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Abstract

Domains are functional and structural units of proteins that govern various biological functions
performed by the proteins. Therefore, the characterization of domains in a protein can serve as a
proper functional representation of proteins. Here, we employ a self-supervised protocol to derive
functionally consistent representations for domains by learning domain-Gene Ontology (GO) co-
occurrences and associations. The domain embeddings we constructed turned out to be effective
in performing actual function prediction tasks. Extensive evaluations showed that protein
representations using the domain embeddings are superior to those of large-scale protein language
models in GO prediction tasks. Moreover, the new function prediction method built on the domain
embeddings, named Domain-PFP, significantly outperformed the state-of-the-art function
predictors. Additionally, Domain-PFP demonstrated competitive performance in the CAFA3
evaluation, achieving overall the best performance among the top teams that participated in the

assessment.

Introduction

Protein function prediction is one of the long-standing, fundamental topics of bioinformatics,
which involves profiling the activities and interactions of proteins®. Although protein functions are
eventually determined by experiments, the experimental effort and expense slow down the process
of function discovery, which is in contrast to the ever-increasing volume of sequenced proteins?.
At present, not even 1% of sequenced proteins have functional annotation3. Unlike relatively
cheaper sequencing technologies, there is a deficit of scalable, high-throughput experimental
assays to functionally annotate proteins®. This has led to the demand for in-silico methods of
automated protein function prediction®. Protein functions have been determined naturally from
sequence similarity to known proteins® and other characteristics of proteins that can trace
functional relevance. Such information includes structural configuration’®, phylogenetic
information'®!!, domain distribution?*4, protein networks®®, and combinations of multiple
sources'®!’. Recently, various deep learning-based methods were proposed to learn a functional
representation of proteins®1618-22. Such methods demonstrated substantial improvement over

traditional database search-based methods?324,
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Proteins consist of domains, which are functional and structural units responsible for
specific functions and interactions?®. Therefore, it is compelling to infer the functions of a protein
based on the presence and distribution of the various domains in it. InterPro2GO is an ongoing
project that assigns GO annotations to specific domains in the InterPro database, and this
annotation is done manually by experts?%27, Although the domain-GO mapping by InterPro2GO
provides curated information on protein function, the coverage is severely limited. For example,
there are approximately 38k InterPro entries and 48k GO terms, but the current version of
InterPro2GO (version-date: 2022/03/16) mapping only includes 16,443 unique InterPro entries
and 6,482 GO terms. Despite the lack of annotations, several methods have tried to leverage protein
domain information for function prediction. Messih et al. analyzed the recurrence and order of
protein domains and their influence on protein functions®®. Rojano et al. attempted to associate
domains and functions through tripartite graphs'4. Besides such domain-focused studies, protein
domains have been consistently used as a source of complementary functional information in a
number of ensemble methods®167 and some analyses even revealed that domain information is
the most crucial one?®,

As in many other areas in bioinformatics, deep learning has been applied for function
prediction from domain information. However, the effective use of domains is critically
constrained by low coverage of functional assignments, high dimensionality, and acute data
imbalance. For instance, in a recent competitive deep-learning-based model, DeepGOZero?, a
26,406-dimensional input of InterPro feature vectors was reduced to 1024 dimensions using a
single multi-layer perceptron (MLP) layer, which results in significant information loss. A similar
situation is observed in DeepGraphGO?! as well.

Here, we introduce Domain-PFP, a protein function prediction method that uses functional
representation of proteins through domain-GO association learned by a self-supervised method
from protein databases. Self-supervised learning is based on the idea of leveraging the inherent co-
occurrence relationship of complementary information in the data to learn new labels in a semi-
automatic process®®. We used self-supervised learning because it can directly learn domain and
GO co-occurrence from abundant protein sequences and is able to alleviate the problem of current
domain databases, where many domains do not have function annotation. Following the
underlying concepts of self-supervised learning, we first learned pseudo-labels of GO prediction

probability from individual domain terms. Then, we derived the dense representation of domains
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consistent with functional information to characterize protein sequences and used the
representation to predict protein functions. The embeddings learned both at the domain and protein
level have turned out to be functionally meaningful as the embedding distance showed substantial
negative correlations with functional similarity?® of GO terms that are present in the domains and
protein sequences. Moreover, a systematic comparison with large-scale Protein Language Model
(PLM) representations®®3!, which use variants of Transformers®? and BERT®? architectures, and
have demonstrated success in function prediction®®8, revealed that our embeddings are more
applicable for function prediction, despite being a fraction of the aforementioned PLM complexity.
This improvement is further vividly observed in challenging cases of predicting rare and more
specific functions. In addition, using a straightforward K-Nearest Neighbors (KNN) model with
the learned embeddings along with sequence similarity and interaction information, Domain-PFP
significantly outperforms more complex state-of-the-art methods. Most notably, Domain-PFP
achieved an increase in the area under precision-recall curve (AUPR) by 2.43%, 14.58%, and
9.57% over the state-of-the-art method for molecular function (MF), biological process (BP), and
cellular components (CC), respectively. Domain-PFP has also demonstrated competitive

performance when compared with top-scoring methods in the CAFAS3 evaluation34.

Results

Construction of Domain-GO Embeddings

Dataset of domains and GO annotations

We collected 568,002 protein sequences from Swiss-Prot (release 2022_3)2° and assigned InterPro
domains using InterProScan 5 REST API®6. Despite InterPro maximizing domain coverage by
combining entries from 13 databases, 36,403 proteins had no InterPro annotations, so we discarded
them. Concurrently, we collected GO terms for protein sequences from UniProt. We considered
both experimentally and computationally assigned functions since IEA (Inferred from Electronic
Annotation) terms demonstrated increased accuracy in our previous works®. We also propagated

the parent GO terms using the core ontology release 2021-01-01. In summary, our dataset
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contained 531,599 proteins with 32,471 unique domains and 33,199 unique GO terms (8,297,
21,805, and 3,097 MF, BP, and CC terms, respectively).

Self-supervised learning for domain representation

Using the domain and GO term assignments to protein sequences, we computed the conditional

probability of a protein that contains domain; having the G 0; function:

p(domain;n Go;)

p(G0j|domainl-) = (Eq. 1)

p(domain;)

Here, p(domain;) represents the probability of a protein containing domain;, while
p(domain; N GO;) represents the joint probability of a protein with domain; performing GO;.
We can calculate both probabilities from the co-occurrence relationships of domains and GO terms
in the dataset by counting the occurences. These probabilities serve as the pseudo labels or target
function for our self-supervised learning method.

