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Abstract

Cultivated pear consists of several Pyrus species with P. communis (European pear)
representing a large fraction of worldwide production. As a relatively recently domesticated crop
and perennial tree, pear can benefit from genome-assisted breeding. Additionally, comparative
genomics within Rosaceae promises greater understanding of evolution within this economically
important family. Here, we generate a fully-phased chromosome-scale genome assembly of P.
communis cv. ‘d’Anjou’. Using PacBio HiFi and Dovetail Omni-C reads, the genome is resolved
into the expected 17 chromosomes, with each haplotype totalling nearly 540 Megabases and a
contig N50 of nearly 14 Mb. Both haplotypes are highly syntenic to each other, and to the Malus
domestica ‘Honeycrisp’ apple genome. Nearly 45,000 genes were annotated in each haplotype,
over 90% of which have direct RNA-seq expression evidence. We detect signatures of the known
whole-genome duplication shared between apple and pear, and we estimate 57% of d’Anjou
genes are retained in duplicate derived from this event. This genome highlights the value of
generating phased diploid assemblies for recovering the full allelic complement in highly
heterozygous crop species.

Introduction

Pyrus L. is a genus in the family Rosaceae (subfamily Maloideae) comprising cultivated
and wild pears. Pyrus is divided into two broad categories, the European and Asian pears, with
their divergence estimated around 3-6 million years ago (Wu et al. 2018). At least 28 species of
Pyrus and 10 naturally occurring interspecific crosses are now found in Western and Eastern
Asia, Europe, North Africa, and the Middle East. In 2021, the pear's value of utilized production
in the United States reached $353 million (United States Department of Agriculture National
Agricultural Statistics Service 2023). This makes pear one of the most cultivated pome fruits
worldwide. One of the most important North American varieties of pear, the Anjou, also known
as the Beurre d'Anjou or simply d’Anjou (Pyrus communis cv. ‘d'Anjou’), is thought to have
originated in Belgium, named for the Anjou region of France.

Over the last decade, several pear genomes have been sequenced and assembled using a
variety of technologies. The first Pyrus genome sequenced in 2012 was the most commercially
important Asian pear P. bretschneideri Rehd. cv. ‘Dangshansuli’, using a combination of
BAC-by-BAC sequencing and mate-pair Illumina sequencing (Wu et al. 2013). Following that,
European pear (P. communis cv. ‘Bartlett’) was sequenced using Roche 454 (Chagné et al. 2014).
In 2019, the P. communis genome was updated by sequencing the double-haploid ‘Bartlett’
cultivar using PacBio long reads and high-throughput chromosome conformation capture (Hi-C)
technology (Linsmith et al. 2019). This assembly helped uncover duplicated gene models in
previous assemblies that over-assembled heterozygous regions. However, being a
double-haploid, it still lacked an entire parental complement. A draft assembly and annotation
for P. communis cv. ‘d’Anjou’ was generated recently (H. Zhang et al. 2022), which was
carefully annotated and revealed systematic differences in gene annotations across Rosaceae
genomes. However, this assembly was also not phased, lacking information on allelic variants.
Genomes are currently available for five of twenty-two Pyrus species in the Genome Database
for Rosaceae (GDR; https://www.rosaceae.org/organism/26137), and for only a few of the
thousands of recognized cultivars (J. Li et al. 2022).
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Here, we sequenced and assembled a chromosome-scale reference genome for Pyrus
communis cv. ‘d’Anjou’ using PacBio HiFi and Dovetail Omni-C sequencing. This genome was
assembled as part of a semester-long undergraduate and graduate genomics course under the
American Campus Tree Genomes (ACTG) initiative, where undergraduate and graduate students
assemble, annotate, and publish culturally and economically valuable tree species. Here we
present a haplotype-resolved, chromosome-scale assembly and annotation of ‘d’Anjou’ pear,
place it in a phylogenetic context with other Rosaceae species, and show evidence of an ancient
whole-genome duplication (WGD) event shared by cultivated apple and pear.

