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Abstract. Predicting protein-DNA binding sites is a challenging computational
problem in the field of bioinformatics. Identifying the specific residues where
proteins bind to DNA is of paramount importance, as it enables the modeling
of their interactions and facilitates downstream studies. Nevertheless, the devel-
opment of accurate and efficient computational methods for this task remains
a persistent challenge. Accurate prediction of protein-DNA binding sites has
far-reaching implications for understanding molecular mechanisms, disease pro-
cesses, drug discovery, and synthetic biology applications. It helps bridge the
gap between genomics and functional biology, enabling researchers to uncover
the intricacies of cellular processes and advance our knowledge of the biological
world. The method used to predict DNA binding residues in this study is a po-
tent combination of conventional bioinformatics tools, protein language models,
and cutting-edge machine learning and deep learning classifiers. On a dataset of
protein-DNA binding sites, our model is meticulously trained, and it is then rig-
orously examined using several experiments. As indicated by higher predictive
behavior with AUC values on two benchmark datasets, the results show supe-
rior performance when compared to existing models. The suggested model has a
strong capacity for generalization and shows specificity for DNA-binding sites.
We further demonstrated the adaptability of our model as a universal framework
for binding site prediction by training it on a variety of protein-ligand binding
site datasets. In conclusion, our innovative approach for predicting protein-DNA
binding residues holds great promise in advancing our understanding of molec-
ular interactions, thus paving the way for several groundbreaking applications in
the field of molecular biology and genetics. Our approach demonstrated efficacy
and versatility underscore its potential for driving transformative discoveries in
biomolecular research.
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1 Introduction

Protein-DNA binding site prediction is an essential area of research with significant im-
plications in various fields, including molecular biology, genetics, drug discovery, and
synthetic biology. Accurate prediction of protein-DNA binding sites has far-reaching
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potential, leading to groundbreaking biotechnology and drug design applications [S0]
along with several other applications including understanding gene regulation [30],
functional annotation of genomes [28]], cancer research for designing targeted thera-
pies [40], evolutionary studies [18]], genetic engineering, and accelerating drug discov-
ery [47]. Protein-DNA interactions are fundamental to many biological processes, such
as DNA replication [8], transcription [7], repair, and recombination [29]. Accurate pre-
diction of binding sites aids in deciphering the molecular mechanisms behind these
processes, shedding light on the intricate workings of the cell. It plays a crucial role
in regulating gene expression by binding to specific sites on DNA. Predicting these
binding sites helps researchers understand how genes are turned on or off, which is es-
sential for understanding normal development, disease processes, and various cellular
responses. It also can help identify potential drug targets for diseases like cancer and
genetic disorders. Some research applies protein-DNA binding site prediction to spe-
cific diseases, such as cancer [48]]. By identifying altered binding sites in disease-related
genes, researchers aim to uncover novel therapeutic targets. Designing drugs that inter-
fere with these interactions could offer new therapeutic strategies. With the advent of
high-throughput sequencing technologies, vast amounts of genomic data are generated.
The binding site prediction for protein and DNA aids in interpreting this data by iden-
tifying regions that are likely to be functionally important. Protein-DNA binding sites
in genomic analyses provide a foundational understanding of the functional elements
within a genome and their roles in various biological processes. It bridges the gap be-
tween genomic sequences and biological functions, enabling researchers to unravel the
complexities of gene regulation and molecular interactions.

Many recent studies leverage machine learning and deep learning techniques to pre-
dict protein-DNA binding sites [46]. These methods often involve training models on
large datasets of known binding sites and using them to predict binding locations in
genomic sequences. Researchers focus on identifying relevant features or descriptors
that can capture the characteristics of protein-DNA interactions [15]. These features
might include sequence motifs, physicochemical properties, and structural information
of DNA and protein molecules [14]. Some studies integrate various types of omics
data, such as genomics, transcriptomics, and proteomics, to improve the accuracy of
binding site predictions. This integration allows for a more comprehensive understand-
ing of the regulatory landscape. Evolutionarily conserved regions are often indicative
of functional importance [35]. Research explores the use of conservation scores and
comparative genomics approaches to enhance the accuracy of binding site predictions.

