

1 **A hyperpolarizing neuron recruits undocked innexin hemichannels to transmit**

2 **neural information in *Caenorhabditis elegans***

3

4 Airi Nakayama<sup>1</sup>, Masakatsu Watanabe<sup>2</sup>, Riku Yamashiro<sup>1</sup>, Hiroo Kuroyanagi<sup>1</sup>, Atsunori

5 Oshima<sup>3-6</sup>, Ikue Mori<sup>7</sup> and Shunji Nakano<sup>1,\*</sup>

6

7 <sup>1</sup> Department of Biological Science, Graduate School of Science, Nagoya University,

8 Nagoya, Aichi 464-8602, Japan.

9 <sup>2</sup> Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871,

10 Japan.

11 <sup>3</sup> Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho,

12 Chikusa, Nagoya, 464-8601, Japan

13 <sup>4</sup> Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical

14 Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.

15 <sup>5</sup> Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-

16 ku, Nagoya, 464-8601, Japan

17 <sup>6</sup> Center for One Medicine Innovative Translational Research, Gifu University Institute

18 for Advanced Study, Gifu, 501-11193, Japan

19 <sup>7</sup> Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya,

20 Aichi 464-8602, Japan.

21

22 \* Corresponding author: z48329a@nucc.cc.nagoya-u.ac.jp

23 **Abstract**

24

25 While depolarization of neuronal membrane is known to evoke the

26 neurotransmitter release from synaptic vesicles, hyperpolarization is regarded as a resting

27 state of chemical neurotransmission. Here we report that hyperpolarizing neurons can

28 actively signal neural information by employing undocked hemichannels. We show that

29 UNC-7, a member of the innexin family in *Caenorhabditis elegans*, functions as a

30 hemichannel in thermosensory neurons and transmits temperature information from the

31 thermosensory neurons to their post-synaptic interneurons. By monitoring neural

32 activities in freely behaving animals, we find that hyperpolarizing thermosensory neurons

33 inhibit the activity of the interneurons and that UNC-7 hemichannels regulate this process.

34 UNC-7 is required to control thermotaxis behavior and functions independently of

35 synaptic vesicle exocytosis. Our findings suggest that innexin hemichannels mediate

36 neurotransmission from hyperpolarizing neurons in a manner that is distinct from the

37 synaptic transmission, expanding the way of neural circuitry operations.

## 38      **Introduction**

39

40            Neurotransmission is a primary means of neural communication and plays an  
41            essential role in the generation of animal behaviors. A common form of neural  
42            communication is chemical synaptic transmission<sup>1,2</sup>, in which the neurotransmitters are  
43            released through synaptic vesicle exocytosis. This exocytosis occurs in response to  
44            calcium influx at the presynaptic site, which is triggered by membrane depolarization that  
45            causes voltage-gated calcium channels to open. Most chemical transmission is induced  
46            by action potentials, and these action potential-dependent transmissions do not occur in  
47            hyperpolarizing neurons. Likewise, at neurons with graded membrane potential, the  
48            synaptic transmitter secretes tonically, such that neurotransmitter release is increased by  
49            depolarization and decreased by hyperpolarization<sup>3</sup>.

50            Neural communication is also mediated by electrical synapses, also known as  
51            gap junctions<sup>4,5</sup>. The core proteins of gap junctions, connexins in vertebrates and innexins  
52            in invertebrates<sup>6,7</sup>, form undocked membrane channels, hemichannels, which on their

53 own can promote the passage of small molecules between the cytosol and extracellular  
54 space<sup>8,9</sup>. Gap junction channels are assembled by docking of two opposing hemichannels  
55 from adjacent cells, thereby connecting the cytoplasms of adjacent neurons and forming  
56 electrical coupling that can mediate neuronal synchrony<sup>4,5</sup>. For instance, gap junctions  
57 synchronize neuronal activities in inferior olfactory nucleus through propagating  
58 depolarizing spikes<sup>10,11</sup>.

59 In addition to depolarization, electrical synapses are also reported to spread  
60 hyperpolarizing potentials. In the Golgi neurons of mammalian cerebellum, gap junctions  
61 composed of connexins were shown to facilitate the propagation of hyperpolarization  
62 after a brief depolarizing current<sup>12,13</sup>. This observation implies that hyperpolarizing  
63 neurons might also be engaged in controlling the dynamics of neural circuitry. However,  
64 the mechanisms underlying neurotransmission from hyperpolarizing neurons and their  
65 roles in animal behaviors have remained largely unexplored.

66 The *C. elegans* thermotaxis behavior provides an effective model in which to  
67 address the mechanisms of neurotransmission from hyperpolarizing neurons. The

68 temperature preference of *C. elegans* is plastic and is determined by the past experience:

69 the animals prefer the temperature at which they have been previously cultivated in the

70 presence of food<sup>14</sup>. When placed on a temperature gradient, the animals migrate toward

71 the cultivation temperature<sup>15–17</sup>. In light of the complete knowledge of the *C. elegans*

72 connectome composed of only 302 neurons<sup>18,19</sup>, the neural circuitry regulating

73 thermotaxis have been extensively studied<sup>15,20,21</sup>. Central to this circuit is the AFD

74 thermosensory neuron essential for temperature sensing<sup>15</sup>. In response to warming stimuli,

75 the AFD thermosensory neuron depolarizes and increases its intracellular calcium

76 concentration<sup>16,22–26</sup>. The depolarized AFD neurons control the activity of their post-

77 synaptic partner, the AIY interneuron<sup>20,27,28</sup>. Regulation of the AIY activity by AFD is

78 bidirectional, and the AIY response represents stimulus valence<sup>29,30</sup>: AIY is excited in

79 response to warming stimulus with the positive valence where the temperature is

80 increased toward the cultivation temperature, while the AIY activity is inhibited upon

81 warming above the cultivation temperature<sup>30</sup>.

82 By contrast, very little is known about how the AFD neurons transmit neuronal

83 outputs in response to cooling stimuli. Previous studies demonstrated that cooling stimuli  
84 hyperpolarized the AFD membrane potentials<sup>24</sup> and that the AFD neuron is indispensable  
85 for the behavioral control upon temperature cooling<sup>16,17</sup>. However, how the  
86 hyperpolarized AFD neurons transmit neural information and control the neural circuitry  
87 to generate appropriate behaviors remains elusive.

88 In this study, we identify *unc-7*, which encodes an innexin protein, as a new  
89 regulator for thermotaxis and show that UNC-7 acts as a hemichannel in AFD to transmit  
90 temperature information to the AIY interneurons. The UNC-7 hemichannels regulate AIY  
91 neuronal activity upon membrane hyperpolarization of the AFD neuron. Intriguingly,  
92 UNC-7 controls thermotaxis in parallel to the chemical transmission from AFD. Our  
93 findings suggest that hyperpolarized neurons can actively transmit neural information by  
94 employing innexin hemichannels that function independently of synaptic vesicle  
95 exocytosis.

96 **Results**

97

98 **UNC-7 acts in the AFD thermosensory neurons to regulate the *C. elegans***  
99 **thermotaxis.**

100 We have previously shown that *inx-4*, a member of innexins, functions in the  
101 AFD thermosensory neurons to regulate thermotaxis<sup>31</sup>. In this study, we conducted a  
102 genome-wide survey of innexins, aiming to reveal the roles of the innexin family genes  
103 in the control of thermotaxis (Fig. 1). Of the 24 remaining innexin genes present in the *C.*  
104 *elegans* genome, we focused on the genes that are dispensable for viability and  
105 locomotion and are expressed in the nervous system<sup>32-35</sup>. We examined the thermotaxis  
106 behaviors of mutants for such innexin genes and found that all innexin mutants examined  
107 displayed the wild-type thermotaxis phenotype (Fig. 1b). We also assessed the effect of  
108 AFD-specific overexpression of the innexin genes. Seven innexin genes - *inx-1*, *inx-2*,  
109 *inx-4*, *inx-7*, *inx-10*, *inx-19* and *unc-7* - were reported to be expressed in AFD of the wild-  
110 type animals<sup>36</sup>. We overexpressed each of these genes in AFD and observed that

111 overexpression of *unc-7* caused a thermophilic phenotype (Fig. 1c). While the wild-type  
112 animals cultivated at 20 °C stayed around the cultivation temperature, animals  
113 overexpressing UNC-7 in AFD migrated toward a temperature region higher than the  
114 cultivation temperature (Fig. 1c6). By contrast, animals overexpressing other innexin  
115 genes in AFD did not show abnormality in thermotaxis.

116 Mutants harboring a presumptive null allele of *unc-7*, *unc-7(e5)*, were  
117 uncoordinated<sup>32</sup>, and hence we could not test their thermotaxis behavior. To address  
118 whether a loss of *unc-7* function affects thermotaxis, we attempted to generate strains  
119 lacking *unc-7* only in AFD using the Cre/loxP system. We inserted two *loxP* sequences  
120 into the *unc-7* locus and crossed with this *unc-7(nj300)* animal a strain carrying a single-  
121 copy insertion of the *Cre* gene fused with the AFD-specific *gcy-8L* promoter (Fig. 1d).  
122 This strain, hereafter referred to as *unc-7(AFD KO)* animals, displayed a cryophilic defect  
123 and migrated toward a lower temperature region than the wild-type animals did (Fig. 1e).  
124 Strains carrying *unc-7(nj300)* or the *gcy-8Lp::Cre* insertion alone did not show  
125 abnormality in thermotaxis. The thermotaxis defect of *unc-7(AFD KO)* was rescued by

126 expressing *unc-7* specifically in AFD (Fig. 1f). These results indicate that UNC-7

127 functions in AFD to regulate thermotaxis.

128

129 **UNC-7 is required later than the larval stage to regulate thermotaxis.**

130 A previous study showed that UNC-7 is required for presynaptic differentiation

131 during synaptogenesis<sup>37</sup>. This observation suggests that the thermotaxis defect of

132 *unc-7(AFD KO)* could be attributable to abnormalities of synaptogenesis of AFD. To

133 assess whether UNC-7 is required for the development of the AFD thermosensory

134 neurons, we examined the critical period of UNC-7 for the regulation of thermotaxis by

135 Auxin Induced Degradation (AID) system<sup>38</sup>. We expressed TIR1 in AFD of animals in

136 which *unc-7* was tagged with a degron sequence. While the animals cultivated with auxin

137 throughout the development showed cryophilic defects, the animals cultivated without

138 auxin did not show abnormality in thermotaxis (Supplementary Fig. 1a, b), indicating that

139 the AID system successfully knocked down the UNC-7 activity. When the animals were

140 cultivated in the absence of auxin for two days, at which most animals had grown to the

141 second or third larval stage and were then transferred onto plates with auxin, they  
142 displayed a cryophilic defect (Supplementary Fig. 1c, d). Conversely, the animals treated  
143 with auxin only for the first two days of their development did not exhibit thermotaxis  
144 defects. These results indicated that the activity of UNC-7 in AFD is required at or later  
145 than the third larval stage, the period at which AFD has connected to the majority of its  
146 postsynaptic neurons<sup>39</sup>, suggesting that UNC-7 is required to function in the mature AFD  
147 neuron.

148

149 **Cysteine mutants of UNC-7 failed to localize to the AFD axonal region.**

150 Innexins form two types of channels, gap junction channels and undocked  
151 hemichannels<sup>40-42</sup>. To address whether UNC-7 acts as a gap junction channel or a  
152 hemichannel for the regulation of thermotaxis, we utilized the cysteine mutants of UNC-  
153 7, UNC-7(Cysless; C173A, C191A, C377A, C394A) and UNC-7(C191A). These  
154 cysteine residues were previously reported to be essential for the formation of gap  
155 junctions but were dispensable for hemichannel activity<sup>43</sup>. We therefore asked whether

156 the expression of *unc-7(Cysless)* or *unc-7(C191A)* in AFD could rescue the thermotaxis  
157 defect of *unc-7(AFD KO)*. However, we observed that these mutants of UNC-7 failed to  
158 localize to the axonal region of AFD unlike the wild-type UNC-7, and that the expression  
159 of these mutant *unc-7* genes did not rescue the thermotaxis defect of *unc-7(AFD KO)*  
160 (Supplementary Fig. 2). Given that the cysteine mutants of UNC-7 localized in the  
161 neuronal processes of the ventral nerve cord<sup>43</sup>, these observations suggested that the  
162 cysteine residues are required for the transport of UNC-7 in the AFD sensory neurons and  
163 that UNC-7 might be transported by distinct mechanisms depending on the neuronal  
164 subtypes.

165

166 **UNC-7 acts as a hemichannel to regulate thermotaxis.**

167 Since the cysteine mutants of UNC-7 could not be utilized to address the type  
168 of channel that UNC-7 functions during thermotaxis, we attempted to design a new form  
169 of UNC-7 that would lose the ability to form gap junctions but retain the hemichannel  
170 activity. Since previous structural studies suggested that the formation of a gap junction

171 is mediated through the interaction between the second extracellular loops (EL2) of the  
172 opposing hemichannels<sup>44</sup>, we generated a chimeric form of UNC-7 whose coding  
173 sequence for the EL2 was replaced by that of mouse pannexin 1 (mPANX1), which  
174 belongs to the family of pannexin, the functional homolog of innexins<sup>45-47</sup> (Fig. 2a). The  
175 AFD-specific expression of this chimeric UNC-7 rescued the thermotaxis defect of *unc-*  
176 *7(AFD KO)* animals, indicating that the activity of the chimeric UNC-7 is sufficient for  
177 regulating the thermotaxis (Fig. 2b). By contrast, expression of a full-length mPANX1  
178 specifically in AFD did not rescue the thermotaxis defect of *unc-7(AFD KO)*  
179 (Supplementary Fig. 3a).

180 To assess whether the chimeric UNC-7 retains hemichannel activity, we  
181 expressed the chimeric UNC-7 in *Xenopus* oocyte and confirmed that the chimeric UNC-  
182 7 exhibited voltage-dependent hemichannel currents comparable to that observed by the  
183 wild-type UNC-7 (Fig. 2c, Supplementary Fig. 4). We also tested whether the chimeric  
184 UNC-7 displays the gap junction activity. It has been previously reported that the gap  
185 junction activity of UNC-7 is required in the motor neurons to mediate locomotion<sup>48</sup>. We

186 therefore examined whether the chimeric UNC-7 can rescue the uncoordinated movement  
187 of animals carrying *unc-7(e5)* and found that the pan-neuronal expression of the wild-  
188 type UNC-7 partially rescued the locomotory defect of *unc-7(e5)*, whereas the chimeric  
189 UNC-7 did not (Fig. 2d). These results indicated that the chimeric UNC-7 loses the ability  
190 to form gap junctions but retains the hemichannel activity. In addition, we observed that  
191 UNC-7(M121L), a mutant form of *unc-7* previously shown to be unable to form the gap  
192 junction<sup>48</sup>, also rescued the thermotaxis defect of *unc-7(AFD KO)* animals  
193 (Supplementary Fig. 3b). Together, these results suggested that the hemichannel activity  
194 of UNC-7 in AFD is sufficient to regulate thermotaxis.

