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Abstract

As vast histological archives are digitised, there is a pressing need to be able to associate
specific tissue substructures and incident pathology to disease outcomes without arduous
annotation. Such automation provides an opportunity to learn fundamental biology about how
tissue structure and function varies in a population. Recently, self-supervised learning has
proven competitive to supervised machine learning approaches in classification, segmentation
and representation learning. Here, we leverage self-supervised learning to generate histology
feature representations using 1.7M images across 23 healthy tissues in 838 donors from GTEX.
Using these representations, we demonstrate we can automatically segment tissues into their
constituent tissue substructures and pathology proportions, and surpass the performance of
conventionally used pre-trained models. We observe striking population variability in canonical
tissue substructures, highlight examples of missing pathological diagnoses, incorrect
assignment of target tissue and cross-tissue contamination. We demonstrate that this variability
in tissue composition leads to a likely overestimation of eQTL tissue sharing and drives dramatic
differential gene expression changes. We use derived tissue substructures to detect 284 tissue
substructures and pathology specific eQTLs. As our derived histology representations are rich
morphological descriptors of the underlying tissue, we introduce a multiple instance learning
model that can predict and spatially localise individual RNA expression levels directly from
histology to specific substructures and pathological features. We validate our RNA spatial
predictions with matched ground truth immunohistochemistry (IHC) for several well
characterised marker genes, recapitulating their known spatial specificity. Finally, we derive a
gene expression spatial enrichment metric, allowing us to detect genes specifically expressed
within sites of pathology (e.g. arterial calcification). Together, these results demonstrate the
power of self-supervised machine learning when applied to vast histological datasets to allow
researchers to pose and answer questions about tissue pathology, its spatial organisation and
the interplay between morphological tissue variability and gene expression.
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Introduction

Histology is a relatively inexpensive and effective technique that is commonly used to diagnose
and characterise a multitude of diseases, most notably, cancer. Classically, glass histology
slides are examined by a pathologist under a microscope; however, recently, there has been
considerable momentum in digitising pathology workflows, as histology slides can be quickly
scanned at high resolution (40x) to generate Whole Slide Images (WSI). This digitisation
provides an opportunity to leverage several advances in computer vision and machine learning
(ML). Indeed, multiple ML methods have been developed, largely for malignant pathological
entities, to segment specific cell types, tissue structures, diagnostic features of interest’,
predict the mutation status of tumours* and diagnostically classify histology tissue sections?.
Whilst such supervised learning algorithms have proved successful, they rely on expert crafted
labels and typically utilise models pre-trained on ImageNet, a large collection of natural images
unlike histology®. Recently, self-supervision has proven to be a useful methodology to learn rich,
low-dimensional representations of imaging data that have shown competitive performance to
supervised methods, but can be used for a wide variety of downstream tasks, with some
preliminary applications focused on histopathology®.

In parallel, there are ongoing large-scale research efforts to collect both histology and paired
molecular data from thousands of samples, including RNA sequencing (RNA-seq) and Whole
Genome Sequencing (WGS)'®. Such datasets provide an opportunity to learn how tissue
structure and function vary in a population, and how constituent elements of tissue, in both
health and disease, are impacted by both common genetic variation and gene expression.
Previous efforts have focused on supervised approaches, by extracting and quantifying the size
and distribution of specific cell-types of interest and characterising them epidemiologically and
genetically, not considering RNA-seq'. However, this requires the manual collection of binary
segmentation labels of cells which is time consuming and therefore does not scale to multiple
tissue types. Supervised methods utilising ImageNet pre-trained models have also been
developed that aim to predict gene expression directly from histology image tiles, but have not
sought to decompose gene expression contributions from underlying tissue substructures and
pathological features present in the tissue®. Additionally such efforts have been entirely focused
on malignant pathological entities, in which the histology changes are usually considerable and
provide a very strong signal for the algorithm to learn from as compared to natural histological
variation in healthy donors®'. Seminal work on unsupervised approaches that have aimed to
couple histology, gene expression and genetic variation have focused on the use of latent factor
models'~"*. These approaches have been able to characterise both shared and specific sources
of gene expression and histological variation and have described “image QTLs”, in which
genetic variants drive changes in tissue morphology. However, these latent factors are abstract
and therefore it is not always possible to understand the underlying biological and pathological
processes they are capturing’-'3. Finally, the extent to which specific histological tissue
substructures and pathological features vary naturally in a population, as quantified
computationally, and hence objectively, from large numbers of WSI, has not been widely
addressed, nor how such variation can be associated to common genetic variants or changes in
gene expression related to tissue morphology.
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We advance previous work by exploiting several recent ML innovations, namely Vision
Transformers (ViT)'* coupled with self-supervised learning’ to combine histology, gene
expression and common germline genetic variation in 9,068 samples, representing 23 distinct
tissues, from 838 donors and a total of 1.7M images® (Figure 1). We start by learning
low-dimensional representations of histology tissue tiles using DINO, demonstrating that our
representations are able to identify and cluster specific tissue substructures, cells and
pathological features without labels better than previous ImageNet pre-trained models which are
the standard in the field (Figure 1a-e).

We utilise the ability of these representations to identify substructures and pathological features
to automatically segment all GTEx WSI, with limited manual labelling of specific features (<
0.5% of the data used) obtaining substructure and pathology proportions per donor sample
(Figure 1j). Next, using these derived substructures and pathological features, we characterise
profound tissue variability across donors that drives substantial differential gene expression, as
well as characterise common germline genetic variants associated with specific
histopathological features through both genome-wide association analysis (GWAS) and
interaction eQTL analyses (Figure 1k). Finally, despite not being trained specifically for this
task, as our representations are rich morphological descriptors of tissue histology both within
and across donors, we are able to predict and spatially localise individual RNA expression
levels with superior performance to competing methods (Figure 1e-i). We validate our spatial
RNA expression predictions using ground-truth immunohistochemistry (IHC) for several
canonical marker genes and subsequently characterise the specific localised expression
signatures of 29 individual substructures and pathological features.
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Figure 1: Schematic representation of using self-supervised representations learnt from whole
slide image histology for segmentation of tissue substructures, pathological features and
understanding morphology-expression-genetic associations using RNAPath.
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Results

