

1 **Intersectin and Endophilin condensates prime synaptic vesicles for release site**  
2 **replenishment**

3

4 Tyler Ogunmowo<sup>1</sup>, Christian Hoffmann<sup>2#</sup>, Renee Pepper<sup>1#</sup>, Han Wang<sup>2#</sup>, Sindhuja  
5 Gowrisankaran<sup>3</sup>, Annie Ho<sup>1</sup>, Sumana Raychaudhuri<sup>1</sup>, Benjamin H. Cooper<sup>4</sup>, Ira  
6 Milosevic<sup>5,6^</sup>, Dragomir Milovanovic<sup>2,7^</sup>, Shigeki Watanabe<sup>1,8\*</sup>

7

8 <sup>1</sup> Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore,  
9 MD USA

10 <sup>2</sup> Laboratory of Molecular Neuroscience, German Center for Neurodegenerative  
11 Diseases (DZNE), Berlin, Germany

12 <sup>3</sup> European Neuroscience Institute (ENI), Göttingen, Germany

13 <sup>4</sup> Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary  
14 Sciences, Göttingen, Germany

15 <sup>5</sup> Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal

16 <sup>6</sup> Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford  
17 Biomedical Research Centre, University of Oxford, Oxford, UK

18 <sup>7</sup> Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate  
19 Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of  
20 Health, 10117 Berlin, Germany

21 <sup>8</sup> Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of  
22 Medicine, Baltimore, MD USA

23 <sup>#</sup> Equal contributions, alphabetical

24 <sup>^</sup> senior authors, equal contributions, alphabetical

25 <sup>\*</sup> Correspondence: shigeki.watanabe@jhmi.edu

27

## 28    **Abstract**

29    Neurotransmitter is released from dedicated sites of synaptic vesicle fusion within a synapse.  
30    Following fusion, the vacated sites are replenished immediately by new vesicles for subsequent  
31    neurotransmission. These replacement vesicles are assumed to be located near release sites  
32    and used by chance. Here, we find that replacement vesicles are clustered around this region  
33    by Intersectin-1. Specifically, Intersectin-1 forms dynamic molecular condensates with  
34    Endophilin A1 near release sites and sequesters vesicles around this region. In the absence of  
35    Intersectin-1, vesicles within 20 nm of the plasma membrane are reduced, and consequently,  
36    vacated sites cannot be replenished rapidly, leading to depression of synaptic transmission.  
37    Similarly, mutations in Intersectin-1 that disrupt Endophilin A1 binding result in similar  
38    phenotypes. However, in the absence of Endophilin, this replacement pool of vesicles is  
39    available but cannot be accessed, suggesting that Endophilin A1 is needed to mobilize these  
40    vesicles. Thus, our work describes a distinct physical region within a synapse where  
41    replacement vesicles are harbored for release site replenishment.

42 **Introduction**

43 At chemical synapses, signaling is mediated by the calcium-dependent exocytosis of synaptic  
44 vesicles<sup>1,2</sup>. In resting synapses, synaptic vesicles can dock at release sites within the active  
45 zone, where release machinery is concentrated<sup>3–10</sup>. At any given synapse, there exist far fewer  
46 release sites than vesicles, and at each release site, only one vesicle can dock<sup>11–13</sup>. This  
47 limitation sets an upper boundary for the number of vesicles that are release-ready at any given  
48 time. Thus, for a synapse to resist depression of synaptic transmission or to enhance synaptic  
49 signaling, the vacated sites must be actively replenished. As such, this replenishment is rate-  
50 limiting for continued neurotransmitter release.

51 Traditionally, the replenishment of release sites was thought to be slow, requiring ~2–10  
52 s<sup>14–17</sup>. However, synapses are capable of resisting depression of neurotransmitter release  
53 during high-frequency stimulation and even enhancing transmission within tens of  
54 milliseconds<sup>12,18,19</sup>, suggesting that release site replenishment can be rapid. In line with this,  
55 electrophysiological recordings paired with mathematical modeling suggest that there exists a  
56 pool of vesicles that respond to docked vesicle depletion and supply new vesicles from so-  
57 called ‘replacement sites’ to release sites after fusion<sup>20</sup>. Furthermore, ultrastructural analysis  
58 suggests that vesicles can transiently dock to resist depression and enhance synaptic strength  
59 in a calcium-dependent fashion<sup>7,21</sup>, a process that may reflect the transition of a replacement  
60 vesicle to a docked vesicle. Thus, release sites can be replenished on a millisecond time scale  
61 after fusion events<sup>20,22–25</sup>.

62 There are several functional pools of synaptic vesicles, including the readily-releasable  
63 pool, reserve pool, and recycling pool<sup>11,26–28</sup>. Recent studies suggest that some of these pools  
64 are separated into distinct physical domains within a synapse by a molecular condensation  
65 process<sup>29</sup>. For example, the readily-releasable pool of vesicles may be organized by the

66 condensation of active zone proteins such as RIM, RIM-BP2, voltage-gated  $\text{Ca}^{2+}$  channels,  
67 Munc13-1, ELKS-1 and Liprin- $\alpha$ <sup>30-32</sup>. Additionally, a few synaptic vesicles are thought to tether  
68 to these active zone phases<sup>33</sup>. Endocytic zones at presynapses are organized by a specific  
69 splice variant of Dynamin 1, Dyn1xA, and its binding partner, Syndapin 1, and these proteins  
70 control the endocytic flux of synaptic vesicles<sup>34</sup>. Similarly, the reserve pool of synaptic vesicles  
71 is separated by the multivalent interactions of the synaptic vesicle binding protein Synapsin 1  
72 (Syn1) on vesicle membranes<sup>35,36</sup>. Thus, synaptic vesicles are physically organized by  
73 molecular condensation, engendering specific functional roles at synapses.

74 The reserve pool is suggested to also contain proteins like Intersectin-1 (Itsn1) and  
75 Endophilin A1 (EndoA1)<sup>37</sup>. Interestingly, Itsn1 and EndoA1 interact with each other and may  
76 form condensates on some of these vesicles either independently of or in concert with Syn1<sup>36,38-</sup>  
77 <sup>40</sup>. However, Itsn1 and EndoA1's function may lie outside of the reserve pool. Non-neuronal  
78 secretory cells display Itsn1 enrichment at sites of granule secretion, and its knockdown  
79 perturbs hormone release during sustained activity<sup>41</sup>. More recently, work in neuroendocrine  
80 adrenal chromaffin cells shows that Itsn1 together with EndoA1 mediates granule replenishment  
81 during stimulation<sup>42</sup>. At the calyx of Held, fast vesicle replenishment seems to be abolished in  
82 Itsn1 knockout (KO) neurons<sup>43</sup>. Furthermore, absence of either Itsn1 or EndoA1 in mouse  
83 hippocampal synapses leads to synaptic depression during a train stimulus<sup>44,45</sup>. These data  
84 suggest that Itsn1 and EndoA1 may contribute to activity-dependent replenishment of release  
85 sites.

86 Here, we demonstrate that Itsn1-EndoA1 form condensates and mediate the  
87 maintenance of the replacement vesicle pool. Specifically, Itsn1 and EndoA1 are located  
88 between the active zone and the Syn1-positive reserve vesicle cluster. In neurons lacking Itsn1  
89 or the functional interaction of Itsn1 with EndoA1, the number of vesicles within 20 nm of the  
90 active zone is significantly reduced. Without EndoA1, replacement vesicles are intact, yet not

91 accessible for docking. Consequently, the replenishment of release sites by transient docking is  
92 slowed, leading to accelerated depression of synaptic transmission. These data suggest that a  
93 subset of replacement synaptic vesicles are held near the active zone and used in an activity-  
94 dependent manner to support neurotransmission during repetitive stimulation.

95

96 **Results**

97 **Intersectin-1 forms molecular condensates with synaptic proteins and vesicles**

98 Intersectin-1 Long (L) (hereafter, Itsn1) is a neuronally enriched isoform of Itsn1 (Fig. 1a). Itsn1  
99 has five Src-Homology 3 (SH3) domains in tandem (namely, A-E; Fig. 1a), which enable  
100 interaction with a multitude of synaptic proteins, including Synapsin 1 (Syn1) and Endophilin A1  
101 (EndoA1)<sup>35,36,38,40,46</sup>. When EGFP (hereafter, GFP)-Its n1 was overexpressed alone in HEK293T  
102 cells, Itsn1 readily formed condensed molecular structures (Fig. 1b), likely due to the  
103 interactions with the endogenously expressed proteins with proline-rich motifs. These molecular  
104 condensates spontaneously fused with one another (Fig. 1c), as is typical with molecular  
105 condensates<sup>47</sup>. These Itsn1 condensates were dispersed by the application of 1,6-Hexanediol  
106 (Fig. 1d), an aliphatic alcohol that disrupts weak multivalent interactions<sup>48</sup>. Further, internal  
107 fluorescence recovery after photobleaching (FRAP) measurements revealed that fluorescence  
108 recovery within Itsn1 condensates depends on the diameter of photobleaching (Fig. 1e-g),  
109 suggesting that molecules remain highly mobile within condensates<sup>48</sup>. These data are  
110 consistent with the idea that Itsn1 dynamically condenses in cells.

111 Recently, an SH3 A-E concatemer of Itsn1 is shown to regulate the assembly of Syn1  
112 condensates in a biphasic fashion and in a concentration-dependent manner<sup>35</sup>, suggesting Itsn1  
113 condensates may interact with and modulate other presynaptic phases. To assess whether

114 Itsn1 can modulate the boundary properties of Syn1 condensates, we used GFP-tagged  
115 concatemers of Itsn1 containing either only two (Itsn1 AB) or five (Itsn1 AE) SH3 domains in  
116 HEK293 cells (Extended Data Fig. 1)<sup>35</sup>. Consistent with previous work<sup>35</sup>, co-expression of  
117 mCherry-Syn1 with these GFP-tagged concatemers of Itsn1 readily led to the formation of  
118 molecular condensates (Extended Data Fig. 1a). In line with the fluid-nature of Synapsin  
119 condensates<sup>35</sup>, an increase in the valency of SH3 concatemers (i.e., two vs. five) and the  
120 expression time (i.e., protein concentration in the cytosol) causes these condensates to become  
121 larger and less numerous over time (Extended Data Fig. 1a,b). Additionally, these condensates  
122 were dispersed by the application of 1,6-Hexanediol (Extended Data Fig. 1c,d)<sup>47</sup>. These data  
123 suggest that Itsn1 regulates the material properties of Syn1 condensates.

124 Previous studies show that the expression of Syn1 and Synaptophysin 1 (Syph) in non-  
125 neuronal cells leads to the formation and clustering of synaptic vesicle-like organelles<sup>39</sup>. To  
126 investigate the role of Itsn1 in regulating the Syn1-mediated clustering of synaptic vesicles, we  
127 expressed GFP-Itsn1 AB with mCherry-Syn1 and Syph-emi-RFP670. Itsn1 colocalized with  
128 Syn1 and Syph (Fig. 1h), suggesting that these proteins co-assemble on these synaptic vesicle-  
129 like organelles. These vesicle-containing condensates were also sensitive to the 1,6-Hexanediol  
130 treatment (Fig. 1h), indicating their fluid-like property is not changed by the presence of these  
131 synaptic vesicle-like organelles. In line with this, expression of untagged Syph did not change  
132 the size or number of Itsn1-Syn1 condensates (Extended Data Fig. 1e). These findings suggest  
133 that Itsn1-Syn1 condensates can contain these synaptic vesicle-like organelles without affecting  
134 their co-assembly.

135

136 **EndoA1 coalesces with Itsn1 condensates**

137 Recently, EndoA1 was shown to both facilitate the phase separation of Syn1 and enter synaptic  
138 vesicle-like clusters through interaction with Syn1<sup>40</sup>. Further, this Syn1-EndoA1 phase contains  
139 a variety of synaptic proteins including Itsn1. To test whether EndoA1 is also found in Itsn1  
140 condensates, we expressed mCerulean-EndoA1 with GFP-Its1 AB or GFP-Its1 AE. We also  
141 expressed BFP-Syn1 in place of GFP-Its1 AE as a positive control, and EndoA1 alone. Unlike  
142 GFP-Its1, mCerulean-EndoA1 expressed alone was diffuse within cells (Extended Data Fig.  
143 1f). However, as in the previous study<sup>40</sup>, EndoA1 formed 1,6-Hexanediol-sensitive condensates  
144 with Syn1 when co-expressed (Extended Data Fig. 1g). When co-expressing GFP-Its1 AB,  
145 mCerulean-EndoA1, and BFP-Syn1, 1,6-Hexanediol sensitive condensates also formed in cells  
146 (Fig. 1i). Importantly, Itsn1 condensates readily incorporated EndoA1 in the absence of Syn1  
147 (Extended Data Fig. 1h), suggesting these proteins can assemble into condensates on their  
148 own. Condensates formed by differential combinations of Itsn1 AB, Itsn1 AE, Syn1 and EndoA1  
149 all displayed distinct circularities and sizes (Extended Data Fig. 1i,j), yet they formed within cells  
150 at the same frequency (Extended Data Fig. 1k), suggesting molecular composition changes  
151 condensate properties but does not affect their formation likelihood. When co-expressed with  
152 Syph-emiRFP670, Itsn1-EndoA1 condensates formed, and they were dispersed by 1,6-  
153 Hexanediol (Extended Data Fig. 1l). However, unlike Itsn1-Syn1 condensates, they did not  
154 contain Syph-emiRFP670 signal (Extended Data Fig. 1l), indicating that some level of Syn1 is  
155 required to initiate clustering within Itsn1 condensates. In fact, when we expressed all four  
156 proteins (GFP-Its1 AB, mCerulean-EndoA1, BFP-Syn1, and Syph-emiRFP670), they formed  
157 condensates (Fig. 1j) that can be dispersed by 1,6-Hexanediol (Fig. 1j), suggesting that these  
158 proteins together can cluster vesicles. Lastly, this coalescence of EndoA1 with Itsn1 required  
159 their specific interaction, an unconventional SH3-SH3 interaction<sup>38</sup>. When Itsn1 AE's SH3B  
160 domain (W949E/Y965E) was mutated to block EndoA1 interaction (Its1 AE ΔEndoA1)<sup>38</sup>, Itsn1

161 condensates completely lacked EndoA1 (Fig. 1k). This is likely due to the lack of direct  
162 biochemical interaction - Itsn1ΔEndoA1 condensates displayed FRAP recovery kinetics identical  
163 to wild-type (WT) GFP-Itsн1 (Extended Data Fig. 1m,n), suggesting the physical properties of  
164 these condensates are not changed by these mutations. Consistently, Itsн1 AE ΔEndoA1  
165 condensates incorporated Syn1 normally (Fig. 1l). Interestingly, if Syn1 and Itsн1 AE ΔEndoA1  
166 are co-transfected with EndoA1, EndoA1 is found within Itsн1-Syn1 condensates (Fig. 1m),  
167 indicating that Syn1 condensates facilitate the accumulation of both Itsн1 and EndoA1  
168 regardless of their direct interaction, likely through Syn1's own interactions with both proteins<sup>36</sup>.  
169 Together, our results suggest that Itsн1 can form dynamic assemblies on vesicles in the  
170 presence of Syn1, which can contain EndoA1, indicating that Itsн1 condensates can potentially  
171 regulate vesicle dynamics in concert with EndoA1 and Syn1.

172

### 173 **Intersectin-1 and Endophilin A1 colocalize on synaptic vesicles near active zones**

174 To test whether Itsн1 and EndoA1 form condensates in synapses, we first performed 2D  
175 stimulated emission depletion (STED) microscopy and Instant Structured Illumination  
176 Microscopy (ISIM) to localize these proteins (Fig. 2a-g). We visualized the relative location of  
177 Itsн1 and EndoA1 to the reserve pool marked by Syn1, the active zone marked by Bassoon or  
178 RIM, and synaptic vesicles more broadly marked by Synaptobrevin-2 (Syb2). In 2D STED,  
179 mouse hippocampal neurons expressing Itsн1 or EndoA1 tagged with GFP were stained with an  
180 anti-GFP antibody together with either Syb2 or Bassoon antibodies. Fluorescent puncta were  
181 quantified as a function of their distance from the boundary of either Bassoon or Syb2 signals<sup>34</sup>.  
182 Both Itsн1 and EndoA1 were localized primarily adjacent to the Bassoon boundary (active  
183 zone), with ~20% located within the active zone boundary and ~80% located outside, highly  
184 enriched right at the boundary line. (Fig. 2a and Extended Data Fig. 2a). When co-stained with

185 Syb2, Itsn1 and EndoA1 signals peaked on the boundary of Syb2 signals (synaptic vesicle-  
186 enriched regions), with ~40% located within the Syb2 boundary and ~60% located outside (Fig.  
187 2b and Extended Data Fig. 2b). The average distance of Itsn1 and EndoA1 puncta to Bassoon  
188 or Syb2 boundaries was identical, with puncta being on average ~2 times closer to Syb2 (Fig.  
189 2c). These data suggest that a significant fraction of Itsn1 and EndoA1 proteins are contained  
190 within and next to the active zone, and an even larger fraction is on or near synaptic vesicles.

191 For the 3D organization of Itsn1 and EndoA1 proteins, we performed ISIM imaging,  
192 using both the active zone marked by RIM and the reserve pool marked by Syn1. Here, Itsn1  
193 and EndoA1 were endogenously stained by antibodies. ISIM revealed that Itsn1 forms small  
194 puncta at synapses, and these puncta appeared to be sandwiched between RIM signals and  
195 Syn1 signals (Fig. 2d,e and Extended Data Fig. 2c). Itsn1 colocalized with EndoA1 just above  
196 the RIM signals (Fig. 2f,g and Extended Data Fig. 2d). Additionally, some Itsn1 puncta were  
197 also found outside the synapses (Fig. 2d and Extended Data Fig. 2c,d). These data suggest that  
198 Itsn1 and EndoA1 form puncta near the active zone.

