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Abstract 

RNA-sequencing technology provides an effective tool for understanding miRNA regulation 

in complex human diseases, including cancers. A large number of computational methods 

have been developed to make use of bulk and single-cell RNA-sequencing data to identify 

miRNA regulations at the resolution of multiple samples (i.e. group of cells or tissues). 

However, due to the heterogeneity of individual samples, there is a strong need to infer 

miRNA regulation specific to individual samples to uncover miRNA regulation at single-

sample resolution level. Here, we develop a framework, Scan, for scanning sample-specific 

miRNA regulation. Since a single network inference method or strategy cannot perform well 

for all types of new data, Scan incorporates 27 network inference methods and two strategies 

to infer tissue-specific or cell-specific miRNA regulation from bulk or single-cell RNA-
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sequencing data. Results on bulk and single-cell RNA-sequencing data demonstrate the 

effectiveness of Scan in inferring sample-specific miRNA regulation. Moreover, we have 

found that incorporating priori information of miRNA targets can improve the accuracy of 

miRNA target prediction. In addition, Scan can contribute to the clustering cells/tissues and 

construction of cell/tissue correlation networks. Finally, the comparison results have shown 

that the performance of network inference methods is likely to be data-specific, and selecting 

optimal network inference methods is required for more accurate prediction of miRNA 

targets. We have made Scan freely available to the public to help infer sample-specific 

miRNA regulation for new data, benchmark new network inference methods and deepen the 

understanding of miRNA regulation at the resolution of individual samples. 

Introduction 

As a type of regulatory non-coding RNA (ncRNA), microRNA (miRNA, 19-25 nt in length) 

can modulate the expression levels of thousands of coding RNAs, thereby playing a key role 

in biological processes, signaling pathways and pathological processes of human cancers1–3. 

Due to the importance of miRNAs in biological system, they have the potential to be 

biomarkers of human cancers, e.g. breast cancer4, leukemia5 and prostate cancer6 in clinical 

applications. In addition to the miRNA-directed regulation which results in inhibition or 

degradation of messenger RNAs (mRNAs), miRNAs can also act as mediators of the 
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crosstalk between other ncRNAs (e.g. long non-coding RNAs, circular RNAs and 

pseudogenes) and mRNAs7,8. The miRNA-mediated or miRNA-indirect regulation is also 

known as competing endogenous RNA (ceRNA) regulation, and has been demonstrated to be 

involved in the regulatory mechanism of human cancers9–11. 

There are multiple types of biological networks, including gene regulatory network within 

a biological sample (cell or tissue). Among the different types of biological networks, gene 

regulatory network is regarded as an important feature of biological samples, and gives rise to 

the unique characteristics of each biological sample12. In the gene regulation field, miRNA 

regulation has attracted broad attentions on account of its potential clinical translation. 

Therefore, inferring and characterizing miRNA regulation is a central problem for revealing 

miRNA regulatory mechanisms in systems biology. Just like dynamic biological system in a 

biological sample (cell or tissue), miRNA regulation also tends to be dynamic. For example, 

by using bulk and single-cell RNA-sequencing data, existing studies13–17 have found that the 

miRNA regulatory networks are condition-specific, tissue-specific and cell-specific. 

Moreover, it is widely known that biological samples are characterized by heterogeneity, and 

are shown to be unique. Thus, to understand the miRNA regulation specific to biological 

samples (cancer tissues or cells in particular), it is essential to investigate sample-specific 

miRNA regulation (i.e. the miRNA regulatory network for a specific sample). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.554111doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.554111
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

At the single-sample level, previous methods including CeSpGRN12, CSN18, DEVC-net19, 

EdgeBiomarker20, SSN21, LIONESS22, c-CSN23 and LocCSN24 have been presented to 

identify sample-specific gene regulation (one gene regulatory network for one sample), and 

the identified gene regulatory networks with these methods are undirected networks. To infer 

causal regulatory networks (represented as directed networks) specific to individual samples, 

an inference method25 using drift-diffusion processes is also proposed. However, the above 

computational methods12,18–25 are designed for exploring sample-specific transcriptional 

regulation rather than sample-specific miRNA regulation. To study miRNA regulation at 

single-cell level, CSmiR16 is introduced to infer cell-specific miRNA regulation from 

single�cell miRNA�mRNA co�sequencing data (where each single cell is considered as a 

sample). As stated in CSmiR, for single�cell miRNA�mRNA co�sequencing data with less 

than 100 single-cells, CSmiR needs to interpolate pseudo-cells by using a re-sampling 

technique. However, the original single-cell miRNA-mRNA co-sequencing data itself 

contains technical noise (e.g. high dropout rate), thus as a result, the enlarged data by adding 

pseudo-cells may aggravate the technical noise.  

