

1 **Title:** Heterologous sarbecovirus receptor binding domains as scaffolds for SARS-CoV-2
2 receptor binding motif presentation

3

4 **Authors:** Blake M. Hauser¹, Maya Sangesland¹, Evan C. Lam¹, Kerri J. St. Denis¹, Maegan L.
5 Sheehan¹, Mya L. Vu¹, Agnes H. Cheng¹, Alejandro B. Balazs¹, Daniel Lingwood¹ and Aaron G.
6 Schmidt^{1,2, #}

7

8

9 ¹Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA

10

11 ²Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA

12

13

14 **Key words:** SARS-CoV-2, coronavirus, immune imprinting

15

16

17 **Correspondence:**

18 Aaron G. Schmidt

19 Tel: 857-268-7118; E-mail: aschmidt@crystal.harvard.edu

20

21 **Abstract**

22 Structure-guided rational immunogen design can generate optimized immunogens that elicit a
23 desired humoral response. Design strategies often center upon targeting conserved sites on viral
24 glycoproteins that will ultimately confer potent neutralization. For SARS-CoV-2 (SARS-2), the
25 surface-exposed spike glycoprotein includes a broadly conserved portion, the receptor binding
26 motif (RBM), that is required to engage the host cellular receptor, ACE2. Expanding humoral
27 responses to this site may result in a more potently neutralizing antibody response against diverse
28 sarbecoviruses. Here, we used a “resurfacing” approach and iterative design cycles to graft the
29 SARS-2 RBM onto heterologous sarbecovirus scaffolds. The scaffolds were selected to vary the
30 antigenic distance relative to SARS-2 to potentially focus responses to RBM. Multimerized
31 versions of these immunogens elicited broad neutralization against sarbecoviruses in the context
32 of preexisting SARS-2 immunity. These validated engineering approaches can help inform future
33 immunogen design efforts for sarbecoviruses and are generally applicable to other viruses.

34

35 **Introduction**

36 The emergence of SARS-CoV-2 (SARS-2) highlighted the need to leverage existing, as
37 well as new, vaccine platforms to counter novel pathogens [1, 2]. Current SARS-2 vaccines have
38 predominantly used a prefusion stabilized version of its surface glycoprotein, spike, which is
39 effective against both the original USA-WA1/2020 strain as well as subsequent variants (*e.g.*,
40 B.1.1.7, BA.5) [3, 4]. This general approach for stabilizing a viral glycoprotein was first
41 demonstrated for influenza hemagglutinin by introducing non-native cysteines or prolines to
42 covalently “staple” or stabilize, respectively, the prefusion state [5, 6]. Prefusion stabilization
43 was extended to viral glycoproteins from multiple viruses including other coronaviruses,
44 respiratory syncytial virus, HIV, measles, Ebola, and Marburg [2, 7-11]. This illustrates how
45 structural knowledge informs rational immunogen design for next-generation viral vaccines
46 against emerging pathogens [12].

47 An additional approach used in structure-guided immunogen design is epitope
48 scaffolding or “resurfacing” where a viral epitope is grafted on a comparatively unrelated protein
49 scaffold [12-16]. These scaffolds are often based on antigenically distinct but structurally-related
50 viral proteins, as well as *de novo* designed scaffolds; the latter approach represents a
51 considerable design hurdle especially when the grafted epitope is complex or conformation-
52 specific [15, 17, 18]. However, when using related viral proteins as potential scaffolds, sequence
53 identity outside the grafted epitope may influence immune focusing effect by eliciting memory
54 responses to additional epitopes within the scaffold. In the design process, this concern must be
55 weighed against the engineering hurdles in a *de novo* designed scaffold that accurately
56 recapitulates the conformation of the grafted epitope.

57 This engineering approach is particularly useful in context of prior humoral immunity as
58 the designed immunogens, in theory, should recall potential memory responses imprinted to the
59 displayed epitope. Indeed, prior humoral responses are often strain-specific and are recalled at
60 the expense of more broadly protective responses [19-21]. However, *in vivo* evaluation of
61 engineered immunogens often occurs in naïve animal models, which fails to recapitulate
62 complex immune histories observed in humans [22-30]. While it is not possible to accurately
63 encompass the entire diversity of immune histories in animal models, it remains critical to test
64 immunogens within the context of some preexisting immunity. This is particularly necessary
65 when the goal is to elicit broadly reactive responses that may be subdominant relative to other
66 more strain-specific responses in the imprinted repertoire. Thus, it is necessary to understand the
67 parameters that govern the antigenicity and immunogenicity of the engineered immunogens to
68 maximize recall of broadly protective responses to the grafted epitopes.

69 Here, we used our resurfacing approach to graft the receptor binding motif (RBM) from
70 SARS-2 onto antigenically distinct, but structurally related sarbecovirus receptor-binding
71 domains (RBDs). The RBM is a known target of broadly neutralizing antibodies and eliciting
72 humoral responses to this epitope may provide broad spectrum sarbecovirus immunity. We
73 specifically selected sarbecovirus RBD scaffolds with increasing antigenic diversity, relative to
74 SARS-2, to interrogate the relationship between varying antigenic distance and the subsequent
75 humoral response towards the grafted, RBM epitope. Importantly, we performed these studies in
76 the murine model previously immunized with the SARS-2 spike to simulate imprinted humoral
77 immunity. Briefly, we identified additional sarbecovirus RBD scaffolds that accepted the SARS-
78 2 RBM graft to maximize antigenic distance between the scaffolds but determined that further
79 antigenic distance is required for RBM immune focusing. These data show the importance of

80 antigenic diversity in scaffold selection and how further iterations of this design approach may
81 lead to next-generation sarbecovirus vaccines. Moreover, it serves as a generalizable strategy for
82 other pathogens where potential imprinted subdominant responses need to be recalled and
83 expanded.

