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Motivation: As available genomic interval data increases in scale, we require fast systems to search it. A
common approach is simple string matching to compare a search term to metadata, but this is limited by
incomplete or inaccurate annotations. An alternative is to compare data directly through genomic region
overlap analysis, but these approaches lead to challenges like sparsity, high dimensionality, and compu-
tational expense. We require novel methods to quickly and flexibly query large, messy genomic interval
databases. Results: Here, we develop a genomic interval search system using representation learning. We
train numerical embeddings for a collection of region sets simultaneously with their metadata labels, cap-
turing similarity between region sets and their metadata in a low-dimensional space. Using these learned
co-embeddings, we develop a system that solves three related information retrieval tasks using embed-
ding distance computations: retrieving region sets related to a user query string; suggesting new labels
for database region sets; and retrieving database region sets similar to a query region set. We evaluate
these use cases and show that jointly learned representations of region sets and metadata are a promising

approach for fast, flexible, and accurate genomic region information retrieval.

Introduction

The increasing volume of biological data has moti-
vated initiatives to facilitate data search, retrieval, and
interoperability!”. This is particularly important for
epigenome data, for which data search and retrieval has
become intractable®. Two natural ways to search for
genomic interval data are: First, to search with natural
language for data relevant to a query; or second, to
search with a query set of genomic intervals to find
similar data. For a natural language search, a typical
query system uses string pattern matching to search the
metadata annotations in the database®!'. While such
lexical search systems work, they are limited because
they rely on annotations, rather than the data itself,
and therefore are only as effective as the quality of
the annotation. Furthermore, they may miss biological
similarities between experiments with different anno-
tations; for example, prostate cancer and breast cancer
data have a clear biological relationship'?, yet this may
be missed by metadata matching. Finally, metadata
matching cannot be used at all for unannotated data.

For the second type of epigenome query, instead of
querying using natural language terms, the query
consists of genomic intervals. Many methods exist to
facilitate this type of analysis'>2%. These methods use
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the data itself and are powerful and widely used, but
they also have limitations; they may not scale to big
data, they require complex input, and they fail to take
into account the biological context in which the data
were generated.

To address limitations of these common analytical
approaches, we present an alternative approach that
bridges the gap between searching for genomic data
based on natural language and searching with interval
overlaps. Our approach leverages recent advances in
neural embedding methods and the growing corpus
of epigenome data to tie natural language to genomic
intervals. Neural embedding approaches show great
promise for a variety of biological applications®>=3!,
Here, we used StarSpace®? to jointly embed genomic
interval regions sets with associated metadata into a
shared latent embedding space. Using these learned
co-embeddings, we develop a system that solves three
related information retrieval tasks: First, retrieving
region sets related to a user query string; second,
suggesting new labels for unannotated database region
sets; and third, retrieving database region sets similar
to a query region set. Our models do these tasks using
lower-dimensional embedding distance computations
instead of computing interval overlaps or string match-
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Figure 1: Overview of the approach and summary results. A) Alluvial plot showing the frequency of each class in the antibody and cell type data
sets, and their relationships to one another. B) The first step is tokenization, in which annotated BED files are converted into a shared vocabularity
using a region universe. C) Tokenized files are divided into training core, validation, and test sets. D) The Starspace Model is trained using both the

region set and label data. E) The training procedure results in co-embedding space for both region sets and labels.

F) UMAP plot of the antibody

label embeddings G) UMAP plot of the cell type label embeddings, colored by their tissue of origin. H) We evaluated the model with three scenarios.
1: retrieve region sets given a query label; 2: annotate a query region set with a label from the embedding space; and 3: retrieve similar region sets

given a query region set.

ing. We evaluate these use cases and show that jointly
learned representations of region sets and metadata are
a promising approach for fast, flexible, and accurate
genomic region information retrieval. Furthermore, we
show how our approach can search data with sparse or
inaccurate metadata, and can also standardize metadata
annotation and correct annotation errors.