Histology tile representations learnt via self-supervision distinguish tissue substructures
and pathological features without labels

We utilised 9,068 Whole Slide Images (WSI) across 23 tissues collected from 838 donor
individuals as part of GTEx®. WSI are gigapixel images (e.g. 50,000%150,000 pixels), in which
much of the image does not contain tissue. To obtain only tissue containing sections of the
WSiIs, we segmented the tissue from background in each WSI using a previously published
U-net (Supplementary Figure 1). The number of image tiles (128x128 pixels) derived from
WSiIs in GTEXx varies dramatically, with the lowest being 248 in a tibial nerve WSI versus 82,605
in a testis WSI. This range reflects the variation in sampled tissue section sizes. As it is
computationally intractable to process the collection of raw image tiles per WSI on a GPU, as
with previous work, we embedded the image tiles into 348-dimensional representations (see
Methods). Contrary to previous work that utiise CNN models pre-trained on ImageNet, a
dataset of natural images unlike histology, we train a self-supervised model on GTEx directly>.
Self-supervised models have been recently shown to be effective in learning compact, rich
image representations®. Therefore, we sought to learn relevant features present in histology
images by training a Vision Transformer (ViT-S) on 1.7M GTEXx histology patches using the
self-supervised DINO framework''® (see Methods). Despite being trained with no labels, we
see that learnt representations clearly capture and separate cell types (e.g. adipocytes),
pathological features (e.g. arterial calcification) and tissue substructures (e.g. tibial vessel
layers: intima, media, adventitia) (Figure 2, Supplementary Figure 2 for additional tissues). We
compared our self-supervised representations learnt from GTEx, to the commonly used
representations obtained from a ResNet50 model pre-trained on ImageNet. We see that our
self-supervised representations better capture intrinsic tissue substructures with a consistent
improvement in maximum silhouette score across a range of k-mean clusters (0.15 vs 0.24 for
esophagus mucosa and 0.17 vs 0.21 for tibial artery, for k = [3-20]) (Supplementary Figure 3).

Self-supervised learning (DINO) ImageNet pretraining

Intima

Media
Adventitia
Calcification
Atherosclerosis
Adipocytes
Nerve

Red blood cells
® Blood clot

UMAP 2
UMAP 2
o000

|
»

UMAP 1 UMAP 1

N
»

Figure 2. UMAP embeddings of tibial artery patch features from self-supervised ViT-S (trained
using DINO) versus ResNet50 with pretrained weights from ImageNet. Patches have been
manually labelled with tissue substructures/pathologies to interpret clusters.
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Self-supervised WSI tissue substructure and pathology segmentation

Segmenting various tissues into constituent tissue substructures is a time consuming task that
does not scale easily to thousands of WSI. Additionally, it has not been widely documented
(across thousands of samples with objective computationally derived quantification) how normal
tissue substructure varies histologically in a population or what genes are specific to each
substructure or pathological feature. To automate the segmentation of tissue present in WSI into
constituent tissue substructures and pathological features, we manually labelled a small subset
of image patches (< 0.50% tiles of overall dataset) from a subset of tissue types, with
annotations that were validated by a clinical histopathologist (see Methods). Using the DINO
representations obtained from these labelled image tiles, we trained a k-Nearest Neighbours
(kNN) model and inferred the class of each unlabelled tile representation (see Methods).
Qualitatively, we see that inferred tile labels clearly recover known tissue substructures and
pathological features when overlayed with their label on their corresponding WSI (Figure 3). We
quantitatively evaluated the accuracy of the kNN in the patch-level classification: for each tissue,
we held-out 10% of the annotated patches of each class from the model fitting and measured its
accuracy across 10 folds. Median accuracy across all derived tissue substructure and
pathological features in all tissues was 92%.

To further assess our automated segmentation quantitatively and also evaluate the gain in
information of our tissue substructure and pathological features, we used cases in which
samples had been described as calcified in the GTEx pathology notes versus our inferred
calcification labelled tiles per WSI. Tiles inferred as belonging to the calcification class had high
sensitivity in recovering ground-truth pathologist labels, with AUC = 0.94 (Supplementary
Figure 4), indicating that the vast majority of true positive cases were correctly identified by the
kNN segmentation model. Additionally, when considering calcification occupying > 5% of the
tissue present in a WSI, our model identifies a further four cases. Upon manual inspection, two
of these four cases were false positives containing debris that resembled calcification; however,
two WSI clearly contained calcification that was not labelled as such in the GTEx pathology
notes (Supplementary Figure 5). This highlights the utility of our approach to discover
unannotated pathological features, with the potential to aid pathological reporting in vast
digitised histological datasets. The full list of tissue substructures and pathological features with
corresponding accuracy are present in Supplementary Table 1.
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Figure 3. Segmentation of tissue samples from tibial artery, esophagus mucosa and colon into
substructures and localised pathological features via K-Nearest neighbours on patch features.
Tissue types have been labelled according to their GTEx descriptor which may not perfectly
represent the specimen (e.g. the esophagus mucosa example includes submucosa).

Substantial variability in tissue substructure proportions across donors

Whilst GTEx pathology notes contain labels of whether subjects have a given pathological
feature or not, there is no information on its extent, i.e. the proportion of affected tissue, nor its
spatial location within the tissue. Using our kNN segmentation model, we inferred labels for all
tissue tiles across all WSI considered. By doing so, we can represent any given sample as the
proportion of its inferred tissue substructures and pathological features, allowing us to quantify
inter-subject variability. We see that the proportion of different tissue substructures and
pathological features vary dramatically across donors within the same tissue type (Figure 4,
Supplementary Figure 6). For example, the proportion of calcified tissue in tibial artery
samples varies from 0 to 44% with a mean of 3.3%. This pattern is true across all tissues and
across substructures quantified (Supplementary Table 2). In some but not all cases, this likely
represents tissue sampling variation as opposed to true biological or pathological variation.
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An acute difficulty when dissecting tissue without laser capture microdissection (LCM) is
obtaining the correct target tissue of interest with little to no contamination of other tissue
components. This is critical for enabling the precise characterisation of gene expression tissue
specificity or quantifying the degree of tissue sharing across eQTLs'""°. For example in GTEX,
‘esophagus mucosa’ tissue is defined as having mucosal epithelium present, whilst ‘esophagus
muscularis’ tissue should not. To assess the presence of a contaminant or incorrect target
tissue, we assessed the degree to which squamous epithelium was present in muscularis
samples. Surprisingly, 6% of muscularis samples (total n = 950) contain mucosal tissue (>1%)
(Supplementary Figure 7). To determine whether this is recapitulated at the level of gene
expression, we assessed the expression level of a gene specific to mucosal epithelium, KRT6A.
We see that there is substantial expression of KRT6A in 8.8% of GTEx esophagus muscularis
samples (> 20TPM), confirming both the histology and RNA-seq contain non-target tissue.

