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Abstract

Motivation: Compositional data comprise vectors that describe the constituent parts of a whole. Data arising from
various -omics platforms such as 16S and RNA-sequencing are compositional in nature. However, correlations between
features on raw counts have no meaningful interpretation. Metrics of proportionality were formulated to address this
problem. However, there is an inherent bias that arises when calculating these metrics empirically on count-based measures
due to variability in read depths.

Results: We quantify the bias introduced by empirically calculating proportionality-based association metrics in count
data. Additionally, we propose a means of estimating these metrics within a logit-normal multinomial model in pursuit
of more accurate estimates. The model-based estimates are shown to outperform empirical estimates in simulated data,
and are additionally applied to a mouse embryonic stem-cell single-cell sequencing dataset as well as a pediatric-onset
multiple sclerosis metagenomic dataset.

Availability and Implementation: An R package is available at https://CRAN.R-project.org/package=countprop.
Supplementary information: Supplementary data are available at Bioinformatics online.
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Introduction artifacts in the sequencing process, meaning that within-sample

. . L. counts must either be normalized to a unit sum, or log-
Compositional data comprise vectors of quantitative measures . . . K
R . ratio transformed in order to effect any kind of meaningful
that describe the constituent parts of a whole. The only K i . . . .
. . . . . . . interpretation [9]. Some microbiome studies have relied on
information in compositional data is found in the ratios fyi h dat hich i | li th ts t
. . rarefying such data, which involves resamplin e counts to
between the different parts of the vector; the individual ying ’ phng .
. . .. a constant read depth across all samples. However, it has
measures are inherently uninterpretable [1]. Data arising i K
been recognized that such a procedure essentially amounts to

discarding valid data and should therefore be discouraged [18].
This interpretability problem is particularly worrisome when

from various omics platforms are compositional in nature—
for instance, RNA-sequencing (RNA-Seq), 16S amplicon-

sequencing, and single-cell RNA-sequencing are all examples of o L K
. .. . considering associations between features—the prime example
platforms that yield compositional data. The primary reason i R R
O . . . being Pearson’s correlation. Due to varying read depths,
for the compositional classification of these platforms is that . X . .
. . correlations on raw counts have no meaningful interpretation.
the number of sequences varies across samples due to technical
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Similarly, when normalizing the counts to proportions, a
negative bias is introduced in the correlations as a result of
the unit-sum constraint.

An appropriate class of measures based on proportionality
has been established to address the issue of quantifying
association in compositional data. The most basic such measure
is the variation matrix V whose elements are defined as follows:
suppose p = (p1,...
proportions such that Zle p; = 1. The element in row j and

,pp) is a random vector containing

column k of V, which describes the association between features
7 and k is given by:

v(pj, px) = var [log <Z—Z>} )

When p; is exactly proportional to py, we have that v(p;, pr) =
0. Hence, the smaller the value of v(p;,pr) the stronger the
association between the abundances of features j and k. Note
that the elements of V are non-negative, and thus the variation
matrix does not give information about the direction of the
associations of the pairs of features included in the matrix.

One important issue with the variation matrix is that its
elements are variances of different pairs of features, meaning
that they do not share a common scale. To address this issue,
[7] developed alternative measures of proportionality.

The first is called ¢, and is simply v(p;,pr) scaled by the
variance of the logarithm of the first argument. It is defined as:

v(pj, Dk)

var[log(py)] )

d(pj, pr) =
with ¢(p;,px) > 0. The interpretation is the same as for v,
only now it is scaled based on its first argument. The main
downside of this metric is that it is not symmetric with regards
to its arguments. A final proportionality metric is defined as:

2 cov [log(p;), log(pr)]

varllos(py)] + varllos(py)] @

p(pj,pr) =

with —1 < p(pj,pr) < 1. If p = 1, then p; and py are strongly
proportional, and if p ~ —1, then p; and p; are strongly
inversely proportional.

