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Abstract

Motivation: Compositional data comprise vectors that describe the constituent parts of a whole. Data arising from
various -omics platforms such as 16S and RNA-sequencing are compositional in nature. However, correlations between
features on raw counts have no meaningful interpretation. Metrics of proportionality were formulated to address this
problem. However, there is an inherent bias that arises when calculating these metrics empirically on count-based measures
due to variability in read depths.
Results: We quantify the bias introduced by empirically calculating proportionality-based association metrics in count
data. Additionally, we propose a means of estimating these metrics within a logit-normal multinomial model in pursuit
of more accurate estimates. The model-based estimates are shown to outperform empirical estimates in simulated data,
and are additionally applied to a mouse embryonic stem-cell single-cell sequencing dataset as well as a pediatric-onset
multiple sclerosis metagenomic dataset.
Availability and Implementation: An R package is available at https://CRAN.R-project.org/package=countprop.
Supplementary information: Supplementary data are available at Bioinformatics online.
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Introduction

Compositional data comprise vectors of quantitative measures

that describe the constituent parts of a whole. The only

information in compositional data is found in the ratios

between the different parts of the vector; the individual

measures are inherently uninterpretable [1]. Data arising

from various omics platforms are compositional in nature—

for instance, RNA-sequencing (RNA-Seq), 16S amplicon-

sequencing, and single-cell RNA-sequencing are all examples of

platforms that yield compositional data. The primary reason

for the compositional classification of these platforms is that

the number of sequences varies across samples due to technical

artifacts in the sequencing process, meaning that within-sample

counts must either be normalized to a unit sum, or log-

ratio transformed in order to effect any kind of meaningful

interpretation [9]. Some microbiome studies have relied on

rarefying such data, which involves resampling the counts to

a constant read depth across all samples. However, it has

been recognized that such a procedure essentially amounts to

discarding valid data and should therefore be discouraged [18].

This interpretability problem is particularly worrisome when

considering associations between features—the prime example

being Pearson’s correlation. Due to varying read depths,

correlations on raw counts have no meaningful interpretation.
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Similarly, when normalizing the counts to proportions, a

negative bias is introduced in the correlations as a result of

the unit-sum constraint.

An appropriate class of measures based on proportionality

has been established to address the issue of quantifying

association in compositional data. The most basic such measure

is the variation matrix V whose elements are defined as follows:

suppose p = (p1, . . . , pD) is a random vector containing

proportions such that
∑D

j=1 pj = 1. The element in row j and

column k of V, which describes the association between features

j and k is given by:

v(pj , pk) = var

[
log

(
pj

pk

)]
.

When pj is exactly proportional to pk, we have that v(pj , pk) =

0. Hence, the smaller the value of v(pj , pk) the stronger the

association between the abundances of features j and k. Note

that the elements of V are non-negative, and thus the variation

matrix does not give information about the direction of the

associations of the pairs of features included in the matrix.

One important issue with the variation matrix is that its

elements are variances of different pairs of features, meaning

that they do not share a common scale. To address this issue,

[7] developed alternative measures of proportionality.

The first is called ϕ, and is simply v(pj , pk) scaled by the

variance of the logarithm of the first argument. It is defined as:

ϕ(pj , pk) =
v(pj , pk)

var[log(pj)]
, (1)

with ϕ(pj , pk) ≥ 0. The interpretation is the same as for v,

only now it is scaled based on its first argument. The main

downside of this metric is that it is not symmetric with regards

to its arguments. A final proportionality metric is defined as:

ρ(pj , pk) =
2 cov [log(pj), log(pk)]

var[log(pj)] + var[log(pk)]
, (2)

with −1 ≤ ρ(pj , pk) ≤ 1. If ρ ≈ 1, then pj and pk are strongly

proportional, and if ρ ≈ −1, then pj and pk are strongly

inversely proportional.

Metrics of proportionality recently gained more recognition,

when [25] suggested their use to detect gene-gene associations in

single-cell sequencing experiments. This publication compared

numerous measures of association across multiple datasets by

evaluating their ability to create functionally coherent single-

cell gene co-expression networks. There was a clear advantage

for the proportionality metrics across the datasets.

