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Abstract 

 

Domains are functional and structural units of proteins that govern various biological functions 

performed by the proteins. Therefore, the characterization of domains in a protein can serve as a 

proper functional representation of proteins. Here, we employ a self-supervised protocol to derive 

functionally consistent representations for domains by learning domain-Gene Ontology (GO) co-

occurrences and associations. The domain embeddings we constructed turned out to be effective 

in performing actual function prediction tasks. Extensive evaluations showed that protein 

representations using the domain embeddings are superior to those of large-scale protein language 

models in GO prediction tasks. Moreover, the new function prediction method built on the domain 

embeddings, named Domain-PFP, significantly outperformed the state-of-the-art function 

predictors. Additionally, Domain-PFP demonstrated competitive performance in the CAFA3 

evaluation, achieving overall the best performance among the top teams that participated in the 

assessment. 

Introduction 

Protein function prediction is one of the long-standing, fundamental topics of bioinformatics, 

which involves profiling the activities and interactions of proteins1. Although protein functions are 

eventually determined by experiments, the experimental effort and expense slow down the process 

of function discovery, which is in contrast to the ever-increasing volume of sequenced proteins2. 

At present, not even 1% of sequenced proteins have functional annotation3. Unlike relatively 

cheaper sequencing technologies, there is a deficit of scalable, high-throughput experimental 

assays to functionally annotate proteins4. This has led to the demand for in-silico methods of 

automated protein function prediction5. Protein functions have been determined naturally from 

sequence similarity to known proteins6 and other characteristics of proteins that can trace 

functional relevance. Such information includes structural configuration7-9, phylogenetic 

information10,11, domain distribution12-14, protein networks3,15, and combinations of multiple 

sources16,17. Recently, various deep learning-based methods were proposed to learn a functional 

representation of proteins8,16,18-22. Such methods demonstrated substantial improvement over 

traditional database search-based methods23,24. 
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Proteins consist of domains, which are functional and structural units responsible for 

specific functions and interactions25. Therefore, it is compelling to infer the functions of a protein 

based on the presence and distribution of the various domains in it. InterPro2GO is an ongoing 

project that assigns GO annotations to specific domains in the InterPro database, and this 

annotation is done manually by experts26,27. Although the domain-GO mapping by InterPro2GO 

provides curated information on protein function, the coverage is severely limited. For example, 

there are approximately 38k InterPro entries and 48k GO terms, but the current version of 

InterPro2GO (version-date: 2022/03/16) mapping only includes 16,443 unique InterPro entries 

and 6,482 GO terms. Despite the lack of annotations, several methods have tried to leverage protein 

domain information for function prediction. Messih et al. analyzed the recurrence and order of 

protein domains and their influence on protein functions13. Rojano et al. attempted to associate 

domains and functions through tripartite graphs14. Besides such domain-focused studies, protein 

domains have been consistently used as a source of complementary functional information in a 

number of ensemble methods3,16,17, and some analyses even revealed that domain information is 

the most crucial one16. 

As in many other areas in bioinformatics, deep learning has been applied for function 

prediction from domain information. However, the effective use of domains is critically 

constrained by low coverage of functional assignments, high dimensionality, and acute data 

imbalance. For instance, in a recent competitive deep-learning-based model, DeepGOZero22, a 

26,406-dimensional input of InterPro feature vectors was reduced to 1024 dimensions using a 

single multi-layer perceptron (MLP) layer, which results in significant information loss. A similar 

situation is observed in DeepGraphGO21 as well. 

 Here, we introduce Domain-PFP, a protein function prediction method that uses functional 

representation of proteins through domain-GO association learned by a self-supervised method 

from protein databases. Self-supervised learning is based on the idea of leveraging the inherent co-

occurrence relationship of complementary information in the data to learn new labels in a semi-

automatic process28. We used self-supervised learning because it can directly learn domain and 

GO co-occurrence from abundant protein sequences and is able to alleviate the problem of current 

domain databases, where many domains do not have function annotation. Following the 

underlying concepts of self-supervised learning, we first learned pseudo-labels of GO prediction 

probability from individual domain terms. Then, we derived the dense representation of domains 
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consistent with functional information to characterize protein sequences and used the 

representation to predict protein functions. The embeddings learned both at the domain and protein 

level have turned out to be functionally meaningful as the embedding distance showed substantial 

negative correlations with functional similarity29 of GO terms that are present in the domains and 

protein sequences. Moreover, a systematic comparison with large-scale Protein Language Model 

(PLM) representations30,31, which use variants of Transformers32 and BERT33 architectures, and 

have demonstrated success in function prediction38,60, revealed that our embeddings are more 

applicable for function prediction, despite being a fraction of the aforementioned PLM complexity. 

This improvement is further vividly observed in challenging cases of predicting rare and more 

specific functions. In addition, using a straightforward K-Nearest Neighbors (KNN) model with 

the learned embeddings along with sequence similarity and interaction information, Domain-PFP 

significantly outperforms more complex state-of-the-art methods. Most notably, Domain-PFP 

achieved an increase in the area under precision-recall curve (AUPR) by 2.43%, 14.58%, and 

9.57% over the state-of-the-art method for molecular function (MF), biological process (BP), and 

cellular components (CC), respectively. Domain-PFP has also demonstrated competitive 

performance when compared with top-scoring methods in the CAFA3 evaluation34. 

Results 
 

 

Construction of Domain-GO Embeddings 

 
Dataset of domains and GO annotations 

 

We collected 568,002 protein sequences from Swiss-Prot (release 2022_3)35 and assigned InterPro 

domains using InterProScan 5 REST API36. Despite InterPro maximizing domain coverage by 

combining entries from 13 databases, 36,403 proteins had no InterPro annotations, so we discarded 

them. Concurrently, we collected GO terms for protein sequences from UniProt. We considered 

both experimentally and computationally assigned functions since IEA (Inferred from Electronic 

Annotation) terms demonstrated increased accuracy in our previous works6. We also propagated 

the parent GO terms using the core ontology release 2021-01-01. In summary, our dataset 
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contained 531,599 proteins with 32,471 unique domains and 33,199 unique GO terms (8,297, 

21,805, and 3,097 MF, BP, and CC terms, respectively). 

 

Self-supervised learning for domain representation 

 

Using the domain and GO term assignments to protein sequences, we computed the conditional 

probability of a protein that contains 𝑑𝑜𝑚𝑎𝑖𝑛𝑖 having the 𝐺𝑂𝑗  function:  

 

 𝑝(𝐺𝑂𝑗|𝑑𝑜𝑚𝑎𝑖𝑛𝑖) =  
𝑝(𝑑𝑜𝑚𝑎𝑖𝑛𝑖∩ 𝐺𝑂𝑗)

𝑝(𝑑𝑜𝑚𝑎𝑖𝑛𝑖)
 (Eq. 1) 

 

Here, 𝑝(𝑑𝑜𝑚𝑎𝑖𝑛𝑖) represents the probability of a protein containing 𝑑𝑜𝑚𝑎𝑖𝑛𝑖, while 

𝑝(𝑑𝑜𝑚𝑎𝑖𝑛𝑖 ∩ 𝐺𝑂𝑗) represents the joint probability of a protein with 𝑑𝑜𝑚𝑎𝑖𝑛𝑖 performing 𝐺𝑂𝑗 . 

We can calculate both probabilities from the co-occurrence relationships of domains and GO terms 

in the dataset by counting the occurences. These probabilities serve as the pseudo labels or target 

function for our self-supervised learning method. 