84

85 **Results**

86 Both wildtype sarbecovirus and engineered RBDs elicit a broadly neutralizing antibody
87 response [14, 24]. For the former, the response focused on portions of the RBD outside of the
88 RBM; this was rather expected given that the non-RBM portions of the RBDs are conserved
89 across the different sarbecoviruses [14]. Grafting the conserved SARS-2 RBM onto heterologous
90 sarbecovirus scaffolds would potentially alter this pattern, as the grafted RBM would be a single
91 consistent, conserved epitope, relative to the remainder of the RBD. Thus, using multiple
92 heterologous, antigenically distinct, sarbecovirus scaffolds “resurfaced” with the SARS-2 RBM
93 would immune focus to this grafted epitope.

94 We identified 20 distinct heterologous sarbecovirus RBDs to serve as potential scaffolds
95 for the SARS-2 RBM (**Fig. 1A**). These scaffolds were selected from clade 2 of the sarbecovirus
96 subgenus and are more antigenically distinct than our previously used scaffolds based on the
97 SARS-CoV-1 (SARS-1) and WIV-1 sarbecoviruses [14]. The clade 2 members were
98 predominantly isolated from bats in southeast Asia, and these viruses are reported not to use
99 ACE2 as a host receptor [31, 32].

100 To graft the SARS-2 RBM onto these scaffolds, we used three different versions (v). The
101 first, “v1”, used identical RBM boundaries as our initial resurfaced “rs”, rsSARS-1 and rsWIV1
102 constructs: residues 437-507 (SARS-2 spike numbering) (**Fig. 1B**) [14]. A second, v2, used a

103 more extensive RBM graft spanning residues 401- 507 which was shown previously to confer
104 ACE2 binding (**Fig. 1C**) [31]. Based on additional structural analysis, our final v3 construct
105 incorporated SARS-2 RBD residues 348-352 in context of v2 to potentially stabilize the SARS-2
106 RBM in context of the heterologous scaffold (**Fig. 1D**).

107 We first attempted to express the v1 constructs for 20 different clade 2 sarbecovirus
108 RBDs. Of these 20 constructs, 5 could be recombinantly expressed in mammalian cells to
109 varying degrees: rsBtRs-HuB2013, rsYNLF-34C, rsRs4081, rsRs4255, and rsBtRI_SC2018.
110 However, further analysis by size exclusion chromatography (SEC) showed that these proteins
111 were prone to aggregation. We then expressed the v2 and v3 constructs for these five constructs
112 to determine if extending the graft and additional stabilizing residues would enhance expression
113 and reduce aggregation. While all five v2 constructs had increased expression relative to v1,
114 rsYNLF-34C had the highest level of expression and homogenous, monomeric protein was
115 isolated via SEC (**Fig. 2**); all five v3 constructs expressed at a level between the v1 and v2
116 constructs.

117 We next assessed rsYNLF-34C for binding to conformation-specific antibodies using
118 biolayer interferometry (BLI). It bound SARS-2 RBM-directed antibody, B38, with comparable
119 affinity to the wild-type SARS-2, with a monomeric-monomeric K_D of $\sim 1.4 \mu\text{M}$ (**Fig. 3A**) [33];
120 however, rsYNLF-34C did not have any detectable binding to CR3022 or S309 Fabs which bind
121 outside the RBM [34, 35] (**Fig. 3A**). This lack of sequence conservation in the non-RBM regions
122 of rsYNLF-34C relative to the SARS-2 RBD suggests that such a construct may enhance RBM-
123 focusing by minimizing cross-reactive epitopes elsewhere in the RBD; we thus chose to advance
124 this construct to test this hypothesis.

125 We next engineered dimeric forms of rsYNLF-34C and our original rsSARS-1 and
126 rsWIV1 immunogens to improve immunogenicity as previously described for wild-type
127 coronavirus RBDs [22]. The rsWIV1 construct used the “end-to-end” dimerization approach
128 previously described [22], while the rsSARS-1 and rsYNLF-34C dimers had a 13 amino acid
129 glycine-serine linker between the two RBDs to enhance construct expression. These constructs
130 were confirmed using SDS-PAGE analysis, and the dimeric species was isolated using SEC (**Fig.**
131 **3B, C**). The rsYNLF-34C, rsSARS-1, and rsWIV-1 scaffolds range in antigenic distance from
132 ~79.3% to ~95.0% amino acid identity relative to SARS-2 within non-RBM portion of the RBD,
133 while the amino acid identity ranged for each wild-type RBM ranged from ~30.4% to ~92.9%
134 (**Fig. 3D, E**).

135 To test if increased antigenic distance between coronavirus RBD scaffolds would
136 enhance SARS-2 RBM focusing, we designed an immunization regimen with two different
137 cohorts (**Fig. 4**). The first included a cocktail of the rsSARS-1 and rsWIV1 dimers, which share
138 95.0% amino acid sequence identity between the scaffolds in the non-RBM portion of the RBDs
139 and referred to as antigenic distance “low” ($\text{AgDist}_{\text{low}}$). The second, included rsYNLF-34C and
140 rsWIV1 dimers, which have 81.4% amino acid and referred to as $\text{AgDist}_{\text{high}}$.

