

1 **African bush pigs exhibit porous species boundaries**

2 **and appeared in Madagascar concurrently with**

3 **human arrival**

4

5 **Authors**

6 Renzo F. Balboa^{1#}, Laura D. Bertola^{1#}, Anna Brüniche-Olsen^{1#}, Malthe Sebro Rasmussen¹,
7 Xiaodong Liu¹, Guillaume Besnard², Jordi Salmona², Cindy G. Santander¹, Shixu He¹, Dietmar
8 Zinner^{3,4,5}, Miguel Pedrono⁶, Vincent Muwanika⁷, Charles Masembe⁸, Mikkel Schubert¹,
9 Josiah Kuja¹, Liam Quinn¹, Genís Garcia-Erill¹, Rianja Rakotoarivony⁶, Margarida Henrique⁹,
10 Long Lin¹, Xi Wang¹, Michael P. Heaton¹⁰, Timothy P. L. Smith¹⁰, Kristian Hanghøj¹, Mikkel-
11 Holger S. Sinding¹, Anagaw Atickem¹¹, Lounès Chikhi^{2,9}, Christian Roos¹², Philippe Gaubert²,
12 Hans R. Siegismund¹, Ida Moltke^{1*}, Anders Albrechtsen^{1*} and Rasmus Heller^{1*}

13

14 ¹ Department of Biology, University of Copenhagen, Copenhagen, Denmark

15 ² Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université
16 Toulouse Paul Sabatier, 31062 Toulouse, France

17 ³ Cognitive Ecology Laboratory, German Primate Center, Leibniz Institute for Primate
18 Research; 37077 Göttingen, Germany

19 ⁴ Department of Primate Cognition, Georg-August-Universität Göttingen; 37077 Göttingen,
20 Germany

21 ⁵ Leibniz Science Campus Primate Cognition; 37077 Göttingen, Germany

22 ⁶ UMR ASTRE, CIRAD, Campus International de Baillarguet, Montpellier, France

23 ⁷ College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda

24 ⁸ College of Natural Sciences, Makerere University, Kampala, Uganda

25 ⁹ Instituto Gulbenkian de Ciência, Oeiras, Portugal

26 ¹⁰ USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, USA

27 ¹¹ Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa,
28 Ethiopia

29 ¹² Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz
30 Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany

31 [#] These authors contributed equally

32 ^{*} Corresponding/senior author

33 **Abstract**

34 Several African mammals exhibit a phylogeographic pattern where closely related taxa are
35 split between West/Central and East/Southern Africa, but their evolutionary relationships and
36 histories remain controversial. Bushpigs (*Potamochoerus larvatus*) and red river hogs (*P.
37 porcus*) are recognised as separate species due to morphological distinctions, a perceived
38 lack of interbreeding at contact, and putatively old divergence times, but historically, they were
39 considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large
40 terrestrial mammal shared with the African mainland raises intriguing questions about its origin
41 and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum
42 between the two species, with putative signatures of historical gene flow, variable F_{ST} values,
43 and a recent divergence time (<500,000 years). Thus, our study challenges key arguments
44 for splitting *Potamochoerus* into two species and suggests their speciation might be
45 incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African
46 populations and underwent a limited bottleneck 1,000-5,000 years ago, concurrent with human
47 arrival in Madagascar. These results shed new light on the evolutionary history of an iconic
48 and widespread African genus and provide insight into the longstanding biogeographic puzzle
49 surrounding the bushpig's presence in Madagascar.

50

51 **Keywords:** whole genomes, genomics, population genetics, metapopulations, introgression,
52 hybridisation, speciation, Suidae.

53

54 Introduction

55 The African Suidae lineage contains six recognised extant species: common warthog
56 (*Phacochoerus africanus*), desert warthog (*Ph. aethiopicus*), giant forest hog (*Hylochoerus*
57 *meinertzhageni*), wild boar (*Sus scrofa*), red river hog (*Potamochoerus porcus*) and bushpig
58 (*P. larvatus*)^{1,2}. There are several unresolved aspects of the evolutionary history of African
59 pigs, including a controversial timeline for their divergence which stems from molecular
60 estimates that predate fossil records by millions of years, and the unresolved role of gene flow
61 between lineages^{3,4}. The two members of the genus *Potamochoerus* — red river hog and
62 bushpig — were historically considered conspecific, despite considerable morphological
63 differences^{5,6}. They occur parapatrically in Western/Central (W/C) Africa and
64 Eastern/Southern (E/S) Africa with some populations possibly having abutting or slightly
65 overlapping ranges² (Fig. 1a). Based primarily on morphological differences and a lack of
66 evidence that these taxa hybridise at contact, Grubb proposed the currently accepted
67 nomenclature, regarding them as two distinct species^{7,8}.

68

69 The distribution of the two *Potamochoerus* species is similar to that found in several other
70 African mammals that have ecologically comparable sister (sub)species pairs. The W/C and
71 E/S divide has been highlighted as one of the most important biogeographic patterns in Africa,
72 and is potentially connected to the initial divergence between hominins and apes⁹, even if at
73 a different time scale. This evolutionary divergence into W/C and E/S lineages occurred
74 relatively recently for some mammalian taxa such as the African buffalo (*Syncerus caffer*)¹⁰
75 and the lion (*Panthera leo*)¹¹ leading to subspeciation, whereas in other taxa, an older split
76 led to full speciation, e.g. in African elephants (*Loxodonta* sp.)¹² and baboons (*Papio* sp.)¹³.
77 For all species mentioned above, a hybrid zone has been identified where the ranges of
78 diverged lineages overlap⁸. Although possible hybridisation between the two *Potamochoerus*
79 species has been suggested⁷, the evolutionary connection and the geographic context of a
80 likely suture zone are still poorly understood^{5,14}. Recent range contractions limit the overlap
81 of the two species ranges to Uganda and Democratic Republic of Congo (DR Congo).
82 However, South Sudan and possibly Ethiopia were part of a suture zone in the recent past,
83 when the red river hog range extended further towards the East (Fig. 1a)⁵. The evolutionary
84 processes occurring in these suture zones, found recurrently across many taxa, e.g. in
85 western Uganda^{10,15}, are of particular interest for understanding speciation and the
86 phylogeography of African mammals in general.

87

88 Bushpig populations on Madagascar provide an interesting case of possible human-mediated
89 range expansion. The bushpig represents a biogeographic anomaly in being the only large,

90 wild terrestrial mammal to be shared between the African continent and the island of
91 Madagascar¹⁶. These land masses separated about 150 million years ago, leading to a largely
92 divergent fauna and flora^{17,18}. For some Malagasy taxa, such as lemurs, it has long been
93 debated whether colonisation of Madagascar could have taken place through island hopping
94 or temporal land bridges¹⁹. It is now commonly accepted that some of these taxa arrived on
95 Madagascar by rafting on floats of vegetation, and that successful colonisation events and
96 subsequent radiation led to the diversity seen today^{20,21}. For bushpigs, it has been proposed
97 that the most plausible explanation is that they were introduced to Madagascar by humans,
98 possibly through the Comoros Islands^{22,23}; however, this has not been conclusively verified.
99 Humans are believed to have been present in Madagascar no earlier than 11,000 years ago
100²⁴, with some authors claiming that there is no proof of human presence older than 2,000 years
101²⁵. Nevertheless, most authors agree that there were no significant numbers of humans until
102 1,000-1,500 years ago with the arrival of populations from South-Eastern Africa (Bantu
103 speakers) and South-East Asia (Austronesian speakers)^{24,26,27}. Radiocarbon dating of
104 archaeological remains suggests that bushpigs, as well as zebu, sheep and goats, were
105 established in southwest Madagascar between 700-1,200 years ago; however, this estimate
106 may be influenced by the scarce data available for Malagasy bushpigs²⁸. To our knowledge,
107 there is only one study which attempted to estimate the arrival of bushpigs on Madagascar
108 based on genetic data; this study suggested a split time of 480 kya based on mitochondrial
109 DNA (mtDNA) divergence times, which is not in line with a proposed human-mediated
110 introduction to the island²⁹. In addition to the time of arrival, the source population for Malagasy
111 bushpigs is still unknown, where despite detailed morphological studies, these have been
112 unable to conclusively resolve their mainland origin^{8,30}. The existing genetic data tentatively
113 suggest an origin from Central Southern Africa²⁹. If bushpigs were indeed introduced to
114 Madagascar by humans, it presents another suite of questions as there is no archaeological
115 or other evidence of domestication of bushpigs ever occurring despite them being an important
116 protein source for many rural communities³¹. For example, the transportation of such a large
117 non-domesticated mammal over the wide (> 400 km) Mozambique channel remains an
118 unsolved mystery, and may provide an indirect indication that populations located on the
119 south-eastern African coast mastered oceanic travel beyond fishing²⁹. Alternatively, a much
120 older divergence time could provide indirect proof of a very early African presence in
121 Madagascar.

122

123 In this study, we present new data and population genomic analyses of 67 whole genomes
124 from *Potamochoerus*, including 32 bushpigs from Madagascar. We investigate their
125 population structure and genetic diversity, and infer gene flow between the two taxa. We also
126 estimate the degree of evolutionary divergence between the bushpig and red river hog relative

127 to co-occurring species that represent incomplete or full speciation. Finally, we address the
128 question of when and from where in Africa the bushpig colonised Madagascar, clarifying
129 several details regarding the origin of Malagasy bushpigs. Our analyses present new insights
130 that will improve our understanding of African biogeography, and help settle a major question
131 regarding prehistoric human activities shaping biodiversity patterns in Africa.