Incorporating 3D structural information of protein-DNA complexes helps refine
binding site predictions by considering the physical interactions between the molecules.
This includes techniques such as molecular docking and structural modeling. Deep
learning models, such as convolutional neural networks (CNNs) and recurrent neural
networks (RNN5), are applied to sequence data to capture complex patterns in DNA and
protein sequences, improving binding site prediction accuracy. Transfer learning tech-
niques involve pretraining models on related tasks and fine-tuning them for binding site
prediction [[11]]. This approach benefits from the knowledge acquired in the pretraining
phase. Evaluating the performance of prediction methods is crucial. Researchers design
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benchmark datasets, establish evaluation metrics (such as sensitivity, specificity, and
AUC), and compare different algorithms to assess their effectiveness.

The information needed to understand protein structures is all contained in the pro-
tein sequence. However, extracting the structure from the sequence only is a difficult
and time-consuming task. Consequently, structure-only-based models consistently out-
perform sequence-based models in terms of performance due to the availing of com-
plete structures. Structure-based models, however, need precise protein structures as
input to assure model performance. On the other hand, because feature extraction fre-
quently relies on manual design and does not produce a refined initial representation,
the performance of existing sequence-based models is still insufficient for practical ap-
plication. Therefore, it is imperative to create an end-to-end model without the use of
handcrafted features. In this work, we identify several limitations to the work done
in [20] and propose alternate solutions to overcome the limitations. More specifically,
our contributions are the following:

1. Itis a well-established fact in the literature that the neural network-based methods
do not work efficiently as compared to simple Machine Learning (ML) classifiers
(e.g. tree-based methods) in the case of tabular data [10/16l21]]. Therefore, instead
of using a One-dimensional Convolutional Neural Network (IDCNN) for the un-
derlying classification (and including all discussion around that) as done in [20]],
we use simple ML classifiers for the underlying supervised analysis.

2. Authors in [20] use ProtBert [9] as the pre-trained model to generate the embed-
dings for each amino acid within protein sequences. We replace that with a more
efficient SeqVec [13] pre-trained model. The choice of replacing ProtBert with Se-
qVec is due to its demonstrated effectiveness in learning relevant features for our
task (i.e. Binding site prediction).

3. We propose a lightweight model using the idea of Sparse Coding, which combines
the power of k-mers and one-hot encoding to design efficient initial embeddings
for the amino acids. The only parameter in this sparse coding-based embedding
method is k£ (contextual window size for amino acids), which is significantly lesser
compared to complex models like ProtBert and SeqVec. This Almost Parameter
Free approach makes Sparse coding an ideal choice for fast binding site prediction.

2 Related Work

The prediction of protein-DNA binding sites is a critical task in computational biol-
ogy, with applications ranging from understanding gene regulation to designing novel
therapeutic agents [6]. Over the years, various computational methods have been de-
veloped to tackle this complex problem, each leveraging different techniques and ap-
proaches. In this section, we review the key literature in the field of protein-DNA bind-
ing site prediction, focusing on different methodologies, challenges, and advancements.
Evolutionary information has been a cornerstone of protein-DNA binding site predic-
tion [33]. Methods utilizing multiple sequence alignments (MSAs) [1l41]] and phylo-
genetic profiles [[17] have shown promising results. Techniques like DRNAPred [42]]
and DNAPred [49] incorporate evolutionary conservation patterns to identify potential
binding sites. SVMnuc [34] and NCBRPred [44] also utilize evolutionary information
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for distinguishing binding sites. However, most of these existing methods are computa-
tionally expensive, or not showing state of the art performance.

Traditional machine-learning techniques have been extensively used in the context
of binding site prediction. Methods like SVMnuc [34] and DBPred [27] incorporate
support vector machines (SVMs) to classify binding sites based on a set of engineered
features derived from sequence and structure data. These methods have demonstrated
reasonable predictive performance and often rely on well-curated training datasets.
However, these methods may not be able to scale effectively to bigger datasets.