 To model the dynamic regulatory processes of miRNAs at the single-sample level, in this 

work, we propose a Sample-specific miRNA regulation (Scan) framework to scan sample-

specific miRNA regulation from bulk and single-cell RNA-sequencing data. Due to the fact 

that that a single network inference method or strategy does not always perform the best in all 
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types of new data, Scan incorporates 27 network inference methods and two strategies to 

infer tissue-specific or cell-specific miRNA regulation from bulk or single-cell RNA-

sequencing data. Given bulk or single-cell RNA-sequencing data with or without priori 

information of miRNA-mRNA interactions, 27 well-used network inference methods in Scan 

can be used to calculate the strength between miRNAs and mRNAs. Based on the strength 

between miRNAs and mRNAs, Scan adapts two strategies: statistical perturbation21 and 

linear interpolation22 to infer sample-specific miRNA regulatory networks.  

By applying Scan to two RNA-sequencing datasets, a bulk dataset from breast cancer 

tissues, and a single-cell dataset from chronic myelogenous leukemia cells, we demonstrate 

the effectiveness of Scan in terms of accuracy and efficiency of miRNA target prediction. 

Moreover, the performance comparison between with using and without using priori 

information indicates that the priori information of miRNA targets can improve the accuracy 

of miRNA target prediction. We also reveal that Scan can help to cluster samples and 

construct sample correlation network. The comparison with CSmiR shows that with using 

priori information of miRNA targets, Scan mostly has better or similar performance 

compared with CSmiR16 in inferring cell-specific miRNA regulation from the chronic 

myelogenous leukemia dataset. Furthermore, without using priori information of miRNA 

targets, the performance of Scan is mostly better than or comparable to the performance of 

CSmiR in inferring tissue-specific miRNA regulation from the breast cancer dataset. 
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Altogether, Scan provides a useful way to identify sample-specific miRNA regulation in 

human cancers, and can help to elucidate miRNA regulation mechanisms at the resolution of 

individual samples. 

Results 

Sample-specific miRNA regulation (Scan) 

To investigate miRNA regulation at the resolution of single samples, we develop an approach 

called Scan to infer sample-specific miRNA regulation from bulk and single-cell RNA-

sequencing data (Fig. 1). The bulk RNA-sequencing data of 690 breast cancer (BRCA) 

tissues is obtained from The Cancer Genome Atlas (TCGA)26 project, and the single-cell 

RNA-sequencing data of 19 half K562 cells (the first human chronic myeloid leukemia cell 

line) is from the Gene Expression Omnibus (GEO)27 database (Methods). The optional priori 

information of miRNA-mRNA interactions is from two well-known databases: TargetScan 

v8.028 and ENCORI29 (Methods).  

Given bulk or single-cell RNA-sequencing data with or without priori information of 

miRNA-mRNA interactions, Scan apply one of 27 network inference methods (Methods) 

spanning seven types (including Correlation, Distance, Information, Regression, Bayesian, 

Proportionality and Causality) to infer miRNA-mRNA relation matrix. For each sample (cell 

or tissue), Scan needs to infer two miRNA-mRNA relation matrices (one for all samples and 
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the other for all samples except the sample of interest). Based on the two identified miRNA-

mRNA relation matrices, Scan further adapts one strategy (statistical perturbation or linear 

interpolation) to infer miRNA regulatory network specific to the sample of interest (Methods).  

 
Fig. 1 Schematic illustration of Scan. Given bulk or single-cell RNA-sequencing data with or without 
priori information of miRNA-mRNA interactions, Scan applies one of 27 network inference methods 
covering seven types (Correlation, Distance, Information, Regression, Bayesian, Proportionality and 
Causality) to construct miRNA-mRNA relation matrix. By using one of 27 network inference methods, 
Scan constructs two miRNA-mRNA relation matrices (one for all samples and the other for all samples 
except the k-th sample). Then for sample (cell or tissue) k, Scan conducts sample-specific network 
inference from the two constructed miRNA-mRNA relation matrices to infer a miRNA regulatory network 
specific to the sample k. In total, Scan can identify m sample-specific miRNA regulatory networks across 
m samples (one network for one sample).  
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Cell-specific miRNA regulation in K562 

Using the single-cell miRNA-mRNA co-sequencing data in K562, we apply Scan to infer 

cell-specific miRNA regulation across 19 half K562 cells. Scan firstly uses 27 network 

inference methods to infer miRNA-mRNA relation matrices. For each cell, each network 

inference method infers two miRNA-mRNA relation matrices (one for all cells and the other 

for all cells except the cell of interest). Based on the identified miRNA-mRNA relation 

matrices, Scan further applies two strategies Scan.interp (using linear interpolation strategy) 

and Scan.perturb (using statistical perturbation strategy) to construct cell-specific miRNA 

regulatory networks across 19 half K562 cells. To systematically compare the performance of 

different combinations of network inference methods and strategies used, we have analyzed a 

total of 1026 networks: 27 (network inference methods) times 2 (strategies) times 19 (cells). 

We have found that using different network inference methods results in different number of 

cell-specific miRNA-mRNA interactions, and Dcor30 has the largest number of miRNA-

mRNA interactions predicted (Supplementary Fig. 1a and 2a in Supplementary File 1). 

