, E., Leenders, M. & McCallum, A. in *Proceedings of the
974 2011 conference on empirical methods in natural language processing*. 262-272.

975 60 2C, O. *et al.* Cooltools: enabling high-resolution Hi-C analysis in Python. *bioRxiv*,
976 2022.2010. 2031.514564 (2022).

977 61 Li, G., Chen, Y., Snyder, M. P. & Zhang, M. Q. ChIA-PET2: a versatile and flexible
978 pipeline for ChIA-PET data analysis. *Nucleic Acids Res* **45**, e4 (2017).
979 <https://doi.org/10.1093/nar/gkw809>

980 62 Zhao, C., Hu, S., Huo, X. & Zhang, Y. Dr.seq2: A quality control and analysis pipeline
981 for parallel single cell transcriptome and epigenome data. *PLoS One* **12**, e0180583
982 (2017). <https://doi.org/10.1371/journal.pone.0180583>

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

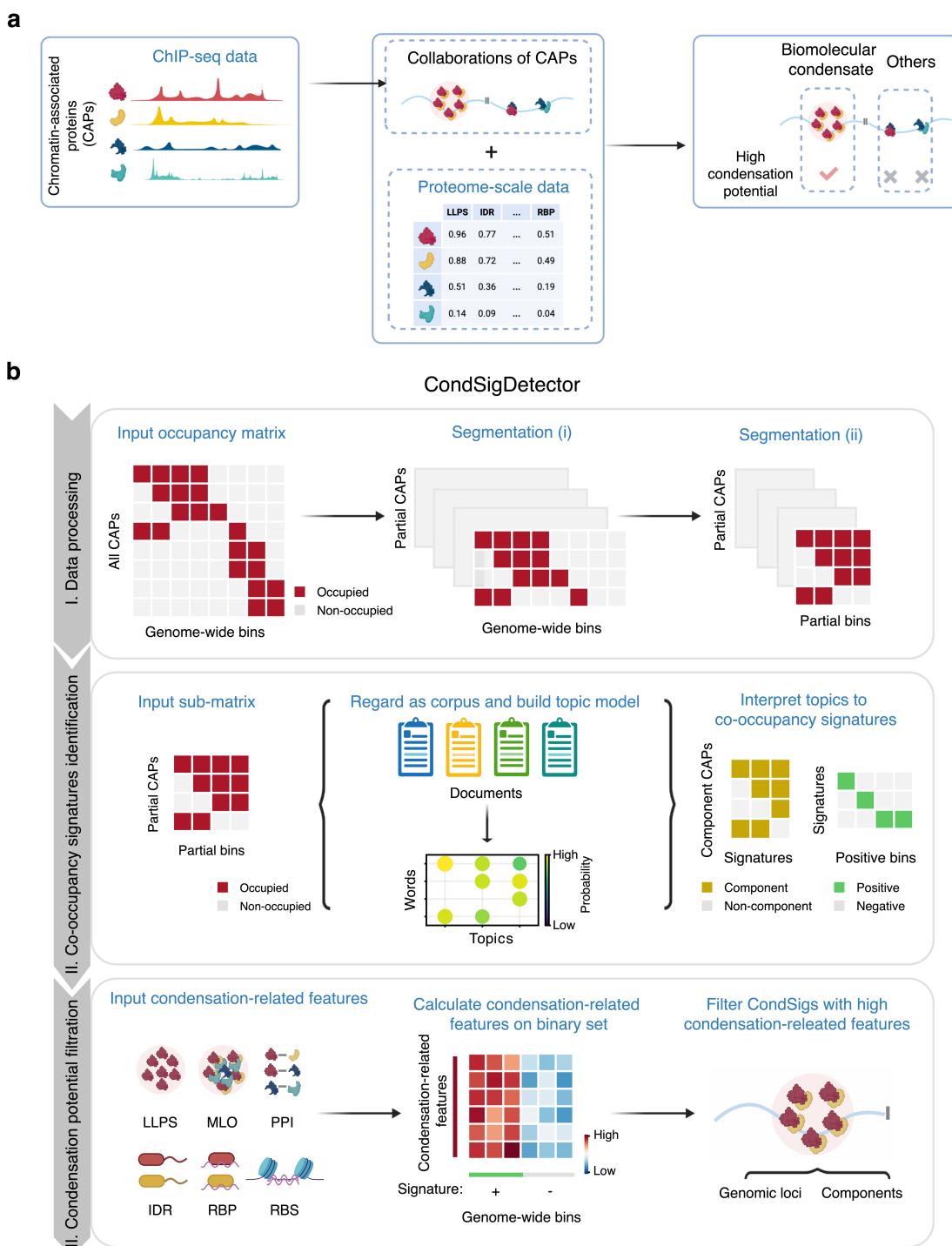
1006

1007

1008

1009

1010 **Fig. 1**



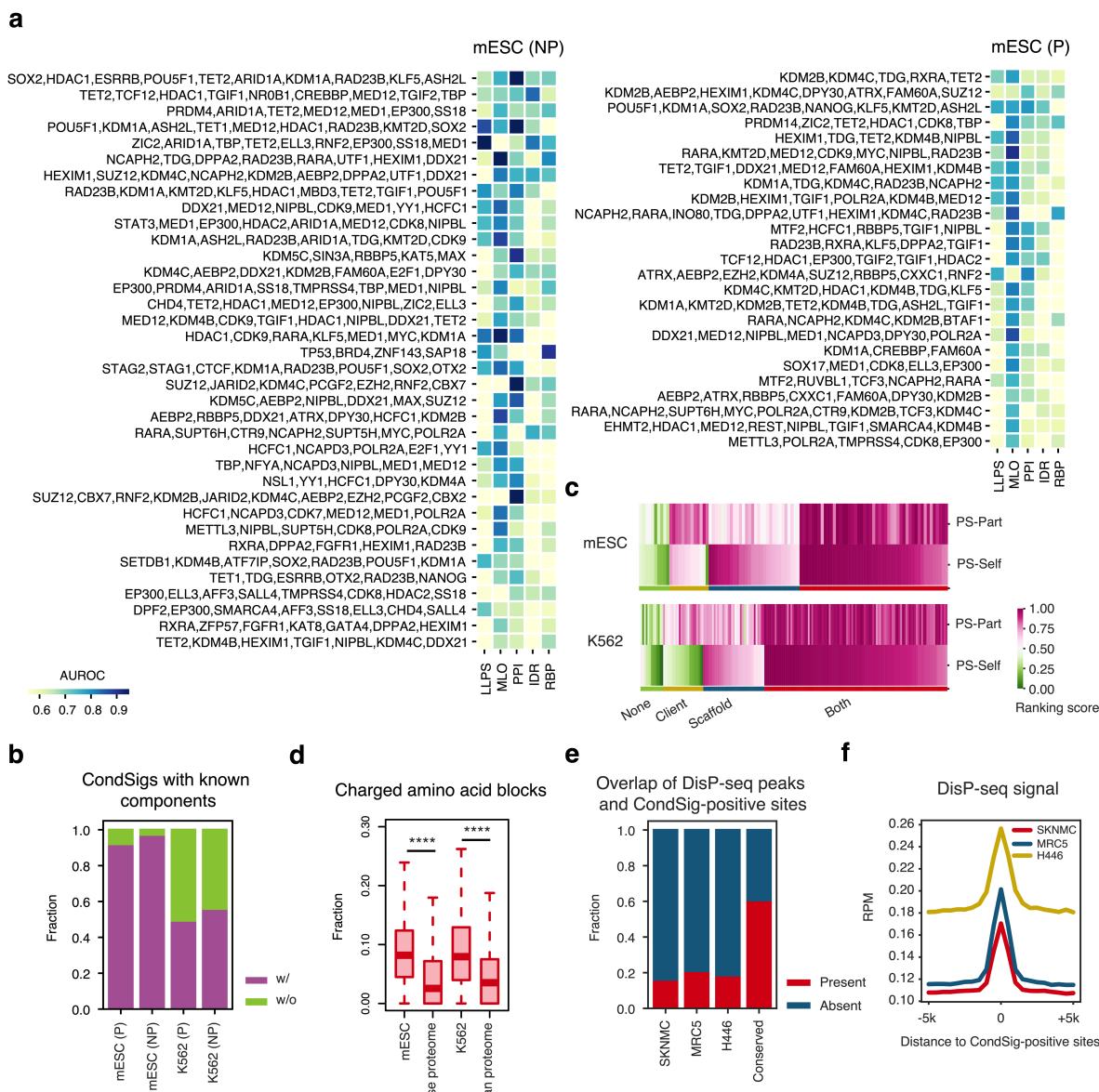
1011

1012 **Fig. 1. Overall design of CondSigDetector.**

1013 **a.** A schematic illustrates the prediction of chromatin-associated biomolecular
1014 condensates by detecting genome-wide context-dependent collaborations of CAPs
1015 with high condensation potential. **b.** Workflow of CondSigDetector (see Methods for
1016 details).