Recent advancements in deep learning have led to the development of more com-
plex models for protein-DNA binding site prediction [33] and protein sequence analy-
sis [251242223]). ProtBert [9]. A pre-trained transformer model adapted from natural
language processing has shown its potential to capture intricate sequence patterns. The
combination of ProtBert with 1D convolutional neural networks (1DCNN) has been ex-
plored to enhance performance in identifying binding sites. However, it is not clear if
these methods can be generalized on other biological domains effectively.

Transfer learning from related domains, such as language models, has become a
prominent technique [26]. Pre-trained models like ProtBert and SeqVec [13], inspired
by NLP models, have shown success in capturing high-level features in protein se-
quences. These models provide a foundation for building more specialized predictors
with fewer labeled samples. However, such models could be domain-specific and may
not generalize for different tasks. The authors in [3]] combined structure-based and se-
quence methods for protein analyses. SeqVec introduces embeddings that capture the
biophysical properties of protein sequences by training on vast unlabeled protein data.
These embeddings, derived from a language model, have demonstrated their potential
in improving predictions. Sparse coding techniques, which do not require labeled data,
have also been explored to generate embeddings that preserve important context [38]].

3 Proposed Approach

We propose a protein-ligand binding sites prediction framework to perform the binding
site prediction of a given protein sequence. The overall architecture of the proposed
model comprised two main modules: the sequence embedding module and the classifi-
cation module.

3.1 Sequence Embedding Module

The sequence embedding module leverages two distinct techniques, namely SeqVec and
Sparse Coding, to create fixed-length embeddings for individual amino acids within a
protein sequence.

SeqVec [13]] Itis a pre-trained protein language model that captures intricate sequence
patterns and semantic information inherent to protein sequences. It is based on Embed-
dings from Language Models (ELMo) [32], commonly applied in natural language pro-
cessing to create continuous vector representations (embeddings) for protein sequences.
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These embeddings, named SeqVec (Sequence-to-Vector), capture biophysical proper-
ties from unlabeled data (UniRef50) and enable simple neural networks to excel in
various tasks. The key innovation of SeqVec lies in its use of ELMo to capture the bio-
physical properties of protein sequences. ELMo’s ability to learn contextualized embed-
dings from unlabeled protein sequences enables SeqVec to generate embeddings that
encode relevant information about protein structure and function. This approach offers
an alternative to the traditional use of evolutionary information and provides a scalable
solution for analyzing protein sequences, particularly in scenarios involving large-scale
proteomics data. Note that we justify the preference for SeqVec over other protein-based
pre-trained language models, such as ProtBert [9] (as used in CLAPE [20]) due to its
demonstrated effectiveness in learning relevant features for our task.
The architecture of SeqVec contains the following steps:

1. ELMo Pre-training: EL.Mo, originally designed for natural language processing,
is a bi-directional language model that learns to predict the likelihood of the next
word in a sentence given the surrounding words. It does so by training on mas-
sive amounts of unlabeled text data, such as Wikipedia articles. ELMo develops
contextualized embeddings that capture the syntax and semantics of the language.
In the context of SeqVec, ELMo is trained on large protein sequence databases,
specifically UniRef50, to predict the next amino acid in a sequence based on its
neighboring amino acids.

2. Embedding Extraction: After pre-training, ELMo produces embeddings for amino
acids in a protein sequence. These embeddings capture the contextual information
about each amino acid based on its surrounding amino acids in the sequence.

3. Sequence Embeddings: The output of ELMo for each amino acid is a contin-
uous vector representation that captures the biophysical properties of the protein
sequence. These embeddings are referred to as SeqVec embeddings and serve as
the representation of the protein sequence.