Similarly, varying amounts of adherent adipose tissue are commonly present in a variety of
GTEx samples due to imperfect histological dissection. For example, 84% of coronary arteries
and 95% of tibial nerve samples have > 10% of the specimen composed of adipose tissue.
Indeed, using a highly specific gene expression marker of adipocytes, PLIN1, we see that after
subcutaneous adipose tissue (median TPM = 970), visceral adipose tissue (median TPM = 542)
and breast mammary tissue (median TPM = 310), tibial nerve (median TPM = 40) and coronary
artery (median TPM = 30) have the highest PLINT expression across all 54 tissues. These
findings suggest there is significant intra-tissue donor variability in GTEx histology and hence
derived RNA-seq, but also substantial “contamination” of tissue substructure types across tissue
classes in GTEx. Importantly, this affects estimates of eQTL tissue-sharing, with tibial nerve,
mammary, subcutaneous and visceral adipose tissue having the largest degree of tissue-shared
eQTL effects across tissues'’. Whilst tissue sharing eQTLs between different fat compartments
(i.e. subcutaneous and visceral) and breast tissue would be expected, sharing of adipose-nerve
eQTL effects is most likely due to the adipocyte fraction present in GTEx nerve samples rather
than any inherent or underlying biological sharing of nerve-tissue specific eQTLs with adipose
tissue. Our findings suggest that estimates of tissue sharing eQTLs are likely inflated and that
LCM, single-cell RNA-seq and spatial technologies at scale will likely revise these estimates
downwards.
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Figure 4: Example of two quantified tissue substructures (e.g. adipose tissue in tibial nerve and
mucosa in colonic tissue) and one pathology entity (e.g. calcification in tibial artery) and their
distribution. Significant variability is observed for both canonical tissue substructures and
pathological features across donors.

Sex and age-specific variability in tissue substructure and pathological features

Having quantitative measures of tissue substructures allows us to assess the histological impact
of age and other epidemiological variables on tissue structure and its variability in a population.
To address this systematically, we investigated whether variability in any of the 29 tissue
substructure or pathological features quantified with accuracy > 80% (see Methods) across
donors had sex, age, BMI or ischemic time specific effects. We find 18 sex, 19 age, four BMI
and 19 ischemic time significant associations (see Data & Code Availability to download full
summary statistics). For example, we see that the amount of arterial calcification (P-value = 7.2
x 10", B = 0.033) and atherosclerosis (P-value = 1.52 x 10", B = 0.023) increase with age, but
only atherosclerosis is more common in males (P-value = 1.4 x 10*, B = -0.30). Many of the
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significant associations were confirmatory and expected, for example breast lobules being
almost exclusive to female breast tissue (P-value = 2.5 x 10%, B = 0.99), the amount of solar
elastosis in sun exposed skin increases with age (P-value = 1.57 x 10%, B = 0.04), and
autolysed mucosa capturing ischemic time effects (P-value = 2.04 x 1034, B = 0.001).
Interestingly, we find a link between gynecomastoid hyperplasia and age (P-value = 2.81 x 10?8,
B = 0.01). This is likely due to increased adiposity in older age (both sexes) and decreased
testosterone production in older men®.

Finally, adipose tissue abundance in breast tissue is known to increase with age, and this
increased adiposity is associated with risk of breast cancer?. We demonstrate our derived
adipose proportions are associated with age in female breast mammary tissue samples (P-value
= 8.5 x 10, B=1.9 x 10?). This effect was robust to BMI adjustment (P-value = 3.5 x 104, B =
5.9 x 10?) whilst the same effect was not observed in male donors, despite being better
powered (P-value = 0.75, B = -1.68 x 10°®). This demonstrates the ability of our approach to find
epidemiological links between tissue substructures and pathological features in WSI. The
integration of WSI (generated from either archival material or through routine digital pathology
workflows) with detailed electronic healthcare records could prove useful to discover additional
novel, prognostic and epidemiologic associations.

Pervasive differential expression driven by substructure and pathology variation across
tissues

We sought to assess the extent to which gene expression is impacted by the quantified tissue
substructure variation between donors across a given tissue. To do this, we performed
differential expression analysis by fitting linear models for each gene and its association with
each tissue substructure and pathological feature, adjusting for confounders (see Methods). We
observe pervasive differential expression within tissues and their constituent tissue
substructures, with median = 1753 number of genes (FDR1%) being differentially expressed
(see Data & Code Availability to download full summary statistics). Interestingly, even for
individual tissue substructures that make up the majority of a particular tissue, such as dermis in
skin (1955 FDR1%), tunica media in tibial artery (12,810 FDR1%) and nerve bundles in tibial
nerve (751 FDR1%), there is significant differential expression between samples. These findings
highlight the tissue sampling variability present in GTEX, in which the underlying proportions of
each tissue has substantial inter-donor variability. In the extremes, this can represent tissue
samples within a tissue class that do not resemble the same underlying target tissue that was
supposed to be acquired (Supplementary Figure 8).