Our ultimate goal is to predict protein functions. To achieve this, we aim to develop a 

representation of domains that, in conjunction with a learned representation of GO terms, is 

consistent with the domain-GO co-occurrence conditional probability. In other words, we seek to 

design two representations or embeddings, 𝜙 and 𝜓, which separately represent domains and GO 

terms, respectively, and a bivariate function 𝑓 that can map the conditional probability of the co-

occurrence of any 𝑑𝑜𝑚𝑎𝑖𝑛𝑖 and 𝐺𝑂𝑗 : 

 

 𝑓 (𝜙(𝑑𝑜𝑚𝑎𝑖𝑛𝑖), 𝜓(𝐺𝑂𝑗)) → 𝑝(𝐺𝑂𝑗|𝑑𝑜𝑚𝑎𝑖𝑛𝑖) (Eq. 2) 

 

In our case, we utilized two 256-dimensional embedding matrices 𝜙 and 𝜓, as 

representations for domains and GO terms, respectively. The bivariate function 𝑓 was modeled as 

a two-layer densely connected network that takes the Hadamard product of 𝜙(𝑑𝑜𝑚𝑎𝑖𝑛𝑖) and 

𝜓(𝐺𝑂𝑗) as input, decomposes the values in a 128-dimensional space, and finally predicts the 

conditional probability 𝑝(𝐺𝑂𝑗|𝑑𝑜𝑚𝑎𝑖𝑛𝑖). The network architecture is presented in Figure 1(a), 
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where the function 𝑓 is represented as an array of circles in light blue. Concretely, 𝑓 takes the 

following form: 

 

𝑓 = 𝑊2( 𝑅𝐸𝐿𝑈(𝑊1(𝜙(𝑑𝑜𝑚𝑎𝑖𝑛𝑖) ⊙ 𝜓(𝐺𝑂𝑗) ) + 𝑏1)) + 𝑏2 (Eq. 3) 

 

where (W1, b1) and (W2, b2) are weights and biases from the first and the second layer of 

the network, respectively. The Hadamard product of the two embeddings is represented by the 

symbol ⊙. The network is regularized by dropout, and the domain embedding matrix 𝜙 is further 

regularized by L1-norm to impose sparsity. The 𝜙 embedding matrix for each domain, as well as 

the 𝜓 embedding for each GO term, were learned through backpropagation with the mean squared 

error (MSE) loss using the Adam optimizer with default settings37. We intended to keep the 

function 𝑓 simple so that the domain embeddings could effectively learn functional relevance, 

rather than letting the function 𝑓 learn the correlation between domain and GO term co-occurrence. 

This is inspired by a recent work, which demonstrated that a strong encoder in conjunction with 

weak decoder results in a strong representation learner61. The function 𝑓 provides the association 

probability between a domain and a GO term (Eq. 1), which we name DomainGO-prob. We trained 

three different versions of DomainGO-prob for the three sub-ontologies, MF, BP and CC, 

respectively. 

The overall pipeline for learning the domain embeddings is summarized in Fig. 1b. We 

started by collecting annotated protein sequences from Swiss-Prot, along with domain and GO 

term assignments. Domains were obtained from InterProScan, while GO terms were collected 

from Swiss-Prot. Next, we calculated the conditional probabilities of all the domain-GO 

associations by counting their co-occurrences in the dataset. Finally, the domain embeddings (𝜙) 

and GO term embeddings (𝜓) were computed using the network shown in Fig. 1a. The network 

was trained and validated on the aforementioned dataset of 32,471 unique domains and 33,199 

unique GO terms. We randomly selected 80% of the domain-GO pairs for training and used the 

remaining 20% for validation. Three different models, i.e., three different sets of embeddings were 

developed for the three sub-ontologies. The details of the network training are described in the 

Methods. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554486doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554486
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

 
 

 
Figure 1. Overview of Domain-PFP. a, the network architecture used for self-supervised learning of 

domain embeddings. b, the overall pipeline of learning the functionally aware domain embeddings. c, the 

steps of computing the embeddings of a protein and inferring the functions. 

 

 

Predicting GO terms for a query protein (Domain-PFP) 

 

Using the computed domain embeddings, we represented a protein, which may be composed of 

several domains, as the average of the embeddings of all the domains in it. This is similar to how 

PLM encodes proteins by averaging the individual residue level representations31. For a protein 𝑃𝑘 

with domains 𝑑𝑃𝑘  
the protein embedding is computed as 
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                                                   𝐷(𝑃𝑘) =  
∑ 𝜙(𝑑)𝑑∈𝑑𝑃𝑘

|𝑑𝑃𝑘
|

 (Eq. 4) 

 

With the protein embedding, we can use supervised classifiers to infer protein functions. 

Here, we used a KNN classifier, following the convention of BLAST or PPI network scoring16,21. 

KNN models using protein language models have also been shown to be on par with top methods 

of Critical Assessment of Functional Annotation 3 (CAFA3)38. The confidence score of annotating 

a protein 𝑝𝑖 with the GO term 𝐺𝑂𝑗 , 𝑆𝐷(𝑝𝑖 , 𝐺𝑂𝑗) is computed as follows: 

 

𝑆𝐷(𝑝𝑖 , 𝐺𝑂𝑗) =  
∑ 𝐼(𝑝𝑘,𝐺𝑂𝑗)×‖𝐷(𝑝𝑖)−𝐷(𝑝𝑘)‖2

𝑝𝑘∈𝐾𝑛𝑒𝑖𝑔ℎ

∑ ‖𝐷(𝑝𝑖)−𝐷(𝑝𝑘)‖2
𝑝𝑘∈𝐾𝑛𝑒𝑖𝑔ℎ

 (Eq. 5) 

 

where 𝐾𝑛𝑒𝑖𝑔ℎ  is a neighborhood of 𝐾 proteins, and 𝐼(𝑝𝑘 , 𝐺𝑂𝑗) is 1 if the protein 𝑝𝑘 is 

annotated with 𝐺𝑂𝑗 , and 0 otherwise.  

The steps of computing protein embeddings and predicting functions are outlined in Fig. 

1c. For a given query protein sequence, domains are assigned using InterProScan, and their 

individual domain embeddings are obtained. The embedding of the query protein is then computed 

by taking the average of the assigned domain embeddings (Eq. 4). Finally, the protein embedding 

is used to find known proteins that are close in the embedding space (Eq. 5) using a supervised 

classifier (KNN for our approach) to infer its functions. 

 

Correlation of embedding distance and functional similarity of domains and 

proteins 
 

To start with, we analyzed how the distance of the domain embeddings correlates with the 

functional similarity of domains and proteins. Having functionally similar domains close in the 

embedding space is essential for the embeddings to be useful for function prediction. As a measure 

of the embedding distance, we adopted the Manhattan distance as it is discussed to be more 

meaningful in high-dimensional spaces than, for example, the Euclidean distance39. As for 

functional similarity, we computed the Jaccard Index following a previous work3. For a domain, 

we considered GO terms are assigned to the domain if they have a conditional probability no less 

than 0.5, i.e., 𝐺𝑂 𝑇𝑒𝑟𝑚𝑠 =  {𝐺𝑂𝑖 : 𝑝(𝐺𝑂𝑖|𝑑𝑜𝑚𝑎𝑖𝑛) ≥  0.5}. This set of assigned GO terms for 
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domain A and B are denoted as GO TermsdomainA and GO TermsdomainB in the following equation. 