195

196 **UNC-7 functions downstream of calcium influx in AFD.**

197 A previous report indicated that the UNC-7 hemichannel is required for the  
198 sensory transduction of mechanosensation in *C. elegans*<sup>49</sup>. Given this report, we assessed  
199 whether UNC-7 regulates temperature sensing in the AFD thermosensory neurons. The  
200 AFD neurons were previously shown to increase its calcium concentration in response to

201 temperature warming, and this calcium response occurs around the cultivation  
202 temperature<sup>22–26</sup>. We therefore monitored calcium dynamics of AFD in wild-type, *unc-*  
203 *7(e5)* and *unc-7(AFD KO)* animals and found that the calcium response of AFD was  
204 normal in *unc-7* mutants (Fig. 3a-d). We did not detect significant differences in the  
205 maximum value of ratio change or response temperature of AFD between wild-type  
206 animals and *unc-7* mutants (Fig. 3c, d). These results indicated that *unc-7* does not affect  
207 temperature-evoked calcium response in AFD and suggested that UNC-7 regulates a  
208 process downstream of calcium influx in AFD.

209

210 **UNC-7 transmits temperature information to the AIY interneuron.**

211 To identify neurons to which UNC-7 hemichannels transmit temperature  
212 information from AFD, we conducted single cell ablation experiments by using  
213 reconstituted caspases<sup>17,50</sup>. We individually ablated a subset of the neurons reported to be  
214 chemical or electrical synapse partners of AFD<sup>19</sup> and asked which neurons, when ablated,  
215 could suppress the effect of the AFD-specific overexpression of UNC-7. We observed

216 that while overexpression of *unc-7* affected thermotaxis behaviors of animals lacking AIB,

217 AIZ, AVE or AWC, the ablation of the AIY interneuron or the RMD motor neuron

218 suppressed the defect caused by the *unc-7* overexpression (Fig. 3e-k). These results

219 suggested that UNC-7 transmits temperature information to the AIY and RMD neurons.

220 Since the AIY interneurons have been shown to play pivotal roles in thermotaxis<sup>15,17,51</sup>,

221 we focused on the neural pathway between AFD and AIY and further investigated the

222 mechanisms of the behavioral regulation by UNC-7 hemichannels.

223

224 **UNC-7 regulates curving bias by transmitting temperature information to AIY.**

225 Previous studies showed that multiple behavioral components such as turns,

226 reversals and curves, are important for the regulations of thermotaxis behavior. Many of

227 these behavioral components are regulated by the AFD-AIY neural pathway, and each of

228 the behavioral components contributes to thermotaxis to a different degree<sup>16,17</sup>. To address

229 which behavioral components are regulated by UNC-7, we performed high-resolution

230 behavioral analysis using Multi Worm Tracking system<sup>17,30,52</sup> (Fig. 4, Supplementary Fig.

231 5, 6). We cultivated animals at 20 °C and monitored their behaviors within the  
232 temperature range from 18.5 °C to 21.5 °C (Fig. 4a). Consistent with previous reports<sup>17,30</sup>,  
233 we observed that wild-type animals displayed curving bias toward warmer temperature  
234 when moving down the thermal gradient and curved toward colder temperature when  
235 moving up the thermal gradient. These bidirectional curving bias presumably drives the  
236 animals toward the cultivation temperature (Fig. 4). *unc-7(AFD KO)* animals showed  
237 defects in the regulation of curve and, in particular, displayed lower curving bias than that  
238 of the wild-type animals when moving down the thermal gradient (Fig. 4d). This curving  
239 defect of *unc-7(AFD KO)* was rescued by expressing the wild-type or the chimeric  
240 UNC-7 in AFD. These results suggested that UNC-7 hemichannels promote the curving  
241 bias toward warmer temperature when animals are moving down the temperature gradient  
242 away from the cultivation temperature, thereby promoting migration toward the  
243 cultivation temperature. We did not observe significant defects in other behavioral  
244 components examined, including omega turn, reversal, reversal turn, shallow turn or  
245 speed (Supplementary Fig. 5).

246 To ask whether this regulation of the curving bias by UNC-7 involves the AIY  
247 interneuron, we analyzed behavioral components of the AIY-ablated animals (Fig. 4e-g,  
248 Supplementary Fig. 7). We found that the AIY-ablated animals showed the opposite  
249 curving bias to that observed in the wild type: they curve toward colder temperature when  
250 moving down the thermal gradient and toward warmer temperature when moving up the  
251 thermal gradient (Fig. 4e-g). Importantly, *unc-7(AFD KO)* did not affect the curving bias  
252 in the AIY-ablated animals. Together, these results suggested that UNC-7 regulates  
253 curving bias while animals are moving toward colder temperature and that UNC-7  
254 mediates transmission of temperature information from AFD to AIY.

255

256 **UNC-7 hemichannels inhibit the activity of the AIY neuron upon cooling stimuli.**

257 To assess whether UNC-7 regulates the neuronal activity of the AIY interneuron,  
258 we analyzed calcium dynamics of AFD and AIY in freely behaving animals using the  
259 microscope with an automated tracking system (Fig. 5). Since our behavioral component  
260 analysis revealed that UNC-7 regulates curve when animals were migrating down the

261 temperature gradient, we subjected the animals to a cooling stimulus, where the

262 temperature was decreasing away from the cultivation temperature: 20 °C (Fig. 5b). We

263 observed that in response to this cooling stimulus, the wild-type AFD neurons showed

264 decreases in the calcium concentration (Fig. 5c). This observation is consistent with the

265 previous report that cooling hyperpolarizes the AFD neurons<sup>24</sup>. We also found that the

266 majority of the AIY neurons of the wild-type animals responded to the cooling stimulus

267 by decreasing the calcium concentration (Fig. 5c). This result corresponds to our previous

268 report that the AIY responses correlate with the valence of thermal stimuli, with stimuli

269 with positive valence evoking excitatory responses and stimuli with negative valence

270 inhibitory responses<sup>30</sup>. When *unc-7(AFD KO)* animals were subjected to cooling stimuli,

271 the activity of AFD was decreased similarly to those observed in the wild-type animals.

272 By contrast, decreases in the AIY calcium concentration were attenuated in *unc-7(AFD*

273 *KO)* animals when compared to those in the wild-type animals. To compare the AIY

274 responses between the wild-type and *unc-7(AFD KO)* animals, we analyzed the

275 proportion of standardized fluorescent change below -0.3 and found that the ratio in *unc-*

276 *7(AFD KO)* is lower than that in the wild type (Fig. 5d). This defect was rescued by AFD-  
277 specific expression of the wild-type UNC-7 (Fig. 5c, d) or of the chimeric UNC-7 (Fig.  
278 5e, f). We also monitored the neuronal activities in animals subjected to warming stimuli  
279 and found that *unc-7(AFD KO)* did not affect the regulation of the AIY activity upon  
280 warming (Fig. 5g-i). These results indicated that the hyperpolarizing AFD neuron inhibits  
281 the activity of the AIY neuron in response to cooling stimuli and that UNC-7  
282 hemichannels regulate this process.

283

284 **UNC-7 regulates thermotaxis independently of synaptic vesicle exocytosis.**

285 We next address whether inhibition of the AIY activity by UNC-7 is mediated  
286 by controlling the synaptic transmission from AFD. The AFD-AIY synaptic transmission  
287 was shown to be brought about by two kinds of the neurotransmitters, neuropeptides for  
288 excitatory signaling and glutamates for inhibitory signaling<sup>27,28</sup>. The glutamatergic  
289 transmission from AFD required *eat-4*, which encodes a vesicular glutamate transporter  
290 (VGLUT) that transports glutamates into synaptic vesicles<sup>28,53</sup>. To assess whether UNC-

291 7 functions through controlling synaptic release of glutamates, we conducted the epistasis  
292 analysis between *unc-7* and *eat-4*. We generated animals lacking *eat-4* specifically in  
293 AFD by the Cre/loxP system and found that *eat-4*(*AFD KO*) animals displayed  
294 thermophilic defects (Fig. 6a), indicating that EAT-4 acts in AFD to regulate thermotaxis  
295 behavior. Importantly, the *unc-7*(*AFD KO*) mutation affected thermotaxis in animals  
296 lacking *eat-4* in AFD. These results indicated that UNC-7 acts in parallel to EAT-4 to  
297 regulate thermotaxis.

298 We also tested the possibility that UNC-7 is involved in the peptidergic  
299 signaling within AFD. Previous studies indicated that *unc-31*, which encodes the calcium  
300 dependent activator protein essential for secreting neuropeptides, is required for the  
301 peptidergic signaling between AFD and AIY<sup>27,54</sup>. We tested the epistasis between *unc-7*  
302 and *unc-31* and found that while *unc-31*(*AFD KO*) did not display a thermotaxis defect,  
303 animals lacking both *unc-7* and *unc-31* showed a cryophilic phenotype stronger than that  
304 of *unc-7*(*AFD KO*) or *unc-31*(*AFD KO*) animals (Fig. 6b). These results suggested that  
305 UNC-31 plays at least a minor role in AFD to regulate thermotaxis and that UNC-7 acts

306 in parallel to UNC-31. Furthermore, we examined thermotaxis behaviors of single  
307 mutants for a panel of the neuropeptide genes that are expressed in AFD<sup>55,56</sup> and found  
308 that none of the mutants tested displayed a thermotaxis defect (Supplementary Fig. 7).  
309 These results implied that UNC-7 functions to regulate thermotaxis independently of the  
310 synaptic vesicle exocytosis.

311 **Discussion**

312

313 In this study, we report that the AFD sensory neurons inhibit the activity of the

314 AIY interneurons while animals are subjected to cooling stimuli and that UNC-7

315 hemichannels function in AFD to regulate this process. Since our imaging results and the

316 previous study indicate that cooling stimuli hyperpolarize the AFD neuron<sup>24</sup>, these results

317 suggest that the hyperpolarizing AFD neurons recruit UNC-7 hemichannels to

318 downregulate the AIY activity.

319 Our results uncovered the roles of innixin hemichannels in promoting

320 neurotransmission from hyperpolarized cells. Previously, gap junctions have been shown

321 to mediate the propagation of hyperpolarization from one cell to the next. For example,

322 in mammals, hyperpolarizing current spreads directly from the endothelial cells to the

323 smooth muscle cells via myoendothelial gap junctions composed of connexins<sup>57,58</sup>. In

324 mammalian cerebellum, gap junctions composed of connexins between Golgi neurons

325 were shown to facilitate the propagation of hyperpolarization after a brief depolarizing

326 current<sup>12,13</sup>. In *C. elegans*, the gap junctions composed of UNC-9, a member of innixin  
327 family proteins, were also implicated to spread membrane hyperpolarization from RIM  
328 motor neurons to AVA interneurons during spontaneous locomotor activity<sup>59</sup>. These  
329 reports suggest that the gap junctions composed of innexins and connexins mediate the  
330 propagation of membrane hyperpolarization. Our findings now indicate that innexins can  
331 also function as hemichannels to regulate neurotransmission from hyperpolarizing  
332 neurons. We suggest that hemichannel-composing proteins -innexins, connexins and  
333 pannexins- could be general mediators of neural transmission in hyperpolarized cells.

334 Recent studies in mammals suggested that glial cells employ hemichannels to  
335 modulate communications between neurons. For example, the connexin hemichannels  
336 expressed in astrocytes contribute to excitatory synaptic transmission from CA3 to CA1  
337 pyramidal neurons by releasing ATP and glutamine<sup>8,9</sup>. Another report suggested that  
338 astroglial hemichannels release chemokines to enhance spinal cord synaptic  
339 transmission<sup>60</sup>. Thus, these observations led to the notion that hemichannels in glial cells  
340 support neurotransmission. Our findings further advance this idea and show that neuronal

341 UNC-7 hemichannels directly regulate neural communication. We speculate that neuronal  
342 hemichannels composed of innexins and possibly those of connexins and pannexins could  
343 similarly contribute to neurotransmission.

344 Our epistasis analysis suggested that UNC-7 hemichannels expressed in the  
345 AFD neurons regulate neurotransmission independently of chemical synaptic  
346 transmissions. The most plausible function of UNC-7 would be to release transmitters.

347 In mammals, channel proteins had been reported to release neurotransmitters to signal  
348 sensory information: the CALHM1/CALHM3 channels are essential for taste perception  
349 and mediate depolarization-dependent release of ATP from taste cells<sup>61</sup>. Like  
350 CALHM1/CALHM3 channels, UNC-7 hemichannels might allow neurotransmitters to  
351 pass through, and such neurotransmitters exert inhibitory effects on the AIY neuronal  
352 activity. This releasing mechanism by hemichannels is likely distinct from that by  
353 CALHM channels in that it would operate in the absence of calcium influx. Given that  
354 innexins form a large pore channels<sup>42</sup>, innexin hemichannels can facilitate the passage of  
355 diverse ligands. Depending on a combination of ligands and their cognate receptors,

356 hemichannel-mediated neurotransmission might allow diverse modes of neural  
357 communication from hyperpolarized cells. Our results thus suggest a previously  
358 unrecognized mechanism of neurotransmission that expands the way of the neural  
359 circuitry operations.

360 How does this mechanism of the innexin-mediated neurotransmission contribute  
361 to thermotaxis behavior? The AIY neurons regulate the curving bias as well as the  
362 frequency of reversals and turns<sup>17,62</sup>, and the reduction in the AIY activity generally  
363 correlates with reorientation maneuvers<sup>16,63,64</sup>. Thus, the AIY activity is expected to be  
364 inhibited when animals are moving away from the cultivation temperature on a thermal  
365 gradient. Consistent with this expectation, previous studies indicated that when animals  
366 migrate up a thermal gradient above the cultivation temperature, AFD depolarizes upon  
367 warming stimulus, triggers glutamate release via chemical synapse and inhibits AIY  
368 activity<sup>28,30</sup>. The AFD neurons were also reported to play an essential role in behavioral  
369 control while animals were moving down a thermal gradient below the cultivation  
370 temperature<sup>17</sup>. However, since the AFD membrane would be hyperpolarized under such

371 thermal context, how AFD controls the neural circuitry had remained unknown. Our  
372 studies provide an answer to this question and reveal that UNC-7 hemichannels function  
373 as calcium-independent regulators of neurotransmission and inhibit the AIY neurons. We  
374 speculate that such neurotransmissions via hemichannels in response to membrane  
375 hyperpolarization can play crucial roles in various sensory contexts. The careful  
376 investigation of the regulatory mechanism by the innixin hemichannels will lead to a  
377 further understanding of neurotransmission in hyperpolarizing neurons.