4. Embeddings for Prediction Tasks: The SeqVec embeddings can be used as fea-
tures for various protein prediction tasks, such as secondary structure prediction,
intrinsic disorder prediction, subcellular localization prediction, and more. These
embeddings are fed into neural networks or other machine learning models to per-
form these tasks.

Sparse Coding Since tunning a language model could still be expensive and it may
not generalize better, we proposed a sparse coding-based alternative, which involves
the power of k-mers (for neighborhood context capturing) and one-hot encoding (for
generic embedding generation) to transform amino acids into numerical representa-
tions. The utilization of Sparse Coding is justifiable by its ability to capture local
compositional information within amino acids of the protein sequences, enhancing our
model’s capability to learn meaningful patterns associated with binding sites. For this
purpose, we take a k-mer (where k£ = 9, which is decided using the standard valida-
tion set approach) as a sliding window for each amino acid. Then we design a one-hot
encoding-based representation for the k-mer, which acts as the local embedding for the
given amino acid. In this way, we design embedding for each amino acid, which is then
used as input for supervised analysis using machine learning and deep learning models.
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One exception occurs in our sparse coding-based embedding when the sliding win-
dow (k-mer) reaches the end of the sequence. In that case, for the remaining n — k
amino acids (where n is the protein sequence length), we take the k-mers-based sliding
window in reverse order and repeat the one-hot encoding step, hence preserving the
neighborhood context. The overall workflow of the Sparse Coding embedding genera-
tion technique is illustrated in Figure

(b) Gert forward k-mers

(a) Start

Seq: MVTSAT
k=3

Get One-Hot
Encodings (OHE)

(e) Embeddings

(c) Get reverse k-mers (d) Combine all
k-mers

Fig. 1: Workflow of Sparse Coding embedding generation method for a given sequence.

3.2 Classification Module

After designing the embeddings for each amino acid within the protein sequence to bind
site prediction, the next step is to select efficient classification models to perform the ac-
tual site prediction. For this purpose, the features generated by the sequence embedding
module (i.e. SeqVec and Sparse Coding) are fed into the classification module, which
is composed of multiple machine-learning classifiers. For the same binding site predic-
tion problem, authors in [20] propose the use of a four “one-dimensional convolutional
neural network” (IDCNN) model as the backbone network. The raw dimension of the
input is 1024, and the output dimensions of the four layers are 1024, 128, 64, and 2,
respectively. Each layer has a stride of 1 and is followed by a batch normalization layer
(except for the last one). The layers are also accompanied by varying sizes of kernel
filters and paddings. The kernel sizes are 7, 5, 3, 5, and the paddings are 3, 2, 1, 2.

The IDCNN is designed to capture neighboring information within protein se-
quences and employs operations like max pooling for down-sampling. Padding is ap-
plied for different convolutional kernel sizes to maintain the same sequence length for
input and output features, ensuring a unified token-level classification outcome. The
activation function ReLU (rectified linear unit) introduces nonlinearity to the model,
and techniques such as dropout and batch normalization are utilized to enhance model
robustness and generalization. The classification head is an integral part of the model,
employing a Softmax function. This function scales the output values between 0 and 1,
representing mutually exclusive prediction scores. These scores reflect the probability
of a given residue being a DNA-binding site. The classification head is then used to
predict DNA-binding sites within protein sequences.
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While deep learning model, such as IDCNN, exhibits remarkable capacity in var-
ious tasks, the dataset size, task complexity, and interpretability considerations have
guided our choice towards machine-learning classifiers (i.e. Naive Bayes, Multi-Layer
Perceptron, K-Nearest Neighbors, Random Forest, Logistic Regression, and Decision
Tree). These classifiers collectively analyze the encoded features and make predictions
about the presence of ligand binding sites in the protein sequence. Moreover, it is well
known in the literature that the neural network-based methods do not perform optimally
as compared to simple Machine Learning (ML) classifiers (e.g. tree-based methods) in
the case of tabular data [10l16/21]]. Therefore, we decided to use simple ML models for
the downstream supervise analysis (i.e. binding site prediction), as done in the litera-
ture [4.2136]).