Metrics of proportionality recently gained more recognition,
when [25] suggested their use to detect gene-gene associations in
single-cell sequencing experiments. This publication compared
numerous measures of association across multiple datasets by
evaluating their ability to create functionally coherent single-
cell gene co-expression networks. There was a clear advantage
for the proportionality metrics across the datasets.

The one common property of these kinds of metrics is that
they are scale invariant, which is the main property allowing
their use in compositional data. However, classical techniques
for the analysis of compositional data were developed with
continuous measures in mind; for example, the constituent
parts of a soil sample. Conversely, sequencing platforms
provide data in the form of counts. A number of recent
studies have shed light on problems that arise when applying
traditional methods for compositional data analysis on count-
based compositional data. [14] showed that proportionality
cannot be exactly represented in count-based compositional
data, which they referred to as lattice compositional data. [15]
showed a similar phenomenon in logarithmic transformations
in single-cell sequencing; varying read depths among cells led
to systematic errors and spurious differences in expression.
Relatedly, [6] presented novel modelling techniques in light of
these issues in count data.
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In addition to the representation problems outlined in [14],
we further claim that there is in fact a bias that arises
when applying proportionality metrics on count-based data,
which is a result of added variability from the randomness of
the sequencing process. In this paper, we quantify this bias
and provide an alternative model-based means of estimating
proportionality metrics in count-based compositional data.

Methods

Bias
In this section we outline the inherent bias in estimating metrics
of proportionality using observed counts. Suppose that we have
a matrix Y, (s41) containing counts of J + 1 features (e.g.
genes, species, etc.) from n samples. Let the entries of Y be
yij, representing the observed count of feature j in sample
i. We seek to compare the result of plugging counts y;; (or
equivalently observed proportions p;; = wyi;/ni) into v, ¢,
and p against the true (unknown) values which instead take
unobserved proportions p;; as arguments to these metrics. In
each case, there is no exact closed form for the bias, and we
instead use an approximation based on a second-order Taylor
series expansion. We summarize the results here, but full
derivations can be found in Section S2. In each case, it is clear
that the bias is more pronounced when the read depths are
small, on average. However, it is also evident that the amount of
variation in the read depths itself plays into the bias, with more
variability leading to a larger discrepancy between the empirical
and true values of the metrics. The underlying distribution of
the unobserved proportion vector p; = (pi1, - - -, Pi(s41)) is also
relevant.

First, we consider v(y;j, yix), which can be approximated

v(Yij, Yik) = v(pij, Pic) + b7, (3)

where,

S
*

_1 -1 -1 -1
= 4var n; Pij Pik
Pij -1 -1 -1 4
— cov |log , My (pij —pik) (4)
Pik
B[] (B[] -2 )
As expected, the expectation of 1/n; is an important factor,

however, the expectations of 1/p;; and 1/p;i are also present,
suggesting that the discrepancy will be more pronounced in less

abundant features. The bias for ¢ can be expressed as:

&(pij i) + Tarios]

rig —E[n ] (B[py!] —eiss —1)

O (Yij, Yir) = ) (5)

1+

var[log(p,)]
where
cijj = cov [log(pij)7 pfjl] s (6)
r;; = var {log(ni) + (2n;) 7" (1 — p%l)] (7

Finally, we consider the analogous result for p:
b
var[log(p;)] + var[log(pk)]

riy+rie—E[n; ] (2+4ci; +enr—E[py' | —E[pg
var[log(p; )| +var(log(py)]

p(pij, Pik) +

p(y’iJ'?y’ik‘) ~ D ) (8)

1+
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Fig. 1. Estimation error for a single entry of v, ¢ and p calculated using

Error

observed counts in 2000 simulation replications. The green is not corrected

for bias, the blue is corrected for bias using Equations 3, 5, and 8.

where,

b; = 2var[log(n;)] — (2 —E [pi_jl] —E {pl_kl]) cov [log(ni), nl_l]

1 _
+ S digk — E [n, 1] (cijre + cikg — 2)
and,

Cijk = COV [IOg(Pij)y P;kl] )
—1 —1 —1 —1
qijk = COV |:n7, (1 — DPij ) » Ty (1 — Pik )]

‘We can once again see that the bias is less pronounced when the
mean of the read depths n; is large. However, the variation of n;
as well as distribution of the proportions p; are also important.
This suggests that there could still be bias present for estimates
for certain feature pairs even when the read depths are large.
To numerically investigate these biases, we run a small
simulation from a multinomial logit-normal distribution (see
the next section for the definition of this distribution). We
simulate J + 1 =
with 1000 simulation replications.