The Jaccard Index for two domains, A and B is defined as 

 

        𝐷𝑜𝑚𝑎𝑖𝑛 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑑𝑜𝑚𝑎𝑖𝑛𝐴, 𝑑𝑜𝑚𝑎𝑖𝑛𝐵) =

 
|𝐺𝑂 𝑇𝑒𝑟𝑚𝑠𝑑𝑜𝑚𝑎𝑖𝑛𝐴∩ 𝐺𝑂 𝑇𝑒𝑟𝑚𝑠𝑑𝑜𝑚𝑎𝑖𝑛𝐵|

|𝐺𝑂 𝑇𝑒𝑟𝑚𝑠𝑑𝑜𝑚𝑎𝑖𝑛𝐴∪𝐺𝑂 𝑇𝑒𝑟𝑚𝑠𝑑𝑜𝑚𝑎𝑖𝑛𝐵|
 (Eq. 6) 

 

We randomly selected 100,000 pairs of domains and computed their functional similarity 

relative to the embedding distance in Fig. 2a. Domain functional similarity was computed 

separately for each of the three GO categories. Overall, a negative correlation was observed 

between the embedding distance and functional similarity for all three GO categories. Substantial 

Jaccard Index values, such as those over 0.5, were observed mainly for domain embedding pairs 

that were close in distance, for example, less than 10. Almost all domain pairs with a large distance, 

for example, a distance of 20 or higher for MF and CC and over 10 for BP, had a small functional 

similarity value of less than 0.2. A perfect Jaccard Index of 1.0 was only observed for domain pairs 

with a relatively small embedding distance. Thus, it is evident that our model generates similar 

embeddings for functionally similar domains. 
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Figure 2. Domain and GO associations using DomainGO-prob. a, Functional consistency of domain 

embeddings. The domain functional similarity was quantified by the Jaccard Index of GO terms relative to 

the Manhattan distance of domain embeddings. Three GO categories, MF, BP, CC, are separately shown. 

b, Functional coherence in the protein level. Protein pairs were split into bins based on their embedding 

distance and the mean funSim score for each bin was plotted. Bins with less than 100 proteins were 

discarded. The last bin includes protein pairs with a distance larger than 25. The color of a data point 

indicates the number of protein pairs in the bin and the size of circles indicates the standard deviation of 

the funSim score. c, Predicted scores of GO terms for domains in InterPro2GO. The score distribution GO 

terms for domains were taken from DomainGO-prob. We included the scores from both the standard model 

(trained on the entire dataset) and the model trained in the adversarial manner (trained after removing the 

InterPro2GO pair information), which are represented with orange and blue bars, respectively. 

 

 

We have also examined protein-level functional similarity relative to the embedding 

similarity (Fig. 2b). As the measure of the functional similarity of proteins, which are annotated 

by multiple GO terms in the three categories, we used the 𝑓𝑢𝑛𝑆𝑖𝑚 score40. 𝑓𝑢𝑛𝑆𝑖𝑚 essentially 

computes the average of semantic similarity of best matching GO terms from two proteins for each 

GO category, and then averages the score over the three GO categories (for the concrete definition, 

see Methods). 𝑓𝑢𝑛𝑆𝑖𝑚 score ranges from 0 to 1 with 1 as the maximum score. 

We took 1,000,000 random pairs of proteins and computed their embeddings for MF, BP, 

and CC separately and concatenated them to obtain the overall embedding. In Fig. 2b, mean 

𝑓𝑢𝑛𝑆𝑖𝑚 score of protein pairs were plotted relative to the Manhattan distance of protein 

embeddings. We can see the overall trend that 𝑓𝑢𝑛𝑆𝑖𝑚 score drops as protein embeddings become 

more distant from each other. Large 𝑓𝑢𝑛𝑆𝑖𝑚 scores were observed only for close protein 

embeddings, e.g. a Manhattan distance of less than 5. 

Overall, in this section, we confirmed that functionally similar domains and proteins are 

placed close to each other in the embedding space. 

 

Learning InterPro2GO annotations 
 

Next, we examined how well our domain embeddings align with expert-curated GO mappings of 

InterPro2GO. For this analysis, we used the InterPro2GO mapping of version-date 2022/03/1641, 

which comprises 35,046 mappings between 16,443 unique InterPro domain entries and 6,482 
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unique GO terms. We considered 34,832 InterPro2GO annotations, excluding 214 mappings with 

domains or GO terms that are not included in our dataset. 

For all the domain-GO pairs in the InterPro2GO mappings, we predicted the conditional 

probability using DomainGO-prob (Fig. 1a) that the GO exists in the domain. The results are 

shown in Fig. 2c (using orange bars). As shown, for over 80% of cases, existing GO term-domain 

associations have a high score of over 0.9 (the rightmost bar) for all three GO categories. Thus, 

DomainGO-prob was able to associate GO terms to protein domains using the self-supervised 

learning protocol that associated GO terms and domains from the co-occurrences in full protein 

sequences. 

We further conducted experiments with an adversarial version of this analysis. Namely, to 

test the generalization ability to learn from the context of related, co-occurring domains and GO 

terms alone, we removed all the probability values of domain-GO pairs that exist in the 

InterPro2GO mapping and then re-trained the DomainGO-prob models. Formally, from the 

original dataset 𝒟 = {(𝑑𝑜𝑚𝑎𝑖𝑛𝑖 , 𝐺𝑂𝑗)} we constructed a new dataset 𝒟′ = {(𝑑𝑜𝑚𝑎𝑖𝑛𝑖 , 𝐺𝑂𝑗) ∶

 (𝑑𝑜𝑚𝑎𝑖𝑛𝑖 , 𝐺𝑂𝑗) ∉ InterPro2GO}. With this dataset 𝒟′, we re-trained the DomainGO-prob 

models and examined the conditional probability of GO terms that exist in InterPro2GO. The 

results are represented by the blue bars in Fig. 2c. Under this setting, DomainGO-prob predicted a 

score higher than 0.5 for 66.5%, 81.9%, and 86.5% for MF, BP, and CC, respectively. Thus, even 

without explicit knowledge, DomainGO-prob was able to extract the meanings of domain-GO 

relationships only from the contextual information of co-occurrences and hierarchies. Among the 

three GO categories, the counts of domain-GO associations with the highest probability bin (0.9 

to 1.0) of MF terms showed the largest decrease when compared with the results with full training 

data, 𝒟 (orange bar). This is probably because MF terms (e.g., enzymatic function) are associated 

with a domain at a residue level unlike BP and CC, which are more contextual42. 

 

Examples of domain-GO associations learned by the network   
 

In this section, we discuss several examples that illustrate how DomainGO-prob learns 

domain-GO associations. We used the aforementioned adversarial version, i.e., the model trained 

with 𝒟′, and we examined how the model likely learned the GO terms solely from the co-

occurrence of different domains. The examples show that DomainGO-prob recovered the correct 
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domain and GO relationships in InterPro2GO from other domain and GO associations in a way 

that is consistent with the hierarchical and associative relationships of domains and GO terms. This 

is analogous to the way grammatical structures and word relations aid in masked language 

modeling33 in NLP. 

The first example (Fig. 3a) is IPR000010, a domain in cysteine protease inhibitors43, which 

was annotated with GO:0004869 (cysteine-type endopeptidase inhibitor activity) and GO:0004866 

(endopeptidase inhibitor activity) both with a high probability of 0.9 by DomainGO-prob. The GO 

term GO:0004869 in the MF category represents binding to and preventing the activity of cysteine-

type endopeptidase. Looking at the domain structure, IPR000010 has three subdomains, among 

which only one subdomain, IPR025764, a Fetuin-B-type cystatin domain, has an annotated GO 

term with experimental evidence, GO:0004866 (endopeptidase inhibitor activity)44. From this 

domain hierarchy, in addition to GO:0004866, a child term, GO:0004869 with an ‘is a’ relationship 

with GO: 0004866, was correctly transferred to IPR000010 by DomainGO-prob. 

