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Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease and is
characterized by the loss of midbrain dopaminergic neurons. Endocrine disruptors (EDs) are
active substances that interfere with hormonal signaling. Among EDs, bisphenols (BPs) and
perfluoroalkyls (PFs) are chemicals leached from plastics and other household products,
and humans are unavoidably exposed to these xenobiotics. Data from animal studies
suggest that ED exposure may play a role in PD, but data about the effect of BPs and PFs
on human models of the nervous system are lacking. Previous studies demonstrated that
machine learning (ML) applied to microscopy data can classify different cell phenotypes
based on image features. In this study, the effect of BPs and PFs at different concentrations
within the real-life exposure range (0.01, 0.1, 1, and 2 uM) on the phenotypic profile of
human stem cell-derived midbrain dopaminergic neurons (mMDANs) was analyzed. Cells
exposed for 72 hours to the xenobiotics were stained with neuronal markers and evaluated
using high content microscopy yielding 126 different phenotypic features. Two different ML

models (XGBoost and LightGBM) were trained to classify ED-treated versus control
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mDANSs. ED-treated mDANs were identified with high accuracy (0.92). Assessment of the
phenotypic feature contribution to the classification showed that EDs induced a significant
increase of alpha-synuclein (aSyn) and tyrosine hydroxylase (TH) staining intensity within
the neurons. Moreover, microtubule-associated protein 2 (MAP2) neurite length and
branching were significantly diminished in treated neurons. Our study shows that human
MDANSs are adversely impacted by exposure to EDs, causing their phenotype to shift and
exhibit more characteristics of PD. Importantly, ML-supported high-content imaging can
identify concrete but subtle subcellular phenotypic changes that can be easily overlooked
by visual inspection alone and that define EDs effects in mDANSs, thus enabling further

pathological characterization in the future.
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Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting
about 3% of the population above 65 years [1]. The pathogenesis of PD involves a
combination of environmental and genetic risk factors, which collectively contribute to the
development and progression of the disease. The main cellular and molecular hallmarks of
PD are represented by the loss of midbrain dopaminergic neurons (mDANS) in the
substantia nigra, and intracellular aggregation of alpha-synuclein (aSyn), respectively [2].
Importantly, aSyn aggregates can disrupt normal cellular processes and contribute to the
repression of tyrosine hydroxylase (TH), the rate-limiting enzyme in brain catecholamine
biosynthesis, decreasing dopamine production [3]. These features lead to the onset of the
characteristic motor (e.g., bradykinesia, rigidity, and tremors) and non-motor (e.g., cognitive
impairment, psychiatric disturbances, and sleep disorders) symptoms of PD [4].

Endocrine disruptors (EDs) are hormonally active substances present in the environment,
including household and industrial products, and can have adverse effects on human health
[5]. EDs include bisphenols (BPs), such as bisphenol A (BPA) and S (BPS), and
perfluoroalkyls (PFs), such as perfluorooctanesulfonate (PFOS) and perfluorooctanote

(PFOA). These chemicals are widely diffuse, since BPs are used to produce polymers and


https://doi.org/10.1101/2023.08.23.554260
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.23.554260; this version posted August 24, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

resins for the production of polycarbonate plastics, food packaging, food cans, and thermal
receipts [6]. Similarly, PFs are found in different items of common use as cookware and
paper food packaging [7]. As a consequence, humans are constantly and unavoidably
exposed to these xenobiotics that may threaten human health via different routes such as
dermal absorption, inhalation and dietary ingestion [8] and EDs have been detected in
human serum, urine, placental tissue, umbilical cord blood and breast milk [9-11]. These
findings underscore the ability of EDs to enter and persist within the human body, raising
serious concerns about their detrimental effects on human health. Although the molecular
mechanism has not been completely clarified, it is generally accepted that BPs act as
xenoestrogen, binding and activating the estrogen receptors (ER) a and B, while PFs can
interfere with the ER, the androgen and thyroid hormone receptors [12,13]. Numerous
studied have associated exposure to these EDs with a range of health concerns, including
reproductive disorders, developmental abnormalities, metabolic dysfunction, and an
increased risk of several cancers [5,14,15].