141 We then immunized two cohorts of C57BL/6 mice that were first primed with
142 recombinant SARS-2 spike to simulate preexisting immunity and then immunized and boosted
143 with either $\text{AgDist}_{\text{low}}$ or $\text{AgDist}_{\text{high}}$ immunogens (**Fig. 5A**). Serum was collected at day 35, and
144 ELISAs were performed against a variety of coronavirus proteins. To assess potential RBM
145 focusing, we used a previously characterized SARS-2 construct (RBM^{hg}), that has glycans placed
146 across the RBM to abrogate binding of RBM-directed antibodies (*e.g.*, B38) [14]. Neither
147 cohort, however, showed a significant difference in titers against the wild-type SARS-2 RBD

148 and the SARS-2 RBM^{hg} construct, indicating a lack of serum antibody response focusing to the
149 SARS-2 RBM. This suggests that additional antigenic diversity between scaffolds may be
150 required.

151 Despite the lack of observed RBM focusing, sera from the AgDist_{high} cohort showed
152 detectable neutralization against all sarbecoviruses tested (**Fig. 5B**). This contrasts with the sera
153 from the AgDist_{low} cohort, which showed limited neutralization against the SARS-2 Omicron
154 variant, SARS-1, and WIV1 pseudoviruses (**Fig. 5B**). Immune focusing to conserved RBM
155 epitopes has been previously shown to confer potent neutralization across a broad range of
156 sarbecoviruses, indicating that there may be some level of immune focusing in the AgDist_{high}
157 cohort even though this difference is not readily detected by ELISA [14].

158

159 **Discussion**

160 This study builds upon our previous work that combined resurfacing and
161 hyperglycosylation protein engineering approaches for potential immune focusing to conserved
162 epitopes [14]. In that study, the SARS-1 and WIV-1 scaffolds had rather high sequence identity
163 relative to each other as well as to SARS-2. Here, we used our resurfacing approach to identify
164 additional sarbecovirus RBD scaffolds that could present the SARS-2 RBM to further maximize
165 antigenic distance between the scaffolds. It appears, however, that further increasing this
166 distance may still be required to achieve immune focusing. Additional investigations will be
167 required to interrogate the exact scaffold design parameters required to achieve successful
168 immune focusing to the grafted RBM. The extent to which the parameters determined for this
169 resurfacing approach and scaffold identification applies to grafted epitopes from other viral
170 epitopes, such as the influenza receptor binding site, is also of interest.

171 We note, however, that despite a detectable SARS-2 RBM focusing within our assay, the
172 AgDist_{high} cohort did show improved neutralization breadth in the context of prior SARS-2 spike
173 imprinting. This suggests that these the resurfaced immunogens and approach more broadly may
174 serve as a foundation for next-generation pan-sarbecovirus vaccines by preferentially increasing
175 the representation of the SARS-2 RBM within candidate immunogens. Broadly neutralizing,
176 RBM-directed antibodies have also been characterized by others [32, 36-38]. Collectively, these
177 findings show that simply immunizing with diverse sarbecovirus RBDs does not universally
178 confer broad neutralization in the setting of SARS-2 spike imprinting. This is particularly
179 interesting in the case of the WT Heterotrimer cohort, which utilizes the same three RBDs that
180 we had previously shown to elicit a broadly neutralizing antibody response when a cocktail of
181 homotrimeric RBDs was used as the boosting immunogen [14]. One possible explanation is that
182 the orientation and subsequent positioning of the RBD components in a particular immunogen
183 might affect the extent to which cross-reactive antibodies are elicited. Indeed, this has been
184 suggested for other immunogens, in particular those displayed on various nanoparticles or DNA-
185 based scaffolds [39, 40].

186 Immunization with a range of wild-type sarbecovirus RBDs also conferred broad
187 neutralization both in naïve animals and in the context of SARS-2 spike imprinting [14, 24].
188 These broadly neutralizing antibodies preferentially target conserved epitopes on the SARS-2
189 RBD, with most contacts falling outside the RBM [14, 41]. Similar findings have been
190 demonstrated for influenza after immunization with diverse hemagglutinins [39]. We recently
191 showed that a similar resurfacing approach for influenza showed that grafting the complex,
192 conformation-specific, hemagglutinin receptor binding site onto multiple antigenically distinct
193 scaffolds, could preferentially expand responses to this site [42]. Thus, our study here provides

194 further support, with further design iterations required, that this principle of “epitope
195 enrichment” may be broadly applicable across virus families and could be leveraged to design
196 immunogens that focus to any enriched epitope of interest.

197 The structure-guided, rational immunogen design approaches implemented in this study
198 have the potential to inform future pan-sarbecovirus vaccine efforts. Additionally, these findings
199 provide some mechanistic insight into parameters required to influence the humoral immune
200 response towards desired epitopes.