The one common property of these kinds of metrics is that

they are scale invariant, which is the main property allowing

their use in compositional data. However, classical techniques

for the analysis of compositional data were developed with

continuous measures in mind; for example, the constituent

parts of a soil sample. Conversely, sequencing platforms

provide data in the form of counts. A number of recent

studies have shed light on problems that arise when applying

traditional methods for compositional data analysis on count-

based compositional data. [14] showed that proportionality

cannot be exactly represented in count-based compositional

data, which they referred to as lattice compositional data. [15]

showed a similar phenomenon in logarithmic transformations

in single-cell sequencing; varying read depths among cells led

to systematic errors and spurious differences in expression.

Relatedly, [6] presented novel modelling techniques in light of

these issues in count data.

In addition to the representation problems outlined in [14],

we further claim that there is in fact a bias that arises

when applying proportionality metrics on count-based data,

which is a result of added variability from the randomness of

the sequencing process. In this paper, we quantify this bias

and provide an alternative model-based means of estimating

proportionality metrics in count-based compositional data.

Methods

Bias
In this section we outline the inherent bias in estimating metrics

of proportionality using observed counts. Suppose that we have

a matrix Yn×(J+1) containing counts of J + 1 features (e.g.

genes, species, etc.) from n samples. Let the entries of Y be

yij , representing the observed count of feature j in sample

i. We seek to compare the result of plugging counts yij (or

equivalently observed proportions p̂ij = yij/ni) into v, ϕ,

and ρ against the true (unknown) values which instead take

unobserved proportions pij as arguments to these metrics. In

each case, there is no exact closed form for the bias, and we

instead use an approximation based on a second-order Taylor

series expansion. We summarize the results here, but full

derivations can be found in Section S2. In each case, it is clear

that the bias is more pronounced when the read depths are

small, on average. However, it is also evident that the amount of

variation in the read depths itself plays into the bias, with more

variability leading to a larger discrepancy between the empirical

and true values of the metrics. The underlying distribution of

the unobserved proportion vector pi = (pi1, . . . , pi(J+1)) is also

relevant.

First, we consider v(yij , yik), which can be approximated

as:

v(yij , yik) ≈ v(pij , pik) + b
∗
, (3)

where,

b
∗
=

1

4
var

[
n

−1
i

(
p
−1
ij − p

−1
ik

)]
− cov

[
log

(
pij

pik

)
, n

−1
i

(
p
−1
ij − p

−1
ik

)]
+ E

[
n

−1
i

] (
E
[
p
−1
ij

]
+ E

[
p
−1
ik

])
.

(4)

As expected, the expectation of 1/ni is an important factor,

however, the expectations of 1/pij and 1/pik are also present,

suggesting that the discrepancy will be more pronounced in less

abundant features. The bias for ϕ can be expressed as:

ϕ(yij , yik) ≈
ϕ(pij , pik) +

b∗

var[log(pj)]

1 +
rij−E[n−1

i ](E[p−1
ij ]−cijj−1)

var[log(pj)]

, (5)

where

cijj = cov
[
log(pij), p

−1
ij

]
, (6)

rij = var
[
log(ni) + (2ni)

−1
(
1 − p

−1
ik

)]
(7)

Finally, we consider the analogous result for ρ:

ρ(yij , yik) ≈
ρ(pij , pik) +

b∗ρ

var[log(pj)] + var[log(pk)]

1 +
rij+rik−E[n−1

i ](2+cijj+cikk−E[p−1
ij ]−E[p−1

ik ])
var[log(pj)]+var[log(pk)]

, (8)
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Fig. 1. Estimation error for a single entry of v, ϕ and ρ calculated using

observed counts in 2000 simulation replications. The green is not corrected

for bias, the blue is corrected for bias using Equations 3, 5, and 8.

where,

b
∗
ρ = 2var[log(ni)] −

(
2 − E

[
p
−1
ij

]
− E

[
p
−1
ik

])
cov

[
log(ni), n

−1
i

]
+

1

2
qijk − E

[
n

−1
i

]
(cijk + cikj − 2)

and,

cijk = cov
[
log(pij), p

−1
ik

]
,

qijk = cov
[
n

−1
i

(
1 − p

−1
ij

)
, n

−1
i

(
1 − p

−1
ik

)]
We can once again see that the bias is less pronounced when the

mean of the read depths ni is large. However, the variation of ni

as well as distribution of the proportions pi are also important.