Our ultimate goal is to predict protein functions. To achieve this, we aim to develop a
representation of domains that, in conjunction with a learned representation of GO terms, is
consistent with the domain-GO co-occurrence conditional probability. In other words, we seek to
design two representations or embeddings, ¢ and i, which separately represent domains and GO
terms, respectively, and a bivariate function f that can map the conditional probability of the co-

occurrence of any domain; and G0;:

f (gb(domaini),lp(GOj)) - p(GOj|d0mainl-) (Eq. 2)

In our case, we utilized two 256-dimensional embedding matrices ¢ and 1, as
representations for domains and GO terms, respectively. The bivariate function f was modeled as

a two-layer densely connected network that takes the Hadamard product of ¢(domain;) and
1/)(60]-) as input, decomposes the values in a 128-dimensional space, and finally predicts the

conditional probability p(GOjldomaini). The network architecture is presented in Figure 1(a),
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where the function f is represented as an array of circles in light blue. Concretely, f takes the

following form:
f = Wo( RELU(W; (¢(domain) © Y(GO;) ) + by)) + b, (Eq. 3)

where (W1, b1) and (W2, b2) are weights and biases from the first and the second layer of
the network, respectively. The Hadamard product of the two embeddings is represented by the
symbol ©. The network is regularized by dropout, and the domain embedding matrix ¢ is further
regularized by L1-norm to impose sparsity. The ¢p embedding matrix for each domain, as well as
the 1» embedding for each GO term, were learned through backpropagation with the mean squared
error (MSE) loss using the Adam optimizer with default settings®’. We intended to keep the
function f simple so that the domain embeddings could effectively learn functional relevance,
rather than letting the function f learn the correlation between domain and GO term co-occurrence.
This is inspired by a recent work, which demonstrated that a strong encoder in conjunction with
weak decoder results in a strong representation learner®®. The function f provides the association
probability between a domain and a GO term (Eq. 1), which we name DomainGO-prob. We trained
three different versions of DomainGO-prob for the three sub-ontologies, MF, BP and CC,
respectively.

The overall pipeline for learning the domain embeddings is summarized in Fig. 1b. We
started by collecting annotated protein sequences from Swiss-Prot, along with domain and GO
term assignments. Domains were obtained from InterProScan, while GO terms were collected
from Swiss-Prot. Next, we calculated the conditional probabilities of all the domain-GO
associations by counting their co-occurrences in the dataset. Finally, the domain embeddings (¢)
and GO term embeddings (y) were computed using the network shown in Fig. 1a. The network
was trained and validated on the aforementioned dataset of 32,471 unique domains and 33,199
unique GO terms. We randomly selected 80% of the domain-GO pairs for training and used the
remaining 20% for validation. Three different models, i.e., three different sets of embeddings were
developed for the three sub-ontologies. The details of the network training are described in the
Methods.
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Figure 1. Overview of Domain-PFP. a, the network architecture used for self-supervised learning of
domain embeddings. b, the overall pipeline of learning the functionally aware domain embeddings. c, the
steps of computing the embeddings of a protein and inferring the functions.

Predicting GO terms for a query protein (Domain-PFP)

Using the computed domain embeddings, we represented a protein, which may be composed of
several domains, as the average of the embeddings of all the domains in it. This is similar to how
PLM encodes proteins by averaging the individual residue level representations®!. For a protein P,

with domains dp, the protein embedding is computed as
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Zaedp, $(d)

D(Pk)= |dP|
k

(Eq. 4)
With the protein embedding, we can use supervised classifiers to infer protein functions.
Here, we used a KNN classifier, following the convention of BLAST or PPI network scoring6:2L,
KNN models using protein language models have also been shown to be on par with top methods
of Critical Assessment of Functional Annotation 3 (CAFA3)38. The confidence score of annotating

a protein p; with the GO term GO;, S, (p;, GO;) is computed as follows:

I(pr.,GO;)xIID(p)—D (i)
ID(pi)-D(Pr)ll2

ZpkEKneigh

Sp(pi, GO;) = (Eq. 5)

Z:pkEKneigh

where K4, is @ neighborhood of K proteins, and I(pk,GOj) is 1 if the protein p, is
annotated with GO;, and 0 otherwise.

The steps of computing protein embeddings and predicting functions are outlined in Fig.
1c. For a given query protein sequence, domains are assigned using InterProScan, and their
individual domain embeddings are obtained. The embedding of the query protein is then computed
by taking the average of the assigned domain embeddings (Eg. 4). Finally, the protein embedding
is used to find known proteins that are close in the embedding space (Eg. 5) using a supervised

classifier (KNN for our approach) to infer its functions.

Correlation of embedding distance and functional similarity of domains and
proteins

To start with, we analyzed how the distance of the domain embeddings correlates with the
functional similarity of domains and proteins. Having functionally similar domains close in the
embedding space is essential for the embeddings to be useful for function prediction. As a measure
of the embedding distance, we adopted the Manhattan distance as it is discussed to be more
meaningful in high-dimensional spaces than, for example, the Euclidean distance®. As for
functional similarity, we computed the Jaccard Index following a previous work®. For a domain,
we considered GO terms are assigned to the domain if they have a conditional probability no less
than 0.5, i.e., GO Terms = {GO;:p(GO;|domain) = 0.5}. This set of assigned GO terms for
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domain A and B are denoted as GO Termsdomaina and GO Termsdomaing in the following equation.

The Jaccard Index for two domains, A and B is defined as

Domain Functional Similarity (domain,, domaing) =

|GO Termsgomainan GO Termsgomaing| (Eq 6)
|GO TermsgomainaVGO Termsgomains|

We randomly selected 100,000 pairs of domains and computed their functional similarity
relative to the embedding distance in Fig. 2a. Domain functional similarity was computed
separately for each of the three GO categories. Overall, a negative correlation was observed
between the embedding distance and functional similarity for all three GO categories. Substantial
Jaccard Index values, such as those over 0.5, were observed mainly for domain embedding pairs
that were close in distance, for example, less than 10. Almost all domain pairs with a large distance,
for example, a distance of 20 or higher for MF and CC and over 10 for BP, had a small functional
similarity value of less than 0.2. A perfect Jaccard Index of 1.0 was only observed for domain pairs
with a relatively small embedding distance. Thus, it is evident that our model generates similar

embeddings for functionally similar domains.
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Figure 2. Domain and GO associations using DomainGO-prob. a, Functional consistency of domain
embeddings. The domain functional similarity was quantified by the Jaccard Index of GO terms relative to
the Manhattan distance of domain embeddings. Three GO categories, MF, BP, CC, are separately shown.
b, Functional coherence in the protein level. Protein pairs were split into bins based on their embedding
distance and the mean funSim score for each bin was plotted. Bins with less than 100 proteins were
discarded. The last bin includes protein pairs with a distance larger than 25. The color of a data point
indicates the number of protein pairs in the bin and the size of circles indicates the standard deviation of
the funSim score. c, Predicted scores of GO terms for domains in InterPro2GO. The score distribution GO
terms for domains were taken from DomainGO-prob. We included the scores from both the standard model
(trained on the entire dataset) and the model trained in the adversarial manner (trained after removing the
InterPro2GO pair information), which are represented with orange and blue bars, respectively.