378 **Methods**

379

380 ***C. elegans* strains**

381 *C. elegans* animals were cultivated at 20 °C on nematode growth media (NGM)

382 plates seeded with *E. coli* OP50 bacteria<sup>32</sup>. N2 (Bristol) was used as the wild-type strain.

383 Germ line transformation was performed by microinjection as previously described<sup>65</sup>.

384 Genome editing was performed by the CRISPR Cas9 system as previously described<sup>66</sup>.

385 All strains used in this study are shown in Supplementary Table 1.

386

387 **Thermotaxis assay**

388 Thermotaxis (TTX) assays were performed as previously described<sup>67</sup>. A linear

389 thermal gradient from 17 °C to 23 °C was formed on a thermotaxis assay plate with a

390 temperature steepness of approximately 0.5 °C/cm. The center of the plate was set at

391 20 °C. Animals cultivated at 20 °C were placed on the center of a thermotaxis assay plate

392 and were allowed to freely behave for 1 hour. We divided the thermotaxis assay plate into

393 8 sections along the temperature gradient, and the number of animals in each section was

394 counted. We calculated thermotaxis (TTX) indexes using the formula shown in Figure 1a.

395

### 396 **Locomotion rescue experiment**

397 We tracked and recorded the behaviors of ~30 animals on assay plates for 5 min

398 by using Multi Worm Tracking system<sup>52</sup>. Instantaneous speeds of individual animals

399 tracked for longer than 2 consecutive minutes were calculated by Chreography<sup>52</sup>, and the

400 average speeds of individual animals were calculated.

401

### 402 **Electrophysiological analysis**

403 Whole-cell voltage clamp recording of *Xenopus* oocytes was performed as

404 previously described<sup>68</sup>. The wild-type and chimeric *unc-7* genes were cloned into pGEM-

405 HeFx plasmids, and the cRNA was generated from each plasmid by using an RNA

406 preparation kit (mMessage mMachine T7 Transcription Kit; Invitrogen) according to the

407 manufacturer's protocol. The oocytes were collected from *Xenopus laevis* and then treated

408 with collagenase solution, which contains 2 mg/mL collagenase type I (Gibco) dissolved  
409 in OR2 buffer (82.5 mM NaCl, 2 mM KCl, 1 mM MgCl<sub>2</sub>, and 5 mM HEPES [adjusted to  
410 pH 7.5 with NaOH]) at 18 °C for 1.5 h. Forty nano grams of *unc-7* cRNA were coinjected  
411 with 10 ng of antisense oligonucleotide DNA for *Xenopus* Cx38 into oocytes. The oocytes  
412 for negative controls were injected with the antisense DNA only. The oocytes were  
413 incubated at 18 °C for 2~3 days in ND96 buffer (93.5 mM NaCl, 2 mM KCl, 1.8 mM  
414 CaCl<sub>2</sub>, 2 mM MgCl<sub>2</sub>, and 5 mM HEPES [adjusted to pH 7.5 with NaOH]). Hemichannel  
415 currents were recorded by using iTEV 90 Multi-Electrode Clamp Amplifier (HEKA  
416 Elektronik). The oocytes placed in ND96 buffer without CaCl<sub>2</sub> were clamped at -30 mV  
417 initially and then subjected to 10 sec voltage steps from -50 mV to +50 mV in 20 mV  
418 increments.

419

420 **Critical period analysis by AID system**

421 We generated *unc-7(nj291)* strain, in which a degron sequence was inserted at  
422 the *unc-7* locus, and introduced into this strain a transgene that drives an AFD-specific

423 expression of TIR1, an auxin-dependent E3 ubiquitin ligase. We added 1mM auxin  
424 indole-3-acetic acid (IAA) into NGM and TTX plates to allow TIR1 to bind degron-  
425 tagged UNC-7 and promote their ubiquitylation, leading to the degradation of degron-  
426 tagged UNC-7 by the proteasome specifically in AFD<sup>38</sup>.

427

428 **Calcium imaging of the AFD neurons in immobilized animals**

429 Calcium imaging recordings of the AFD neurons in immobilized animals were  
430 performed as previously described<sup>25</sup>. Animals expressing calcium probe GCaMP6m  
431 together with TagRFP in AFD<sup>69</sup> were cultivated at 20 °C and were immobilized on 10%  
432 agarose pads by polystyrene beads. We subjected animals to stepwise temperature  
433 warming and recorded fluorescence images of the AFD cell body by EM-CCD camera  
434 with 400 msec pulsed illumination every 1 sec. The fluorescence intensities were acquired  
435 from these images using MetaMorph software, and the ratio of fluorescence intensity  
436 (GCaMP3/TagRFP) was calculated. The ratio change was calculated by the following  
437 formula: (ratio – baseline ratio)/baseline ratio, where the baseline ratio value was the

438 mean of the ratio values during the first 10 sec before the beginning of the temperature

439 change.

440

441 **Calcium imaging of the AFD neurons and the AIY neurons in freely behaving**

442 **animals**

443 Calcium imaging of the AFD neurons and the AIY neurons in freely behaving

444 animals were performed as previously described<sup>30,70</sup>. Animals expressing calcium probe

445 YCX simultaneously in the AFD nuclei and the AIY neurons were cultivated at 20 °C and

446 allowed to freely behave on 2 % agarose pads. We subjected animals to warming or

447 cooling stimuli and tracked their movement. We recorded fluorescence images of AFD

448 and AIY under the epifluorescent microscope with SOLA LED light engine as a light

449 source with 30 msec pulsed illumination every 1 sec for 30 sec.

450 The fluorescence intensities from these images were analyzed using the

451 MATLAB program<sup>70</sup>, and the ratio of fluorescence intensity (GCaMP3/TagRFP) was

452 calculated. The intensities of AFD were acquired from its nuclei and that of AIY were

453 acquired from a part of the axonal region shown in Fig. 5a. The ratio of fluorescence  
454 intensity (YFP/CFP) was standardized to 0-1 range, and the standardized ratio change  
455 was calculated by the following formula: (ratio – baseline ratio)/baseline ratio, where the  
456 baseline ratio value was the mean of the ratio values during first 10 sec before the  
457 beginning of the temperature change.

458

459 **Behavioral analysis**

460 Multi Worm Tracking (MWT) assays were performed as previously  
461 described<sup>17,30</sup>. Animals cultivated at 20 °C were placed on the thermotaxis assay plate,  
462 and their behaviors were recorded using a CMOS camera (8 bits, 4,096 × 3,072 pixels;  
463 CSC12M25BMP19-01B, Toshiba-Teli) for 1 hour. MWT system extracted the  
464 coordinates of individual animal's centroids and spines from the recording video. Using  
465 these data, the behavioral components of the worms on the temperature gradient within  
466 the range of 18.5 °C to 21.5 °C were analyzed by the MATLAB program previously  
467 described<sup>17</sup>.

468

469 **Statistics**

470 Normality of the data was tested by Shapiro-Wilk test. Equality of variance

471 among the data set was assessed by Bartlett test. When the normality and equality of

472 variance of the data were assumed, Student t test was performed for paired comparison,

473 and One-way analysis of variance (ANOVA) with Tukey–Kramer test or Dunnett test for

474 multiple comparisons. When we could not assume the normality and equality of variance

475 of the data, Exact Wilcoxon rank sum test was performed for paired comparison, and

476 Exact Wilcoxon rank sum test with Bonferroni correction or Steel test were performed

477 for multiple comparisons. Chi-Square tests with Bonferroni correction were performed

478 for multiple comparisons of the percentage of a categorical AIY response in Fig. 6.

479

480 **Data availability**

481

482 The data supporting the finding of this work are available within the paper and its

483 Supplementary Information files. Source data are provided with this paper. Custom

484 codes for the analysis of the calcium imaging experiments were previously published

485 and are available at [https://github.com/ShunjiNakano/AIY\\_tracking](https://github.com/ShunjiNakano/AIY_tracking). The Multi-worm

486 tracking data were analyzed by the custom codes previously published and are available

487 at <https://sourceforge.net/projects/mwt/files/> and

488 <https://github.com/ikedamuneki/ThermotaxisAnalysis>.

489 **References**

490

491 1. Katz, B. & Miledi, R. Ionic requirements of synaptic transmitter release.

492 *Nature* **215**, 651 (1967).

493 2. Sabatini, B. L. & Regehr, W. G. Timing of neurotransmission at fast synapses

494 in the mammalian brain. *Nature* **384**, 170–172 (1996).

495 3. Strathern, L. Getting graded: Teaching principles of chemical synaptic

496 transmission without action potentials. *J Undergrad Neurosci Educ* **19**, R28–R30

497 (2021).

498 4. Bennett, M. V. L. & Zukin, R. S. Electrical coupling and neuronal

499 synchronization in the mammalian brain. *Neuron* **41**, 495–511 (2004).

500 5. Connors, B. W. & Long, M. A. Electrical synapses in the mammalian brain.

501 *Annu Rev Neurosci* **27**, 393–418 (2004).

502 6. Phelan, P. Innexins: members of an evolutionarily conserved family of gap-

503 junction proteins. *Biochim Biophys Acta (BBA)* **1711**, 225–245 (2005).

504 7. Söhl, G., Maxeiner, S. & Willecke, K. Expression and functions of neuronal

505 gap junctions. *Nat Rev Neurosci* **6**, 191–200 (2005).

506 8. Chever, O., Lee, C.-Y. & Rouach, N. Astroglial connexin43 hemichannels

507 tune basal excitatory synaptic transmission. *J. Neurosci.* **34**, 11228–11232 (2014).

508 9. Cheung, G. *et al.* Physiological synaptic activity and recognition memory

509 require astroglial glutamine. *Nat Commun* **13**, 753 (2022).

510 10. Long, M. A., Deans, M. R., Paul, D. L. & Connors, B. W. Rhythmicity

511 without synchrony in the electrically uncoupled inferior olive. *J Neurosci* **22**, 10898–

512 10905 (2002).

513 11. Leznik, E. & Llinás, R. Role of gap junctions in synchronized neuronal

514 oscillations in the inferior olive. *J Neurophysiol* **94**, 2447–2456 (2005).

515 12. Dugué, G. P. *et al.* Electrical coupling mediates tunable low-frequency

516 oscillations and resonance in the cerebellar Golgi cell network. *Neuron* **61**, 126–139

517 (2009).

518 13. Yaeger, D. B. & Trussell, L. O. Auditory Golgi cells are interconnected

519 predominantly by electrical synapses. *J Neurophysiol* **116**, 540–551 (2016).

520 14. Hedgecock, E. M. & Russell, R. L. Normal and mutant thermotaxis in the

521 nematode *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A* **72**, 4061–4065 (1975).

522 15. Mori, I. & Ohshima, Y. Neural regulation of thermotaxis in *Caenorhabditis*

523 *elegans*. *Nature* **376**, 344–348 (1995).

524 16. Luo, L. *et al.* Bidirectional thermotaxis in *Caenorhabditis elegans* is mediated

525 by distinct sensorimotor strategies driven by the AFD thermosensory neurons. *Proc*

526 *Natl Acad Sci U S A* **111**, 2776–2781 (2014).

527 17. Ikeda, M. *et al.* Context-dependent operation of neural circuits underlies a

528 navigation behavior in *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A* **117**, 6178–

529 6188 (2020).

530 18. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the

531 nervous system of the nematode *Caenorhabditis elegans*. *Philos Trans R Soc Lond B*

532 *Biol Sci* **314**, 1–340 (1986).

533 19. Cook, S. J. *et al.* Whole-animal connectomes of both *Caenorhabditis elegans*

534 sexes. *Nature* **571**, 63–71 (2019).

535 20. Kuhara, A. *et al.* Temperature sensing by an olfactory neuron in a circuit

536 controlling behavior of *C. elegans*. *Science* **320**, 803–807 (2008).

537 21. Beverly, M., Anbil, S. & Sengupta, P. Degeneracy and neuromodulation

538 among thermosensory neurons contribute to robust thermosensory behaviors in

539 *Caenorhabditis elegans*. *J Neurosci* **31**, 11718–11727 (2011).

540 22. Kimura, K. D., Miyawaki, A., Matsumoto, K. & Mori, I. The *C. elegans*

541 thermosensory neuron AFD responds to warming. *Curr Biol* **14**, 1291–1295 (2004).

542 23. Clark, D. A., Biron, D., Sengupta, P. & Samuel, A. D. T. The AFD sensory

543 neurons encode multiple functions underlying thermotactic behavior in *Caenorhabditis*

544 *elegans*. *J Neurosci* **26**, 7444–7451 (2006).

545 24. Ramot, D., MacInnis, B. L. & Goodman, M. B. Bidirectional temperature-

546 sensing by a single thermosensory neuron in *C. elegans*. *Nat Neurosci* **11**, 908–915

547 (2008).

548 25. Kobayashi, K. *et al.* Single-cell memory regulates a neural circuit for sensory

549 behavior. *Cell Rep* **14**, 11–21 (2016).

550 26. Takeishi, A. *et al.* Receptor-type guanylyl cyclases confer thermosensory

551 responses in *C. elegans*. *Neuron* **90**, 235–244 (2016).

552 27. Narayan, A., Laurent, G. & Sternberg, P. W. Transfer characteristics of a

553 thermosensory synapse in *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A* **108**,

554 9667–9672 (2011).

555 28. Ohnishi, N., Kuhara, A., Nakamura, F., Okochi, Y. & Mori, I. Bidirectional

556 regulation of thermotaxis by glutamate transmissions in *Caenorhabditis elegans*. *EMBO*

557 *J* **30**, 1376–1388 (2011).

558 29. Hawk, J. D. *et al.* Integration of plasticity mechanisms within a single sensory

559 neuron of *C. elegans* actuates a memory. *Neuron* **97**, 356-367.e4 (2018).

560 30. Nakano, S. *et al.* Presynaptic MAST kinase controls opposing postsynaptic

561 responses to convey stimulus valence in *Caenorhabditis elegans*. *Proc Natl Acad Sci U*

562 *S A* **117**, 1638–1647 (2020).

563 31. Tsukamoto, S. *et al.* The *Caenorhabditis elegans* INX-4/Innixin is required

564 for the fine-tuning of temperature orientation in thermotaxis behavior. *Genes Cells* **25**,

565 154–164 (2020).