The second example is a recovered annotation of a CC term, GO:0005634, which 

represents nuclear localization, with a probability of 0.99 assigned to IPR000690. In InterPro2GO, 

GO:0005634 is the only CC term associated with this domain. IPR000690 is Matrin/U1-C, C2H2-

type zinc finger, which co-occurs with the homologous superfamily IPR036236 in 86.6% of 

protein sequences (Fig. 3b). IPR036236 is zinc finger C2H2-type superfamily, and 98.6% of its 

proteins are annotated with the CC term of nuclear localization. For instance, the protein A5PJN8  

has both the two InterPro entries and is also annotated with the GO:0005634 term. Therefore, 

DomainGO-prob extracted the CC term from the co-occurrence of these domains in proteins and 

correctly annotated IPR000690. 

The next example in Fig. 3c illustrates the transfer of a GO term from multiple co-occurring 

domains in proteins. DomainGO-prob annotated IPR000081 with the function GO:0016032 (viral 

process) with a probability of 1.0, which refers to a multi-organism process by a virus. All proteins 

with this domain (for example, P03303) also have domains IPR007094 (encoded in RNA-

containing viruses), IPR001205 (found in RNA viruses), IPR000605 (found in DNA viruses), 

IPR029053 (forms icosahedral virus shell), IPR002527 (alters membrane permeability), 

IPR014838 (poliovirus replication) or 8 other domains related to various viral activities. Although 

not all such co-occurring domains have exactly GO:0016032, they all have related terms, such as 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554486doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554486
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

GO:0039694 (viral RNA genome replication). Therefore, DomainGO-prob was able to learn the 

viral process function GO:0016032 by combining such supplementary information. 

Some domains are responsible for multiple different functions. For example, the domain 

IPR000081, which has just been analyzed for viral activity in the previous example, was also 

correctly assigned with proteolysis (GO:0006508) by DomainGO-prob with a predicted 

probability of 1.0 (Fig. 3d). However, this information was not learned from the aforementioned 

co-occurring domains, but rather from the homologous superfamily IPR009003 (Peptidase S1, PA 

clan), which all proteins with IPR000081 is a part of. For example, the protein P06209 not only 

contains the domain IPR000081 but also is a member of IPR009003 homologous superfamily. 

Cysteine peptidase from IPR009003 hydrolyses a peptide bond using the thiol group45 and thus 

has the GO:0006508 function, which was derived to IPR000081. It should be noted that despite 

IPR009003 completely overlapping with IPR000081, DomainGO-prob did not associate 

IPR009003 with viral activity (GO: 0016032). For the domain IPR009003 DomainGO-prob 

predicted a small probability of 0.33 for GO:0016032 (viral process), which was likely induced 

from the several co-occurring domains involved in viral activities, for example, IPR007094, 

IPR002527, IPR014838. On the contrary, the actual function for IPR000081, i.e., GO:0006508 

was predicted with a probability of 1.0. Therefore, for this example DomainGO-prob was capable 

of contrasting between complementary information. 

There are cases where DomainGO-prob failed to associate GO terms to domains. For 

instance, in Fig. 3e, IPR000174 represents two different Chemokine receptors from the CXC 

family, namely CXCR1 and CXCR246. Therefore, proteins from this family are annotated with the 

function GO:0016494 (CXC chemokine receptor activity). Since Chemokine receptors are part of 

the G protein-coupled receptor (GPCR) family, proteins from the IPR000174 family (for example, 

P21109) are also members of IPR000276 (G protein-coupled receptor, rhodopsin-like) and have 

the IPR017452 (GPCR, rhodopsin-like, 7TM) domain. Although this context provides information 

about the GPCR family, it is difficult to narrow it down to the CXC family, without individual 

precise information. This precise information is absent in our adversarial mode of training. As a 

result, DomainGO-prob predicted a low score of 0.34 for GO:0016494 but managed to assign 

GO:0004930 (G protein-coupled receptor activity) to IPR000174 with 0.95 probability from the 

co-occurrence of IPR017452. 
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Figure 3. Examples to explain how domain-GO associations learned by DomainGO-prob can be 

interpreted. The target domain in discussion in each example are shown in bold. Yellow arrows indicate the 

GO term (blue) that was transferred to the target domain. The associated number with the arrow is the 

predicted probability that the domain has the GO term. Other GO terms in discussion are colored purple. a, 

an example where a GO term was obtained from subdomain. GO:0004866 is a direct parental term of 

GO:0004869 with “is a” relationship. b, an example of learning GO terms from co-occurred domains. c, 

examples that a GO term was obtained from multiple co-occurring domains that have a common context. 

d, an example where DomainGO-prob was able to distinguish correct and incorrect GO terms that exist in 

co-occurring domains. e, an example where the contextual information is not sufficient to retrieve a more 

specific GO term. 
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Comparison with large protein language models in GO function prediction 

We evaluated the performance of DomainGO-prob embedding in comparison with 12 large Protein 

Language Models (PLMs) following the benchmark study performed by Unsal et al.47. The 12 

PLMs we compare against are ProtT5-XL30, ProtALBERT30, SeqVec48, ProtBERT-BFD30, ESM-

1b31, ProtXLNet30, TAPE-BERT-PFAM49, CPCPProt50, MSA-Transformer51, UniRep52, Learned-

Vec53, and ProtVec54.  These PLMs were trained on unsupervised tasks such as predicting a 

segment of masked residues given the rest of the protein30 or predicting the next residue from all 

the residues before it48, on a large protein sequence dataset, e.g. the entire UniProt. Supplementary 

Table 1 summarizes how these PLMs were trained.  

To use a PLM for GO prediction, Unsal et al. converted the residue-level embedding to 

protein-level by computing the mean of the embeddings along the residues and used a linear 

Support Vector Machine model. The benchmark by Unsal et al. was performed on the PROBE 

benchmark dataset they constructed, which provides GO terms of different difficulties to predict. 

In the Probe dataset, GO terms are divided into three categories based on the frequency in the 

PROBE benchmark dataset (low, middle, high having 2-30, 100-500, >1000 annotated proteins, 

respectively) and specificity (shallow, normal, specific for the ontologies being within the depth 

of 1/3rd, 2/3rd and bottom rest, respectively). Therefore, based on frequency and specificity, 3 x 3 

= 9 groups of GO terms can be constructed for the three GO categories, i.e. 3 x 9 = 27 groups. 

Among them, as there were no GO terms that fall under the high-specific group, the benchmark 

ended up with 25 groups. For each group, at most 5 GO terms were selected based on dissimilarity 

according to the Lin’s similarity measure40, which resulted in a total of 117 GO terms to predict. 

The PROBE dataset contains 19,995 human proteins clustered at a 50% identity cutoff and only 

experimental GO annotation. The human proteins falling under these criteria were used for 

benchmarking GO function prediction by undergoing a 5-fold cross-validation test. Unsal et al. 

provided a convenient CodeOcean distribution (https://PROBE.kansil.org, version November 3, 

2022), where given the embeddings of the test proteins, GO predictions are made, and the 

performance is evaluated on the PROBE dataset. We used it to test our DomainGO-pair-based 

protein embedding (Eq. 4). 