We have also examined protein-level functional similarity relative to the embedding
similarity (Fig. 2b). As the measure of the functional similarity of proteins, which are annotated
by multiple GO terms in the three categories, we used the funSim score®. funSim essentially
computes the average of semantic similarity of best matching GO terms from two proteins for each
GO category, and then averages the score over the three GO categories (for the concrete definition,
see Methods). funSim score ranges from 0 to 1 with 1 as the maximum score.

We took 1,000,000 random pairs of proteins and computed their embeddings for MF, BP,
and CC separately and concatenated them to obtain the overall embedding. In Fig. 2b, mean
funSim score of protein pairs were plotted relative to the Manhattan distance of protein
embeddings. We can see the overall trend that funSim score drops as protein embeddings become
more distant from each other. Large funSim scores were observed only for close protein
embeddings, e.g. a Manhattan distance of less than 5.

Overall, in this section, we confirmed that functionally similar domains and proteins are

placed close to each other in the embedding space.

Learning InterPro2GO annotations

Next, we examined how well our domain embeddings align with expert-curated GO mappings of
InterPro2GO. For this analysis, we used the InterPro2GO mapping of version-date 2022/03/164,
which comprises 35,046 mappings between 16,443 unique InterPro domain entries and 6,482

11
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unique GO terms. We considered 34,832 InterPro2GO annotations, excluding 214 mappings with
domains or GO terms that are not included in our dataset.

For all the domain-GO pairs in the InterPro2GO mappings, we predicted the conditional
probability using DomainGO-prob (Fig. 1a) that the GO exists in the domain. The results are
shown in Fig. 2c (using orange bars). As shown, for over 80% of cases, existing GO term-domain
associations have a high score of over 0.9 (the rightmost bar) for all three GO categories. Thus,
DomainGO-prob was able to associate GO terms to protein domains using the self-supervised
learning protocol that associated GO terms and domains from the co-occurrences in full protein
sequences.

We further conducted experiments with an adversarial version of this analysis. Namely, to
test the generalization ability to learn from the context of related, co-occurring domains and GO
terms alone, we removed all the probability values of domain-GO pairs that exist in the
InterPro2GO mapping and then re-trained the DomainGO-prob models. Formally, from the
original dataset D = {(domain;, GO;)} we constructed a new dataset D’ = {(domain;, G0;) :
(domain;, GO;) ¢ InterPro2GO}. With this dataset D', we re-trained the DomainGO-prob
models and examined the conditional probability of GO terms that exist in InterPro2GO. The
results are represented by the blue bars in Fig. 2c. Under this setting, DomainGO-prob predicted a
score higher than 0.5 for 66.5%, 81.9%, and 86.5% for MF, BP, and CC, respectively. Thus, even
without explicit knowledge, DomainGO-prob was able to extract the meanings of domain-GO
relationships only from the contextual information of co-occurrences and hierarchies. Among the
three GO categories, the counts of domain-GO associations with the highest probability bin (0.9
to 1.0) of MF terms showed the largest decrease when compared with the results with full training
data, D (orange bar). This is probably because MF terms (e.g., enzymatic function) are associated

with a domain at a residue level unlike BP and CC, which are more contextual“.

Examples of domain-GO associations learned by the network

In this section, we discuss several examples that illustrate how DomainGO-prob learns
domain-GO associations. We used the aforementioned adversarial version, i.e., the model trained
with D', and we examined how the model likely learned the GO terms solely from the co-

occurrence of different domains. The examples show that DomainGO-prob recovered the correct

12
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domain and GO relationships in InterPro2GO from other domain and GO associations in a way
that is consistent with the hierarchical and associative relationships of domains and GO terms. This
is analogous to the way grammatical structures and word relations aid in masked language
modeling® in NLP.

The first example (Fig. 3a) is IPR000010, a domain in cysteine protease inhibitors*3, which
was annotated with GO:0004869 (cysteine-type endopeptidase inhibitor activity) and GO:0004866
(endopeptidase inhibitor activity) both with a high probability of 0.9 by DomainGO-prob. The GO
term GO:0004869 in the MF category represents binding to and preventing the activity of cysteine-
type endopeptidase. Looking at the domain structure, IPRO00010 has three subdomains, among
which only one subdomain, IPR025764, a Fetuin-B-type cystatin domain, has an annotated GO
term with experimental evidence, GO:0004866 (endopeptidase inhibitor activity)**. From this
domain hierarchy, in addition to GO:0004866, a child term, GO:0004869 with an ‘is a’ relationship
with GO: 0004866, was correctly transferred to IPRO00010 by DomainGO-prob.

The second example is a recovered annotation of a CC term, GO:0005634, which
represents nuclear localization, with a probability of 0.99 assigned to IPR000690. In InterPro2GO,
G0:0005634 is the only CC term associated with this domain. IPR0O00690 is Matrin/U1-C, C2H2-
type zinc finger, which co-occurs with the homologous superfamily IPR036236 in 86.6% of
protein sequences (Fig. 3b). IPR036236 is zinc finger C2H2-type superfamily, and 98.6% of its
proteins are annotated with the CC term of nuclear localization. For instance, the protein ASPJN8
has both the two InterPro entries and is also annotated with the GO:0005634 term. Therefore,
DomainGO-prob extracted the CC term from the co-occurrence of these domains in proteins and
correctly annotated IPR0O00690.