201

202

203 **Methods**

204 Protein Expression and Purification

205 Dr. Jason McLellan at the University of Texas, Austin generously shared the SARS-2
206 spike plasmid, which contained a Foldon trimerization domain and C-terminal HRV 3C-
207 cleavable 6xHis and 2xStrep II tags. RBD designs were based on the following sequences:
208 SARS-2 RBD (Genbank MN975262.1), SARS-1 RBD (Genbank ABD72970.1), WIV1 RBD
209 (Genbank AGZ48828.1), RaTG13 RBD (Genbank QHR63300.2), SHC014 RBD (Genbank
210 QJE50589.1). Codon optimization was performed using Integrated DNA Technologies, and
211 gblock constructs were purchased and cloned into the pVRC expression vector. Proteins included
212 a C-terminal HRV 3C-cleavable 8xHis tag, as well as SBP tags in the monomeric and dimeric
213 RBDs and a previously published hyperglycosylated, cystine-stabilized trimerization tag in the
214 trimeric RBDs [14].

215 Constructs were expressed using Expifectamine transfection reagents in Expi293F cells
216 (ThermoFisher) according to the manufacturer's protocol. After 5-7 days, transfections were
217 harvested, and supernatants were purified via immobilized metal affinity chromatography using
218 Cobalt-TALON resin (Takara). Eluted proteins were further purified by size-exclusion
219 chromatography using a Superdex 200 Increase 10/300 GL column (Cytiva) in PBS (Corning).
220 Relevant fractions were pooled. Heterotrimeric proteins were further purified using anti-FLAG
221 resin (Genscript) and eluted with 160 µg/mL FLAG peptide (APExBIO) in Tris buffered saline
222 followed by streptavidin resin (Pierce) eluted with 4 mM biotin (Sigma) in HEPES buffer.

223 HRV 3C protease (ThermoScientific) was used to remove purification tags prior to
224 immunizations. Cleaved protein was re-purified using Cobalt-TALON resin and size exclusion
225 chromatography to separate uncleaved protein, protease, and cleaved tags from cleaved protein.

226

227 Immunizations

228 Immunizations were performed in C57BL/6 female mice aged 6-10 weeks (Charles River
229 Laboratories). Each mouse received 20 µg of protein adjuvanted with 50% w/v Sigma Adjuvant
230 System in 100 µL of inoculum via the intraperitoneal route [43]. Immunizations occurred at days
231 -21, 0, and 21, with serum characterization occurring with day 35 samples. All experiments were
232 conducted with institutional IACUC approval (MGH protocol 2014N000252).

233

234 Serum ELISAs

235 Serum ELISAs were performed as previously described [14]. Briefly, plates were coated
236 with 100 µL of protein at 5 µg/mL overnight at 4 °C, then blocked with 150 µL of 1% BSA in
237 PBS-Tween for 1 hour at room temperature. Sera was added at a starting dilution of 1:40 with a
238 serial 5-fold dilution and incubated for 90 minutes at room temperature. Plates were washed, and
239 150 µL of HRP-conjugated anti-mouse IgG (Abcam) was added at 1:20,000. After a 1-hour
240 secondary incubation at room temperature, plates were washed and 150 µL of 1xABTS
241 development solution (ThermoFisher) was added. Plates were developed for 30 minutes at room
242 temperature before stopping with 100 µL of 1% SDS to read on a SpectraMaxiD3 plate reader
243 (Molecular Devices) for absorbance at 405 nm.

244

245 Pseudovirus Neutralization Assay

246 Serum pseudovirus neutralization assays were performed as previously described [14,
247 44]. Briefly, pseudotyped lentiviral particles were generated via transient transfection of 293T
248 cells and tittered using 293T-ACE2 cells [45] and the HIV-1 p24CA antigen capture assay

249 (Leidos Biomedical Research, Inc.). Assays were performed using a Tecan Fluent Automated
250 Workstation and 384-well plates (Grenier), and sera were initially diluted 1:3 with subsequent
251 serial 3-fold dilutions. Each well received 20 μ L each of sera and pseudovirus (125 infectious
252 units), and plates were incubated 1 hour at room temperature. 10,000 293T-ACE2 cells [45] in
253 20 μ L of media with 15 μ g/mL polybrene was added, and additional incubation occurred at 37
254 $^{\circ}$ C for 60-72 hours. Cells were lysed [46], and luciferase expression was quantified on a
255 Spectramax L luminometer (Molecular Devices). Neutralization percentage was calculated for
256 each serum concentration by deducting background luminescence from cells-only wells and
257 dividing by the luminescence of wells containing cells and virus. GraphPad Prism (version 9)
258 was used to fit nonlinear regressions, and IC₅₀ values were calculated for samples with
259 neutralization values that were at least 80% at maximum serum concentration. Reciprocal IC₅₀
260 values were used to obtain NT₅₀ values.

261

262 **Acknowledgements**

263 We thank Dr. Jason McLellan from University of Texas, Austin for the spike plasmid. We thank
264 Nir Hacohen and Michael Farzan for the kind gift of the ACE2 expressing 293T cells. We
265 acknowledge funding from NIH R01s AI146779 (AGS); AI174875 (ABB); AI155447,
266 AI137057, and AI153098 (DL), a Massachusetts Consortium on Pathogenesis Readiness
267 (MassCPR) grant (AGS), and P01 AI168347 (AGS); training grants: NIGMS T32 GM007753
268 (BMH); T32 AI007245 (JF); F31 AI138368 (MS); F30 AI160908 (BMH). ABB is supported by
269 the National Institutes for Drug Abuse (NIDA) Avenir New Innovator Award DP2DA040254,
270 the MGH Transformative Scholars Program as well as funding from the Charles H. Hood
271 Foundation (ABB). This independent research was supported by the Gilead Sciences Research
272 Scholars Program in HIV (ABB).