For this benchmark, we trained the domain and GO embeddings (Eq. 2) for the three GO 

categories separately on Swiss-Prot, after removing all the human proteins. We removed these 
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proteins to avoid overlap between the test proteins and the proteins used for training. However, 

note that the PLMs we compared against almost certainly have these human proteins in their 

training set, as they used an entire public protein sequence dataset for training. Since our 

embedding dimension is only 256, which is quite small compared to the PLMs we compared 

against, we concatenated the embeddings from the three GO categories and performed mean 

normalization to balance them. This resulted in a 768-dimensional protein embedding vector, as 

follows: 

 

           𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑝) = 𝑀𝑒𝑎𝑛𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑐𝑎𝑡(𝐷𝑀𝐹(𝑝), 𝐷𝐵𝑃(𝑝), 𝐷𝐶𝐶(𝑝))  (Eq. 7) 

 

Here, 𝐷𝑀𝐹(𝑝), 𝐷𝐵𝑃(𝑝), 𝐷𝐶𝐶(𝑝) are computed embeddings for a protein 𝑝 for MF, BP, CC 

sub-ontologies, respectively (using Eq. 4.) 

The results are presented in Fig. 4(a), where we compared the GO prediction performance 

of our model (Eq. 7) with 12 models on the PROBE benchmark. The numerical values are provided 

in Supplementary Table 2. Our model based on DomainGO-prob outperformed all the PLMs in all 

three categories. For MF, BP, and CC, DomainGO-prob resulted in 0.02, 0.06, and 0.06 higher 

weighted F1 scores than ProtT5-XL, the previous top method, respectively, and 0.04 when the 

average across the three GO categories was considered. Notably, this improvement was obtained 

from a much simpler model with 768-dimensional embeddings with merely a fraction of the 

parameters of the PLM models by adopting a functionally informed learning protocol. As shown 

in Supplementary Table 1, ProtT5-XL has 1024-dimensional embeddings and was trained with a 

network with 3 billion parameters, while the three networks we used (Eq. 7) have only 31 million 

parameters in total. 

An important consideration when training machine learning models for protein analysis is 

to remove redundancy, i.e. similar sequences from the training set relative to the test set. Therefore, 

although we have already omitted human protein sequences from our training dataset, we retrained 

our models after removing proteins with 75%, 50%, and 25% sequence identity with the test set 

using MMseqs255. The results are shown in Fig. 4b, in comparison with ProtT5-XL. As expected, 

the F1 score decreased slightly as more sequences were removed. However, this is most likely due 

to the fact that we were losing some domain and GO association information when we removed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554486doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554486
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

the proteins. Nevertheless, in all cases, our embedding performed better than that of ProtT5-XL, 

even at the identity cutoff of 25%. 

In Fig. 4c, we examined how performance changed when considering GO terms of varying 

levels of difficulty to predict. Weighted F1 scores for the different GO groups in the PROBE 

benchmark, classified by GO depth and frequency, were separately shown. As we moved from 

high to low frequency or shallow to specific GO terms, the classification task became more 

difficult. We compared our model's performance with the best-performing PLM, ProtT5-XL. Even 

in this evaluation, it was evident that our model substantially outperformed ProtT5-XL. 

Interestingly, the margin of the advantage of our model increased as we considered more difficult 

GO groups. In most of the easier cases, DomainGO-prob was at least similar to or slightly better 

than ProtT5-XL. In difficult cases, a substantial improvement was observed. For example, for low-

frequency and specific CC terms, DomainGO-prob was 20% better. It is apparent that although 

the PLM was able to comprehend frequent GO terms from unsupervised learning on a large volume 

of protein sequence data, such models failed to account for rare GO terms and suffered from 

limited specificity. On the contrary, our self-supervised learning approach seemed to decipher the 

functional identity of proteins better, regardless of the rarity and specificity of the GO terms to a 

degree. 
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Figure 4. Comparison with 12 large PLMs in the PROBE benchmark. a, the weighted F1 Score obtained 

by our model that is based on DomainGO-prob with 12 PLMs on the PROBE benchmark. To compute the 

weighted F1 score, the values of F1 score for the individual GO terms were averaged, weighted by the 

number of samples having that particular GO term, for all three GO categories and the average across the 

categories. b, analysis of the performance of DomainGO-prob when trained on non-redundant datasets. The 

model with DomainGO-prob was retrained on training datasets after removing proteins with 75%, 50%, 

and 25% sequence identity to the test proteins. None indicates the result using the original training set 

without further removing training proteins. The dashed line shows the weighted F1 score of ProtT5-XL. c, 

comparative performance on the nine groups of GO terms with different difficulty levels against the best-

performing ProtT5-XL. DG, prediction with the model (Eq. 7) using DomainGO-prob. N/A indicates that 
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there is no GO term in that particular group. DG is shown in bold and underlined when the improvement 

over ProtT5-XL is greater than and less than 5%, respectively.  

 

 

GO function prediction by Domain-PFP in comparison with existing methods 

Subsequently, we benchmarked the GO prediction performance of Domain-PFP (Eq. 5) on the 

NetGO dataset16 to compare it with state-of-the-art protein function prediction methods from 

recent literature. We used the data split of the NetGO dataset into training, validation, and test sets 

provided in the work of DeepGOZero22, who followed the same data split protocol of NetGO2.016. 

The NetGO dataset consists of 64,279, 91,443, and 83,004 proteins for MF, BP, and CC categories, 

respectively, with a specified training, validation, and test set split (Supplementary Table 3). We 

trained DomainGO-prob on the NetGO2.0 training dataset and created a weighted K Nearest 

Neighbor (KNN) model based on the learned embedding. The number of K-neighbors used for 

MF, BP, and CC was 1000, 800, and 1200, respectively, which were tuned based on the 

performance on the validation data split of the NetGO benchmark (Supplementary Figure 1). The 

performance of the various models on the test dataset is presented in Table 1. The evaluation results 

of the existing methods, from BLAST to NetGO2.0 (Server) in Table 1, were taken from the paper 

of DeepGOZero22.  

DeepGOPlus18 infers protein functions through a combination of DiamondBLAST56 and 

DeepGOCNN, which employs a 1D convolutional neural network to predict GO from the amino 

acid sequence. TALE+19 similarly fuses DiamondBLAST with sequence representation learned 

from a Transformer. Other top-performing methods are either based on domain information or 

used as a component. For instance, DeepGOZero22 leverages a model-theoretic approach to predict 

ontologies from InterPro domains, which can be further improved by incorporating 

DiamondBLAST. DeepGraphGO21 associates InterPro features with protein-protein interaction 

(PPI) networks employing a graph convolutional neural network. NetGO2.016 is an all-

encompassing ensemble method that incorporates BLAST, domain, PPI,  GO term frequency, 

PubMed publications, and sequence information both in form of k-mers and embedding. Among 

the existing methods, NetGO2.0 has shown the highest evaluation values for MF and the best Smin 

value in BP34 (note that the NetGO2.0 results are from the current server, ran by the authors of 

NetGOZero in their paper). 
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In the latter half of Table 1 we show results by Domain-PFP and Domain-PFP that 

incorporate BLAST and PPI information to compare with the other state-of-the-art methods that 

combine diverse information sources. The scores of GO term j for protein i from BLAST and PPI 

information are defined as 

 

𝑆𝐵(𝑝𝑖 , 𝐺𝑂𝑗) =  
∑ 𝐼(𝑝𝑘,𝐺𝑂𝑗)×𝐵(𝑝𝑖,𝑝𝑘)𝑝𝑘∈𝐷 

∑ 𝐵(𝑝𝑖,𝑝𝑘)𝑝𝑘∈ 𝐷
 (Eq. 8)   

𝑆𝑁(𝑝𝑖 , 𝐺𝑂𝑗) =  
∑ 𝐼(𝑝𝑘,𝐺𝑂𝑗)×𝜔(𝑝𝑖,𝑝𝑘)𝑝𝑘∈𝐷 

∑ 𝜔(𝑝𝑖,𝑝𝑘)𝑝𝑘∈ 𝐷
   (Eq. 9) 

  

Here, 𝐵(𝑝𝑖 , 𝑝𝑘) and 𝜔(𝑝𝑖 , 𝑝𝑘) are the bit-score from DiamondBLAST with ‘more-

sensitive’ setting56, and edge weight from STRING PPI network (ver. 11.0)57, respectively. We 

used the same STRING version as DeepGraphGO21. 