This suggests that there could still be bias present for estimates

for certain feature pairs even when the read depths are large.

To numerically investigate these biases, we run a small

simulation from a multinomial logit-normal distribution (see

the next section for the definition of this distribution). We

simulate J + 1 = 7 features on n = 2000 samples,

with 1000 simulation replications. In each replication, the

estimated proportionality metrics on the raw counts v(yij , yik),

ϕ(yij , yik), and ρ(yij , yik) are calculated (after imputing zeros

using Bayesian-multiplicative replacement [22], if necessary)

and compared to their respective true values v(pij , pik),

ϕ(pij , pik), and ρ(pij , pik). Additionally, a bias-corrected

version of the estimator is calculated by adjusting the empirical

estimates using Equations 3, 5, and 8.

Figure 1 shows the difference between the estimated values

and the true values for a single element of the matrix. It is

evident that all of v, ϕ, and ρ exhibit strong biases when

calculated on the raw counts. In all cases, the sampling

distribution of the corrected estimator is approximately

centered around zero. Results for the full matrix can be seen in

Figures S1-S3.

It should be noted that this bias-correction approach is

not feasible in practice, as it would require knowledge of the

true population parameters, which happen to be known in this

simulation. As an alternative, we propose directly modelling

the distribution of the proportions pi. The parameters of this

distribution then define the values of v, ϕ, and ρ, allowing the

proportionality metrics to be estimated free from the variation

induced by the sequencing process itself.

Model
We proceed in the context of the multinomial logit-normal

model, posited by [30]. This model has been extremely popular

in statistical modelling of the microbiome [29, 24, 17]. In this

formulation, we assume that the count vector for sample i,

denoted by Yi = (yi1, . . . , yi(J+1)), is distributed as:

Yi ∼ Multinomial(ni,pi)

where J +1 is the total number of features observed among all

samples and ni =
∑J+1

j=1 yij is the read depth. The proportion

vector for individual i is assumed to follow the logit-normal

distribution, which is characterized by the inverse additive log-

ratio (ALR) transformation:

pi = alr
−1

(wi)

= C (exp(wi1), . . . , exp(wiJ), 1)

where C(x1, . . . , xk) = (x1, . . . , xk)/(
∑k

j=1 xj) is the closure

operation. Each wi = (wi1, . . . , wiJ) is an unobserved, latent

vector assumed to be multivariate-normal:

wi ∼ MV-NormalJ (µ,Σ) . (9)

We set the (J+1)th feature as the reference feature in the ALR

transformation (without loss of generality; any feature could be

moved to that column). The read depths themselves are random

variables on which we assume a log-normal distribution:

ni ∼ Log-Normal
(
µℓ, σ

2
ℓ

)
The log-normal distribution is appropriate given that the

read depth distribution in a dataset can span multiple orders

of magnitude. This assumption has been used in previous

literature [16].

To handle the possibility of a large number of features J +1

relative to the sample size n, we apply the Graphical Lasso

(GLasso) penalty [8] to the multivariate normal log-likelihood

for the wi vectors:

ℓ
(
Σ

−1
∣∣∣W)

=
n

2
log detΣ

−1

−
1

2

n∑
i=1

(wi − µ)
⊤
Σ

−1
(wi − µ) − λ∥Σ−1∥1

where || · ||1 denotes the L1-norm, and λ ≥ 0 is the penalty

parameter. This penalization is very important in guarding

against spurious associations when the number of features is

large.

Estimating proportionality metrics
In the logit-normal framework, the variation matrix elements

have a convenient form, namely:

v(pij , pik) =


σ2
j + σ2

k − 2σjk if j ̸= J + 1 and k ̸= J + 1

σ2
j if j ̸= J + 1 and k = J + 1

σ2
k if j = J + 1 and k ̸= J + 1.