The next example in Fig. 3c illustrates the transfer of a GO term from multiple co-occurring
domains in proteins. DomainGO-prob annotated IPR000081 with the function GO:0016032 (viral
process) with a probability of 1.0, which refers to a multi-organism process by a virus. All proteins
with this domain (for example, P03303) also have domains IPR007094 (encoded in RNA-
containing viruses), IPR001205 (found in RNA viruses), IPRO00605 (found in DNA viruses),
IPR029053 (forms icosahedral virus shell), IPR002527 (alters membrane permeability),
IPR014838 (poliovirus replication) or 8 other domains related to various viral activities. Although

not all such co-occurring domains have exactly GO:0016032, they all have related terms, such as

13


https://doi.org/10.1101/2023.08.23.554486
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.23.554486; this version posted August 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

G0:0039694 (viral RNA genome replication). Therefore, DomainGO-prob was able to learn the
viral process function GO:0016032 by combining such supplementary information.

Some domains are responsible for multiple different functions. For example, the domain
IPR000081, which has just been analyzed for viral activity in the previous example, was also
correctly assigned with proteolysis (G0O:0006508) by DomainGO-prob with a predicted
probability of 1.0 (Fig. 3d). However, this information was not learned from the aforementioned
co-occurring domains, but rather from the homologous superfamily IPRO09003 (Peptidase S1, PA
clan), which all proteins with IPRO00081 is a part of. For example, the protein P06209 not only
contains the domain IPR000081 but also is a member of IPR009003 homologous superfamily.
Cysteine peptidase from IPR009003 hydrolyses a peptide bond using the thiol group® and thus
has the GO:0006508 function, which was derived to IPR000081. It should be noted that despite
IPRO09003 completely overlapping with IPR000081, DomainGO-prob did not associate
IPR009003 with viral activity (GO: 0016032). For the domain IPR009003 DomainGO-prob
predicted a small probability of 0.33 for GO:0016032 (viral process), which was likely induced
from the several co-occurring domains involved in viral activities, for example, IPR007094,
IPR002527, IPR014838. On the contrary, the actual function for IPR000081, i.e., GO:0006508
was predicted with a probability of 1.0. Therefore, for this example DomainGO-prob was capable
of contrasting between complementary information.

There are cases where DomainGO-prob failed to associate GO terms to domains. For
instance, in Fig. 3e, IPR000174 represents two different Chemokine receptors from the CXC
family, namely CXCR1 and CXCR24. Therefore, proteins from this family are annotated with the
function GO:0016494 (CXC chemokine receptor activity). Since Chemokine receptors are part of
the G protein-coupled receptor (GPCR) family, proteins from the IPR000174 family (for example,
P21109) are also members of IPR000276 (G protein-coupled receptor, rhodopsin-like) and have
the IPR017452 (GPCR, rhodopsin-like, 7TM) domain. Although this context provides information
about the GPCR family, it is difficult to narrow it down to the CXC family, without individual
precise information. This precise information is absent in our adversarial mode of training. As a
result, DomainGO-prob predicted a low score of 0.34 for GO:0016494 but managed to assign
G0:0004930 (G protein-coupled receptor activity) to IPR000174 with 0.95 probability from the
co-occurrence of IPR017452.
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Figure 3. Examples to explain how domain-GO associations learned by DomainGO-prob can be
interpreted. The target domain in discussion in each example are shown in bold. Yellow arrows indicate the
GO term (blue) that was transferred to the target domain. The associated number with the arrow is the
predicted probability that the domain has the GO term. Other GO terms in discussion are colored purple. a,
an example where a GO term was obtained from subdomain. GO:0004866 is a direct parental term of
GO:0004869 with “is a” relationship. b, an example of learning GO terms from co-occurred domains. c,
examples that a GO term was obtained from multiple co-occurring domains that have a common context.
d, an example where DomainGO-prob was able to distinguish correct and incorrect GO terms that exist in
co-occurring domains. e, an example where the contextual information is not sufficient to retrieve a more
specific GO term.
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Comparison with large protein language models in GO function prediction

We evaluated the performance of DomainGO-prob embedding in comparison with 12 large Protein
Language Models (PLMs) following the benchmark study performed by Unsal et al.#’. The 12
PLMs we compare against are ProtT5-XL3°, ProtALBERT?, SeqVec*®, ProtBERT-BFD*°, ESM-
1b3L, ProtXLNet®®, TAPE-BERT-PFAM*®, CPCPProt>, MSA-Transformer®, UniRep®, Learned-
Vec®, and ProtVec®. These PLMs were trained on unsupervised tasks such as predicting a
segment of masked residues given the rest of the protein® or predicting the next residue from all
the residues before it*8, on a large protein sequence dataset, e.g. the entire UniProt. Supplementary
Table 1 summarizes how these PLMs were trained.

To use a PLM for GO prediction, Unsal et al. converted the residue-level embedding to
protein-level by computing the mean of the embeddings along the residues and used a linear
Support Vector Machine model. The benchmark by Unsal et al. was performed on the PROBE
benchmark dataset they constructed, which provides GO terms of different difficulties to predict.
In the Probe dataset, GO terms are divided into three categories based on the frequency in the
PROBE benchmark dataset (low, middle, high having 2-30, 100-500, >1000 annotated proteins,
respectively) and specificity (shallow, normal, specific for the ontologies being within the depth
of 1/3'9, 2/3' and bottom rest, respectively). Therefore, based on frequency and specificity, 3 x 3
= 9 groups of GO terms can be constructed for the three GO categories, i.e. 3 X 9 = 27 groups.
Among them, as there were no GO terms that fall under the high-specific group, the benchmark
ended up with 25 groups. For each group, at most 5 GO terms were selected based on dissimilarity
according to the Lin’s similarity measure*’, which resulted in a total of 117 GO terms to predict.
The PROBE dataset contains 19,995 human proteins clustered at a 50% identity cutoff and only
experimental GO annotation. The human proteins falling under these criteria were used for
benchmarking GO function prediction by undergoing a 5-fold cross-validation test. Unsal et al.

provided a convenient CodeOcean distribution (https://PROBE .kansil.org, version November 3,

2022), where given the embeddings of the test proteins, GO predictions are made, and the
performance is evaluated on the PROBE dataset. We used it to test our DomainGO-pair-based
protein embedding (Eq. 4).