We first investigated differential gene expression (DE) enrichment in substructures whose broad
pattern of DE enrichment we have a priori knowledge about, as positive controls. For example,
1,484 differentially expressed genes (FDR1%) were detected for adipocyte proportion across
coronary artery samples. Reassuringly, the top differentially expressed gene was LIPE (B =
0.46, P-value = 4.43 x 107%), a selective marker for adipocytes, as well as ADIPOQ, PLIN1,
PLIN5 and CIDEC (P-value < 1 x 107), all genes known to be selectively expressed in
adipocytes. As expected, Gene Set Enrichment Analysis (GSEA) confirmed adipose tissue to be
the most likely tissue type (P-value = 2.33 x 107"). Similar results were obtained for other
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well-described tissue substructures, such as submucosal glands in esophagus mucosa being
enriched for genes associated with gastric epithelial cells (P-value = 1.39 x 10"%) with top DE
genes including SPDEF (P-value = 9.87 x 10%), a gene required for mucous cell
differentiation®?, as well as MUC5B (P-value = 6.07 x 107'°), a specific marker of mucin secreting
epithelial cells®. Similarly, levels of inflammation in esophagus mucosa were enriched for
peripheral blood cells (P-value = 8.68 x 10°*°) with top DE genes representing broad lymphocyte
markers (e.g. LTB, CD5, CD6, CD48; P-values all < 1 x 107%). All these confirmatory results
provide reassurance that our derived proportions capture specific tissue substructures and that
we are able to relate inter-donor variation in such substructures to changes in RNA levels.

Similar to quantified tissue substructures, we investigated genes differentially expressed due to
differential amounts of quantified pathological features across donors. For atherosclerosis
proportion in tibial artery, 6,121 DE genes were detected at FDR 1%. Top cell-type enrichments
were T-memory cells, NK-cells and endothelial cells (P-value < 1 x 10°'®). Macrophages, known
as foam cells in atherosclerotic plaques, were also enriched but to a lesser extent (P-value =
1.36 x 107%). Finally, DE genes for atherosclerosis were also enriched for genes implicated
through GWAS (nearest gene) of Moyamoya disease (18/24 genes; P-value < 2.0 x 10%), a
cerebrovascular atherosclerotic disorder?. Collectively, these enrichments represent the known
interplay in atherosclerosis between intima endothelial cells and the chronic inflammation and
fat deposition taking place in atherosclerotic arteries and suggest a common mechanistic link
with cerebrovascular calcification.

For tibial artery calcification, a co-morbid pathology of atherosclerosis, we identified 1,794
differentially expressed genes (FDR1%). Two of the most significant genes were DUSP4 (B =
0.25, P-value = 2.19 x 107%), known to play a role in calcium homeostasis and KCNN4 (B =
0.21, P-value = 2.09 x 10""), a calcium activated potassium channel shown to induce vascular
calcification?®. Enrichment analysis demonstrated macrophages (P-value = 8.47 x 10“°) to be
the most enriched cell-type. Macrophages are known to play an important role both in
atherosclerosis and concurrent arterial calcification, with recruitment of macrophages shown to
drive increased osteogenic calcification and display a pro-inflammatory phenotype. Given
calcification is reported in the GTEx pathology notes, we sought to compare our continuous
measure of calcification derived from the WSI with the reported presence or absence of
calcification in the GTEx pathology notes. To do so, we divided samples (n=579) between
healthy (n = 442) and calcified (n = 137) according to the pathology notes and tested for
differential expression in a linear model, whilst correcting for confounders (see Methods). We
identified 1,025 differentially expressed genes after FDR1% correction versus 1,794 when using
our WSI-derived continuous measure of calcification. Whilst 78% of these differentially
expressed genes are shared between both analyses, our results suggest we benefit from
increased power when assessing continuous measures of calcification rather than just its
presence or absence, as well as the identification of genes associated with amount of
calcification rather than merely its presence. In summary, these DE results demonstrate we can
dissect the contribution of individual tissue substructures and pathological features on gene
expression variation in bulk, by using our learned histological representations to segment tissue
components and gene expression variation across donors.
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Genetic association and detection of interaction eQTLs driven by tissue substructure
and pathological variation

As pathologies such as calcification are complex traits, we assessed whether derived
pathological feature proportions are associated with common (minor allele frequency (MAF)
>5%) genetic variation. To do this, we performed GWAS on four derived pathologies: Coronary
and tibial artery calcification as well as inflammation and vascular congestion in esophagus
mucosa. Whilst no variants were genome-wide significant, considering suggestive hits (P-value
< 1.0 x 10°), we find four variants associated with four pathological features. All variants have
either been previously described in relevant complex disease GWAS or are associated with
relevant traits through Phenome-Wide Association Studies (PheWAS). rs971292786-C (B =
0.51, P-value = 1.9 x 107) is associated with levels of calcification in coronary arteries and in a
FinnGen PheWAS, rs971292786-C is associated with coronary angioplasty (f = 0.055, P-value
=4.10 x 10°®°), with a consistent direction of effect. Coronary angioplasty is the primary surgical
procedure used to treat atherosclerotic arteries. For inflammation in esophagus mucosa, we find
two variants rs111402007-A (B = 0.53, P-value = 7.64 x 107) and rs35779991-C (B = 0.25,
P-value = 8.87 x 107). rs35779991-C is genome-wide significant in a GWAS for Body Mass
Index (BMI) (B = 0.018, P-value = 9.97 x 107?) whilst rs111402007-A has been previously
associated with increased White Blood Cell Count (B = 0.023, P-value = 5.8 x 107). Effect
directions are consistent with the known relationship between low-grade systemic inflammation
in obesity, and WBC count. Finally, we find a single locus rs4364259-A (B = -0.19, P-value =
3.47 x 107) associated with vascular congestion in esophagus mucosa which has been
previously associated with hydroxyvitamin-D levels (B = 0.0158, P-value = 2.2 x 103%). Whilst
these variants seemingly make sense in the light of previous GWAS results, caution is
warranted until further large-scale studies which have both genome-wide common genetic data
and histology are available to enable suitable replication of our findings. (Supplementary
Figure 9).

Similar to previous efforts™ 13?28 we carried out interaction eQTL analyses to identify
cis-eQTLs whose effect is driven by the amount of tissue substructures and pathological
features across donors. By fitting linear models with tissue substructure or pathological feature
as an interaction term, we identified 284 interaction eQTLs (FDR 10%) in 250 unique genes
across 31 different phenotypes in eight tissues for which annotations were available. Examples
of such interaction eQTLs are visualised in Supplementary Figure 10. These analyses
compare favourably to similar work in which sparse factor models were used to discover 68
abstract image morphology QTLs (imQTLs) across 8 GTEx tissues (FDR 10%)", that could not
be linked directly to tissue substructure or function. These results provide further evidence that
many bulk-tissue eQTLs could be due to differential amounts of tissue substructure within a
tissue type due to experimental sampling variation and/or due to variability and presence of
pathological features across donor tissues.