1017

1018 **Fig. 2**



1019

1020 **Fig. 2. CondSigs in mESC and K562.**

1021 **a.** Heatmaps showing identified CondSigs in mESC at non-promoter (NP) and
 1022 promoter (P) regions. Each row represents a CondSig and the row name indicates
 1023 the component CAPs of the given CondSig. Each column represents a
 1024 condensation-related feature and the colours represent AUROC. **b.** The stacked bar
 1025 plots showing the fraction of CondSig with/without components in known chromatin-
 1026 associated biomolecular condensates (Supplementary Table S1). **c.** Heatmaps
 1027 showing *k*-means clustering for component CAPs in mESC (**left**) and K562 (**right**)
 1028 with PS-self and PS-part ranking score (see Methods for details). A high PS-self
 1029 ranking score refers to scaffolds and a high PS-part ranking score refers to clients.
 1030 Four clusters (“Both”: both scaffold and client, “Scaffold”: scaffold-only, “Client”:

1031 client-only, and “None”) were shown. **d.** Box plots showing component CAPs of
1032 CondSigs have a higher fraction of charged blocks in amino acid sequences (see
1033 Methods for details) than control (mouse or human proteome) in mESC and K562.
1034 Significance between groups was evaluated by a two-sided Welch's *t*-test, ****
1035 represents *p*-value $< 1 \times 10^{-4}$. **e.** The overlap ratio of DisP-seq peaks from three
1036 human cell lines with CondSig-positive sites in K562. Conserved peaks represent
1037 shared peaks across three human cell lines. DisP-seq data were from the previous
1038 study (GSE190961²⁸). **f.** Line chart showing average DisP-seq signals around
1039 CondSig-positive sites. X-axis represents distance to CondSig-positive site centers
1040 and Y-axis represents average DisP-seq signals calculated by RPM (reads per
1041 million mapped reads).

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

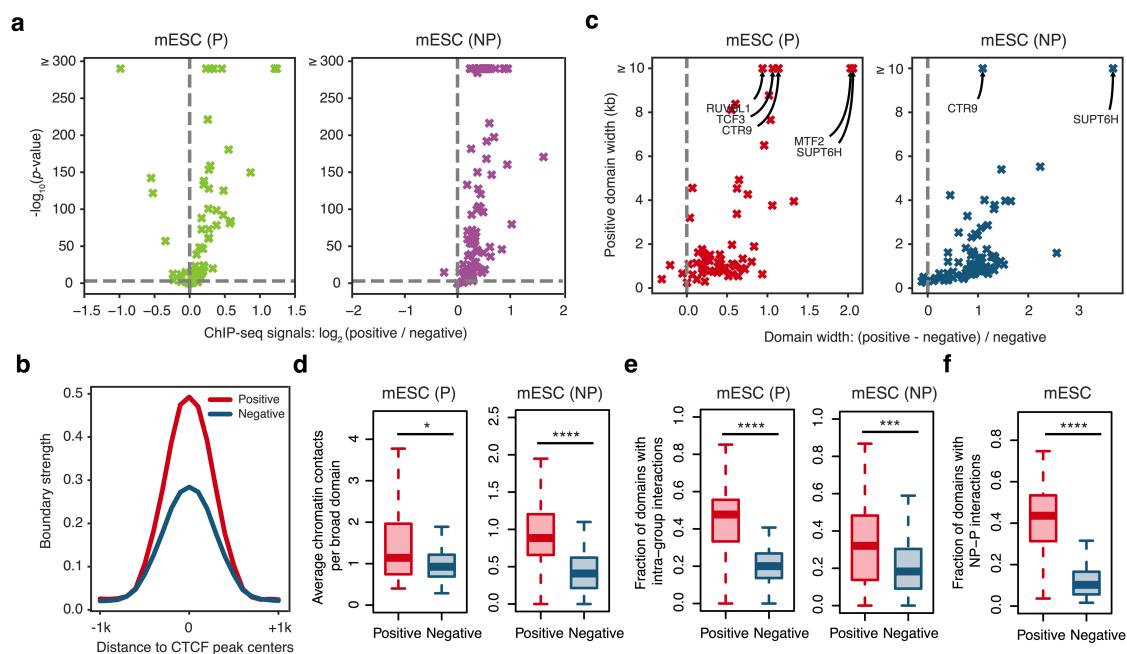
1067

1068

1069

1070

1071 **Fig. 3**



1072

1073 **Fig. 3. Chromatin properties of predicted chromatin-associated biomolecular**
1074 **condensates.**