132 **Results**

133 **Sampling and filtering**

134 Whole genome sequencing data were generated for 71 *Potamochoerus* samples across the
135 two species' ranges, including 23 red river hogs and 48 bushpigs (3×-101×, mean ~12.8×; Fig.
136 1a; Supplementary Data 1). All samples were mapped to a chromosome-level common
137 warthog reference genome, and rigorous site filtering applied to reduce downstream errors
138 (see Methods; Supplementary Data 1). Two red river hog samples, from Cameroon and DR
139 Congo, were excluded due to high sequencing error rates (Supplementary Fig. S1). Four
140 samples, two from Equatorial Guinea (Eq Guinea) and two from Ethiopia, were deemed to
141 originate from the same individual and were merged into one sample for their respective
142 localities (Supplementary Fig. S2). A total of 13 samples were first degree relatives (parent-
143 offspring or full siblings), of which 11 were from Madagascar and two were from Uganda.
144 Depending on the specific requirements of the various downstream analyses, these samples
145 were excluded. In summary, whole genome sequencing data from 67 pigs from 13 countries
146 were analysed in this study, of which 54 were not closely related, including 18 that were
147 sequenced at medium-high depth ($\geq 14\times$; Fig. 1a; Supplementary Data 1). A summary of
148 datasets, analyses and methods used is provided in Supplementary Data 1.
149

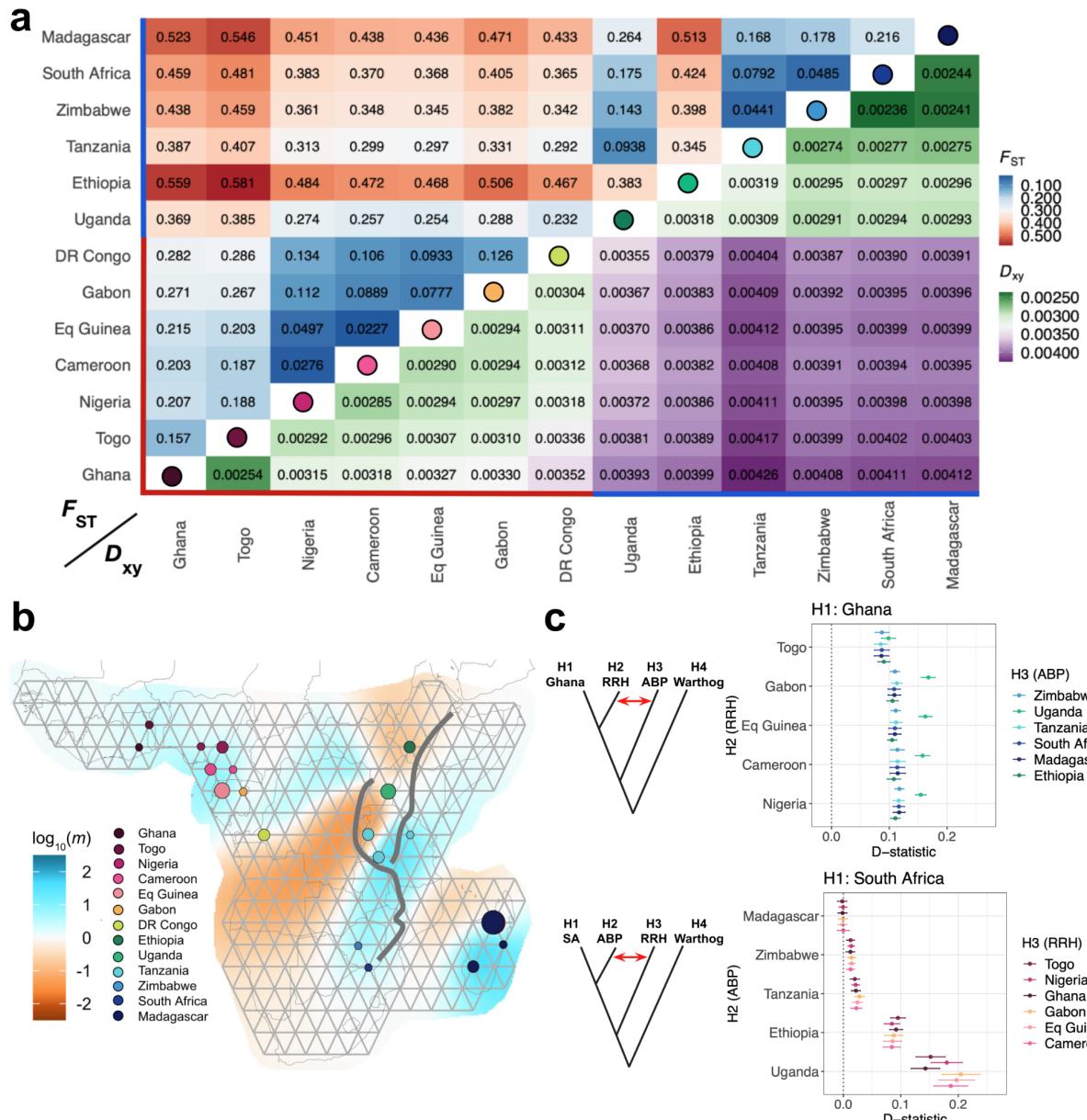
150
151 **Figure 1. Sampling and population structure of red river hogs and bushpigs.** **a)** Sampling map of
152 all 67 pig individuals used within this study, coloured by country of origin. Ranges for red river hogs and
153 bushpigs are shaded in red and blue, respectively ^{32,33}. **b)** Principal component analysis (PCA) for 67
154 pigs, showing the first two principal components, coloured by country. **c)** Unrooted neighbour-joining
155 tree based on pairwise identity-by-state (IBS), coloured by country (n = 67). **d)** Inferred ancestry
156 proportions for 54 unrelated samples using NGAdmix ³⁴, assuming K = 2 (upper barplot) and K = 8
157 (bottom barplot). Coloured lines above and below population labels indicate species designations; red
158 - red river hogs, blue - bushpigs. Pairwise correlations of residuals as estimated by evalAdmix ³⁵ are
159 shown above and below the respective NGAdmix barplots. Gh - Ghana, To - Togo, Ga - Gabon, DRC
160 - Democratic Republic of Congo, Zi - Zimbabwe, SA - South Africa.

161 **Localised population structure and no recent admixture between red river hogs and**
162 **bushpigs**

163 We first aimed to gain insights into the population structure of red river hogs and African
164 bushpigs, specifically examining genetic differentiation between populations of both species
165 ³⁴. Principal component analysis (PCA) revealed that the first two principal components
166 exhibited a spatial distribution pattern reflecting the taxonomic and geographic origins of the
167 sampled pigs; the red river hog samples clustered together, with only the Congo individuals
168 being closer to the bushpigs than the other red river hogs and the Malagasy samples formed
169 a separate cluster from the other bushpigs (Fig. 1b). A neighbour-joining tree using identity-
170 by-state delineated a clear division between red river hogs and bushpigs, displaying a basal
171 split between the two groups (Fig. 1c). The tree also revealed more localised population
172 substructure, including the Malagasy samples forming a clade separate from the other
173 bushpigs.

174

175 We next inferred ancestry proportions within both putative species to further explore
176 population substructure. Assuming the number of ancestral populations was 2 ($K = 2$), the
177 result largely aligned with the pattern observed in PC1-PC2 (Fig. 1d). Notably, we did not
178 observe a clear separation of red river hogs and bushpigs at $K = 2$, even when excluding
179 Madagascar samples (Supplementary Fig. S3). It is worth noting that evalAdmix ³⁵ indicated
180 unresolved substructure, suggesting that this pattern should not be interpreted as the result of
181 admixture and these numbers as admixture proportions. We obtained a much better fit by
182 assuming a higher number of ancestral populations ($K = 8$, Fig. 1d; Supplementary Fig. S4)
183 and were able to assign most geographic locations to their own ancestral population. However,
184 this analysis did not reveal evidence of recent gene flow between bushpigs and red river hogs.


185 **Moderate differentiation and gene flow between red river hogs and bushpigs through**
186 **Uganda**

187 Genetic differentiation between all pairs of populations was assessed using Hudson's F_{ST} and
188 D_{xy} between unrelated individuals (Fig. 2a) ^{36,37}. F_{ST} values generally correlate with geographic
189 distance (Fig. 2a; Supplementary Fig. S5). Notably, Ethiopia and Madagascar exhibited higher
190 F_{ST} values (0.345-0.581 and 0.168-0.546, respectively). Excluding these populations, F_{ST}
191 values within red river hog populations ranged from 0.023-0.286, while F_{ST} values within
192 bushpigs were between 0.044 and 0.175. When comparing across species, F_{ST} excluding
193 Ethiopia was higher (0.232-0.546), though not markedly so when compared to the most
194 differentiated population pairs in within-species comparisons. D_{xy} values exhibited a similar
195 trend, displaying increased nucleotide diversity between species relative to within-species

196 comparisons (Fig. 2a). As with F_{ST} , D_{xy} also correlated with geographic distance with the
197 exception of Tanzania; this population had increased D_{xy} relative to other populations. Notably,
198 D_{xy} for Ethiopia was similar to those between other bushpig and red river hog populations,
199 suggesting that the high F_{ST} observed for Ethiopia was likely driven by lower within-population
200 diversity. In contrast, the Ugandan bushpig population exhibited a reduced D_{xy} relative to other
201 bushpig populations, suggesting potential gene flow with the red river hogs. In fact, the lowest
202 D_{xy} between species was between the Ugandan and Congolese populations, which were also
203 the two geographically closest.