Furthermore, when priori information of miRNA targets is used, more cell-specific miRNA 

regulatory networks are found to have their node degree obey a power law distribution and 

thus are regarded as scale-free networks (Supplementary Fig. 1b and 2b in Supplementary 

File 1). Interestingly, with or without using priori information of miRNA targets, the node 

degree of the identified cell-specific miRNA regulatory networks by Dcor does not follow a 
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power law distribution. In terms of the predicted miRNA-mRNA interactions, the similarity 

of the majority of cell pairs is less than 0.50 (Supplementary Fig. 1c and 2c in 

Supplementary File 1), indicating the heterogeneity of miRNA regulation for each K562 

cell.  

When Scan.interp is used for inferring cell-specific miRNA regulation, using Lasso31 for 

strength calculation gives the best final performance in terms of accuracy and using Bcor32 

leads to the highest efficiency (Fig. 2). Overall, using Canberra33 has the largest overall rank 

score when using Scan.interp for inferring cell-specific miRNA regulation. When 

Scan.perturb is used for inferring cell-specific miRNA regulation, using Lasso also has the 

best final performance in terms of accuracy whereas using Bcor also leads to the highest 

efficiency (Fig. 2). Overall, using Chebyshev34 shows the best overall performance when 

using Scan.perturb for inferring cell-specific miRNA regulation. This result indicates that in 

terms of accuracy and efficiency, Lasso and Bcor are consistent in the K562 dataset 

regardless of which strategy is used for inferring cell-specific miRNA regulation. Although 

the best network inference method (in terms of overall rank score) is different between 

Scan.interp and Scan.perturb, the network inference methods which lead to the best final 

result are all distance based network inference methods. Furthermore, in terms of efficiency, 

the rank scores obtained by using 27 network inference methods between Scan.interp and 

Scan.perturb are consistent (p-value less than 2.22E-16 with Cohen’s kappa). However, in 
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terms of accuracy and overall, the rank scores obtained by using 27 network inference 

methods between Scan.interp and Scan.perturb are not consistent (p-values are 0.53 and 0.69 

with Cohen's kappa, respectively). This result suggests that the performance of the network 

inference methods with the K562 dataset is closely related to the selected strategy for sample-

specific miRNA regulatory networks. 

 
Fig. 2 Performance of each network inference method in K562 using Scan.interp and Scan.perturb. 
Scores for each network inference method are calculated to evaluate the performance of predicting cell-
specific miRNA regulation in terms of accuracy, efficiency and overall. Higher scores and smaller ranks 
denote better performance. The rank is visualized as a clock where clockwise direction indicates 
descending order. 

Tissue-specific miRNA regulation in BRCA 

Using the bulk miRNA and mRNA expression data in BRCA, we apply Scan to infer tissue-

specific miRNA regulation across 690 BRCA tissues. Firstly, Scan uses 22 network inference 

methods (five methods are discarded due to long runtime or large memory usage) to infer 

miRNA-mRNA relation matrices. For each tissue, each network inference method infers two 
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miRNA-mRNA relation matrices (one for all tissues and the other for all tissues except the 

tissue of interest). For Scan.interp and Scan.perturb, Scan generates tissue-specific miRNA 

regulatory networks across 690 BRCA tissues based on the identified miRNA-mRNA 

relation matrices. To systematically evaluate the performance of different combinations of 

network inference methods and strategies used, we have analyzed a total of 30,360 networks: 

22 (network inference methods) times 2 (strategies) times 690 (tissues). We have discovered 

that using different network inference methods leads to different number of tissue-specific 

miRNA-mRNA interactions (Supplementary Fig. 3a and 4a in Supplementary File 1). 

Moreover, when priori information of miRNA targets is used, more tissue-specific miRNA 

regulatory networks are found to have their node degree follow a power law distribution and 

thus are regarded as scale-free networks (Supplementary Fig. 3b and 4b in Supplementary 

File 1). In terms of the predicted miRNA-mRNA interactions, the similarity of most of tissue 

pairs is also less than 0.50 (Supplementary Fig. 3c and 4c in Supplementary File 1), 

revealing the heterogeneity of miRNA regulation for each BRCA tissue. 

When Scan.interp is used for inferring tissue-specific miRNA regulation, using 

GenMiR++35 for strength calculation gives the best final results in terms of accuracy and 

whereas using Bcor32 has the highest efficiency (Fig. 3). Overall, using Phis36 has the largest 

overall rank score when using Scan.interp for inferring tissue-specific miRNA regulation. 

When Scan.perturb is used for inferring tissue-specific miRNA regulation, using Rhop36 
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gives the best final results in terms of accuracy whereas using Bcor also has the highest 

efficiency (Fig. 3). Overall, using Rhop36 displays the best performance when using 

Scan.perturb for inferring tissue-specific miRNA regulation. This result suggests that in terms 

of efficiency, Bcor is consistent in the BRCA dataset regardless of which strategy is used for 

inferring tissue-specific miRNA regulation. Although the best network inference method (in 

terms of overall rank score) is different between Scan.interp and Scan.perturb, the network 

inference methods which lead to the best final result are all proportionality based network 

inference methods. Moreover, in terms of efficiency, the rank scores obtained by using 22 

network inference methods between Scan.interp and Scan.perturb are consistent (p-value less 

than 2.22E-16 with Cohen’s kappa). However, in terms of accuracy and overall, the rank 

scores obtained by using 22 network inference methods between Scan.interp and 

Scan.perturb are not consistent (p-values are 0.58 and 0.75 with Cohen's kappa, respectively). 