1075 **a.** Volcano plots showing concentration levels of component CAPs in CondSigs in
1076 mESC. X-axis represents the \log_2 -transformed fold change of ChIP-seq signals at
1077 CondSig-positive peaks compared to CondSig-negative peaks, while Y-axis
1078 represents the negative \log_{10} -transformed p -value. The vertical dashed line
1079 corresponds fold change = 1 and the horizontal dashed line corresponds to p -value =
1080 0.001. **b.** Line charts showing boundary strength around CondSig-positive and -
1081 negative CTCF peaks. Boundary strength was calculated using Micro-C data in
1082 mESC from the previous study (GSE130275³⁰). **c.** Scatter plots showing width
1083 comparison of CondSig-positive and -negative domains in mESC. X-axis represents
1084 the ratio to which the CondSig-positive domain width exceeds the CondSig-negative
1085 domain width, and Y-axis represents the positive domain width. Component CAPs
1086 having CondSig-positive domains exceeding 10 kb on average were labeled. **d.**
1087 Intra-domain chromatin contacts of CondSig-positive or -negative broad domains in
1088 mESC. For each component CAP, an average valid paired-end tags count in each
1089 broad domain (> 5 kb) was calculated to represent intra-domain contacts. Cohesin
1090 ChIA-PET data used in the analysis was from the previous study (GSE57913³³). **e.**
1091 Box plots showing intra-group chromatin contacts between CondSig-positive or -
1092 negative domains in mESC. For each component CAP, the fraction of domains
1093 having at least one valid paired-end tag with other intra-group domains was
1094 calculated. **f.** Box plots showing NP (non-promoter)-P (promoter) chromatin contacts
1095 between CondSig-positive or -negative domains in mESC. For each component

1096 CAP, the fraction of non-promoter domains having at least one valid paired-end tag
1097 with its promoter domains was calculated. Significance between groups was
1098 evaluated by a two-sided Welch's *t*-test, * represents *p*-value < 0.05, *** represents
1099 *p*-value < 1×10^{-3} and **** represents *p*-value < 1×10^{-4} .