273

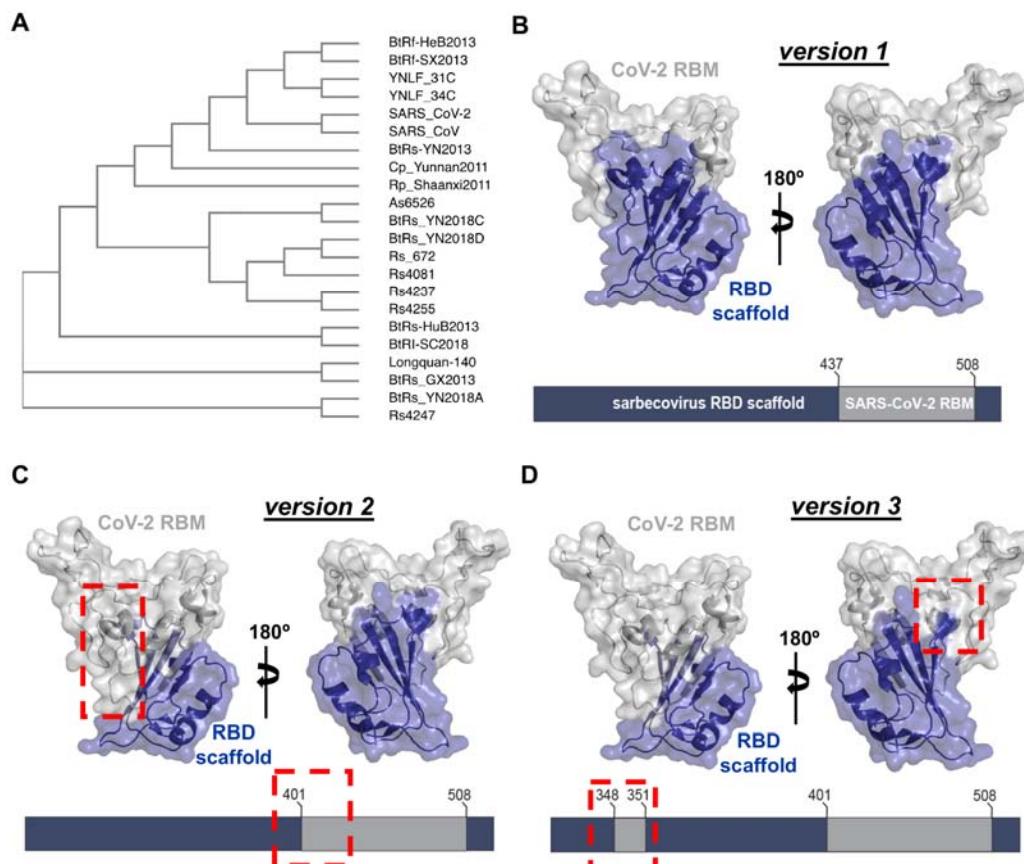
274 **Author contributions:** Conceptualization, BMH, AGS; Methodology, BMH, MS, ECL, AGS;
275 Investigation, BMH, MS, ECL, KJS, MLS, MLV, AHC; Writing – Original Draft, BMH and
276 AGS; Writing – Review and Editing, all authors; Funding Acquisition, ABB, DL, AGS;
277 Supervision, ABB, DL, AGS.; **Declaration of interests:** The authors have no competing
278 interests to declare.

279

280 **Data availability:** The datasets generated during and analyzed during the current study are
281 available from the corresponding author on reasonable request.

282

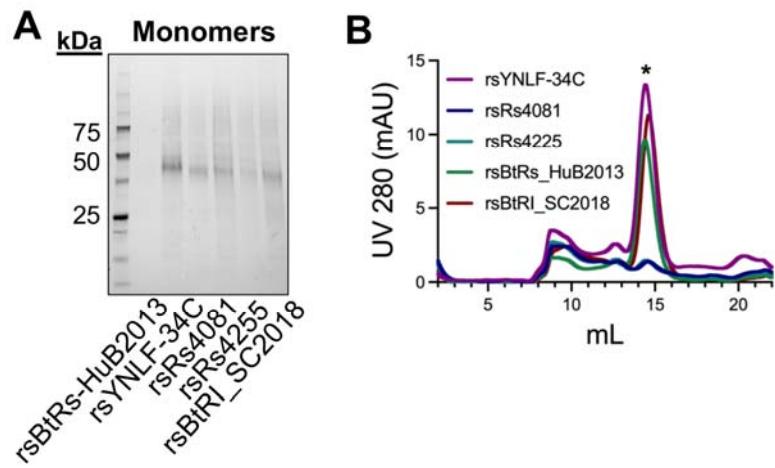
283


284

285

286

287 **FIGURES**


288

291 **Figure 1. Selection of scaffolds and design.** (A) Phylogenetic tree of twenty selected receptor
292 binding domains used in this study; SARS-CoV and SARS-CoV-2 are included for reference.
293 (B) Design schematic of versions 1, 2, and 3 resurfaced constructs, depicting RBM grafts (grey)
294 on heterologous coronavirus scaffolds (indigo). Red dashed boxes indicate differences relative to
295 version 1.