This result implies that the performance of the network inference methods with the BRCA 

dataset is also closely associated with the selected strategy.  
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Fig. 3 Performance of each network inference method in BRCA using Scan.interp and Scan.perturb. 
Scores for each network inference method are calculated to evaluate the performance of predicting tissue-
specific miRNA regulation in terms of accuracy, efficiency and overall. Higher scores and smaller ranks 
represent better performance. The rank is visualized as a clock where clockwise direction indicates 
descending order. 

Priori information can improve the accuracy of miRNA target prediction 

To understand whether priori information of miRNA targets can improve the accuracy of 

miRNA target prediction, we compare the average percentage of validated miRNA targets 

predicted by Scan with and without using priori information of miRNA targets. We find that 

incorporating priori information of miRNA targets generally results in a larger average 

percentage of validated miRNA targets in both K562 and BRCA datasets (Fig. 4). Moreover, 

the higher the confidence of the priori information is, generally the larger the average 

percentage of validated miRNA targets in both K562 and BRCA datasets is (Fig. 4). This 

finding demonstrates that the priori information of miRNA targets can improve the accuracy 

of miRNA target prediction. 
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Fig. 4 Validation of sample-specific miRNA regulations with and without using priori information. a 
Validation in the K562 dataset using Scan.interp and Scan.perturb. b Validation in the BRCA dataset using 
Scan.interp and Scan.perturb. 

Clusters of K562 cells and BRCA tissues  

With the K562 dataset, when Scan.interp and Scan.perturb are used together with Canberra 

and Chebyshev respectively, the best result in terms of overall rank score is achieved. For the 

BRCA dataset, when Scan.interp and Scan.perturb are used together with Phis and Rhop 

respectively, the best result in terms of overall rank score is obtained. As a result, we select 

the optimal combinations, Scan.interp_Canberra (Scan.interp with Canberra) and 

Scan.perturb_Chebyshev (Scan.perturb with Chebyshev) for the K562 dataset to infer cell-
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specific miRNA regulatory networks, and Scan.interp_Phis (Scan.interp with Phis) and 

Scan.perturb_Rhop (Scan.perturb with Rhop) for the BRCA dataset to identify tissue-specific 

miRNA regulatory networks. We use the identified cell-specific (or tissue-specific) miRNA 

regulatory networks without using priori information to construct cell-cell (or tissue-tissue) 

similarity matrices. Based on the constructed cell-cell and tissue-tissue similarity matrices, 

we further conduct hierarchical clustering analysis to cluster K562 cells and BRCA tissues, 

respectively (Methods). 

With the K562 dataset, we have three distinct clusters of K562 cells (Fig. 5a and 5b). 

With the BRCA dataset, we obtain five clear clusters of BRCA tissues (Supplementary Fig. 

5a and 5b in Supplementary File 1, Supplementary Data 1). It is noted that the different 

clustering results of K562 cells or BRCA tissues are explained by using different network 

inference methods and different strategies. Since gene regulatory networks (e.g. miRNA 

regulatory networks) are regarded as stable forms to characterize a cell or a tissue37,38, our 

clustering results based on the identified cell-specific or tissue-specific miRNA regulatory 

networks may help to identify novel cell or tissue subtypes. 
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Fig. 5 Clusters of K562 cells. a Clusters of K562 cells, and Scan.interp with Canberra is used to identify 
cell-specific miRNA regulatory networks. b Clusters of K562 cells, and Scan.perturb with Chebyshev is 
used to infer cell-specific miRNA regulatory networks. Each color denotes a cluster. 

Correlation networks of K562 cells and BRCA tissues 

Similar to the clustering of K562 cells and BRCA tissues, we also select the four optimal 

combinations (Scan.interp_Canberra, Scan.perturb_Chebyshev, Scan.interp_Phis, 

Scan.perturb_Rhop) without using priori information to infer cell-specific and tissue-specific 

miRNA regulatory networks respectively for the two datasets. We use the inferred cell-

specific (or tissue-specific) miRNA regulatory networks to generate cell-cell (or tissue-tissue) 

similarity matrices. Based on the generated cell-cell and tissue-tissue similarity matrices, we 

further construct correlation networks of K562 cells and BRCA tissues respectively 

(Methods).  