7 features on n = 2000 samples,
In each replication, the
estimated proportionality metrics on the raw counts v(yij, Yik),
&(yij, Yik), and p(yij, yix) are calculated (after imputing zeros
using Bayesian-multiplicative replacement [22], if necessary)
and compared to their respective true values v(pij,pik),
¢(pij, pix), and p(pij,pir). Additionally,
version of the estimator is calculated by adjusting the empirical

a bias-corrected

estimates using Equations 3, 5, and 8.

Figure 1 shows the difference between the estimated values
and the true values for a single element of the matrix. It is
evident that all of v, ¢, and p exhibit strong biases when
calculated on the raw counts.

In all cases, the sampling

distribution of the corrected estimator is approximately
centered around zero. Results for the full matrix can be seen in
Figures S1-S3.

It should be noted that this bias-correction approach is
not feasible in practice, as it would require knowledge of the
true population parameters, which happen to be known in this
simulation. As an alternative, we propose directly modelling
the distribution of the proportions p;. The parameters of this
distribution then define the values of v, ¢, and p, allowing the
proportionality metrics to be estimated free from the variation
induced by the sequencing process itself.

Model

We proceed in the context of the multinomial logit-normal
model, posited by [30]. This model has been extremely popular
in statistical modelling of the microbiome [29, 24, 17]. In this
formulation, we assume that the count vector for sample i,

ropor based ‘association metrics 3

denoted by Y; = (i1, ..., Yi(s+1)), is distributed as:

Y; ~ Multinomial(n;, p;)

where J 4 1 is the total number of features observed among all
samples and n; = Z;’:’ll yij is the read depth. The proportion
vector for individual ¢ is assumed to follow the logit-normal
distribution, which is characterized by the inverse additive log-

ratio (ALR) transformation:

alr ™" (w;)

P; =
= C (exp(wi1), ... ,exp(w;y), 1)
where C(z1,...,2x) = (z1,... ,wk)/(Z?zl x;) is the closure
operation. Each w; = (wj1,...,w; ) is an unobserved, latent

vector assumed to be multivariate-normal:
w; ~ MV-Normal; (p,X). 9)

We set the (J41)%" feature as the reference feature in the ALR,
transformation (without loss of generality; any feature could be
moved to that column). The read depths themselves are random
variables on which we assume a log-normal distribution:

n,; ~ Log-Normal (,ug, af)

The log-normal distribution is appropriate given that the
read depth distribution in a dataset can span multiple orders
of magnitude.
literature [16].

To handle the possibility of a large number of features J + 1

This assumption has been used in previous

relative to the sample size n, we apply the Graphical Lasso
(GLasso) penalty [8] to the multivariate normal log-likelihood
for the w; vectors:

¢ (zfljw) - glog det !

1 _ .
—§Z(W1—M)TE Ywi —p) = A=

i=1

where || - ||1 denotes the Li-norm, and A > 0 is the penalty
parameter. This penalization is very important in guarding
against spurious associations when the number of features is
large.

Estimating proportionality metrics

In the logit-normal framework, the variation matrix elements
have a convenient form, namely:

ol +op—205 ifjFJ+landk#J+1

v(pij, pix) = { o5 ifj#J+landk=J+1
o ifj=J+1and k #J+ 1.
(10)

For ¢ and p we also need to estimate the covariance matrix
of the log-proportions, which we denote by € = var[log(p)].
The relationship between the covariance of the log-proportions
is given by ¥ = FQF', where F = [I;,—1;], with I
representing the J X J identity matrix, and 1; representing
a J-dimensional vector of ones. In the logit-normal distribution
there is no closed-form expression for the matrix €. The
additive log-ratio variance 3 does not itself admit a unique
Q [1]; the mean of the distribution is also required to determine
Q.


https://doi.org/10.1101/2023.08.23.554468
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.23.554468; this version posted August 24, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

4 | McGregor et al.