(10)

For ϕ and ρ we also need to estimate the covariance matrix

of the log-proportions, which we denote by Ω = var[log(p)].

The relationship between the covariance of the log-proportions

is given by Σ = FΩF⊤, where F = [IJ ,−1J ], with IJ

representing the J × J identity matrix, and 1J representing

a J-dimensional vector of ones. In the logit-normal distribution

there is no closed-form expression for the matrix Ω. The

additive log-ratio variance Σ does not itself admit a unique

Ω [1]; the mean of the distribution is also required to determine

Ω.
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Consequently, to estimate the log-proportion variance Ω

from µ and Σ, we use a second-order Taylor approximation [10]

based on the transformation from the wij scale to the log(pij)

scale. We can approximate the covariance of the log-proportion

vector as:

Ω ≈ QµΣQ
⊤
µ +

1

2
tr

(
ΣHµΣHµ

)
, (11)

where,

Qµ =

([
IJ

0

]
− 1J+1[alr

-1
(µ)]

⊤

)

Hµ = alr
−1

(µ)
[
alr

-1
(µ)

]⊤
− diag

[
alr

-1
(µ)

]
.

Estimates of ϕ, and ρ can then be obtained by plugging the

approximations from Equations 10 and 11 into their respective

definitions.

Fitting the model
To fit the logit-normal multinomial model with graphical lasso

penalty applied to the ALR-scale precision matrix, we perform

maximum likelihood estimation through an implementation of

the EM-algorithm posited in [11, 27]. Model selection (through

the choice of tuning parameter λ) is performed using the

Extended Bayesian Information Criterion (EBIC) [4]. The steps

of the algorithm can be found in Section S4.

Simulation study
We performed an extensive simulation study to compare the

performance of model-based vs. empirical estimates. We focus

on ρ in the simulations since it is the most interpretable

metric, and we can fix it to zero for certain feature pairs

allowing precision-recall analysis (whereas the null for v and

ϕ is infinity). We also include an additional estimator, which

uses empirical estimates of µ and Σ, based on simply taking

the additive log-ratio of the observed counts and calculating the

sample means and variances of the features. These parameter

estimates are then inserted into Equation 11. We will refer to

this latter estimator as the “plugin” estimator, and does not

require running maximum likelihood estimation.

Our simulation parameters are based on an initial

multinomial logit-normal model fitted to single-cell RNA-

sequencing data from a mouse embryonic stem-cell dataset from

Buettner et al. [2]. The model parameters µ, Ω, Σ, µℓ, and σℓ,

are estimated from the data and are then used as the ground

truth in the simulations. See Section S5 for more details about

the simulation procedures.

Several scenarios are considered. The first scenario uses all

the parameter values that estimated from the Buettner dataset.

This scenario allows us to compare the estimated values to the

true values used in the simulation using the root mean squared

error (RMSE).

The second scenario modifies Ω to be a sparse matrix,

which allows some of the true values of ρ(pij , pik) to be

zero. This lets us ascertain the ability of the model-based and

empirical estimates to find the non-zero elements of ρ(pij , pik).

Since neither the model-based nor empirical estimators will set

values exactly to zero, a range of thresholds is applied so that

estimates whose ρ value is greater (in absolute value) than

the threshold are considered to be estimated as non-zero. This

allows us to calculate the area under the precision-recall curve

to compare the model-based and empirical estimates.

The third scenario considers model misspecification. The

motivation is to simulate values of the wi vectors from a

distribution that is non-Gaussian to see how estimates of ρ

are affected by a misspecified model. To do this, we instead

simulate wi from a multivariate non-central t-distribution with

mean µ, covariance Σ, and degrees of freedom parameter equal

to 2.1. This allows the distribution of the wi terms to have

heavier tails than the normal distribution as well as skewness.

The rest of the simulation procedure is the same as in the

second scenario. Precision-recall curves are used to compare

performance.

Data application
To demonstrate the applicability of the proportionality metric

estimation technique introduced in this paper, we apply the

methods to two datasets—one is a single-cell RNA-sequencing

dataset, and the other is a metagenomic dataset.