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

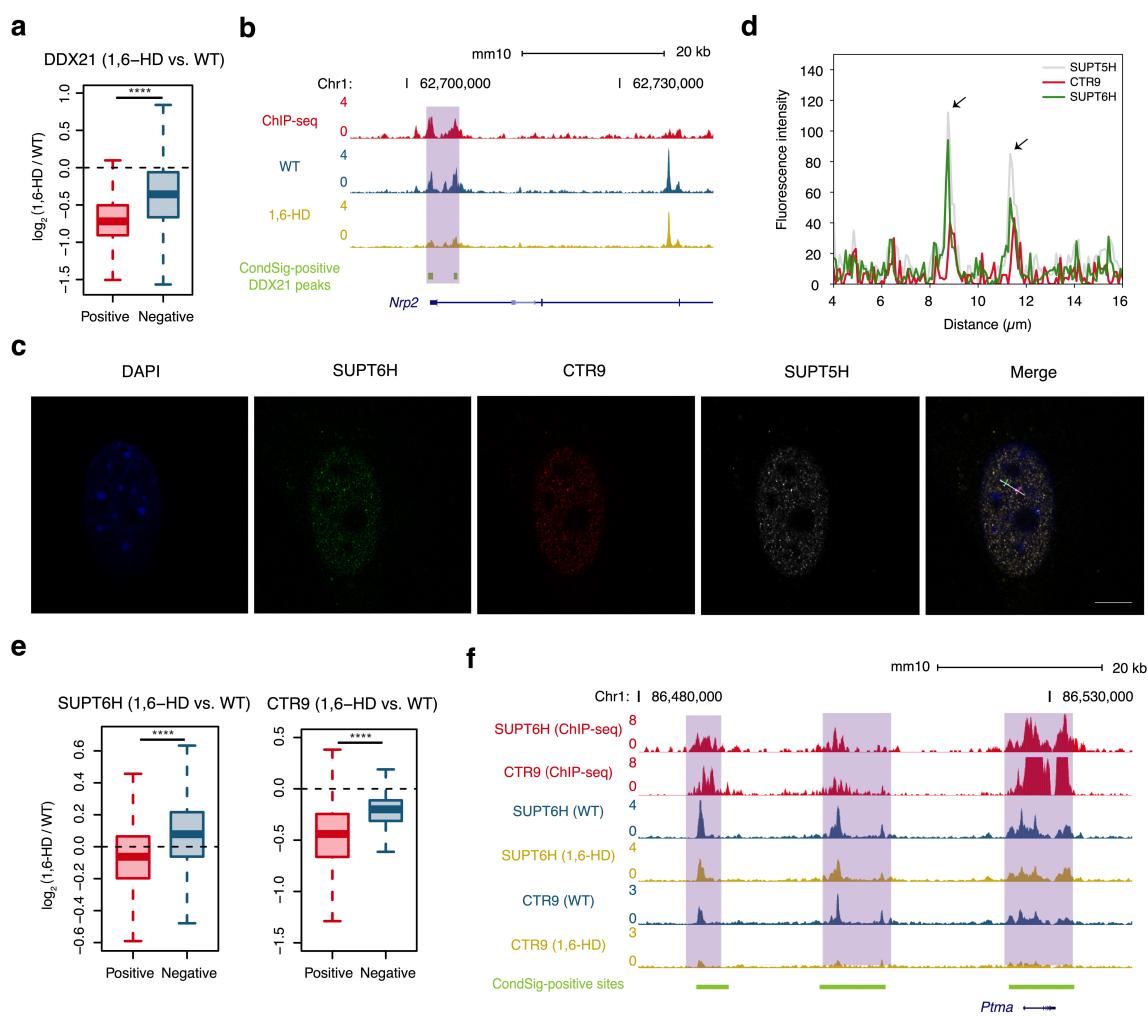
1132

1133

1134

1135

1136 **Fig. 4**



1137

1138 **Fig. 4. Experimental validation of potential biomolecular condensates.**

1139 **a.** Box plots showing \log_2 -transformed fold change of DDX21 CUT&RUN signals at
1140 CondSig-positive and -negative DDX21 peaks after 1,6-hexanediol treatment in
1141 contrast to wild type mESC. **b.** UCSC genome browser view of representative
1142 CondSig-positive DDX21 peaks. Signals represent RPM and the related CondSig-
1143 positive site was shaded in purple. **c.** Immunofluorescence images of mESC
1144 showing that SUPT6H (green) colocalizes with CTR9 (red) and SUPT5H (grey) in
1145 puncta. DNA was stained with DAPI (blue). Scale bar: 10 μ m. **d.** Line scans of the
1146 images of a cell co-stained for SUPT6H, CTR9 and SUPT5H, at the position
1147 depicted by the white line. The direction is from the green tick to the purple tick, and
1148 the two arrows refer to two representative puncta. **e.** Box plots showing \log_2 -
1149 transformed fold change of SUPT6H and CTR9 CUT&RUN signals at CondSig-
1150 positive sites and -negative sites after 1,6-hexanediol treatment in contrast to wild
1151 type mESC. Significance between groups was evaluated by a two-sided Welch's *t*-
1152 test, **** represents p -value $< 1 \times 10^{-4}$. **f.** UCSC genome browser view of

1153 representative CondSig-positive sites. Signals represent RPM and the related loci
1154 were shaded in purple.