204

205

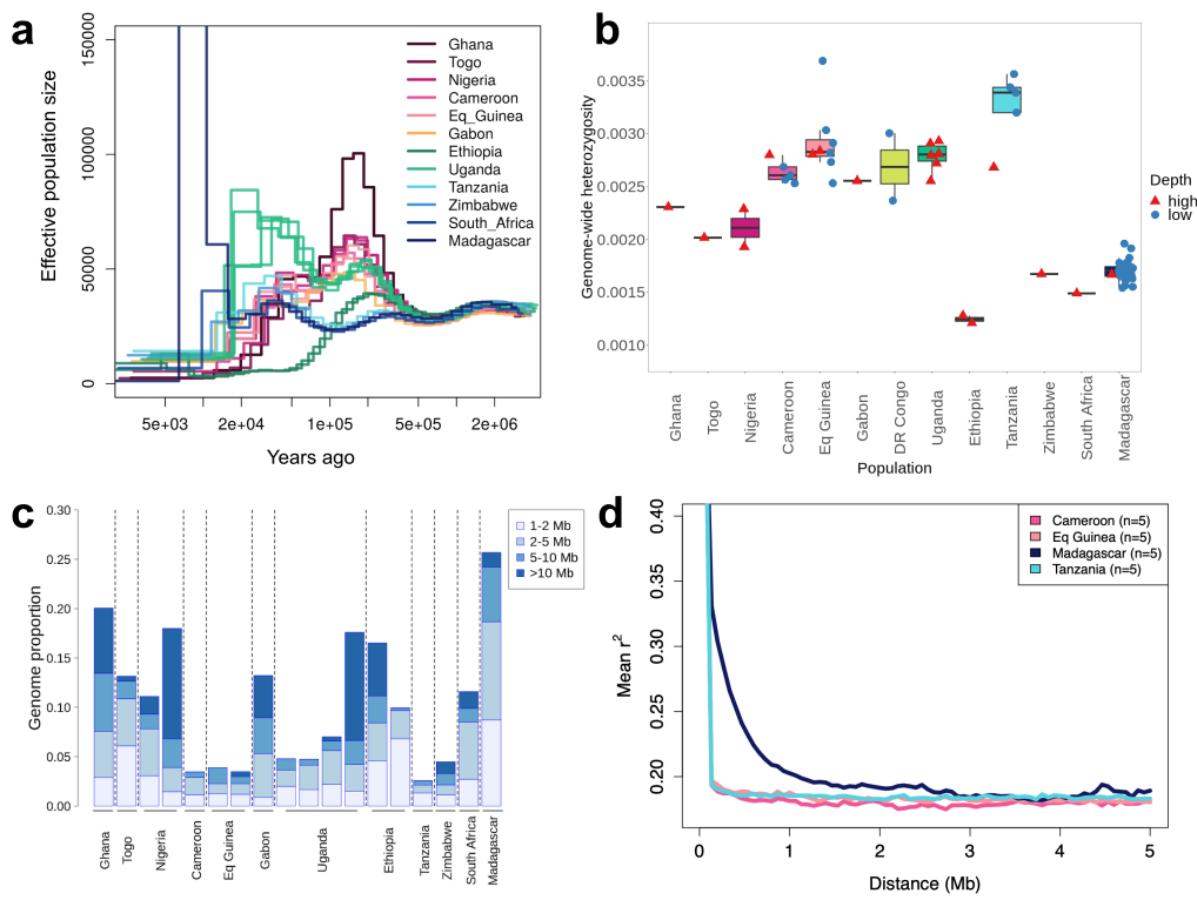
206

Figure 2. Genetic differentiation and gene flow between African bushpigs and red river hogs. a) Genetic differentiation as described by pairwise Hudson's F_{ST} ³⁶ and D_{xy} ³⁷ for 54 unrelated individuals, rounded to three significant figures. Circles on the diagonal correspond to populations as in b). Coloured lines above and next to population labels indicate species designations; red - red river hogs, blue - bushpigs. **b)** Estimated effective migration surfaces using EEMS³⁸. Circles are coloured by country of origin. $\log_{10}(m)$ describes the effective migration rate relative to the overall migration rate across indicated regions. The East African Rift Valley is depicted by grey lines. **c)** D-statistics between populations using the common warthog as an outgroup, constructed as $D(H1, H2, H3, \text{Warthog})$. A significant non-zero positive value, as depicted by the red arrow in the graphic for each panel, provides evidence for gene flow between H3 and H2, relative to H1 (i.e. H2 is closer to H3 than H1)³⁹. *Upper panel* - D-statistics testing for gene flow signals between African bushpigs (H3) and non-Ghana red river hogs (H2). *Lower panel* - D-statistics testing for gene flow signals between red river hogs (H3) and non-Malagasy bushpigs (H2). Error bars represent \pm three standard errors from the estimated D-statistic. RRH - Red river hog; ABP - African bushpig; SA - South Africa.

221

222 Given the observed F_{ST} and D_{xy} values, we explored spatial patterns of gene flow between
223 species (Fig. 2b)³⁸. A general barrier through the Central African rainforest and following the
224 East African Rift Valley was observed, separating W/C and E/S populations. Within each of
225 the species ranges, connectivity was high, with the exception of Malagasy and non-Malagasy
226 bushpigs where we observed a barrier across the Mozambique Channel, particularly with the
227 northernmost non-Malagasy populations. We also observed a decrease in effective migration
228 in Ethiopia. This is in contrast with Uganda where we observed weak gene flow barriers,
229 suggesting a corridor of gene flow connectivity involving Uganda.

230


231 To detect potential gene flow patterns between the two species, we then tested for ancient
232 admixture events. f -branch statistics revealed putative signals of gene flow between bushpigs
233 and red river hogs, showing extensive gene flow involving Uganda (Supplementary Fig. S6).
234 D-statistics were then used specifically to test whether there is increased allele sharing
235 between red river hogs and bushpigs within the putative suture zone, compared to populations
236 further from the suture zone (e.g. Ghana and Madagascar). Two tests were designed in order
237 to test this hypothesis. We first set the westernmost population (Ghana) as H1, each of the
238 red river hogs as H2 and each of the bushpigs as H3 (Fig. 2c; upper panel). This revealed that
239 all red river hog populations showed signs of gene flow from African bushpigs, decreasing in
240 signal from Central Africa to the westernmost red river hog populations, and with a particularly
241 strong signal from Uganda. Similarly, to test for gene flow in the opposite direction, we
242 performed similar tests with the easternmost bushpig population, Madagascar as H1, each of
243 the remaining red river hog populations as H2, and each of the bushpig populations as H3
244 (Fig. 2c; lower panel). We observed a similar result, whereby we perceived a signal decrease
245 towards more eastern and southern populations. Notably, this signal was particularly strong in
246 Ethiopia and Uganda, suggesting substantial gene flow between red river hogs and these
247 bushpig populations. These results suggest that there is or has been gene flow between the
248 two taxa currently identified as species, and that the gradient of allele sharing between them
249 is consistent with isolation by distance, where genetic similarity is strongest in populations
250 from Central Africa. Additionally, these results could also be interpreted as a complex network
251 of populations connected by genetic exchange, either recent or ancient.

252 **Demographic histories and genetic diversity**

253 Demographic histories of the surveyed populations were next explored (Fig. 3a)^{40,41}. All PSMC
254 curves overlapped from the most ancient past until ~500 kya, where we observed a stark
255 difference in PSMC trajectories between red river hog and bushpig individuals. All red river
256 hog populations first experienced a moderate increase (population expansion assuming

257 panmixia) followed by a more recent contraction ~50 kya. In contrast, bushpig individuals
 258 exhibited PSMC curves that followed three different trajectories: i) the populations in Tanzania,
 259 Zimbabwe, South Africa and Madagascar exhibited relatively constant (i.e. horizontal) curves
 260 until ~10 kya; ii) the Ugandan population showed a demographic history more similar to red
 261 river hogs than to the remaining bushpig populations, particularly between 100-500 kya and;
 262 iii) the Ethiopian population showed a history characterised by a declining and low PSMC
 263 curve ~200 kya. Given the results reported above, the unique demographic histories in
 264 Uganda and Ethiopia could be influenced by their geographic location as a place of
 265 introgression between the two taxa.

266

267

268 **Figure 3. Genetic diversity of African pigs.** a) Effective population sizes over time for 18 medium-
 269 high depth pig samples as estimated by PSMC, assuming a mutation rate of $\mu = 1.49 \times 10^{-8}$ per site per
 270 generation and a generation time of six years^{4,42}. b) Genome-wide heterozygosity measurements
 271 described as the proportion of heterozygous sites per bp across each individual genome. Medium-high
 272 depth (n = 18; red triangles) and low-depth samples (n = 49; blue circles) are shown. c) Estimated
 273 genome-wide runs of homozygosity (ROH) proportions for 18 medium-high depth individuals. Each bar
 274 represents a single individual, grouped by their population. Proportions of differing ROH length intervals
 275 are shown as subdivisions within bars. d) Linkage-disequilibrium decay for populations with five or more
 276 samples, described as mean r^2 values for SNP pairs 0-5 Mb apart (n = 5 for each population).

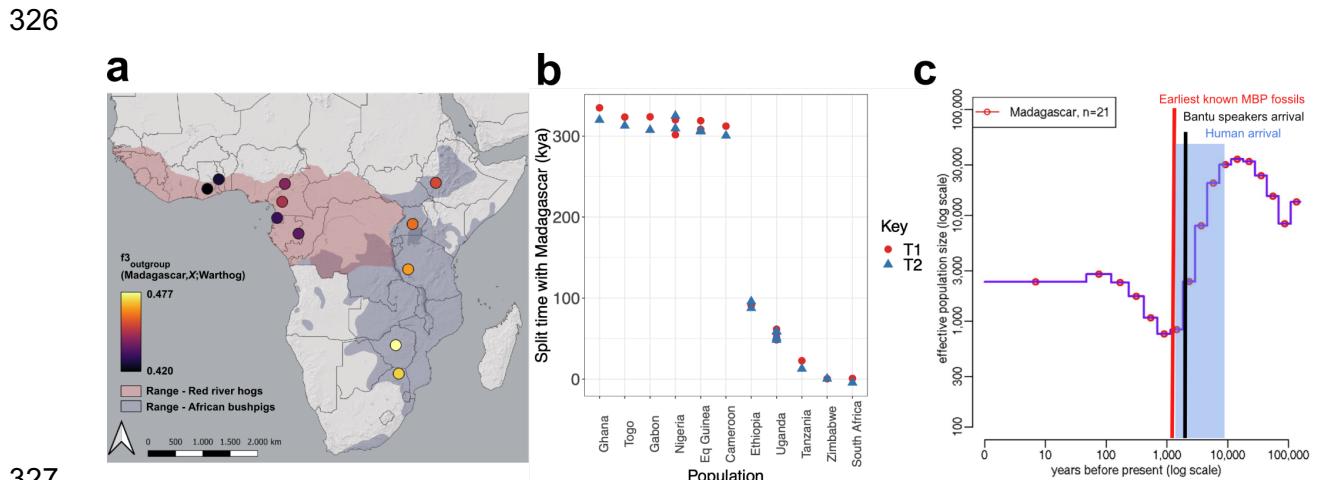
277

278 Per-sample heterozygosity was next explored as a measure of genetic diversity, differing at
279 both a species and population level (Fig. 3b). Heterozygosity was generally lower in bushpigs
280 when compared to red river hogs, with the exception of Uganda and Tanzania which had
281 similar heterozygosity levels to populations of DR Congo and Equatorial Guinea. The bushpig
282 population in Ethiopia exhibited extremely low genetic diversity, one third of that of the highest,
283 Tanzania (Fig. 3b). This was consistent with elevated F_{ST} values, reduced connectivity in
284 EEMS and the low effective population size estimated by PSMC (Fig. 2a). Heterozygosity in
285 Madagascar was also relatively low, but similar to that of Zimbabwe and South Africa.