566 32. Brenner, S. The genetics of *Caenorhabditis elegans*. *Genetics* **77**, 71–94

567 (1974).

568 33. Starich, T. A., Miller, A., Nguyen, R. L., Hall, D. H. & Shaw, J. E. The

569 *Caenorhabditis elegans* innexin INX-3 is localized to gap junctions and is essential for

570 embryonic development. *Dev Biol* **256**, 403–417 (2003).

571 34. *C. elegans* Deletion Mutant Consortium. large-scale screening for targeted

572 knockouts in the *Caenorhabditis elegans* genome. *G3 (Bethesda)* **2**, 1415–1425 (2012).

573 35. Chu, J. S.-C. *et al.* High-throughput capturing and characterization of

574 mutations in essential genes of *Caenorhabditis elegans*. *BMC Genomics* **15**, 361 (2014).

575 36. Bhattacharya, A., Aghayeva, U., Berghoff, E. G. & Hobert, O. Plasticity of

576 the Electrical Connectome of *C. elegans*. *Cell* **176**, 1174-1189.e16 (2019).

577 37. Yeh, E. *et al.* *Caenorhabditis elegans* innexins regulate active zone

578 differentiation. *J Neurosci* **29**, 5207–5217 (2009).

579 38. Zhang, L., Ward, J. D., Cheng, Z. & Dernburg, A. F. The auxin-inducible  
580 degradation (AID) system enables versatile conditional protein depletion in *C. elegans*.  
581 *Development* **142**, 4374–4384 (2015).

582 39. Witvliet, D. *et al.* Connectomes across development reveal principles of brain  
583 maturation. *Nature* **596**, 257–261 (2021).

584 40. Phelan, P. & Starich, T. A. Innexins get into the gap. *Bioessays* **23**, 388–396  
585 (2001).

586 41. Oshima, A., Tani, K. & Fujiyoshi, Y. Atomic structure of the innexin-6 gap  
587 junction channel determined by cryo-EM. *Nat Commun* **7**, 13681 (2016).

588 42. Burendei, B. *et al.* Cryo-EM structures of undocked innexin-6 hemichannels  
589 in phospholipids. *Sci Adv* **6**, eaax3157 (2020).

590 43. Bouhours, M. *et al.* A co-operative regulation of neuronal excitability by  
591 UNC-7 innexin and NCA/NALCN leak channel. *Mol Brain* **4**, 16 (2011).

592 44. Bai, D., Yue, B. & Aoyama, H. Crucial motifs and residues in the  
593 extracellular loops influence the formation and specificity of connexin docking.

594      *Biochim Biophys Acta (BBA)* **1860**, 9–21 (2018).

595      45.      Panchin, Y. *et al.* A ubiquitous family of putative gap junction molecules.

596      *Curr Biol* **10**, R473-474 (2000).

597      46.      Baranova, A. *et al.* The mammalian pannexin family is homologous to the

598      invertebrate innexin gap junction proteins. *Genomics* **83**, 706–716 (2004).

599      47.      Beyer, E. C. & Berthoud, V. M. Gap junction gene and protein families:

600      Connexins, innexins, and pannexins. *Biochim Biophys Acta (BBA)* **1860**, 5–8 (2018).

601      48.      Starich, T. A., Xu, J., Skerrett, I. M., Nicholson, B. J. & Shaw, J. E.

602      Interactions between innexins UNC-7 and UNC-9 mediate electrical synapse specificity

603      in the *Caenorhabditis elegans* locomotory nervous system. *Neural Dev* **4**, 16 (2009).

604      49.      Walker, D. S. & Schafer, W. R. Distinct roles for innexin gap junctions and

605      hemichannels in mechanosensation. *eLife* **9**, e50597 (2020).

606      50.      Chelur, D. S. & Chalfie, M. Targeted cell killing by reconstituted caspases.

607      *Proc Natl Acad Sci U S A* **104**, 2283–2288 (2007).

608      51.      Matsuyama, H. J. & Mori, I. Neural coding of thermal preferences in the

609      nematode *Caenorhabditis elegans*. *eNeuro* **7**, ENEURO.0414-19.2020 (2020).

610      52.      Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput

611      behavioral analysis in *C. elegans*. *Nat Methods* **8**, 592–598 (2011).

612      53.      Lee, R. Y., Sawin, E. R., Chalfie, M., Horvitz, H. R. & Avery, L. EAT-4, a

613      homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is

614      necessary for glutamatergic neurotransmission in *Caenorhabditis elegans*. *J Neurosci*

615      **19**, 159–167 (1999).

616      54.      Speese, S. *et al.* UNC-31 (CAPS) is required for dense-core vesicle but not

617      synaptic vesicle exocytosis in *Caenorhabditis elegans*. *J Neurosci* **27**, 6150–6162

618      (2007).

619      55.      Cao, J. *et al.* Comprehensive single-cell transcriptional profiling of a

620      multicellular organism. *Science* **357**, 661–667 (2017).

621      56.      Taylor, S. R. *et al.* Molecular topography of an entire nervous system. *Cell*

622      **184**, 4329-4347.e23 (2021).

623      57.      Sandow, S. L. & Hill, C. E. Incidence of myoendothelial gap junctions in the

624 proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-  
625 derived hyperpolarizing factor-mediated responses. *Circ Res* **86**, 341–346 (2000).

626 58. Dora, K. A. *et al.* Myoendothelial gap junctions may provide the pathway for  
627 EDHF in mouse mesenteric artery. *J Vasc Res* **40**, 480–490 (2003).

628 59. Sordillo, A. & Bargmann, C. I. Behavioral control by depolarized and  
629 hyperpolarized states of an integrating neuron. *eLife* **10**, e67723 (2021).

630 60. Chen, G. *et al.* Connexin-43 induces chemokine release from spinal cord  
631 astrocytes to maintain late-phase neuropathic pain in mice. *Brain* **137**, 2193–2209  
632 (2014).

633 61. Ma, Z. *et al.* CALHM3 is essential for rapid ion channel-mediated purinergic  
634 neurotransmission of GPCR-mediated tastes. *Neuron* **98**, 547-561.e10 (2018).

635 62. Gray, J. M., Hill, J. J. & Bargmann, C. I. A circuit for navigation in  
636 *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A* **102**, 3184–3191 (2005).

637 63. Kocabas, A., Shen, C.-H., Guo, Z. V. & Ramanathan, S. Controlling  
638 interneuron activity in *Caenorhabditis elegans* to evoke chemotactic behaviour. *Nature*

639 490, 273–277 (2012).

640 64. Li, Z., Liu, J., Zheng, M. & Xu, X. Z. S. Encoding of both analog- and digital-  
641 like behavioral outputs by one *C. elegans* interneuron. *Cell* **159**, 751–765 (2014).

642 65. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene  
643 transfer in *C. elegans*: extrachromosomal maintenance and integration of transforming  
644 sequences. *EMBO J* **10**, 3959–3970 (1991).

645 66. Dokshin, G. A., Ghanta, K. S., Piscopo, K. M. & Mello, C. C. Robust genome  
646 editing with short single-stranded and long, partially single-stranded DNA donors in  
647 *Caenorhabditis elegans*. *Genetics* **210**, 781–787 (2018).

648 67. Ito, H., Inada, H. & Mori, I. Quantitative analysis of thermotaxis in the  
649 nematode *Caenorhabditis elegans*. *J Neurosci Methods* **154**, 45–52 (2006).

650 68. Watanabe, M., Sawada, R., Aramaki, T., Skerrett, I. M. & Kondo, S. The  
651 physiological characterization of connexin41.8 and connexin39.4, which are involved in  
652 the striped pattern formation of zebrafish. *J Biol Chem* **291**, 1053–1063 (2016).

653 69. Higurashi, S. *et al.* Bacterial diet affects the age-dependent decline of

654 associative learning in *Caenorhabditis elegans*. *eLife* **12**, e81418 (2023).

655 70. Nakano, S. *et al.* Genetic screens identified dual roles of microtubule-

656 associated serine threonine kinase and CREB within a single thermosensory neuron in

657 the regulation of *Caenorhabditis elegans* thermotaxis behavior. *G3 (Bethesda)* **12**,

658 jkac248 (2022).

659

660 **Acknowledgements**

661

662 We thank K. Ikegami, Y. Murakami, and M. Murase for technical and

663 administrative assistance; K. Noma for *knjIs16* strains; R. Ahluwalia for *nlp-50(nj340)*

664 strains; A. Kano for help to rewrite the source code of behavioral analysis; the members

665 of the Mori laboratory and Noma group at Nagoya University for discussions. Some

666 strains were provided by *Caenorhabditis* Genetic Center, which is funded by NIH Office

667 of Research Infrastructure Programs (P40 OD010440) or by NBRP, which is funded by

668 the Japanese government. This work was supported by JST SPRING Grant Number

669 JPMJSP2125 (to A.N.) and by JSPS KAKENHI Grant Numbers 23H02418 (to A.O.),

670 19H05644 (to I.M.), 18H05123 (to S.N.) and 21H052525 (to S.N.).

671

672 **Author contributions**

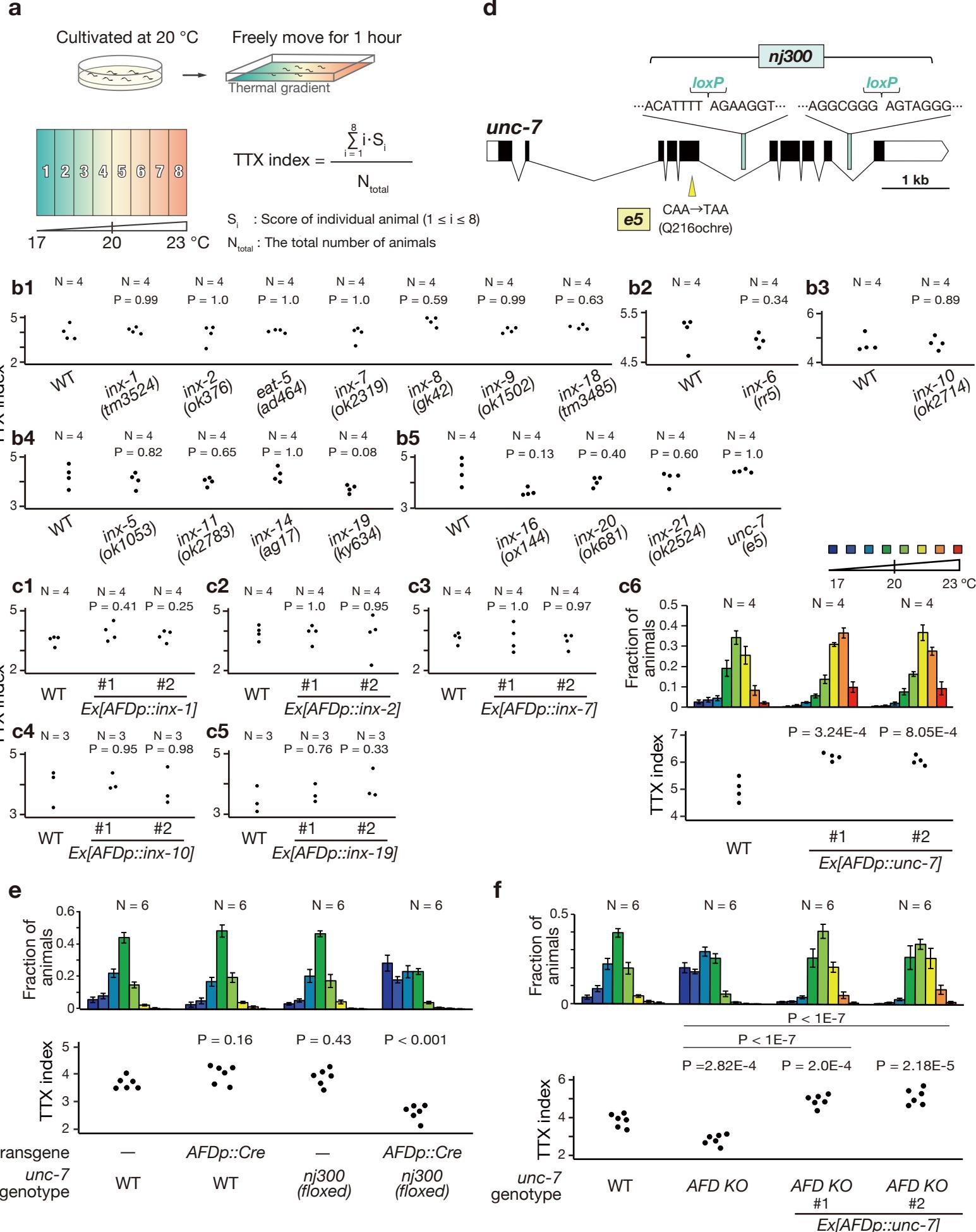
673 A.N., I.M. and S.N. conceived the research. A.N., M.W., A.O., I.M. and S.N. designed

674 the experiments. A.N., M.W., R.Y., H.K. and S.N. performed the experiments. A.N. and

675 S.N. analyzed the data. A.N., I.M. and S.N. wrote the manuscript. All authors of this

676 paper read and approved the final manuscript.

677


678 **Competing interests**

679 The authors declare no competing interests.

680

681 **Correspondence** and requests for materials should be addressed to Shunji Nakano.