Results
Overview

To learn low-dimensional representations of genomic
regions and their associated metadata, we first as-
sembled a dataset of 2,548 ChIP-seq region sets from
ENCODE333. We focused on two metadata attributes:
cell type and ChIP antibody target, and limited the
dataset to 8 activating histone modifications: H3K4mel,
H3K4me2, H3K4me3, H3K27ac, H3K9ac, H3K9mel,
H3K79me2, and H4K29mel, which represent 131 cell
types (Fig. 1A).

Like many natural language methods, StarSpace
requires documents to share a vocabulary, which cor-
responds to a predefined genomic interval “universe”
for region set data. After hyper-parameter tuning, we
selected a 1000 bp tiling universe, and tokenized the
raw intervals by mapping each interval to one in the
universe (Fig. 1B). After the tokenization step, we
considered each tokenized region set as a document.
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We split the data into a test set (15%), and a training
set (85%), which we further subdivided into training
(90%) and validation set (10%) for hyper-parameter
tuning and early stopping in the training phase (Fig.
1C). We then trained a StarSpace model to jointly learn
numerical representations for region sets with cell type
and ChIP antibody as labels (Fig. 1D; see Methods for
details). The StarSpace algorithm converts each region
set and its corresponding label to a numerical vector,
or embedding, an n-dimensional vector represented in
embedding space, putting biologically related region
set vectors and their labels close to one another in the
shared latent space (Fig. 1E).

Next, we evaluated whether the model could capture bi-
ological relationships. As a global sanity check, we vi-
sualized label embeddings using Uniform Manifold Ap-
proximation and Projection (UMAP) in two dimensional
space. We observed results generally in line with ex-
pectations, with similar antibodies mapped near one an-
other, such as all the H3K4 methylation marks (Fig. 1F).
Cell type labels also showed some grouping by tissue
type (Fig. 1G), indicating that the embeddings may cap-
ture biological information during the training process.

To test the embeddings more rigorously, we next de-
signed experiments in three different scenarios (Fig.
1H): First, we provide a query term from a set of anti-
body or cell type labels as input, and the model outputs


https://doi.org/10.1101/2023.08.21.554131
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.554131; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Query Embedding space Ranked region sets
1 t
e °
A label -
K
Region Finder £ oo,
» » %)
(GabeD Q) s
Similarity of test region set
B to the actual label C System performance D System performance
10 1.0 0T ot task 0.9311
> 5 = c O Antibody 0.8500
'(E': 08 S o8 S 081ECelitype 7506
—_ = )
0 O 06 0.5620
E 06 § 06 “IS-
2 o4 S os =
g Test task g
O 02 Ss/;:fbtdy 02 DesAr:i)ody = 02
00 @ Cell type 00 B Cell type .
AN AN _ N AN
& @ L @ W W & & W
Both Cell-type Both Antibody Both Cell-type Both Antibody Both Cell-type  Both Antibody
StarSpace model StarSpace model StarSpace model
E F G Region set embedding
hake0me1
Output for query: Output for query:(ramez 2) > hokames T2 hakamet hak27ac hOKSac ) haK7ome2
a8 c L
3 o— B roamer g rocmes JRSIEIEIES 0
5 e S okimes omeaon g | rowme 0.8
=) h3k27ac mct-7 —— 9 h3ame2 osteoblast. £ — h3k4me1
o) h3K27 a0 Mot.7 |e— D nkeme? osteobiast p—————— o || | 0.6
o h3kdme1 hepg? jmm— O hkimet b_coll — 5 _ h3k27ac .
o h3kdme1 hepg2 —— o h3k4me1 b_cell m—— e y
2 h3k27ac c4-2b j— 5 h3k4me3 loucy p—— © L h3kgac 0.4
5 h3k27a:tran"s?1§;:fvcap E :3:::23 oy %‘ h4k20me1
o s __=s « W o § hakeme1 0.2
Similarity Similarity E h3k79me2 00