The first dataset is a mouse embryonic stem-cell (mESC)

single-cell RNA-sequencing dataset from [2]. Flow cytometry

was used to sort by cell-type, with cells sorted into G1, S,

and G2M cell cycle stages. The original dataset contained

96 samples and 38,390 genes. The goal of our analysis is to

focus on genes that were previously shown to be differentially

expressed among cell-types. In this analysis, we consider 570

genes associated with cell-cycle based on GO annotations; this

list was provided in the original publication. We took a further

subset of genes by filtering out genes having greater than

20% dropouts in at least one of the cell-cycle stages. There

were 303 genes remaining after filtering. This analysis allows

investigation of whether gene-gene associations differ between

cell-cycle stages in a subset of genes that were previously known

to be related to cell-cycle.

The second dataset comprises shotgun metagenomic

sequencing information derived from stool samples procured

from participants with pediatric-onset (symptom onset < 18

years of age) multiple sclerosis (MS) and unaffected controls [20,

19]. The goal of the study was to determine how suppression of

dietary fibre fermentation can induce inflammation in MS. Data

were collected through the Canadian Pediatric Demyelinating

Disease Network; all participants were under 22 years of age

at the time of stool sample procurement. There were 17 MS

participants (14 female) and 20 unaffected controls (16 female)

who provided a stool sample. For our analyses, we proceed at

the genus level; initially there were 617 genera available in the

dataset. We filtered out genera with greater than 10% zeros,

leaving 296 genera. Due to the very small sample size of this

dataset, we took a further subset of the 100 most abundant

remaining genera. This facilitated more stable estimates of the

model parameters in the small sample size case. The analysis

focuses on which genus pairs have differing associations between

MS participants and unaffected controls.

Results

Simulation results
Results from the first simulation can be seen in Section S6. The

goal of this initial simulation is to investigate the estimation

accuracy of ρ and the elements of Ω. In Figure S4, the RMSE

is shown for empirical and model-based estimation of ρ. It is

clear that there is a substantial improvement in model-based

estimates in most cases, especially when the number of features

J is large, which is an important guard against finding spurious

correlations. We show similar results for off-diagonal elements
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Fig. 2. Area under the precision-recall curve of ρ estimation methods

in simulation data. Error bars represent 25th and 75th percentiles over

50 simulation replications. Simulations vary over sparsity level (e.g.

proportion of true ρ values equal to 0) and number of features J.

of Ω in Figure S5. The RMSE patterns for Ω are congruent

with those of ρ.

Next we show the results from the simulation scenario

considering sparsity among the ρ values. Results can be seen in

Figure 2, where we compare the distributions of the AUPRC

for the different estimates. In all scenarios, the model-based

estimates outperform the empirical estimates. The difference

in performance is especially pronounced when the number of

features J is large. Intriguingly, even the plugin estimates of ρ

outperform the empirical estimates. This is also an attractive

option, as it does not require running maximum likelihood

estimation.

Finally, we present the results from repeating the AUPRC

simulation, but under severe model misspecification (non-

central t-distribution in place of Gaussian). These results can be

seen in Figure S6. Though the differences between the AUPRC

are more subdued in this case, there is still a clear advantage

for the model-based estimator over the empirical estimator.

There is, again, a slight advantage for the plugin estimator

over the empirical estimator. This is an encouraging result, as

it demonstrates the utility of our estimator for ρ even if the

form of the assumed model is not correct.

All of the simulations show strong evidence of the superiority

of the model-based estimates over the empirical estimates for

ρ elements. Thus, the model-based estimates can be used to

guard against spurious correlations in when considering the

proportionality metric ρ.

Data application results
In this section, we outline the results from the two data

analyses described in the Methods section. First we discuss the

results from the murine single-cell RNA-seq dataset. All gene

descriptions were obtained from GeneCards [26].

We consider the estimated ρ values for each of the pairs of

the 303 genes retained after the aforementioned filtering steps.

Estimates were obtained using both the empirical estimator and

the model-based estimator. We compare the top 100 gene-gene

associations (in absolute value) detected using the empirical

and model-based estimators. In the G1 phase there were 23

gene pairs in common, in G2M phase there were 24 gene

pairs in common, and in S phase there was only 1 gene pair

in common (Figure S7). Relatedly, the empirical and model-

based estimates are compared in Figure S8. This shows the

attenuation towards the null for the model-based estimates,

which is an important guard against spurious correlations.