We have constructed two correlation networks for the K562 cells and two correlation 

networks for the BRCA tissues (Supplementary Data 2). Based on the identified cell-

specific miRNA regulatory networks by Scan.interp_Canberra and Scan.perturb_Chebyshev, 
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the numbers of cell-cell correlation pairs are 171 and 22 respectively for the K562 dataset, 

Based on the identified tissue-specific miRNA regulatory networks by Scan.interp_Phis and 

Scan.perturb_Rhop, the numbers of tissue-tissue correlation pairs are 51,769 and 8805 

respectively for BRCA dataset. Network topological analysis reveals that the node degree of 

the identified cell-cell correlation network (10 nodes and 22 edges) by 

Scan.perturb_Chebyshev obeys a power law distribution (p-value more than 0.99 with 

Kolmogorov-Smirnov test), and the node degrees of two identified tissue-tissue correlation 

networks by Scan.interp_Phis and Scan.perturb_Rhop also follow power law distributions (p-

values more than 0.85 with Kolmogorov-Smirnov test). Additionally, the identified cell-cell 

correlation network (19 nodes and 171 edges) by Scan.interp_Canberra is a fully connected 

network. This result indicates that the identified correlation networks of cells or tissues tend 

to be scale-free or fully connected networks.  

Dynamic and conservative miRNA regulation across K562 cells and BRCA tissues 

We also choose the four optimal combinations (Scan.interp_Canberra, 

Scan.perturb_Chebyshev, Scan.interp_Phis, Scan.perturb_Rhop) without using priori 

information to infer miRNA regulatory networks specific to K562 cells and BRCA tissues.  

Based on the identified cell-specific or tissue-specific miRNA regulatory networks, we 

further investigate the dynamic and conservative miRNA regulation across K562 cells and 

BRCA tissues (Methods).  
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With both K562 and BRCA dataset, the numbers of dynamic and conservative miRNA-

mRNA interactions identified tend to be varying (Supplementary Data 3). With the K562 

dataset, the number of dynamic miRNA-mRNA interactions identified by 

Scan.interp_Canberra (13786) is smaller than that identified by Scan.perturb_Chebyshev 

(77627), but the number of conservative miRNA-mRNA interactions identified by 

Scan.interp_Canberra (6490) is larger than that identified by Scan.perturb_Chebyshev (3213). 

With the BRCA dataset, the numbers of dynamic and conservative miRNA-mRNA 

interactions identified by Scan.interp_Phis (82850 and 29053, respectively) are larger than 

those identified by Scan.perturb_Rhop (5549 and 36, respectively). Moreover, for 

Scan.interp_Canberra, Scan.perturb_Chebyshev, Scan.interp_Phis and Scan.perturb_Rhop, 

the number of miRNAs involved in the dynamic miRNA regulation (45, 212, 163 and 98, 

respectively) is larger than or equal to that of the conservative miRNA regulation (8, 212, 37 

and 25, respectively).  

With the K562 dataset, the node degrees of the identified dynamic and conservative 

miRNA regulatory networks by Scan.interp_Canberra do not follow power law distributions 

(p-values are 2.41E-05 and 3.77E-04 with Kolmogorov-Smirnov test, respectively), but the 

node degrees of the identified dynamic and conservative miRNA regulatory networks by 

Scan.perturb_Chebyshev obey power law distributions (p-values are 1.00 and 0.99 with 

Kolmogorov-Smirnov test, respectively). With the BRCA dataset, the node degrees of the 
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identified dynamic miRNA regulatory networks by Scan.interp_Phis and the identified 

conservative miRNA regulatory networks by Scan.perturb_Rhop follow power law 

distributions (p-values are 0.21 and 1.00 with Kolmogorov-Smirnov test, respectively). 

However, with the BRCA dataset, the node degrees of the identified conservative miRNA 

regulatory networks by Scan.interp_Phis and the identified dynamic miRNA regulatory 

networks by Scan.perturb_Rhop do not obey power law distributions (p-values are 2.77E-33 

and 9.47E-05 with Kolmogorov-Smirnov test, respectively).  

In addition, the numbers of dynamic and conservative hub miRNAs by Scan.interp and 

Scan.perturb are also different (Supplementary Data 4). With the K562 dataset, the number 

of dynamic and conservative hub miRNAs identified by Scan.interp_Canberra (16 and 1, 

respectively) is larger than those identified by Scan.perturb_Chebyshev (0 and 0, 

respectively). With the BRCA dataset, the numbers of dynamic and conservative hub 

miRNAs identified by Scan.interp_Phis (44 and 15, respectively) are larger than those 

identified by Scan.perturb_Rhop (39 and 0, respectively). Furthermore, with the K562 dataset, 

4 out of 16 dynamic hub miRNAs and 1 out of 1 conservative hub miRNA identified by 

Scan.interp_Canberra are confirmed to be CML-related miRNAs. With the BRCA dataset, 38 

out of 44 dynamic hub miRNAs and 15 out of 15 conservative hub miRNAs identified by 

Scan.interp_Phis are confirmed to be BRCA-related miRNAs, and 39 out of 39 dynamic hub 

miRNAs identified by Scan.perturb_Rhop are validated to be BRCA-related miRNAs.  
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Altogether, the above results suggest that the findings of the dynamic and conservative 

miRNA regulation across K562 cells and BRCA tissues depend on the selected network 

inference methods and strategies. 