Figure 2: Description and results of scenario 1: Retrieving relevant region sets given a query search label. A) Overview of retrieval process.
The search label is mapped to the embedding space, and nearby region sets are retrieved and returned, ranked by distance to the query term
embedding. B) Distributions of cosine similarity of the test region sets to their true labels for 3 StarSpace models. C) R-precision of the models trained
on one or multiple labels for each search term in the antibody or cell type labels. D) Average r-precision of each model. E) Example of 10 most similar
region sets for the query term 22rv1 from cell type label group. Green bars indicate a perfect match. F) Example of 10 most similar region sets for
the query term H3K4me2 from antibody label group. Green bars indicate a perfect match. G) Heatmap showing the similarity between the antibody
label embeddings and the embeddings of the region sets in the test dataset. The dendrogram depicts relationships among the label embeddings.

a ranked set of region sets similar to the query term. In
the second scenario, we provide a region set as input,
and the model outputs a set of ranked labels annotating
the region set. This scenario tests the capability of
working with unannotated data. In the third scenario,
we provide a query region set and the model retrieves
similar region sets. We trained 3 separate StarSpace
models: one using only the cell-type label, one using
only the antibody label, and one using both. In each
scenario, we evaluated each of the 3 models using the
test set.

Scenario 1. Retrieve region sets for a metadata query

Scenario 1 evaluates whether we can accurately retrieve
region sets that are related to a query search term. The
search term could come from any of the metadata of the
region sets in our training set, such as K562 from cell
type labels or H3K4me2 from antibody labels. To retrieve
related region sets, we first map the search term to its
numerical vector. Next, we identify the nearest neighbor
embeddings of region sets in our model by calculating
the cosine similarity between the search term and region
set embeddings. We return a ranked list of most similar
region sets (Fig. 2A).

To evaluate performance on scenario 1, we first assessed
the similarity of a predicted region set label to the
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actual label for each region in the test set. Since the
StarSpace algorithm aims to maximize the similarity
between the embeddings of the region sets and the
embeddings of their labels, a well-trained model should
have a high similarity value between each region set
and its corresponding label. Overall, the similarities
are high, and similarity values for models trained with
only one label type (only cell type or only antibody) are
higher than those trained with both (Fig. 2B). To test
performance of the search system, we used r-precision,
defined as the fraction of results returned that are
relevant, where relevant means its true label matches
the provided search term (see Methods). We calculated
r-precision separately for each cell type and antibody on
each of the three StarSpace models (Fig. 2C). The mean
r-precision across terms shows that the antibody model
performs better than the cell-type model (Fig. 2D); this
result reflects the increased difficulty of the cell-type
task, since the antibody task has only 8 classes whereas
the cell-type task has 113. Furthermore, training the
StarSpace model on one label separately resulted in
better performance, which reflects a similar complexity
issue: training on one label reduces the complexity of
model to a specific type of metadata. Training separately
requires training multiple models and results in multiple
embedding vectors for each region set.
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Figure 3: Description and results of scenario 2: Annotating query region sets. A) Overview of scenario 2. First the query region set is mapped

to the embedding space, then the labels are ranked based on their similari

ty to the region set in the embedding space. B) The ranked antibody (left)

and cell type (right) labels based on the similarity metric for the ENCFFO01WXY.bed query region set. C) Reciprocal ranking for the models on one
and multiple labels. D) Mean reciprocal ranking for the models on one and multiple labels. E) Confusion matrix of the true class of antibody labels
and predicted antibody by our method. F) The classification performance (F1 score) of models trained on one and multiple labels.