By integrating these modules, our proposed framework strives to provide accu-
rate predictions of protein-ligand binding sites, leveraging the strengths of SeqVec and
Sparse Coding for feature representation, and harnessing machine-learning classifiers
for classification tasks. This design rationale ensures a well-rounded approach to pre-
dicting binding probabilities while considering the intricacies of the protein-ligand in-
teraction problem.

To demonstrate the power of simple ML models over the deep learning models, we
fine-tuned the existing ProtBert [9] model (as used in CLAPE [20]) to generate em-
beddings for the amino acids and performed binding site predictions as well. The fine-
tuning hyper-parameters are ADAM optimizer, 25 batch size, and 10 training epochs.
A loss function is formed by combining the focal loss [19] and triplet center loss
(TCL) [12]] to handle the data imbalance issue effectively, and it’s defined as Loss =
L tocal + ALy, where A is a hyperparameter with 0.1 value.

4 Experimental Setup

This section discusses the details of the datasets used for conducting the experiments
along with the employed evaluation metrics and baseline methods. All experiments are
conducted using a server having Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.40G H z with
Ubuntu 64 bit OS (16.04.7 LTS Xenial Xerus) having 3023 GB memory. Our code is
available online[]]

Dataset Statistics: We perform the binding site classification task using DNA-based
datasets. These datasets were preprocessed to improve the model’s robustness and avoid
data imbalance bias. In both datasets, the binding sites were defined as residues with
a distance of < 0.5 (threshold value) +R, where R represents the sum of the Van
der Waals radius of the two nearest atoms between the residue and the nucleic acid
molecule. In each dataset, protein sequences are present along with their respective
binding site indication as labels. For instance, a sample sequence from the train set
of Datasetl is "ARRIGHPYQNRTPPKRKK” where the alphabets represent the amino
acids of the respective protein sequence and the labels are ”001111110011011100”.
These labels indicate if the corresponding amino acid has DNA binding site capacity or

"mttps://github.com/sarwanpasha/Binding-Site—Prediction
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not i.e. 1 is for the binding site & O for the non-binding site. The details of these data
are given in Table[T]

Length Statistics

Count Max Min Avg  Binding Non-Binding

Train 646 1937 36 279.02 15636 298503
Test 46 743 62 236.43 965 9911
Train 573 3969 45 486.28 14479 145404
Test 129 968 55 290.81 2240 35275

Dataset 1 [27131:45]

Dataset 2 [39143120]

Table 1: The details of maximum, minimum & average lengths of sequences in the
datasets 1 & 2 respectively. The number of binding and non-binding sites present in the
test and train sets of each DNA-based dataset respectively [20]

Evaluation Metrics: To evaluate the performance of the binding site prediction task,
we used various evaluation metrics. The metrics are specificity, precision, recall, F1-
score, ROC AUC, and Matthews correlation coefficient (MCC). We have reported the
average score for each metric after 5 runs.

Baseline Models: We have compared the performance of our proposed methods with
various baselines described in Table

Baseline Description

DRNAPred [42] A sequence-based method for predicting and differentiating between DNA- and RNA-binding
residues.

DNAPred [49] 1t introduces a novel two-stage imbalanced learning algorithm called Ensembled Hyperplane-
Distance-Based Support Vector Machines for the prediction of protein-DNA binding sites.

SVMnuc [34] It is an ab-initio method devised to predict nucleic acids-binding residues, addressing the chal-
lenge of accurately identifying these biologically significant sites.

NCBRPred [44] It is designed to predict nucleic acid binding residues within proteins. NCBRPred adopts a
multilabel sequence labeling model (MSLM).

DBPred |27 A server-based tool for predicting DNA-binding residues in proteins. The sequence module
allows to predict the DNA-interacting residues using the binary and physicochemical profiles.

This approach effectively combines the power of a pre-trained protein language model (i.e.
CLAPE [20 ProBert) with contrastive learning techniques (i.e. IDCNN model) to do prediction of DNA
binding residues in proteins

Table 2: The baseline methods used to evaluate the system.

t-SNE Visualization: A popular visualization technique, named t-SNE [37]], is em-
ployed by us for visualization.