Methods
Genome sequencing and assembly

DNA was isolated from young leaf tissue using a standard CTAB approach (Doyle and
Doyle 1987). Illumina TruSeq DNA PCR-free libraries were constructed from 1 μg of input
DNA and sequenced on an Illumina NovaSeq6000 at HudsonAlpha Institute for Biotechnology.
Raw reads were assessed for quality using FASTQC v0.11.9 (Andrews et al. 2010). Then, low
quality reads were filtered out of the raw data by using fastp v0.12.4, allowing the generation of
a statistical report with MultiQC 1.13.dev0 (Ewels et al. 2016). Nuclear genome size and ploidy
was estimated using jellyfish v2.2.10 ((Ranallo-Benavidez, Jaron, and Schatz 2020; Marçais and
Kingsford 2011)) to count k-mers, and visualized in GenomeScope2.0 (Ranallo-Benavidez,
Jaron, and Schatz 2020; Marçais and Kingsford 2011). For PacBio HiFi sequencing,
approximately 20 grams of young leaf tissue from a ‘d’Anjou’ pear clone was collected and
flash-frozen in liquid nitrogen. High molecular weight DNA was isolated from the young leaf
tissue using a Circulomics Nanobind Plant Nuclei Big DNA kit (Baltimore, MD), with 4 g of
input tissue and a 2 hour lysis. DNA was tested for purity via spectrophotometry, quantified by
Qubit dsDNA Broad Range, and size selected on an Agilent Femto Pulse. DNA was sheared
with a Diagenode Megaruptor and size-selected to roughly 25 kb on a BluePippin. A PacBio
sequencing library was produced using the SMRTbell Express Template Prep Kit 2.0, and CCS
(HiFi) reads were produced on two 8M flow cells. Pacbio HiFi read quality was assessed for read
quality versus read distribution (Figure S1) using software Pauvre v0.2.3 (Schultz, Ebbert, and
De Coster 2019).

The plastid genomes from five Pyrus individuals (Table S3) were assembled using
NOVOPlasty v4.3.1 (Dierckxsens, Mardulyn, and Smits 2016), setting the expected plastid
genome size to 130-170 kb and using the seed file provided
(https://github.com/ndierckx/NOVOPlasty). The assembled plastid genomes were annotated
using Ge-Seq v2.0.3 (Tillich et al. 2017) and visualized using OGDRAW v1.3.1 (Greiner,
Lehwark, and Bock 2019).

Genome assembly and scaffolding
Raw HiFi reads were assembled into contigs using hifiasm v0.16.0 (H. Cheng et al.

2021). To scaffold the “d’Anjou” genome, 1g of young leaf tissue was used as input for a
Dovetail Omni-C library per manufacturer instructions (Dovetail Genomics, Inc.). The Omni-C
library was sequenced on an Illumina NovaSeq6000 using paired-end 150 base-pair reads. To
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map the Omni-C data to our preliminary genome assembly, we followed the Arima genomics
pipeline (https://github.com/ArimaGenomics/mapping_pipeline). Scaffolding was then
performed using yet another Hi-C scaffolding tool (YaHS) with default parameters (Zhou,
McCarthy, and Durbin 2023). Omni-C contact maps were visualized using Juicebox version
1.11.08 (Durand et al. 2016). We encountered several examples of likely misassembled regions,
which were manually rearranged in Juicebox and documented in Supplementary Methods. We
assessed genome completeness using compleasm v0.2.2 with the lineage “embryophyta_odb10”
(Huang and Li 2023).

Annotating repeats and Transposable Elements
Transposable elements (TEs) were predicted and annotated from the pear genome

assembly using the Extensive de-novo TE Annotator (EDTA) pipeline (v1.9.3) (Ou et al. 2019;
Ellinghaus, Kurtz, and Willhoeft 2008; Xu and Wang 2007; Ou and Jiang 2019, 2018; Su, Gu,
and Peterson 2019; Shi and Liang 2019; Xiong et al. 2014). EDTA parameters were set to the
following: “--species others --step all --sensitive 1 --anno 1 --evaluate 1 --threads 4”. We
calculated the coverage of genes and repeats in 1 Mb windows with a 100 Kb step using bedtools
version 2.30.0 (Quinlan and Hall 2010) and plotted these onto the chromosomes using
karyoploteR version 1.18.0 (Gel and Serra 2017).