Performance comparison 

To evaluate the effectiveness of Scan, we compare the performance of Scan (Scan.interp and 

Scan.perturb) with CSmiR16 on the K562 and BRCA datasets. Here, CSmiR is the first 

method to explore miRNA regulation at a single-cell resolution level, so we use it as the 

baseline for comparison. With the K562 dataset, without using priori information of miRNA 

targets, Scan.interp with 8 network inference methods and Scan.perturb with 7 network 

inference methods perform better than CSmiR in terms of accuracy (Fig. 6a). After 

integrating priori information of miRNA targets from TargetScan, Scan.interp with 14 

network inference methods and Scan.perturb with 18 network inference methods perform 

better than CSmiR in terms of accuracy, and after integrating priori information of miRNA 

targets from ENCORL, Scan.interp with 21 network inference methods and Scan.perturb with 

20 network inference methods perform better than CSmiR in terms of accuracy (Fig. 6a). 

This result shows that in terms of accuracy, Scan mostly performs better than or comparable 

to CSmiR with the K562 dataset when using priori information of miRNA targets. 

Furthermore, in terms of efficiency, both Scan.interp and Scan.perturb with all of the network 

inference methods perform better than CSmiR (Fig. 6b).  
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With the BRCA dataset, without using priori information of miRNA targets, Scan.interp 

with 11 network inference methods and Scan.perturb with 12 network inference methods 

perform better than CSmiR in terms of accuracy (Fig. 6c). After integrating priori 

information of miRNA targets from TargetScan, Scan.interp with 7 network inference 

methods and Scan.perturb with 10 network inference methods perform better than CSmiR in 

terms of accuracy, and after integrating priori information of miRNA targets from ENCORL, 

Scan.interp with 4 network inference methods and Scan.perturb with 7 network inference 

methods perform better than CSmiR in terms of accuracy (Fig. 6c). This result shows that in 

terms of accuracy, Scan mostly performs better than or comparable to CSmiR with the BRCA 

dataset when without using priori information of miRNA targets. In addition, in terms of 

efficiency, Scan.interp with 3 network inference methods and Scan.perturb with 9 network 

inference methods perform better than CSmiR (Fig. 6d).  

The above performance comparison suggests that in the small-scale K562 dataset, Scan 

with priori information generally performs better than or comparable to CSmiR in terms of 

accuracy and efficiency. In the large-scale BRCA dataset, Scan without using priori 

information generally performs better than or comparable to CSmiR in terms of accuracy, but 

in terms of efficiency, only a few instances of Scan (Scan with a few network inference 

methods) perform better than CSmiR. The inconsistent result of performance comparison 
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with the two datasets implies that the performance of Scan is more likely to be data-specific, 

and it is necessary to select optimal network inference methods for new data.  

 
Fig. 6 Performance comparison in inferring sample-specific miRNA regulation between Scan.interp, 
Scan.perturb and CSmiR. a Accuracy comparison with the K562 dataset. b Efficiency comparison with 
the K562 dataset. c Accuracy comparison with the BRCA dataset. d Efficiency comparison with the  
BRCA dataset. 

Discussion 

It is well-established that miRNAs are important regulators of gene expression, and their 

dysregulations can lead to the occurrence and development of complex human diseases, 
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including cancers. Yet, the research on miRNA regulation at the resolution of single samples 

(cells or tissues) is still limited. Here, we present the Scan framework, and further show the 

effectiveness of it in inferring sample-specific miRNA regulation. By applying Scan into bulk 

and single-cell RNA-sequencing data, we have discovered that adding priori information of 

miRNA targets can improve the accuracy of miRNA target prediction. By instantiating the 

Scan framework with 27 network inference methods, we have found that the performance of 

Scan instantiated with different network inference methods exhibits to be data-specific. In 

addition, the identified sample-specific miRNA regulatory network by Scan can be used for 

downstream analysis, e.g. clustering samples and constructing sample correlation network. 

The freely available framework Scan provides a useful method for exploring miRNA 

regulation at the resolution of single samples.  

For constructing miRNA-mRNA relation matrix, Scan includes 27 network inference 

methods spanning seven types (Correlation, Distance, Information, Regression, Bayesian, 

Proportionality and Causality). It is noted that other types of computational methods (e.g. 

deep learning39, probabilistic modeling40) can be also plugged into Scan for generating 

miRNA-mRNA relation matrix. To improve the generalization ability of Scan, it is our plan 

to add more types of network inference methods in future. 

When applying Scan to a new data, user can choose one or multiple network inference 

methods according to the rank score in terms of accuracy or efficiency or overall. For 
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example, for the K562 dataset, we can select network inference method Canberra to be used 

with  Scan.interp and Chebyshev with Scan.perturb in terms of overall rank score. But for the 

BRCA dataset, we can select network inference method Phis to be used with Scan.interp and 

Rhop with Scan.perturb in terms of overall rank score.  