Emerging data indicate that BPs and PFs also negatively affect the nervous system [16—
18]. Exposure to these chemicals may deteriorate the dopaminergic system, suggesting a
role in PD development [19]. Numerous research works have contributed to explaining this
association. For instance, studies conducted in zebrafish and in Drosophila melanogaster
have demonstrated that BPs significantly alter the dopaminergic system [16,19]. Similarly,
BPA-exposed monkey fetuses display reduced levels of dopamine in midbrain dopaminergic
neurons [20] and a recent investigation showed that EDs exacerbated phenotypes in a
murine PD model [21]. Although these studies suggest that BPs and PFs have the capacity
to alter the dopaminergic system thus contributing to the development and progression of
PD, current scientific literature lacks information about the involvement of these xenobiotics
on human mDANSs pathology. Although epidemiological studies show a relationship between
EDs exposure and neurodegenerative diseases [22], it is currently unclear which aspects of
human mDAN cellular biology can be modified by BPs and PFs, leaving a critical gap in the
understanding of the mechanisms underpinning ED-induced neurotoxicity. In addition, most
toxicological studies are performed using high concentrations of EDs in the range of
hundreds of uM to several mM, that do not mimic a realistic exposure [23,24]. There is thus
the need to find possible causal links between EDs and the onset of neurodegenerative
diseases. In recent studies, machine learning (ML) classification approaches have been
successfully used for cell line stratification and identification of chemical-treated human

mDANSs and could be exploited for neurotoxicity studies in vitro [25-27].
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The primary objective of this study was to examine the pathological impact of exposure to
BPs and PFs on human stem cell-derived mDANS, a cell type widely used for disease
modelling [28—-30]. This was achieved by using high-content fluorescence microscopy to
analyze the morphological characteristics affected by these EDs. Our hypothesis was that
EDs can induce specific morphological modifications in the phenotypic profile of mDANs
similar to that observed in PD patients. For this purpose, human mDANs were treated with
increasing low-dose concentrations (0.01, 0.1, 1, and 2 uM) of BPA, BPS, PFOS, and PFOA
for 72 hours and stained with specific mDANs markers. We then quantified 126 phenotypic
features from the high-content imaging dataset and two different ML models (XGBoost and
LightGBM) were trained to classify ED-treated versus control mDANs. By means of this
image data-based ML classification approach we measured at which concentrations EDs
induce overall phenotypic changes and which neuronal phenotypic features are most
impacted.

Material and Methods

Preparation of medium and plates

On Day 1, Complete Maintenance Media and plates for neuron seeding were prepared. All
reagents are listed in Table S1, and compositions of solutions and buffers are described in
Table S2. For coating, Laminin was diluted 1:10 in cold PBS +/+ and added to each well of

a previously PDL coated 384-well plate and incubated overnight at 4°C.

Neuron cultures and Compound treatment

Commercially available cryopreserved 35 days old human induced pluripotent stem cell
(hiPSC) derived mDANs were used for this study (Table S1). On Day 0, neurons were
thawed and, seeded in a 384 well plate in Complete Maintenance Medium at 15,000
cells/well in a final volume of 60 uL per well according to the manufacturers protocol. Plate
edge wells were not used. On Day 3, medium change and compound treatment was
performed. BPS, BPA, PFOS, and PFOA were dissolved in methanol and a 1.5X solution
for all desired concentrations (0.01, 0.1, 1, and 2 uM) was prepared using Complete
Maintenance Medium. As a neutral control, the highest methanol concentration of each
tested compound was used. To treat the cells, 40 puL of medium per well were aspirated and
substituted with an equal volume of 1.5X compound solution. The treated neurons were then
incubated at 37°C and 5% CO: for 72 hours.
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Fixation and staining

Neurons were fixed in 4% PFA for 30 minutes and then permeabilized and blocked in a 1X
blocking solution (Table S2) for 1 hour at room temperature (RT). Cells were washed,
labelled with the primary antibodies diluted in primary staining solution (Table S2) overnight
at 4°C and stained with the appropriate secondary antibodies for 2 hours at RT. Wells were
washed with PBS and nuclei counterstained with Hoechst. All the steps were performed

using an automated liquid handler.