For this benchmark, we trained the domain and GO embeddings (Eq. 2) for the three GO
categories separately on Swiss-Prot, after removing all the human proteins. We removed these
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proteins to avoid overlap between the test proteins and the proteins used for training. However,
note that the PLMs we compared against almost certainly have these human proteins in their
training set, as they used an entire public protein sequence dataset for training. Since our
embedding dimension is only 256, which is quite small compared to the PLMs we compared
against, we concatenated the embeddings from the three GO categories and performed mean
normalization to balance them. This resulted in a 768-dimensional protein embedding vector, as

follows:

Embedding(p) = MeanNorm(Concat(Dyr(p), Dgp(p), Dcc(p)) (Eq. 7)

Here, Dy r(p), Dgp(p), Dcc (p) are computed embeddings for a protein p for MF, BP, CC
sub-ontologies, respectively (using Eq. 4.)

The results are presented in Fig. 4(a), where we compared the GO prediction performance
of our model (Eq. 7) with 12 models on the PROBE benchmark. The numerical values are provided
in Supplementary Table 2. Our model based on DomainGO-prob outperformed all the PLMs in all
three categories. For MF, BP, and CC, DomainGO-prob resulted in 0.02, 0.06, and 0.06 higher
weighted F1 scores than ProtT5-XL, the previous top method, respectively, and 0.04 when the
average across the three GO categories was considered. Notably, this improvement was obtained
from a much simpler model with 768-dimensional embeddings with merely a fraction of the
parameters of the PLM models by adopting a functionally informed learning protocol. As shown
in Supplementary Table 1, ProtT5-XL has 1024-dimensional embeddings and was trained with a
network with 3 billion parameters, while the three networks we used (Eq. 7) have only 31 million
parameters in total.

An important consideration when training machine learning models for protein analysis is
to remove redundancy, i.e. similar sequences from the training set relative to the test set. Therefore,
although we have already omitted human protein sequences from our training dataset, we retrained
our models after removing proteins with 75%, 50%, and 25% sequence identity with the test set
using MMseqs2%. The results are shown in Fig. 4b, in comparison with ProtT5-XL. As expected,
the F1 score decreased slightly as more sequences were removed. However, this is most likely due

to the fact that we were losing some domain and GO association information when we removed
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the proteins. Nevertheless, in all cases, our embedding performed better than that of ProtT5-XL,
even at the identity cutoff of 25%.

In Fig. 4c, we examined how performance changed when considering GO terms of varying
levels of difficulty to predict. Weighted F1 scores for the different GO groups in the PROBE
benchmark, classified by GO depth and frequency, were separately shown. As we moved from
high to low frequency or shallow to specific GO terms, the classification task became more
difficult. We compared our model's performance with the best-performing PLM, ProtT5-XL. Even
in this evaluation, it was evident that our model substantially outperformed ProtT5-XL.
Interestingly, the margin of the advantage of our model increased as we considered more difficult
GO groups. In most of the easier cases, DomainGO-prob was at least similar to or slightly better
than ProtT5-XL. In difficult cases, a substantial improvement was observed. For example, for low-
frequency and specific CC terms, DomainGO-prob was 20% better. It is apparent that although
the PLM was able to comprehend frequent GO terms from unsupervised learning on a large volume
of protein sequence data, such models failed to account for rare GO terms and suffered from
limited specificity. On the contrary, our self-supervised learning approach seemed to decipher the
functional identity of proteins better, regardless of the rarity and specificity of the GO terms to a

degree.
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Figure 4. Comparison with 12 large PLMs in the PROBE benchmark. a, the weighted F1 Score obtained
by our model that is based on DomainGO-prob with 12 PLMs on the PROBE benchmark. To compute the
weighted F1 score, the values of F1 score for the individual GO terms were averaged, weighted by the
number of samples having that particular GO term, for all three GO categories and the average across the
categories. b, analysis of the performance of DomainGO-prob when trained on non-redundant datasets. The
model with DomainGO-prob was retrained on training datasets after removing proteins with 75%, 50%,
and 25% sequence identity to the test proteins. None indicates the result using the original training set
without further removing training proteins. The dashed line shows the weighted F1 score of ProtT5-XL. c,
comparative performance on the nine groups of GO terms with different difficulty levels against the best-
performing ProtT5-XL. DG, prediction with the model (Eq. 7) using DomainGO-prob. N/A indicates that
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there is no GO term in that particular group. DG is shown in bold and underlined when the improvement
over ProtT5-XL is greater than and less than 5%, respectively.

GO function prediction by Domain-PFP in comparison with existing methods
Subsequently, we benchmarked the GO prediction performance of Domain-PFP (Eq. 5) on the
NetGO dataset'® to compare it with state-of-the-art protein function prediction methods from
recent literature. We used the data split of the NetGO dataset into training, validation, and test sets
provided in the work of DeepGOZero??, who followed the same data split protocol of NetGO2.0%,
The NetGO dataset consists of 64,279, 91,443, and 83,004 proteins for MF, BP, and CC categories,
respectively, with a specified training, validation, and test set split (Supplementary Table 3). We
trained DomainGO-prob on the NetGO2.0 training dataset and created a weighted K Nearest
Neighbor (KNN) model based on the learned embedding. The number of K-neighbors used for
MF, BP, and CC was 1000, 800, and 1200, respectively, which were tuned based on the
performance on the validation data split of the NetGO benchmark (Supplementary Figure 1). The
performance of the various models on the test dataset is presented in Table 1. The evaluation results
of the existing methods, from BLAST to NetGO2.0 (Server) in Table 1, were taken from the paper
of DeepGOZero?.

DeepGOPIlus® infers protein functions through a combination of DiamondBLAST®¢ and
DeepGOCNN, which employs a 1D convolutional neural network to predict GO from the amino
acid sequence. TALE+'® similarly fuses DiamondBLAST with sequence representation learned
from a Transformer. Other top-performing methods are either based on domain information or
used as a component. For instance, DeepGOZero? leverages a model-theoretic approach to predict
ontologies from InterPro domains, which can be further improved by incorporating
DiamondBLAST. DeepGraphGO?! associates InterPro features with protein-protein interaction
(PP1) networks employing a graph convolutional neural network. NetGO2.0'¢ is an all-
encompassing ensemble method that incorporates BLAST, domain, PPl, GO term frequency,
PubMed publications, and sequence information both in form of k-mers and embedding. Among
the existing methods, NetGO2.0 has shown the highest evaluation values for MF and the best Smin
value in BP3* (note that the NetGO2.0 results are from the current server, ran by the authors of

NetGOZero in their paper).
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In the latter half of Table 1 we show results by Domain-PFP and Domain-PFP that
incorporate BLAST and PPI information to compare with the other state-of-the-art methods that
combine diverse information sources. The scores of GO term j for protein i from BLAST and PPI

information are defined as

Ypyep 1(Pr,GO;)xB(Dipk)
Ypye b B(PupK)

SB(pi: GOJ’) = (Ea. 8)

YpeD I(pr,GOj)xw(DiPk)
2Xp,e D@ @iPL)

Sn(pGO;) = (Eq. 9)

Here, B(p;,px) and w(p; pyx) are the bit-score from DiamondBLAST with ‘more-
sensitive’ setting®®, and edge weight from STRING PPI network (ver. 11.0)%7, respectively. We
used the same STRING version as DeepGraphGO?%L.