These comparisons between the empirical and model-based

estimates show how different the results can be using the

empirical estimator for ρ and highlights the importance of

correcting the inherent biases in proportionality metrics applied

to count data.

The top 100 gene pairs within each cell stage are shown

in Tables S4-6. Additionally, Table 1 summarizes the top

differences (in absolute value) in ρ values between phases G1

and G2M phases; more extensive tables showing the top 100

gene pairs for each of the cell phase comparisons are shown in

Tables S1-S3.

In the G1 vs. G2M comparison, the largest ρ difference is

seen between genes STAG3 and CINP, with ρG1 − ρG2M =

−0.5005. STAG3 is a encodes a protein involved in the

regulation of the cohesion of sister chromatids during cell

division; CINP is part of the DNA replication complex and

binds chromatin in the G1 phase.

In the G1 vs. S comparison (Table S2), the four largest

differences all involve the ARHGEF2 gene, which is implicated

in Rho-GTPase activation. The genes its ρ values differ with

the most between G1 and S are ATM, STAG2, CHEK1, and

ANAPC4, all of whose expression is much more positively

correlated with ARHGEF2 in S phase compared to G1 phase.

In the G2M vs. S comparison (Table S3), ARHGEF2 is

again involved in several of the top ρ differences; namely,

with ATM, CHEK1, STAG2, and ANAPC4, again with much

stronger positive correlation in S phase compared to G1 phase.

Another notable difference is for ANAPC4 and PPM1G, which

are slightly negatively correlated in G2M phase and positively

correlated in S phase. ANAPC4 is involved in promotion of

the metaphase-anaphase transition, and PPM1G is related to

negative regulation of cell stress response.

Gene 1 Gene 2 ρG1 ρG2M ρG1 − ρG2M

FANCI CACUL1 0.0394 -0.2453 0.2847

CLASP1 SEP-09 0.1426 -0.139 0.2816

TFDP1 CDC16 0.2141 -0.0585 0.2726

TET2 EVI5 0.2575 -0.0135 0.271

ANAPC4 GNAI3 0.242 -0.0258 0.2678

ENSA MELK 0.2088 -0.0562 0.2651

HAUS3 CDC16 0.0278 -0.2355 0.2633

FANCD2 CCNA2 0.1562 -0.106 0.2622

ENSA KLHL13 0.0052 0.2715 -0.2663

GNAI2 CCNA2 0.0037 0.274 -0.2703

NCAPG2 TXNIP -0.1767 0.0974 -0.2741

B230120H23RIK CCNE1 -0.1921 0.0856 -0.2777

STAG3 ANAPC4 -0.1492 0.1296 -0.2788

PIM3 CUL4B 0.0019 0.2836 -0.2818

KLHL13 SKA3 -0.0729 0.2097 -0.2827

POGZ CETN2 -0.1185 0.1715 -0.29

CCNDBP1 AVPI1 0.0052 0.2975 -0.2923

STRADA GNAI3 -0.1641 0.1631 -0.3271

MAPK6 CHAF1B -0.2119 0.124 -0.3359

STAG3 HAUS7 -0.0422 0.3023 -0.3445

HAUS7 ANAPC2 -0.0151 0.3333 -0.3484

WDR6 RAD17 -0.22 0.1302 -0.3502

ENSA ANAPC4 0.0228 0.3732 -0.3504

APITD1 STAG3 0.0103 0.3711 -0.3608

STAG3 CINP -0.0812 0.4194 -0.5005

Table 1. Top 25 gene pairs whose ρ value differs between G1 and

G2M stages.

Next we compare ρ values between MS participants and

unaffected controls at the genus level. Table S7 shows the

highest ρ values (in absolute value) in both MS and unaffected

controls. The top 25 differences between MS and controls are

shown in Table 2; a larger table with more genus pairs is shown

in Table S8. Genera appearing among the top 25 differences

that were previously shown to be associated with MS include

Megasphaera [12]; Acidaminococcus [13]; Ruminococcus [3];

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554468doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554468
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 McGregor et al.