The final score is a simple average of the terms from the three sources: 

 

𝑆(𝑝𝑖 , 𝐺𝑂𝑗) =  
𝑆𝐷(𝑝𝑖,𝐺𝑂𝑗)+𝐼𝐵(𝑝𝑖) 𝑆𝐵(𝑝𝑖 ,𝐺𝑂𝑗)+𝐼𝑁(𝑝𝑖) 𝑆𝑁(𝑝𝑖,𝐺𝑂𝑗)

1+𝐼𝐵(𝑝𝑖) +𝐼𝑁(𝑝𝑖)
  (Eq. 10) 

 

 

𝐼𝐵 and 𝐼𝑁 are identity functions, which results in 1 if BLAST and String Network matches are 

found for the protein 𝑖, respectively.  

We compared the performance of the methods using the three CAFA evaluation metrics, 

namely Fmax, AUPR, and Smin
34 (see Methods). Fmax computes the maximum possible protein-

centric F1 score, overall prediction thresholds. AUPR, the area under PR curve, on the other hand, 

is a suitable metric for imbalanced data and penalizes the false positive predictions, which is highly 

applicable to function prediction16. Finally, Smin is a measure of semantic distance between 

predicted and actual annotation, based on the information content of the individual GO terms18, 

i.e., this metric signifies the capability of predicting rare GO terms.  
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Table 1. Comparison with state-of-the-art function prediction methods. 

 

Method  
Features 

Used 

Fmax AUPR Smin 

MF BP CC MF BP CC MF BP CC 

BLAST BLAST 0.627 0.407 0.625 0.427 0.272 0.412 5.503 25.918 9.351 

DeepGOCNN Sequence 0.589 0.337 0.624 0.565 0.271 0.623 6.417 27.235 10.617 

DeepGOPlus 
Sequence, 

BLAST 
0.661 0.419 0.655 0.667 0.342 0.663 5.407 25.603 9.374 

DeepGOZero Domain 0.662 0.396 0.662 0.668 0.337 0.645 5.322 25.838 9.834 

DeepGOZero + 

BLAST 

Domain, 

BLAST 
0.655 0.432 0.675 0.665 0.356 0.654 5.337 25.439 9.391 

DeepGraphGO Domain, PPI 0.671 0.418 0.679 0.647 0.364 0.669 5.374 25.866 9.165 

TALE+ 
Sequence, 

BLAST 
0.466 0.382 0.661 0.441 0.31 0.681 8.136 26.308 9.599 

NetGO2.0 

(Server) 

Domain, 

Kmer, RNN, 

PPI, BLAST, 

Pubmed, 

Frequency 

0.698 0.431 0.662 0.701 0.343 0.627 5.187 25.076 9.473 

Domain-PFP Domain 0.675 0.41 0.675 0.676 0.344 0.697 5.259 25.838 9.709 

DPFP + 

BLAST 

Domain, 

BLAST 
0.674 0.434 0.681 0.693  0.367 0.717 5.188 25.11 9.239 

DPFP + PPI Domain, PPI 0.666 0.435 0.673 0.689 0.379 0.675 5.404 25.002 9.35 

DPFP + 

BLAST + PPI 

Domain, 

BLAST, PPI 
0.685 0.452 0.686 0.718 0.393 0.687 5.146 24.292 9.084 

The best, 2nd best, and 3rd best results are indicated by bold, double-underline, and single-underline, 

respectively. We also include the features used by the predictors. DPFP, Domain-PFP; Kmer, the K-mer 

distribution in the protein sequences; RNN, protein sequence embedding computed by a recurrent neural 

network; Frequency, the frequency of the GO terms in the database.  

 

Firstly, we compared Domain-PFP with sequence-only or domain-based methods, e.g.,  

DeepGOCNN and DeepGOZero. This is a fair comparison as the base Domain-PFP uses only 

domain information which is inferred from sequence information. It can be observed from the table 

that Domain-PFP outperforms these methods in terms of Fmax , AUPR, and Smin in all the three sub-

ontologies. Notably, Domain-PFP achieved an AUPR of 0.697 for CC, whereas DeepGOZero, a 

recent method based on domain information scored 0.645, i.e., a large improvement of 0.052. In 
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terms of Fmax, Domain-PFP outperformed DeepGOZero and DeepGOCNN by achieving 0.013-

0.014 and 0.051-0.086 higher scores, respectively. 

Adding different features generally improves the performance of function prediction. 

When BLAST information was combined, Domain-PFP improved the overall performance, except 

for a slight drop of 0.001 in Fmax for MF. Fmax for BP increased from 0.41 to 0.434, and AUPR 

for CC increased from 0.697 to 0.717. Furthermore, Domain-PFP with BLAST consistently 

outperformed DeepGOZero+BLAST, which also uses the same information, in all 9 metrics. For 

example, DeepGOZero+BLAST achieved AUPR scores of 0.665, 0.356, and 0.654 for MF, BP, 

and CC, respectively, whereas Domain-PFP+BLAST achieved 0.693, 0.367, and 0.717, 

representing improvements of 0.028, 0.011, and 0.063, respectively. When compared with 

DeepGOPlus or TALE+, both of which use BLAST, the improvements made by Domain-

PFP+BLAST appeared consistent as well. 

Next, we experimented with including PPI information with Domain-PFP. However, this 

only improved the performance in BP, as expected, since BP involves multiple related and 

interacting functions that can be captured by PPIs. On the other hand, the performance of MF and 

CC was negatively affected. This situation is similar to the findings of NetGO2.016, where the 

authors reported that PPI information performed better than domain information for predicting BP 

terms but not for MF and CC terms. For example, the Fmax of MF and CC dropped by 0.009 and 

0.002, respectively. Despite this, Domain-PFP+PPI still outperformed DeepGraphGO, a method 

using domain and PPI information in a much more sophisticated graph neural network, in 5 out of 

9 metrics. 

Finally, we experimented with integrating both BLAST and PPI simultaneously. This 

brought improvements in all the metrics except for AUPR of CC. Notably, Fmax and AUPR of 

BP improved by 0.042 and 0.049, respectively. This integration of BLAST and PPI features 

enabled Domain-PFP to consistently perform superior to all the existing methods. For example, 

the current state-of-the-art method NetGO2.0 was surpassed by Domain-PFP in 8 out of 9 metrics 

(except for Fmax for MF). In terms of Fmax for BP and CC, Domain-PFP achieved 0.021 and 

0.024 higher scores, respectively. For AUPR, the improvements were 0.017, 0.050, and 0.060 for 

MF, BP, and CC, respectively. Similarly, in terms of Smin, Domain-PFP+BLAST+PPI achieved 

0.041, 0.784, and 0.389 smaller scores for MF, BP, and CC, respectively, implying that non-trivial 

GO terms were captured better. 
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This comparative evaluation with state-of-the-art function prediction methods further 

supports our self-supervised approach of learning functionally informed representations for protein 

domains. We observed that a simple KNN model with DomainGO-prob embedding not only 

outperformed more sophisticated deep learning models (e.g., DeepGraphGO) but also methods 

with access to more information sources (e.g., NetGO2.0). The only case where we fell behind the 

previous state-of-the-art, NetGO2.0, is in Fmax for MF. which we hypothesize is due to the 

inclusion of Pubmed publication information that is likely to contain precise information vital for 

MF prediction. 