Consequently, to estimate the log-proportion variance €
from p and X, we use a second-order Taylor approximation [10]
based on the transformation from the w;; scale to the log(p;;)
scale. We can approximate the covariance of the log-proportion
vector as:

1
2~Q,=Q, + 5 tr(EHMEH‘L), (11)

Q.= <[Ig} - 1J+1[alr’1(u)]T>

ah‘_l(p,) [alr'l(p,)} T diag [alr-l(p,)] .

where,

H,

Estimates of ¢, and p can then be obtained by plugging the
approximations from Equations 10 and 11 into their respective
definitions.

Fitting the model

To fit the logit-normal multinomial model with graphical lasso
penalty applied to the ALR-scale precision matrix, we perform
maximum likelihood estimation through an implementation of
the EM-algorithm posited in [11, 27]. Model selection (through
the choice of tuning parameter \) is performed using the
Extended Bayesian Information Criterion (EBIC) [4]. The steps
of the algorithm can be found in Section S4.

Simulation study

We performed an extensive simulation study to compare the
performance of model-based vs. empirical estimates. We focus
on p in the simulations since it is the most interpretable
metric, and we can fix it to zero for certain feature pairs
allowing precision-recall analysis (whereas the null for v and
¢ is infinity). We also include an additional estimator, which
uses empirical estimates of u and X, based on simply taking
the additive log-ratio of the observed counts and calculating the
sample means and variances of the features. These parameter
estimates are then inserted into Equation 11. We will refer to
this latter estimator as the “plugin” estimator, and does not
require running maximum likelihood estimation.

Our simulation parameters are based on an initial
multinomial logit-normal model fitted to single-cell RNA-
sequencing data from a mouse embryonic stem-cell dataset from
Buettner et al. [2]. The model parameters p, 2, 3, ue, and oy,
are estimated from the data and are then used as the ground
truth in the simulations. See Section S5 for more details about
the simulation procedures.

Several scenarios are considered. The first scenario uses all
the parameter values that estimated from the Buettner dataset.
This scenario allows us to compare the estimated values to the
true values used in the simulation using the root mean squared
error (RMSE).

The second scenario modifies € to be a sparse matrix,
which allows some of the true values of p(pij;,pir) to be
zero. This lets us ascertain the ability of the model-based and
empirical estimates to find the non-zero elements of p(p;j, pik)-
Since neither the model-based nor empirical estimators will set
values exactly to zero, a range of thresholds is applied so that
estimates whose p value is greater (in absolute value) than
the threshold are considered to be estimated as non-zero. This
allows us to calculate the area under the precision-recall curve
to compare the model-based and empirical estimates.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

The third scenario considers model misspecification. The
motivation is to simulate values of the w; vectors from a
distribution that is non-Gaussian to see how estimates of p
are affected by a misspecified model. To do this, we instead
simulate w; from a multivariate non-central ¢t-distribution with
mean p, covariance X, and degrees of freedom parameter equal
to 2.1. This allows the distribution of the w; terms to have
heavier tails than the normal distribution as well as skewness.
The rest of the simulation procedure is the same as in the
second scenario. Precision-recall curves are used to compare

performance.

Data application

To demonstrate the applicability of the proportionality metric
estimation technique introduced in this paper, we apply the
methods to two datasets—one is a single-cell RNA-sequencing
dataset, and the other is a metagenomic dataset.