RNAPath accurately predicts and spatially localises genes in histology WSI

As our self-supervised histology tile representations accurately separate known tissue
substructures and pathological features, and given paired RNA-seq profiles are available for
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each donor from the same RNAlater aliquot, we sought to assess whether gene expression
influenced by specific histomorphological features could be predicted directly from H&E
histology. To do so, we introduce RNAPath, a multiple instance learning (MIL) model that takes
as input histology tile representations and outputs both spatial expression maps for each gene
as well as their whole-tissue expression prediction (see Methods). To assess RNAPath’s ability
to predict individual RNA abundance at the bulk level, we evaluated the accuracy of bulk
RNA-seq prediction by measuring the Pearson correlation coefficient (r score) between
predicted expression and ground truth (see Methods). Median r-score across all genes varies
substantially across tissues, with the best performance in heart (median r = 0.65) and worst
performance in pituitary gland (median r = 0.13) (Supplementary Table 3). At the individual
gene level, we find that 1,468 genes can be predicted extremely accurately from histology
alone, with an r-score = 0.8 in at least one tissue. Whilst our histology tile representations were
not learnt with the express intent of predicting RNA levels, we demonstrate superior
performance against a leading deep learning method, HE2RNA?®, across the majority of tissues
analysed (+0.20 mean r-score) (Supplementary Figure 11). Finally, we evaluated the tissue
specificity and tissue sharing nature of genes that RNAPath was able to regress well (r > 0.5).
We see that the majority of these genes are tissue-specific, meaning that they are regressed
accurately in a single tissue. However, many genes are regressed equally well in multiple
tissues, and recapitulate known tissue relationships and anatomical proximity, such as
esophagus muscularis with gastroesophageal junction (loU = 0.35) and transverse colon with
sigmoid colon (loU = 0.33). This likely reflects shared tissue substructures and cell types
between tissues (Supplementary Figure 12).

As well as bulk level predictions, RNAPath provides tile level (128x128 pixel) expression
predictions which can be averaged to create spatial expression maps of any specific gene
across a histology sample. To validate our spatial predictions in order to use RNAPath for
uncovering novel tissue morphology-expression relationships, we sought to examine first the
spatial expression of well known marker genes. To do this, we compared the spatial predictions
of PLINT (adipocytes), DCD (eccrine sweat glands), CRNN (mucosal epithelium) and SLC6A19
(colonic mucosa) to ground truth immunohistochemistry (IHC) in matched tissues from the
ProteinAtlas?®. Surprisingly, we see high concordance between our spatially resolved RNA
expression predictions and that of matched antibody staining, validating that we can use
RNAPath to draw novel inferences between RNA expression and specific tissue morphology
(Figure 5).

Spatial expression signatures in tissue substructures and localised tissue pathological
features

We sought to detail what genes were specific to individual tissue substructures and pathological
features. To do this, we computed an enrichment score for every gene and every quantified
tissue substructure and localised pathological feature measured. The enrichment score
quantifies the difference of a gene's predicted spatial expression between a region of interest
(ROI) and the whole tissue. This measure is distinct from differential gene expression analysis.
First, as our gene-wise substructure specific enrichment score (SSES) is a sample-level metric,
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it can be computed using a single donor (see Methods). Second, substructure enrichments are
not dependent on comorbid, correlated changes within the tissue, as SSE scores are computed
relative to the genes prediction across the entire histology sample. For example, a gene with
high enrichment score for calcification that is also expressed in a coincident atherosclerotic
plaque, will have a lower calcification enrichment score than a gene highly specific to
calcification alone. This is not the case for differentially expressed genes where these two
scenarios cannot be disentangled.

We investigated the relationship between up-regulated genes in our differential expression
analysis (e.g. those with a positive coefficient) and our SSES metric produced by RNAPath.
Taking as an example submucosal glands and focal inflammation in esophagus mucosa, we
identified 311 and 3,471 upregulated genes respectively (FDR1%) (Figure 6). By comparing
these genes to RNAPath SSE scores, we see that 100% and 90% have SSES > 1 for
submucosal glands and inflammation respectively. For tibial artery calcification, of the 112
upregulated genes in our differential expression results, 64% have SSES > 1, highlighting the
difference between differential expression induced changes and genes specific to calcification
morphology (see Data & Code Availability to download full summary statistics). As IncRNAs
tend to be more tissue specific we sought to test whether INcRNAs are also more tissue
substructure specific than other gene biotypes. Interestingly, we observe that IncRNAs are
predicted more accurately by RNAPath (0.35 vs 0.32 median r-score, Supplementary Figure
13) and are also more likely to be enriched for tissue substructures and pathologies (1.49 vs
1.23 SSES) (see Data & Code Availability to download full summary statistics). These results
suggest that RNAPath could be used to further characterise and localise the expression of
IncRNAs with unknown function.
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Figure 5: RNAPath predictions of canonical marker gene expression validated by
immunohistochemistry (IHC). From left to right: original H&E section from GTEx, RNAPath
predicted spatial expression for marker genes (DCD: Eccrine sweat glands in skin; SLC6A19 in
colonic mucosa; CRNN in esophageal mucosal epithelium; PLIN1 in breast adipose tissue), IHC
for corresponding protein expression in ProteinAtlas.