199 To test whether these puncta represent molecular condensates formed on vesicles, we  
200 first applied 7% 1,6-Hexanediol to neurons expressing GFP-Its n1 and mCherry-Syn1 (Extended  
201 Data Fig. 3) and measured the coefficient of variation (CV) of fluorescent signals along the  
202 axons to quantify condensate dispersion<sup>40</sup>. Within 30 s, puncta in the soma (Extended Data Fig.  
203 3a-c) and the axons (Extended Data Fig. 3d-e) of these neurons were markedly diffused. In  
204 agreement, measured CVs for both axonal GFP-Its n1 and axonal mCherry-Syn1 signals were  
205 reduced after 1,6-Hexanediol treatment (Extended Data Fig. 3f-g), indicating that condensed  
206 structures are dispersed and thus, are formed via the weak hydrophobic interactions of these  
207 proteins. We then tested whether these condensates undergo dynamic dispersion and  
208 reclustering during neuronal activity by expressing either GFP-Its n1 or EndoA1-mRFP in WT  
209 neurons and following its distribution after 300 action potentials (APs) given at 10 Hz (Extended

210 Data Fig. 3h-j). As in previous reports, which suggest Endophilin disperses from synapses  
211 during activity<sup>40</sup>, these two proteins undergo dynamic dispersion and then recondense in  
212 response to neuronal activity (Extended Data Fig. 3i,j). Finally, to test if these proteins condense  
213 onto synaptic vesicles, we purified synaptic vesicles from mouse brains<sup>49</sup> and probed for Itsn1  
214 and EndoA1 using antibodies (Fig. 2h). We used purified clathrin-coated vesicles as a control  
215 for staining since Itsn1 and EndoA1 are found on these vesicles<sup>49</sup>. We found both Itsn1 and  
216 EndoA1 are present on purified synaptic vesicles (Fig. 2h,i). Together, these data suggest that  
217 Itsn1 and EndoA1 form condensates in synapses and are likely localized on synaptic vesicles  
218 that are present near the active zone<sup>39</sup>.

219

## 220 **Intersectin-1 maintains a vesicle pool for transient docking**

221 Our data so far suggests that Itsn1 and EndoA1 form condensates on synaptic vesicles near the  
222 active zone. To discern the synaptic function of these condensates, we conducted zap-and-  
223 freeze time-resolved electron microscopy experiments<sup>7</sup>, which visualize synaptic membrane  
224 trafficking with millisecond temporal precision by electron microscopy. *Itsn1*+/+ (WT) and *Itsn1*-/-  
225 (KO) mouse hippocampal neurons were frozen either unstimulated or stimulated with a 1-ms  
226 electrical pulse, which induces a single AP, at various time points prior to freezing (Fig. 3 and  
227 Extended Data Fig. 4)<sup>7</sup>. Since Itsn1 was previously implicated in endocytosis in mouse  
228 hippocampal synapses<sup>50</sup> and in the *Drosophila* neuromuscular junction<sup>51</sup>, we first quantified  
229 endocytic pit formation and resolution by stimulating Itsn1 WT or KO neurons and freezing 100  
230 ms or 1 s after<sup>5</sup>. Consistent with recent work<sup>45</sup>, we found no significant defect in ultrafast

231 endocytosis in Itsn1 KO synapses (Fig. 3c), suggesting that Itsn1 is not essential for synaptic  
232 vesicle recycling in these synapses.

233 To further probe the role of Itsn1 at synapses, we assessed vesicle dynamics at  
234 synapses. We defined vesicles touching the plasma membrane as docked, as in our previous  
235 studies<sup>4,5,7</sup>. In unstimulated conditions, Itsn1 KO neurons had a normal number of docked and  
236 undocked vesicles (Fig 3a,b,e,f, and Extended Data Fig. 4a,b). To test whether these synapses  
237 functioned normally, we stimulated these neurons once and froze 5 ms after. Both Itsn1 WT and  
238 KO displayed exocytic pits at this time point (Fig. 3d). The number of exocytic pits in both cases  
239 is nearly identical, indicating no major exocytic phenotypes (Fig. 3d). Concomitantly, the number  
240 of docked vesicles was reduced normally at 5 ms (Fig. 3a,b,g, Extended Data Fig 4a,b). Thus,  
241 exocytosis after a single stimulus is unaffected by Itsn1 KO, consistent with previous studies in  
242 the Calyx of Held synapses<sup>43</sup>.

243 We next observed docking dynamics after stimulation to test whether Itsn1 is involved in  
244 refilling release sites. Our previous studies suggest that vacated release sites can be  
245 replenished by ~14 ms after a single stimulus<sup>7</sup>, a process that may reflect synaptic plasticity and  
246 maintenance<sup>20,21,24</sup>. This docking process is reversible (hence, ‘transient docking’) - by 100 ms,  
247 the number of docked vesicles returns to the depleted state<sup>4,5,7</sup>. To test this functional paradigm  
248 in Itsn1 KO synapses, we froze neurons 14 ms and 100 ms after a single stimulus. In Itsn1 WT  
249 synapses, transient docking was normal—docked vesicles were recovered at 14 ms and  
250 depleted again by 100 ms (Fig. 3a,g, Extended Data Fig. 4a). By contrast, in Itsn1 KO  
251 synapses, transient docking was completely abolished (Fig. 3b,g, Extended Data Fig. 4b).  
252 Interestingly, undocked vesicles in Itsn1 KO synapses appeared scarce near the active zone,  
253 particularly in the first 20 nm (Fig. 3h). This ~35% reduction was present at baseline and  
254 persisted out to 14 ms after stimulation (Fig. 3h,i). Additionally, the distribution of undocked  
255 vesicles close to the active zone (within 50 nm) changed dynamically following an action

256 potential. In Itsn1 WT, the number of undocked vesicles within 20 nm transiently increased at 5  
257 ms after stimulation from baseline levels while slightly decreasing within 20-50 nm (Fig. 3i,k).  
258 This accumulation of undocked vesicles within 20 nm of the active zone then decreased in  
259 number at 14 ms, even slightly below the baseline, likely due to the transition to a docked state  
260 mirroring transient docking (Fig. 3i,k). In resting Itsn1 KO synapses, undocked vesicles were  
261 more abundant between 20-50 nm of active zones (Fig. 3k), and redistribution of these vesicles  
262 into the 20 nm region was slow, requiring ~100 ms for Itsn1 KO synapses to reach Itsn1 WT  
263 levels (Fig. 3i,k). With repetitive stimulation (50 APs, 20 Hz) in WT neurons, vesicles within 20  
264 nm of the active zone were maintained, indicating that during steady turnover of vesicles from  
265 this zone to release sites, this zone is actively refilled (Fig. 3j). Taken together, these data  
266 suggest that a sufficient number of undocked vesicles must be within 20 nm of the active zone  
267 to be used for transient docking. Without Itsn1, these vesicles seem to be located further away  
268 from the active zone, preventing their use. Thus, hereafter, we will refer to these vesicles as  
269 replacement vesicles, and this 20 nm region as the replacement zone.

270

## 271 **Intersectin-1 and Endophilin A1 interaction is critical for vesicle replacement**

272 Itsn1 and EndoA1 form condensates on vesicles and co-accumulate near the active zone, and  
273 without Itsn1, the consequent reduction in replacement vesicles coincides with failure of  
274 transient docking. Recent work suggests that the interaction of Itsn1 and EndoA1 is critical for  
275 continued vesicle release in stimulated chromaffin cells<sup>42</sup>, highlighting the potential for neuronal  
276 vesicle replacement to have similar requirements. To test this possibility, we performed rescue  
277 experiments in Itsn1 KO neurons with WT and mutant forms of Itsn1. Itsn1 and EndoA1 interact  
278 with one another through an SH3-SH3 interaction<sup>38</sup>. Two point mutations in full length (FL)

279 Itsn1's SH3B domain (W949E/Y965E<sup>38</sup>; hereafter Itsn1ΔEndoA1) perturbed this interaction  
280 (Extended Data Fig. 5a).

281 At the ultrastructural level, overall synapse morphology was normal, and the total  
282 number of vesicles was unperturbed relative to Itsn1 KO when rescue constructs were  
283 expressed (Fig. 4a,b, and Extended Data Fig. 5b-d). After a single AP, exocytosis occurred  
284 normally<sup>7</sup> in rescue backgrounds (Extended Data Fig. 5e). When Itsn1 WT was expressed in  
285 Itsn1 KO neurons, all phenotypes were rescued (Fig. 4a, c-g, Extended Data Fig. 5b). By  
286 contrast, the expression of Itsn1ΔEndoA1 failed to rescue the transient docking phenotype—  
287 docked vesicles were depleted at 5 ms normally but failed to return to baseline 14 ms after  
288 stimulation (Fig. 4b,c,d, and Extended Data Fig. 5c). As in Itsn1 KO, this failure coincided with a  
289 lack of replacement vesicles (Fig. 4b,e,f, and Extended Data Fig. 5c), and the distribution of  
290 undocked vesicles was shifted away from the active zone relative to Itsn1 WT rescue in  
291 unstimulated synapses, 5 ms and 14 ms after stimulation (Fig. 5g). Taken together, our results  
292 suggest that the specific interaction of Itsn1 and EndoA1 is required for the localization of  
293 replacement vesicles and their mobilization for transient docking.

294

## 295 **Endophilin A1 mobilizes replacement vesicle pool**

296 Given its colocalization with Itsn1 in synapses and on vesicles, and the importance of the Itsn1-  
297 EndoA1 interaction in replacement vesicle localization and transient docking, we next assessed  
298 the contribution of EndoA directly to this replacement pathway. We compared Endophilin A  
299 (EndoA) triple knockout (TKO; *Sh3gl2*–/–, *Sh3gl1*–/–, and *Sh3gl3*–/–) mouse hippocampal neurons  
300 to WT neurons by zap-and-freeze. As in our previous studies<sup>52</sup>, the number of synaptic vesicles  
301 was reduced in EndoA TKO neurons by ~70% due to the defect in synaptic vesicle recycling<sup>52</sup>  
302 (Fig. 5a,b,c, and Extended Data Fig. 6a,b). Despite this strong reduction in total vesicles, the

303 number of docked vesicles and replacement vesicles at rest was only modestly decreased  
304 (~30%; Fig. 5a,b,d,f and Extended Data Fig. 6a,b,d), suggesting that remaining vesicles in  
305 EndoA TKO relatively accumulate near the active zone. Thus, vesicle counts were normalized  
306 to no stimulation conditions to account for baseline differences in resting synapses. The number  
307 of exocytic pits also decreased by ~30% when compared to EndoA WT, but the frequency of  
308 their appearance still fell within the normal range<sup>7</sup> (Extended Data Fig. 6c).

309 WT synapses displayed normal transient docking (Fig. 5a,e, and Extended Data Fig. 6a)  
310 and a subtle increase in replacement vesicles at 5 ms that returned to baseline at 14 ms (Fig.  
311 5a,g, and Extended Data Fig. 6a), mirroring transient docking. Strikingly, in EndoA TKO  
312 synapses, transient docking completely failed (Fig. 5b,e, and Extended Data Fig. 6b). Further,  
313 following stimulation, undocked vesicles slightly decrease at 5 ms and return to baseline at 14  
314 ms (Fig. 5b,g, Extended Data Fig. 6b), likely mirroring the failure of these vesicles to be used in  
315 transient docking. Concomitantly, the relative distribution of vesicles within the replacement  
316 zone in TKO neurons was similar to that in WT neurons, in both unstimulated synapses and  
317 those frozen 5 ms or 14 ms after stimulation (Fig. 5h). Together, these data suggest that  
318 replacement vesicles accumulate and are properly localized in EndoA TKO synapses but are  
319 not properly mobilized and thus, cannot be used for transient docking.

320

### 321 **Replacement vesicles are necessary for short-term plasticity and synaptic maintenance**

322 To assess the importance of replacement vesicles for synaptic physiology, we measured field  
323 excitatory postsynaptic potentials (fEPSPs) in mouse hippocampal slices taken from Itsn1 WT  
324 and KO male or female littermates (P30-60) by stimulating the CA1 region and recording from  
325 CA1/CA2 synapses in the CA2 region (Fig. 6a). Our previous studies show two major  
326 physiological deficits in the absence of transient docking: no facilitation of synaptic transmission

327 and faster synaptic depression<sup>7,21</sup>. These parameters can be assessed by measuring release  
328 probability and synaptic responses to paired stimuli (two stimulating pulses interspersed with  
329 various intervals) and to high-frequency stimulation (100 APs, 20 Hz). Consistent with our  
330 finding that the number of exocytic pits was unchanged in Itsn1 KO synapses (Fig. 3d), there  
331 was no difference in release probability between WT and Itsn1 KO slices (Fig. 6b). By contrast,  
332 Itsn1 KO showed only a slight reduction in paired-pulse response compared to WT (Fig. 6c),  
333 suggesting that synaptic transmission can facilitate despite the lack of transient docking, likely  
334 because the activity-dependent docking factor Syt7 is present in these synapses<sup>21,53</sup>. However,  
335 in response to a high-frequency train, facilitation early in the train (first 10 stimulations) was  
336 greatly reduced in Itsn1 KO slices (Fig. 6d-f, and Extended Data Fig. 7g), and consequently, this  
337 reduction led to a faster depression of synaptic signaling, suggesting that replacement vesicles  
338 are needed for synapses to keep up with instantaneous signaling demands. Later in the train  
339 (last 10 stimulations), the responses were more similar but still significantly different between  
340 WT and Itsn1 KO, with Itsn1 KO responses being smaller (Fig. 6d-f). Given that this phase  
341 represents the balance between exocytosis and replenishment, Itsn1 likely also plays a  
342 significant role in steady-state replenishment. In agreement, there was an appreciable reduction  
343 of overall release, synchronous and asynchronous release during the train, measured by charge  
344 transfer, in Itsn1 KO (Extended Data Fig. 7a-f). Despite these defects, synaptic recovery after  
345 the train was indistinguishable between WT and KO (Fig. 6g, and Extended Data Fig. 7h),  
346 suggesting Itsn1 KO synapses can steadily return to baseline release competency.

347 Finally, we calculated the readily-releasable pool (RRP) size by linear back-extrapolation  
348 of cumulative normalized fEPSP responses during train stimulation<sup>54-56</sup>, analysis which relies on  
349 the assumption that synaptic depression coincides with RRP depletion. Thus, RRP can be taken  
350 as a reflection of the product of  $N$ , the number of release sites, and  $q$ , the quantal size ( $Nq$ )<sup>56-58</sup>.  
351 Here, the RRP was reduced by 30% in Itsn1 KO slices when compared to WT slices (Fig. 6h,i).

352 This reduction was consistent with a ~35% reduction of replacement vesicles (Fig. 3h),  
353 suggesting that replacement vesicles make a substantial contribution to the RRP. Taken  
354 together, these data suggest that Itsn1 and EndoA1 maintain replacement vesicles within 20 nm  
355 of the active zone in the replacement zone, and these vesicles are used to replenish release  
356 sites during the train of stimuli to enhance synaptic signaling (Extended Data Fig. 7i).

357

## 358 **Discussion**

### 359 **The interplay of synaptic phases**

360 Phase separation is emerging as a major regulator of synaptic organization and function.  
361 Numerous presynaptic and postsynaptic proteins have been shown to phase separate *in vitro*,  
362 in heterologous cell systems, and in native contexts<sup>30–32,34–36,40,59–61</sup>. In the presynapse, many  
363 distinct compartments are thought to contain phase-separated proteins. In the active zone,  
364 proteins such as RIM, RIM-BP2, voltage-gated Ca<sup>2+</sup> channels, Munc13, Liprin- $\alpha$ , and ELKS-1  
365 phase separate<sup>30–33</sup>, and this action has been linked to the development and maturation of the  
366 active zone, vesicle tethering, its organization, and structure. Adjacent to the active zone is the  
367 endocytic zone, which is recently shown to contain phase-separated Dynamin 1xA and  
368 Syndapin 1, critical for endocytic function<sup>34</sup>. Further into the synapse is the phase-separated  
369 synaptic vesicle reserve pool, which is largely achieved by the multivalent interactions of Syn1<sup>35</sup>.  
370 Here, we describe a zone driven by condensation of Itsn1 and EndoA1, positioned between the  
371 active zone and Syn1-labeled reserve pool cluster.

372 This tiered molecular organization seems to organize functional pools of synaptic  
373 vesicles. Vesicle pools within presynapses have been categorized into three main functional  
374 groups—the reserve pool, the recycling pool, and the readily-releasable pool<sup>11,16,26,27</sup>. Our data  
375 here suggests that the readily-releasable pool is further divided into the docked vesicle pool and

376 the replacement pool (Extended Data Fig. 7i). Consistent with this idea, morphological studies in  
377 hippocampal mossy fiber synapses suggest that if all vesicles within 60 nm of the active zone  
378 were to fuse, the amount of membrane deposited into the presynaptic membrane would mirror  
379 the amount of membrane added during readily-releasable pool depleting stimulation, which was  
380 determined by capacitance measurements<sup>25,62</sup>. These molecular layers, and thereby functional  
381 pools, likely retain their identity in resting synapses due to the presence of physical boundaries  
382 (phase separations). Elevation of calcium during synaptic activity can potentially break these  
383 boundaries either directly by resolving the phase separation or indirectly by posttranslational  
384 modifications (as in CaMKII phosphorylation of Synapsin), enabling more vesicles to be  
385 available commensurate to the activity level of synapses. Thus, this tiered organization can  
386 modulate the number of available vesicles at a given synapse.

387         Nonetheless, how the size and durability of these phase-separated domains is  
388 controlled, and how they stay localized in synapses remains enigmatic. Recent work suggests  
389 that the size and stability of phase-separated domains can be determined via Pickering  
390 emulsions - interactions with immiscible protein clusters that localize to the surface of said  
391 domains<sup>63,64</sup>. Similarly, our results in HEK293 cells showed that Syn1-Itsn1 condensates  
392 containing FL Itsn1 were smaller in size when compared to Syn1-Itsn1 condensates that  
393 contained either fragment of Itsn1 (AB or AE). Likewise, in lamprey giant reticulospinal  
394 synapses, Itsn1 is found to increase the size of Syn1 condensates or disperse them, depending  
395 on abundance of Itsn1<sup>36</sup>. Thus, Itsn1 could regulate the size and stability of Syn1 condensates,  
396 and thereby the reserve pool vesicle cluster, similarly as described for several other phase-  
397 separating systems<sup>64</sup>. Such a function may directly relate to the size of the replacement pool  
398 described here. Further, interactions between these proteins may localize them to the  
399 presynapse. Itsn1 is long shown to interact with various transmembrane proteins in the active  
400 zone, like SNAP-25<sup>45,65</sup>. This may work to anchor Itsn1, and thus Syn1, along with their

401 associated vesicle pools, at presynaptic terminals in a specific order from the active zone  
402 membrane.