286

287 Runs of homozygosity (ROH) were then explored within medium-high depth genomes, where
288 the fraction of ROH with length >1 Mb (F_{ROH}) affected 3-27% of the genome across all
289 individuals (Fig. 3c). There was no systematic difference in F_{ROH} between red river hogs and
290 bushpigs. Ugandan individuals generally had low levels of F_{ROH} except for one individual, while
291 Ethiopian individuals had relatively long F_{ROH} , supporting the low genetic diversity described
292 within this population. The Madagascar individual had the largest F_{ROH} out of all individuals
293 tested, and exhibited the largest proportion for each length class <10 Mb for all samples
294 excluding Ghana, and <5 Mb for all samples. This is consistent with results comparing linkage
295 disequilibrium (LD) decay between different populations with at least five unrelated individuals,
296 where Madagascar exhibited increased LD (Fig. 3d).

297


298 Taken together, these results suggest that the evolutionary histories of red river hogs and
299 bushpigs vary markedly. In light of previous results, we find further evidence that Uganda is
300 likely a region of strong introgression, and that the Ethiopian population underwent strong drift
301 after gene flow with red river hogs. Finally, we find that Malagasy individuals had similar
302 population histories and a level of genetic diversity comparable with other southern bushpig
303 populations, but had increased F_{ROH} and LD.

304 **Bushpig arrival in Madagascar coincides with the expansion of Bantu speakers**

305 The timing of arrival and geographical origin of bushpigs in Madagascar is still unresolved, as
306 previous lines of evidence, e.g. estimated split times and fossil records, appear to be
307 contradictory. We therefore explored the putative founding of this population. We first
308 measured the amount of shared history between the Malagasy population and each of the
309 other populations (Fig. 4a)⁴³. Our results suggested that amongst sampled populations, those
310 from South Africa and Zimbabwe have the longest shared history with Madagascar. This was
311 consistent with our results exploring gene flow and connectivity, which showed a weaker

312 barrier between Madagascar and these two southern populations when compared with other
313 bushpig populations (Fig. 2b,c), the neighbour-joining tree (Fig. 1c) and D_{xy} values (Fig. 2a).

314
315 Split times between populations were next examined, including the species split between red
316 river hogs and African bushpigs and the split between bushpig populations on mainland Africa
317 and Madagascar (Fig. 4b)⁴⁴. The species split was estimated to have occurred ~300 kya, and
318 consistent with the outgroup f3 results, Madagascar exhibited the lowest split times with
319 populations in South Africa and Zimbabwe (~850 and ~500 years ago, respectively). This
320 further suggested that either one of these or an unsampled population within the same
321 geographic region was the population of origin. Additionally, we investigated putative recent
322 demographic events for the Madagascar population (Fig. 4c)⁴⁵. This analysis suggested that
323 the Malagasy population experienced a severe bottleneck, likely a result of a founder event
324 between 1-5 kya. This result was also consistent with the high F_{ROH} (Fig. 3c) and the high LD
325 (Fig. 3d) characterising this population.

328 **Figure 4. Origin and timing of bushpigs in Madagascar.** **a)** Outgroup f3 statistics in the form f3
329 (Madagascar, X; Warthog), where X describes different sampling localities. **b)** Population split times
330 with Madagascar as estimated by the TT method using individual pairs of medium-high depth samples
331 ($n = 18$). T1 and T2 values, describing population split times, are shown as red and blue points,
332 respectively. A mutation rate of $\mu = 1.49e^{-8}$ per site per generation and a generation time of six years
333 were assumed^{4,42}. kya - thousands of years ago. **c)** Recent effective population sizes inferred based
334 on unrelated Madagascar individuals using popSizeABC⁴⁵ ($n = 21$). Shaded region - estimated timing
335 of human arrival in Madagascar^{24,26,27}; red line - estimated timing of earliest known bushpig fossils in
336 Madagascar (MBP)⁴⁶; black line - estimated timing of Bantu speakers arrival in Madagascar, as
337 estimated in Pierron *et al.*²⁶.

338 Discussion

339 Biodiversity patterns on the African continent show striking similarities across multiple species,
340 including a division between lineages in W/C Africa and in E/S Africa, with known hybridisation
341 zones spanning across Uganda, South Sudan, and Ethiopia^{10,12,13,47}. Although hybridisation
342 between the red river hog and the bushpig has been suggested before, this has not yet been
343 studied in detail and the level of evolutionary divergence between them remains contentious.
344 Moreover, bushpigs also represent the anomaly of being the only large wild mammal which
345 occurs both on mainland Africa and Madagascar, but due to limited data from Malagasy
346 bushpigs, the scenario of colonisation is still largely unknown. Our study is the first to
347 investigate the evolutionary histories of red river hogs and bushpigs at the genome scale,
348 allowing for a better understanding of the processes leading to the formation of two distinct
349 taxa and the colonisation of Madagascar.

350 Divergence and introgression between red river hogs and bushpigs

351 Under relatively simple models, we found that the estimated split times between red river hogs
352 and bushpigs could be estimated at ~300 kya (Fig. 4b) and that this time was in the same
353 range as W/C-E/S split time estimates for other African species which show a similar
354 phylogeographic pattern, including African buffalo (~273 kya¹⁰), baboon (~320 kya)¹³, giraffe
355 (~280 kya; submitted), warthog (~226 kya)⁴, lion (~245 kya)¹¹, and spotted hyena (~360 kya)
356⁴⁸. Although red river hogs and bushpigs are widely considered to be distinct species, in the
357 examples mentioned above, the divergent populations are typically considered to belong to
358 the same species, except for baboons, elephants and with an ongoing taxonomic debate about
359 the species status of giraffes^{12,49-51}. In a previous study, Gongora *et al.*³ estimated the
360 divergence time between red river hogs and bushpigs at 2,710 kya, thus lending further
361 support for a species distinction between red river hogs and bushpigs. However, this estimate
362 was obtained with a wide confidence interval of 200-4,800 kya³. Our results suggest (and
363 corroborate recent findings) that divergence times between African suid taxa have thus far
364 been overestimated⁴. This includes red river hogs and bushpigs, where our analyses
365 represent a much younger divergence time and more reticulated evolutionary history than
366 previously known.

367

368 Furthermore, our results indicate a complex history of population structure (i.e. a
369 metapopulation or two interconnected metapopulations), with possible periods of increased
370 and decreased connectivity between populations. PSMC curves can be interpreted as
371 representing changes in coalescent effective population size, as is usually done, but this
372 interpretation relies on a very strong assumption of total panmixia⁵². If this assumption is

373 violated, changes in PSMC curves may alternatively reflect changes in gene flow ^{53,54}. Thus,
374 an alternative explanation for the observed PSMC curves is that there was a major
375 fragmentation period between 500 kya and 100-200 kya, and a second period more recently,
376 possibly between 100 and 30 kya. Such complex histories could lead to overestimates of
377 divergence times.

378

379 Our findings, therefore, have implications for the ongoing taxonomic debate about
380 *Potamochoerus* and for the interpretation of genetic data in this group. The current taxonomic
381 definition of *P. porcus* and *P. larvatus* was primarily based on morphology and a lack of
382 'convincing evidence' that they interbreed when they come into contact ⁸, a case which has
383 been previously disputed by previous authors who favour a single-species taxonomy ^{32,55}. Our
384 results suggest that the two taxa could be a case of incomplete speciation. However, we
385 emphasise that in cases such as *Potamochoerus*, different species concepts might arrive at
386 different conclusions about whether speciation has gone to completion, and we note that
387 taxonomic revisions should draw on various types of data and evidence, e.g. morphology and
388 behaviour ⁵⁶, which were not considered in the present study.

389

390 The impact of changing climate and habitat availability on the complex evolutionary history
391 between red river hog and bushpig is showcased by the Ethiopian population, which has
392 received substantial red river hog gene flow and was fixed for a divergent red river hog mtDNA
393 lineage (Supplementary Fig. S7). Ethiopia is further characterised by a low effective population
394 size and is strongly affected by drift, as illustrated by relatively long ROHs and high F_{ST} values.
395 Hence, Ethiopian bushpigs show contrasting evidence of connectivity and isolation, possibly
396 caused by historical fluctuations in the equatorial forest belt across Africa. These fluctuations
397 could have facilitated intermittent contact and hybridisation between red river hogs and
398 bushpigs as the forest expanded, followed by isolation of resident populations as the forests
399 receded. In line with this, the taxonomic status of *Potamochoerus* in Ethiopia remains
400 unresolved ⁵⁷ and there is anecdotal evidence of African buffalos in Ethiopia that strongly
401 resemble the forest buffalos of distant central and western Africa ⁵⁸. Similarly, the observation
402 of *Potamochoerus* admixture in Uganda coincides with the present-day boundary between two
403 of Africa's major mammalian biogeographical regions, the Guinean-Congolian and the
404 Sudanian core regions ⁵⁹, an area which also constitutes well-known hybridisation zones for
405 several large-mammal taxa, including elephants ⁶⁰, and subspecies of buffalo ¹⁰ and kob
406 (*Kobus kob*) ⁶¹. However, without more samples from adjacent locations, such as east DRC,
407 the epicentre of hybridisation is speculative.