# Figure 1



682 **Figure 1. UNC-7 functions in the AFD thermosensory neuron to regulate the**

683 **thermotaxis behavior.** (a) Schematic of thermotaxis (TTX) assay and the formulas for

684 TTX index to quantify the thermotaxis behavior (Materials and Methods). (b) TTX

685 behaviors of innexin single mutants. TTX indexes are shown in the dot plots. P-values

686 were determined by Dunnet test (b1 and b4), by Exact Wilcoxon rank sum test (b2 and

687 b3) or by Steel test (b5). (c) TTX behaviors of animals overexpressing innexin genes in the

688 AFD thermosensory neuron. Distributions of the animals on the thermal gradients of the

689 TTX plate are displayed in the histograms. The fraction of the population in each

690 temperature section is shown as mean  $\pm$  SEM. TTX indexes are shown as in (b). P-values

691 were determined by Steel test (c1) or by Dunnet test (c2-c6). (d) Gene structure of *unc-7*

692 (*isoform a*) is shown. Black boxes, white boxes and lines indicate exons, untranslated

693 regions and introns respectively. Yellow triangle indicates the mutation site of *unc-*

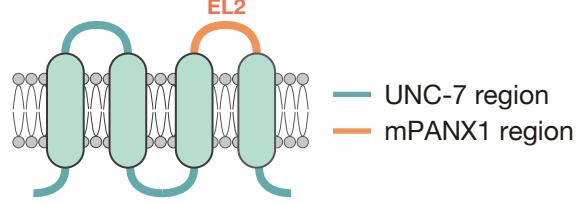
694 *7(e5)*. Blue squares indicate the genome sequences flanking the *loxP* insertion sites in

695 *unc-7(nj300, floxed)*. (e) TTX behavior of *unc-7(AFD KO)* animals lacking *unc-7*

696 specifically in the AFD neuron. P-values were determined by Dunnet test. (f) TTX

697 behavior of *unc-7*(*AFD KO*) animals carrying a transgene that expresses the wild-type

698 *unc-7* gene specifically in the AFD neuron. P-values were determined by 1-way ANOVA

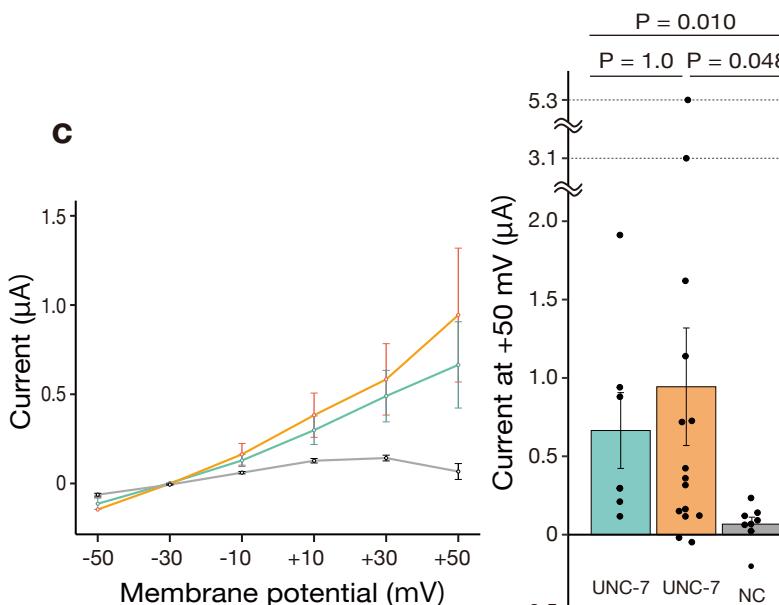

699 with Tukey HSD test.

# Figure 2

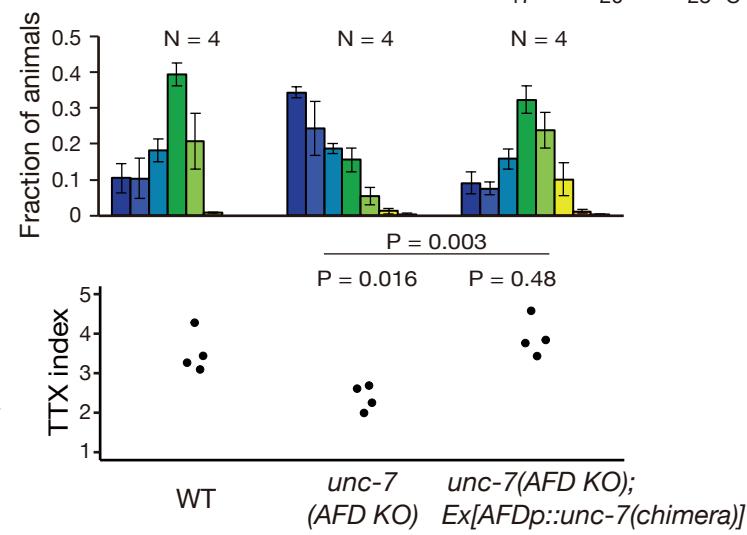
17 20 23 °C

**a**

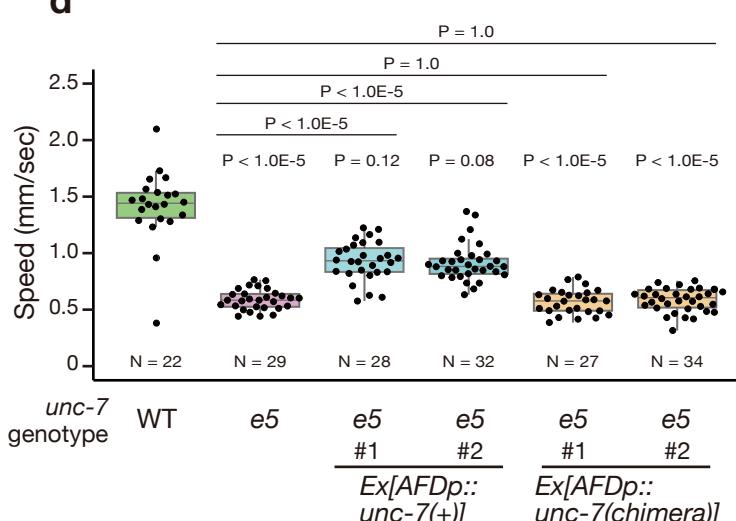
## Chimeric UNC-7




### EL2 sequence


UNC-7 FLLNH 343 LLGSNDLAYGSLLKDLMH ... FEVRVLGNIHRHTVQCVLM 398 INMFN

mPANX1 YFSLS 238 SLSDEFLCISIKSGVLKNDSTIPDRFQCKLIAVGIFQQLL 277 INLIV


**c**



**b**



**d**



700 **Figure 2. UNC-7 functions as a hemichannel to control the thermotaxis behavior.**

701 (a) The design of chimeric UNC-7 is shown. The sequence coding the second

702 extracellular loop (EL2) of UNC-7 was replaced with that of Mouse Pannexin1

703 (mPANX1). (b) TTX behavior of *unc-7(AFD KO)* animals carrying a transgene that

704 expresses the chimeric UNC-7 specifically in the AFD neuron. Distributions of the

705 animals on the thermal gradients of the TTX plate are displayed in the top histograms. The

706 fraction of the population in each temperature section is shown as mean  $\pm$  SEM. TTX

707 indexes are shown in the bottom dot plots. (c) Electrophysiological analysis using

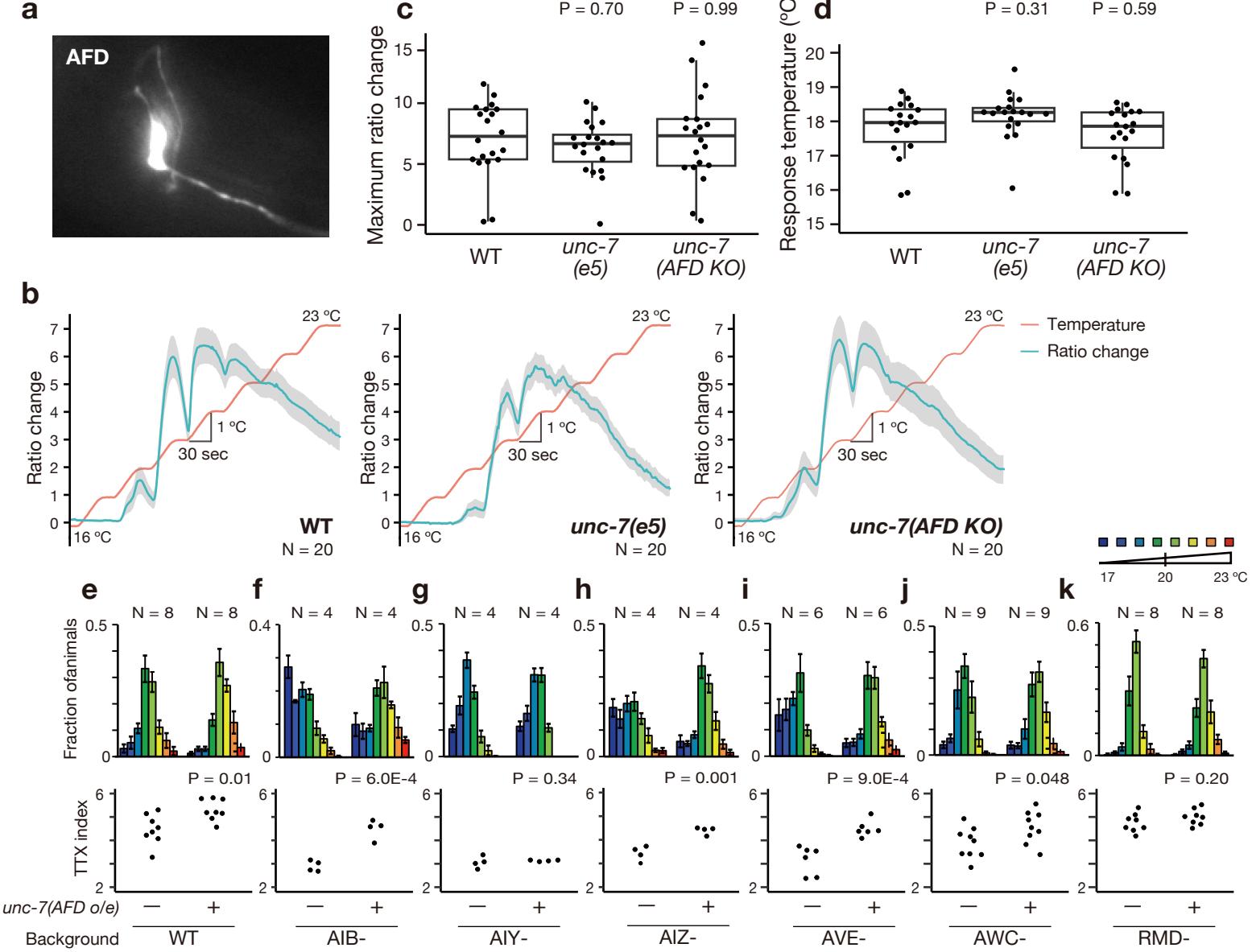
708 Xenopus oocyte to test hemichannel activity of the wild-type and chimeric UNC-7.

709 Measured voltage clamp currents of the wild-type UNC-7, chimeric UNC-7 and

710 negative control (NC) are indicated in the I/V plot as means  $\pm$  SEMs (Left). The bar

711 graphs indicate the means of currents at + 50 mV (Right). Individual data points are

712 shown as dots. Error bars correspond to SEM. (d) Locomotion assay to test the gap


713 junctional activity of chimeric UNC-7. The speeds of individual animals are shown as

714 dots. Box indicates the first and third quartiles, and whiskers extend to 1.5 times the

715 interquartile range. P-values were determined by 1-way ANOVA with Tukey HSD test

716 in (b) or by Exact Wilcoxon rank sum test with Bonferroni correction in (c) and (d).

## Figure 3



717 **Figure 3. UNC-7 transmits neuronal information from the AFD thermosensory**

718 **neurons to the AIY interneurons.** (a) A fluorescent image of the AFD neuron

719 expressing the GCaMP6m calcium indicator. (b) Ratio changes of the AFD calcium

720 dynamics are shown. Blue lines indicate mean values and grey regions SEMs. N = 20

721 for each. (c) The maximum ratio changes in the wild type, *unc-7(e5)* and *unc-7(AFD*

722 *KO*) animals are shown. P-values were determined by Dunnet test. (d) The response

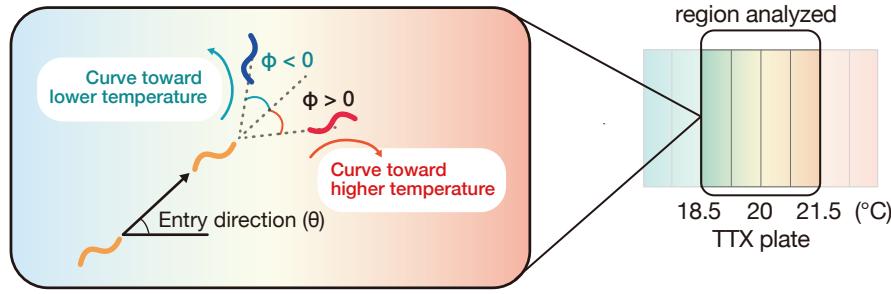
723 temperature of the AFD calcium response was defined as the temperature at which the

724 ratio change first exceeded 0.5. P-values were determined by Steel test. (e-k) TTX

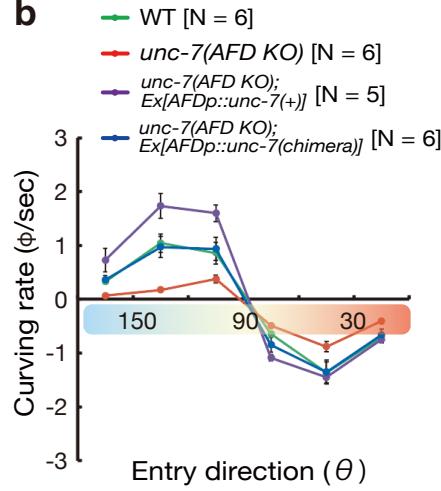
725 behaviors of the wild-type and cell-ablated animals carrying a transgene that expresses

726 the wild-type UNC-7 specifically in AFD. Distributions of the animals on the thermal

727 gradients of the TTX plate are displayed in the top histograms. The fraction of the


728 population in each temperature section is shown as mean  $\pm$  SEM. TTX indexes are shown

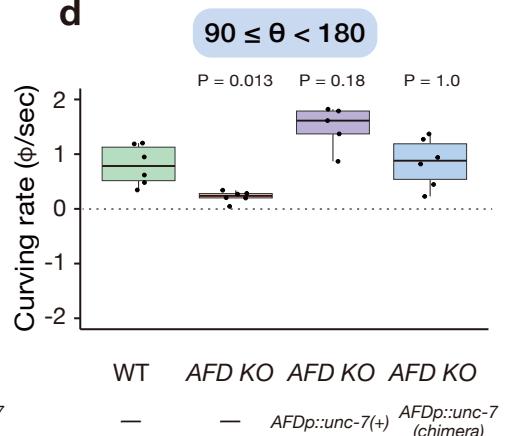
729 in the bottom dot plots. P-values were determined by Student's T test in (e), (f), (h), (i),


730 (j) and (k) or by Exact Wilcoxon rank sum test in (g).