In addition to our SSES metric, we computed Moran’s |, a spatial autocorrelation metric
commonly used in spatial analysis and more recently in spatial transcriptomics applications®®?'.
A low Moran's | score indicates a gene is not spatially autocorrelated, with diffuse gene
expression across a tissue section, whilst a high Moran’s | score represents high spatial
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autocorrelation, with expression restricted to specific substructures, tissue neighbourhoods or
pathologies. We computed Moran's | score for all genes across all tissues, using the spatial
predictions of RNAPath, along with the corresponding patch coordinates (see Data & Code
Availability to download full summary statistics). The spatial autocorrelation of genes predicted

i
'
o 254 : PIGR|
3 H
>ﬂl, i 'SPDEF|
a i
el 1
] i
(%] 1
_3 1
) i
< 1
S i
~ 1
()] ]
5 H
-0.1 0.0 0.1 0.2 0.3 0.4
Esophagus Mucosa Coefficient AZGP1 (SSES = 12.86)
20 RP11-742B18.1]

-Log10 Adjusted P-Value

Tibial Artery ! =3 - o = - CRTAC1 (SSES = 1.35)

Coefficient

Figure 6: A comparison of differential gene expression analysis and our SSES metric across
donors for submucosal gland and calcification proportion. Considering genes with a positive
coefficient (up-regulated), we see that our SESS metric when applied to RNAPath predictions is
able to find genes (e.g. AZGP1 and CRTACT1) that are both significant in DE analysis, but are
also highly spatially restricted to submucosal glands and calcification foci, respectively.

by RNAPath varies significantly, with some genes highly restricted to tissue substructures and
others expressed uniformly across the tissue section (Figure 7). Interestingly, as Moran’s | and
our spatial predictions are donor specific, we see examples of genes that exhibit subject specific
spatial autocorrelation (Supplementary Figure 14). This analysis highlights how even without
substructure or pathology annotations, using RNAPath and derived spatial statistics, it is
possible to assign gene expression to specific tissue neighbourhoods.
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High spatial autocorrelation

PLA2G4F - Lung SLC25A37 - Thyroid Gland EDNS3 - Breast IGLV2-23 - Esophagus Mucosa
Moran’s | score: 0.42 Moran’s | score: 0.55 Moran’s | score: 0.66 Moran’s | score: 0.70

4

Low spatial autocorrelation

FAMB83F - Testis RPS11 - Pituitary Gland CTNNBIP1 - Lung MMP11 - Sun Exposed Skin
Moran’s | score: 0.04 Moran’s | score: 0.06 Moran’s | score: 0.08 Moran’s | score: 0.15

Figure 7: Genes whose spatial autocorrelation is high (top row) and low (bottom row). For
example, IGLV2-23, a gene whose expression is specific to B-cells, has high spatial
autocorrelation and its expression is spatially restricted to regions of focal inflammation below
the mucosa. Whereas RPS71, a ribosomal subunit, is constitutively expressed across the
pituitary gland with low spatial autocorrelation.

Discussion

Here we use Vision Transformers (ViT) trained using self-distillation with no labels (DINO) to
learn histology image representations from 9,068 WSI across 23 healthy human tissues in 838
donors. By doing so, we are able to demonstrate that representations learnt with no labels are
able to distinguish tissue substructures and pathological features present in WSI, allowing us to
represent each donor's tissue section as a composite proportion of its underlying tissue
substructures and any pathology present. By using these proportions, we show profound
inter-tissue variability across donors, demonstrating the detection of unannotated pathologies
(e.g. calcification), incorrect target tissue assignment (e.g. esophagus mucosa in muscularis
samples), contaminate tissue (e.g. adjacent adipose tissue) and how such variability can inflate
eQTL tissue sharing estimates. Additionally, we use such proportions to derive and recapitulate
known epidemiological links between breast adiposity and age, as well as novel age, sex and
BMI associations. Using our derived tissue substructure and pathological feature proportions we
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characterise differential gene expression signatures and uncover substructure/pathology genetic
associations using GWAS. For example, we find a variant that increases arterial calcification
and is associated with coronary angioplasty incidence. Finally, we demonstrate how such
proportions can be used to detect interaction eQTLs, in which tissue substructure and
pathological variability across donors drive changes in expression in a genotype-dependent
manner.

As our histology representations capture intra- and inter-donor variability in tissue morphology,
we propose a multiple instance learning model named RNAPath that can regress RNA
expression levels directly from our learnt histology representations, as well as predict the spatial
localisation of a given gene’s expression within a tissue section. We validate our expression
predictions by showing substantially better performance of RNAPath compared to HE2RNA
across a wide range of tissues, and also validate our spatial predictions of known marker genes
to ground-truth immunohistochemistry staining. To our knowledge this is the first application of
self-supervised learning that allows one to link changes in both pathological and normal
histological variability and gene expression variation. Our study advances previous work which
was unable to link such histological changes to gene expression variability."

Our work has several limitations and room for future development. First, we work with 128x128
histology image tiles, limiting the resolution of our spatial predictions and segmentations. To
overcome this, we extract multiple overlapping tiles to average and smooth our predictions. A
natural next step would be to perform cellular or nuclei segmentation and learn self-supervised
representations at the single cell-level. We believe this would recapitulate our primary findings
but would also allow one to derive more detailed epidemiological, genetic and expression links
to specific cell type abundances and their occurrence in pathological and tissue substructures.
However, this would be substantially more computationally intensive, as it would require
learning and storing millions of cell type representations as compared to thousands of histology
tile representations. Second, whilst our discovered GWAS variants recapitulate relationships
with known GWAS loci, our genetic analyses are underpowered, both to detect novel GWAS
variants and to detect thousands of interaction eQTLs. We believe this will be overcome as
larger cohorts with paired histology and genetic data become available, enabling broader
discovery but also replication efforts. Third, whilst we demonstrate and validate RNA-expression
prediction from histology this will by definition be limited to genes whose variation influences
observable morphological differences in tissue sections. To associate histological variation with
intracellular gene expression variation beyond morphology would require spatial transcriptomic
assays whose current cost does not scale to large numbers of histology sections, with current
endeavours profiling only tens of samples®. Therefore, we believe there is still significant value
in understanding and characterising more deeply, histological and functional genomic
associations at the population level. In summary, as histological archives and pathology
workflows become digital, we believe there is substantial opportunity for using self-supervised
learning to uncover novel, fundamental biology about tissue structure, function and its variability
in a population in both healthy and diseased states.
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Methods

GTEx Cohort description

All analysis is conducted using data from the Genotype Tissue Expression (GTEx) Consortium,
which has been described at length in previous publications®'*, Briefly, GTEx consists of a
total of 948 post-mortem donors, in which RNA-seq, Whole Genome Sequencing (WGS), and
digitised tissue histology have been collected from up to 54 tissue types. For this study, we
utilised GTEx v8 considering the overlap between individual donors who had both RNA-seq and
matching tissue histology available and tissues with at least 200 donors genotyped. In total, we
utilised n = 9,068 slides, across 23 tissues.