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

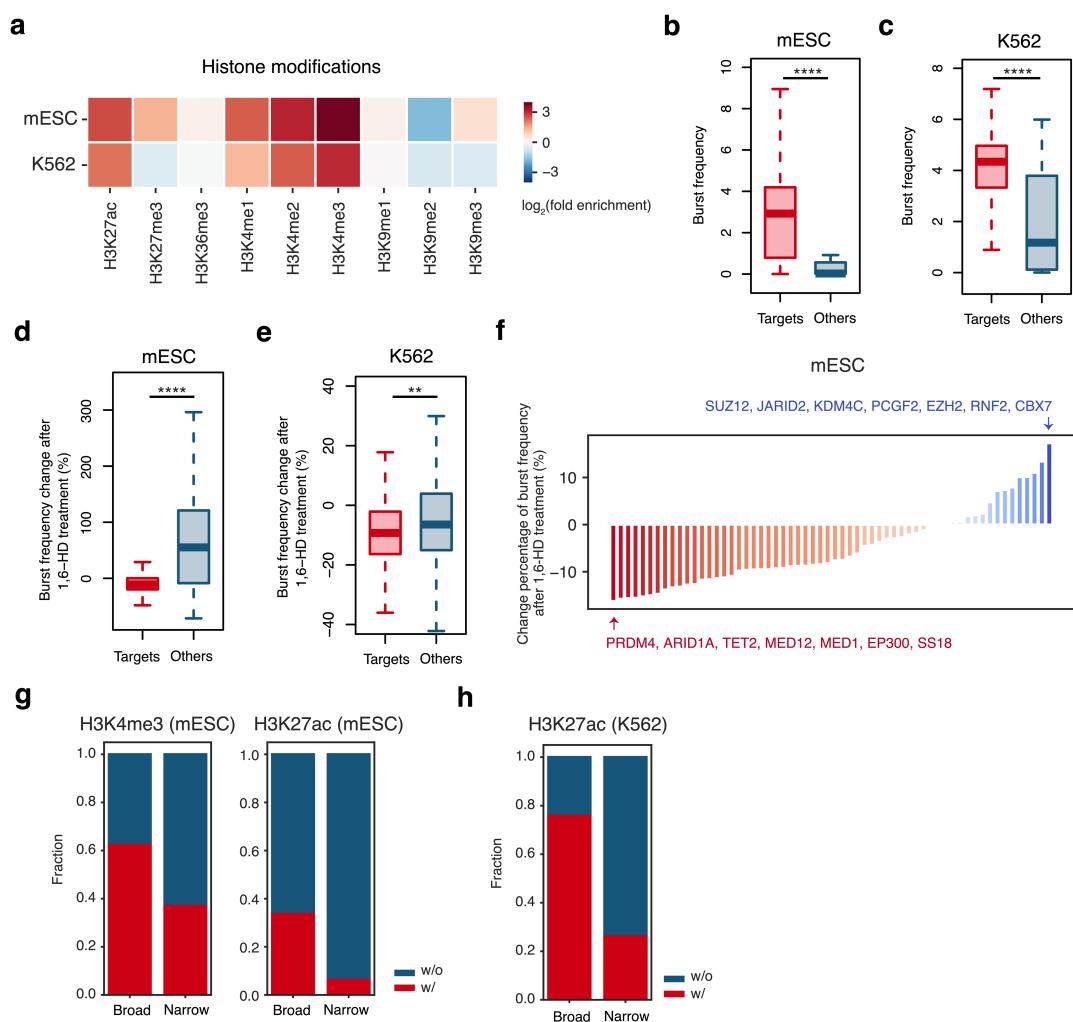
1189

1190

1191

1192

1193 **Fig. 5**



1194

1195 **Fig. 5. Effect of biomolecular condensates on chromatin activities.**

1196 **a.** Heatmaps showing histone modification enrichment at CondSig-positive sites in
 1197 mESC and K562. The colours represent \log_2 -transformed fold enrichment of histone
 1198 modification ChIP-seq signals at CondSig-positive sites relative to the genomic
 1199 background. Public ChIP-seq data for histone modifications were from Cistrome
 1200 Data Browser⁴⁶ and filtered as the previous study described⁴⁷. **b, c.** Box plots
 1201 comparing burst frequency of genes targeted by all CondSig-positive sites and other
 1202 genes in mESC (**b**) and K562 (**c**). **d, e.** Box plots compared the burst frequency
 1203 change percentage after 1,6-hexanediol treatment of target genes and other genes
 1204 in mESC (**d**) and K562 (**e**). Significance between groups was evaluated by a two-
 1205 sided Welch's *t*-test, ** represents *p*-value < 0.01 and **** represents *p*-value < $1 \times$
 1206 10^{-4} . **f.** The bar plots showing change percentages of burst frequency of genes
 1207 targeted by each individual CondSig. And CondSigs showing the maximum decrease
 1208 and increase were specially labeled. **g, h.** The stacked bar plots showing fractions of
 1209 broad H3K4me3 or H3K27ac peaks in mESC (**g**) and broad H3K27ac peaks in K562
 1210 (**h**) overlapping with CondSig-positive sites.