To demonstrate a specific example, we visualized the
results for query string “22rv1”, the name of a human
prostate carcinoma cell line (Fig. 2E). The top hit was
the only response in the test set with label 22rv1, in-
dicating that the retrieval task was successful. Other
highly-scoring region sets include other prostate cancer
cell lines, c4-2b and vcap, as well as mcf-7, a breast can-
cer cell line. Thus, the model reflects known relation-
ships between prostate and breast cancer in the embed-
ding space'2. For a query term of H3K4me2, the model
flawlessly ranks the top 4 region sets with the same la-
bel from our test set at the top (Fig. 2F). The remaining
region sets belong to mono and tri-methylation of the
histone H3 lysine K4, which are similar marks.

To explore the global performance trends, we calculated
the cosine similarity between each region set embedding
in the test dataset with the embeddings of the corre-
sponding labels for either antibody (Fig. 2G) or cell type
(Fig. S1A). The model generally retrieves the expected
inputs. Furthermore, we observed global relationships
among these labels; H3K4me2 and H3K4me3 form one
cluster, which then joins with H3K4mel, H3K27ac and
H3K9ac; these marks are more distant to H4K20mel,
H3K9mel and H3K79me2. Together, these results sug-
gest that a co-embedding model is a promising approach
for a natural language search for relevant biological re-
gion sets.

Scenario 2. Annotate unlabeled region sets

Scenario 2 provides annotation suggestions for interval
sets with missing or inaccurate metadata information. In
this use case, region sets from the test set are provided

4- Representation learning of genomic interval sets

as queries, and the model suggests annotations. We
first tokenize the query region set, then convert the to-
kenized query set to its embedding representation using
the trained StarSpace model. We then compute the co-
sine similarity between the query region set embedding
and label embeddings, returning a ranked list. The la-
bel achieving the maximum similarity values (minimum
distance) for each label type is proposed as the label for
the query region set (Fig. 3A).

To demonstrate, we queried with a test region set la-
beled with gm12866 and H3K4me3. The most similar
labels of each type clearly correspond to the correct la-
bels, with top hits including various lymphoblastoid cell
lines and the h3k4me3 antibody label (Fig. 3B).

To evaluate performance globally, we used two perfor-
mance metrics. First, reciprocal rank (RR) calculates the
rank at which the label relevant to the region set is re-
trieved (see Methods). We consider a label as relevant
if it is the same as the actual label of the test region set.
RR is 1 if a relevant label is retrieved at rank 1, and RR
is 0.5 when a relevant label is retrieved at rank 2. The
RR statistic shows that the models have generally good
performance; in particular, the antibody-trained models
are able to achieve near perfect results (Fig. 3C). To
summarize these results, we computed the mean of the
reciprocal ranking for all the query region sets in our test
dataset (MRR). For all models and tests, our MRR score
is above .6, indicating that the relevant result is most fre-
quently ranked as the top or second search result (Fig.
3D). The MRR of the model trained on just one label is
again superior to the model trained on both labels.
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Figure 4: Description and results of scenario 3: Retrieving region sets similar to a query region set. A) Overview of scenario 3. The query
region set is mapped to the embedding space, and the retrieved region sets from the database are ranked based on the their similarities to the query
region set embedding. B) 10 most similar region sets to the query region set, ENCFF190ZWT.bed, for model trained on antibody labels. C) 10 most
similar region sets to the query region set, ENCFF190ZWT.bed, for model trained on cell type labels. D) The heatmap plot of the similarity between
the test region set embeddings and the embeddings of the region sets in the training dataset. The model is trained on the antibody labels.

For our second evaluation approach, we consider sce-
nario 2 as a classification task, and use a confusion ma-
trix to explore the results. The confusion matrix reflects
generally strong performance and shows that the con-
fusion mainly occurs between H3K4me3 and H3K4me2
(Fig. 3E). While chemically distinct, these two histone
modifications are highly similar, further indicating that
the model is capturing information about the underlying
biology. In addition, there is some confusion between
H3K4me3 and H3K9ac, both known to mark promoters.
We also computed the micro-averaged F1 score to mea-
sure classification performance (Fig. 3F; see Methods).
We achieved good F1 scores across all tasks, and saw
that the models trained on independent labels again out-
performed the model trained on both labels simultane-
ously. Altogether, these results illustrate a highly capable
annotation model that could be a useful automated sys-
tem for annotating unlabeled or incorrectly annotated
genomic interval data with standardized terms.