The final score is a simple average of the terms from the three sources:

Sp(Pi.60j)+15 (i) Sp(i,GO;)+IN(Pi) SN(Pi1,GO))
1+I1p(p;) +In(Di)

S(pi, GO;) = (Eq. 10)

Iz and I, are identity functions, which results in 1 if BLAST and String Network matches are
found for the protein i, respectively.
We compared the performance of the methods using the three CAFA evaluation metrics,

namely Fmax, AUPR, and Smin®* (see Methods). Fmax computes the maximum possible protein-
centric F1 score, overall prediction thresholds. AUPR, the area under PR curve, on the other hand,
is a suitable metric for imbalanced data and penalizes the false positive predictions, which is highly
applicable to function prediction®®. Finally, Smin is a measure of semantic distance between
predicted and actual annotation, based on the information content of the individual GO terms?*8,

i.e., this metric signifies the capability of predicting rare GO terms.
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Table 1. Comparison with state-of-the-art function prediction methods.

Features Fmax AUPR Smin
Method

Used MF BP CcC MF BP cC MF BP cC
BLAST BLAST 0627 0407 0625 0427 0272 0412 5503 25918 9.351
DeepGOCNN  Sequence 0.589 0.337 0.624 0565 0.271 0.623 6417 27.235 10.617
DeepGOPlus ;‘T_‘*A”gr}ce' 0661 0419 0655 0667 0342 0663 5407 25603 9.374
DeepGOZero  Domain 0662 0396 0662 0668 0337 0645 5322 25838 9.834
DeepGOZero+ Domain,
BLAST BLAST 0655 0432 0675 0665 0356 0654 5337 25439 9.391
DeepGraphGO  Domain, PPl 0.671 0.418 0.679 0.647 0364 0.669 5374 25866 9.165
TALE+ gefAugrfe' 0466 0382 0661 0441 031 0681 8136 26308 9.599

Domain,

Kmer, RNN,
NetGO2.0 PPI, BLAST, 0698 0431 0662 0701 0343 0627 5187 25076 9.473
(Server) — =

Pubmed,

Frequency
Domain-PFP  Domain 0675 041 0675 0676 0344 0697 5259 25838 9.709
DPFP + Domain,
BLAST BLAST 0674 0.434 0681 0693 0367 0717 5188 2511  9.239
DPFP+PPI  Domain, PPl  0.666 0.435 0673 0689 0379 0675 5404 25002 9.35
DPFP + Domain, 0.685 0452 0686 0718 0393 0687 5146 24292 9.084

BLAST + PPl  BLAST, PPI —_ -
The best, 2" best, and 3™ best results are indicated by bold, double-underline, and single-underline,
respectively. We also include the features used by the predictors. DPFP, Domain-PFP; Kmer, the K-mer
distribution in the protein sequences; RNN, protein sequence embedding computed by a recurrent neural
network; Frequency, the frequency of the GO terms in the database.

Firstly, we compared Domain-PFP with sequence-only or domain-based methods, e.g.,
DeepGOCNN and DeepGOZero. This is a fair comparison as the base Domain-PFP uses only
domain information which is inferred from sequence information. It can be observed from the table
that Domain-PFP outperforms these methods in terms of Fmax, AUPR, and Smin in all the three sub-
ontologies. Notably, Domain-PFP achieved an AUPR of 0.697 for CC, whereas DeepGOZero, a

recent method based on domain information scored 0.645, i.e., a large improvement of 0.052. In
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terms of Fmax, Domain-PFP outperformed DeepGOZero and DeepGOCNN by achieving 0.013-
0.014 and 0.051-0.086 higher scores, respectively.

Adding different features generally improves the performance of function prediction.
When BLAST information was combined, Domain-PFP improved the overall performance, except
for a slight drop of 0.001 in Fmax for MF. Fmax for BP increased from 0.41 to 0.434, and AUPR
for CC increased from 0.697 to 0.717. Furthermore, Domain-PFP with BLAST consistently
outperformed DeepGOZero+BLAST, which also uses the same information, in all 9 metrics. For
example, DeepGOZero+BLAST achieved AUPR scores of 0.665, 0.356, and 0.654 for MF, BP,
and CC, respectively, whereas Domain-PFP+BLAST achieved 0.693, 0.367, and 0.717,
representing improvements of 0.028, 0.011, and 0.063, respectively. When compared with
DeepGOPIlus or TALE+, both of which use BLAST, the improvements made by Domain-
PFP+BLAST appeared consistent as well.

Next, we experimented with including PPI information with Domain-PFP. However, this
only improved the performance in BP, as expected, since BP involves multiple related and
interacting functions that can be captured by PPIs. On the other hand, the performance of MF and
CC was negatively affected. This situation is similar to the findings of NetGO2.0'¢, where the
authors reported that PPI information performed better than domain information for predicting BP
terms but not for MF and CC terms. For example, the Fmax of MF and CC dropped by 0.009 and
0.002, respectively. Despite this, Domain-PFP+PPI still outperformed DeepGraphGO, a method
using domain and PPI information in a much more sophisticated graph neural network, in 5 out of
9 metrics.

Finally, we experimented with integrating both BLAST and PPI simultaneously. This
brought improvements in all the metrics except for AUPR of CC. Notably, Fmax and AUPR of
BP improved by 0.042 and 0.049, respectively. This integration of BLAST and PPI features
enabled Domain-PFP to consistently perform superior to all the existing methods. For example,
the current state-of-the-art method NetGO2.0 was surpassed by Domain-PFP in 8 out of 9 metrics
(except for Fmax for MF). In terms of Fmax for BP and CC, Domain-PFP achieved 0.021 and
0.024 higher scores, respectively. For AUPR, the improvements were 0.017, 0.050, and 0.060 for
MF, BP, and CC, respectively. Similarly, in terms of Smin, Domain-PFP+BLAST+PPI achieved
0.041, 0.784, and 0.389 smaller scores for MF, BP, and CC, respectively, implying that non-trivial

GO terms were captured better.
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This comparative evaluation with state-of-the-art function prediction methods further
supports our self-supervised approach of learning functionally informed representations for protein
domains. We observed that a simple KNN model with DomainGO-prob embedding not only
outperformed more sophisticated deep learning models (e.g., DeepGraphGO) but also methods
with access to more information sources (e.g., NetGO2.0). The only case where we fell behind the
previous state-of-the-art, NetGO2.0, is in Fmax for MF. which we hypothesize is due to the
inclusion of Pubmed publication information that is likely to contain precise information vital for
MF prediction.