296

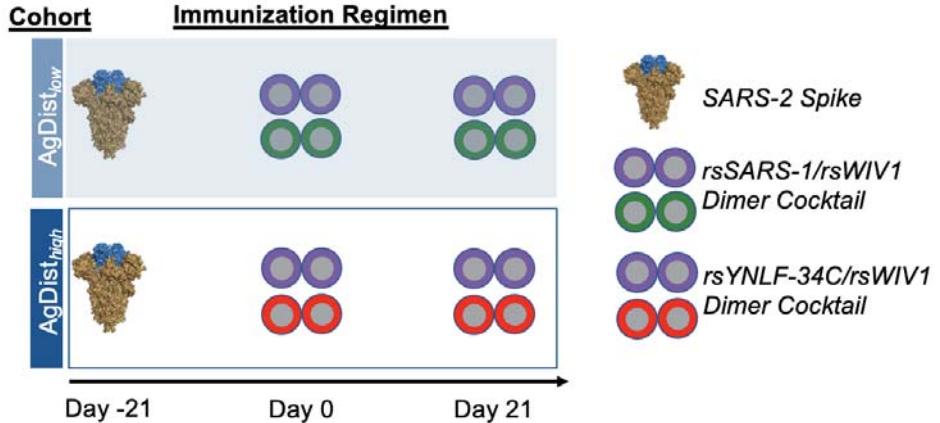
297

298

299

300 **Figure 2. Resurfaced monomeric immunogen expression. (A)** SDS-PAGE analysis of
301 monomers under non-reducing conditions. **(B)** Representative size exclusion trace with (*)
302 marking the monomeric constructs. Fractions in this peak were pooled for further
303 characterization.

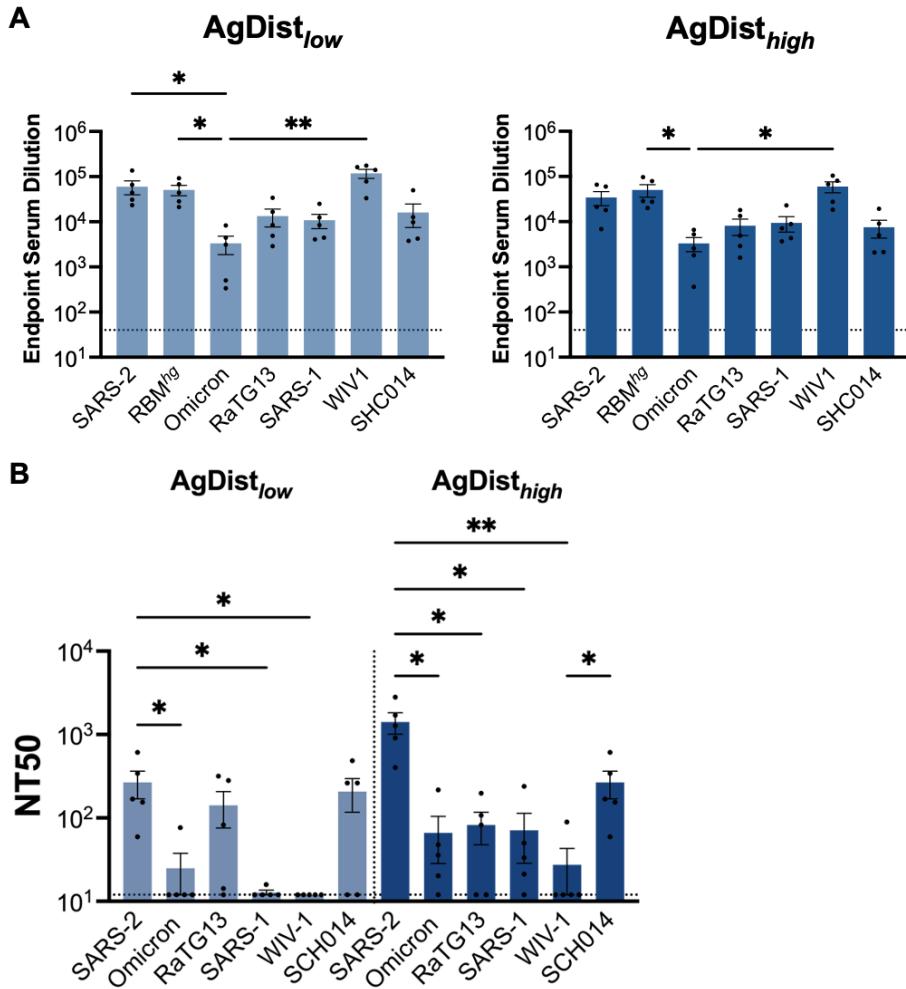
304


305

306

307

308 **Figure 3. Resurfaced dimeric immunogen design and expression.** (A) RBM-directed Fab B38
309 was used to confirm conformational integrity of the SARS-2 RBM grafted onto rsYNLF-34C.
310 FAB2G sensors were used with immobilized Fab to measure binding via BLI to rsYNLF-34C at
311 10 μ M, 5 μ M, 1 μ M, and 0.5 μ M. Binding of CR3022 and S309 Fabs to rsYNLF-34C at 10 μ M
312 was also assayed, but no binding was detected. (B) SDS-PAGE analysis of dimers under non-
313 reducing conditions. (C) Representative size exclusion trace with (*) marking the dimeric
314 constructs. Fractions in this peak were pooled for use as immunogens. (D) Pairwise comparisons
315 of amino acid sequence identity in the non-RBM portions of selected sarbecovirus RBDs. (E)
316 Pairwise comparisons of amino acid sequence identity in the RBM portions of selected
317 sarbecovirus RBDs.