RNA-seq normalisation

We used normalised TPM values available in the GTEX v8 release. As the GTEx RNA-seq data
is not strand-resolved, we only considered IncRNAs that did not overlap with protein coding loci
(see Code Availability). Additionally, on a tissue by tissue basis, we considered only genes that
were expressed with TPM > 10 in at least 5% of samples. For prediction, we used log
normalised TPM values, log2(x+1). In total, we considered 21,691 genes.

GTEx Whole Slide Image histology preprocessing

We downloaded all available Whole Slide Image (WSI) histology data from the GTEx portal. In
total, we utilised N=9,068 WSI spanning 23 tissues. WSI were first segmented to separate
foreground tissue from background, using a previously published U-net architecture trained on
4,732 H&E slides*. Tissue sections were tiled into image patches of fixed dimension (128x128
pixels) and their coordinates stored in hdf5 files. These tiles were used in all downstream
analysis.

Self-supervised features learning from histology patches

After preprocessing, we extracted features from histology tiles giving us a matrix that has as
many rows as the number of patches in the WSI and as many columns as the number of
features (i.e. 384). To do this, we trained a small vision transformer (ViT-S, output dimension =
384) using DINO"™, a self-supervised approach on 1.7M histology patches equally sampled
across all the 23 tissues from GTEx that we selected for this study. In this self-supervised
training regime there are two networks, a student and a teacher model, sharing the same
architecture: the student is provided with global and local augmented crops of the input image,
whilst the teacher receives only global crops of the same image. Both models output a k-dim
probability vector (k = 65,536) via a temperature softmax along the feature dimension, which
can be thought of as a distribution over latent-classes the model is learning to represent. The
student-teacher models are trained by minimising the cross entropy (CE) loss between their
output distributions:
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This has the desired effect of encouraging the model to learn local-to-global image
correspondences. It can be particularly useful in histology, where cells (local crops) may be
specific to much larger tissue structures (global crops). Further details regarding the
implementation may be found in the original DINO publication'. We modified the augmentation
pipeline of DINO’s global and local crops to better capture the relevant features of histology
samples, by adding a random modulation of hematoxylin (H) and eosin (E) channels. Images
were stain-normalised before being input to the vision transformer to eliminate any effect due to
differential stain intensity®.

Once obtained, the matrices of tile representations (K x 348, where K is the number of patches
of a WSI) for all samples were stored in a HDF5 together with the corresponding upper-left
corner coordinates.

Weakly supervised segmentation of histology images

The segmentation of histology images into regions of interest identifying substructures or
pathological features is fundamental to both extract image derived phenotypes (e.g. size of
specific tissue regions) and to compute gene enrichments with RNAPath predictions.

Our approach is to use weakly supervised clustering: first, we define for each tissue, the
substructure and pathologies of interest, considering the pathology notes that are reported
together with GTEx samples. Next, we manually annotated, with the support of a clinical
histopathologist, a small number of tiles from 5-10 WSI per tissue. To perform these
annotations, we used QuPath (v0.4.3)* and a groovy script to produce 128x128 tiles from each
annotated area. All annotation tiles are available for download (see Data Availability). For each
tile from an annotated class, we perform a forward pass through our trained ViT-S model,
obtaining its 384-dim representation. We can then obtain automatic segmentations of the
non-annotated WSI by computing the distance between tile representations from unannotated
WSI and by using a k-Nearest Neighbours (k = 200) model fitted on the annotated
(tissue-specific) dataset to assign classes. We stored the segmentation both as an image and in
a dataframe in which the class of each patch is tabulated.

Differential Expression Analysis of image derived phenotypes

Tissue substructure and pathology proportions were computed by counting the number of
patches belonging to each class and normalising by the total number of tissue patches present
in the WSI. However, these phenotypes are compositional as the sum across tissue
substructure and pathology proportions within a sample equals one, implying that the measured
variables are not independent. This dependence may alter the results of downstream statistical
analysis. To address this issue, we transformed the compositional values into pivot
coordinates®*8, Using these pivot transformed proportions, we fit linear models in python
adjusting for age, sex, BMI and ischemic time and the first 5 genetic PCs.
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GTEx Whole Genome Sequencing (WGS) quality control

The cohort VCF representing whole genome sequencing variant calls was obtained from dbGaP
(accession phs000424.v8.p2). All the analyses described here are based on the GTEx v8
analysis freeze dataset containing 838 individuals and 46,569,704 variants. First, we used
somalier*® to estimate the ancestry of all samples directly from the cohort VCF. Based on
somalier estimations, we then selected only the 699 samples of European (EUR) ancestry
based on the 1000G reference populations. Variants were then filtered, retaining only PASS
biallelic SNVs. The filtered dataset contained 699 samples and 43,066,451 variants.

To generate a high-quality dataset suitable for GWAS analysis, we further filtered genotypes
retaining only those with GQ >= 20 and DP >= 10, and then removed variants with minor allele
count < 10, HWE test p-value < 1 x 10°, or missing call rate > 0.05.

The resulting processed dataset containing 11,527,288 variants was converted to PGEN format
and used in step 2 of REGENIE for variant association analyses (see below). Variants in this
dataset were further processed to generate a set of independent SNVs to be used in step 1 of
REGENIE analysis. First, we filtered out variants with HWE test p-value < 1 x 10", minor allele
count < 100, or missing call rate > 0.01, and then we applied LD pruning as implemented by
plink2 --indep-pairwise method using —indep-pairwise 1000 100 0.5. The final dataset for step 1
included 699 samples and 381,202 variants.