Structural variant analysis
First, we aligned assemblies using MUMmer (Marçais et al. 2018). Next, we

characterized structural variants between genome assemblies using Assemblytics (Nattestad and
Schatz 2016). More details are provided in the Supplementary Methods.

Gene annotation
We annotated protein-coding genes using MAKER2 (Holt and Yandell 2011).

Arabidopsis Araport 11 proteins and seven P. communis cv. ‘d’Anjou’ RNA-seq libraries were
used as evidence (C.-Y. Cheng et al. 2017). RNA-seq libraries are available on the NCBI SRA
under Accession PRJNA791346. We performed one round of evidence-based annotation and
used that to iteratively train ab-initio prediction models through both SNAP and Augustus. More
details are provided in Supplementary Methods.

RNA-seq analyses
Reads were adapter trimmed using the BBMap `bbduk.sh` script (BBMap: A Fast,

Accurate, Splice-Aware Aligner 2014). Gene expression was quantified using Kallisto (Bray et
al. 2016). More details are provided in the Supplementary Methods.

Comparative genomic analyses
We identified putative synteny constrained orthologs between Pyrus communis cv.

‘d’Anjou’, Malus domestica ‘Honeycrisp’, and Prunus cerasus ‘Montmorency’ using the JCVI
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utilities library compara catalog ortholog function (Tang et al. 2015). Synonymous substitution
rates were calculated using a custom Ka/Ks pipeline (https://github.com/Aeyocca/ka_ks_pipe).
Briefly, orthologs were aligned using MUSCLEv3.8.31 (Edgar 2004), and PAL2NAL v14 was
used to convert the peptide alignment to a nucleotide alignment and Ks values were computed
between gene pairs using codeml from PAML v4.9 with parameters specified in the control file
found in the GitHub repository listed above (Suyama, Torrents, and Bork 2006; Yang 1997).

Results

Figure 1: Pear fruit photographs. Photographs of green ‘d’Anjou’ fruit (A) and red ‘d’Anjou’
fruit (B). Photos were provided by USA Pears.

Nuclear Genome assembly
We generated several types of sequencing data to assemble and annotate the d’Anjou

genome (Fig 1). Given an estimated genome size of ~550Mb (Niu et al. 2020), we generated
113X coverage of Illumina shotgun data, 66X coverage of Pacbio HiFi data and 190X of
Omni-C data per haplotype. Genomescope estimated a k-mer based genome size of ~495Mb,
46.79% of repeated sequences, and 1.79% heterozygosity (Fig S1). We assessed the quality of
our HiFi reads using Pauvre indicating high quality libraries and a read length distribution
centered around 15kb (Fig S2). Our mean and median read lengths were 15,555bp and 14,758bp
while the longest read was 49,417bp long.

The final assembly is haplotype-resolved with 17 chromosomes per haplotype.
Chromosomes were oriented according to the Malus domestica “Honeycrisp” assembly (Khan et
al. 2022). The final assembly consisted of nearly 540Mb per haplotype with >93% of the raw
contig assemblies contained in the 17 chromosomes (Fig S3). The contig N50s for haplotype 1
and 2 respectively were 14.7Mb and 13.4Mb while the scaffold N50s were 29.6Mb. We found
>99% complete BUSCOs in each haplotype with over 30% of them present in duplicate,
reflecting the whole-genome duplication (WGD) experienced by the Maleae lineage ~45 million
years ago (Xiang et al. 2017). Over 99% of our Illumina reads were properly mapped back to our
assembly. Kmer based completeness between Illumina reads and the final assembly
demonstrated high quality values (36.16) and low error rates (0.0002423) for both haplotypes.
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Chloroplast assembly
We also assembled the chloroplast of P. communis cv. ‘d’Anjou’ along with four other

Pyrus species or accessions (Table S3; Fig S4; Fig2). The chloroplast genomes were similar in
size, ranging from 159kb to 161kb, and consisted of a large single-copy region, small
single-copy region, and two inverted repeats for each species. Pyrus as a genus consists of two
major genetic groups: Occidental and Oriental (Zheng et al. 2014). Pyrus hopeiensis, P. pyrifolia,
and P. bretscheirderi are all considered Oriental species. We estimated phylogenetic relationships
between our chloroplast assemblies and found both representatives of Pyrus communis sister to
each other consistent with expectations.