Dialister, Lachnospira, and Adlercreutzia [28]; Bacteroides and

Prevotella [21, 28]; Lactobacillus [5], Adlercreutzia [28, 5]; and

Eubacterium [23].

In all of the top 25 genus pairs, the estimated ρ-values are

greater in controls compared to MS. The values for controls

are positive and the MS values are either close to zero or

negative. This trend is present in the top 100 genus pairs as

well, with a few exceptions. In Figure S9, we see that there

are only 25 genus pairs common in the top 100 pairs for MS

and unaffected controls. This analysis has uncovered a strong

disruption in community-level dynamics in the MS participants

among a number of aforementioned genera whose abundances

were already known to be related to MS.

Genus 1 Genus 2 ρMS ρC ρMS − ρC

UBA1417 BacteroidesB -0.2295 0.2525 -0.4819

EubacteriumR Prevotella -0.203 0.2838 -0.4868

Dialister UBA1417 -0.071 0.4202 -0.4913

UBA11774 Acidaminococcus -0.0573 0.4377 -0.495

RuminiclostridiumE LactobacillusB -0.1886 0.3084 -0.4971

Senegalimassilia Adlercreutzia -0.2275 0.2735 -0.501

RuminiclostridiumC CAG-83 0.0213 0.5311 -0.5098

PeH17 BacteroidesB -0.2355 0.278 -0.5135

Adlercreutzia Dialister -0.293 0.2326 -0.5256

RuminiclostridiumE Acidaminococcus -0.0328 0.4996 -0.5323

Acidaminococcus CAG-177 -0.0945 0.4461 -0.5406

Megasphaera RuminococcusC -0.0671 0.4807 -0.5478

Megasphaera CAG-127 -0.0442 0.5057 -0.5499

Acidaminococcus EubacteriumR -0.2135 0.3547 -0.5683

Megasphaera CAG-180 -0.1967 0.3853 -0.5819

Acidaminococcus Adlercreutzia -0.1906 0.413 -0.6036

EubacteriumR Dialister -0.2587 0.3482 -0.6069

Megasphaera CAG-177 -0.1881 0.4253 -0.6135

Megasphaera RuminococcusD -0.1457 0.4686 -0.6143

Acidaminococcus CAG-180 -0.2094 0.4055 -0.6149

RuminiclostridiumE Megasphaera -0.0811 0.5342 -0.6154

UBA11774 Lachnospira -0.1046 0.5132 -0.6178

Acidaminococcus RuminococcusC -0.0643 0.563 -0.6273

Acidaminococcus CAG-127 -0.0385 0.6221 -0.6606

UBA11774 Dialister -0.1607 0.5012 -0.6619

Table 2. Top 25 genus pairs whose ρ value differs between MS

(ρMS) and control samples (ρC).

Conclusion

We have demonstrated that empirical estimates of metrics

of proportionality in count-based platforms can lead to bias.

Though the bias is mitigated when the mean read depths is

large, there may still exist a bias in less-abundant features

regardless. We therefore designed a multinomial logit-normal

model to calculate model-based estimates of the proportionality

metrics. We showed that, in an extensive simulation study, the

model-based estimates outperformed the empirical estimates,

even in the case of model misspecification. Additionally, a

simple plugin estimator outperformed empirical estimates,

which could be useful in the case where a user does not have

the computational resources to obtain model estimates through

the maximum likelihood estimator. Importantly, empirical vs.

model-based estimates differed in a way that could drastically

change results regarding which features are most strongly

correlated with one another.

One limitation of our approach is that the model does

not differentiate between structural and sampling zeros, hence

the need for filtering out features with many zero counts.

Though this could be remedied in the model by introducing

zero-inflated parameters as done in [31, 16], this introduces a

new problem regarding the interpretation of the proportionality

metrics, which are not defined for zero-valued arguments. One

could conceivably define these metrics conditional on non-zero

values, but this would ignore valid information contained in the

probability of a zero proportion. To address this, zero-inflated

versions of Kendall’s τ and Spearman’s ρ could be used in the

context of a zero-inflated model. This is left for future work.
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