403

404 **Crosstalk between functional vesicle pools**

405 Three lines of evidence presented here suggest that the replacement zone is refilled  
406 from an upstream pool of vesicles, either the recycling or the reserve pool, in an activity-  
407 dependent manner. First, WT synapses typically display a transient increase in undocked  
408 vesicles within 20 nm of the active zone, without an overall decrease in undocked vesicle  
409 number within 50 nm, implying vesicle movement into this 20 nm region. Second, in Itsn1 KO  
410 synapses, replacement vesicles can eventually populate within 20 nm of the active zone, albeit  
411 on a timescale (~100 ms after stimulation) incapable of accommodating synaptic demand for  
412 docked vesicles. This transition may be facilitated by the movement of new vesicles from further  
413 within the synapse into or near the replacement zone. Third, upon high-frequency stimulation,  
414 vesicles within the replacement zone are slightly reduced but largely maintained, implying the  
415 presence of an active refilling mechanism. These are consistent with previous optical  
416 studies<sup>66,67</sup>, and electrophysiological studies paired with mathematical modeling<sup>20,22-24</sup>. Taken  
417 together, our data suggest that the replacement zone consists of undocked vesicles, which can  
418 be used for the replacement of vacated release sites when the vesicles arrive within 20 nm of  
419 the active zone.

420 Currently, the upstream pool of vesicles is poorly defined. One possibility is that vesicles  
421 in the reserve pool can be accessed during activity. Consistent with this idea, Itsn1 and Syn1  
422 interaction has been shown to be activity-dependent<sup>46</sup>, perturbing the Syn1-Syn1 interaction  
423 within the reserve pool and thereby, freeing vesicles for entry into the replacement pool and  
424 subsequent use in transmission. Here, we show that Itsn1 and EndoA1 localize at the periphery  
425 of the Syn1 reserve pool. Taken together with our finding that Itsn1 condensates are linked to  
426 vesicle clusters by Syn1, it is enticing to postulate that Itsn1-EndoA1 sit at the edge of the

427 reserve pool, capturing periphery vesicles and using them for release site replenishment  
428 (Extended Data Fig. 7i). Alternatively, the recycling pool may provide vesicles to the  
429 replacement pool. Itsn1 and EndoA1 may potentially prevent the formation of Syn1-Syn1  
430 interactions, which normally “lock” vesicles into the reserve pool<sup>35,36,68,69</sup>. Thus, vesicles that  
431 contain Itsn1 and EndoA1 after recycling are primed to reenter the readily-releasable pool. This  
432 transition may be further facilitated in glutamatergic neurons by the presence of vGlut1 on these  
433 vesicles, which interacts with both Itsn1 and EndoA1 to bolster evoked release capacity at  
434 synapses<sup>70</sup>. Thus, the Itsn1-EndoA1 replacement pool may contain vesicles poised to  
435 immediately refill vacated sites and upstream vesicles recently regenerated from synaptic  
436 vesicle recycling.

437

### 438 **Replacement vesicle mobilization**

439 The persistence of replacement vesicles in EndoA TKO synapses even during activity sheds  
440 light on the mechanism of the replacement vesicle to docked vesicle transition. Our data  
441 suggests Itsn1 alone can fill the replacement pool at rest, but without EndoA, Itsn1 may “lock”  
442 these vesicles in the replacement pool, similarly to Syn1. In this model, Itsn1 generates the  
443 replacement pool, but hinders the usage of these vesicles, perhaps through phase separation of  
444 replacement vesicles (Extended Data Fig. 7i). EndoA may then through its interaction with Itsn1  
445 free these vesicles from the replacement pool during activity for transient docking. Since  
446 EndoA1 interacts with vGlut1 to control release probability of vesicles, further dissecting how  
447 these molecular players interplay will heighten our understanding of neurotransmission and  
448 synaptic plasticity.

449

### 450 **Acknowledgements**

451 We thank Dr. Volker Haucke for sharing the Itsn1 antibody. We also thank Dr. Melanie Pritchard  
452 from Monash University for sharing the Itsn1 KO animals and Dr. Sanda Predescu from Rush

453 University for shipping the transgenic animals. We are also indebted to Dr. Johanna Pena Del  
454 Castillo for the help with endophilin dispersion experiments, and the past and current members  
455 of the Watanabe laboratory, particularly Dr. Kie Itoh, Sydney Brown, and Christian Pearson for  
456 technical assistance and Dr. Grant Kusick for discussion; M. Delanoy, B. Smith and Hoku West-  
457 Foyle at the Johns Hopkins Microscopy Facility, and Alexis Tomaszewski and Kristhine Martinez  
458 for the initial shRNA experiments. We thank the Advanced BioMedical Imaging facility at Charité  
459 for the support in microscopy and G. Schneider from the Milovanovic lab for the experimental  
460 support. S.W. and this work were supported by start-up funds from the Johns Hopkins  
461 University School of Medicine, Johns Hopkins Discovery funds, Johns Hopkins Catalyst award,  
462 Marine Biological Laboratory Whitman Fellowship, Chan-Zuckerberg Initiative Collaborative Pair  
463 Grant, Chan-Zuckerberg Initiative Supplement Award, Brain Research Foundation Scientific  
464 Innovation Award, Helis Foundation award, and the National Institutes of Health (1DP2  
465 NS111133-01, 1R01 NS105810-01A1, R35 NS132153) awarded to S.W. S.W. is an Alfred P.  
466 Sloan fellow, a McKnight Foundation Scholar, a Klingenstein and Simons Foundation scholar,  
467 and a Vallee Foundation Scholar. T.H.O. was supported by the National Science Foundation  
468 GRFP (2019241734) and a grant from the National Institutes of Health to the BCMB program of  
469 the Johns Hopkins University School of Medicine (T32 GM007445). R.P. is supported by the  
470 American Heart Association Postdoctoral fellowship. A.H. was supported by the Albstein  
471 research scholarship. I.M. and S.G. received support from the Wellcome Trust (224361/Z/21/Z),  
472 John Fell (10447), FCT (PTDC/MED-NEU/8030/2020) and La Caxia (HR22-00854) Foundations  
473 and EU-Horizon 2020 (857524). B.H.C. funded/supported by the Deutsche  
474 Forschungsgemeinschaft (SFB1286/A01). D.M. is supported by the start-up funds from DZNE,  
475 the grants from the German Research Foundation (SFB 1286/B10 and MI 2104), and the  
476 Human Frontiers Science Organization (RGEC32/2023). C.H. is supported by a fellowship of  
477 the Innovative Minds Program of the German Dementia Association; HW is supported by the  
478 Oversea Study Program of Guangzhou Elite Project (SJ2020/2/JY202025). The EM ICE high-

479 pressure freezer was purchased partly with funds from an equipment grant from the National  
480 Institutes of Health (S10RR026445) awarded to Scot C Kuo.

481

482 **Author Contributions**

483 T.H.O., I.M., D.M., and S.W. conceived the study and designed the experiments. S.W. oversaw  
484 the overall projects and funded the research. I.M. and D.M. also provided funding. T.H.O., A.H.,  
485 S.R., B.H.C. and S.W. performed electron microscopy experiments. T.H.O., C.H., W.W., A.H.,  
486 and D.M., performed experiments concerning phase separation. T.H.O. performed  
487 superresolution imaging. S.G. and I.M. performed immuno-staining of purified vesicles and  
488 protein dispersion analysis. R.P. performed electrophysiology experiments. Co-second authors  
489 C.H., R.P., and H.W. contributed equally, and the order is simply alphabetical. Co-senior  
490 authors: I.M. and D.M. contributed equally, and the order is also alphabetical.

491

492

493

494 **Materials and Methods**

495 **Animal use**

496 All the animal work was performed according to the National Institutes of Health guidelines for  
497 animal research with approval from the Animal Care and Use Committees at the Johns Hopkins  
498 University School of Medicine. For *Itsn1* KO experiments, 129SV/J<sup>Itsn1<sup>-</sup></sup> mice were maintained as  
499 heterozygotes, and neurons were cultured from homozygous null P0 pups, with homozygous WT  
500 littermates used as controls. Neurons were cultured from E18 embryos from C57BL/6J mice  
501 except for the *EndoA* TKO experiments.

502 For *EndoA* TKO, experiments complied with the national animal care guidelines and were  
503 approved by the University Medical Center Göttingen board for animal welfare and the animal  
504 welfare office of the state of Lower Saxony (LAVES). Constitutive knockout mice for endophilin  
505 A1, A2 and A3, as originally described<sup>44</sup>, were used in two separate breeding schemes: (i)  
506 endophilin A1<sup>-/-</sup>A2<sup>-/-</sup> (hereafter 1,2 DKO; lethal by P19-20) and littermate A1<sup>+/+</sup>A2<sup>+/+</sup> mice were  
507 obtained from breeding A1<sup>+/+</sup>A2<sup>+/+</sup> mice, and (ii) perinatally lethal endophilin A1<sup>-/-</sup>A2<sup>-/-</sup>A3<sup>-/-</sup>  
508 (hereafter TKO) and littermate A1<sup>-/-</sup>A2<sup>+/+</sup>A3<sup>-/-</sup> mice were obtained from breeding A1<sup>-/-</sup>A2<sup>+/+</sup>A3<sup>-/-</sup>  
509 /- mice. WT controls were obtained from breeding endophilin A1<sup>+/+</sup>A2<sup>+/+</sup>A3<sup>+/+</sup> (genetic  
510 background ~80% C57BL/6J/~20% SV129) mice or are obtained from the C57BL/6J line. Both  
511 male and female mice were used for all experiments.

512

513 **Primary neuron culture**

514 Primary hippocampal neurons were isolated from either E18 embryos or P0 pups of both genders.  
515 The brains were taken from animals and hippocampi were dissected under a binocular  
516 microscope. Dissected hippocampi were collected in ice-cold dissecting media (1 x HBSS, 1 mM

517 sodium pyruvate, 10 mM HEPES, pH7.2-7.5, 30 mM glucose, 1% penicillin-streptomycin) and  
518 later digested with papain (0.5 mg/ml) and DNase (0.01%) for 25 min at 37 °C. Cells were then  
519 further dissociated by trituration using fire-polished Pasteur pipettes.

520 For high-pressure freezing experiments neurons were plated onto 6-mm sapphire disks  
521 (Technotrade Inc) coated with poly-D-lysine (1 mg/ml) and collagen (0.6 mg/ml) with a pre-seeded  
522 astrocyte feeder layer on it. For this, cortices were harvested from E18/P0 animals, and astrocytes  
523 were isolated with a treatment of trypsin (0.05%) for 20 min at 37 °C, followed by trituration.  
524 Astrocytes were seeded in T-75 flasks containing DMEM supplemented with 10% Fetal Bovine  
525 Serum (FBS) and 0.2% penicillin-streptomycin. After 2 weeks, astrocytes were plated on sapphire  
526 disks (50K/well). After 1 week in culture, astrocytes were incubated with 5-Fluoro-2'-deoxyuridine  
527 (81 µM) and uridine (204 µM) for at least 2 hours to stop mitosis. Prior to the addition of  
528 hippocampal neurons, the medium was changed to Neurobasal-A (Gibco) supplemented with 2  
529 mM GlutaMax, 2% B27 and 0.2% penicillin-streptomycin.

530 For high-pressure freezing experiments of *EndoA* TKO neurons and their controls, the  
531 following protocol was used. Astrocyte feeder cells were prepared as detailed in Pyott and  
532 Rosenmund (2002). Hippocampi from transgenic animals were dissected and incubated for 25  
533 min in HBSS (Sigma) with 0.5% papain (Worthington) at 37 °C. After washing, neurons were  
534 triturated with fire-polished Pasteur pipettes, counted with a hemacytometer, and plated on  
535 astrocyte microislands (Bekkers and Stevens, 1991) in the plating medium [neurobasal medium  
536 (Invitrogen, Carlsbad, CA) supplemented with B-27 (Invitrogen), 17.3 mM HEPES, 1% GlutaMax-  
537 I (Invitrogen), 1% penicillin/streptomycin (Invitrogen), 25 µM β-mercaptoethanol, and 100 nM  
538 insulin (Heeroma et al., 2004)]. Medium was exchanged after about 12 h with neuronal medium.  
539 Neurons were cultured for 12–14 days before being used for experiments (only islands containing  
540 single neurons were examined). Dissociated cultures of primary cortical neurons have been  
541 prepared as previously described<sup>44</sup>.

542 For fluorescence imaging, dissociated hippocampal neurons were seeded onto 18-mm or  
543 25-mm coverslips (Carolina Biologicals) coated with poly-L-lysine (1 mg/ml, Sigma) at a density  
544 of  $25-40 \times 10^3$  cells/cm<sup>2</sup> in Neurobasal media (Gibco) supplemented with 2 mM GlutaMax, 2%  
545 B27, 5% FBS and 1% penicillin-streptomycin (NM5) at 37 °C in 5% CO<sub>2</sub>. The next day, the media  
546 was changed to Neurobasal media with 2 mM GlutaMax and 2% B27 (NM0), and neurons were  
547 maintained in this medium until use. Half of the media was refreshed every week or as needed.

548 For biochemical experiments, dissociated hippocampal neurons were seeded on poly-L-  
549 lysine (1mg/ml) coated plates or dishes with Neurobasal media supplemented with 2 mM  
550 GlutaMax, 2% B27, 5% FBS serum, and 1% penicillin-streptomycin, at a density of  $1 \times 10^5$   
551 cells/cm<sup>2</sup>. The next day, the medium was changed to Neurobasal medium containing 2 mM  
552 GlutaMax and 2% B27 (NM0), and neurons were maintained in this medium. Half of the media  
553 was refreshed every week or as needed. For Itsn1 KO and WT littermate cultures, tail clips were  
554 obtained from live P0 pups and genotyped as previously described. Brain tissues were harvested  
555 from correct genotypes and hippocampal neurons were prepared as described above.

556

## 557 **Plasmids**

558 For rescue experiments, rescue protein-coding sequences were recombined by In-fusion  
559 seamless cloning into a lentiviral expression vector containing 3x NLS-EGFP under the control of  
560 a human Synapsin promoter. Downstream of the 3x NLS-EGFP is a P2A sequence, which lies  
561 directly upstream of the destination for rescue protein-coding sequences. Plasmids containing  
562 either FL Itsn1 isoform or the same isoform containing W949E, Y965E ( $\Delta$ EndoA1) mutations were  
563 generated.

564 For localization experiments, a plasmid containing the FL Itsn1 isoform N-terminally  
565 tagged to GFP (GFP-Itsn1) was purchased from addgene (#47395). For EndoA1, an EndoA1  
566 protein-coding sequence which was a gift from the Michael A. Cousin lab was dropped into an  
567 pEGFP-N1 CMV mammalian expression vector (Clontech) by In-fusion cloning, resulting in Endo  
568 A1 C-terminally tagged with EGFP (EndoA1-GFP).

569 For 1,6-Hexanediol experiments in neurons, GFP-Itsn1 was used with co-expression  
570 markers mCherry-Syn1.

571 For heterologous cell system experiments, we used the plasmids described above along  
572 with mammalian expression vectors containing mCerulean-Endo A1, BFP-Syn1, GFP-Itsn1 AB,  
573 GFP-Itsn1 AE, untagged Syph, and Syph-emiRFP670, cloned and/or maintained in the  
574 Milovanovic lab.

575

## 576 **Lentivirus preparation**

577 Lentivirus containing either Itsn1 WT or Itsn1 $\Delta$ EndoA1 rescue constructs were prepared as  
578 described previously. Briefly, either rescue construct along with two helper DNA constructs (pHR-  
579 CMV8.2 deltaR (Addgene 8454) and pCMV-VSVG (Addgene 8455)) at a 4:3:2 molar ratio was  
580 transfected into HEK293T cells using polyethylene amine. Culture supernatant containing the  
581 virus was collected 3 days after transfection and 20-fold concentrated using Amicon Ultra 15 10K  
582 (Millipore) centrifugal filter. Aliquots were flash-frozen in liquid nitrogen and stored in -80 °C until  
583 use.

584

## 585 **Lentivirus infection**

586 Neuron cultures prepared for lentiviral infection were grown until DIV (days in vitro) 7. Titered  
587 lentivirus was added to wells at an amount that leads to nearly 100% infection efficiency.  
588 Successful infection was assayed by the expression of NLS-EGFP which is contained within  
589 rescue constructs. Additionally, western blot analysis was used to assess the rescue construct  
590 protein of interest expression.

591

592 **Transient transfection**

593 For transient expression of proteins, neurons were transfected at DIV 9-16 by Lipofectamine 2000  
594 (Invitrogen) according to the manufacturer's manual. Prior to transfection, half of the media from  
595 each well was taken out and mixed with fresh NM0 (see above) that was left to warm to 37 C°  
596 and equilibrate with CO<sub>2</sub> in an incubator (recovery media). The rest of the media was aspirated  
597 and replaced with fresh NM0 for transfection. Plasmids were diluted in NeuroBasal Plus (Gibco)  
598 media so that 1-2 µg of DNA would be added to each well. Prior to the addition, DNA was mixed  
599 with a solution containing Lipofectamine 2000 such that there was a 1:1 to 1:4 ratio of µg DNA to  
600 µL Lipofectamine. This mixture was added to each well and incubated for 4 hours. Afterward, the  
601 transfection media was removed and replaced with recovery media previously prepared. After 16-  
602 20 hours, neurons were either used for pharmacological treatment or fixed for  
603 immunofluorescence.