Figure 2: Chloroplast assemblies and phylogeny. Chloroplast genomes of assorted pear
cultivars - assemblies and annotations. Plastid assemblies were carried out using NOVOPlasty
v4.4.1 and annotated using Ge-Seq v2.0.3. Phylogenetic relationships were estimated using
maximum likelihood under the generalized time reversible model.
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Transposable Elements (TEs) are important components of plant genomes, contributing
to genome size variation, gene family evolution, and transcriptional novelty (Lu et al. 2019;
Quadrana 2020). Repetitive elements were annotated using the Extensive de novo Transposable
Element Annotator (EDTA; (Ou et al. 2019)) (Table 1). A total of 39-42% of each haplotype
consisted of repetitive elements. The majority of these elements by length were long terminal
repeat (LTR) retrotransposons accounting for ~32% of each haplotype. These elements are most
abundant around the putative centromeres, but are also ubiquitous in gene rich regions (Fig 3).
Terminal inverted repeats (TIRs) were also abundant and dominated by Mutator elements (~3.4%
of each haplotype).

Each haplotype was independently annotated with expression evidence, Arabidopsis
protein evidence, and ab initio gene prediction using the MAKER pipeline (Supplementary
Methods; Table S4). We annotated a total of 44,839 genes in haplotype A and 44,561 genes in
haplotype B, which is similar to the number of genes annotated in Malus domestica ‘Honeycrisp’
(50,105). Gene density was highest on chromosome arms and was inversely related to the density
of transposable elements (Fig 3).

Figure 3: distributions of genomic elements. Density of genomic elements across our
assembly. Feature densities are calculated in 1Mb windows with a 100kb step size. Features on
haplotype 1 are listed in panel A, and those on haplotype 2 are listed in panel B. Genes are
colored orange, Ty3 transposable elements are colored light blue, Copia transposable elements
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are colored dark blue, and other repeat elements annotated by EDTA are colored yellow.
Numbers along the x-axis correspond to position along the chromosome (Mb).

There were several structural variants between our two haplotypes (Table 2). We characterized
13,421 variants within 50-10,000 base-pairs between the haplotypes, totaling almost 32Mb of
sequence. Repeat expansion and contractions were the largest classes of structural variant.
Insertions and deletions also affected nearly 6Mb of sequence between haplotypes. Between P.
communis cv. ‘d’Anjou’ and P. communis cv. ‘Bartlett’, 14,946 variants affected 26Mb of
sequence. The total amount of sequence affected is lower than that observed between ‘d’Anjou’
haplotypes. This may simply be due to a more complete assembly for both ‘d’Anjou’ haplotypes
relative to the ‘Bartlett’ assembly.

Comparative genomics and polyploidy
Rosaceae as a plant family contains several important crops such as pear, apple, peach,

cherry, and blackberry. Comparative genomics between these crops may allow functional
genomics in one species to be translated to others. Therefore, we compared the genomes of three
of these important crops: P. communis ‘d’Anjou’ (pear), Malus domestica ‘Honeycrisp’ (apple),
and Prunus cerasus ‘Montmorency’ (cherry; (Goeckeritz et al. 2023)). Both our assembled
haplotypes were highly collinear with each other and with apple. We identified 40,567 orthologs
between pear haplotypes, 30,340 orthologs between pear haplotype 1 and apple, and 20,526
orthologs to P. cerasus ‘Montmorency’ consistent with pear’s divergence with apple postdating
that to cherry.