Scenario 3. Retrieve region sets for a query region set

Scenario 3 finds database region sets similar to a given
query region set. As before, we first tokenize the query,
then convert it to an embedding using the trained
StarSpace model. We then calculate the similarity of the
vector to the database region set embeddings to retrieve
and rank results (Fig. 4A). The region set database is
our training set and our queries come from the test set.
To evaluate, we define hits as the number of region sets
with matching antibody and cell type labels.

To demonstrate, we queried with a region set annotated
with H3K27ac and vcap labels. Using the model that is

5- Representation learning of genomic interval sets

trained only on the cell types, the two most similar re-
gion sets also have vcap as the cell type label (Fig. 4B).
The remaining most similar region sets come from other
prostate cancer cell lines: Incap, c4-2b, and 22rv1. The
antibody results similarly retrieved the same target anti-
body as the query region set (Fig. 4C).

To summarize these results globally, we calculated the
similarity of each test region sets to all the database
(training) region sets. We observed consistently good
performance, with higher similarity when the query and
dataset region sets share identical or similar labels for
both antibody (Fig. 4D) and cell-type labels (Fig. S1C).
We also compared our results with Jaccard similarity. We
selected files labeled as k652, mcf-7, or a549, and calcu-
lated the Jaccard similarity of each selected region set to
all database region sets with one of these labels. The re-
sults shows that the Jaccard similarity is correlated with
our embedding similarity score (Fig. S1B).

Annotating external data with a pre-trained model

Next, to apply our model to a real large-scale use case,
we turned to the task of external data annotation. We
used geofetch3* to collect 32,174 hgl9 BED files with
associated metadata from the Gene Expression Omnibus
(GEO). Since these datasets come from a variety of
sources, the metadata is not standardized. Our goal is
to apply the annotation task from scenario 2, using the
pre-trained StarSpace model to propose standardized
labels for these new region sets.

Following scenario 2, we tokenized the GEO regions
sets, then used the StarSpace model trained on the
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Figure 5: Application of our model for annotating a new dataset: A) Overview of the approach. Query region set from GEO database is mapped
to the embedding space, then labels are ranked based on their similarity. B) Statistics of the collected data and the percentage of the match/mismatch
prediction. C-H) Example search results for the given query file; panels C and D show examples of correctly predicted labels; panels E and F show
examples of near misses; panels G and H show examples of results for non-standard labels.

ENCODE3 dataset to project embeddings, and finally
ranked the labels from our trained model by similarity
to the GEO region set embeddings (Fig. 5A). We then
annotated each file with the top-ranked label (Table S1).
Since this dataset lacks standardized correct answers, to
assess performance loosely, we identified GEO files that
had labels corresponding to our trained labels. For anti-
body labels, 21% of the data had a corresponding label,
and our model accurately labeled 54% of these samples
(Fig. 5B). For cell types, 14% of the GEO samples could
be mapped to our labels, and of these, 75% are labeled
correctly (Fig. 5B). For example, sample GSM5614147
(“H3K4mel 1TF-4”) was correctly labeled (Fig. 5C);
similarly, sample GSM4797835 (“K562 H3K4me2 dmf60
fragments”) was confidently labeled as K562 (Fig. 5D).
Looking closer at the incorrect predictions, we noticed
that many of these were near misses; for example, the
predicted antibody for GSM5455054 (“Primary AFH1
H3K27ac peaks”) was H3K9ac, but H3K27ac was ranked
second, with negligible difference in the similarity score
(Fig. 5E). An incorrect result for file GSM3223711 (“VCaP
shCt AR peaks”) shows that the top 4 labels are prostate
cancer lines, though the correct answer was ranked
fourth (Fig. 5F). To overcome this issue, we defined
a confidence interval between the first and second
predicted labels and reported the results as confident if
this value passed a 0.1 threshold.