The t-SNEs against Dataset] for the top 3 longest sequences are depicted in Fig-
ure[2] We can observe that in all the plots the clusters are overlapping and non-definite.
The binding instances are less visible and scattered throughout the plots in each figure,
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5. RESULTS AND DISCUSSION 9

and a reason for this could be the data imbalance issue in the dataset i.e. number of
binding instances is much less than the non-binding ones. Moreover, the Sparse Coding
technique is yielding very similar cluster structures for all three sequences, while Prot-
Bert and SeqVec show some variation in the structures. Overall, the patterns illustrate
that none of the embedding methods for any sequence can generate very clear clusters
for both the binding and non-binding classes in a 2-dimensional space.

(c) S1-Sparse Coding

(f) S2-Sparse Coding

s S At e

(g) S3-ProtBert (h) S3-SeqVec (1) S3-Sparse Coding
Non-Binding % Binding

Fig. 2: t-SNE visualization of embeddings generated by different embedding generation
methods (ProtBert, SeqVec, & Sparse Coding ) using top 3 longest sequences (S1, S2,
S3) from Dataset 1. The Figure is best seen in color.

The t-SNE visualization of the top 3 longest sequences from Dataset2 are shown
in Figure 3] We can observe that for any sequences against the ProtBert technique, the
binding class instances are almost invisible. This indicates that this method can not
preserve a good structure for less frequent classes from the dataset in a 2-dimensional
space. Furthermore, the SeqVec and Sparse Coding mechanisms illustrate binding clus-
ters being scattered across the plots for all the sequences. Overall, yet again no definite
and clear cluster structures can be viewed for Dataset2 and it can also be due to the
class imbalance challenge.

5 Results And Discussion

The classification results for the proposed method and its comparison with the baselines
are shown in Table E] for Dataset 1. Compared to the baselines such as DRNAPred,
DNAPred, SVMnuc, NCBRPred, DBPred, and ProtBert + 1DCNN, we can observe
that ProtBert + ML classifiers (our pre-trained model) i.e. Naive Bayes, Multi-layer
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(a) S1-ProtBert (b) S1-SeqVec
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Fig. 3: t-SNE visualization of embeddings generated by different embedding generation
methods (ProtBert, SeqVec, & Sparse Coding ) using top 3 longest sequences (S1, S2,
S3) from Dataset 2. The Figure is best seen in color.

Perceptron, K-Nearest Neighbors, Random Forest, Logistic Regression, and Decision
Tree, show near-perfect specificity and precision scores. This eventually means that the
number of correctly predicted non-binding sites is higher. Moreover, the accuracy of the
residues predicted as DNA-binding sites is also higher. However, for Recall and ROC-
AUC, the baseline NCBRPred shows higher performance while ProtBert + 1DCNN
shows superior performance in the case of F1 and MCC scores. More complex models
like ProtBert + IDCNN may have a higher capacity to capture intricate patterns in the
data, which could lead to better F1 and MCC scores. For our SeqVec + ML classifiers
and Sparse coding + ML/DL classifiers, we can again observe a near-perfect specificity
score. One interesting insight to note here is that since the Sparse coding-based em-
bedding method is completely unsupervised and does not involve any expensive model
training, it is still able to achieve a higher specificity score. This is due to the fact that
it preserves the neighborhood context efficiently within the generated embeddings. The
reason for the simpler models to excel in specific metrics, such as ProtBert + ML classi-
fiers achieving high specificity and precision due to their focused decision boundaries.

The classification results for the proposed method and its comparison with the base-
lines are shown in Table [ for Dataset 2. We can observe that for the specificity, pre-
cision, and MCC, both pre-trained models (i.e. ProBert and SeqVec) and the Sparse
coding-based method show higher scores using simple ML classifiers rather than using
comparatively more complex IDCNN model. For F1 and ROC-AUC, we can observe
that DNAPred performs the best.