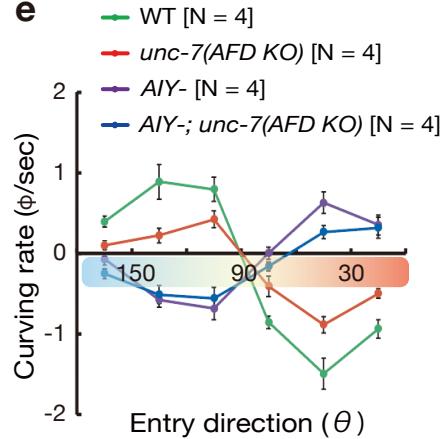
# Figure 4

a

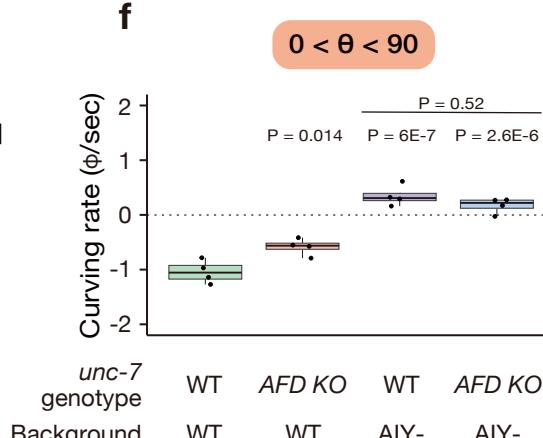



b

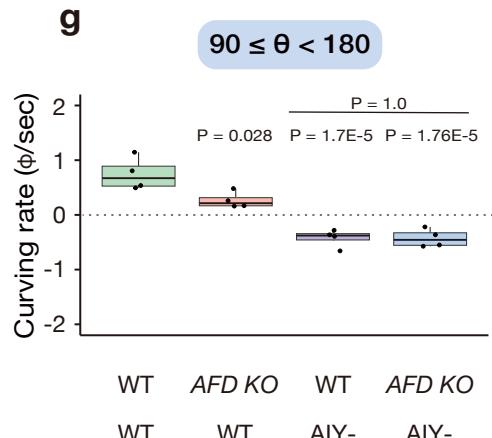



c




d

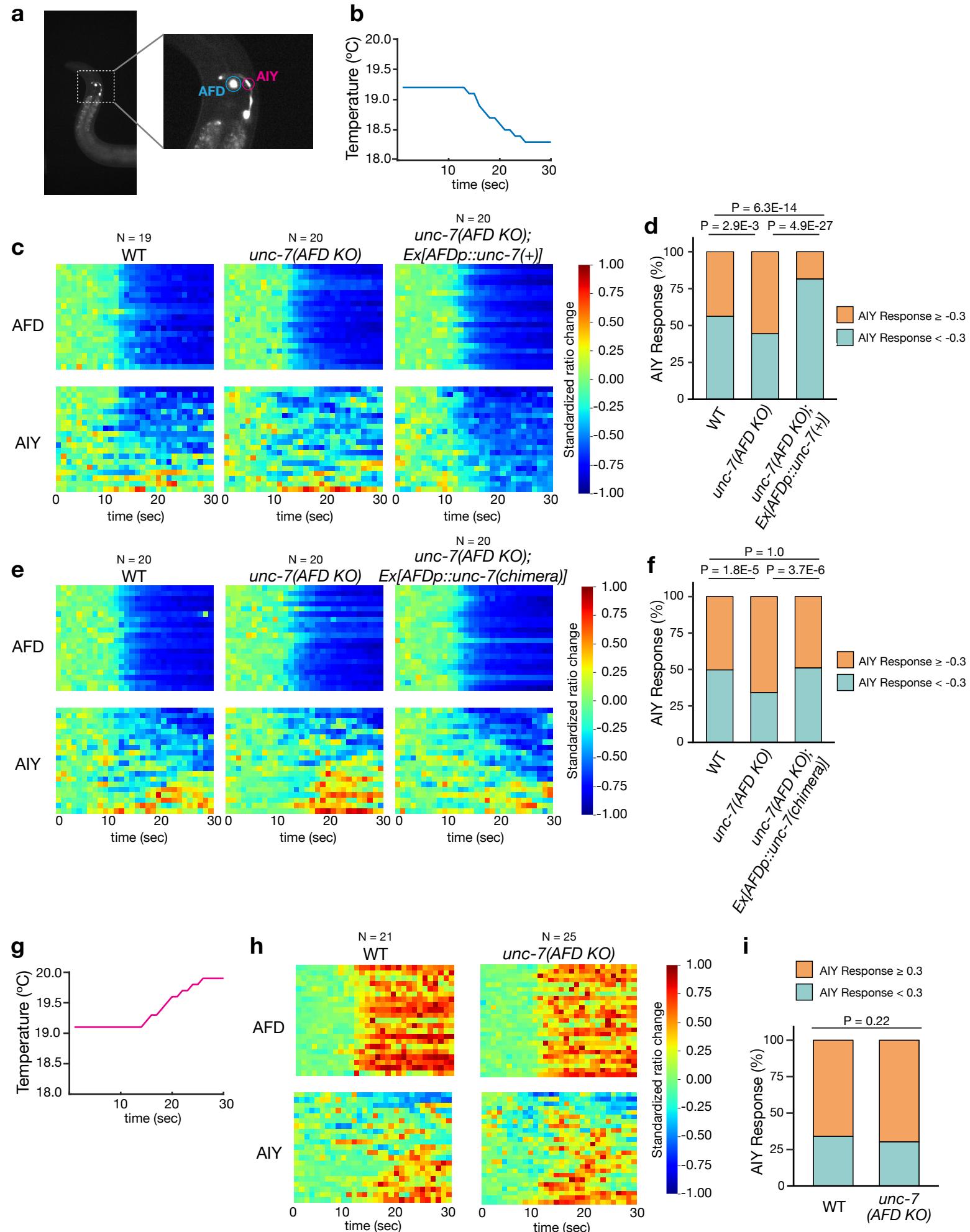



e



f




g



731 **Figure 4. UNC-7 regulates the curving bias during thermotaxis.** (a) Schematic of the  
732 analysis of the curve is shown. The entry direction  $\theta$  is defined as the angle between the  
733 animal's moving direction and the vector pointing to the warm side of the thermal  
734 gradient. The curving bias is measured as the angle ( $\varphi$ ) between the past and current  
735 moving directions. We define  $\varphi$  as a positive value if animals curve toward the warm  
736 side and as a negative value when they curve toward the cold side. Behaviors of animals  
737 within the temperature range from 18.5 °C to 21.5 °C during 40 min from the start of  
738 the assay were analyzed. The cultivation temperature was 20 °C. (b) The Curving biases  
739 of the wild-type animals (green), *unc-7(AFD KO)* animals (red) and *unc-7(AFD KO)*  
740 animals carrying a transgene that expresses the wild-type (purple) or the chimeric UNC-  
741 7 (blue) specifically in the AFD thermosensory neuron are shown. The dots represent  
742 the means of curving rates of 50 - 400 animals from individual recordings. Error bars  
743 indicate SEM. (c) The curving biases of the animals moving up the thermal gradient (0  
744  $< \theta < 90$ ) are shown. The averages of the curving bias per individual recording are  
745 shown as dots. Box indicates the first and third quartiles, and whiskers extend to 1.5

746 times the interquartile range. P-values were determined by 1-way ANOVA with Tukey  
747 HSD test. (d) The Curving biases of the animals moving down the thermal gradient (90  
748 = $<\theta < 180$ ) are shown. P-values were determined by Exact Wilcoxon rank sum test  
749 with Bonferroni correction. (e-g) The Curving biases of the wild-type animals (green),  
750 *unc-7(AFD KO)* animals (red), AIY interneuron-ablated animals (purple) and AIY  
751 interneuron-ablated animals lacking *unc-7* specifically in the AFD neuron (blue) are  
752 shown as in (b-d). P-values were determined by 1-way ANOVA with Tukey HSD test in  
753 (f) and (g).

# Figure 5



754 **Figure 5. UNC-7 functions to suppress the AIY interneuron in response to the**

755 **cooling stimulus.** (a) A fluorescent image of an animal expressing the YCX calcium

756 indicator in the nucleus of the AFD neuron (blue circle) and AIY neuron (red circle). (b)

757 A representative of the temperature program for cooling is shown. (c) Calcium imaging

758 of AFD and AIY neurons in the wild-type, *unc-7(AFD KO)* and *unc-7(AFD KO)*

759 animals carrying a transgene that expresses the wild-type UNC-7 in response to cooling

760 stimulus. Standardized fluorescence ratio changes of AFD (top) and AIY (bottom) are

761 displayed in the heat maps. Each row corresponds to individual recording. (d) The

762 percentage of the AIY data frame in which the standardized ratio change is over -0.3 or

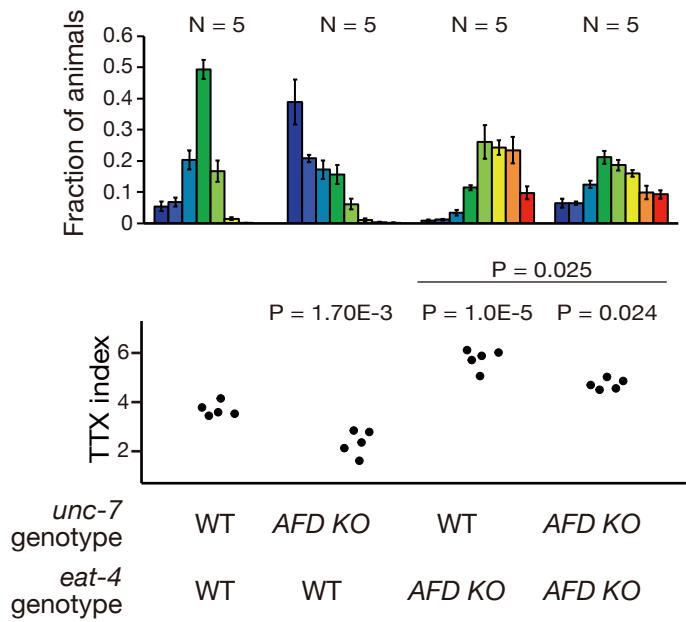
763 below -0.3 is shown in the bar graph. P-values were determined by Chi-Square test with

764 Bonferroni correction. (e) Calcium imaging of AFD and AIY neurons in the wild-type,

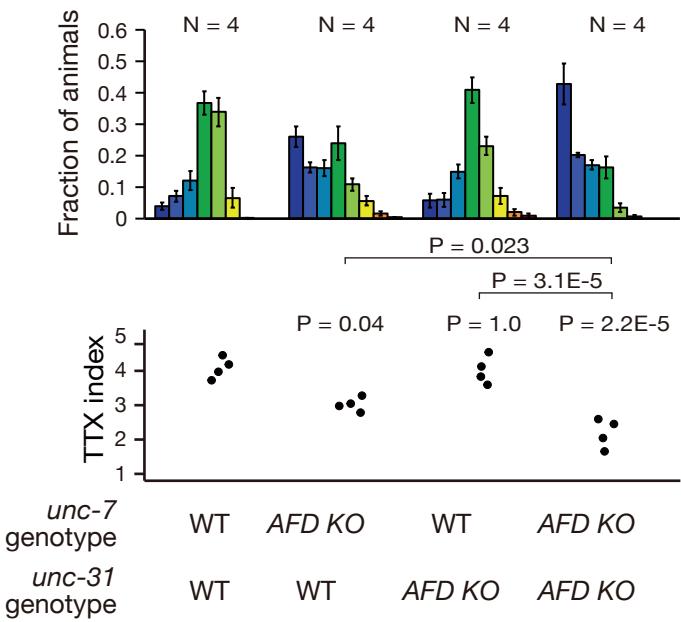
765 *unc-7(AFD KO)* and *unc-7(AFD KO)* animals carrying a transgene that expresses the

766 chimeric UNC-7 in response to cooling stimulus. Standardized fluorescence ratio

767 changes are shown as in (c). (F) The percentage of AIY response per category is shown as


768 in (d). (g) A representative of the temperature program for warming is shown. (h)

769 Calcium imaging of AFD and AIY neurons in the wild-type and *unc-7(AFD KO)*  
770 animals in response to warming stimulus. Standardized fluorescence ratio changes are  
771 shown as in (c). (i) The percentage of the AIY data frame in which the standardized ratio  
772 change is over 0.3 or below 0.3 is shown in the bar graph. P-values were determined by  
773 Chi-Square test with Bonferroni correction.


# Figure 6



**a**



**b**



unc-31  
genotype

WT WT AFD KO AFD KO

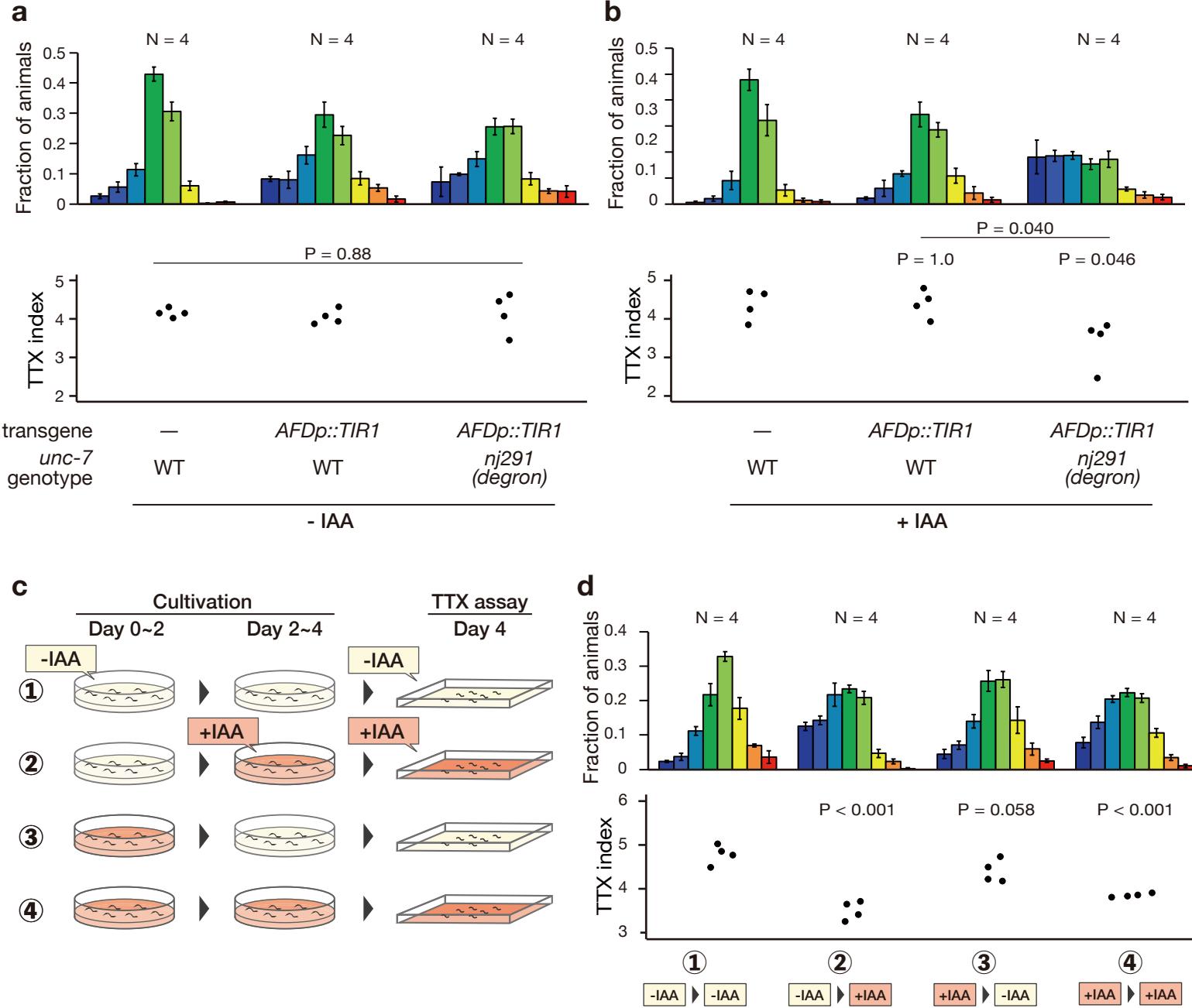
774 **Figure 6. *unc-7(AFD KO)* affected the thermotaxis in animals lacking *eat-4* or *unc-***

775 **31 in the AFD thermosensory neuron.** (a) TTX behaviors of animals lacking *unc-7*

776 and *eat-4* specifically in the AFD thermosensory neuron. (b) TTX behavior of animals

777 lacking *unc-7* and *unc-31* specifically in the AFD thermosensory neuron. Distributions

778 of the animals on the thermal gradients of the TTX plate are displayed in the top


779 histograms. The fraction of the population in each temperature section is shown as mean  $\pm$

780 SEM. TTX indexes are shown in the bottom dot plots. P-values were determined by 1-

781 way ANOVA with Tukey HSD test.