604 Transient expression of proteins in HEK293T/HEK293 cells occurred at most one day prior to  
605 experiments. Cells were grown on 35-mm glass bottom dishes until 80% confluency. A solution  
606 of Lipofectamine 2000 and DNA (3 µL:1 µg) in 200 µL Optimem was prepared according to the  
607 manufacturer's manual. 0.5 µg of DNA was used. The solution was mixed and allowed to sit for  
608 20 mins prior to addition to cells. Cells were incubated for 12-24 hours after addition at 37 °C and  
609 5% CO<sub>2</sub> prior to imaging.

610 **Pharmacology**

611 For 1,6-Hexanediol (Sigma) experiments in neurons, transfected neurons were treated  
612 immediately prior to imaging. Neurons plated on 25-mm coverslips were mounted onto a metal  
613 ring sample holder containing 3/4 of the final volume of cell culture media. Upon initiation of the  
614 imaging experiment, the remaining 1/4 cell culture media was added from a stock solution that  
615 contains 28% 1,6 Hexanediol to make a final concentration of 7% 1,6 Hexanediol.

616 For HEK293T cells, cells were plated onto 35-mm glass bottom petri dishes (Cellvis). The  
617 stock solution was 16%, for a final concentration of 4%. Dishes contained 3/4 of the final volume  
618 of cell culture media. Upon initiation of the imaging experiment, the remaining 1/4 cell culture  
619 media was added from a stock solution that contains 16% 1,6 Hexanediol to make a final  
620 concentration of 4% 1,6 Hexanediol.

621 For HEK293 cell experiments, pre-warmed 1,6-Hexanediol was diluted to final  
622 concentration of 3% in DMEM (culture media) and loaded onto cells plated on 35-mm glass  
623 bottom petri dishes (Cellvis, US).

624

625 **Immunofluorescence**

626 For immunofluorescence, experiments were performed with DIV 14-16 hippocampal neurons.  
627 Culture media was removed from the wells and fixed with 37 °C 1X PBS containing 4%  
628 paraformaldehyde and 4% sucrose for 20 minutes at room temperature. After fixation, cells were  
629 washed three times with 1x PBS. Next, cells were permeabilized by 0.2% Triton X-100 diluted in  
630 1X PBS for 8 minutes. After three washes with 1X PBS, cells were blocked by 1% BSA in 1X PBS  
631 for 1 hour. Then, coverslips were transferred to a humidified chamber and placed face down on  
632 a drop of primary antibody solution. Primary antibodies were diluted 1:500 to 1:250 in a 1% BSA

633 1X PBS and cells were incubated at 4°C overnight. GFP-Itsn1 and EndoA1-GFP were stained by  
634 an anti-GFP rabbit polyclonal antibody (MBL International). Endogenous Bassoon protein was  
635 stained by an anti-Bassoon mouse monoclonal (Synaptic Systems) antibody. Endogenous Rim  
636 protein was stained by an anti-RIM1 mouse monoclonal (Synaptic Systems) antibody. Endogenous Synapsin  
637 protein was stained by an anti-Synapsin 1/2 guinea pig polyclonal (Synaptic Systems) antibody. Endogenous Synaptobrevin 2 protein was stained by an anti-Synaptobrevin 2 mouse monoclonal (Synaptic Systems) antibody. Endogenous Endophilin A1  
638 was stained by an anti-Endophilin 1 guinea pig polyclonal (Synaptic Systems) antibody. Endophilin A1  
639 was stained by an anti-Endophilin 1 guinea pig polyclonal (Synaptic Systems) antibody. Endogenous Intersectin-1  
640 was stained by an anti-Intersectin-1 rabbit polyclonal (Gift from Volker Haucke) antibody. Next, coverslips were washed with 1X PBS three times. Secondary antibodies were  
641 diluted in 1X PBS containing 1% BSA. For superresolution 2D STED imaging, an anti-rabbit  
642 Atto647N (Rockland) secondary antibody was used at 1:120 dilution and an anti-mouse Alexa594  
643 (Invitrogen) secondary antibody was used at 1:1000. For ISIM, a 1:500 dilution was used for  
644 Alexa488, Alexa568, or Alexa647 secondary antibodies. Secondary antibody incubation was  
645 performed in a humidified chamber as described previously for 1 hour at room temperature.  
646 Following three 1X PBS washes, cells were rinsed with Milli-Q water and mounted on a glass  
647 slide containing a drop of ProLong Diamond Antifade Mounting media (Thermo Fisher). Mounting  
648 media was allowed to solidify for 24 hours at room temperature in the dark before proceeding to  
649 STED imaging.

652

### 653 **Stimulated emission depletion microscopy (STED)**

654 All 2D STED images were obtained using a home-built two-color STED microscope<sup>34</sup>. A  
655 femtosecond laser beam with a repetition rate of 80 MHz from a Ti:Sapphire laser head (Mai Tai  
656 HP, Spectra-Physics) is split into two parts: one part is used to produce the excitation beam, which

657 is coupled into a photonic crystal fiber (Newport) for wide-spectrum light generation and is further  
658 filtered by a frequency-tunable acoustic optical tunable filter (AA Opto-Electronic) for multi-color  
659 excitation. The other part of the laser pulse is temporally stretched to ~300 ps (with two 15-cm  
660 long glass rods and a 100-m long polarization-maintaining single-mode fiber, OZ optics),  
661 collimated, expanded, and wave-front modulated with a vortex phase plate (VPP-1, RPC  
662 photonics) for hollow STED spot generation to de-excite the fluorophores at the periphery of the  
663 excitation focus, thus improving the lateral resolution. The STED beam is set at 765 nm with a  
664 power of 120 mW at the back focal plane of the objective lens (NA=1.4 HCX PL APO 100×, Leica),  
665 and the excitation wavelengths are set as 594 nm and 650 nm for imaging Alexa594 and Atto647N  
666 labeled targets, respectively. The fluorescent photons are detected by two avalanche photodiodes  
667 (SPCM-AQR-14-FC, Perkin Elmer). The images are obtained by scanning a piezo-controlled  
668 stage (Max311D, Thorlabs) controlled by the Imspector data acquisition program.

669

## 670 **Data analysis of 2D STED images**

671 A custom MATLAB code package was used to analyze overexpressed GFP tagged Itsn1 and  
672 EndoA1 protein distribution relative to the active zone marked by Bassoon, and synaptic vesicle  
673 pools marked by Synaptobrevin 2 in 2D STED images<sup>34</sup>. First, STED images were blurred with a  
674 Gaussian filter with radius of 1.2 pixels to reduce the Poisson noise, and then deconvoluted twice  
675 using the built-in deconvblind function: the first point spread function (PSF) input is measured  
676 from nonspecific antibody signal in the STED images, and the second PSF input is chosen as the  
677 returned PSF from the first run of blind deconvolution<sup>34</sup>. Each time, 10 iterations are performed.  
678 Presynaptic boutons in each deconvoluted image were selected within 30×30 pixel (0.81 mm<sup>2</sup>)  
679 ROIs based on the varicosity shape and bassoon signal. The active zone or synaptic vesicle pool  
680 boundary was identified as the contour that represents half of the intensity of each local intensity

681 peak in the Bassoon and Synaptobrevin 2 channel, respectively, and the Itsn1 or EndoA1 protein  
682 foci are picked as local maxima. The distances between the protein foci centers and the active  
683 zone or synaptic vesicle pool boundary are automatically calculated correspondingly. Itsn1 and  
684 EndoA1 protein foci continuous with the edge of ROIs, and the Bassoon or Synaptobrevin 2  
685 signals outside of the transfected neurons were excluded from the analysis. For each condition,  
686 roughly 80-100 boutons (n) were quantified from 3 different cultures (N). The MATLAB scripts are  
687 available by request.

688

#### 689 **Instant Structured Illumination Microscopy (iSIM) imaging**

690 Neurons were imaged by the VT-iSIM from BioVision Technologies. A 100x objective lens  
691 (NA=1.4) was used. MetaMorph Imaging software (MDS Analytical Technologies) was used for  
692 acquisition. ~90  $\mu$ m x 60  $\mu$ m x-y fields of view were captured, with an x-y pixel size of 0.0650 nm.  
693 Z-stacks were taken with 100 nm spacing between z-slices. A z-depth of 3  $\mu$ m was used.  
694 Fluorophores were illuminated by 525 nm, 605 nm, and 700 nm lasers at consistent powers.  
695 Images were then deconvoluted by Microvolution software 2021.04, using a pinhole radius of 320  
696 nm, a pinhole spacing of 2500 nm. Deconvoluted images were then analyzed by ImageJ.

697

#### 698 **Airyscan imaging and data analysis**

699 For Airyscan imaging, samples were imaged in Zeiss LSM880 (Carl Zeiss) in Airyscan mode. For  
700 1,6 Hexanediol experiments in neurons, fluorescence was acquired using a 63x objective lens  
701 (NA = 0.55) at 488x488 pixel resolution and a pinhole size above the lower limit for Airyscan  
702 imaging, as computed by ZEN software. Neurons transfected with GFP-Itsn1 and mCherry-Syn1  
703 on DIV 9 were imaged at DIV 14-16 prior to the addition of 1,6 Hexanediol. The field of view

704 depended on the size of the neuron imaged. Full Z-stacks were acquired. Afterward, 1,6  
705 Hexanediol was added to the imaging chamber, and immediately after neurons were imaged by  
706 full Z-stack imaging to assess the dispersion of molecular condensates. For analysis, images  
707 were background corrected by a rolling ball radius of 50 pixels. Then, a 1.0 sigma gaussian blur  
708 was applied. After, lines with a pixel width of 10 were drawn parallel to the orientation of axons  
709 across condensates in Fiji. Intensity values for both GFP-Itsn1 and mCherry-Syn1 were measured  
710 before and after 1,6 Hexanediol addition. Mean intensity and intensity variance were measured  
711 along axons and used to calculate the coefficient of variation (CV) by dividing the variance by the  
712 mean. CV values were normalized by the average CV value of axons measured in each condition,  
713 as reported previously<sup>40</sup>.

714 For 1,6 Hexanediol experiments in HEK293T cells, fluorescence was acquired using a 63x  
715 objective lens (NA = 0.55) at 1024x1024 pixel resolution with the following settings: pixel dwell  
716 0.24  $\mu$ s and pinhole size above the lower limit for Airyscan imaging, as computed by ZEN  
717 software. Cells were transfected with GFP-Itsn1 and imaged following successful expression.  
718 Cells were recorded at 2 Hz for 1 minute. At 30 s, 1,6 Hexanediol was added to measure the  
719 dispersion of molecular condensates. Condensate-condensate fusion, if recorded prior to 1,6  
720 Hexanediol addition, was isolated and assessed separately.

721 Internal FRAP experiments were conducted in cells similarly prepared for 1,6 Hexanediol  
722 experiments. Fluorescence was acquired using a 63x objective lens (NA = 0.55) at 1024x1024  
723 pixel resolution with the following settings: pixel Dwell 0.24  $\mu$ s and pinhole size above the lower  
724 limit for Airyscan imaging, as computed by ZEN software. Cells were recorded with an exposure  
725 of 600 ms for 100 frames, for a total imaging time of ~1 minute. After frame 3, Itsn1 condensates  
726 were bleached with a 488 laser initially at a diameter of 800 nm, then at 1600 nm. The recovery  
727 of fluorescence was measured throughout the course of the experiment. Intensity values were  
728 transformed into fractional recovery over time to the maximum intensity value after bleaching from

729 the initial intensity value following bleaching at frame 4. To measure the Tau of fluorescence  
730 recovery, fractional recovery values were fit by a non-linear one-phase association function.

731

732 **Live-cell confocal imaging**

733 Live-cell confocal imaging and the 1,6-Hexanediol assay in HEK293 cells were performed as  
734 described previously<sup>71</sup>. In short, HEK293 cells were plated onto 35-mm glass bottom petri dishes  
735 (Cellvis, US) and transfected with plasmids as indicated in the text using Lipofectamine 2000  
736 (Thermo Fisher). Pre-warmed 1,6-Hexanediol was diluted to final concentration of 3% in DMEM  
737 (culture media) and loaded to cells. Imaging was performed on the Eclipse Ti Nikon Spinning Disk  
738 Confocal CSU-X, equipped with OkoLab Live-cells incubator (for control of temperature at 37C°,  
739 5% CO<sub>2</sub>), 2 EM-CCD cameras (AndorR iXon 888-U3 ultra EM-CCD), Andor Revolution SD  
740 System (CSU-X), objectives PL APO 60x/1.4 NA oil immersion lens. Excitation wave lengths  
741 were: 405-nm for BFP, 488-nm for GFP; 561-nm for mCherry, 640-nm for emiRFP. All images  
742 were analyzed with ImageJ (NIH).

743

744 **Live imaging by spinning-disk confocal microscopy and data analysis**

745 The dispersion of GFP-labeled Itsn1 and EndoA1-mRFP proteins was imaged using the  
746 custom-built spinning-disk confocal system described previously<sup>42</sup>. Neurons with low  
747 fluorescence (protein expression) and coverslips with lower transfection efficiency were  
748 preferred. Clustering and dispersion were monitored upon field stimulation of neurons at 37 °C  
749 with 300 action potential at 10 Hz in Tyrode buffer (119 mM NaCl, 5 mM KCl, 25 mM HEPES  
750 buffer, 2 mM CaCl<sub>2</sub>, 2 mM MgCl<sub>2</sub>, 6 g/L glucose, pH 7.4) containing 2-amino-5-  
751 phosphonovaleric acid (APV, 50 µM) and 10 µm 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX,

752 10  $\mu$ M) to block recurrent activity. Intensity changes from region of interest (marked around the  
753 centroid of fluorescence intensity in synaptic boutons and near boutons along the axon) in time  
754 series images were analyzed using imageJ software and represented as mean  $\pm$  SEM.

755

### 756 **High-pressure freezing**

757 75K hippocampal neurons cultured on sapphire disks were frozen using a high-pressure freezer  
758 (EM ICE, Leica Microsystems). For functional assessment of Itsn1 KO, Itsn1 KO cells along with  
759 WT littermates were prepared. For rescue experiments, lentivirus was added to KO wells for  
760 expression of Itsn1 rescue constructs. For functional assessment of EndoA1 KO, EndoA TKO  
761 cells were plated with WT littermates. For some experiments, ferritin (2 mg/ml) was used as a  
762 fluid-phase marker and added to the cells for 5 minutes prior to freezing. Cells were frozen in a  
763 physiological saline solution (140 mM NaCl, 2.4 mM KCl, 10 mM HEPES, 10 mM glucose; pH  
764 adjusted to 7.3 with NaOH, 300 mOsm) containing NBQX (3  $\mu$ M, Tocris) and bicuculine (30  $\mu$ M;  
765 Tocris), which were added to block recurrent synaptic activity.  $\text{CaCl}_2$  and  $\text{MgCl}_2$  concentrations  
766 were adjusted as needed for experiments (mentioned in the results section). Zap-and-freeze  
767 experiments were performed as described earlier (Kusick et al, 2020). After freezing, samples  
768 were transferred under liquid nitrogen to an automated freeze substitution system at -90 °C (EM  
769 AFS2, Leica Microsystems). Using pre-cooled tweezers, samples were quickly transferred to  
770 anhydrous acetone at -90 °C. After disassembling the freezing apparatus, sapphire disks  
771 containing cells were quickly moved to cryo-baskets containing freeze substitution solutions and  
772 left inside EM AFS2. Freeze substitution was performed in solutions containing 1% glutaraldehyde  
773 and 0.1% tannic acid in anhydrous acetone (solution A) and then 2% osmium tetroxide in  
774 anhydrous acetone (solution B), which had been stored under liquid nitrogen and then moved to  
775 the AFS2 immediately before use. The freeze substitution program was as follows: -90 °C for 36

776 hrs in solution A, paused to swap to solution B after 6x 30 min washes in -90 °C acetone, 5 °C h<sup>-1</sup>  
777 to -20 °C, 12 h at -20 °C, and 10 °C h<sup>-1</sup> to 4 °C. Afterward, samples were removed from the freeze  
778 substitution chamber and warmed at room temperature by 4x 20 min washes with acetone before  
779 infiltration and embedding. For this latter protocol, all the steps were performed in universal  
780 sample containers (Leica Microsystems) and kept covered in aclar film to prevent any  
781 evaporation.

782

783 **Sample preparation for electron microscopy**

784 Following freeze-substitution, and washing, a 100% epon araldite (epon 6.2 g; araldite 4.4 g;  
785 DDSA 12.2 g, and BDMA 0.8 ml) solution was prepared and diluted by acetone to get 30%, 70%  
786 and 90% solutions. Samples were infiltrated for at least two hours at room temperature  
787 sequentially in 30% and 70% epon-araldite. Samples were then transferred to caps of  
788 polyethylene BEEM capsules with 90 % epon araldite and incubated overnight at 4 °C. The next  
789 day, samples were transferred to new caps with fresh 100 % epon araldite, changed every 2  
790 hours 3x, after which samples were cured at 60 °C for 48 hours.

791 After resin was cured, 40 nm sections were cut using an ultramicrotome (EM UC7, Leica  
792 microsystems) and collected on single-slot copper grids coated with 0.7 % pioloform. The sections  
793 were then stained with 2.5 % uranyl acetate in 50 % methanol and 50% water solution.

794

795 **Electron microscopy imaging and data analysis**

796 Samples were imaged on a Hitachi 7600 TEM equipped with an AMT XR50 camera run on AMT  
797 Capture v6 (pixel size = 560 pm), at 80 kV on the 100,000x setting. Samples were blinded before

798 imaging. Synapses were identified by a vesicle-filled presynaptic bouton and a postsynaptic  
799 density. Postsynaptic densities are often subtle in our samples, but synaptic clefts were also  
800 identifiable by 1) their characteristic width, 2) the opposed membranes following each other  
801 closely, and 3) vesicles near the presynaptic active zone. 120-130 micrographs per sample of  
802 anything that appeared to be a synapse were taken without close examination. All images were  
803 from different synapses.