408 **Origin of Malagasy bushpigs**

409 Our results support the hypothesis that bushpigs were introduced by humans from
410 southeastern Africa into Madagascar ~1,000-1,500 years ago ^{25,26} and possibly as early as
411 5,000 years ago. A previous estimate for the most recent common ancestor of mainland and
412 Malagasy bushpigs at 480 kya ²⁹ contradicts this; however, this could be partially caused by
413 problematic temporal calibration and by the limited information contained in mtDNA
414 sequences. Although we cannot pinpoint the precise source population from which the
415 Malagasy bushpigs were introduced with great certainty, our results suggest an origin in
416 southern Africa, as corroborated by the Zimbabwe and South African populations being closer
417 than all other populations when using NGSadmix, evolutionary distances, outgroup f3
418 statistics, divergence times and EEMS. Our estimate of an effective population size of 1,000
419 individuals during the bottleneck 1,500 years ago is surprisingly high, assuming that the
420 founder event was a single occurrence involving a limited number of individuals carried to
421 Madagascar by ship. However, the estimate is supported by their observed heterozygosity
422 level, which is similar to levels observed in southern Africa, although we cannot know to what
423 extent southern African populations have been subjected to drift since the founding of the
424 Malagasy population. Multiple introductions, spanning over a longer period of time, or even
425 with animals sourced from different mainland populations (including already admixed
426 individuals), may have inflated this estimate, and we also caution that popSizeABC may not
427 be able to accurately reflect changes in population size happening within a few generations,
428 such as those occurring during a bottleneck with very rapid subsequent regrowth and may
429 also be influenced by population structure.

430

431 Despite these limitations, our results provide, to our knowledge, the clearest evidence yet of
432 a recent introduction of bushpigs to Madagascar mediated by humans, most likely populations
433 which started to arrive on Madagascar from southern Africa at least 1,500 years ago and
434 possibly much earlier ²⁶. Bushpigs likely became established on the island as livestock
435 together with zebu, goats and sheep 700-1,200 years ago based on ¹⁴C bone analyses ²⁸,
436 coinciding with the extinction of Madagascar's megafauna likely as the result of human
437 activities such as hunting, pastoralism and farming ⁶². Lending strong support to this
438 hypothesis, our dating results are in line with the oldest fossils of Malagasy bushpigs (~1,000
439 years ago) ⁴⁶. Blench ²² hypothesised that human migrants reaching Madagascar must have
440 captured bushpigs in southeastern Africa, introduced them to Madagascar, and made an
441 attempt to domesticate them. Etymological problems over the naming of Malagasy bushpigs
442 (i.e. with a term usually used for bovine in South-East Asia) highlight that there are still
443 outstanding questions regarding the cultural perception and uses of bushpigs in early

444 Malagasy settlers, composed of both Bantu-speaking and Austronesian-speaking people.
445 Furthermore, the alleged morphological variation between Malagasy subpopulations ⁵,
446 including the suggestion that they are distinct subspecies ⁸, had led to suggestions of multiple,
447 distinct introduction pulses through the Comoros Islands and the North Mozambique current
448 ⁶³. However, from the PCA, NGAadmix and IBS tree we did not identify substantial structure
449 within the island, which is consistent with a relatively homogeneous founder population.

450

451 Although we have samples across most of the species' range, we acknowledge that there are
452 some gaps in our inferences. A more even spread across the species ranges, and especially
453 more sampling localities from within the putative suture zone, e.g. southern DR Congo, would
454 increase our understanding of the evolutionary dynamics near the suture zone. In addition,
455 more sampling localities along the East African coastline could help to more precisely identify
456 the source populations for the colonisation of Madagascar ⁵.

457

458 Overall, our study sheds new light on the distribution of genomic diversity and the evolutionary
459 histories of two closely related African pig taxa. It provides yet another example of diverged
460 taxa with a suture zone around western Uganda, as has been shown for numerous other taxa
461 and is characteristic for African mammal phylogeography. The recent split times, moderate
462 and large values of F_{ST} as geographic distance increases and ancestral gene flow between
463 the bushpigs and red river hogs suggest that their evolutionary divergence is young and
464 incomplete, a perspective that should be taken into account in future taxonomic assessments
465 and management plans. Furthermore, our data from Malagasy bushpigs suggest that
466 bushpigs indeed colonised the island by hitchhiking along with the accelerating human
467 colonisation of Madagascar occurring around the onset of the Medieval period. These insights
468 provide answers for long-standing questions regarding the distribution of biodiversity in Africa
469 and the mysterious presence of African bushpigs on Madagascar.

470 **Methods**

471 **Sample collection and laboratory protocol**

472 Tissue samples used in this study were sourced from several different collections, detailed in
473 Supplementary Data 1. For non-USDA samples, the QIAGEN DNeasy Blood & Tissue Kit
474 (QIAGEN, Valencia, CA, USA) was used for DNA extraction following the manufacturer's
475 protocol. RNase was added to all samples to ensure RNA-free genomic DNA. DNA
476 concentrations were then measured using a Qubit 2.0 Fluorometer and Nanodrop before using
477 gel electrophoresis to check the quality of genomic DNA.

478

479 Bushpig hide samples contributed by the USDA were salted, acidified and dried after collection
480 in the field. Samples were purchased by the USDA from willing sellers and stored at -20°C
481 until DNA extraction by standard phenol/chloroform procedures. DNA was dissolved in a
482 solution of 10 mM TrisCl, 1 mM EDTA (TE, pH 8.0) and stored at 4 °C. Sample quality and
483 concentrations were measured by ultraviolet spectrophotometry and double-stranded DNA
484 fluorometry (DeNovix Inc., Wilmington, DE USA; QuantiFluoONE, Promega, Madison, WI,
485 USA).

486 **Sequencing and mapping**

487 All samples were sequenced using Illumina paired-end 150-bp reads. This included 53
488 samples which were sequenced to low depth (~3–6× depth of coverage) on the Illumina
489 NovaSeq platform and 16 samples sequenced to medium-high depth (~14–49×) on the
490 Illumina HiSeq2500, NextSeq500 or NextSeq2000 platforms (Illumina Inc., San Diego, CA,
491 USA). Sequencing data were then assessed using FastQC ⁶⁴ and MultiQC ⁶⁵. Publicly
492 available data from two red river hog samples from Nigeria were also used in this study
493 (Supplementary Data 1) ⁶⁶.

494

495 The sequencing reads were mapped to the chromosome level assemblies for the common
496 warthog (*Phacochoerus africanus*, accession number: GCA_016906955.1) using a
497 development version of the PALEOMIX BAM pipeline ⁶⁷
498 (<https://github.com/MikkelSchubert/paleomix>; branch 'pub/2022/africa').

499

500 Reads were processed using AdapterRemoval v2.3.2 ⁶⁷ to remove adapter contamination and
501 to merge overlapping reads in order to improve read fidelity. Adapter sequences published by
502 Illumina and BGI were used for trimming. Reads were merged using the --collapse-
503 conservatively option, which assigns 'N' to any mismatching position in the alignment for which
504 both bases have the same quality. No trimming of Ns or low-quality bases was performed, and
505 only empty reads resulting from primer-dimers were excluded. Trimmed reads were
506 subsequently mapped using BWA-mem v0.7.17-r1188 ⁶⁸. Reads were post-processed using
507 samtools v1.11 ⁶⁹ commands 'sort' and 'calmd', and putative PCR duplicates flagged using
508 the 'markdup' command and PALEOMIX 'rmdup_colpased', for paired and unmerged reads
509 respectively.

510

511 The resulting BAM alignments were filtered to remove unmapped reads, secondary
512 alignments, PCR duplicates, and supplementary alignments, and reads flagged as having

513 failed QC. We furthermore removed alignments with an inferred insert size <50 bp or >1,000
514 bp, and reads where less than 50 bp or 50% were mapped to the reference genome. Finally,
515 we removed pairs of reads mapping to different contigs or in an unexpected orientation and
516 reads for which the mate had been removed by any of the above criteria.

517 **Reference genome and site quality filters**

518 We estimated the mappability of the warthog reference genome using GENMAP⁷⁰. Here, we
519 used 100-bp k-mers allowing for two mismatches (-K 100 -E 2) and the remaining parameters
520 set to default settings. All sites with a mappability score <1 were excluded from downstream
521 analyses. RepeatMasker v4.1.1⁷¹ was used to identify repeat elements in the warthog
522 genome assembly, utilising 'rmblast' as the search engine and 'mammal' as the query species
523 with default settings. Repeat regions identified with RepeatMasker were masked to limit
524 mismapping in these regions. Annotated sex chromosomes and scaffolds that were not
525 assembled into chromosomes were also excluded.

526

527 We also removed genomic regions with unusually high heterozygosity to avoid mismapping
528 artefacts driven by multimapping on paralogous and other repetitive regions. We first
529 estimated genotype likelihoods for SNPs using Angsd⁷² with the GATK model (-GL 2), -
530 minimum mapping quality of 30 (-minMapQ 30), a minimum base quality of 30 (-minQ 30), a
531 p-value of 1e⁻⁶ to call SNPs (-snp_pval 1e⁻⁶) and kept only SNPs with minor allele frequency
532 (MAF) > 0.05 (-minmaf 0.05). Genotype likelihoods were then used as input for PCAngsd's
533 per site Hardy-Weinberg equilibrium (HWE) test⁷³, which estimates inbreeding coefficients
534 (F), and a likelihood ratio test statistic (LRT) for evidence of deviation from HWE, while
535 controlling for population structure. The PCAngsd MAP test⁷³ was also used to select the
536 optimal number of principal components in each case. Sites with F < -0.9 and LRT > 24 were
537 subsequently removed as they may have been driven by mapping artefacts, and therefore all
538 regions within 10 kb from such sites were also discarded. We ran this analysis separately for
539 red river hogs and bushpigs samples.