6- Representation learning of genomic interval sets

We also often identified spelling mistakes or non-
standard representations in filenames or other meta-
data. We reasoned that this approach could be used to
identify such inconsistencies. For example, we found
data labeled with h3k4m3 or h3k4tri, which we assume
are slight variations of the H3K4me3 label. To assess
this more systematically, we used regular expression to
extract likely incomplete or misspelled labels. We iden-
tified several examples where the model could correct
these issues. For example, the model predicted h3k4me3
as the most similar label for sample GSM2864752 (“IgE
H3K3me3 peaks”). Since the provided H3K3me3 label
is likely an error, our model predicts the label for
this file should be h3k4me3 (Fig. 5G). Similarly, for
sample GSM5220509 (“Lanel 2D H3K27ace BMI1 macs2
peaks”), the model predicts an acetylation mark as
the first predicted label (Fig. 5H; Fig. S2). A variety
of similar examples show the utility of this process:
our model can update labels k9ac to h3k9ac, k27ac to
h3k27ac, K4me3 to h3k4me3, K4ME1 and K4mel to
h3k4mel, h3k4m3 to h3k4me3, K27 to h3k27ac, and K4
to h3k4me3 (Fig. S2A).

Our model predicted h3k4me3 as the label for two
files with “tri” in the labels, and corrected “mo” and
“mono” labels (Fig. S2B). The model can only predict
from the 8 labels we used when training, so it is rather
limited; however, for region sets with other labels, the
retrieved labels typically share biological similarity.
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For instance, the predicted label for H3k18ac — which
doesn’t exist in our training set — is h3k27ac, a bio-
logically similar marker. We found similar results for
labels H4k12mel, H3k79me3 (Fig. S2C). Furthermore,
for labels h3k36me3, h3k27me3, h3k9me3, h4k20me3,
the similarity to the closest labels are smaller; these
are repressive marks, and our model is only trained
on 8 activating marks, so the model is able to convey
that none of the trained labels is a good fit (Fig. S2D).
Taken together, these results confirm that our model
can be used for metadata standardization by predicting
the same label for the similar files with different label
formatting.

Discussion

Here, we described an application of the StarSpace
method to convert annotated genomic interval data
into low-dimensional distributed vector representations.
This builds on our previous work with embedding
methods for genomic intervals?®, extending it to exploit
accompanying metadata. We tested 3 different appli-
cations for joint embedding of data files and metadata.
Each of these uses the joint representations of labels
and genomic region sets in a shared space, making them
comparable in low dimensions, facilitating similarity
search. This embedding space facilitates the calculation
of vector distances for direct similarity comparison
and calculation between region sets, between labels,
or even between a region set and a label. We also
showed that the model can transfer annotations from a
training set to new region sets without any labels. Not
only does this make the data search and retrieval more
robust, but it can facilitate retroactive annotation of
sparse or inaccurate metadata. To our knowledge, this
is the first attempt to develop a system that leverages
neural embedding methods to jointly embed genomic
interval data with metadata for fast and effective dataset
searching.

This approach provides a number of nice features for a
search system. First, the region set search can query not
only data used in training, but also on other region sets.
Because we can use the trained model to convert new,
unseen region sets to numerical vectors, a trained model
can be used to search beyond the training data. This
means no metadata information is required for the re-
gion sets to be included in the search, allowing us to
search poorly annotated files. Second, this also means
the database can be continuously updated to include
new region sets to query against. Third, this approach
is highly scalable, as it is not dependent on region over-
lap analysis after the embeddings are computed. Fourth,
it provides a natural similarity ranking system based on
distances in embedding space. Given these benefits, we
propose this general approach could be used to build an
impactful search engine that directly relates biological
search terms to region sets, regardless of the metadata

7- Representation learning of genomic interval sets

annotating the original dataset. The user would com-
municate to the system by providing one or more labels
within the metadata vocabulary, such as cell-line, target
antibody, or tissue type of interest. The output is one
or more genomic interval sets that are biologically rele-
vant to provided query terms. Our proposed model has
the potential to facilitate data annotation and metadata
standardization, as well as assist biologists in analyzing
similar experiments by identifying BED files that match
a given query BED file.