782

bioRxiv preprint doi: <https://doi.org/10.1101/2019.08.22.119400>; this version posted August 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



783 **Supplementary Figure 1. Critical time period analysis of UNC-7 by Auxin Induced**

784 **Degradation system.** (a, b) TTX behavior of *unc-7(nj291)* animals carrying a transgene

785 that expresses TIR1, an auxin-dependent E3 ubiquitin ligase, specifically in the AFD

786 thermosensory neuron. The degron sequence was inserted at the *unc-7* locus in *unc-*

787 *7(nj291)* animals. The animals were grown and were subjected to thermotaxis assays in

788 the absence (a) or the presence (b) of 1 mM auxin indole-3-acetic acid (IAA).

789 Distributions of the animals on the thermal gradients of the TTX plate are displayed in the

790 top histograms. The fraction of the population in each temperature section is shown as

791 mean  $\pm$  SEM. TTX indexes are shown in the bottom dot plots. P-values were

792 determined by 1-way ANOVA with Tukey HSD test. (c) Schematic of critical time

793 period analysis of UNC-7 by Auxin Induced Degron system. We cultivated animals in

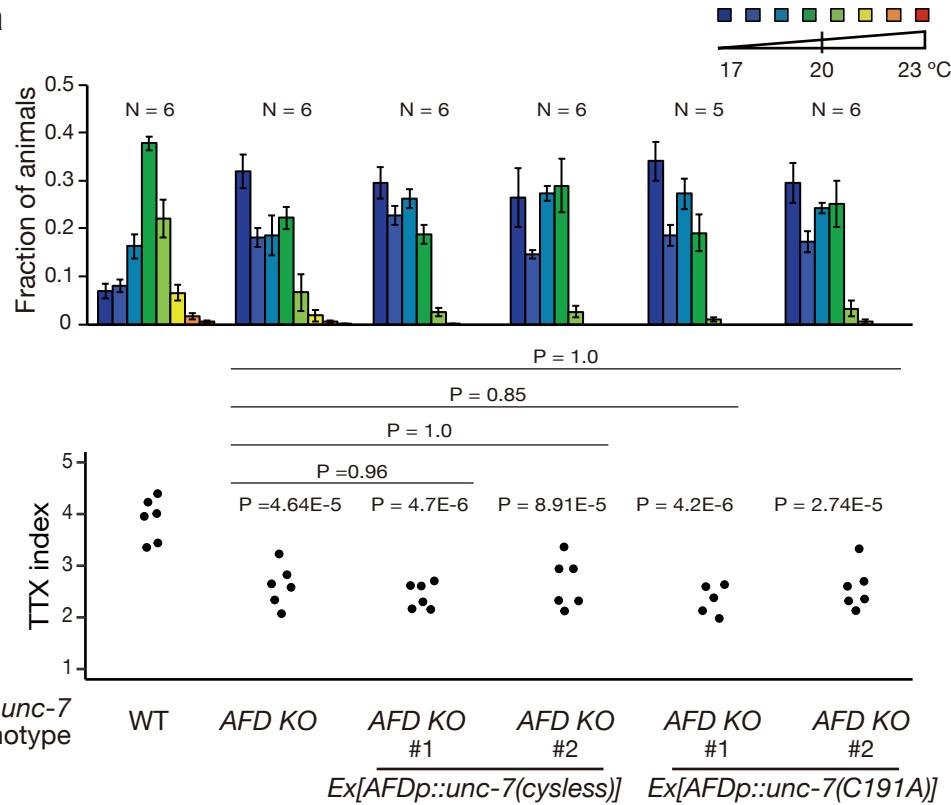
794 the presence or the absence of 1mM IAA for 4 days throughout their life - from embryo

795 to adulthood- and examined their thermotaxis behaviors in the presence (④) of the

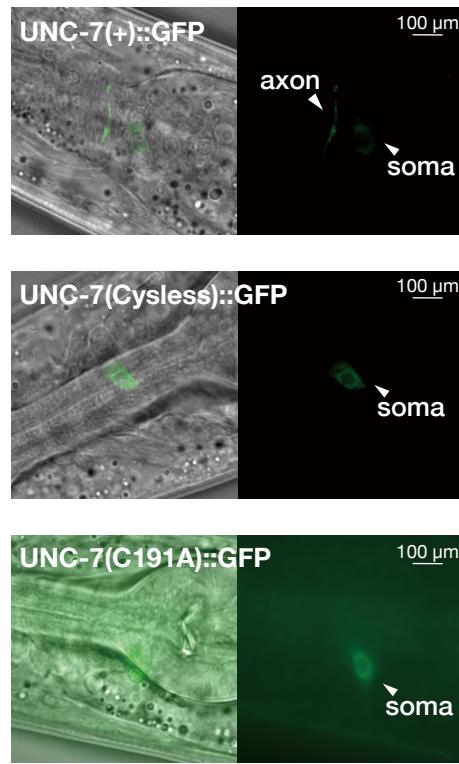
796 absence (①) of IAA, respectively. We also subjected animals to a shift in the IAA

797 condition from 0 to 1 mM (②) or from 1 to 0 mM (③) on day 2 when a majority of the

798 animals were in their second or third larval stage. (d) TTX behaviors of *unc-7(nj291)*


799 animals carrying a transgene that expresses TIR1 specifically in the AFD neuron.

800 Animals were cultivated and subjected to thermotaxis assays under the conditions


801 shown in (c) (① ~ ④). P-values were determined by Dunnet test.

## Supplementary Figure 2

**a**



**b**



802 **Supplementary Figure 2. Cysteine mutants of UNC-7 fail to localize to the axonal**

803 **regions of the AFD neuron.** (a) TTX behavior of *unc-7(AFD KO)* animals carrying a

804 transgene that expresses UNC-7(Cysless) or UNC-7(C191A) specifically in the AFD

805 neuron. Distributions of the animals on the thermal gradients of the TTX plate are

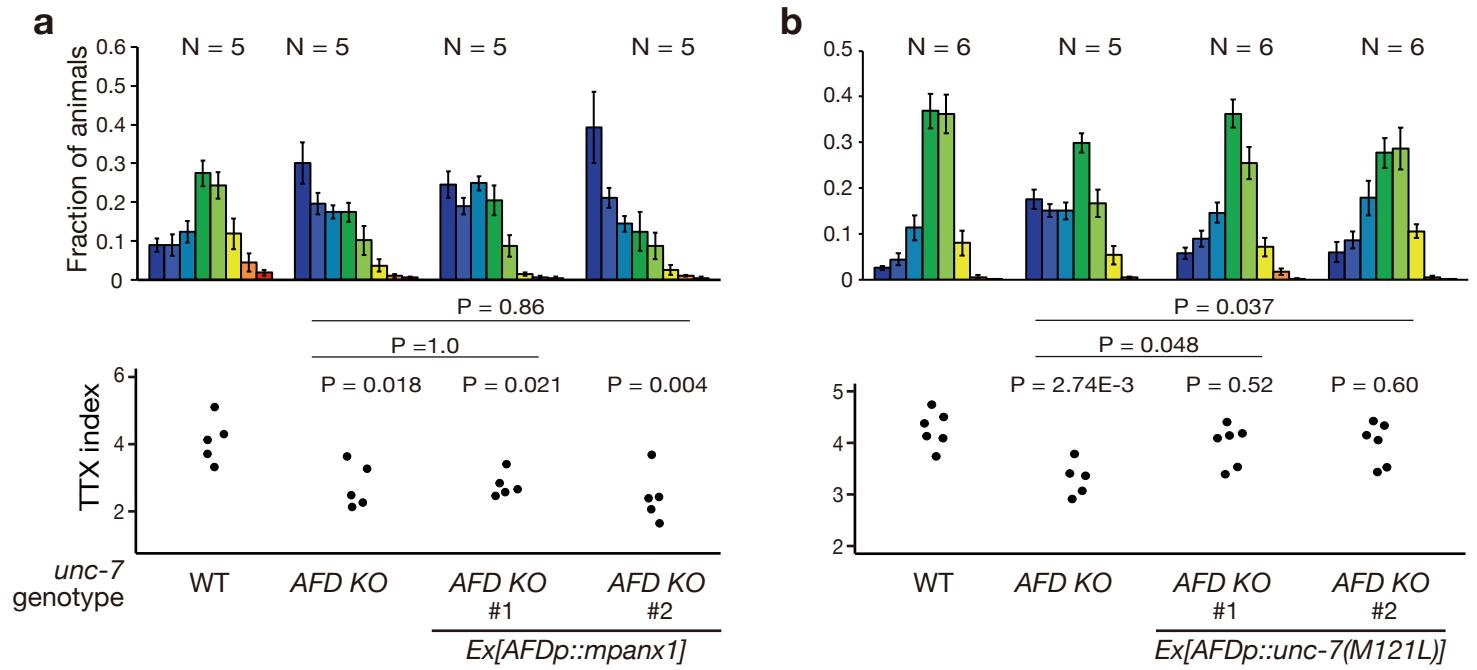
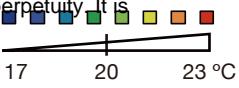
806 displayed in the top histograms. The fraction of the population in each temperature section

807 is shown as mean  $\pm$  SEM. TTX indexes are shown in the bottom dot plots. P-values

808 were determined by 1-way ANOVA with Tukey HSD test. (b) Localization of the wild-

809 type and cysteine mutants of UNC-7 in the AFD neuron. The wild-type or cysteine

810 mutants of *unc-7* cDNA was fused with GFP, and each transgene was expressed under



811 the *gcy-8L* promoter. Transmitted light images (Left) and fluorescent images (Right) are

812 shown. The wild-type UNC-7::GFP localized at the soma and axon, whereas UNC-

813 7(Cysless)::GFP and UNC-7(C191A)::GFP were localized exclusively at the soma of

814 AFD.

## Supplementary Figure 3



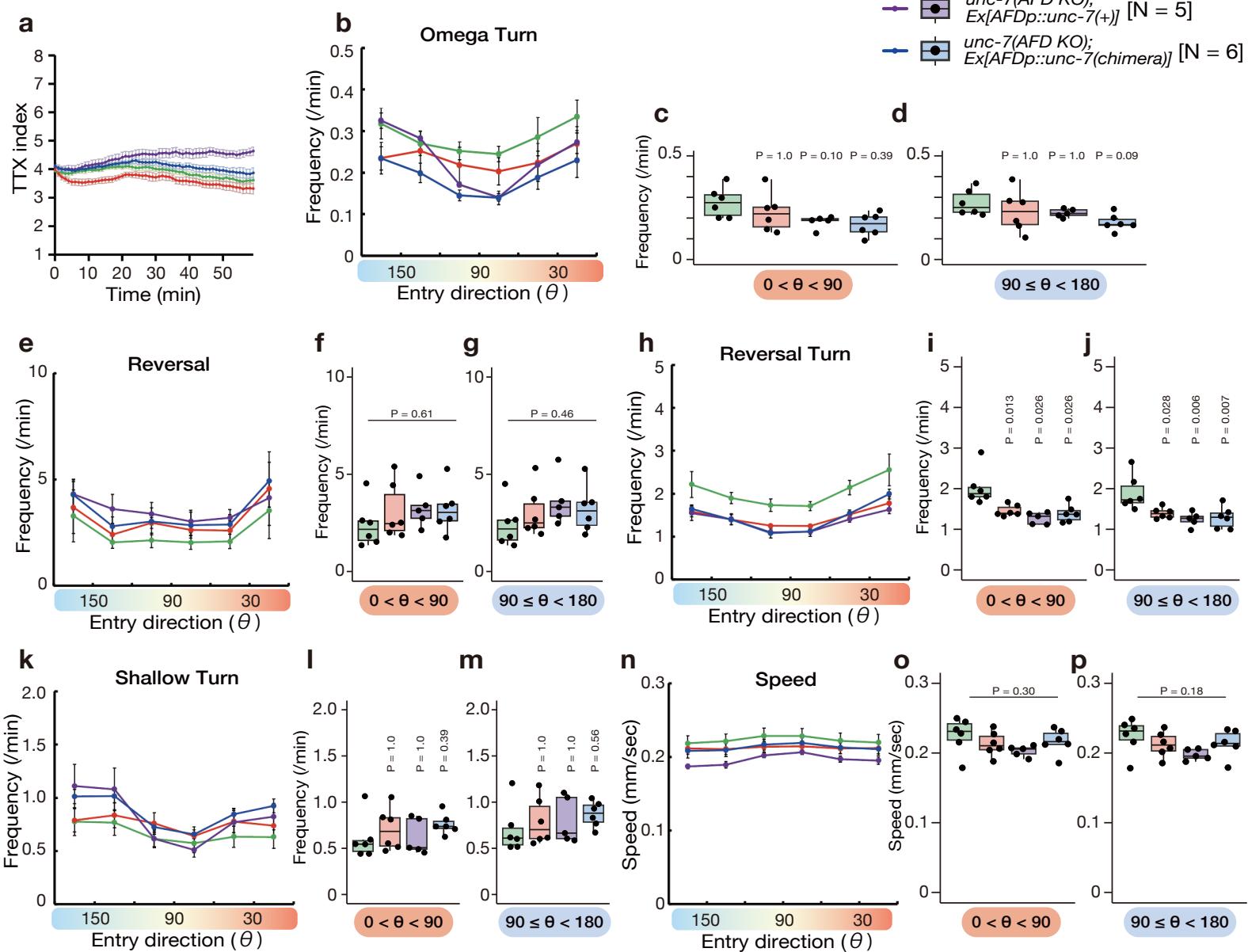
815 **Supplementary Figure 3. AFD-specific expression of UNC-7(M121L) rescued the**  
816 **thermotaxis defect of *unc-7(AFD KO)*.** (a) TTX behavior of *unc-7(AFD KO)* animals  
817 carrying a transgene that expresses mPANX1 specifically in the AFD neuron. (b) TTX  
818 behavior of *unc-7(AFD KO)* animals carrying a transgene that expresses  
819 UNC-7(M121L) specifically in the AFD neuron. Distributions of the animals on the  
820 thermal gradients of the TTX plate are displayed in the top histograms. The fraction of the  
821 population in each temperature section is shown as mean  $\pm$  SEM. TTX indexes are shown  
822 in the bottom dot plots. P-values were determined by 1-way ANOVA with Tukey HSD  
823 test in (a) and (b).