Genome-wide association analysis (GWAS)

To conduct the genetic association study, we used REGENIE software v3.2.7%° with an
automated Nextflow pipeline (v1.8.1) (see Data & Code Availability). This pipeline simplifies the
testing of multiple phenotypes and automates post-processing steps such as variant clumping
for loci identification and annotation of nearby genes. The sample size tested varies depending
on the phenotype: 691 donors for tibial artery calcification, 479 for coronary artery calcification
and 674 for esophagus mucosa inflammation and vascular congestion. For all four phenotypes
we tested autosomal variants adjusting for age, sex, BMI, ischemic time and the first five
principal components of genetic ancestry. A minMAC filter of 10 was applied in step 2 of the
REGENIE pipeline; and the variants with MAF < 5% were excluded from the final analyses. We
considered the standard genome-wide significance threshold (P-value = 5.0 x 10®), but also
examined suggestive hits (P-value < 1.0 x 10°). Regional plots, Manhattan plots and
quantile-quantile plots were generated with GWASLab (v3.4.21)*'. All summary statistics are
available for download (see Data Availability).

Interaction eQTL mapping

Interaction eQTLs (ieQTLs) are a specific type of eQTLs that interact with a phenotype (age,
sex, environmental factors, etc.) to influence gene expression; as a consequence, ieQTLs can
help identify the factors that modulate the effect of genetic variants on gene expression.

To perform interaction eQTL analysis, we used TensorQTL (v1.0.8)*?, an open source package
that allows QTL mapping to be executed on GPUs, resulting in ~200-300 fold faster
computations compared to the CPU-based implementations. Interaction eQTL analysis requires
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genotypes, gene expression data and an interaction variate (e.g. a phenotype or environmental
factor) for each individual. The statistical model is described by the following equation:

Y:I—FﬂlG—l—ﬁQP—l—ﬁgPXG—{—E

where [ is the intercept, G the genotype, P the interaction component (or proxy phenotype),
P x G represents the interaction term and ¢ the residual error. We used the same genotype
data as per the GWAS (described above). For the gene expression data we utilised the
normalised gene expression matrices and covariates provided by GTEx in the cis-eQTLs
section of the open access data.

The covariates include the top five genotype components, PEER factors calculated for the
expression matrices, sequencing platform, sequencing protocol, sex, age, BMI and ischemic
time. As an interaction term, we used the tissue substructure and pathology proportions
transformed into pivot coordinates. The sample size varies across tissue type and depends on
the number of genotyped donors with both gene expression and WSI of the histology sample
available.

Multiple instance learning applied to gene expression regression

Our novel method, RNAPath, follows the multiple instance learning (MIL) paradigm, an
approach that enables one to predict patch-level scores whilst having only a sample-level
measurement or ground-truth label. RNAPath works as follows: Consider a total of N WSiIs

each represented as a bag of image patch embeddings, Xi € RM*P \where M is the number
of image patches for that WSI and D is the embedding dimension of each image patch. M,
termed the bag size in the MIL literature, is variable across WSI as it depends on the size of the
tissue section taken. At the level of each WSI, we have k regression target variables

Vi € R which are the 1082(z + 1) TPM values for each gene. The model estimates the
gene expression at patch level by G independent gene-wise linear regressors applied to tile
features, where G is the number of genes selected for the tissue. We subsequently apply a
non-linear activation function (ReLU) to have positive patch-level scores. These scores are then
averaged to derive a sample-level prediction; mean squared error (MSE) loss between
predicted sample-level expression and bulk RNA-seq is computed to train the model (see Code
Availability for full implementation and model architecture).

To train RNAPath for each tissue we created a training, validation and test split of 80:10:10,
ensuring that tissues from the same individual were present in only one split, to avoid any
leakage based on genetic effects shared across tissues. For each sample, we apply dropout
both at the bag level (by keeping a random percentage of patches between 70% and 100% of
the total number), and at the level of patch representations (p=0.10) to make the training of
RNAPath more stable and to increase robustness to outliers.

We train RNAPath with batch size 1 for a maximum of 200 epochs, using a decaying learning
rate scheduler (starting value 1 x 10%); we optimised RNAPath using Adam and a Mean
Squared Error (MSE) loss function:
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We divided the gene set into groups of size < 500, due to memory restrictions. To limit the time
taken by the optimization step, we accumulate the gradients over each of these groups and
update weights once all the genes for a sample have been regressed. In total, we trained 23
tissue-specific RNAPath models for the regression of gene expression.

As previously described, the patches are extracted from the sample without overlap. However,
as an additional form of data augmentation, we compute three additional patch sets (with
overlap of 25%, 50% and 75% with respect to the original patch set). By doing so, we achieve
four different representations of the same sample, and at each training iteration we can
randomly sample one of them. These other patch sets are also useful during inference, as we
can average the patch-level logits on the overlapping regions to achieve fine-grained expression
heatmaps.

Substructure Specific Enrichment Score (SSES)

To determine whether a given gene expression prediction was spatially restricted, we devised a
substructure specific enrichment score (SSES) that computes a ratio between the mean
expression in a given area over the total mean expression, using the patch level predictions:

1
_ TjeR] ZjeR Dij

1
keS| 2 _kes Pik

7

This produces an SSES metric for each gene i, €i, in which €¢; > 1 represent genes that are
spatially enriched for the given ROI (i.e. the average patch-level expression P: is higher in the
ROI R than in the whole sample S). Enrichment scores are then averaged across samples,
and the final outcome is a matrix reporting the enrichment score for each pair (gene,
substructure or localised pathology).

HE2RNA implementation

RNAPath outputs tile-level scores and then averages across tiles for a slide-level aggregated
prediction. In our implementation of HE2RNA, we used the author defined model class,
available from their published repository, with our 128x128 tiles and self-supervised
embeddings. HE2RNA considers bag shapes (number of tiles per WSI) of 8,000 and the
number k of tiles used in the training step is randomly sampled from the list L =[10, 20, 50, 100,
200, 500, 1000, 2000, 5000]. Given that some of our slides have a substantially higher number
of tiles, we substituted the absolute numbers in L into proportions (L / 8000), in order to keep the
ratio of tiles used in the training step equal to the original implementation, despite having larger
bags. It is worth noting that the original HE2RNA implementation used pre-trained ImageNet
feature representations for tiles, which we demonstrate perform significantly worse in
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representing histological entities. Therefore, this is a conservative comparison in which
HE2RNA benefits from using our self-supervised representations.
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Data & Code Availability

GTEx V8 data are accessible via an approved dbGAP application (accession:
phs000424.v8.p2). All code, model weights, annotations and summary statistics for this study
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used for REGENIE based GWAS is available here:
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