Apple and pear share a WGD occurring after their divergence with cherry (Xiang et al.
2017). Our results show they both demonstrate a high percentage (>⅓) of duplicated BUSCO
genes as well as 17 chromosomes, almost double the Amygdaloideae base chromosome count of
9 (Hodel et al. 2021). Therefore, we infer apple and pear retain much of their genome in
duplicate. Across all genes within P. communis cv. ‘d’Anjou’, approximately 57% are classified
as having a syntenic paralog retained from this WGD event (Table S5).

‘Montmorency’ is a tetraploid formed from a hybridization between different Prunus
species after their divergence with the common ancestor of apple and pear. Therefore, we only
compared the “A” subgenome to our assemblies. As expected, each cherry “A” subgenome
scaffold was syntenic with ~2 pear and apple scaffolds (Fig 4A). Additionally there were blocks
in pear syntenic with 2 regions of apple that are likely regions retained from the last WGD event.
There were likely further karyotype changes since the divergence of Malineae and cherry as the
syntenic blocks are not entirely retained nor perfectly paired in 1:2 ratios. However, there
remains high collinearity with these genomes suggesting future translation of functional
genomics across species.

The distribution of synonymous substitution rates (Ks) across gene pairs indicates the
divergence between them as gene pairs will accumulate synonymous substitutions over time
(Yang and Nielsen 2000; Senchina et al. 2003). We see orthologs between haplotype 1 and 2 in
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our assembly have a Ks distribution centered near zero as expected for allelic copies of genes
that are still segregating within the species. Comparing haplotype 1 to itself identifies gene pairs
that are retained from the most recent WGD event. We see this distribution is higher than that of
gene pairs between Pyrus and Malus suggesting this WGD event occurred before the divergence
of these species. Additionally, comparing M. domestica to itself shows a distribution similar to
that of the Pyrus self comparison as expected reflecting a shared WGD event or at the very least,
a different WGD event occurring around the same time (Fig 4B; green star). This distribution is
lower than that compared to Prunus cerasus as this WGD event post-dates the divergence of the
cherry and apple/pear lineages.
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Figure 4: Ribbon plot and Ks distributions. (A) A phylogenetic tree with known relationships
between four assemblies. To the right is a ribbon plot based on gene synteny created with
GENESPACE (Lovell et al. 2022). (B) A density plot showing the distribution of synonymous
substitution rates (Ks) between genome-wide gene pairs. The shared WGD event is denoted by a
green star. All comparisons are to Pyrus communis cv. ‘d’Anjou’ haplotype 1 except for the
“Malus domestica self” comparison. Abbreviations are as follows: “Pyrus Hap1” - “Pyrus
communis cv. ‘d’Anjou’ haplotype 1”, “Pyrus Hap2” - “Pyrus communis cv. ‘d’Anjou’
haplotype 2”.
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Gene expression
We quantified gene expression across seven tissues (Table 3). We found expression

evidence for ~33-35,000 gene models per tissue. Most gene models were expressed in Fruitlet
Stage 1, and the least were expressed in Fruitlet Stage 2 suggesting dynamic gene expression
across fruit development. There was evidence of gene expression in at least a single tissue for
40,734 gene models, while 2,152 genes were expressed in only a single tissue (average of 307
genes per tissue). Our expression data were generated to assist genome annotation and are only
single replicates. We therefore cannot perform differential expression analyses. We instead
performed hierarchical clustering of gene expression (Fig 5). We see stable clustering across
haplotypes and find similar tissues cluster together. For example, our two fruit libraries clustered
with each other. We generated an upset plot showing the fifteen largest intersects of genes
expressed >1 transcript per million (TPM; Fig 5). The largest intersect was genes expressed >1
TPM in every tissue queried. The top fifteen intersects, however, included each of the seven
tissue-specific categories. Open Buds had the most tissue-specific genes (445) while Budding
Leaves specific genes had the least (171).
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Figure 5: Gene expression characterization. Heatmaps and Upset plot of gene expression.
Cladograms represent the relationships between libraries through hierarchical clustering. 1000
genes are displayed that show expression in each tissue and have the highest expression variance.
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A) represents haplotype 1 and B) represents haplotype 2. C) Upset plot of expression across
tissues for haplotype 1. Genes were considered expressed if they had a TPM value above 1. Note
the break in the y-axis.