318

319

320 **Figure 4. Antigenic distance investigation immunizations.** Schematic of immunization
321 regimens. Two immunization cohorts (n=5 mice each) were primed with SARS-2 two-proline-
322 stabilized (2P) spike protein on day 0 and then boosted with a cocktail of either the rsSARS-1
323 and rsWIV1 dimers (“AgDist_{low}” cohort) or the rsWIV1 and rsYNLF-34C dimers (“AgDist_{high}”
324 cohort) at days 21 and 42.

325

326

327 **Figure 5. Antigenic distance investigation immunization serum reactivity.** (A) Serum
328 collected at day 35 was assayed in ELISA against different coronavirus antigens. (B)
329 Pseudovirus neutralization was assayed against a panel of sarbecoviruses, ordered here based on
330 spike amino acid sequence similarity to SARS-2. Statistical significance for (A, B) was
331 determined using Kruskal-Wallis test with post-hoc analysis using Dunn's test corrected for
332 multiple comparisons (* = p < 0.05, ** = p < 0.01); non-significant comparisons not marked.

333

334 **REFERENCES**

335

336 1. Corbett, K.S., et al., *SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen*
337 *preparedness*. *Nature*, 2020. **586**(7830): p. 567-571.

338 2. Palleesen, J., et al., *Immunogenicity and structures of a rationally designed prefusion*
339 *MERS-CoV spike antigen*. *Proc Natl Acad Sci U S A*, 2017. **114**(35): p. E7348-E7357.

340 3. Garcia-Beltran, W.F., et al., *mRNA-based COVID-19 vaccine boosters induce*
341 *neutralizing immunity against SARS-CoV-2 Omicron variant*. *Cell*, 2022. **185**(3): p. 457-
342 466 e4.

343 4. Nanduri, S., et al., *Effectiveness of Pfizer-BioNTech and Moderna Vaccines in Preventing*
344 *SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread*
345 *Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant - National Healthcare Safety*
346 *Network, March 1-August 1, 2021*. *MMWR Morb Mortal Wkly Rep*, 2021. **70**(34): p.
347 1163-1166.

348 5. Lee, P.S., et al., *Design and Structure of an Engineered Disulfide-Stabilized Influenza*
349 *Virus Hemagglutinin Trimer*. *J Virol*, 2015. **89**(14): p. 7417-20.

350 6. Xu, R., et al., *Structural characterization of the hemagglutinin receptor specificity from*
351 *the 2009 H1N1 influenza pandemic*. *J Virol*, 2012. **86**(2): p. 982-90.

352 7. Wrapp, D., et al., *Cryo-EM structure of the 2019-nCoV spike in the prefusion*
353 *conformation*. *Science*, 2020. **367**(6483): p. 1260-1263.

354 8. McLellan, J.S., et al., *Structure-based design of a fusion glycoprotein vaccine for*
355 *respiratory syncytial virus*. *Science*, 2013. **342**(6158): p. 592-8.

356 9. Lee, J.K., et al., *Reversible inhibition of the fusion activity of measles virus F protein by*
357 *an engineered intersubunit disulfide bridge*. *J Virol*, 2007. **81**(16): p. 8821-6.

358 10. Sanders, R.W., et al., *A next-generation cleaved, soluble HIV-1 Env trimer, BG505*
359 *SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-*
360 *neutralizing antibodies*. *PLoS Pathog*, 2013. **9**(9): p. e1003618.

361 11. Rutten, L., et al., *Structure-Based Design of Prefusion-Stabilized Filovirus Glycoprotein*
362 *Trimmers*. *Cell Rep*, 2020. **30**(13): p. 4540-4550 e3.

363 12. Caradonna, T.M. and A.G. Schmidt, *Protein engineering strategies for rational*
364 *immunogen design*. *NPJ Vaccines*, 2021. **6**(1): p. 154.

365 13. Bajic, G., et al., *Structure-Guided Molecular Grafting of a Complex Broadly Neutralizing*
366 *Viral Epitope*. *ACS Infect Dis*, 2020. **6**(5): p. 1182-1191.

367 14. Hauser, B.M., et al., *Rationally designed immunogens enable immune focusing following*
368 *SARS-CoV-2 spike imprinting*. *Cell Rep*, 2022. **38**(12): p. 110561.

369 15. Ofek, G., et al., *Elicitation of structure-specific antibodies by epitope scaffolds*. *Proc Natl*
370 *Acad Sci U S A*, 2010. **107**(42): p. 17880-7.

371 16. Correia, B.E., et al., *Proof of principle for epitope-focused vaccine design*. *Nature*, 2014.
372 **507**(7491): p. 201-6.

373 17. MacDonald, J.T., et al., *De novo backbone scaffolds for protein design*. *Proteins*, 2010.
374 **78**(5): p. 1311-25.

375 18. Azoitei, M.L., et al., *Computational design of high-affinity epitope scaffolds by backbone*
376 *grafting of a linear epitope*. *J Mol Biol*, 2012. **415**(1): p. 175-92.

377 19. Guthmiller, J.J. and P.C. Wilson, *Harnessing immune history to combat influenza viruses*.
378 *Curr Opin Immunol*, 2018. **53**: p. 187-195.

379 20. Wheatley, A.K., et al., *Immune imprinting and SARS-CoV-2 vaccine design*. Trends
380 Immunol, 2021. **42**(11): p. 956-959.

381 21. Roltgen, K., et al., *Immune imprinting, breadth of variant recognition, and germinal
382 center response in human SARS-CoV-2 infection and vaccination*. Cell, 2022. **185**(6): p.
383 1025-1040 e14.