## Supplementary Figure 4

**a**



824 **Supplementary Figure 4. Expression and localization of the wild-type and chimeric**


825 **UNC-7 in Xenopus oocytes.** (a) Representative fluorescent images of Xenopus oocytes

826 expressing the wild-type and chimeric form of UNC-7::GFP (green). NC: negative

827 control of oocytes without UNC-7 injection. White arrows indicate UNC-7::GFP signals

828 observed at the cell surfaces.

# Supplementary Figure 5



829 **Supplementary Figure 5. Behavioral component analysis of *unc-7* mutant animals.**

830 Behavioral component analysis of the wild-type animals (green), *unc-7(AFD KO)*  
831 animals (red) and *unc-7(AFD KO)* animals carrying a transgene that expresses the wild-  
832 type (purple) or the chimeric UNC-7 (blue) specifically in the AFD thermosensory  
833 neuron. The cultivation temperature was 20 °C. Animals behaving within the  
834 temperature region between 18.5 °C and 21.5 °C during the first 40 min of the  
835 recordings were analyzed for their behavioral components. Each recording is typically  
836 composed of 50- 400 animals. We divided the animals' entry directions into 30° bins and  
837 calculated the frequencies of each behavioral event when animals were moving in each  
838 direction. (a) The time course of TTX index. The dots and error bars indicate the means  
839 and SEMs. (b-m) The frequencies of omega turn (b-d), reversal (e-g), reversal turn (h-j)  
840 and shallow turn (k-m) are shown. The data in the line graphs are mean ± SEM. The  
841 frequencies of each behavioral component while the animals are moving up the thermal  
842 gradient [0 < θ < 90, (c), (f), (i) and (l)] or moving down the gradient [90 =< θ < 180,  
843 (d), (g), (j) and (m)] are shown. The averages of frequencies per individual recording

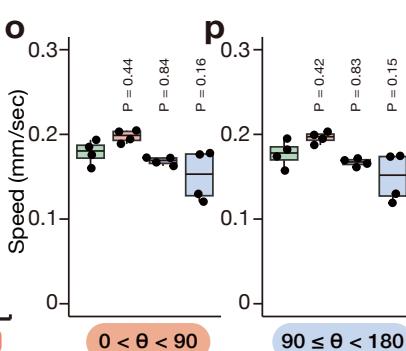
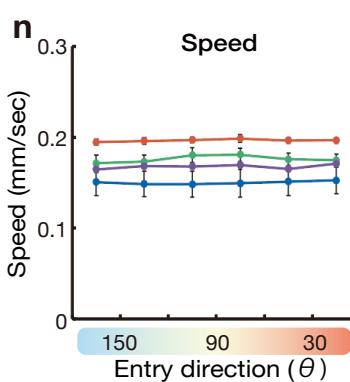
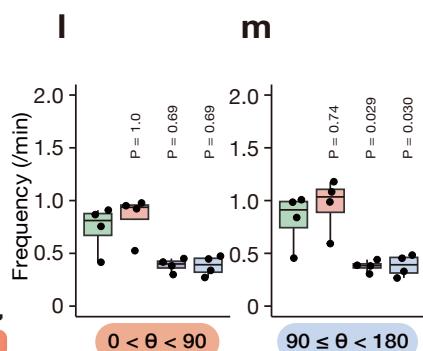
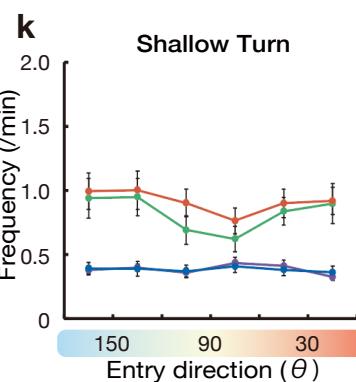
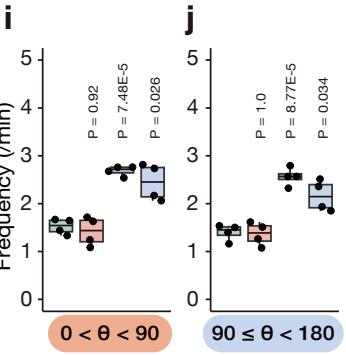
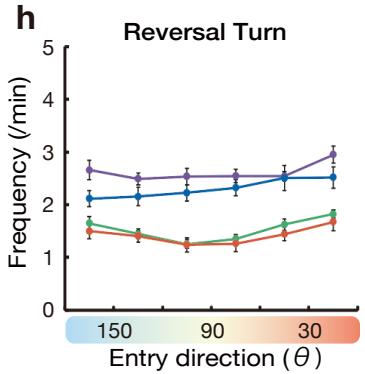
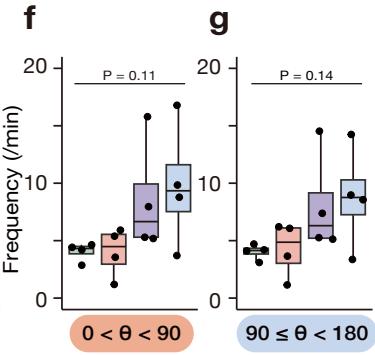
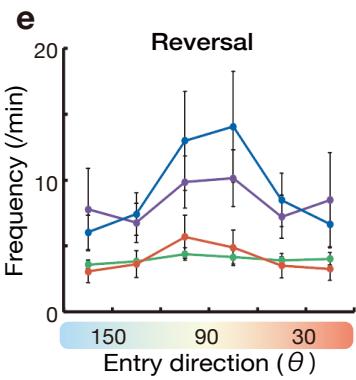
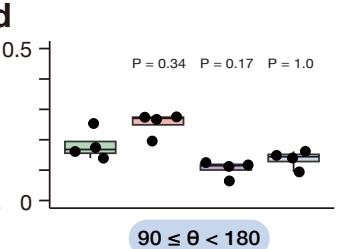
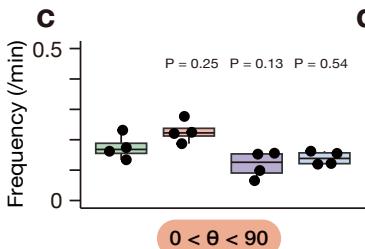
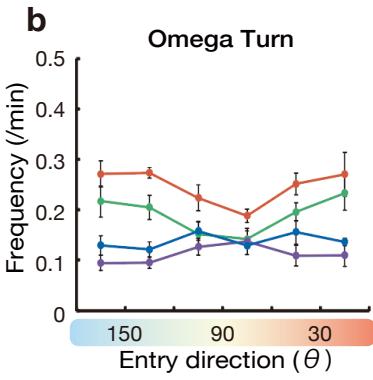
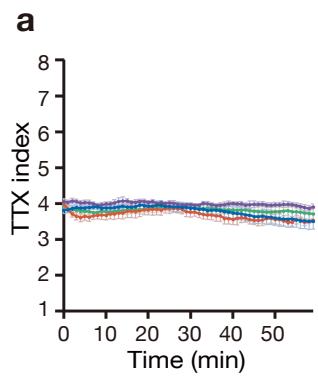
844 are shown as dots. Box indicates the first and third quartiles, and whiskers extend to 1.5

845 times the interquartile range. (n-p) The averages of the speed of animals moving in each

846 direction are shown as in (b-d). P-values were determined by Exact Wilcoxon rank sum

847 test with Bonferroni correction in (c), (d), (i), (l) and (m), by 1-way ANOVA in (f), (g),

848 (o) and (p) or by 1-way ANOVA with Tukey HSD test in (j).













# Supplementary Figure 6

WT [N = 4]

unc-7(AFD KO) [N = 4]

A/Y- [N = 4]

A/Y-; unc-7(AFD KO) [N = 4]



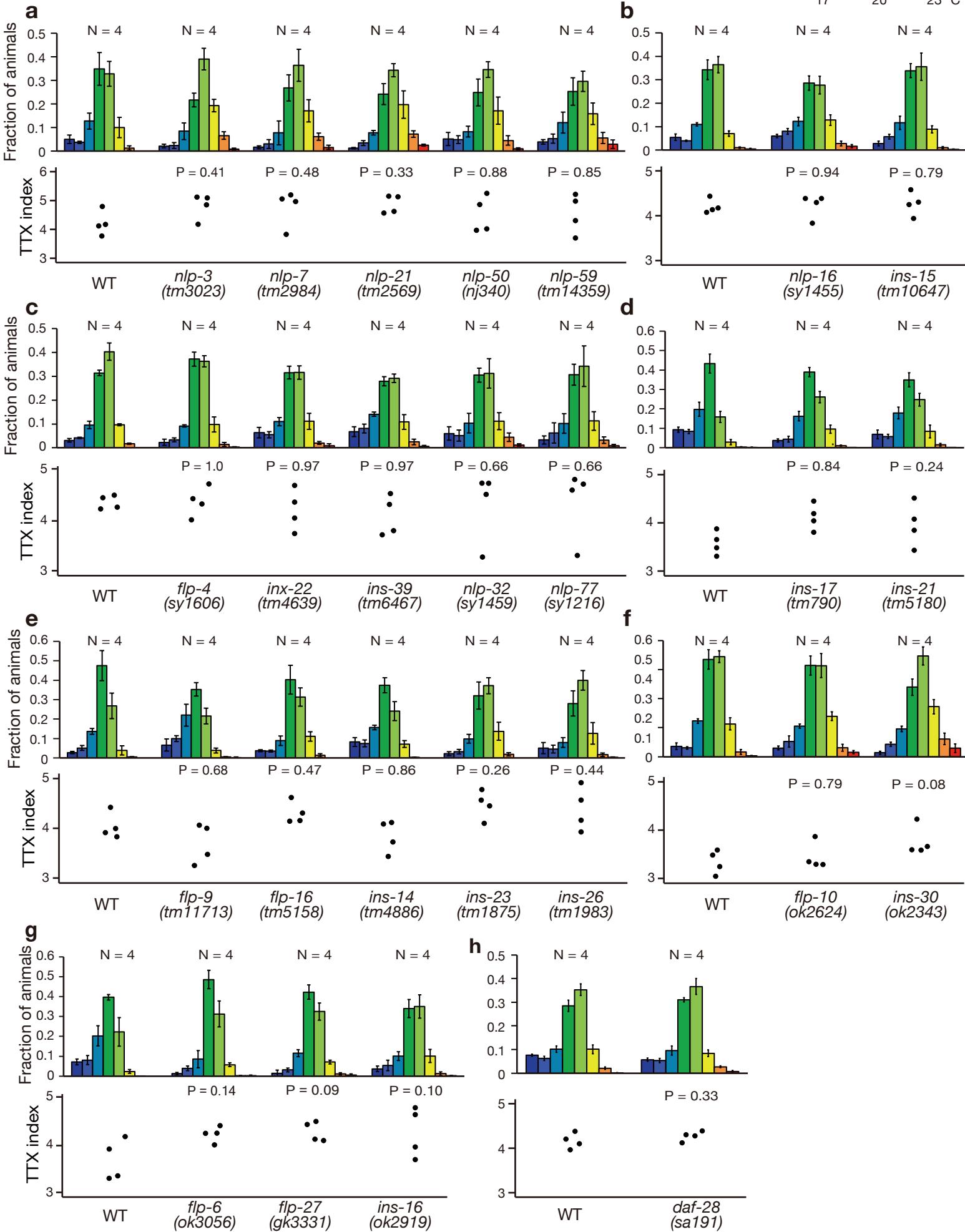
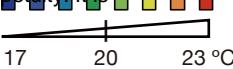
849 **Supplementary Figure 6. Behavioral component analysis of animals lacking the**

850 **AIY neuron.** (a-p) Behavioral component analysis of the wild-type animals (green),

851 *unc-7(AFD KO)* animals (red), AIY interneuron-ablated animals (purple) and AIY

852 interneuron-ablated animals lacking *unc-7* specifically in the AFD neuron (blue). The

853 experiments were conducted, and the data are represented as in Supplementary Fig. 5.



854 P-values were determined by 1-way ANOVA with Tukey HSD test in (c), (i), (j), (m),

855 (o) and (p), by Exact Wilcoxon rank sum test with Bonferroni correction in (d) and (l) or

856 by 1-way ANOVA in (f) and (g).

857

# Supplementary Figure 7



858 **Supplementary Figure 7. Mutations in the neuropeptide genes expressed in the**

859 **AFD thermosensory neuron did not affect thermotaxis behavior. (a-h) TTX**

860 behaviors of animals in which a neuropeptide gene expressed in the AFD thermosensory

861 neuron is mutated. Distributions of the animals on the thermal gradients of the TTX plate

862 are displayed in the top histograms. The fraction of the population in each temperature

863 section is shown as mean  $\pm$  SEM. TTX indexes are shown in the bottom dot plots. P-

864 values were determined by Dunnet test in (a), (d), (e) and (g), by Steel test in (b), (c)

865 and (f) or by Student's T test in (h). Note that *inx-15(tm10647)* animals carry *atm-*

866 *I(tm5027)*, *xpc-1(tm3886)* and *tm10648*, in their genetic background, and *flp-*

867 *27(gk3331)* animals *Y17G7B.22(gk1062)* and *gkDf45*.