In order to assess the performance of Domain-PFP relative to structure-based protein 

function predictors we considered two recent methods, DeepFRI8 and GAT-GO62.  These methods 

use 3D protein structure information in a graph neural network and protein sequence information 

with a language model. Both methods were evaluated on a common benchmark dataset, composed 

of 29,902, 3,323, and 3,416 proteins for training, validation, and testing, respectively. The train 

and test proteins possess a total of 2,752 GO terms.  

We retrained Domain-PFP on this training dataset and observed the performance across 

the three sub-ontologies in the test set. The results are presented in Supplementary Table 5. It 

shows that Domain-PFP outperforms the two much complex graph neural network-based function 

predictors with access to structural information on all the metrics except for Fmax in CC and 

AUPR in MF. The performance of Domain-PFP was further improved by including BLAST 

predictions, which results in the best score for all the metrics.  

 

Evaluation on CAFA3 benchmark 

We further evaluated Domain-PFP on the CAFA3 benchmark34. We trained the network model of 

Domain-PFP using the CAFA3 training dataset and evaluated the results using the official 

evaluation code. The training dataset comprised 66,841 protein sequences annotated before 

September 2016, with 677, 3992, and 551 MF, BP, and CC GO terms, respectively (Supplementary 

Table 4). The test set contained 3328 proteins annotated between September 2016 to February 

2017. To include sequence similarity information using BLAST in our pipeline, we constructed a 

new BLAST database with the CAFA3 training sequences. However, we could not use PPI 

information from the STRING database for this benchmark because STRING v10.a (the version 

during the competition timeline) lacked sufficient interaction data of the CAFA3 test proteins. We 
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did not perform any additional hyperparameter tuning and kept the same hyperparameters 

computed from the NetGO benchmark validation data. 

The results of Domain-PFP on the CAFA3 benchmark are presented in Fig. 5 in 

comparison with the top 10 performing methods as published by the organizers of CAFA334. 

DomainPFP+BLAST consistently showed a higher Fmax than Domain-PFP alone. For both BP 

and CC, Domain-PFP+BLAST outperformed the existing methods. Domain-PFP+BLAST 

achieved a Fmax score of 0.63 for CC, which is 0.02 higher than the CAFA3 top model, Zhu Lab. 

For BP, Domain-PFP+BLAST showed a slightly higher Fmax of 0.398 than the CAFA3 top model 

(Fmax: 0.397). For MF, our Fmax score, 0.59, was second to Zhu Lab (Fmax: 0.62), with a 

substantial margin to the next method, orengo-funfams (Fmax: 0.54). The top method by Zhu Lab 

combined more diverse information using an ensemble approach, including sequence, domain, 

homology, biophysical information, which likely gave that a competitive edge, similar to 

NetoGO2.0.   We also mention that both DomainPFP and DomainPFP+BLAST showed higher 

Fmax scores than DeepGOPlus, which reported Fmax scores of 0.557, 0.390, and 0.614 for MF, 

BP, and CC, respectively, in their paper18. 

 

 

 

 

 

Figure 5. Comparison with CAFA3 methods. The Fmax for the top 10 methods and the 2 baseline methods 

(Naïve, BLAST) are presented. All the scores were collected from the official CAFA3 result (Zhou et al., 

2019). The Fmax score of Domain-PFP was also computed using the official CAFA3 evaluation codes. 
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Discussion 
 

Despite protein domains carrying the functional signatures of proteins, they have not been used to 

their full potential to date. Look-up-table-based domain to GO assignments tend to lack coverage. 

On the other hand, deep learning-based approaches using domains as high-dimensional input suffer 

from limitations in training data and information loss in network bottlenecks. Therefore, our 

motivation has been twofold: improving coverage and reducing information loss. Based on recent 

advancements in self-supervised learning, it has become motivating to apply such concepts in 

protein domain learning to alleviate these issues. Our method follows one of the core concepts of 

self-supervised learning where pseudo-labels are first learned to initialize model parameters, which 

are then used to perform the actual task using a supervised or unsupervised method63. Our approach 

is consistent with this definition as we first use the domain-go association probabilities as pseudo 

labels, which initializes our domain embedding parameters; then, we use this embedding later in a 

supervised learning protocol and we predict the functions of the proteins. This strategy also holds 

in the benchmarks on the NetGO and CAFA3 dataset we performed. To the best of our knowledge, 

this work is the first to apply self-supervised learning in the domain of protein function prediction. 

Based on co-occurrence contextual information between domain and GO terms, we devise 

embeddings for domains so that functionally related domains have similar embeddings. Since co-

occurrences were learned from entire protein sequences, the domain embedding, DomainGO-prob, 

encodes GO associations that are not explicitly described in the domain database. Remarkably, our 

rather simple model, Domain-PFP, along with BLAST and PPI information, demonstrated superior 

performance over all state-of-the-art function predictors. 

One likely limitation of this work could be the case of unknown domains. All existing 

methods based on protein domains fail to predict anything if the domain seen during inference was 

absent in the training data, in which case they predict a default value. This limitation can possibly 

be resolved by generating the functionally aware domain representation and localization end-to-

end from the protein sequence directly using a larger deep learning model. Another limitation is 

that the current protein embedding considers domains in a protein equally (Eq. 4), although each 

domain may have different levels of contribution to protein function. Also, the order of appearance 

of domains in a protein is not considered, which is known to be relevant to function13. To address 

these, attention mechanism maybe applicable. These are improvements we wish to explore in our 
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subsequent works. In the current work, we practically alleviated these issues by augmenting with 

BLAST and PPI information-based predictions. 

Another possible future direction could be to combine with general protein language 

models31, which were shown to perform well in protein tertiary structure prediction and other tasks. 

Additionally, we wish to analyze the suitability of our model in a zero-shot learning scenario. 

Specifically, our goal is to train DomainGO-prob on pretrained GO embeddings based on GO tree 

hierarchy and observe if GO terms absent in the training data can be retrieved this way. 

 

 

Methods 
 

Neural network architecture 

We have designed a neural network to learn the domain-GO co-occurrence conditional probability 

distribution (Fig. 1a). The domain and GO terms are received as one-hot-encoded inputs, which 

are passed through two separate embedding layers to generate the 256-dimensional domain and 

GO embeddings, respectively. Then, from the computed domain and GO embeddings, we calculate 

the Hadamard product as a measure of correlation between the two types of embeddings and pass 

them through a densely connected layer of 128 neurons. The neurons are regularized through 

dropout (p=0.05) and activated by RELU. Finally, we use a linear layer to predict the 

𝑝(𝑑𝑜𝑚𝑎𝑖𝑛|𝐺𝑂) score. The domain embedding matrix is extracted to generate the representations 

of domains. In order to increase the sparsity of the domain embeddings, we apply L1-regularization 

on that embedding layer (𝜆 = 0.1). 

 

Network training 

Similar to word2vec embedding training58, we have a comparatively much larger number of 

domain-GO terms out of context, i.e., 𝑝(𝐺𝑂|𝑑𝑜𝑚𝑎𝑖𝑛) = 0. Thus, we employed negative sampling 

by randomly selecting 1000-2000 non co-occurring GO terms for each domain. The network was 

trained by minimizing the MSE (mean squared error) loss with Adam optimizer37 with a learning 

rate of 0.001 (the other parameters were kept as default) and a batch size of 163,840 for 200 epochs. 

20% of domain-GO pairs, which were randomly selected, were used as the validation set. The 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554486doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554486
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

experiments were performed 10 times and the best model based on validation performance was 

selected. 