Conclusion
We assembled a chromosome-scale phased genome assembly for cultivated European

pear. PacBio HiFi reads coupled with Dovetail Omni-C resulted in a high quality assembly,
displaying high kmer completeness, quality scores, synteny with available assemblies, and
recovery of universal single-copy orthologs. This assembly revealed thousands of structural
variants between haplotypes which are of great importance to future pear breeding efforts as
structural variants disrupt recombination. Comparative analyses between other members of the
Rosaceae family demonstrated deeply conserved synteny and recovered evidence for a 45
million year old whole genome duplication event. Gene expression across several tissue types
was largely conserved, but thousands of genes also constrained themselves to a single tissue.
Further characterization of pear germplasm will accelerate breeding gains not only within pear
but potentially across multiple Rosaceous crops. Lastly, we highlight the utility of generating
such genomes as part of semester courses, and the training opportunities that it provides.

Repeat
Type

Hap Count bp
Masked

%
Masked

Repeat
Type

Hap Count bp
Masked

%
Masked

LTR Ty1 1 31417 29651485 5.6 LTR Ty1 2 30811 29080309 5.73

LTR Ty3 1 52870 65248004 12.32 LTR Ty3 2 51619 65330713 12.88

LTR
Unknown

1 52617 44783539 8.46 LTR
Unknown

2 60287 50732038 10

TIR
CACTA

1 20714 7389362 1.4 TIR
CACTA

2 19593 7081084 1.4

TIR
Mutator

1 75530 18368328 3.47 TIR
Mutator

2 71859 17304544 3.41

TIR PIF
Harbinger

1 26889 9561615 1.81 TIR PIF
Harbinger

2 25649 9164523 1.81

TIR Tc1
Mariner

1 1950 713551 0.13 TIR Tc1
Mariner

2 1857 567099 0.11

TIR hAT 1 14789 4479323 0.85 TIR hAT 2 13724 4267786 0.84

LINE 1 1494 720397 0.14 LINE 2 1409 710461 0.14

nonLTR
Unknown

1 242 304682 0.06 nonLTR
Unknown

2 215 279820 0.06

helitron 1 25911 8267980 1.56 helitron 2 29480 9716313 1.92
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Other
repeat
region

1 83566 21068202 3.98 Other
repeat
region

2 87157 21406735 4.22

Total 1 387989 210556468 39.78 Total 2 393660 215641425 42.52

Table 1: Summary of repeat elements annotated by EDTA. Abbreviations are as follows. LTR;
Long-Terminal Repeat. TIR; Terminal Inverted Repeat. PIF; P instability Factor. LINE; Long
interspersed nuclear element. Hap; Haplotype. bp; base pairs

Reference Query Variant type # Variants # bases affected

‘d’Anjou’ Hap1 ‘d’Anjou’ Hap2 Indel 4,297 6,000,228

‘d’Anjou’ Hap1 ‘d’Anjou’ Hap2 Repeat 8,711 24,943,411

‘d’Anjou’ Hap1 ‘Bartlett’ Indel 5,739 4,439,368

‘d’Anjou’ Hap1 ‘Bartlett’ Repeat 8,910 11,571,098

Table 2: Structural variants between 50-10,000bp identified by Assemblytics. Indel is short for
“Insertion / deletion”.