540

541 Finally, we removed sites with extreme depth. We estimated the global depth (read count
542 across all samples) for each site using Angsd⁷² (-minMapQ 30 -minQ 30 -doCounts 1 -
543 doDepth 1 -dumpCounts 1 -maxdepth 4000). This was done separately for each species for
544 all (n = 67), unrelated (n = 54) and medium-high depth samples (n = 18) (Supplementary Data
545 1). Only autosomal chromosomes were included. From the global depth we calculated the
546 upper 1% and lower 3% percentiles and visually inspected the plots before deciding on a
547 threshold for excluding sites with extreme sequencing depth. Only sites that were within the

548 thresholds for both low- and medium-high depth samples were used in the downstream
549 analyses.

550 **Sample filters**

551 We identified and excluded samples with high sequencing error rates based on the “perfect
552 individual” approach ⁷⁴. The rationale behind this approach is that any sample in the dataset
553 should have equal genetic distance to the outgroup and therefore samples with excess/deficit
554 of derived alleles would be interpreted as errors. As the “perfect individual” we used a high-
555 depth individual from Ghana (BPigGha0038; Supplementary Data 1). This sample was
556 processed with Angsd ⁷² to create a consensus sequence (-doFasta 2) taking the most
557 commonly observed base as the consensus (-doAncError 2) while setting the base quality to
558 at least 30 (-minQ 30). We chose the common warthog as an outgroup and mapped all
559 samples to the consensus using BWA excluding sex chromosomes, the mitogenome, repeats
560 and sites with mappability <1. Individuals with high error rates (>0.001) were removed from
561 downstream analyses (Supplementary Fig. S1).

562

563 We then considered relatedness between samples, where we identified and removed potential
564 relatives and duplicated samples using the methodology described in IBSRELATE ⁷⁵. First,
565 we calculated the Site Allele Frequency (SAF) likelihood in Angsd ⁷² for each individual. We
566 used the genotype likelihood-based approach assuming HWE (-doSaf 1). The warthog
567 genome was used as ancestral reference (-anc), a minimum mapping quality of 30 (-minMapQ
568 30), a minimum base quality of 30 (-minQ 30), and the GATK method (-GL 2). Then, we
569 inferred the two-dimensional site frequency spectra (2D-SFS) pairwise among all possible
570 combinations of individuals. To limit the computational time we limited the number of sites
571 surveyed to the first 50,000 sites. Based on the 2D-SFS we calculated: R0, R1 and KING-
572 robust kinship ^{75,76}, which can be used to identify close familiar relatives. For the analysis we
573 combined all the data from bushpig and red river hog in this analysis in order to account for
574 potentially interspecies duplicates or mislabeled samples. We identified and removed an
575 individual from each pair of first and second degree relatives.

576 **Imputation**

577 Imputation was performed using BEAGLE3 ⁷⁷ from genotype likelihoods (GLs) estimated in
578 Angsd ⁷². GLs were estimated using the GATK genotype likelihood model (-GL 2) and only
579 keeping sites that had a *p*-value less than 1e⁻⁶ (-SNP_pval 1e-6) for being variable in addition
580 to only keeping sites that passed initial QC (-sites) as well as using a minimum MAF of 0.025
581 (-minMAF 0.025). We assumed the major allele was fixed and the minor was unknown when

582 estimating GLs (-*doMajorMinor* 1 -*doMAF* 2). We further filtered imputation results by only
583 keeping sites with an imputation score $R^2 > 0.95$ and which had a maximum of 5% missingness
584 after applying a > 0.95 posterior probability cutoff on genotype calls.

585 **PCA, IBS and population structure**

586 Beagle GL input files were first generated using Angsd⁷², keeping only the sites that passed
587 QC, with additional filters of removing tri-allelic sites, and with a minor allele frequency filter of
588 0.05. We used PCAngsd v1.02⁷³ to estimate the covariance matrix and identify potentially
589 population structure for all individuals. A pairwise identity-by-state (IBS) matrix was then
590 generated using Angsd, using the sample filters and including the -*doIBS* 1 flag. A neighbour-
591 joining tree was then estimated using this matrix using the *ape* library in R⁷⁸.

592 **NGSadmix & evalAdmix**

593 Admixture proportions for each population were inferred based on GL using NGSadmix³⁴. A
594 Beagle file, using the same filters to investigate population structure with PCAngsd was taken
595 and randomly thinned to contain one million sites for computational practicality. We ran
596 NGSadmix with $K = 2$ to $K = 9$ until the model converged, where the top 3 maximum likelihood
597 runs were within 10 log-likelihood units of each other or until a limit of 4000 independent runs
598 was reached without convergence. $K = 9$ did not converge after 4000 independent runs, likely
599 constrained by the number of samples per population. Model-based analyses of population
600 structure make a set of assumptions about the data (e.g., individuals are unrelated, are in
601 HWE, exhibit no LD, and that each ancestral population is represented by multiple unadmixed
602 individuals with no subsequent drift). Therefore, we calculated the correlations of residuals
603 using evalAdmix³⁵ for each pair of individuals to evaluate model fit, and to test whether the
604 data violated some of these assumptions for K ancestral clusters.

605 **Population differentiation (F_{ST} / D_{xy})**

606 To quantify the extent of genetic differentiation between red river hog and bushpig populations,
607 we used Hudson's estimator for genome-wide F_{ST} ³⁶. This analysis encompassed two
608 approaches: one utilising called genotypes for the 18 medium-high depth genomes
609 (Supplementary Fig. S5), and another utilising all 54 unrelated genomes and estimating values
610 from population-level 2D-SFS inferred from genotype likelihoods using winsfs
611 (<https://github.com/malthesr/winsfs>). We also calculated the absolute genome-wide nucleotide
612 divergence (D_{xy}) for all population pairs using the same approach.

613 **Estimation of effective migration surfaces (EEMS)**

614 To investigate effective migration and gene flow connectivity between populations, we used
615 the Estimated Effective Migration Surfaces (EEMS) program ³⁸. A distance matrix was created
616 from individual-level 2D-SFS estimated from GLs, and was used as input for the program.
617 EEMS was run using 300 demes for three independent runs of 30 million iterations, discarding
618 the first 15 million as burn-in. Convergence was assessed visually and by using the Gelman–
619 Rubin diagnostic in the *coda* R package ⁷⁹.

620 **D- and f-branch statistics**

621 To explore signatures of introgression between populations of red river hogs and African
622 bushpigs, the Dsuite package ⁸⁰ was utilised on variable sites of medium-high depth
623 individuals as input, with the topology of a neighbour-joining tree based on pairwise Hudson's
624 F_{ST} between individual pairs using the *ape* library in R ^{36,78} and the common warthog as an
625 outgroup (Supplementary Data 1). The Dtrios function in Dsuite calculates the D-statistics for
626 all possible trio combinations, which are then used for calculating f-branch statistics, using the
627 f-branch command. A summary of these results within the provided phylogenetic framework
628 is presented as a heatmap (Supplementary Fig. S6).

629 **PSMC**

630 The Pairwise Sequentially Markovian Coalescent (PSMC) algorithm ^{40,41} was used to infer
631 changes in historical population sizes by including all individuals sequenced at medium-high
632 depth. PSMC was run with default parameters. In addition to the size quality filter, we also
633 excluded sites based on the average depth per individual divided by three as a minimum, and
634 twice the average depth per individual as a maximum. We used a mutation rate of 1.49e⁻⁸ per
635 site per generation and a generation time of six years, as described for warthogs ^{4,42}.

636 **Heterozygosity**

637 Genetic diversity of pig populations were approximated through the estimation of genome-
638 wide heterozygosity. Individual-level heterozygosity was estimated in *Angsd* ⁷² using
639 individual-level site frequency spectra, measured as the proportion of heterozygous loci per
640 sample. The GATK genotype likelihood model was utilised in *Angsd* (-GL 2), with minimum
641 quality filters on mapping (-minMapQ 30) and base quality (-minQ 30), while reducing the
642 amount of reads with excessive mismatches (-C 50).

643 **Runs of homozygosity**

644 Runs of homozygosity (ROH) analyses were performed using PLINK v1.9 ⁸¹. PLINK files
645 included only filtered variable sites within medium-high depth samples (n = 18), with an
646 additional depth filter (10 reads minimum) and at least two heterozygous reads to make a
647 heterozygous call. In order to generate more accurate ROH regions, we further excluded
648 SNPs with MAF < 0.05 (--maf) and missing genotype calls (--geno) < 0.05. For each individual,
649 we then used PLINK with --homozyg to scan the ROH regions, with scanning window modifiers
650 (--homozyg-window-het 3 --homozyg-window-missing 20). SNP sites with > 50%
651 heterozygous genotypes across individuals were also excluded.

652 **LDdecay**

653 Linkage disequilibrium (LD) decay curves were generated for four populations which included
654 at least five samples (Cameroon, Eq Guinea, Madagascar, and Tanzania) to reduce the
655 potential bias among the variable sample sizes among populations ⁸². We calculated LD using
656 the *relate* R package ⁸³ for each population using imputed polymorphic sites from chr16. These
657 sites were thinned to 10% of the original data using PLINK 1.9 (-thin 0.1) function ⁸¹ to
658 minimise computational time. Pairwise LD was calculated using 36,417 SNPs and 5 Mb
659 physical distance, at which the curves plateaued.

660 **Outgroup f3 statistics**

661 To further test gene flow between the Malagasy population and other red river hog and bushpig
662 populations, outgroup f3 statistics were calculated based on genotype calls from medium-high
663 depth individuals using ADMIXTOOLS2 ⁴³. f2 statistics were first calculated for each
664 population using five million bp blocks. Using the common warthog as an outgroup, outgroup
665 f3 was estimated in the form of f3 (Madagascar, X; Warthog), where X represents different
666 populations of red river hogs and bushpigs.

667 **TT and split time estimations**

668 Population split times were estimated from unfolded individual 2D-SFS from genotype calls
669 between medium-high depth samples using the Two-Two (TT) method ^{44,84}, polarised against
670 the common warthog, desert warthog (Supplementary Data 1) and the domestic pig (SRA:
671 SAMN28197093). T1 and T2 values were calculated using formulae described in Sjödin *et al.*
672 ⁴⁴ using a custom R script with a mutation rate of 1.49e⁻⁸ per site per generation and a
673 generation time of six years as in PSMC analyses ^{4,42}.