804 EM image analysis was performed as previously described<sup>4,5,7,21,34,52,72,73</sup>. All images from  
805 a single experiment were randomized for analysis as a single pool. Only after this randomization  
806 were any images excluded from analysis, either because they appeared to not contain a bona  
807 fide synapse or the morphology was too poor for reliable annotation. The plasma membrane, the  
808 active zone, exocytic and endocytic pits, clathrin-coated pits, docked synaptic vesicles, and all  
809 synaptic vesicles in the bouton were annotated in ImageJ using SynapsEM plugins:  
810 [<https://github.com/shigekiwatanabe/SynapsEM>](copy archived at)  
811 [<https://doi.org/10.5281/zenodo.1111111>]<sup>73</sup>. To minimize bias and error and  
812 to maintain consistency, all image segmentation, still in the form of randomized files, was  
813 thoroughly checked and edited by a second member of the lab. Features were then quantitated  
814 using the SynapsEM<sup>73</sup> family of MATLAB (MathWorks) scripts  
815 (<https://github.com/shigekiwatanabe/SynapsEM>). Example electron micrographs shown were  
816 adjusted in brightness and contrast to different degrees (depending on the varying brightness and  
817 contrast of the raw images), rotated, and cropped in ImageJ before being imported into Adobe  
818 Illustrator.

819

820

821

822 **Biochemical Methods**

823 **Isolation of synaptic vesicles and clathrin-coated vesicles**

824 Synaptic vesicles and clathrin-coated vesicles were isolated as reported previously<sup>49</sup>. Equal  
825 protein concentration of synaptic and clathrin-coated vesicles were used for immunoblotting  
826 experiments.

827

828 **Western blot analysis**

829 Standard SDS-PAGE blot was used to analyze total protein levels. An electrophoresis system  
830 (BIO-RAD) was used to perform the separation using custom-prepared gels (4-15%, pH 8.8),  
831 depending on the size of a protein to be analyzed by immunoblotting. After electrophoresis, the  
832 proteins were transferred onto a nitrocellulose membrane using the transfer system (BIO-RAD).  
833 The membranes were further blocked in 5% milk prepared in 1x Tris-buffered saline and 0.1%  
834 Tween 20 (TBS-T, blocking buffer) at room temperature for 1 h, and subsequently incubated with  
835 primary and secondary antibodies (diluted in the blocking buffer). The proteins were detected  
836 using the Odyssey infrared imaging system (LI-COR) and analyzed using Image Studio Lite (a  
837 software package from LI-COR Biosciences) and/or ImageJ (<http://rsb.info.nih.gov/ij/index.html>).  
838 Both software were used to compare the density (i.e. intensity) of bands on a digital image of the  
839 Western blot.

840

841 **Immunoprecipitation**

842 For Itsn1-Endo A1 protein binding assessment, we homogenized whole mouse brains  
843 (~P60) in a homogenization buffer containing 0.32 M sucrose, 10 mM HEPES at 7.4 pH, and  
844 cOmplete protease inhibitor (Roche). Homogenates were centrifuged and separated from

845 supernatants. Lysis buffer containing 20 mM HEPES at pH 7.4, 50 mM KCl, 2 mM MgCl<sub>2</sub>, and 1%  
846 Triton X-100 was added to homogenates for 1 hr with regular trituration on ice. To assess Itsn1  
847 rescue construct binding to Endo A1, Itsn1 KO mouse hippocampal cultures were grown on 10  
848 cm dishes (Corning) and infected by lentivirus containing rescue cassettes on DIV 7. On DIV 14,  
849 cells were lysed with the above buffer and triturated for 30 min on ice. Infected cells were  
850 compared to WT neurons and non-infected KO neurons from littermates. Cell or whole-brain  
851 lysates were spun down at 4 °C, and the supernatant was collected. Lysates were then bound to  
852 Dynabeads (Thermo Fisher) per the manufacturer's protocol containing an anti-Endophilin 1  
853 guinea pig polyclonal antibody (Synaptic Systems). Proteins were eluted from beads by heating  
854 in 2x SDS sample buffer diluted in water from a 4x stock (2 mL 1 M Tris HCL, pH 6.8, 0.8g 10%  
855 SDS, 2.4 mL 2-βMe, 4 mL Glycerol, MilliQ up to 10 mL, Bromophenol blue powder) at 70 °C for  
856 10 min. Heated samples were then loaded into precast Tris Glycine 4-20% gradient gels (Bio-  
857 Rad) and run at 140 V for 45 minutes. After, proteins were transferred to methanol-activated  
858 PVDF membranes by a wet transfer system at 200 V for 90 minutes. Membranes were blocked  
859 for 30 minutes at room temperature in Intercept Blocking buffer (Li-COR), and then transferred  
860 into primary antibody solution (anti-Endophilin 1 (1:1000), anti-Its n1 (1:1000, Millipore), anti-β  
861 Actin (1:5000, Synaptic Systems) in Intercept Blocking buffer) overnight at 4 °C (shaking).  
862 Membranes were then washed 3x for 5 mins in TBS-T, and then transferred to a secondary  
863 antibody solution which contains IRDye secondary antibodies (Li-COR) diluted to 1:10,000 in  
864 Intercept Blocking Buffer for 1 hr at room temperature. Signal was detected using Li-COR  
865 Odyssey Clx and quantification was done by Image Studio Lite from Li-COR.

866

867 **Electrophysiology and data analysis**

868 For *Itsn1* KO experiments, adult *Itsn1* WT and KO mice of both sexes ranging from 6-8 weeks of  
869 age were anaesthetized using a combination of Isoflurane inhalation and Avertin injection. Mice  
870 underwent cardiac perfusion using chilled sucrose solution (10 mM NaCl, 2.5 mM KCl, 10 mM  
871 Glucose, 84 mM NaHCO<sub>3</sub>, 120 mM NaH<sub>2</sub>PO<sub>4</sub>, 195 mM Sucrose, 1 mM CaCl<sub>2</sub>, 2 mM MgCl<sub>2</sub>)  
872 saturated with oxygen 5% / carbon dioxide 95% (carbogen). Brain was rapidly dissected, and  
873 hippocampi removed. Hippocampi were then embedded in premade agarose molds and sliced  
874 at 400  $\mu$ m using Leica VT1200S vibratome at a speed of 0.05 mm/s and amplitude of 1.0 mm.  
875 Slices were then transferred to artificial cerebrospinal fluid (ACSF; 119 mM NaCl, 2.5 mM KCl,  
876 1.3 mM MgSO<sub>4</sub>, 2.5 mM CaCl<sub>2</sub>, 26 mM NaHCO<sub>3</sub>, 1 mM NaH<sub>2</sub>PO<sub>4</sub>, and 11 mM D-glucose (315  
877 Osm, pH 7.4) heated using a water bath to 32 °C saturated with carbogen. Slices were  
878 recovered at this temperature for 15 min before being removed from the bath and recovered for  
879 1 hour at room temperature.

880 Recordings were performed at 32 °C in ACSF. Glass pipettes containing silver chloride  
881 electrodes were used to both stimulate and record. The stimulating electrode was filled with  
882 ACSF and placed in CA1 while the recording electrode was filled with 1 M NaCl was placed to  
883 record from CA1/CA2 synapses in the CA2. To record paired pulse measurements a bipolar  
884 square pulse of 0.3 ms at 60 mV was applied followed by second pulse at varying intervals  
885 ranging from 20-1000 ms. To assess release probability, we acquired data from a range of  
886 stimulation strengths, starting with 20 mV and increasing in intervals of 20 mV to 100 mV, which  
887 reveals a linear relationship between fEPSP slope fiber volley amplitude. The slope and y-  
888 intercept of this line were used to identify relative differences in release probability.  
889 To assess overall release, we used depressing train stimulation a bipolar square pulse of 0.3  
890 ms at 60 mV was applied for 100 pulses at 20 Hz. To assess synaptic recovery after train  
891 stimulation a single pulse was applied at varying intervals following the end of the train (100  
892 pulses, 20 Hz) at various intervals ranging from 100 ms to 3 s. Recordings were taken using  
893 Multiclamp 700B and Digidata 1550B and Clampex v11.2 software. Stimulus was applied using

894 A-M Systems Isolated Pulse Stimulator Model 2100. 1-3 slices per mouse were recorded.

895 Traces were analyzed using a combination of Clampfit software v11.2 and custom MATLAB  
896 code.

897

898 **Statistical analysis**

899 Detailed statistical information is collated in Supplementary Table 1.

900 Internal FRAP experiments yielded Tau measurements that were compared using a  
901 student's t-test, as Tau values were normally distributed. An alpha of 0.05 was set for null  
902 hypothesis testing. Different HEK293T cell cultures (N) were imaged on separate days.  
903 Condensates that were assayed (n) were taken from multiple cells within a culture.

904 Molecular condensates (n) were quantified from 3-4 biological replicates per condition.  
905 Each biological replicate was a separate HEK293 culture (N). Multiple comparisons were made  
906 by either a Kruskal Wallis test or one-way ANOVA, depending on normality of distributions. For  
907 Kruskal Wallis tests, each condition was compared by Dunn's multiple comparisons test. An alpha  
908 of 0.05 was set for null hypothesis testing. 2D STED images were acquired from 2-3 biological  
909 replicates per condition. Each replicate was a dissociated mouse hippocampal culture (N) taken  
910 from different mice on different days. For each N, roughly 30 presynaptic bouton regions of  
911 interest (ROIs) (n) were imaged from multiple transfected cells. ROIs from each replicate were  
912 pooled and quantified as previously described<sup>34</sup>. An alpha of 0.05 was set for null hypothesis  
913 testing. For Itsn1 and EndoA1 foci distance statistical analysis, pooled distance measurements  
914 from each condition were assessed for distribution normality. A full-pairwise Kruskal Wallis test  
915 was performed. Afterward, each condition was compared by Dunn's multiple comparisons test.

916            Coefficient of variation (CV) analysis was performed from 3 biological replicates. Each  
917    replicate was a dissociated mouse hippocampal culture (N). Multiple axons were measured per  
918    replicate (n). An alpha of 0.05 was set for null hypothesis testing. Calculated CVs were compared  
919    by paired student's t tests.

920            For electron microscopy data, measurements were taken from roughly 100 synaptic profile  
921    micrographs (n) per condition. Replicate high-pressure freezing experiments (N) were conducted  
922    with cultures taken from different mice on different days. Sample sizes for each replicate were  
923    inferred from previous flash-and-freeze experiments as opposed to power analysis. An alpha of  
924    0.05 was set for null hypothesis testing. For count data sets such as these, non-normal,  
925    nonparametric distributions are assumed and typical. However, means are best to represent  
926    central tendency, and these data are binomially distributed. So, an ANOVA test with a Brown-  
927    Forsythe correction and Games-Howell post hoc was conducted. In the case of electron  
928    microscopy data sets with measurements of 0, Brown-Forsythe correction fails. Therefore,  
929    statistical comparison by a Kruskal-Wallis test followed by Dunn's multiple comparisons was used  
930    instead. In cases where only two samples were compared, a student's t-test with Brown-Forsythe  
931    correction and Games-Howell post hoc was conducted. Data sets that contained measurements  
932    that were 0 were instead compared by a Mann-Whitney test.

933            For electrophysiological data, fEPSP measurements were taken 3 times per experimental  
934    condition, per hippocampal slice (n). ~2-5 slices were taken from each animal (N), ~6 of which  
935    were measured per genotype. An alpha of 0.05 was set for null hypothesis testing. To compare  
936    the average amplitude of the 10 first and last stimulations, fEPSP amplitudes taken from 100 AP,  
937    20 Hz trains in either Itsn1 WT or KO slices were pooled and compared by an unpaired student's  
938    t-test. For linear back extrapolation analysis, normalized cumulative peak amplitudes were taken  
939    from 100 AP, 20 Hz trains conducted on either Itsn1 WT or KO slices and back extrapolated by

940 linear regression analysis. y-intercepts were pooled and compared between *ltsn1* WT and KO  
941 measurements by an unpaired student's t-test.

942

943 **Code availability**

944 Custom R, Matlab and Fiji scripts for electron microscopy analysis are available at  
945 <https://github.com/shigekiwatanabe/SynapsEM>.

946

947 **Data availability**

948 Original images used in this work will be uploaded to Figshare. Data will be available upon  
949 request.

950

951 **References**

- 952 1. Heuser, J. E. *et al.* Synaptic vesicle exocytosis captured by quick freezing and  
953 correlated with quantal transmitter release. *Journal of Cell Biology* **81**, 275–300  
954 (1979).
- 955 2. Heuser, J. E. & Reese, T. S. Structural changes after transmitter release at the  
956 frog neuromuscular junction. *Journal of Cell Biology* **88**, 564–580 (1981).
- 957 3. Harris, K. M. & Weinberg, R. J. Ultrastructure of synapses in the mammalian brain.  
958 *Cold Spring Harb Perspect Biol* **4**, 7 (2012).
- 959 4. Watanabe, S. *et al.* Ultrafast endocytosis at *Caenorhabditis elegans*  
960 neuromuscular junctions. *Elife* **2013**, 1–24 (2013).

961 5. Watanabe, S. *et al.* Ultrafast endocytosis at mouse hippocampal synapses. *Nature*  
962 **504**, 242–247 (2013).

963 6. Imig, C. *et al.* The Morphological and Molecular Nature of Synaptic Vesicle Priming  
964 at Presynaptic Active Zones. *Neuron* **84**, 416–431 (2014).

965 7. Kusick, G. F. *et al.* Synaptic vesicles transiently dock to refill release sites. *Nat*  
966 *Neurosci* **23**, 1329–1338 (2020).

967 8. Walter, A. M., Böhme, M. A. & Sigrist, S. J. Vesicle release site organization at  
968 synaptic active zones. *Neurosci Res* **127**, 3–13 (2018).

969 9. Tang, A. H. *et al.* A trans-synaptic nanocolumn aligns neurotransmitter release to  
970 receptors. *Nature* **536**, 210–214 (2016).

971 10. Sakamoto, H. *et al.* Synaptic weight set by Munc13-1 supramolecular assemblies.  
972 *Nat Neurosci* **21**, 41–55 (2018).

973 11. Schikorski, T. & Stevens, C. F. Morphological correlates of functionally defined  
974 synaptic vesicle populations. 391–395 (2001).

975 12. Silva, M., Tran, V. & Marty, A. Calcium-dependent docking of synaptic vesicles.  
976 *Trends Neurosci* 1–14 (2021) doi:10.1016/j.tins.2021.04.003.

977 13. Kusick, G. F., Ogunmowo, T. H. & Watanabe, S. Transient docking of synaptic  
978 vesicles: Implications and mechanisms. *Curr Opin Neurobiol* **74**, 102535 (2022).

979 14. Stevens, C. F. & Wesseling, J. F. Identification of a novel process limiting the rate  
980 of synaptic vesicle cycling at hippocampal synapses. *Neuron* **24**, 1017–1028  
981 (1999).

982 15. Dittman, J. S. & Regehr, W. G. Calcium dependence and recovery kinetics of  
983 presynaptic depression at the climbing fiber to Purkinje cell synapse. *Journal of*  
984 *Neuroscience* **18**, 6147–6162 (1998).

985 16. Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of  
986 vesicles at hippocampal synapses. *Neuron* **16**, 1197–1207 (1996).

987 17. Stevens, C. F. & Tsujimoto, T. Estimates for the pool size of releasable quanta at a  
988 single central synapse and for the time required to refill the pool. *Proc Natl Acad  
989 Sci U S A* **92**, 846–849 (1995).

990 18. Neher, E. & Brose, N. Dynamically Primed Synaptic Vesicle States: Key to  
991 Understand Synaptic Short-Term Plasticity. *Neuron* **100**, 1283–1291 (2018).

992 19. Jackman, S. L. & Regehr, W. G. The Mechanisms and Functions of Synaptic  
993 Facilitation. *Neuron* **94**, 447–464 (2017).

994 20. Tran, V., Miki, T. & Marty, A. Three small vesicular pools in sequence govern  
995 synaptic response dynamics during action potential trains. **119**, 1–12 (2022).

996 21. Vevea, J. D. *et al.* Synaptotagmin 7 is targeted to the axonal plasma membrane  
997 through g-secretase processing to promote synaptic vesicle docking in mouse  
998 hippocampal neurons. *Elife* **10**, 1–33 (2021).

999 22. Miki, T. *et al.* Actin- and Myosin-Dependent Vesicle Loading of Presynaptic  
1000 Docking Sites Prior to Exocytosis. *Neuron* **91**, 808–823 (2016).

1001 23. Miki, T., Nakamura, Y., Malagon, G., Neher, E. & Marty, A. Two-component  
1002 latency distributions indicate two-step vesicular release at simple glutamatergic  
1003 synapses. *Nat Commun* **9**, 1–3 (2018).

1004 24. Blanchard, K. *et al.* Differentially poised vesicles underlie fast and slow  
1005 components of release at single synapses. **152**, (2020).

1006 25. Midorikawa, M. & Sakaba, T. Kinetics of Releasable Synaptic Vesicles and Their  
1007 Plastic Changes at Hippocampal Mossy Fiber Synapses. *Neuron* **96**, 1033–  
1008 1040.e3 (2017).

1009 26. Rizzoli, S. O. & Betz, W. J. The Structural Organization of the Readily Releasable  
1010 Pool of Synaptic Vesicles. *Science* (1979) **303**, 2037–2039 (2004).

1011 27. Rizzoli, S. O. & Betz, W. J. Synaptic vesicle pools. *Nat Rev Neurosci* **6**, 57–69  
1012 (2005).

1013 28. Kaeser, P. S. & Regehr, W. G. ScienceDirect The readily releasable pool of  
1014 synaptic vesicles. *Curr Opin Neurobiol* **43**, 63–70.

1015 29. Sansevrino, R., Hoffmann, C. & Milovanovic, D. Condensate biology of synaptic  
1016 vesicle clusters. *Trends Neurosci* **0**, 1–14 (2023).

1017 30. Wu, X. *et al.* RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via  
1018 Phase Separation. *Mol Cell* **73**, 971-984.e5 (2019).

1019 31. McDonald, N. A., Fetter, R. D. & Shen, K. Assembly of synaptic active zones  
1020 requires phase separation of scaffold molecules. *Nature* **588**, 454–458 (2020).