Imaging and analysis

Images were acquired using an automated Yokogawa confocal fluorescence microscope. A
40X objective was used to acquire 16 fields/well using Z-stacks consisting of 3 Z-slices
separated by 2 um. Exposure times and laser intensities were adjusted for each of the 4
fluorescent channels separately to obtain an optimal dynamic range of the fluorescent
intensities and prevent signal saturation. Images were stored as TIFF files. Image
segmentation and phenotypic feature extraction were required for the creation of
guantitative phenotypic profiles. Our in-house developed software PhenoLink was used to
extract quantitative information from the multichannel images (Table S1). Image
segmentation was performed on illumination corrected raw images based on fluorescent
channel intensity thresholds empirically determined per plate. Segmented cells were
subdivided into four compartments: whole cell, cytoplasm, membrane, and nucleus (Figure
3A). The cell compartment was defined as the total MAP2 staining positive area, while
cytoplasm was defined by the cell area minus the nuclear area originating from the Hoechst
stain. The membrane compartment was defined by a 5-pixel wide window inside of the cell
edges. Based on the segmentations, in total 126 quantitative image features were calculated
and averaged per well (Table S3). Shape features were computed on the boundaries of
segmented compartments and include size and shape metrics. Intensity-based features
were computed from intensity values in each channel of the images. Texture features
guantify the regularity of intensities in images. Microenvironment or context features include
counts and spatial relationships within cells, such as the correlation of two channel
intensities.

The resulting quantitative data was then used to construct median phenotypic profiles per

treatment condition and to compare phenotypic profiles. A Python-based Jupyter notebook
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is provided to perform data standardization, supervised classification, and plotting (Table

S1). Figure 1 schematically depicts the experimental workflow.
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Figure 1. Experimental workflow.

Following thawing and seeding, mDANs were treated for 72 hours with the selected EDs at different
doses. Then, fluorescent staining against aSyn, TH, MAPs, and DNA was performed. The acquired
fluorescent images were segmented and 126 different features were quantified. Finally, ML
classifiers were applied to the image-derived data to detect the phenotypic modulations linked to ED
effects.

Data set composition, processing and statistics

Data was generated using two biological replicates representing the separate thawing and
culture of mDANSs from two cryovials. Within each biological replicate at least three technical
replicates (wells) were generated. The used dataset contains 126 columns with continuous
phenotypic feature data derived from the image segmentation workflow described above.
Additional columns include categorical data that detail the experimental conditions used,
such as the position on the plate or the chemical treatment applied. Each row in the dataset
represents the mean values per well of a 384-well plate, derived from 16 images. To be
suitable for ML, all data was scaled per phenotypic feature using the RobustScaler method
in the Python package scikit-learn. RobustScaler scales the data according to the
interquartile range (IQR). The IQR is the range between the 1st quartile (25th quantile) and
the 3rd quartile (75th quantile). Continuous data was graphically reported by dose-response
graphs showing the technical replicate data points, the mean and the 95% confidence
interval (CI). Analysis of variance (ANOVA) was used to determine statistically significant

differences between the different concentration of each ED on mDAN phenotypical features.
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When statistical differences were found, a Tukey post-hoc test was employed. Results were
considered significant when p<0.05. We provide a Python-based Jupyter notebook to

reproduce all data standardization and plotting steps (Table S1).

ML classification

In brief, a pipeline was created for preprocessing and classification using the XGBoost or
LightGBM classifiers. The data was split into training and testing sets, with 10% of the data
being used for testing. Grid search cross-validation with 5 folds was used to find the best
hyperparameters for each classifier. The pipeline was then trained on the full training set
using the best hyperparameters found. Feature importance were calculated and plotted to
show the most important features used by the models. Predictions were made on the test
set, and the probabilities of each sample belonging to the “control” class were calculated.
The accuracy of the classifier on the test set was evaluated, and a confusion matrix was
computed and plotted as a heatmap. 10-fold cross-validation scores were also calculated
and plotted across the whole dataset. We provide a Python-based Jupyter notebook to

reproduce all data pre-processing, ML, and visualization steps (Table S1).