The first dataset is a mouse embryonic stem-cell (mESC)
single-cell RNA-sequencing dataset from [2]. Flow cytometry
was used to sort by cell-type, with cells sorted into G1, S,
and G2M cell cycle stages. The original dataset contained
96 samples and 38,390 genes. The goal of our analysis is to
focus on genes that were previously shown to be differentially
expressed among cell-types. In this analysis, we consider 570
genes associated with cell-cycle based on GO annotations; this
list was provided in the original publication. We took a further
subset of genes by filtering out genes having greater than
20% dropouts in at least one of the cell-cycle stages. There
were 303 genes remaining after filtering. This analysis allows
investigation of whether gene-gene associations differ between
cell-cycle stages in a subset of genes that were previously known
to be related to cell-cycle.

The second dataset
sequencing information derived from stool samples procured

comprises shotgun metagenomic
from participants with pediatric-onset (symptom onset < 18
years of age) multiple sclerosis (MS) and unaffected controls [20,
19]. The goal of the study was to determine how suppression of
dietary fibre fermentation can induce inflammation in MS. Data
were collected through the Canadian Pediatric Demyelinating
Disease Network; all participants were under 22 years of age
at the time of stool sample procurement. There were 17 MS
participants (14 female) and 20 unaffected controls (16 female)
who provided a stool sample. For our analyses, we proceed at
the genus level; initially there were 617 genera available in the
dataset. We filtered out genera with greater than 10% zeros,
leaving 296 genera. Due to the very small sample size of this
dataset, we took a further subset of the 100 most abundant
remaining genera. This facilitated more stable estimates of the
model parameters in the small sample size case. The analysis
focuses on which genus pairs have differing associations between

MS participants and unaffected controls.

Results

Simulation results

Results from the first simulation can be seen in Section S6. The
goal of this initial simulation is to investigate the estimation
accuracy of p and the elements of Q2. In Figure S4, the RMSE
is shown for empirical and model-based estimation of p. It is
clear that there is a substantial improvement in model-based
estimates in most cases, especially when the number of features
J is large, which is an important guard against finding spurious
correlations. We show similar results for off-diagonal elements
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Fig. 2. Area under the precision-recall curve of p estimation methods
in simulation data. Error bars represent 25th and 75th percentiles over
50 simulation replications. Simulations vary over sparsity level (e.g.

proportion of true p values equal to 0) and number of features J.

of @ in Figure S5. The RMSE patterns for € are congruent
with those of p.

Next we show the results from the simulation scenario
considering sparsity among the p values. Results can be seen in
Figure 2, where we compare the distributions of the AUPRC
for the different estimates. In all scenarios, the model-based
estimates outperform the empirical estimates. The difference
in performance is especially pronounced when the number of
features J is large. Intriguingly, even the plugin estimates of p
outperform the empirical estimates. This is also an attractive
option, as it does not require running maximum likelihood
estimation.

Finally, we present the results from repeating the AUPRC
simulation, but under severe model misspecification (non-
central ¢-distribution in place of Gaussian). These results can be
seen in Figure S6. Though the differences between the AUPRC
are more subdued in this case, there is still a clear advantage
for the model-based estimator over the empirical estimator.
There is, again, a slight advantage for the plugin estimator
over the empirical estimator. This is an encouraging result, as
it demonstrates the utility of our estimator for p even if the
form of the assumed model is not correct.

All of the simulations show strong evidence of the superiority
of the model-based estimates over the empirical estimates for
p elements. Thus, the model-based estimates can be used to
guard against spurious correlations in when considering the
proportionality metric p.

Data application results

In this section, we outline the results from the two data
analyses described in the Methods section. First we discuss the
results from the murine single-cell RNA-seq dataset. All gene
descriptions were obtained from GeneCards [26].

‘We consider the estimated p values for each of the pairs of
the 303 genes retained after the aforementioned filtering steps.
Estimates were obtained using both the empirical estimator and
the model-based estimator. We compare the top 100 gene-gene
associations (in absolute value) detected using the empirical
and model-based estimators. In the G1 phase there were 23
gene pairs in common, in G2M phase there were 24 gene
pairs in common, and in S phase there was only 1 gene pair
in common (Figure S7). Relatedly, the empirical and model-
based estimates are compared in Figure S8. This shows the
attenuation towards the null for the model-based estimates,
which is an important guard against spurious correlations.

roportiona based ‘association metrics 5

These comparisons between the empirical and model-based
estimates show how different the results can be using the
empirical estimator for p and highlights the importance of
correcting the inherent biases in proportionality metrics applied
to count data.