674 **PopSizeABC**

675 In order to estimate recent population size changes that cannot be captured by PSMC, we
676 used popSizeABC⁴⁵ on imputed data, with a focus on a sufficiently large sample of unrelated
677 individuals (n = 21) in the Malagasy bushpig population. PopSizeABC takes VCF files per
678 chromosome as input, and estimates linkage disequilibrium curves and site frequency spectra
679 for tested populations. PopSizeABC population size estimates require multiple simulations of
680 demographic scenarios to compare a posterior distribution of simulation derived parameters
681 to those observed in the real data. For this analysis, 210,000 simulations were performed for
682 100 2-Mb regions per simulation as per the suggested settings in the popSizeABC publication
683 for the software. A minimum MAF threshold of 0.1 was applied to calculation of the site
684 frequency spectra and 0.2 for calculation of the linkage disequilibrium curves, again in
685 accordance with the suggested parameters in Boitard *et al.*⁴⁵. The same recombination rate,
686 mutation rate and generation time used in PSMC and TT were used in popSizeABC.

687 **Data availability**

688 Data used in this study are described within the Article, Supplementary Data 1 and
689 Supplementary Information. All data are available upon request.

690

691 **Acknowledgements**

692 We thank Amal Al-Chaer for her invaluable help with DNA extractions. We are also grateful to
693 Peter Arctander, who organised sample collections between the 1980s and 1990s and to
694 David Moyer for contributing Tanzanian bushpig samples, collected between 1995-1997 and
695 subsequently stored in the collection at the University of Copenhagen. We would also like to
696 acknowledge our collaborators from African wildlife management authorities for granting
697 express permission to use samples within this study. We thank Komlan Afiademanyo
698 (Université de Lomé, Togo), Flobert Njikou (Université de Yaoundé I, Cameroon) and Gabriel
699 Ngua (ANDEGE, Equatorial Guinea) for collecting samples of red river hogs in Western and
700 Central Africa between 2007 and 2010. RFB, XL and IM are supported by a Villum Young
701 Investigator grant (19114) awarded to IM. AA, RFB, LL and ZL are funded by the Novo Nordisk
702 Foundation (NNF20OC0061343). ABO is supported by a Carlsberg Foundation Reintegration
703 Fellowship (CF19-0427). MSR and AA are supported by the Independent Research Fund
704 Denmark (grant number: 8021-00360B). GGE and RH are supported by a Danmarks Frie
705 Forskningsfond Sapere Aude research grant (DFF8049-00098B), and RH is further supported
706 by a Carlsberg Young Researcher grant (CF21-0497). GB, JS, LC, and PG are members of
707 the EDB laboratory, which is supported by the Laboratoire d'Excellence (LABEX) CEBA (grant

708 ANR-10-LABX-25-01) and LABEX TULIP (grant ANR-10-LABX-0041), both managed by the
709 Agence Nationale de la Recherche in France.

710 **Author information**

711 **Contributions**

712 RFB: methodology, analysis, writing - original draft; LDB: methodology, analysis, writing -
713 original draft; ABO: methodology, analysis, writing - review & editing; MSR: methodology &
714 analysis; XL: methodology & analysis; GB: sampling, writing - review & editing; JS: writing -
715 review & editing; CGS: analysis, writing - review & editing; SH: analysis; DZ: writing - review
716 & editing; MP: sampling, writing - review & editing; VM: sampling; CM: sampling; MS:
717 methodology, writing - review & editing; JK: analysis; LQ: analysis; GGE: analysis, writing -
718 review & editing; RR: analysis, MH: analysis; LL: analysis; XW: analysis; MPH: sampling,
719 writing - review & editing; TPLS: sampling, writing - review & editing; KH: analysis; MSS:
720 sampling, writing - review & editing; AA: sampling; LC: writing - review & editing; CR: analysis,
721 writing - review & editing; PG: sampling, writing - review & editing; HRS: sampling, writing -
722 review & editing; IM: supervision, writing - original draft; AA: supervision, writing - original draft,
723 RH: supervision, writing - original draft. All authors proofread and approved the final version
724 of the manuscript.

725 **Ethics declarations**

726 **Competing interests**

727 The authors declare no competing interests.

728 **Materials and correspondence**

729 Materials requests and correspondence: Renzo F. Balboa (renzo.balboa@bio.ku.dk), Laura
730 D. Bertola (laura.bertola@bio.ku.dk), Ida Moltke (ida@bio.ku.dk), Anders Albrechtsen
731 (aalbrechtsen@bio.ku.dk), and Rasmus Heller (rheller@bio.ku.dk).

732

733 References

- 734 1. Frantz, L. *et al.* The evolution of Suidae. *Annu. Rev. Anim. Biosci.* **4**, 61–85 (2016).
- 735 2. Kingdon, J. *Mammals of Africa: Volume VI: Pigs, Hippopotamuses, Chevrotain,*
736 *Giraffes, Deer and Bovids.* (Bloomsbury Natural History, 2013).
- 737 3. Gongora, J. *et al.* Rethinking the evolution of extant sub-Saharan African suids
738 (Suidae, Artiodactyla). *Zool. Scr.* **40**, 327–335 (2011).
- 739 4. Garcia-Erill, G. *et al.* Warthog genomes resolve an evolutionary conundrum and reveal
740 introgression of disease resistance genes. *Mol. Biol. Evol.* **39**, (2022).
- 741 5. Oliver, W. L. R., IUCN/SSC Pigs and Peccaries Specialist Group & IUCN/SSC Hippo
742 Specialist Group. *Pigs, Peccaries, and Hippos: Status Survey and Conservation Action Plan.*
743 (IUCN, 1993).
- 744 6. Halternorth, T. & Diller, H. *A field guide to the Mammals of Africa including*
745 *Madagascar.* (W. Collins, 1980).
- 746 7. Grubb, P. Controversial scientific names of African mammals. *Afr. Zool.* **39**, 91–109
747 (2004).
- 748 8. Grubb, P. *The Afrotropical suids (Phacochoerus, Hylochoerus and Potamochoerus).*
749 *In Pigs, peccaries, and hippos: status survey and conservation action plan.* (International
750 Union for Conservation of Nature and Natural Resources, 1993).
- 751 9. Kingdon, J. *Mammals of Africa: Volume I: Introductory Chapters and Afrotheria.*
752 (Bloomsbury Natural History, 2013).
- 753 10. Smitz, N. *et al.* Pan-African genetic structure in the African buffalo (*Syncerus caffer*):
754 investigating intraspecific divergence. *PLoS One* **8**, e56235 (2013).
- 755 11. Bertola, L. D. *et al.* Phylogeographic patterns in Africa and high resolution delineation
756 of genetic clades in the lion (*Panthera leo*). *Sci. Rep.* **6**, 30807 (2016).
- 757 12. Rohland, N. *et al.* Genomic DNA sequences from mastodon and woolly mammoth
758 reveal deep speciation of forest and savanna elephants. *PLoS Biol.* **8**, e1000564 (2010).
- 759 13. Zinner, D., Groeneveld, L. F., Keller, C. & Roos, C. Mitochondrial phylogeography of
760 baboons (*Papio spp.*): indication for introgressive hybridization? *BMC Evol. Biol.* **9**, 83 (2009).
- 761 14. Ghiglieri, M. P. *et al.* Bush pig (*Potamochoerus porcus*) polychromatism and ecology
762 in Kibale Forest, Uganda. *Afr. J. Ecol.* **20**, 231–236 (1982).
- 763 15. Bonnald, J. *et al.* Who are the elephants living in the hybridization zone? How genetics
764 may guide conservation to better protect endangered elephants. *Glob. Ecol. Conserv.* **32**,
765 e01917 (2021).
- 766 16. Garbutt, N. *Mammals of Madagascar.* (Pica Press, 1999).
- 767 17. Raval, U. & Veeraswamy, K. India-Madagascar separation: breakup along a pre-
768 existing mobile belt and chipping of the craton. *Gondwana Res.* **6**, 467–485 (2003).

769 18. Rabinowitz, P. D., Coffin, M. F. & Falvey, D. The separation of Madagascar and Africa.
770 *Science* **220**, 67–69 (1983).

771 19. McCall, R. A. Implications of recent geological investigations of the Mozambique
772 Channel for the mammalian colonization of Madagascar. *Proc. Biol. Sci.* **264**, 663–665 (1997).

773 20. Ali, J. R. & Hedges, S. B. The colonisation of Madagascar by land-bound vertebrates.
774 *Biol. Rev. Camb. Philos. Soc.* (2023) doi:10.1111/brv.12966.

775 21. Yoder, A. D., Cartmill, M., Ruvolo, M., Smith, K. & Vilgalys, R. Ancient single origin for
776 Malagasy primates. *Proc. Natl. Acad. Sci. U. S. A.* **93**, 5122–5126 (1996).

777 22. Blench, R. New palaeozoogeographical evidence for the settlement of Madagascar.
778 *Azania* **42**, 69–82 (2007).

779 23. Boivin, N., Crowther, A., Helm, R. & Fuller, D. Q. East Africa and Madagascar in the
780 Indian Ocean world. *J. World Prehist.* **26**, 213–281 (2013).

781 24. Douglass, K. *et al.* A critical review of radiocarbon dates clarifies the human settlement
782 of Madagascar. *Quat. Sci. Rev.* **221**, 105878 (2019).

783 25. Anderson, A. *et al.* New evidence of megafaunal bone damage indicates late
784 colonization of Madagascar. *PLoS One* **13**, e0204368 (2018).

785 26. Pierron, D. *et al.* Genomic landscape of human diversity across Madagascar. *Proc.*
786 *Natl. Acad. Sci. U. S. A.* **114**, E6498–E6506 (2017).

787 27. Hansford, J. *et al.* Early Holocene human presence in Madagascar evidenced by
788 exploitation of avian megafauna. *Sci Adv* **4**, eaat6925 (2018).