Results

ED treatment increases aSyn staining intensity in human mDANs

mDANs were treated for 72 hours with BPA, BPS, PFOS, and PFOA at four different
concentrations (i.e., 0.01, 0.1, 1, and 2 uM) and stained for immunofluorescence analysis.
As expected, the imaged neurons were positive for TH and MAP2 and showed the mDAN
typical morphology (Figure 2A). Methanol only was used as vehicle control (Figure 2B).
The acquired raw images were segmented, and different phenotypic features were
quantified (Table S3). Among these, the features “living cells” and “aSyn intensity in TH+
cells” were first considered to evaluate compound toxicity (Figure 2C). Living cells were
defined as nuclei with a size larger than 2000 pixels and an average pixel intensity lower
than 1500. Smaller and brighter nuclei were assumed to show signs of DNA compaction
and were considered as apoptotic. No modifications in cell viability were observed when
MDANSs were treated with BPA, BPS, PFOS or PFOA (Figure 2D,), however, a significant
difference of aSyn intensity in TH+ cells were found in EDs treated mDANs (Figure 2D),
except for PFOS (Figure 2D). Specifically, aSyn fluorescent intensity was higher in BPA 0.1
MM and 2 uM treated samples, BPS significantly increased aSyn at 2 uM while PFOA was
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effective in increasing aSyn levels at 0.1, 1, and 2 uM. mDAN imaging therefore indicates

that EDs at the tested doses did not affect cell viability but may increase aSyn expression

levels.
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Figure 2. Increased aSyn levels in BP and PF treated human mDANSs.

(A) After 7 days of culture, mDANs were immunostained against TH, aSyn, and MAP2; nuclei were

counterstained with Hoechst.
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(B) mDANSs were treated with increasing concentration (0.01, 0.1, 1, and 2 uM) of four different EDs
(BPA, BPS, PFOS, and PFOA) and 16 images were recorded per well. Cells exposed to methanol
(vehicle) only were used as control.

(C) Example of image segmentation. Raw images from individual channels were segmented, and
126 different phenotypic features describing signal shape, texture, intensity, and localization, were
extracted (Table S3).

(D) Dose-response graphs and statistical analysis describing the effect of treatments on the number
of living cells, and aSyn intensity in TH+ neurons. Data is shown as normalized single data points
(black dots), mean (black lines) and 95% CI of the mean (gray area). *p<.05, **p<.01, ***p<.001

compared to methanol control.

BP and PF treatments modify human mDANs phenotypic profile

Humans are usually chronically exposed to low doses of EDs that can induce changes in
cellular biology which at least initially may be slight and difficult to detect. We therefore
combined 126 morphological features to create a phenotypic profile of mDANs and
investigated whether xenobiotic compound exposure would lead to specific signatures. The
phenotypic features, originating from the segmented four microscopy channels, were further
subdivided into the four compartments: cell, cytoplasm, membrane, and nucleus (Figure
3A). Shape, intensity-based and texture features were combined to a treatment-specific
phenotypic profile (Figure 3A, Table S3). We performed clustering analysis to compare
similarities among samples. Each phenotypic profile was considered as a vector and the
Cosine distance was measured between profiles. Clustering analysis showed that the
xenobiotics, even at low concentrations induced differences in the phenotypic profiles in
human mDANSs (Figure 3B). Lower concentrations tended to cluster closer to the control
than higher concentrations indicating that there is a dose-response relationship between
increasing ED concentration and variation of the overall phenotypic profiles (Figure 3B).
Only the 0.01 uM BPS sample was positioned slightly outside the cluster containing other
low-concentration EDs and the control. Plotting all profiles also illustrated that many
phenotypic features are changed by ED treatment and that not only a single feature class
or cellular compartment is affected. Phenotypic profiles also allow to zoom into phenotypic
features of interest. Picking one example per features class (context, intensity, shape,
texture) clearly showed that 1 uM of all four tested EDs is sufficient to induce observable
changes in four selected features describing the correlation between the MAP2 and aSyn
channels, the aSyn staining intensity, neurite complexity, and the second angular moment