Our models have several areas for future development.
First, one limitation of our approach is that, like other
NLP methods, it requires a shared vocabulary. New re-
search in constructing such vocabularies for genomic in-
terval datasets therefore promise to improve the accu-
racy of our method®. Another area for future research
is in alternative methods to evaluate the quality of the
resulting embeddings®®. Finally, we will seek to expand
the scope of natural language terms to enable a practi-
cal natural language search interface. In the future, we
believe this approach could form the basis for a general-
purpose genomic interval search framework capable of
either natural language or interval-based queries. We
also believe the annotation capability of this framework
is a useful step forward in standardizing metadata anno-
tations for diverse public datasets.

Methods
Training StarSpace models

StarSpace is a general representation learning method
that can embed different types of entities into an embed-
ding space®2. An entity could be anything. For example,
in a text classification task, an entity could be a label or a
sentence. It enables direct comparison between different
types of entities by learning embeddings of all the enti-
ties in the same space. In StarSpace, each entity is repre-
sented by a unique feature or a set of features, all from a
fixed-length feature embedding dictionary. Specifically,
we denote the dictionary as D, a D x d matrix. The i-th
row D; of D represents a d-dimensional embedding of
the i-th feature. Then an entity a consisting of a set of
features F isrepresented asa = ), » D;. In the context
of joint learning of genomic interval sets and metadata,
all the intervals and the labels of interval sets are the
features that form the dictionary. Specifically, a label is
an entity with a single feature, and an interval set is an
entity with multiple features, where each interval in the
set corresponds to a feature. The goal of StarSpace is to
learn the feature embedding dictionary.

Models with different and combined label sets

A StarSpace model can be trained on one or several la-
bels (Fig. 1B-D). To test whether this could be used
to accommodate different types of biological labels, we
trained three StarSpace models: first, on the region sets
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labeled by only the antibody metadata; second, on re-
gion sets annotated by cell type metadata; and finally,
on the antibody and cell type labels simultaneously. The
models trained on both label types has the advantage
of having a single embedding space for all the labels,
which facilitates converting region sets to the numerical
representation, since the choice of the model is not de-
pendent on the search term. However, the single-label
models have a simpler learning task, reducing the num-
ber of classes that the model is supposed to distinguish.

Training procedure

Following the required format for the training phase of
the StarSpace model, the labels (i.e., the metadata in-
formation for each region set) are appended to the end
of each tokenized region set, formatted as label. For
models with more than one label for each region set, we
add all of them to the end of the document. We used
the first training mode (trainMode=0) of the StarSpace
algorithm. This means StarSpace will be jointly trained
on both labels and documents such that label-document
pairs are close to one another in the embedding space
(Fig. 1E).

Starspace learns the dictionary by comparing entities.
Each entity is represented by its embedding computed
from D. We sample pairs of entities containing both pos-
itive and negative pairs. A positive pair (a,b*) means
entity a and the positive sample b™ are similar based on
a similarity measure s(-,-). On the other hand, a nega-
tive pair (a, b~ ) means entity a and the negative sample
b~ are dissimilar, and the value of s(a,b™) is small. For
each entity a, we sample a positive sample b™ from the
set of all entities to form a positive pair with a, and sam-
ple k negative samples b~ to form k negative pairs with
a. Then, we minimize the following loss L

L=>Y" > {(s(a,b%),s(a,by),...,s(a,by)),

acfptegt b-ess

(1)

where & is the set of all entities, and £ and &
are the positive and negative entity sets for a, re-
spectively. The loss function ¢ is a negative log loss
of softmax, ie., ((s(a,b™),s(a,by),...,s(a,b;)) =
es(ap™)

—log — For joint learning the em-

1=1

beddings of genomic interval sets and metadata, a is
a genomic interval set, and b™ is a metadata label
associated with a, and b~ is some other label that is not
associated with a.