Tissue Hap Genes
expressed

Median
TPM

Tissue Hap Genes
expressed

Median
TPM

Budding
Leaves

1 33594 84.97 Budding
Leaves

2 33470 88.00

Expanding
Leaves

1 34469 119.7 Expanding
Leaves

2 34380 122.0

Flower Buds 1 34138 71.34 Flower
Buds

2 34082 73.3

Fruitlet
Stage 1

1 34923 193 Fruitlet
Stage 1

2 34797 200

Fruitlet
Stage 2

1 33227 96.4 Fruitlet
Stage 2

2 33107 100.0

Open Buds 1 34463 72.0 Open Buds 2 34372 74.02

¼” buds 1 34718 108.3 ¼” buds 2 34513 111.00
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Table 3: Expression characteristics of Pyrus communis cv. ‘d’Anjou’. Abbreviations are as
follows: Hap; Haplotype. TPM; transcripts per million reads

Data Availability
Data used to generate this assembly are deposited in the NCBI SRA under BioProject

PRJNA992953. Gene expression data are available separately under BioProject PRJNA791346.
Custom scripts used throughout are available on github
https://github.com/Aeyocca/dAnjou_genome_MS.
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Figure S1: GenomeScope output for ‘d’Anjou’ short-read data. GenomeScope k-mer (k=21)
profile plot showing there are two major diploid peaks. The tall peak at 91.6X coverage indicates
high heterozygosity in this genome.
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Figure S2: Phred quality analysis of three Pacbio HiFi cells; (A) m64017_211217_051206, (B)
m64017_211218_161111, and (C) m64017_211210_084732

Figure S3: Bandage plots (Wick et al. 2015) for haplotype 1 (A) and haplotype 2 (B).
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Figure S4: The ‘d’Anjou’ pear chloroplast genome assembly and annotation. Plastid assembly
was carried out using NOVOPlasty v4.4.1 and annotated using Ge-Seq v2.0.3.

Platform Number of reads Number of bases (Gb) Median length (bp)

Illumina NovaSeq
6000

831,658,352 124.8 150

Dovetail Omni-C 256,666,668 38.5 150

PacBio HiFi 4,660,447 72.5 14,758
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Table S1: Summary of sequencing reads used for genome assembly.

Genome size property * min max

Homozygous (%) 98.19% 98.21%

Heterozygous (%) 1.79% 1.81%

Genome Haploid Length (bp) 493,204,035 493,809,912

Genome Repeat Length (bp) 230,747,204 231,030,666

Genome Unique Length (bp) 262,456,831 262,779,247

Model Fit (%) 61.87 95.25

Read Error Rate (%) 0.51 0.51

Repeats (%) 46.79 46.79

*measured from GenomeScope2.0 with k=21.
Table S2: Characteristics of ‘d’Anjou’ pear based on the short-read kmer profile

Species Source Number of
bases (Gb)

SRAID # of
assembled
contigs

# of
base-pairs

Pyrus
hopeiensis
HB-1

(Y. Li et al.
2021)

16.34 SRR14318823 3 159993

Pyrus pyrifolia (M.-Y.
Zhang et al.

2021)

50.04 DRR385062 4 159875

Pyrus
communis

“Bartlett DH”

(Linsmith et
al. 2019)

29.27 SRR10030340 5 161148

Pyrus x
bretschneideri

(Y. Li et al.
2021)

21.65 SRR14318827 3 160001

Pyrus
communis cv.
“d’Anjou”

This
publication

NA 1 159928

Table S3: Source of data for chloroplast assemblies.
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Haplotype # Genes # Transcripts Annotated bases BUSCO string

1 44558 44839 68,452,305 C:97.1%[S:63.1%,D:34.0%],F
:1.3%,M:1.6%,n:1614

2 44349 44561 68,084,531 C:97.6%[S:64.3%,D:33.3%],F
:0.9%,M:1.5%,n:1614

Table S4: Annotation statistics. Abbreviations are as follows: C (complete), S (single-copy), D
(duplicated), F (fragmented), M (missing), n (number).

Duplication type Haplotype # of genes % of genes

Singleton 1 5726 12.77

Dispersed 1 6810 15.19

Proximal 1 2865 6.39

Tandem 1 3844 8.57

WGD or segmental 1 25594 57.08

Singleton 2 5818 13.06

Dispersed 2 6780 15.21

Proximal 2 2839 6.37

Tandem 2 4041 9.07

WGD or segmental 2 25083 56.29

Table S5: Duplication classification. WGD stands for “Whole Genome Duplication”
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