of the aSyn channel texture (Figure 3B, right panel).
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To further visualize the relationships between the phenotypic profiles, the two embedding
techniques Uniform Manifold Approximation and Projection (UMAP) and Pairwise Controlled
Manifold Approximation (PaCMAP) were used [28,29] (Figure 3C). Embeddings are useful
to display high-dimensional data because they can translate high-dimensional data into a
relatively low-dimensional space such as a 2D graph. Both embeddings show that
phenotypic profiles from ED treated wells group separately from control treated wells
(Figure 3C). Further, both embeddings show that BPs (BPA and BPS) and PFs (PFOA and
PFOS) tend to group together, indicating that the observed morphometric changes are
specific to each compound class and related to their chemical structure.
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Figure 3. Phenotypic profiles derived from ED-treated mDANs indicate morphological
changes in different cellular compartments.

(A) From segmented images context, intensity, shape and texture phenotypic features were
calculated for different subcellular regions.

(B) Phenotypic features were scaled, median aggregated by treatment condition and clustered using
the pairwise Cosine distance between each profile. Features were ordered by cellular localization
and feature type. Example phenotypic features from each features class illustrate morphological
changes after 1 yM ED treatment.

(C) UMAP and PaCMAP embeddings with control and 2 uM compound treated per well data.
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ML classification discriminates ED-treated mDANs based on image-derived neuronal
features

Due to the high dimensionality of phenotypic profiles and the large number of changed
features, it is not trivial to identify feature patterns that correlate with an experimental
condition. Supervised ML classification algorithms are designed to learn rules from large
and complex datasets and compute the probability of a new data point falling into predefined
classes, such as ED treated or untreated conditions. We exploited “open” ML classifiers that
allowed us to deduce which data features are most explanatory for the observed differences
between classes and to identify generalizable rules related to the cell biological effects of
ED exposure.

XGBoost and LightGBM are two popular supervised ML algorithms. Due to their use of
decision trees, the feature weights of the trained models can be extracted and inform about
differences between classes. The main difference between XGBoost and LightGBM is how
they build decision trees. XGBoost builds trees one level at a time, while LightGBM focuses
on the leaves, or endpoints, of the tree. Briefly, all the image datasets for each condition
were divided into a train set (90 % of the dataset) and a test set (10 % of the dataset).
XGBoost and LightGBM were then trained to distinguish treated from untreated phenotypic
profiles using the training set. All ED concentrations ranging from 0.01 to 2 yM were
assigned to the treated class. The trained model was applied to the previously unseen test
set phenotypic profile data, in order to cross validate the classification performance (Figure
4A).

Cross-validation is useful to prevent model overfitting when data is limited and is the
application and evaluation of a trained ML model on different slices of the training dataset.
When applying 10-fold cross-validation on the training dataset both the XGBoost and
LightGBM classification algorithms showed a similar performance in predicting the
phenotypic classes (Figure 4B and E). Due to the relatively small size of the dataset, both
XGBoost and LighGBM showed accuracy variations during training from 0.38 to 1.0
(median: 0.83) and 0.4 to 1.0 (median: 0.8), respectively. A confusion matrix was plotted to
check for by-class errors and the prediction accuracy of the two different algorithms when
applied exclusively to the test set. The test set contained data from 15 control and 11
chemicals treated wells across all concentrations and EDs. XGBoost classification predicted
neuronal phenotypes (i.e. methanol control vs. treated) with an accuracy of 0.88 and miss-

classified only 2 out 15 control wells as treated and 1 out of 11 treated wells as control wells
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(Figure 4C). LightGBM classification performed similarly and resulted in an accuracy of 0.92
while erroneously classifying only 1 well per treatment category (Figure 4F). Next, we
extracted the ten most important features involved in the classification performance of the
trained models. 6 features contributed between 5-15% to XGBoost model performance,
while LightGBM model performance relied on a larger range of features with only a single
feature contributing more than 5%. For both classification algorithms, the intensity of TH
signal around the cytoplasmic membrane, the MAP2 cell surface per nucleus, and the
cellular intensity of aSyn were among the most contributing features to distinguish control

and EDs treated samples (Figure 4D and G).
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Figure 4. Image data-derived ML classification to predict mDAN phenotypes.