789 28. Hixon, S. W. *et al.* Late Holocene spread of pastoralism coincides with endemic
790 megafaunal extinction on Madagascar. *Proc. Biol. Sci.* **288**, 20211204 (2021).

791 29. Lee, C. *et al.* Genetic origins and diversity of bushpigs from Madagascar
792 (*Potamochoerus larvatus*, family Suidae). *Sci. Rep.* **10**, 20629 (2020).

793 30. Forsyth, C. I. 5. On the species of *Potamochoerus*, the bush-pigs of the Ethiopian
794 region. *Proc. Zool. Soc. Lond.* **65**, 359–370 (1897).

795 31. Rakotoarivony, R. *et al.* Bushpig (*Potamochoerus larvatus*) hunting in rural areas of
796 Madagascar and its health and socioeconomic implications. *Front. Conserv. Sci.* **3**, (2022).

797 32. Seydack, A. H. W. *Potamochoerus larvatus*. *The IUCN Red List of Threatened Species*
798 <https://www.iucnredlist.org/species/41770/44140926> (2016).

799 33. Reyna, R., Jori, F., Querouil, S. & Leus, K. *Potamochoerus porcus*. *The IUCN Red List*
800 *of Threatened Species* <https://www.iucnredlist.org/species/41771/100469961> (2016).

801 34. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture
802 proportions from next generation sequencing data. *Genetics* **195**, 693–702 (2013).

803 35. Garcia-Erill, G. & Albrechtsen, A. Evaluation of model fit of inferred admixture
804 proportions. *Mol. Ecol. Resour.* **20**, 936–949 (2020).

805 36. Hudson, R. R., Slatkin, M. & Maddison, W. P. Estimation of levels of gene flow from

806 DNA sequence data. *Genetics* **132**, 583–589 (1992).

807 37. Nei, M. & Miller, J. C. A simple method for estimating average number of nucleotide
808 substitutions within and between populations from restriction data. *Genetics* **125**, 873–879
809 (1990).

810 38. Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with
811 estimated effective migration surfaces. *Nat. Genet.* **48**, 94–100 (2016).

812 39. Zheng, Y. & Janke, A. Gene flow analysis method, the D-statistic, is robust in a wide
813 parameter space. *BMC Bioinform.* **19**, 10 (2018).

814 40. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from
815 genome-wide allele frequency data. *PLoS Genet.* **8**, e1002967 (2012).

816 41. Li, H. & Durbin, R. Inference of human population history from individual whole-
817 genome sequences. *Nature* **475**, 493–496 (2011).

818 42. Pacifici, M. *et al.* Generation length for mammals. *Nat. Conserv.* **5**, 89–94 (2013).

819 43. Patterson, N. *et al.* Ancient admixture in human history. *Genetics* **192**, 1065–1093
820 (2012).

821 44. Sjödin, P., McKenna, J. & Jakobsson, M. Estimating divergence times from DNA
822 sequences. *Genetics* **217**, (2021).

823 45. Boitard, S., Rodríguez, W., Jay, F., Mona, S. & Austerlitz, F. Inferring population size
824 history from large samples of genome-wide molecular data - an approximate Bayesian
825 computation approach. *PLoS Genet.* **12**, e1005877 (2016).

826 46. Rakotozafy, L. M. A. & Goodman, S. M. Contribution à l'étude zooarchéologique de la
827 région du Sud-ouest et extrême Sud de Madagascar sur la base des collections de l'ICMAA
828 de l'Université d'Antananarivo. *Taloha* 14–15 (2005).

829 47. Bertola, L. D. *et al.* Whole genome sequencing and the application of a SNP panel
830 reveal primary evolutionary lineages and genomic variation in the lion (*Panthera leo*). *BMC*
831 *Genom.* **23**, 321 (2022).

832 48. Rohland, N. *et al.* The population history of extant and extinct hyenas. *Mol. Biol. Evol.*
833 **22**, 2435–2443 (2005).

834 49. Bercovitch, F. B. *et al.* How many species of giraffe are there? *Curr. Biol.* vol. 27 R136–
835 R137 (2017).

836 50. Coimbra, R. T. F. *et al.* Whole-genome analysis of giraffe supports four distinct
837 species. *Curr. Biol.* **31**, 2929–2938.e5 (2021).

838 51. Petzold, A. & Hassanin, A. A comparative approach for species delimitation based on
839 multiple methods of multi-locus DNA sequence analysis: a case study of the genus *Giraffa*
840 (Mammalia, Cetartiodactyla). *PLoS One* **15**, e0217956 (2020).

841 52. Mazet, O., Rodríguez, W., Grusea, S., Boitard, S. & Chikhi, L. On the importance of
842 being structured: instantaneous coalescence rates and human evolution—lessons for

843 ancestral population size inference? *Heredity* **116**, 362–371 (2015).

844 53. Chikhi, L. *et al.* The IICR (inverse instantaneous coalescence rate) as a summary of
845 genomic diversity: insights into demographic inference and model choice. *Heredity* **120**, 13–
846 24 (2018).

847 54. Arredondo, A. *et al.* Inferring number of populations and changes in connectivity under
848 the n-island model. *Heredity* **126**, 896–912 (2021).

849 55. Leslie, D. M. & Huffman, B. A. *Potamochoerus porcus* (Artiodactyla: Suidae). *Mamm.*
850 *Species* **47**, 15–31 (2015).

851 56. Ravinet, M. *et al.* Interpreting the genomic landscape of speciation: a road map for
852 finding barriers to gene flow. *J. Evol. Biol.* **30**, 1450–1477 (2017).

853 57. Melletti, M. *et al.* Red River hog *Potamochoerus porcus* (Linnaeus, 1758). in *Ecology,*
854 *Conservation and Management of Wild Pigs and Peccaries* 134–149 (Cambridge University
855 Press, 2017).

856 58. Roussos, N. N. Red forest buffalo in Kaffa Province. *Walia* **1975**, 16–17 (1975).

857 59. Linder, H. P. *et al.* The partitioning of Africa: statistically defined biogeographical
858 regions in sub-Saharan Africa. *J. Biogeogr.* **39**, 1189–1205 (2012).

859 60. Mondol, S. *et al.* New evidence for hybrid zones of forest and savanna elephants in
860 Central and West Africa. *Mol. Ecol.* **24**, 6134–6147 (2015).

861 61. Lorenzen, E. D., De Neergaard, R., Arctander, P. & Siegismund, H. R.
862 Phylogeography, hybridization and Pleistocene refugia of the kob antelope (*Kobus kob*). *Mol.*
863 *Ecol.* **16**, 3241–3252 (2007).

864 62. Godfrey, L. R. *et al.* A new interpretation of Madagascar's megafaunal decline: The
865 'Subsistence Shift Hypothesis'. *J. Hum. Evol.* **130**, 126–140 (2019).

866 63. Ray, H. P. & Alpers, E. A. *Cross currents and community networks: the history of the*
867 *Indian Ocean world.* (Oxford University Press New Delhi, 2007).

868 64. Andrews, S. *FastQC: A quality control tool for high throughput sequence data.* (2010).

869 65. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results
870 for multiple tools and samples in a single report. *Bioinformatics* **32**, 3047 (2016).

871 66. Xie, H.-B. *et al.* African suid genomes provide insights into the local adaptation to
872 diverse African environments. *Mol. Biol. Evol.* **39**, (2022).

873 67. Schubert, M. *et al.* Characterization of ancient and modern genomes by SNP detection
874 and phylogenomic and metagenomic analysis using PALEOMIX. *Nat. Protoc.* **9**, 1056–1082
875 (2014).

876 68. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-
877 MEM. *arXiv [q-bio.GN]* (2013).

878 69. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *GigaScience* **10**, (2021).

879 70. Pockrandt, C., Alzamel, M., Iliopoulos, C. S. & Reinert, K. GenMap: ultra-fast

880 computation of genome mappability. *Bioinformatics* **36**, 3687–3692 (2020).

881 71. Smit, A. F. A., Hubley, R. & Green, P. Repeat-Masker Open-3.0.

882 <http://www.repeatmasker.org> (2004).

883 72. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next

884 Generation Sequencing Data. *BMC Bioinform.* **15**, 356 (2014).

885 73. Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions

886 in low-depth NGS data. *Genetics* **210**, 719–731 (2018).

887 74. Orlando, L. *et al.* Recalibrating *Equus* evolution using the genome sequence of an

888 early Middle Pleistocene horse. *Nature* **499**, 74–78 (2013).

889 75. Waples, R. K., Albrechtsen, A. & Moltke, I. Allele frequency-free inference of close

890 familial relationships from genotypes or low-depth sequencing data. *Mol. Ecol.* **28**, 35–48

891 (2019).

892 76. Manichaikul, A. *et al.* Robust relationship inference in genome-wide association

893 studies. *Bioinformatics* **26**, 2867–2873 (2010).

894 77. Ayres, D. L. *et al.* BEAGLE 3: improved performance, scaling, and usability for a high-

895 performance computing library for statistical phylogenetics. *Syst. Biol.* **68**, 1052–1061 (2019).

896 78. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution

897 in R language. *Bioinformatics* **20**, 289–290 (2004).

898 79. Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and

899 output analysis for MCMC. *R News* **6**, 7–11 (2006).

900 80. Malinsky, M., Matschiner, M. & Svardal, H. Dsuite - Fast D-statistics and related

901 admixture evidence from VCF files. *Mol. Ecol. Resour.* **21**, 584–595 (2021).

902 81. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based

903 linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

904 82. Weir, B. S. & Hill, W. G. Effect of mating structure on variation in linkage disequilibrium.

905 *Genetics* **95**, 477–488 (1980).

906 83. Albrechtsen, A. *et al.* Relatedness mapping and tracts of relatedness for genome-wide

907 data in the presence of linkage disequilibrium. *Genet. Epidemiol.* **33**, 266–274 (2009).

908 84. Schlebusch, C. M. *et al.* Southern African ancient genomes estimate modern human

909 divergence to 350,000 to 260,000 years ago. *Science* **358**, 652–655 (2017).