The top 100 gene pairs within each cell stage are shown
in Tables S4-6. Additionally, Table 1 summarizes the top
differences (in absolute value) in p values between phases G1
and G2M phases; more extensive tables showing the top 100
gene pairs for each of the cell phase comparisons are shown in
Tables S1-S3.

In the G1 vs. G2M comparison, the largest p difference is
seen between genes STAG3 and CINP, with pg1 — pgam =
—0.5005. STAG3 is a encodes a protein involved in the
regulation of the cohesion of sister chromatids during cell
division; CINP is part of the DNA replication complex and
binds chromatin in the G1 phase.

In the G1 vs. S comparison (Table S2), the four largest
differences all involve the ARHGEF2 gene, which is implicated
in Rho-GTPase activation. The genes its p values differ with
the most between G1 and S are ATM, STAG2, CHEKI1, and
ANAPC4, all of whose expression is much more positively
correlated with ARHGEF2 in S phase compared to G1 phase.

In the G2M vs. S comparison (Table S3), ARHGEF2 is
again involved in several of the top p differences; namely,
with ATM, CHEK1, STAG2, and ANAPC4, again with much
stronger positive correlation in S phase compared to G1 phase.
Another notable difference is for ANAPC4 and PPM1G, which
are slightly negatively correlated in G2M phase and positively
correlated in S phase. ANAPC4 is involved in promotion of
the metaphase-anaphase transition, and PPMI1G is related to
negative regulation of cell stress response.

Gene 1 Gene 2 PG1 pPG2M PG1 — PG2M
FANCI CACUL1 | 0.0394 | -0.2453 0.2847
CLASP1 SEP-09 0.1426 -0.139 0.2816
TFDP1 CDC16 0.2141 | -0.0585 0.2726
TET2 EVI5 0.2575 | -0.0135 0.271
ANAPC4 GNAI3 0.242 -0.0258 0.2678
ENSA MELK 0.2088 | -0.0562 0.2651
HAUS3 CDC16 0.0278 | -0.2355 0.2633
FANCD2 CCNA2 0.1562 -0.106 0.2622
ENSA KLHL13 0.0052 0.2715 -0.2663
GNAI2 CCNA2 0.0037 0.274 -0.2703
NCAPG2 TXNIP -0.1767 | 0.0974 -0.2741
B230120H23RIK | CCNE1l | -0.1921 | 0.0856 -0.2777
STAG3 ANAPC4 | -0.1492 | 0.1296 -0.2788
PIM3 CUL4B 0.0019 0.2836 -0.2818
KLHL13 SKA3 -0.0729 | 0.2097 -0.2827
POGZ CETN2 -0.1185 0.1715 -0.29
CCNDBP1 AVPI1 0.0052 0.2975 -0.2923
STRADA GNAI3 -0.1641 | 0.1631 -0.3271
MAPK6 CHAFI1B | -0.2119 0.124 -0.3359
STAG3 HAUST -0.0422 | 0.3023 -0.3445
HAUS7 ANAPC2 | -0.0151 0.3333 -0.3484
‘WDR6 RAD17 -0.22 0.1302 -0.3502
ENSA ANAPC4 | 0.0228 0.3732 -0.3504
APITD1 STAG3 0.0103 0.3711 -0.3608
STAG3 CINP -0.0812 | 0.4194 -0.5005

Table 1. Top 25 gene pairs whose p value differs between G1 and
G2M stages.

Next we compare p values between MS participants and
unaffected controls at the genus level. Table S7 shows the
highest p values (in absolute value) in both MS and unaffected
controls. The top 25 differences between MS and controls are
shown in Table 2; a larger table with more genus pairs is shown
in Table S8. Genera appearing among the top 25 differences
that were previously shown to be associated with MS include
Megasphaera [12]; Acidaminococcus [13]; Ruminococcus [3];
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Dialister, Lachnospira, and Adlercreutzia [28]; Bacteroides and
Prevotella [21, 28]; Lactobacillus [5], Adlercreutzia [28, 5]; and
Eubacterium [23].