384 22. Dai, L., et al., *A Universal Design of Betacoronavirus Vaccines against COVID-19,
385 MERS, and SARS*. Cell, 2020. **182**(3): p. 722-733 e11.

386 23. Saunders, K.O., et al., *Neutralizing antibody vaccine for pandemic and pre-emergent
387 coronaviruses*. Nature, 2021. **594**(7864): p. 553-559.

388 24. Cohen, A.A., et al., *Mosaic nanoparticles elicit cross-reactive immune responses to
389 zoonotic coronaviruses in mice*. Science, 2021. **371**(6530): p. 735-741.

390 25. Walls, A.C., et al., *Elicitation of Potent Neutralizing Antibody Responses by Designed
391 Protein Nanoparticle Vaccines for SARS-CoV-2*. Cell, 2020. **183**(5): p. 1367-1382 e17.

392 26. Ma, X., et al., *Nanoparticle Vaccines Based on the Receptor Binding Domain (RBD) and
393 Heptad Repeat (HR) of SARS-CoV-2 Elicit Robust Protective Immune Responses*.
394 Immunity, 2020. **53**(6): p. 1315-1330 e9.

395 27. Wang, W., et al., *Ferritin nanoparticle-based SARS-CoV-2 RBD vaccine induces a
396 persistent antibody response and long-term memory in mice*. Cell Mol Immunol, 2021.
397 **18**(3): p. 749-751.

398 28. Kang, Y.F., et al., *Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding
399 Domain Self-Assembled Nanoparticle Vaccine Candidates*. ACS Nano, 2021. **15**(2): p.
400 2738-2752.

401 29. Li, H., et al., *Self-Assembling Nanoparticle Vaccines Displaying the Receptor Binding
402 Domain of SARS-CoV-2 Elicit Robust Protective Immune Responses in Rhesus Monkeys*.
403 Bioconjug Chem, 2021. **32**(5): p. 1034-1046.

404 30. Shinnakasu, R., et al., *Glycan engineering of the SARS-CoV-2 receptor-binding domain
405 elicits cross-neutralizing antibodies for SARS-related viruses*. J Exp Med, 2021. **218**(12).

406 31. Letko, M., A. Marzi, and V. Munster, *Functional assessment of cell entry and receptor
407 usage for SARS-CoV-2 and other lineage B betacoronaviruses*. Nat Microbiol, 2020.
408 **5**(4): p. 562-569.

409 32. Wec, A.Z., et al., *Broad neutralization of SARS-related viruses by human monoclonal
410 antibodies*. Science, 2020.

411 33. Wu, Y., et al., *A noncompeting pair of human neutralizing antibodies block COVID-19
412 virus binding to its receptor ACE2*. Science, 2020. **368**(6496): p. 1274-1278.

413 34. Pinto, D., et al., *Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV
414 antibody*. Nature, 2020. **583**(7815): p. 290-295.

415 35. Yuan, M., et al., *A highly conserved cryptic epitope in the receptor binding domains of
416 SARS-CoV-2 and SARS-CoV*. Science, 2020. **368**(6491): p. 630-633.

417 36. Rappazzo, C.G., et al., *Broad and potent activity against SARS-like viruses by an
418 engineered human monoclonal antibody*. Science, 2021. **371**(6531): p. 823-829.

419 37. Cameroni, E., et al., *Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron
420 antigenic shift*. Nature, 2022. **602**(7898): p. 664-670.

421 38. Tortorici, M.A., et al., *Broad sarbecovirus neutralization by a human monoclonal
422 antibody*. Nature, 2021. **597**(7874): p. 103-108.

423 39. Kanekiyo, M., et al., *Mosaic nanoparticle display of diverse influenza virus
424 hemagglutinins elicits broad B cell responses*. Nat Immunol, 2019. **20**(3): p. 362-372.

425 40. Wamhoff, E.C., et al., *Enhancing antibody responses by multivalent antigen display on*
426 *thymus-independent DNA origami scaffolds*. bioRxiv, 2022.

427 41. Fan, C., et al., *Neutralizing monoclonal antibodies elicited by mosaic RBD nanoparticles*
428 *bind conserved sarbecovirus epitopes*. Immunity, 2022.

429 42. Caradonna, T.M., et al., *An epitope-enriched immunogen expands responses to a*
430 *conserved viral site*. Cell Rep, 2022. **41**(6): p. 111628.

431 43. Sangesland, M., et al., *Germline-Encoded Affinity for Cognate Antigen Enables Vaccine*
432 *Amplification of a Human Broadly Neutralizing Response against Influenza Virus*.
433 Immunity, 2019. **51**(4): p. 735-749 e8.

434 44. Garcia-Beltran, W.F., et al., *COVID-19-neutralizing antibodies predict disease severity*
435 *and survival*. Cell, 2021. **184**(2): p. 476-488 e11.

436 45. Moore, M.J., et al., *Retroviruses pseudotyped with the severe acute respiratory syndrome*
437 *coronavirus spike protein efficiently infect cells expressing angiotensin-converting*
438 *enzyme 2*. J Virol, 2004. **78**(19): p. 10628-35.

439 46. Siebring-van Olst, E., et al., *Affordable luciferase reporter assay for cell-based high-*
440 *throughput screening*. J Biomol Screen, 2013. **18**(4): p. 453-61.

441

442