(A) Schematic representation of ML training and testing methods used to predict mDAN phenotypes

based on treatments.
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(B, C, D) Classification accuracy for 10 different cross-validation iterations using the training data,
confusion matrix graph visually representing the number of times the XGBoost algorithm correctly
predicted the experimental condition in the test dataset, and the ten most important features
contributing to XGBoost classification performance.

(E, F, G) Classification accuracy for 10 different cross-validation iterations using the training data, )
confusion matrix graph visually representing the number of times the LightGBM algorithm correctly
predicted the experimental condition in the test dataset, and the ten most important features

contributing to LightGBM classification performance.

Neurite-related features of mMDANs are negatively affected by BP and PF treatments

Both classification algorithms indicated that the cellular surface evidenced by the MAP2
signal is a key feature explaining the differences between ED-treated and untreated mDANs
(Figure 4D and G). Upon exposure to the BPs and PFs, mDANSs exhibited a visually notable
decrease in the length of their neurites (Figure 5A) and this negative effect was mostly
dose-dependent, being more evident for all EDs at 2 uM (Figure 5B, top row). Specifically,
Tukey’s post-hoc analysis demonstrated that BPA decreased neurite length at 0.1 and 2
UM. For both, BPS and PFOS, the decrease occurred when mDANs were exposed to 1 and
2 UM. PFOA decreased neurite length at 0.1, 1, and 2 pM.

In addition to reduced neurite length, the treatments also resulted in a significant decrease
in the number of branching points, that are critical for the formation of complex neuronal
networks and communication (Figure 5B, bottom row). Branching points per cell were
significantly decreased when mDANs were exposed to BPA and BPS at 0.1, 1 and 2 pM.
PFOS decreased this feature only at 1 and 2 puM, while PFOA had the strongest effect,

showing significant differences from 0.01 to 2 uM compared to the methanol control.
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Figure 5. Neurite length and branching points of mDANs are negatively affected by ED
treatment.

(A) Representative images of methanol control and 2 uM BPA treated mDANSs counterstained with
Hoechst and a MAP2 antibody.

(B) Dose-response graphs and statistical analysis describing the effect of treatments on neurite
length per cell, and neurite branching points per cell. Data are shown as normalized single values

(black dots), mean (black lines) and 95% CI of the mean (gray area). *p<.05, **p<.01, ***p<.001
compared to methanol control.

BP and PF exposure increases TH signal intensity and the cellular surface intensity of the
TH/aSyn double positive cells

Both classification algorithms showed that ED-treated and untreated mDANSs differ also in
the membrane-associated TH and aSyn signal mean intensities (Figure 4D and G). TH and
aSyn, whose signal was affected by the xenobiotic treatment (Figure 6A) are two crucial

proteins in mDANS. A significant fluorescence intensity increase for TH, the enzyme critical
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for dopamine biosynthesis, was detected inside the neurons: the signal marked the entire
cell body, but an increase around the cellular membrane was also observed. Statistical
analysis showed that BPA and BPS increased cytoplasmic TH levels at 0.1 and 2 uM. Both
PFOS and PFOA lead to increased TH signal intensity in the cytoplasm at 1 and 2 pM, and
PFOA also increased this feature at 0.1 pM.

Also, BPA significantly increased TH intensity around the membrane at 0.1 and 2 pM.
Similarly, BPS increased the TH signal intensity around the membrane at 0.1, 1, and 2 uM.
PFOS increased TH intensity around the membrane only at 1 and 2 uM, while PFOA induced
this increase at all concentrations compared to control (Figure 6B, top and middle panels).
We also observed an increase of the cellular surface intensity of TH/aSyn double positive
neurons which was elicited only by BPs, and not by PFs. BPA increased the cellular surface
intensity of TH/aSyn at 1 uM, while BPS had this effect at 0.01 and 0.1 pyM (Figure 6B,
bottom panel). The increase of TH/aSyn double positive total cellular fluorescence surface
intensity is in accordance with the whole cell TH and aSyn intensity increases we described
earlier (Figure 2D).

Together our findings on MAP2 neurite length and branching points as well as TH and aSyn
level changes illustrate how ML classification can aid in the identification of subcellular
phenotypes that can be easily overlooked when just visually inspecting images without prior

data analysis.
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Figure 6. TH signal intensity increases following ED exposure.