In all of the top 25 genus pairs, the estimated p-values are
greater in controls compared to MS. The values for controls
are positive and the MS values are either close to zero or
negative. This trend is present in the top 100 genus pairs as
well, with a few exceptions. In Figure S9, we see that there
are only 25 genus pairs common in the top 100 pairs for MS
and unaffected controls. This analysis has uncovered a strong
disruption in community-level dynamics in the MS participants
among a number of aforementioned genera whose abundances
were already known to be related to MS.

Genus 1

Genus 2 PMS Pc PMS — pc
UBA1417 BacteroidesB -0.2295 | 0.2525 -0.4819
EubacteriumR Prevotella -0.203 | 0.2838 -0.4868
Dialister UBA1417 -0.071 -0.4913
UBA11774 Acidaminococcus | -0.0573 -0.495
RuminiclostridiumE LactobacillusB -0.1886 | 0.3084 -0.4971
Senegalimassilia Adlercreutzia -0.2275 | 0.2735 -0.501
RuminiclostridiumC CAG-83 0.0213 -0.5098
PeH17 BacteroidesB -0.2355 0.278 -0.5135
Adlercreutzia Dialister -0.293 | 0.2326 -0.5256
RuminiclostridiumE | Acidaminococcus | -0.0328 -0.5323
Acidaminococcus CAG-177 -0.0945 -0.5406
Megasphaera RuminococcusC | -0.0671 -0.5478
Megasphaera CAG-127 -0.0442 -0.5499
Acidaminococcus EubacteriumR -0.2135 | 0.3547 | -0.5683
Megasphaera CAG-180 -0.1967 | 0.3853 -0.5819
Acidaminococcus Adlercreutzia -0.1906 | 0.413 -0.6036
EubacteriumR Dialister -0.2587 | 0.3482 -0.6069
Megasphaera CAG-177 -0.1881 -0.6135
Megasphaera RuminococcusD | -0.1457 -0.6143
Acidaminococcus CAG-180 -0.2094 | 0.4055 -0.6149
RuminiclostridiumE Megasphaera -0.0811 -0.6154
UBA11774 Lachnospira -0.1046 -0.6178
Acidaminococcus RuminococcusC | -0.0643 -0.6273
Acidaminococcus CAG-127 -0.0385 -0.6606
UBA11774 Dialister -0.1607 -0.6619

Table 2. Top 25 genus pairs whose p value differs between MS
(pms) and control samples (pc).

Conclusion

We have demonstrated that empirical estimates of metrics
of proportionality in count-based platforms can lead to bias.
Though the bias is mitigated when the mean read depths is
large, there may still exist a bias in less-abundant features
regardless. We therefore designed a multinomial logit-normal
model to calculate model-based estimates of the proportionality
metrics. We showed that, in an extensive simulation study, the
model-based estimates outperformed the empirical estimates,
even in the case of model misspecification. Additionally, a
simple plugin estimator outperformed empirical estimates,
which could be useful in the case where a user does not have
the computational resources to obtain model estimates through
the maximum likelihood estimator. Importantly, empirical vs.
model-based estimates differed in a way that could drastically
change results regarding which features are most strongly
correlated with one another.

One limitation of our approach is that the model does
not differentiate between structural and sampling zeros, hence
the need for filtering out features with many zero counts.
Though this could be remedied in the model by introducing
zero-inflated parameters as done in [31, 16], this introduces a
new problem regarding the interpretation of the proportionality
metrics, which are not defined for zero-valued arguments. One
could conceivably define these metrics conditional on non-zero
values, but this would ignore valid information contained in the
probability of a zero proportion. To address this, zero-inflated
versions of Kendall’s 7 and Spearman’s p could be used in the
context of a zero-inflated model. This is left for future work.
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