1021 32. Emperador-Melero, J. *et al.* PKC-phosphorylation of Liprin- $\alpha$ 3 triggers phase  
1022 separation and controls presynaptic active zone structure. *Nat Commun* **12**,  
1023 (2021).

1024 33. Wu, X. *et al.* Vesicle Tethering on the Surface of Phase-Separated Active Zone  
1025 Condensates. *Mol Cell* 1–12 (2020) doi:10.1016/j.molcel.2020.10.029.

1026 34. Imoto, Y. *et al.* Dynamin is primed at endocytic sites for ultrafast endocytosis.  
1027 *Neuron* **110**, 2815-2835.e13 (2022).

1028 35. Milovanovic, D., Wu, Y., Bian, X. & Camilli, P. De. A liquid phase of synapsin and  
1029 lipid vesicles. *Science* (1979) **607**, 1–28 (2018).

1030 36. Pechstein, A. *et al.* Vesicle Clustering in a Living Synapse Depends on a Synapsin  
1031 Region that Mediates Phase Separation. *Cell Rep* **30**, 2594-2602.e3 (2020).

1032 37. Denker, A., Krohnert, K., Bückers, J., Neher, E. & Rizzoli, S. O. The reserve pool  
1033 of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle  
1034 recycling. *Proc Natl Acad Sci U S A* **108**, 17183–17188 (2011).

1035 38. Pechstein, A. *et al.* Vesicle uncoating regulated by SH3-SH3 domain-mediated  
1036 complex formation between endophilin and intersectin at synapses. *EMBO Rep*  
1037 **16**, 232–239 (2015).

1038 39. Park, D. *et al.* Cooperative function of synaptophysin and synapsin in the  
1039 generation of synaptic vesicle-like clusters in non-neuronal cells. *Nat Commun* **12**,  
1040 (2021).

1041 40. Yoshida, T. *et al.* Compartmentalization of soluble endocytic proteins in synaptic  
1042 vesicle clusters by phase separation. *iScience* **26**, 106826 (2023).

1043 41. Magali Malacombe, Mara Ceridono, Valerie Calco, Sylvette Chasserot-Golaz,  
1044 Peter S McPherson, M.-F. B. and S. G. Intersectin-1L nucleotide exchange factor  
1045 regulates secretory granule exocytosis by activating Cdc42. 25,3494–3503  
1046 Preprint at (2006).

1047 42. Gowrisankaran, S. *et al.* Endophilin-A coordinates priming and fusion of  
1048 neurosecretory vesicles via intersectin. *Nat Commun* **11**, (2020).

1049 43. Sakaba, T. *et al.* Fast neurotransmitter release regulated by the endocytic scaffold  
1050 intersectin. *Proceedings of the National Academy of Sciences* **110**, 8266–8271  
1051 (2013).

1052 44. Milosevic, I. *et al.* Recruitment of endophilin to clathrin-coated pit necks is required  
1053 for efficient vesicle uncoating after fission. *Neuron* **72**, 587–601 (2011).

1054 45. Jäpel, M. *et al.* Intersectin-Mediated Clearance of SNARE Complexes Is Required  
1055 for Fast Neurotransmission. *Cell Rep* **30**, 409-420.e6 (2020).

1056 46. Gerth, F. *et al.* Intersectin associates with synapsin and regulates its nanoscale  
1057 localization and function. *Proceedings of the National Academy of Sciences* **114**,  
1058 E11060–E11060 (2017).

1059 47. Hyman, A. A. & Brangwynne, C. P. Beyond Stereospecificity: Liquids and  
1060 Mesoscale Organization of Cytoplasm. *Dev Cell* **21**, 14–16 (2011).

1061 48. McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in  
1062 live cells: diagnosis, caveats, and functional consequences. *Genes Dev* **33**, 1619–  
1063 1634 (2019).

1064 49. Farsi, Z. *et al.* Clathrin coat controls synaptic vesicle acidification by blocking  
1065 vacuolar ATPase activity. *Elife* **7**, 1–18 (2018).

1066 50. Yu, Y. *et al.* Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-  
1067 trafficking abnormalities. *Hum Mol Genet* **17**, 3281–3290 (2008).

1068 51. Del Signore, S. J. *et al.* An autoinhibitory clamp of actin assembly constrains and  
1069 directs synaptic endocytosis. *Elife* **10**, 1–31 (2021).

1070 52. Watanabe, S. *et al.* Synaptojanin and Endophilin Mediate Neck Formation during  
1071 Ultrafast Endocytosis. *Neuron* **98**, 1184-1197.e6 (2018).

1072 53. Jackman, S. L., Turecek, J., Belinsky, J. E. & Regehr, W. G. The calcium sensor  
1073 synaptotagmin 7 is required for synaptic facilitation. *Nature* **529**, 88–91 (2016).

1074 54. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. *Annu Rev Physiol* **64**,  
1075 355–405 (2002).

1076 55. Fernandes, A. C. *et al.* Reduced synaptic vesicle protein degradation at lysosomes  
1077 curbs TBC1D24/sky-induced neurodegeneration. *Journal of Cell Biology* **207**, 453–  
1078 462 (2014).

1079 56. De Rossi, P. *et al.* Neuronal BIN1 Regulates Presynaptic Neurotransmitter  
1080 Release and Memory Consolidation. *Cell Rep* **30**, 3520-3535.e7 (2020).

1081 57. Ralf Schneggenburger, Alexander C. Meyer & Erwin Neher. Released Fraction  
1082 and Total Size of a Pool of Immediately Available Transmitter Quanta at a Calyx  
1083 Synapse. *Neuron* **23**, 399–409 (1999).

1084 58. Fernandes, H. B. *et al.* Epac2 mediates cAMP-dependent potentiation of  
1085 neurotransmission in the hippocampus. *Journal of Neuroscience* **35**, 6544–6553  
1086 (2015).

1087 59. Lv, P. *et al.* O-GlcNAcylation modulates liquid–liquid phase separation of  
1088 SynGAP/PSD-95. *Nat Chem* **14**, 831–840 (2022).

1089 60. Araki, Y. *et al.* Syngap isoforms differentially regulate synaptic plasticity and  
1090 dendritic development. *Elife* **9**, 1–28 (2020).

1091 61. Yang, L. *et al.* Rabphilin-3A undergoes phase separation to regulate GluN2A  
1092 mobility and surface clustering. *Nat Commun* **14**, (2023).

1093 62. Hallermann, S., Pawlu, C., Jonas, P. & Heckmann, M. A large pool of releasable  
1094 vesicles in a cortical glutamatergic synapse. *Proc Natl Acad Sci U S A* **100**, 8975–  
1095 8980 (2003).

1096 63. Diao, J. *et al.* Native  $\alpha$ -synuclein induces clustering of synaptic-vesicle mimics via  
1097 binding to phospholipids and synaptobrevin-2/VAMP2. *Elife* **2013**, 1–17 (2013).

1098 64. Folkmann, A. W., Putnam, A., Lee, C. F. & Seydoux, G. Regulation of biomolecular  
1099 condensates by interfacial protein clusters. *Science* (1979) **373**, 1218–1224  
1100 (2021).

1101 65. Okamoto, M., Schoch, S. & Südhof, T. C. EHSH1/intersectin, a protein that  
1102 contains EH and SH3 domains and binds to dynamin and SNAP-25. A protein  
1103 connection between exocytosis and endocytosis? *Journal of Biological Chemistry*  
1104 **274**, 18446–18454 (1999).

1105 66. Maschi, D., Gramlich, M. W. & Klyachko, V. A. Myosin V functions as a vesicle  
1106 tether at the plasma membrane to control neurotransmitter release in central  
1107 synapses. *Elife* **7**, 1–30 (2018).

1108 67. Miki, T., Midorikawa, M. & Sakaba, T. Direct imaging of rapid tethering of synaptic  
1109 vesicles accompanying exocytosis at a fast central synapse. *Proceedings of the  
1110 National Academy of Sciences* 202000265 (2020) doi:10.1073/pnas.2000265117.

1111 68. De Camilli, P., Benfenati, F., Valtorta, F. & Greengard, P. The synapsins. *Annu  
1112 Rev Cell Biol* **6**, 433–460 (1990).

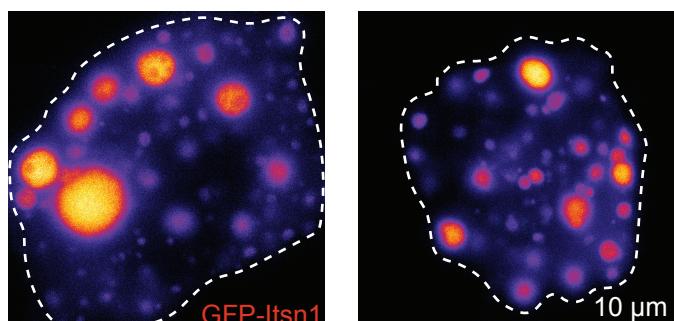
1113 69. Bloom, O. *et al.* Colocalization of synapsin and actin during synaptic vesicle  
1114 recycling. *Journal of Cell Biology* **161**, 737–747 (2003).

1115 70. Zhang, X. M. *et al.* A proline-rich motif on VGLUT1 reduces synaptic vesicle super-  
1116 pool and spontaneous release frequency. *Elife* **8**, 1–24 (2019).

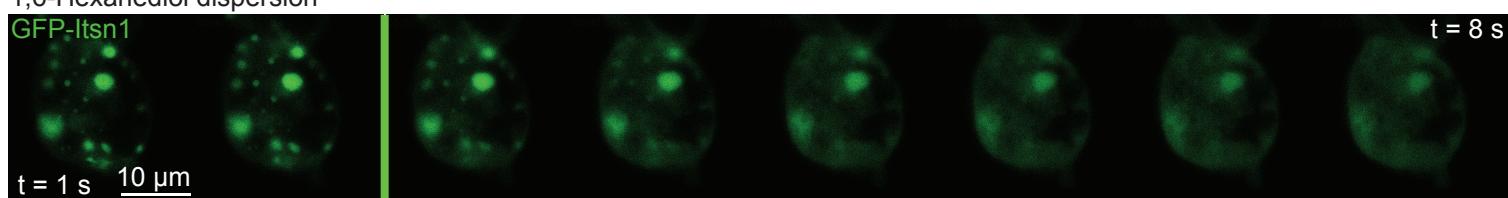
1117 71. Hoffmann, C. *et al.* Synapsin Condensates Recruit alpha-Synuclein. *J Mol Biol*  
1118 **433**, 166961 (2021).

1119 72. Watanabe, S. *et al.* Clathrin regenerates synaptic vesicles from endosomes.  
1120 *Nature* **515**, 228–233 (2014).

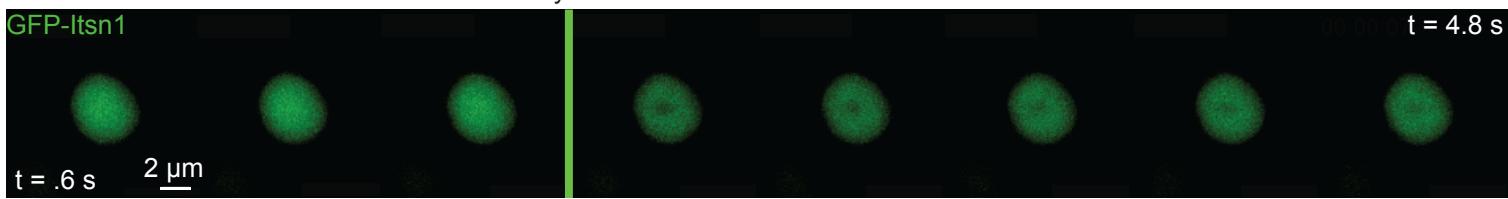
1121 73. Watanabe, S., Davis, M. W., Kusick, G. F., Iwasa, J. & Jorgensen, E. M.  
1122 SynapsEM: Computer-Assisted Synapse Morphometry. *Front Synaptic Neurosci*  
1123 **12**, 1–11 (2020).