(A) Representative images of methanol control and 1 pM BPA treated mDANs. Additionally, pixel
intensities are illustrated using a heatmap.

(B) Dose-response graphs and statistical analysis describing the effect of treatments on overall TH
intensity (top panel), around the membrane (middle panel), and surface intensity increase of
TH/aSyn double positive cells. Data are shown as normalized single values (black dots), mean (black

lines) and 95% CI of the mean (gray area). *p<.05, **p<.01, ***p<.001 compared to methanol control.

Discussion

BPs and PFs belong to the ED class due to their ability to interfere with the endocrine

system. Recent studies suggest that these compounds can have detrimental effects on the
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nervous system and that they can worsen PD symptoms in different PD model systems [16—
21], while the effect on human mDANSs is unclear. Here, we investigated the effect of these
chemicals on human mDANSs evaluating their action on protein and morphological features
generally affected during PD. The main findings of this study are that i) BPs and PFs lead
to a net increase of aSyn protein level, a characteristic hallmark of PD; ii) ED treatment
dramatically impaired the neuron network, decreasing neurite length and the branching
points per cell; iii) ML successfully classified cells treated with the selected compounds
compared to methanol only controls allowing to extract phenotypic features and feature
combinations that can be easily overlooked when inspecting cells visually.

Although association studies already suggested a relationship between the exposure to EDs
and PD development, our results provide the first evidence of the threatening action of BPs
and PFs on a human mDAN model, showing the neuronal biological features affected by
EDs exposure. In line with previous data obtained in other neuronal or stem cell models [30—
32], in our setting BPs and PFs did not impact cell viability. However, high content imaging
analysis showed that 72-hour exposure to BPA, BPS, or PFOA determined an increase of
aSyn levels in human mDANs and this effect was particularly evident at the highest
concentration tested (2 uM) (Figure 2D, Figure 3B, Figure 6B). Accordingly, Pradyumna
and colleagues showed that BPA treatment induced a significant upregulation of both PD-
associated aSyn and leucine-rich repeated kinase 2 (LRRK2) proteins in zebrafish [33].
aSyn accumulation in neurons after BPA exposure has also been reported in mammals,
being upregulated in the substantia nigra pars compacta of adult rats that were neonatally
treated [34]. Moreover, when mice were exposed in utero to human-relevant doses of BPA,
aSyn was one of the most upregulated genes as shown by Ingenuity Pathway Analysis [35].
Effects of BPS and PFs on aSyn levels have not been reported; however, a single oral dose
of either PFOS or PFOA increased the levels of tau protein in the cerebral cortex and
hippocampus of mice, indicating a role in the dysregulation of normal neural homeostasis.
The marked increase in aSyn fluorescence intensity within the mDANSs cytoplasm following
BPA and BPS exposure is noteworthy, as aSyn plays a central role in the pathogenesis of
PD and other synucleinopathies [36]. The elevation of aSyn levels within the cytoplasm
suggests altered protein aggregation dynamics or impaired protein degradation
mechanisms. These findings are in line with the growing evidence linking environmental

exposure to aSyn pathology and neurodegenerative processes [37].
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Like for aSyn, alterations of TH fluorescent intensities in specific cell compartments were
also identified by both ML classifiers upon the ED exposure (Figure 4D and G, Figure 6).
TH is a critical enzyme involved in dopamine biosynthesis [38]; the TH level increase in both
cytoplasm and the neuronal membrane could account for an increased synthesis or for a
decreased degradation the enzyme. While the increased signal at the membrane could also
suggest an intracellular redistribution from the cytoplasm to the membrane, the overall
increased of TH signal after BP treatment seems to rule out this hypothesis, supporting the
potential BP effect on TH metabolism (Figure 6B, top and middle panels). This finding is
consistent with previous studies demonstrating that BPA and BPS may affect dopaminergic
pathways and neurotransmitter function [39]. It is known that cellular TH levels decrease
during PD, affecting dopamine synthesis [40]. In our setting, the increased levels of TH could
reflect an initial compensatory mechanism exerted by mDANSs in response to ED exposure.
However, the hypothesis that TH signal increase might reflect a higher concentration due to
the reduced cellular area determined by the modification of neurite morphology cannot be
excluded. We also noted that the overall cellular surface labelled by both TH and aSyn
antibodies (TH/aSyn double positive cellular surface intensity) increased following BPA and
BPS, but not PFOA or PFOS exposure. These results confirm the neurotoxic effects of BP
exposure on human mDANSs thus corroborating-current literature supporting the role of this
ED class in the development of neurodegenerative diseases (Figure 6B, bottom panel).