We utilized a deep language model, ProteinBert [3]], to get the feature embeddings
of the protein sequences from our datasets and employed those embeddings to perform
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6. CONCLUSION 11
Method Model Spec. Prec. Recall FI (Bina.) ROC-AUC MCC
DRNAPred _ 0692 0185 0677 0291 0.755 0.226
DNAPred _ 0655 0157 0671 0254 0.730 0.194
SVMnuc _ 0666 0.154 0668 0250 0.715 0.192
NCBRPred _ 0674 0165 0677 0265 0713 0.207
DBPred B 0784 0243 0708 0362 0.794 0.320
IDCNN 0.834 0307  0.658  0.380 0.746 0.339
NB 0775 0167 0464 0246 0.619 0.093
MLP 0971 0466 0254  0.329 0.613 0.294
ProBert KNN 0981 0500 0191 0277 0.586 0.271
RE 0999 0999 0002 0004 0.501 0.043
LR 0994 0672 0117 0199 0.555 0.265
DT 0942 0211 0159  0.182 0.550 0.096
IDCNN 0.972 0418 0280  0.293 0.626 0.276
NB 0807 0.178 0431 0252 0.619 0.103
MLP 0963 0379 0231 0287 0.597 0.228
SeqVec KNN 0991 0692 0191  0.300 0.591 0.356
RE 0999 0851 0023 0046 0.511 0.135
LR 0997 0715 0075 0.136 0.536 0.219
DT 0933 0197 0.167 0.181 0.551 0.088
IDCNN 0.999  0.000  0.000  0.000 0.500 0.000
NB 0938 0096 0067 0.079 0.503 0.007
Soarse Coding MLP 0999  0.000 0000  0.000 0.500 0.000
E"“E C"’H‘]‘;v KNN 0997 0115 0003  0.006 0.500 0.009
(kmers+OHE) RF 0997 0289 0011  0.021 0.504 0.041
LR 0999 0000 0000 0.000 0.500 0.000
DT 0944 0102 0065 0.079 0.507 0.011

Table 3: Binding site prediction (classification) results for different evaluation metrics
using the proposed and baseline methods for Dataset 1. The best values are shown in
bold. Dashes “-” in the model column mean they were end-to-end models and used as
described in respective original studies

DNA binding site classification using our classification models (given in Section [3.2)).
ProteinBert is designed explicitly for protein sequences and it consists of both local and
global representations. We obtain the global representation in our experiments.

The DNA-binding site classification results of Dataset 1 are given in Table [5] The
results illustrate that the NB classifier depicts maximum performance in terms of re-
call, f1 score, and ROC-AUC metrics, while MCC & precision is optimal for the RF
classifier and specificity for MLP. However, overall ProteinBert is not showing optimal
performance as compared to the other methods (mentioned in Table[3).

Moreover, the classification results obtained from Dataset 2 are reported in Table [f]
We can observe that the NB model is outperforming others in terms of recall, f1 score,
and ROC-AUC metrics. Precision and MCC have the highest values against the DT
model, while specificity is optimal for the MLP classifier. However, yet again the Pro-
teinBert is unable to achieve optimal performance as compared to the other methods
(mentioned in Table @).