We provide two strategies, Scan.interp (linear interpolation strategy) and Scan.perturb 

(statistical perturbation strategy) to infer miRNA regulation specific to single cells or tissues. 

Generally, using the same network inference method, Scan.interp can generate larger cell-

specific or tissue-specific miRNA regulatory networks than those by Scan.perturb. This can 

be explained by the fact that Scan.interp infers cell-specific miRNA regulatory networks with 

differential values (e.g. differential correlation, distance or regression) between all samples 

and all samples except sample k, but Scan.perturb identifies differential miRNA regulatory 

networks between the networks of using all samples and the networks of using all samples 

except sample k (see details in Methods). Moreover, the runtime of Scan.interp and 

Scan.perturb with the K562 and BRCA datasets is similar. For new data, we suggest use both 

Scan.interp and Scan.perturb for comprehensively exploring miRNA regulation specific to 

samples. 

To infer sample-specific miRNA regulation, we have applied Scan into bulk and single-

cell RNA-sequencing data across tumor cells or tissues. Certainly, Scan is also applicable in 

bulk and single-cell RNA-sequencing data across healthy cells or tissues. In future, it will be 
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a meaningful direction to reveal dynamic and conservative miRNA regulation between 

matched tumor and healthy cells or tissues. Moreover, with the advancement of spatial RNA-

sequencing technology41, Scan is also a potential method to explore the heterogeneity of 

miRNA regulation between different spatial positions from spatial RNA-sequencing data.  

When Scan is applied to large-scale transcriptomics data, the process of inferring miRNA-

mRNA relation matrix using network inference methods will be computationally intensive. 

This is a common issue of existing computational methods, including Scan. To alleviate the 

issue, users can allocate more CPU cores to identify miRNA-mRNA relation matrix in 

parallel. Furthermore, users can also use priori information of samples to divide samples into 

several subtypes, and then focus on investigating sample-specific miRNA regulation across 

cells or tissues of each subtype. Finally, selecting a fast network inference method (e.g. 

Pearson and Bcor) is also a feasible way to quickly infer sample-specific miRNA regulation 

from large-scale transcriptomics data.  

In addition to studying miRNA regulation at single-sample resolved level, Scan also can 

be used for other types of gene regulation specific to individual samples, e.g. transcriptional 

regulation, long non-coding RNA regulation, circular RNA regulation and PIWI-interacting 

RNA regulation.  

Since miRNAs play important roles in tumor microenvironments, it is important for us to 

understand the regulation of miRNAs in tumor cells or tissues. In-depth investigation of 
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miRNA regulation specific to individual tumor cells or tissues will help to figure out the 

heterogeneity of tumor microenvironments and discover novel subtypes of tumor cells or 

tissues. 

Methods 

Bulk and single-cell RNA-sequencing data 

From TCGA26, we have obtained the expression data of 894 miRNAs and 19,068 mRNAs in 

690 matching breast cancer tissues. Since epithelial-mesenchymal transition (EMT) is closely 

related to the development, progression and metastasis of breast cancer42–45, we obtain a list 

of 315 EMT signatures46 (Supplementary Data 5) and further divide the matched 690 breast 

cancer tissues into four EMT types (epithelial, intermediate epithelial, intermediate 

mesenchymal and mesenchymal) by using GSVA R package47. As a result, the numbers of 

breast cancer tissues belonging to epithelial, intermediate epithelial, intermediate 

mesenchymal and mesenchymal types are 491, 107, 46 and 46, respectively (Supplementary 

Data 6). By using the limma-trend approach in limma R package48, we have identified 163 

miRNAs and 5801 mRNAs that are differentially expressed between epithelial and 

mesenchymal type (adjusted p-value < 0.01, fold change > 1.5) (Supplementary Data 7). 

Here, the p-values are adjusted by the Benjamini–Hochberg (BH) method49. Therefore, the 
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input bulk RNA-sequencing data used in our case study includes the expression data of 163 

miRNAs and 5801 mRNAs in 690 breast cancer tissues. 

The K562 single-cell RNA-sequencing data (the accession number is GSE114071 in GEO 

database27) includes the expression data of 2822 miRNAs and 21,704 mRNAs in 19 half 

K562 cells (the first human chronic myeloid leukemia cell line). In the single-cell RNA-

sequencing data, we calculate the average expression values of the duplicate miRNAs or 

mRNAs as their ultimate expression values. As a feature selection step, we discard the 

miRNAs or mRNAs with constant expression values, and we are interested in the high 

expression miRNAs or mRNAs with mean values greater than the median of mean values of 

all non-constant expression miRNAs or mRNAs. Moreover, the reserved miRNA data and 

mRNA expression data are then log-transformed. As a result, the input single-cell RNA-

sequencing data used in our case study includes the expression data of 212 miRNAs and 7680 

mRNAs in 19 half K562 cells.  