Closer analysis of neurite-related features demonstrated that exposure to BPA, BPS, PFOS,
and PFOA negatively impacts neurite length and the number of branching points in mDANS.
These findings suggest that these EDs may disrupt the structural development of neuronal
processes, which are critical for proper connectivity and communication within neuronal
networks [41]. The observed effects exerted by “real life” exposure doses highlight the
sensitivity of mDANS to these environmental chemicals, with higher concentrations leading
to more significant alterations in neuronal morphology (Figure 5B). The BPs and PFs
detrimental effects on neurite length and branching points might have implications on
neurodevelopmental processes, the proper functioning of dopaminergic circuits and during
PD development [42,43]. Moreover, our findings align with previous research demonstrating
the neurotoxic effects of BPs on neuronal morphology and connectivity. Indeed, BPA and
BPS decreased both normalized neurite total length and normalized maximum neurite
length in neuron-like cells at 1 nM while other analogs required higher concentration to exert
such a negative effect [44]. Similarly, PFOS and PFOA have been associated with adverse

effects on neuronal development and connectivity in other experimental models. Liao et al.
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investigated the effect of different PFs on cultured rat hippocampal neurons and
demonstrated that PFOS and PFOA decreased neurite length by about 25% and 20%,
respectively [45]. It is also known that BPs and PFs, interfering with the endocrine system,
do not show a linear dose-response effect [31,32]. Accordingly, in our study we found that
some investigated features were altered at low (0.1 pM) and high concentration (2 uM), but
not at medium ones (1 uM).

Taking not only single but all phenotypic features into account, Cosine distance-based
clustering and data embedding using UMAP and PaCMAP showed that at 2 uM BPA and
BPS phenotypic profiles are similar to each other but differ from PFOA and PFOS profiles
which are also similar to each other (Figure 3B and C). This particular clustering seems to
suggest that xenobiotics belonging to the same class of compounds exert similar effects,
probably due to the structural similarity and to the consequent ability to interfere with cellular
biology in a similar manner.

One of the notable findings of this study is the ability of ML to accurately discriminate and
classify the phenotypic profiles of mMDANSs treated with EDs. Specifically, when the LightGBM
algorithm was applied to our image-derived dataset, it correctly classified mDANs treated
with EDs and control cells with a high accuracy of 0.92. (Figure 4F). We previously reported
the effectiveness of ML in classifying normal and PD affected mDANSs by applying a Linear
Discriminant Analysis (LDA) and Support Vector Machine (SVM) classification to image-
derived datasets [25]. ML can help to identify subtle phenotypic patterns that may be easily
overlooked but that may be relevant representing the initial signs of cellular distress. This
approach appears to be particularly important in the context of the studies on environmental
chemicals’ effects on human health. Humans are chronically in contact with these
biologically active substances and the consequences on the neurotransmitter systems can
become clearly evident only after a protracted exposure, making their risk assessment very
challenging. By analyzing large datasets, ML algorithms can detect complex relationships
and patterns that may not be immediately apparent to human observers. In this study, by
means of the ML approach ED-treated and untreated mDANs were differently classified on
the basis of relevant biological features related to PD, such as increased aSyn expression
and diminished neurite network length. These data are particularly important, as we exposed

human mDANSs to BPs and PFs doses that resemble the real-life exposure range.

Conclusion
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Our results provide important information regarding the effect of BPA, BPS, PFOS and
PFOA on human mDANs, showing that they drive mDANs toward PD-like phenotypes.
Importantly, our ML-supported image analysis approach can identify phenotypic changes
that define detrimental EDs effects, thus representing a useful tool for further mechanistic

neurotoxicity studies.
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