 

funSim score 

𝑓𝑢𝑛𝑆𝑖𝑚 score is popularly used for quantifying similarity of GO term annotation of two 

proteins29,59.  𝑓𝑢𝑛𝑆𝑖𝑚 score uses the relevance semantic similarity score 𝑠𝑖𝑚𝑅𝐸𝐿 for the similarity 

of GO terms of the same category40: 

𝑠𝑖𝑚𝑅𝑒𝑙(𝐺𝑂1, 𝐺𝑂2) = 𝑚𝑎𝑥𝑔𝑜∈𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠(𝐺𝑂1,𝐺𝑂2)  (
2 log 𝑝(𝑔𝑜)

log 𝑝(𝐺𝑂1)+log 𝑝(𝐺𝑂2)
 × (1 − 𝑝(𝑔𝑜)))(Eq. 11) 

 

where common ancestral GO terms of GO1 and GO2 are explored to maximize the score and p(GO) 

is the probability of GO term in the entire Swiss-Prot database. Then, a set of GO annotations in a 

GO category for two proteins, a and b, are defined as  

 

𝐺𝑂𝑠𝑐𝑜𝑟𝑒 (𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑎, 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑏) = max (
1

𝑁
∑ 𝑚𝑎𝑥1≤𝑗≤𝑀𝑠𝑖𝑗

𝑁
𝐼=1 ,

1

𝑀
∑ 𝑚𝑎𝑥1≤𝑗≤𝑁𝑠𝑖𝑗

𝑀
𝐼=1 ) (Eq. 12) 

 

where 𝑠𝑖𝑗 is 𝑠𝑖𝑚𝑅𝐸𝐿  score of 𝐺𝑂𝑖  and 𝐺𝑂𝑗  of 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑎 and 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑏 , respectively, computed in an 

all-vs-all fashion. 

Finally, 𝑓𝑢𝑛𝑆𝑖𝑚 score is the average of the GOscore from the three GO categories. 

 

                     𝑓𝑢𝑛𝑆𝑖𝑚 =  
1

3
 [(

𝑀𝐹𝑠𝑐𝑜𝑟𝑒

max(𝑀𝐹𝑠𝑐𝑜𝑟𝑒)
)

2
+  (

𝐵𝑃𝑠𝑐𝑜𝑟𝑒

max(𝐵𝑃𝑠𝑐𝑜𝑟𝑒)
)

2
+ (

𝐶𝐶𝑠𝑐𝑜𝑟𝑒

max(𝐶𝐶𝑠𝑐𝑜𝑟𝑒)
)

2
] (Eq. 13) 

 

𝑓𝑢𝑛𝑆𝑖𝑚 score ranges from 0 to 1 with 1 as the maximum score. 

 

 

Evaluation Metrics 

For the PROBE benchmark, similar to the original benchmark by Unsal et al.47, we used Weighted 

F1 Score as the evaluation metric. The values were computed using their official CodeOcean 

distribution. 
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To compare with state-of-the-art methods, we used the CAFA protein-centric evaluation 

metrics Fmax, Smin, and AUPR2. We used the same evaluation codes as used by22 to ensure 

consistency. 

 

Fmax is the maximum possible protein-centric F1 score, computed over all prediction 

thresholds.  

                                            𝐹𝑚𝑎𝑥 = 𝑚𝑎𝑥0≤𝜏≤1  
2  𝑝𝑟(𝜏)  𝑟𝑒(𝜏)

𝑝𝑟(𝜏)+𝑟𝑒(𝜏)
                                (Eq. 14)                    

 

Here, 𝑝𝑟(𝜏) and 𝑟𝑒(𝜏) Are precision and recall scores, respectively, computed at the cut-

off value of 𝜏. The precision and recall values are computed as  

                              𝑝𝑟(𝜏) =  
1

ℎ(𝜏)
 ∑

∑ 𝐼(𝑆(𝐺𝑖,𝑃𝑗)≥𝜏).𝐼(𝐺𝑖,𝑃𝑗)𝑖

∑ 𝐼(𝑆(𝐺𝑖,𝑃𝑗)≥𝜏)𝑖

ℎ(𝜏)
𝑗=1                             (Eq. 15) 

                                                         

                               𝑟𝑐(𝜏) =  
1

𝑁𝑇
 ∑

∑ 𝐼(𝑆(𝐺𝑖,𝑃𝑗)≥𝜏).𝐼(𝐺𝑖,𝑃𝑗)𝑖

∑ 𝐼(𝐺𝑖,𝑃𝑗)𝑖

𝑁𝑇
𝑗=1                               (Eq. 16) 

                                          

 

Here, 𝑁𝑇 is the total number of proteins and  ℎ(𝜏) is the number of proteins with a 

prediction score no smaller than 𝜏 for at least one GO term. 𝐼 is the identity function which returns 

1 if the condition is true, 0 otherwise. 𝐼(𝐺𝑖 , 𝑃𝑗) therefore, implies if the protein 𝑃𝑗 whether has the 

GO term 𝐺𝑖or not.  𝑆(𝐺𝑖 , 𝑃𝑗) denotes the prediction score of 𝑃𝑗 having the 𝐺𝑖 term. 

The area under precision-recall curve, i.e., AUPR score is computed from the computed 

precision and recall scores using the trapezoidal rule.  

                 𝐴𝑈𝑃𝑅 =  
Δx

2
(𝑓(𝑥0) + 2𝑓(𝑥1) + 2𝑓(𝑥2) + ⋯ + 2𝑓(𝑥𝑁−1) + 𝑓(𝑥𝑁)     (Eq. 17) 

                            

 

Here, 𝑥0, 𝑥1, … , 𝑥𝑁 are various recall values, whereas f(𝑥0), 𝑓(𝑥1), … , 𝑓(𝑥𝑁) are values of 

precision at those recalls, and Δx is the step size. 
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Smin is a measure of semantic distance between the ground truth and prediction annotations 

based on information content of the GO classes. The information content IC(c) for a class c is 

computed based on the annotation probability of class c relative to its parent class 𝑃(𝑐) 

                                       𝐼𝐶(𝑐) = −𝑙𝑜𝑔 (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑐|𝑃(𝑐))                                                (Eq. 18)                                       

 

The two terms remaining uncertainty (𝑟𝑢) and average misinformation (𝑚𝑖) are defined 

as   

                                               𝑟𝑢(𝑡) =  
1

𝑛
 ∑ ∑ 𝐼𝐶(𝑐)𝑐∈{𝑇𝑖−𝑃𝑖(𝑡)}

𝑛
𝑖=1                                             (Eq. 19)                                            

 

                                               𝑚𝑖(𝑡) =  
1

𝑛
 ∑ ∑ 𝐼𝐶(𝑐)𝑐∈{𝑃𝑖(𝑡)−𝑇𝑖}

𝑛
𝑖=1                                         (Eq. 20)                                               

 

The value of Smin is computed as  

                                               𝑆𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑡 (√𝑟𝑢(𝑡)2 + 𝑚𝑖(𝑡)2                                              (Eq. 21) 

                                                    

 

Code availability 

The Domain-PFP program is freely available for academic use from GitHub at 

(https://github.com/kiharalab/Domain-PFP). Furthermore, the program is available to run on 

Google Colab Notebook (bit.ly/domain-pfp-colab). 

Data availability 

The embeddings of the proteins from the PROBE benchmark dataset, computed by DomainGO-

prob, GO term prediction by DomainPFP on the CAFA3 dataset, trained DomainGO-prob model 

weights and Domain-PFP KNN models are accessible at https://github.com/kiharalab/Domain-

PFP  and made also available at https://kiharalab.org/domainpfp/.  
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