6 Conclusion

In this study, we have addressed the challenging problem of binding site prediction
using an innovative and comprehensive approach. Our work capitalizes on the syn-
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Method Model Spec. Prec. Recall FI (Bina.) ROC-AUC MCC
DRNAPred _ 0937 0190 0233 0210 0.693 0.155
DNAPred _ 0954 0353 0396 0373 0.845 0.332
SVMnuc B 0966 0371 0316 0341 0.812 0.304
NCBRPred _ 0969 0312 0392 0347 0.823 0313
IDCNN 0.830 0242  0.619 0317 0.725 0.221
NB 0761 0.141 0618 0230 0.690 0.100
MLP 0954 0305 0318 0311 0.636 0.225
ProBert KNN 0974 0310 0179 0227 0.577 0.181
RE 0999 0545 0002  0.005 0.501 0.035
LR 0979 048 0305 0376 0.642 0.354
DT 0910 0123 0.198 0.157 0.554 0.059
IDCNN 0.960 0328 0287  0.283 0.623 0.292
NB 0753 008 0382 0.145 0.568 0.035
MLP 0954 0262 0253 0257 0.604 0.175
SeqVec KNN 098 0503 0215  0.301 0.601 0.303
RE 0999 0782 0051  0.096 0.525 0.194
LR 0991 0512 0146 0227 0.568 0.252
DT 0882 0107 0222 0.144 0.552 0.046
IDCNN 0.999  0.000  0.000  0.000 0.500 0.000
NB 098 0058 0012  0.021 0.499 0.000
Sparse Codi MLP 0999 0.103 0001  0.002 0.500 0.005
‘lfm? (‘)’H‘Eg KNN 0993 0066 0.007 0012 0.500 0.002
(kmers+OHE) RE 0997 0109 0004  0.007 0.500 0.009
LR 0999 0000 0000 0.000 0.500 0.000

DT 0.900 0.062 0.104 0.078 ()jS()Z 0.002
Table 4: Binding site prediction (classification) results for different evaluation metrics
using the proposed and baseline methods for Dataset 2. The best values are shown in
bold. Dashes “-” in the model column mean they were end-to-end models and used as
described in respective original studies.

Method Model  Spec. Prec. Recall  F1 (Bina.) ROC-AUC MCC
IDCNN 0,998 0.000  0.044  0.000 0.521 0.060

NB 0529 0106 0574  0.179 0.551 0.025

Protei MLP 0999 0000 0000  0.000 0.500 0.000
rotein KNN 0936 0154 0.119 0134 0.527 0.050
Bert RE 0972 0215 0078 0.15 0.525 0.074
LR 0998 0000 0000  0.000 0.500 0.000

DT 0967 0181 0073  0.104 0.520 0.055

Table 5: Binding site prediction (classification) results for different evaluation metrics
using the ProteinBert embedding generation method for Dataset 1. The best values are
shown in bold.

Method Model  Spec. Prec. Recall FI (Bina.) ROC-AUC MCC
IDCNN 0.998  0.000  0.002  0.000 0510 0.000

NB 0724 0119 0536 0.194 0.630 0.067

Protei MLP 0999 0000 0004 0000 0.500 0.000
B“"e‘“ KNN 0979 0068 0021 0032 0.500 0.001
ert RE 0996 0230 0016  0.029 0.506 0.044
LR 0998 0002 0003  0.000 0.500 0.010

DT 0991 0241 0040  0.068 0.515 0.071

Table 6: Binding site prediction (classification) results for different evaluation metrics
using the ProteinBert embedding generation method for Dataset 2. The best values are
shown in bold.
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ergy between conventional bioinformatics techniques, state-of-the-art protein language
models, and advanced machine learning classifiers. Through meticulous experimenta-
tion and rigorous evaluation, we have demonstrated the superiority of our proposed
approach over existing models. Our model exhibits robust predictive behavior as ev-
idenced by higher predictive values on benchmark datasets. The flexibility and gen-
eralization capacity of our models is highlighted by their adaptability as a universal
framework for binding site prediction across diverse protein-ligand binding scenarios.
By leveraging SeqVec, a powerful pre-trained model, we capture intricate sequence fea-
tures effectively. Additionally, we propose a lightweight model based on Sparse Coding,
which combines k-mers and one-hot encoding to generate efficient initial embeddings.
This approach’s parameter efficiency positions it as a promising candidate for rapid
binding site prediction. As we continue to refine and expand our approach, we envision
its potential to drive breakthroughs across various domains of biology and genetics. Ex-
ploring the integration of epigenetic information and investigating ensemble methods
to combine predictions from diverse models could enhance the performance of binding
site prediction, thus advancing our understanding of intricate cellular processes.
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