In order to assess the performance of Domain-PFP relative to structure-based protein
function predictors we considered two recent methods, DeepFRI®and GAT-GO®2. These methods
use 3D protein structure information in a graph neural network and protein sequence information
with a language model. Both methods were evaluated on a common benchmark dataset, composed
of 29,902, 3,323, and 3,416 proteins for training, validation, and testing, respectively. The train
and test proteins possess a total of 2,752 GO terms.

We retrained Domain-PFP on this training dataset and observed the performance across
the three sub-ontologies in the test set. The results are presented in Supplementary Table 5. It
shows that Domain-PFP outperforms the two much complex graph neural network-based function
predictors with access to structural information on all the metrics except for Fmax in CC and
AUPR in MF. The performance of Domain-PFP was further improved by including BLAST
predictions, which results in the best score for all the metrics.

Evaluation on CAFA3 benchmark

We further evaluated Domain-PFP on the CAFA3 benchmark3*. We trained the network model of
Domain-PFP using the CAFA3 training dataset and evaluated the results using the official
evaluation code. The training dataset comprised 66,841 protein sequences annotated before
September 2016, with 677, 3992, and 551 MF, BP, and CC GO terms, respectively (Supplementary
Table 4). The test set contained 3328 proteins annotated between September 2016 to February
2017. To include sequence similarity information using BLAST in our pipeline, we constructed a
new BLAST database with the CAFAS3 training sequences. However, we could not use PPI
information from the STRING database for this benchmark because STRING v10.a (the version

during the competition timeline) lacked sufficient interaction data of the CAFAS test proteins. We
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did not perform any additional hyperparameter tuning and kept the same hyperparameters
computed from the NetGO benchmark validation data.

The results of Domain-PFP on the CAFA3 benchmark are presented in Fig. 5 in
comparison with the top 10 performing methods as published by the organizers of CAFA334.
DomainPFP+BLAST consistently showed a higher Fmax than Domain-PFP alone. For both BP
and CC, Domain-PFP+BLAST outperformed the existing methods. Domain-PFP+BLAST
achieved a Fmax score of 0.63 for CC, which is 0.02 higher than the CAFA3 top model, Zhu Lab.
For BP, Domain-PFP+BLAST showed a slightly higher Fmax of 0.398 than the CAFAS3 top model
(Fmax: 0.397). For MF, our Fmax score, 0.59, was second to Zhu Lab (Fmax: 0.62), with a
substantial margin to the next method, orengo-funfams (Fmax: 0.54). The top method by Zhu Lab
combined more diverse information using an ensemble approach, including sequence, domain,
homology, biophysical information, which likely gave that a competitive edge, similar to
NetoGO2.0. We also mention that both DomainPFP and DomainPFP+BLAST showed higher
Fmax scores than DeepGOPIlus, which reported Fmax scores of 0.557, 0.390, and 0.614 for MF,

BP, and CC, respectively, in their paper®,

cC

MF BP
Zhu Lab I Domain-PFP+Blast I Domain-PFP+Blast I
Domain-PFP+Blast [N Zhu Lab I Domain-PFP I
Domain-PFP I INGA-Tosatto I Zhu Lab I
orengo-funfams NN Domain-PFP I Kihara Lab I
Tian Lab N Argot25Toppo Lab [N INGA-Tosatto NG
Kihara Lab N orengo-funfams NG Zhang-Freddolino Lab I
schoofcropbiobonn NG Zhang-Freddolino Lab I TurkuBioNLP1 I
INGA-Tosatto I Tian Lab I DeepMaster NI
Temple N Kihara Lab I Jones-UCL I
Argot25Toppo Lab IS Holm I Argot25Toppo Lab I
TurkuBioNLP1 [N Temple I orengo-funfams NN
Holm I TurkuBioNLP1 I NCCUCS I
Naive I Naive I Naive I
BLAST I BLAST I BLAST I
35 40 45 20 25 30 35 40 45 50 55 60 65

20 25 30 35 40 45 50 55 60 65 20 25 30

Frmax Frmax

Frmax

Figure 5. Comparison with CAFA3 methods. The Fnax for the top 10 methods and the 2 baseline methods
(Naive, BLAST) are presented. All the scores were collected from the official CAFAS3 result (Zhou et al.,
2019). The Fmax score of Domain-PFP was also computed using the official CAFA3 evaluation codes.
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Discussion

Despite protein domains carrying the functional signatures of proteins, they have not been used to
their full potential to date. Look-up-table-based domain to GO assignments tend to lack coverage.
On the other hand, deep learning-based approaches using domains as high-dimensional input suffer
from limitations in training data and information loss in network bottlenecks. Therefore, our
motivation has been twofold: improving coverage and reducing information loss. Based on recent
advancements in self-supervised learning, it has become motivating to apply such concepts in
protein domain learning to alleviate these issues. Our method follows one of the core concepts of
self-supervised learning where pseudo-labels are first learned to initialize model parameters, which
are then used to perform the actual task using a supervised or unsupervised method®3. Our approach
is consistent with this definition as we first use the domain-go association probabilities as pseudo
labels, which initializes our domain embedding parameters; then, we use this embedding later in a
supervised learning protocol and we predict the functions of the proteins. This strategy also holds
in the benchmarks on the NetGO and CAFA3 dataset we performed. To the best of our knowledge,
this work is the first to apply self-supervised learning in the domain of protein function prediction.
Based on co-occurrence contextual information between domain and GO terms, we devise
embeddings for domains so that functionally related domains have similar embeddings. Since co-
occurrences were learned from entire protein sequences, the domain embedding, DomainGO-prob,
encodes GO associations that are not explicitly described in the domain database. Remarkably, our
rather simple model, Domain-PFP, along with BLAST and PPI information, demonstrated superior
performance over all state-of-the-art function predictors.