1124

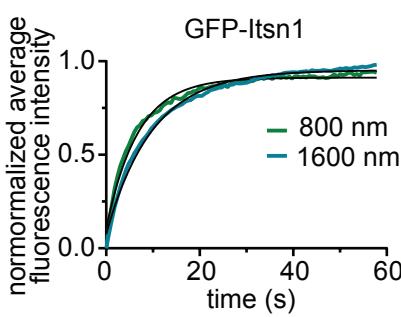
1125


**a** Intersectin-1L (Itsn1)

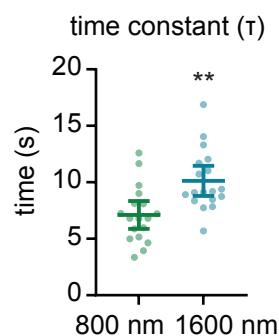



**b**

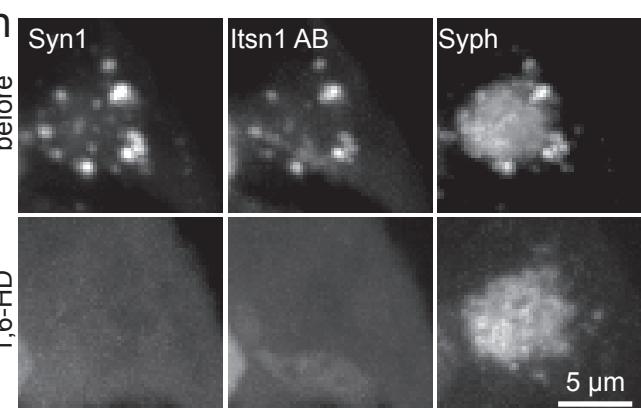



**d** 1,6-Hexanediol dispersion

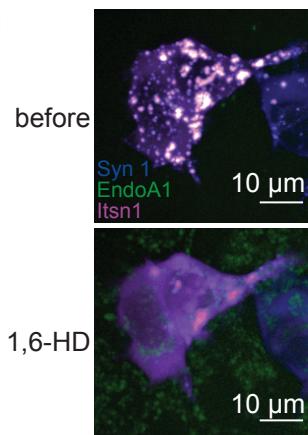



**e** internal FRAP reveals diffusion-limited recovery

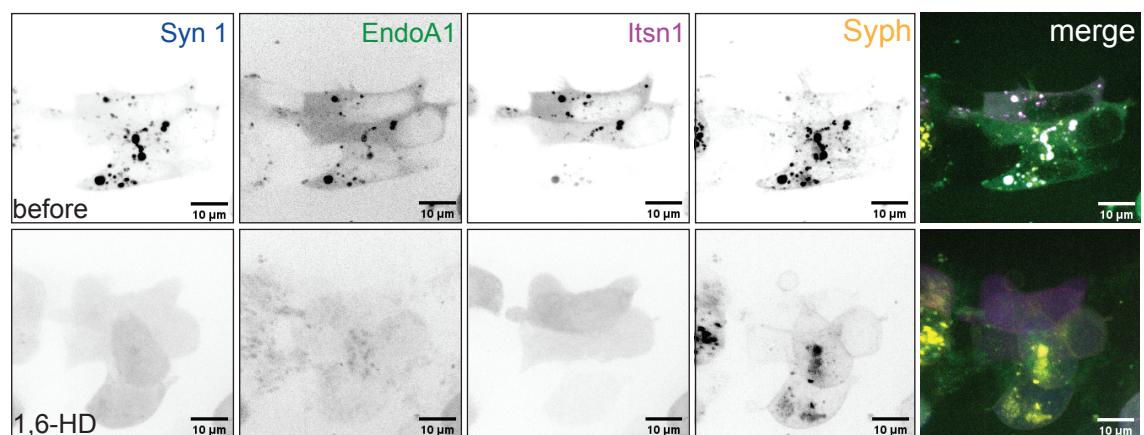



**f**

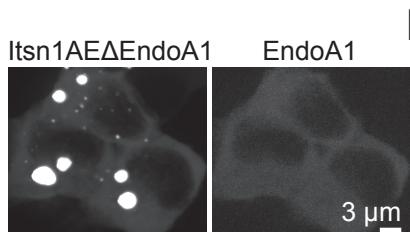



**g**

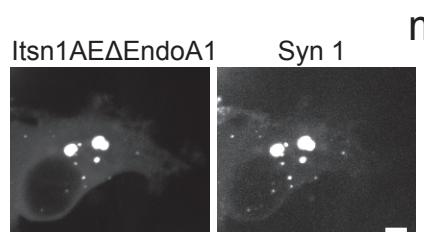



**h**

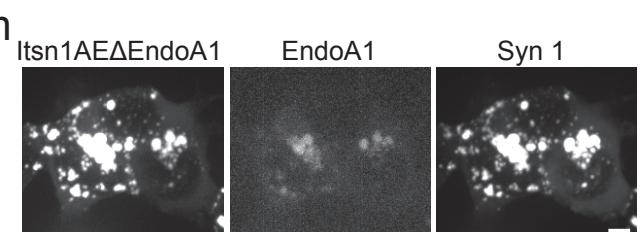



**i**




**j**



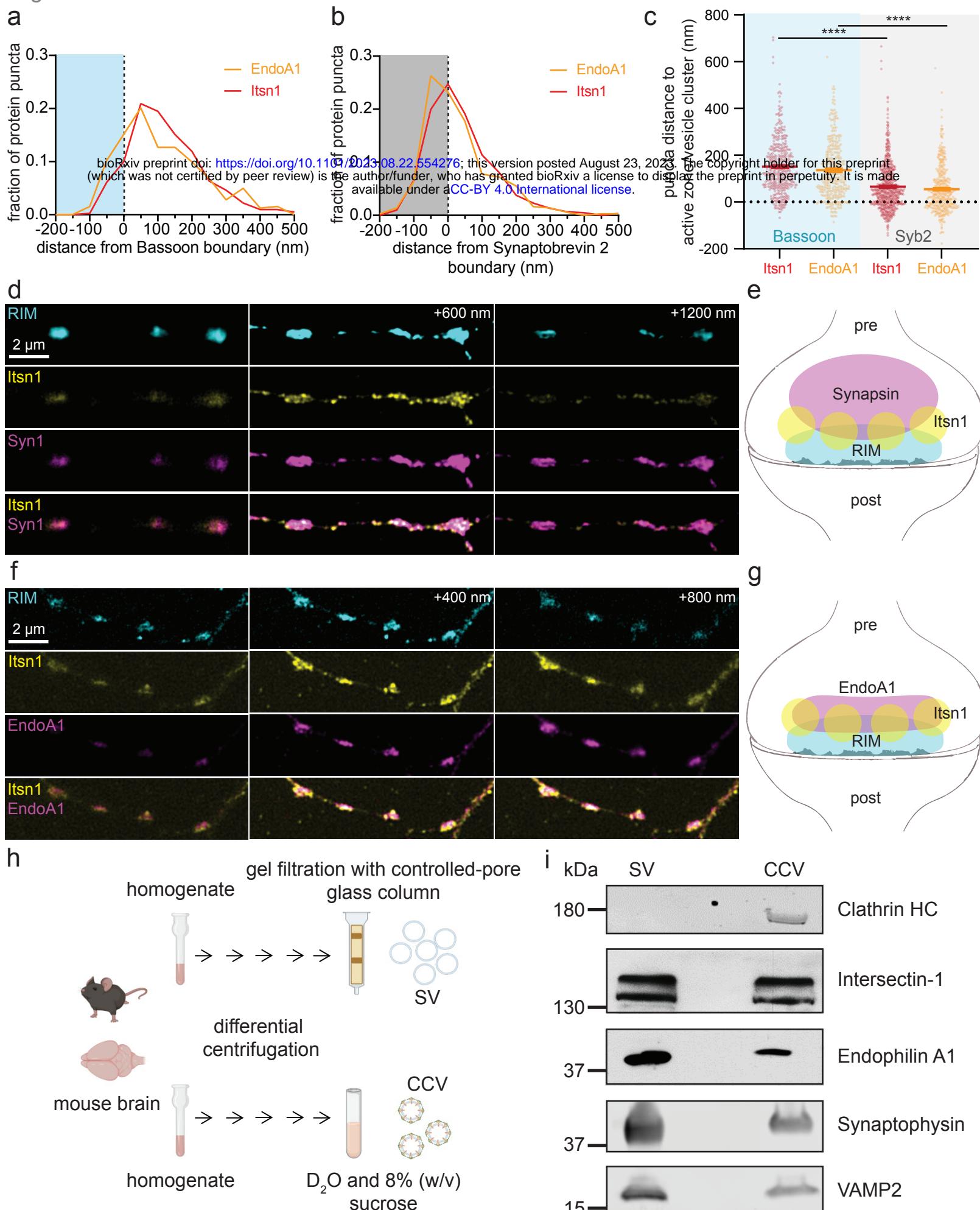

**k**



**l**



**m**

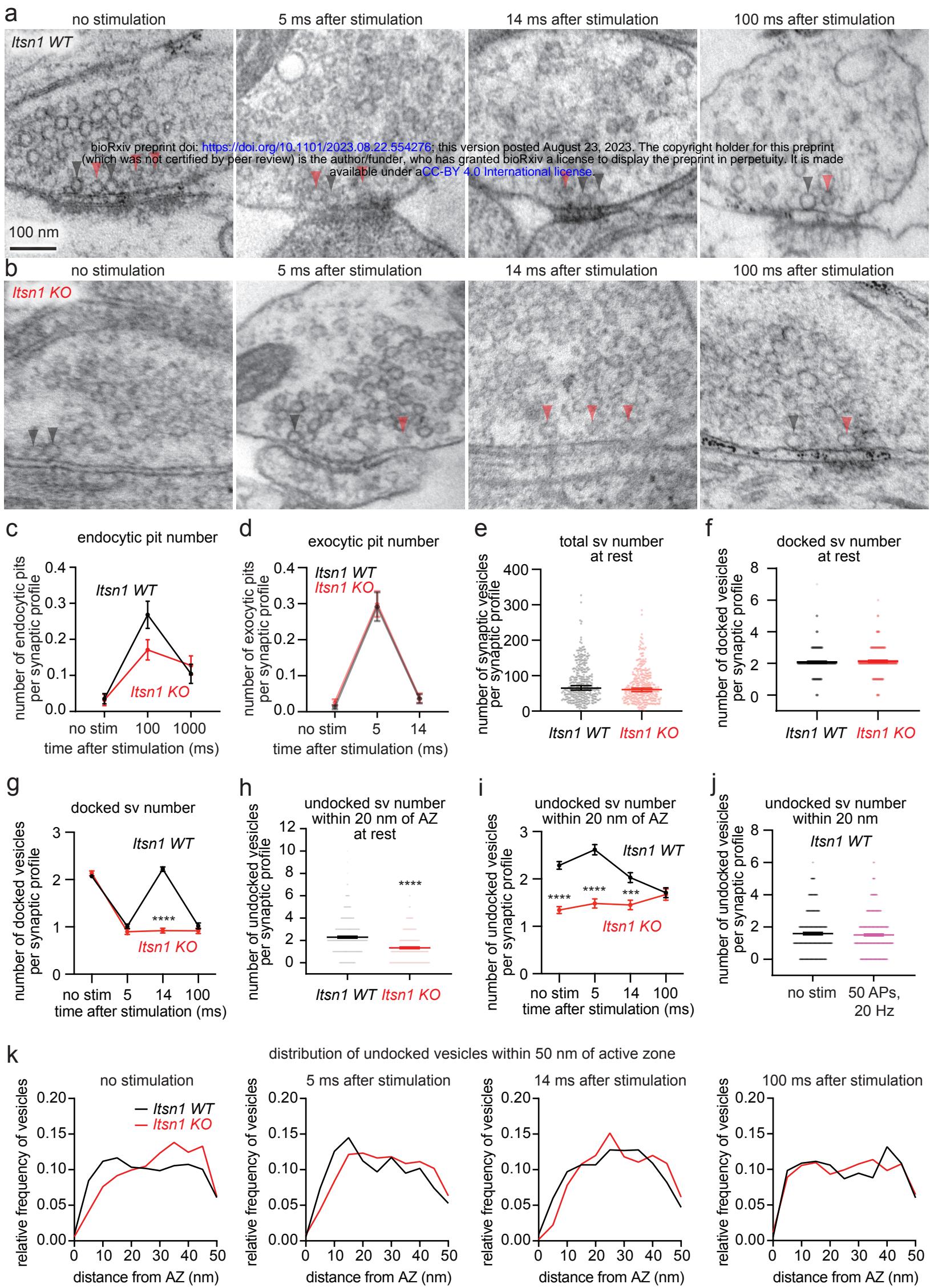



**Fig. 1. Intersectin 1 forms the condensates with Endophilin A1.**

- a. The protein domain structure of Intersectin-1L (Itsn1).
- b. Two HEK293T cells expressing GFP-Itsn1 full-length (FL). Scale bar, 10  $\mu$ m.
- c. Example live-HEK293T cell images showing GFP-Itsn1 FL condensates undergoing a fusion event. Times after the initiation of image acquisitions are indicated. Scale bar, 2  $\mu$ m.
- d. Example live-cell fluorescence micrographs showing GFP-Itsn1 signals over 8 s with the addition of 4% 1,6-Hexanediol at 3 s. Scale bar, 10  $\mu$ m.
- e. Fluorescence recovery of GFP-Itsn1 signals when signals within the condensate was photobleached with a diameter of 800 or 1600 nm. Each frame represents 0.6 s. Scale bar, 2  $\mu$ m.
- f. Plot showing fluorescence recovery after photobleaching with a bleaching spot of the indicated diameters in HEK293T cells expressing GFP-Itsn1.
- g. Plot showing time constant Tau of fluorescence recovery in f. Bars are the mean; error bars are SEM. Student's t test.  $p^{**}<0.01$ .
- h. (top) HEK293 cells co-expressing mCherry-Synapsin 1 (Syn1), GFP-Itsn1 AB, and Synaptophysin-emiRFP670 (Syph). (bottom) Cells in (top) after 3% 1,6 Hexanediol treatment. Scale bar, 5  $\mu$ m.
- i. (top) HEK293 cells co-expressing BFP-Syn1, mCerulean-Endophilin A1 (EndoA1), and GFP-Itsn1 AB. (bottom) cells in (top) after 3% 1,6 Hexanediol treatment. Scale bars, 10  $\mu$ m.
- j. (top) HEK293 cells co-expressing BFP-Syn1, mCerulean-EndoA1, GFP-Itsn1 AB, and Syph-emiRFP670. Each individual channel is separated, and then merged. (bottom) cells in (top) after 4% 1,6 Hexanediol treatment. Scale bars, 10  $\mu$ m.
- k-m. HEK293 cells co-expressing mutant mCherry-Itsn1 (Itsn1 W949E and Y965E; Itsn1AE $\Delta$ EndoA1) and mCerulean-EndoA1 (l), mCherry-Itsn1 E $\Delta$ EndoA1 and BFP-Syn1 (m), and mCherry-Itsn1AE $\Delta$ EndoA1, mCerulean-EndoA1, and BFP-Syn1 (n). Scale bar, 5  $\mu$ m.

See Supplementary Table 1 for additional information.

Fig. 2




**Fig. 2. Itsn1 and EndoA1 colocalize near the active zone.**

- a. Cumulative plots showing the distribution of GFP-Itsn1 and GFP-EndoA1 puncta by 2D STED relative to the active zone boundary (dotted line), defined by Bassoon signal (blue fill).
- b. Cumulative plots showing the distribution of GFP-Itsn1 and GFP-EndoA1 puncta by 2D STED relative to synaptic vesicle localization boundary (dotted line), defined by Syb2 signal (gray).
- c. Plot showing distances between either GFP-Itsn1 or EndoA1-GFP puncta and either the active zone boundary or synaptic vesicle localization boundary. Bars are the mean; error bars are SEM. Kruskal-Wallis test, with Dunn's multiple comparisons test. \*\*\*p<0.0001. p values are shown for comparisons between both GFP-Itsn1 and EndoA1-GFP distances to Syb2 versus distances to Bassoon.
- d. Example presynapses visualized by ISIM. En face view shown. Endogenous RIM was stained by an anti-RIM antibody and a secondary antibody conjugated to Alexa488. Endogenous Itsn1 was stained by an anti-Itsn1 antibody and a secondary antibody conjugated to Alexa568. Endogenous Synapsin was stained by an anti-Synapsin antibody and a secondary antibody conjugated to Alexa647. Each z-slice shown is separated by 600 nm. Scale bar, 2  $\mu$ m.
- e. Schematic of the relative Synapsin, Itsn1 and RIM localization within presynapses (pre).
- f. Example presynapses visualized by ISIM. En face view shown. Endogenous Rim was stained as in d. Endogenous Itsn1 was stained as in d. Endogenous EndoA1 was stained by an anti-EndoA1 antibody and a secondary antibody conjugated to Alexa647. Each z-slice is separated by 400 nm. Scale bar, 2  $\mu$ m.
- g. Schematic of the relative EndoA1, Itsn1, and RIM localization within presynapses (pre). Itsn1 and EndoA1 signals largely overlap.
- h. Pipeline schematic for synaptic vesicle (SV) and clathrin-coated vesicle (CCV) isolation.
- i. Blots showing the amount of indicated proteins on purified synaptic vesicles (SV) and clathrin-coated vesicles (CCV).

See Supplementary Table 1 for additional information.

Figure 3, Ogunmowo, et al.



**Fig. 3. Intersectin 1 organizes undocked vesicles needed for transient docking.**

a. Electron micrographs showing the progression of docked and undocked vesicle abundance and localization at rest and at indicated time points following stimulation (1 ms electric pulse, 37 °C, 4 mM external  $\text{Ca}^{2+}$ ) in *Itsn1*+/+ (WT). Black arrowhead: docked vesicle. Red arrowhead: undocked vesicle. Docked vesicles are defined as those in physical contact with plasma membrane. Scale bar, 100 nm.

b. Electron micrographs showing vesicle dynamics as described in a. for *Itsn1*-/- (KO) synaptic profiles.

c. Plots showing the number of endocytic pits in *Itsn1* WT (black) and KO (red) synaptic profiles at rest, 100 ms, and 1000 ms after stimulation. Dots are the mean; error bars are SEM.

d. Plots showing the number of exocytic pits in *Itsn1* WT (black) and KO (red) synaptic profiles at rest, 5 ms, and 14 ms after stimulation. Dots are the mean; error bars are SEM.

e. Number of synaptic vesicles per synaptic profile in *Itsn1* WT (black) and KO (red) synaptic profiles. Bars are the mean; error bars are SEM.

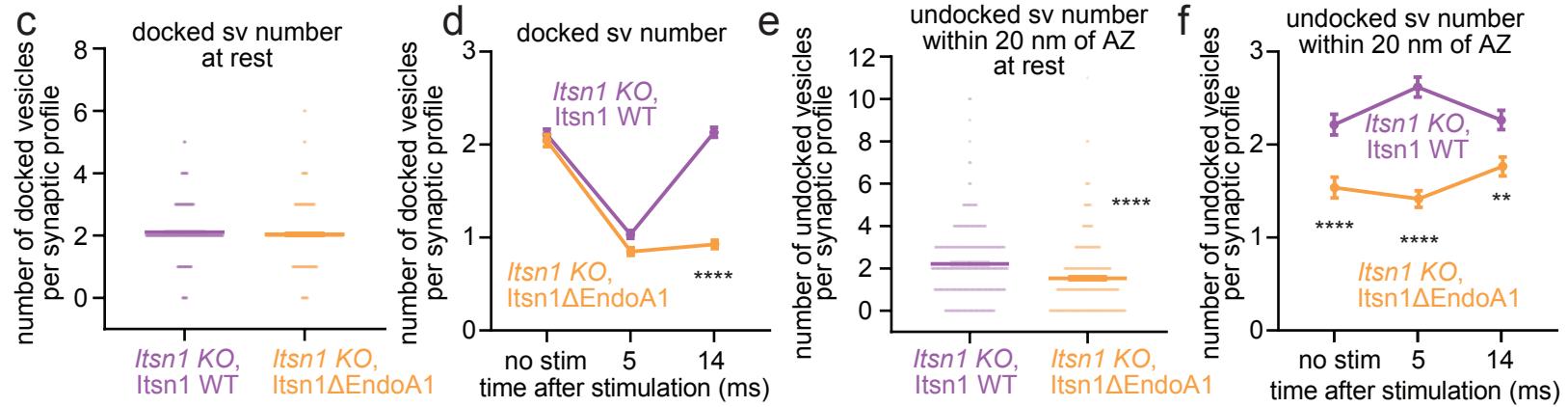
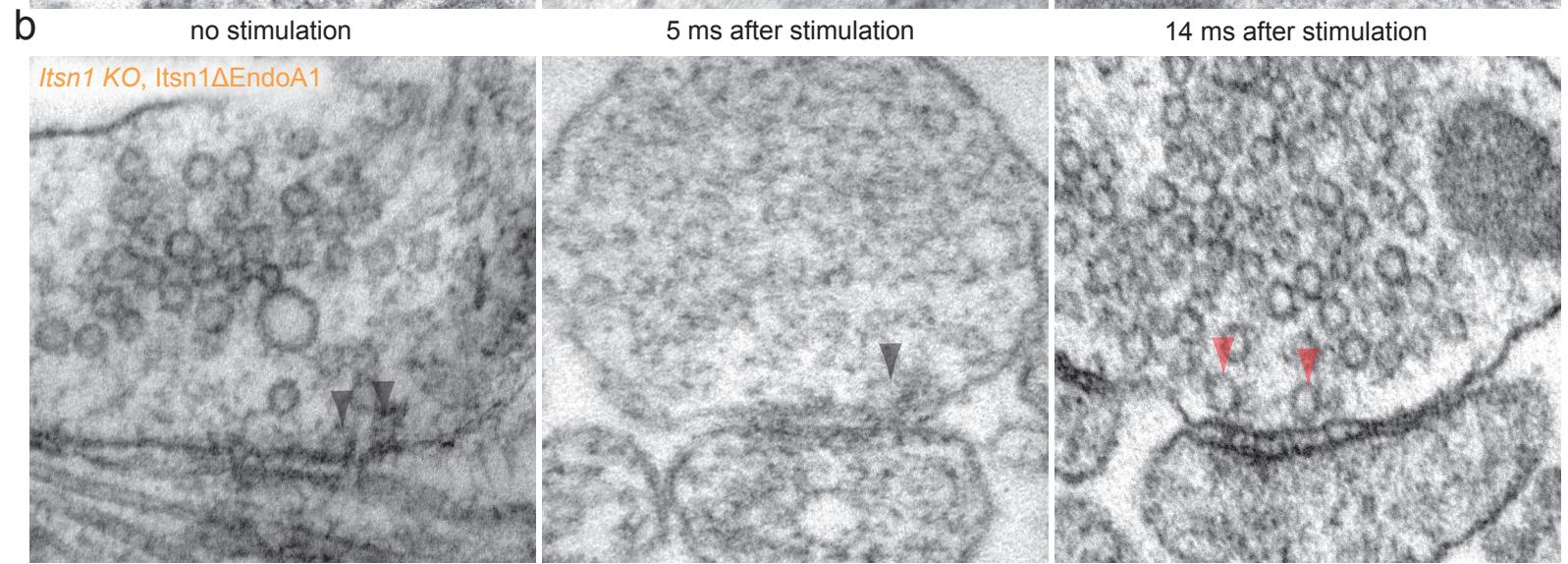
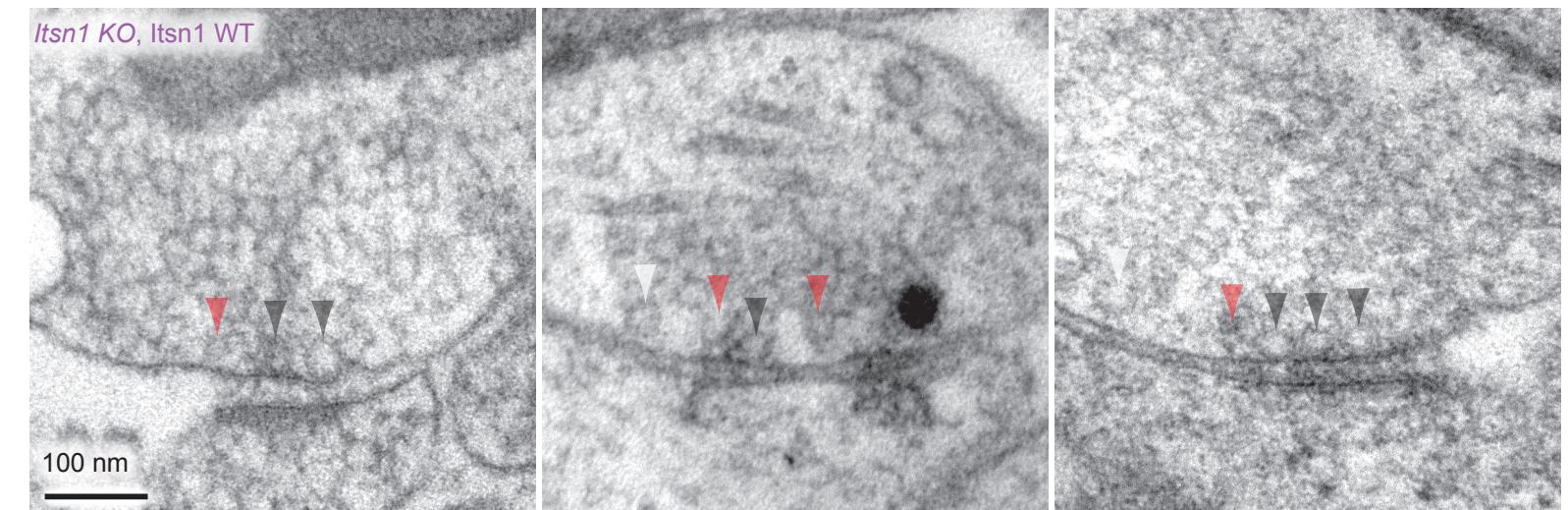
f. The total number of vesicles docked at the active zone at rest in *Itsn1* WT and *Itsn1* KO synaptic profiles. Bars are the mean; error bars are SEM.