85(3=b;)+es(a.b+)

GEO projection

We downloaded 75,575 BED-like files GEO using
geofetch®*. Of these, 32,174 annotate the hg19 genome
assembly, according to the Genome_build column. Since

8- Representation learning of genomic interval sets

our model was trained on hgl9 data, we restricted the
analysis to this subset.

Evaluation metrics

R-precision

R-precision is used to evaluate the quality of r retrieved
items for a given query. If we are given r items for a
query, then the r-precision is defined as the proportion
of the r items that are relevant®’. To evaluate the over-
all quality of multiple queries, we average individual r-
precisions over multiple queries. If our method retrieves
r region sets for the specific search term, then r-precision
is the fraction of relevant region sets in the r-retrieved
region sets.

F1 score

The F1 score®® measures the performance of a classifier,
with 1 being the best and 0 being the worst. It can be
interpreted as a harmonic mean of the precision and re-
call, and thus can be called a balanced evaluation metric.
The F1 score is defined as follows:

2 % Precision x Recall

Flscore = (2)

Precision + Recall

Precision is the fraction of correct predictions among all
positive predictions and is defined as follows

TP

TP+ FP’ 3)

Precision =
where TP means true positive and FP means false posi-
tive predictions. Recall is the fraction of correct predic-
tions among all positive samples and is defined as:

TP

Recall = m7

4)

where FN is the number of false negative predictions.
In a multi-class prediction, we adopt the micro-averaged
F1 score, which calculates globally by treating TP, FP,
and FN as the sum of individual class’s TP, FP, and FN,
respectively. For class ¢, its T'P is interpreted as the num-
ber of samples that are predicted as ¢ and are also from
¢; its F'P is interpreted as the number of samples that are
predicted as ¢ but are from classes other than ¢; its F'N is
interpreted as the number of samples that are predicted
as not ¢ and are also from classes other than c.

Mean Reciprocal Rank

Mean reciprocal rank (MRR) is an information retrieval
measure that evaluates the performance of a retrieval
system. MRR is defined as the average of reciprocal
ranks of all the queries. The reciprocal rank (RR) calcu-
lates the reciprocal of the rank at which the first relevant
item was retrieved®”. For example, in Scenario 1, given
a query label, the relevant region set is retrieved at rank
1, then the RR for this query is 1; if the set is retrieved
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at rank 2, then the RR for this query is 0.5. Formally,
given a query item ¢ from the set of queries Q, its RR
is RR(q) = 1/rank(q). The MRR for multiple queries is
defined as follows,

= 3" RR(g) (5)

MRR(Q) = @
qeQ

where |Q| denotes size of Q.
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Supplementary Figure 1: Global performance trends. A) Heatmap showing the similarity between the cell type label embeddings and the
embeddings of the region sets in the test dataset. The dendrogram depicts relationships among the label embeddings. B) The pair-wise similarity of a
subset of BED file embeddings and their Jaccard similarity is correlated.C) The heatmap plot of the similarity between the test region set embeddings
and the embeddings of the region sets in the training dataset. The model is trained on the cell type labels.
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Supplementary Figure 2: Examples of corrected labels from public data sources. These examples show that the model can be used to A)
complete the labels for files with incomplete labels; B) standardize metadata from different sources; C) identify the most related label when the label
does not exist in the training model; and D) differentiate activating and repressive marks (for repressive marks, no high-confidence label is found).
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