One likely limitation of this work could be the case of unknown domains. All existing
methods based on protein domains fail to predict anything if the domain seen during inference was
absent in the training data, in which case they predict a default value. This limitation can possibly
be resolved by generating the functionally aware domain representation and localization end-to-
end from the protein sequence directly using a larger deep learning model. Another limitation is
that the current protein embedding considers domains in a protein equally (Eqg. 4), although each
domain may have different levels of contribution to protein function. Also, the order of appearance
of domains in a protein is not considered, which is known to be relevant to function®3. To address

these, attention mechanism maybe applicable. These are improvements we wish to explore in our
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subsequent works. In the current work, we practically alleviated these issues by augmenting with
BLAST and PPI information-based predictions.

Another possible future direction could be to combine with general protein language
models®!, which were shown to perform well in protein tertiary structure prediction and other tasks.
Additionally, we wish to analyze the suitability of our model in a zero-shot learning scenario.
Specifically, our goal is to train DomainGO-prob on pretrained GO embeddings based on GO tree

hierarchy and observe if GO terms absent in the training data can be retrieved this way.

Methods

Neural network architecture

We have designed a neural network to learn the domain-GO co-occurrence conditional probability
distribution (Fig. 1a). The domain and GO terms are received as one-hot-encoded inputs, which
are passed through two separate embedding layers to generate the 256-dimensional domain and
GO embeddings, respectively. Then, from the computed domain and GO embeddings, we calculate
the Hadamard product as a measure of correlation between the two types of embeddings and pass
them through a densely connected layer of 128 neurons. The neurons are regularized through
dropout (p=0.05) and activated by RELU. Finally, we use a linear layer to predict the
p(domain|GO) score. The domain embedding matrix is extracted to generate the representations
of domains. In order to increase the sparsity of the domain embeddings, we apply L1-regularization

on that embedding layer (A = 0.1).

Network training

Similar to word2vec embedding training®®, we have a comparatively much larger number of
domain-GO terms out of context, i.e., p(GO|domain) = 0. Thus, we employed negative sampling
by randomly selecting 1000-2000 non co-occurring GO terms for each domain. The network was
trained by minimizing the MSE (mean squared error) loss with Adam optimizer®’ with a learning
rate of 0.001 (the other parameters were kept as default) and a batch size of 163,840 for 200 epochs.

20% of domain-GO pairs, which were randomly selected, were used as the validation set. The
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experiments were performed 10 times and the best model based on validation performance was

selected.

funSim score

funSim score is popularly used for quantifying similarity of GO term annotation of two
proteins?®%°, funSim score uses the relevance semantic similarity score simgg,, for the similarity

of GO terms of the same category*°:

. 21 (go)
Simpe (G0, GO2) = MAXgoeancestors(G0,,60,) (logp(GOjiflf;p(Gaz) x (1-p(g 0))>(Eq' 1)

where common ancestral GO terms of GO1 and GO are explored to maximize the score and p(GO)
is the probability of GO term in the entire Swiss-Prot database. Then, a set of GO annotations in a

GO category for two proteins, a and b, are defined as
, . 1N 1 wom
G Oscore (Proteing, protein,) = max (E Z,zlmaxlsjs,v,sij,ElelmaxlstNsU) (Eq. 12)

where s;; is simgg,, score of GO; and G O; of protein, and protein,, respectively, computed in an
all-vs-all fashion.

Finally, funSim score is the average of the GOscore from the three GO categories.

Funsim = [(stame 4 (e Yy (o VY] (gg.19

max(MFscore) max(BPscore) max(CCscore)

funSim score ranges from 0 to 1 with 1 as the maximum score.

Evaluation Metrics

For the PROBE benchmark, similar to the original benchmark by Unsal et al.#’, we used Weighted
F1 Score as the evaluation metric. The values were computed using their official CodeOcean

distribution.
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To compare with state-of-the-art methods, we used the CAFA protein-centric evaluation
metrics Fmax, Smin, and AUPR?. We used the same evaluation codes as used by?? to ensure

consistency.

Fmax IS the maximum possible protein-centric F1 score, computed over all prediction

thresholds.

2 pr(t) re(t)
pr(t)+re(t) (Eq. 14)

Fnax = maxo<c<q
Here, pr(t) and re(t) Are precision and recall scores, respectively, computed at the cut-
off value of z. The precision and recall values are computed as

1 oh(r) Zil(S(Gy,Pj)2T).1(G,P))

pr(0) = 15 Zj=1 ™, T(5(60P )0) (Eq. 15)
_ 1 ¢Nr Yi1(S(Gi,Pj)=7).1(Gi,Pj)

Here, N is the total number of proteins and h(t) is the number of proteins with a
prediction score no smaller than 7 for at least one GO term. I is the identity function which returns
1 if the condition is true, 0 otherwise. I(G;, P;) therefore, implies if the protein P; whether has the
GO term G;or not. S(Gi, P]) denotes the prediction score of P; having the G; term.

The area under precision-recall curve, i.e., AUPR score is computed from the computed

precision and recall scores using the trapezoidal rule.

AUPR = 2 (f(xo) + 2f (1) + 2f () + -+ 2f Gey_y) + f(y)  (EQ. 17)

Here, x,, x4, ..., x)y are various recall values, whereas f(x,), f(x1), ..., f (xy) are values of

precision at those recalls, and Ax is the step size.
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Smin IS @ measure of semantic distance between the ground truth and prediction annotations
based on information content of the GO classes. The information content 1C(c) for a class c is
computed based on the annotation probability of class c relative to its parent class P(c)

IC(c) = —log (probability(c|P(c)) (Eq. 18)

The two terms remaining uncertainty (ru) and average misinformation (mi) are defined
as

ru(t) = % Diz1 Dceqri—py3 1€ (€) (Eg. 19)

mi(t) = = Yy Teeqpy-ry 1€(C) (Eg. 20)

The value of Smin is computed as

Spmin = min, (Jru(t)? + mi(t)? (Eq. 21)

Code availability
The Domain-PFP program is freely available for academic use from GitHub at

(https://github.com/kiharalab/Domain-PFP). Furthermore, the program is available to run on

Google Colab Notebook (bit.ly/domain-pfp-colab).

Data availability

The embeddings of the proteins from the PROBE benchmark dataset, computed by DomainGO-
prob, GO term prediction by DomainPFP on the CAFAS3 dataset, trained DomainGO-prob model
weights and Domain-PFP KNN models are accessible at https://github.com/kiharalab/Domain-

PFP and made also available at https://kiharalab.org/domainpfp/.
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