g. Number of docked vesicle at rest and 5, 14, and 100 ms after stimulation in *Itsn1* WT and *Itsn1* KO synaptic profiles. Dots are the mean; error bars are SEM. Kruskal-Wallis test, with Dunn's multiple comparisons test. \*\*\*p<0.0001. Comparisons were made between *Itsn1* WT and *Itsn1* KO.

h. Number of undocked vesicles within 20 nm of the active zone membrane at rest in *Itsn1* WT and *Itsn1* KO synaptic profiles. Bars are the mean; error bars are SEM. Mann-Whitney U test. \*\*\*p<0.0001.

i. Number of undocked vesicles within 20 nm of the active zone at rest and 5, 14, and 100 ms after stimulation in *Itsn1* WT and *Itsn1* KO synaptic profiles. Bars are the mean; error bars are

SEM. Kruskal-Wallis test, with Dunn's multiple comparisons test. \*\*\*\*p<0.0001, \*\*\*p<0.001.




Comparisons were made between *Itsn1 WT* and *Itsn1 KO*.

j. Number of undocked vesicles within 20 nm of the active zone in wild-type synaptic profiles at rest or after 50 repetitive stimuli delivered at 20 Hz.

k. Relative frequency distributions of undocked vesicles 2-50 nm from the active zone membrane.

Vesicle counts were determined in *Itsn1 WT* and *Itsn1 KO* synaptic profiles at rest, 5, 14, and 100 ms after stimulation (left to right). Vesicle counts were separated into 2 nm bins and normalized by the total number of vesicles in this region. AZ = active zone.

See Supplementary Table 1 for additional information.



**Fig. 4. Interaction of Itsn1 and EndoA1 is required for transient docking.**

a-b. Electron micrographs showing the progression of docked vesicle and undocked vesicle abundance and localization in *Itsn1* KO neurons expressing Itsn1 WT (a) and Itsn1 W949E, Y965E mutant (Itsn1ΔEndoA1) (b) at rest, 5, or 14 ms after stimulation (1 ms electric pulse, 37 °C, 4 mM external  $\text{Ca}^{2+}$ ). Black arrowhead: docked vesicle. Red arrowhead: undocked vesicle. Scale bar, 100 nm.

c. Number of docked vesicles in *Itsn1* KO, Itsn1 WT and *Itsn1* KO, Itsn1ΔEndoA1 synaptic profiles at rest. Bars are the mean; error bars are SEM. Mann Whitney U test. \*\*\*\*p<0.0001.

d. Number of docked vesicles at rest, 5 and 14 ms after stimulation in *Itsn1* KO, Itsn1 WT and *Itsn1* KO, Itsn1ΔEndoA1 synaptic profiles. Bars are the mean; error bars are SEM. Kruskal-Wallis test, with Dunn's multiple comparisons test. \*\*\*\*p<0.0001. Comparisons were made between *Itsn1* KO, Itsn1 WT and *Itsn1* KO, Itsn1ΔEndoA1.

e. Same as in c, but for undocked vesicles within 20 nm of the active zone. Bars are the mean; error bars are SEM. Mann-Whitney U test. \*\*\*\*p<0.0001.

f. Same as in d, but for undocked vesicles within 20 nm of the active zone. Bars are the mean; error bars are SEM. Kruskal-Wallis test, with Dunn's multiple comparisons test. \*\*p<0.01, \*\*\*\*p<0.01. Comparisons were made between *Itsn1* KO, Itsn1 WT and *Itsn1* KO, Itsn1ΔEndoA1.

g. Relative frequency distributions of undocked vesicles 2-50 nm from the active zone membrane in *Itsn1* KO, Itsn1 WT and *Itsn1* KO, Itsn1ΔEndoA1 synaptic profiles at rest, 5, and 14 ms after stimulation (left to right). Vesicle counts were separated into 2 nm bins and normalized by the total number of vesicles in this region.

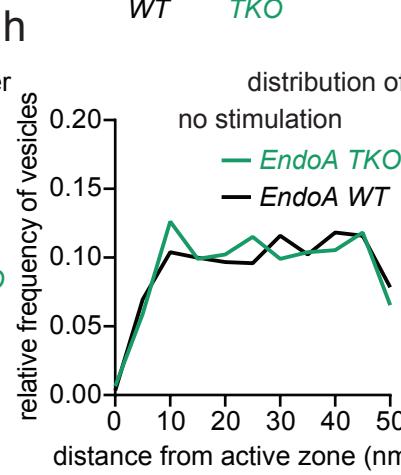
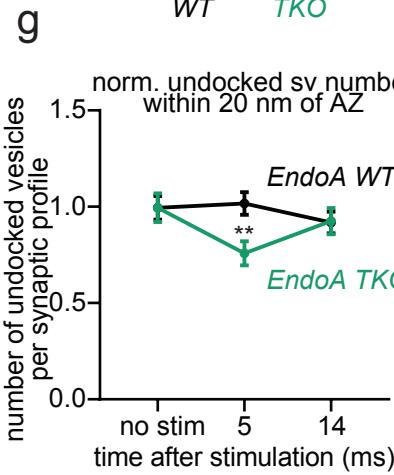
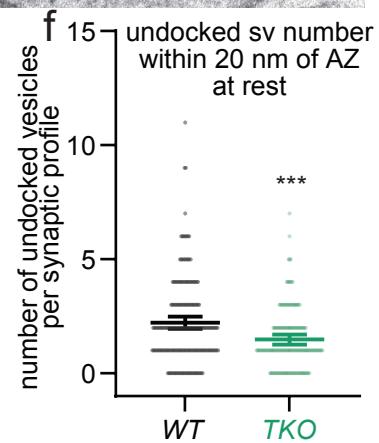
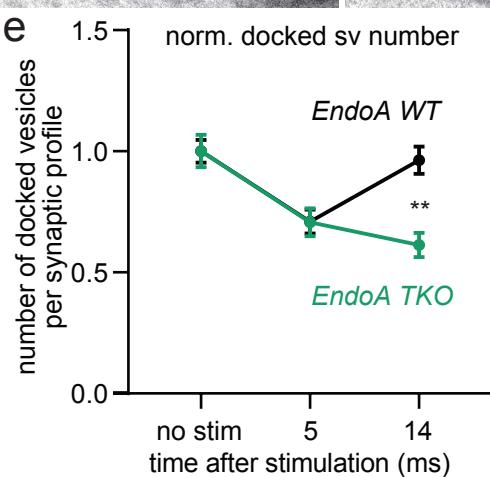
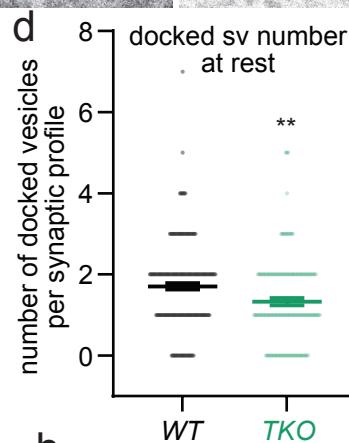
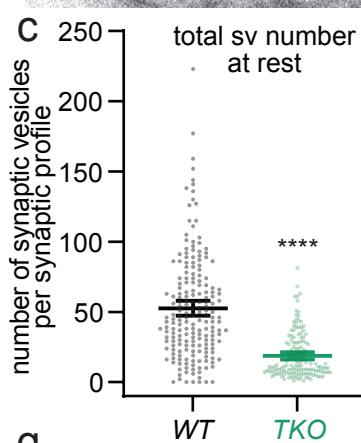






See Supplementary Table 1 for additional information.

Fig. 5

a



b

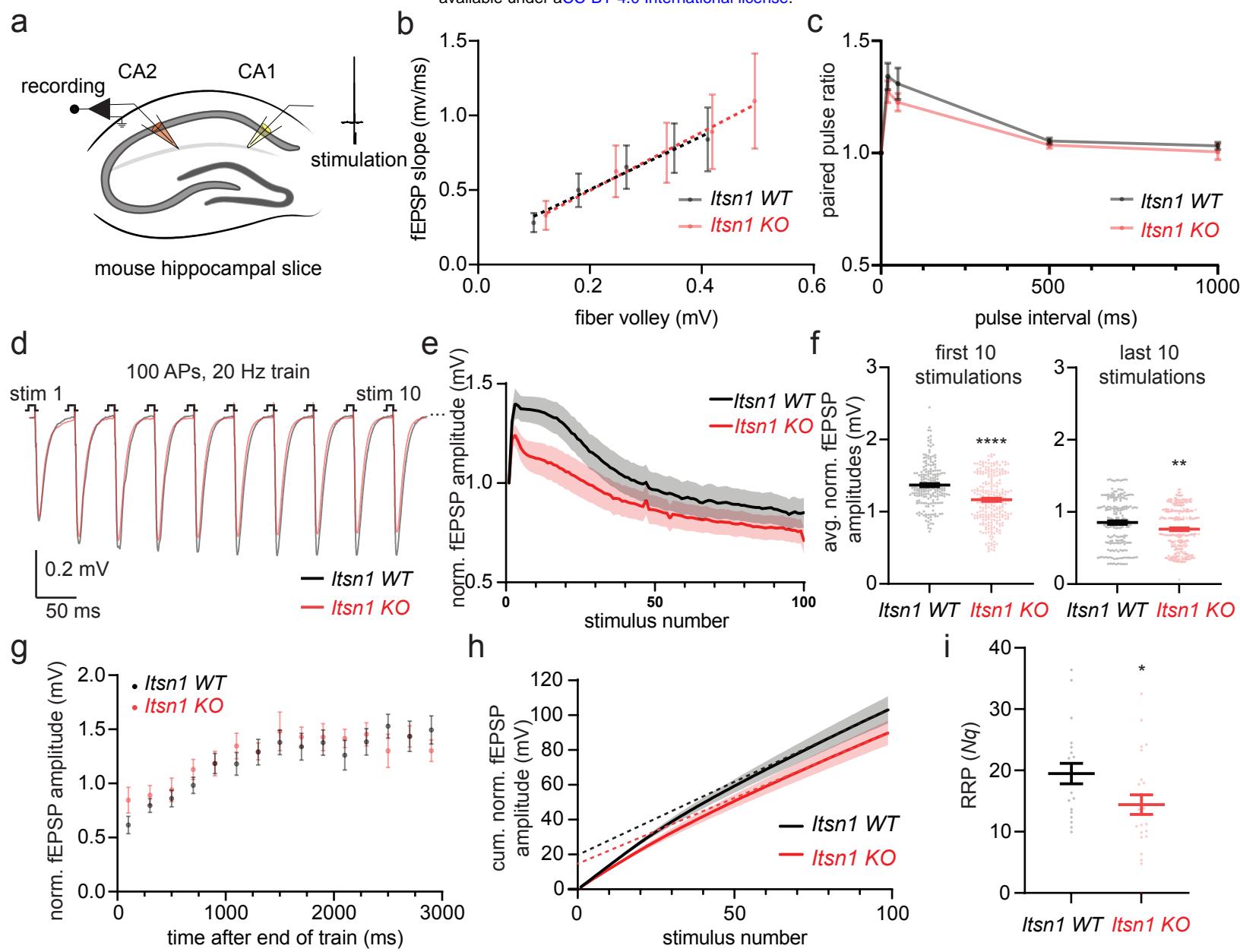


**Fig. 5. Endophilin A1 is required for transient docking of synaptic vesicles.**

a-b. Electron micrographs showing the progression of docked vesicle and undocked vesicle abundance and localization in *EndoA WT* (a) and *EndoA TKO* (b) synapses at rest, 5 ms, and 14 ms after stimulation (1 ms electric pulse, 37 °C, 1.2 mM external Ca<sup>2+</sup>). Black arrowhead: docked vesicle. White arrowhead: undocked vesicle. Scale bar, 100 nm.

c-d. The total number of all vesicles in the terminal (c) and those docked in the active zone (d) at rest in *EndoA WT* (black) and *TKO* (green) synaptic profiles. Bars are the mean; error bars are SEM. Mann Whitney U test. \*\*\*p<0.0001, \*\*p<0.01.

e. Number of docked vesicle at rest, 5 and 14 ms after stimulation in *EndoA WT* and *EndoA TKO* synaptic profiles. 5 ms and 14 ms vesicle counts are normalized (norm.) to corresponding vesicle counts in the no stimulation (no stim.) control. Bars are the mean; error bars are SEM. Kruskal-Wallis test, with Dunn's multiple comparisons test. \*p<0.05, \*\*p<0.01. Comparisons were made between *EndoA WT* and *EndoA TKO*.


f. Number of undocked vesicles within 20 nm of the active zone membrane at rest in *EndoA WT* and *EndoA TKO* synaptic profiles. Bars are the mean; error bars are SEM. Mann-Whitney test. \*\*\*p<0.001.

g. Number of undocked vesicles within 20 nm of the active zone at rest and 5, or 14 ms after stimulation in *EndoA WT* and *EndoA TKO* synaptic profiles. 5 ms and 14 ms vesicle counts are normalized to corresponding no stim vesicle counts. Bars are the mean; error bars are SEM. Kruskal-Wallis test, with Dunn's multiple comparisons test. \*\*p<0.01. Comparisons were made between *EndoA WT* and *EndoA TKO*.

h. Relative frequency distributions of undocked vesicles 2-50 nm from the active zone membrane in *EndoA WT* and *EndoA TKO* synaptic profiles at rest, 5, and 14 ms after stimulation (left to right). Vesicle counts were separated into 2 nm bins and normalized by the total number of vesicles in this region.

See Supplementary Table 1 for additional information.

Fig. 6



**Fig. 6. *Itsn1* KO displays enhanced short-term depression and readily-releasable pool size reduction.**

a. Schematic of mouse hippocampal slice fEPSP recording procedure. A recording electrode was placed in the CA2/CA1 region of the hippocampus, and a stimulating electrode was placed in the CA1 region. 1 ms pulses were applied to slices and resulting field excitatory postsynaptic potentials (fEPSPs) were recorded.

b. Release probability in *Itsn1* WT and *Itsn1* KO slices measured by comparing the fEPSP slope to fiber volley amplitudes in response to stimulations of increasing mV size (20 mV, 40 mV, 60 mV, 80 mV, and 100 mV). fEPSPs, field excitatory postsynaptic potentials. Dotted lines are linear regression analyses. Error bars are SEM.

c. Plot showing paired-pulse ratio in *Itsn1* WT and *Itsn1* KO slices. A second pulse was separated by 20 ms, 50 ms, 500 ms and 1 s after the first pulse. The paired pulse ratio was determined by dividing the peak of the second pulse by the initial pulse peak. Dots are the mean; error bars are SEM.

d. Average traces of the fEPSP response to the first 10 stimulations from a 100 action potential (AP), 20 Hz train applied to either *Itsn1* WT (black) and *Itsn1* KO (red) slices. *Itsn1* KO responses began to decay by the 3<sup>rd</sup> stimulation.

e. Normalized (norm.) fEPSP response amplitudes through the course of the train stimulation in *Itsn1* WT and KO slices. Transparent fill around traces is the SEM.

f. The average (avg.) of normalized fEPSP amplitudes from the first 10 stimulations (left) and the last 10 stimulations (right) in *Itsn1* WT and KO slices. Bars are the mean; error bars are SEM. Mann Whitney U test. \*\*\*\*p<0.0001. \*\*p<0.01.

g. Normalized fEPSP amplitude following 100 AP, 20 Hz trains in *Itsn1* WT and KO slices, showing synaptic recovery. Recovery stimulations were initially applied 100 ms after the end of the train. Then, 200 ms were added sequentially to the time interval between the end of the train and the recovery stimulation out to 2900 ms. Dots are the mean, error bars are SEM.

h. Cumulative (cum.) normalized fEPSP amplitudes during 100 AP, 20 Hz trains in *Itsn1* WT and KO slices. Dotted lines are linear regression analyses. Transparent fill around traces is the SEM.

i. Readily-releasable pool sizes ( $Nq$ ) in synapses from *Itsn1* WT and KO slices, approximated by linear back-extrapolation from traces in h. Mann Whitney test. \* $p<0.05$ . Bars are the mean; error bars are SEM.

See Supplementary Table 1 for additional information.