Priori information of miRNA targets 

To improve the prediction of sample-specific miRNA regulation, the miRNA target 

information in TargetScan v8.028 and ENCORI29 (the pilot version is starBase) is used as 

priori information for Scan. From TargetScan, a list of 235,109 predicted miRNA-mRNA 

interactions has been obtained. To identify miRNA-mRNA interactions, ENCORI provides 

seven prediction tools (PITA50, RNA2251, miRmap52, DIANA-microT53, miRanda54, PicTar55 
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and TargetScan28) for users. To obtain high-confidence miRNA-mRNA interactions, we only 

retain the miRNA-mRNA interactions predicted by at least five prediction algorithms. In total, 

a list of 55,343 high-confidence miRNA-mRNA interactions are obtained from ENCORI.  

Network inference methods 

We select 27 network inference methods (Supplementary Data 8) for constructing miRNA-

mRNA relation matrix: Pearson56, Spearman57, Kendall58, Distance correlation (Dcor)30, 

Random Dependence Coefficient (RDC)59, Hoeffding’s D statistics (Hoeffding)60, Z-score61, 

Biweight midcorrelation (Bcor)32, Weighted rank correlation (Wcor)62, Cosine63, Euclidean64, 

Manhattan65, Canberra33, Chebyshev34, Dice66, Jaccard67, Mahalanobise68, Mutual 

Information (MI)69, Maximal Information Coefficient (MIC)70, Lasso31, Elastic31, Ridge31, 

GenMiR++35, φ (Phit)36, sφ (Phis)36, pρ (Rhop)36, and Intervention calculus when the Directed 

acyclic graph is Absent (IDA)71. These methods can be divided into seven types: Correlation, 

Distance, Information, Regression, Bayesian, Proportionality and Causality. Ten methods 

(Pearson, Spearman, Kendall, Dcor, RDC, Hoeffding, Z-score, Bcor, Wcor and Cosine) 

belong to the Correlation type, seven methods (Euclidean, Manhattan, Canberra, Chebyshev, 

Dice, Jaccard and Mahalanobise) belong to the Distance type, two methods (MI and MIC) are 

of the Information type, three methods (Lasso, Elastic and Ridge) belong to the Regression 

type, three methods (Phit, Phis and Rhop) belong to the Proportionality type, and GenMiR++ 

and IDA are of the Bayesian and Causality types, respectively. 
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Sample-specific network inference 

Given bulk or single-cell RNA-sequencing data with m samples, with or without priori 

information of miRNA-mRNA interactions, Scan constructs two miRNA-mRNA relation 

matrices (one for all samples and the other for all samples except the k-th sample of interest, 

[1, ]k m∈ ) by using one of the network inference methods. The two constructed miRNA-

mRNA relation matrices (of p miRNAs and q mRNAs) for all samples and all samples except 

the k-th sample (denoted as ( )kX  and ( )kY respectively) are as follows. 
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where ( )k
ijX  and ( )k

ijY  represent the connection between mRNA i and miRNA j. 

For the network inference methods which are of the Correlation, Information, Regression, 

Bayesian, Proportionality and Causality types, larger absolute values of ( )k
ijX  and ( )k

ijY

indicate higher connections between  mRNA i and miRNA j. In contrast, for Distance based 

network inference methods, larger absolute values of ( )k
ijX  and ( )k

ijY indicate weaker 

connections between mRNA i and miRNA j. To keep consistency between the constructed 

miRNA-mRNA relation matrices by different types of network inference methods, we 
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transform the two miRNA-mRNA relation matrices ( ( )kX  and ( )kY ) generated by Distance 

based methods into '( )kX  and '( )kY  as follows: 

     '( )
( )

1k q p
k

ij

X
X eps

×⎛ ⎞
= ∈⎜ ⎟⎜ ⎟+⎝ ⎠

�  

       '( )
( )

1k q p
k

ij

Y
Y eps

×⎛ ⎞
= ∈⎜ ⎟⎜ ⎟+⎝ ⎠

�  

where eps refers to the precision of floating numbers (the value is 2.22E-16 in default).  

After transformation, a larger absolute value in a relation matrix generated by any type of 

the network inference methods indicates a higher connection between a miRNA and a 

mRNA.  

Linear interpolation strategy 

Following the use of a network inference method of the Correlation, Information, 

Regression, Bayesian, Proportionality or Causality type to obtain the two constructed 

miRNA-mRNA relation matrices ( ( )kX  and ( )kY ), Scan applies a linear interpolation 

strategy22 to estimate the miRNA-mRNA relation matrix ( )kZ  specific to sample k as follows: 

 ( )

( ) ( ) ( )
11 12 1
( ) ( ) ( )
21 22 2( ) ( ) ( ) ( )

( ) ( ) ( )
1 2

( 1)

k k k
p

k k k
pk k k k q p

ij

k k k
q q qp

Z Z Z

Z Z Z
Z mX m Y Z

Z Z Z

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= − − = = ∈
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L
�

M M O M

L

 

where m denotes the number of samples in bulk or single-cell RNA-sequencing data.  
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When a Distance based network inference method is used to obtain the two constructed 

miRNA-mRNA relation matrices ( '( )kX  and '( )kY ), the miRNA-mRNA relation matrix ( )kZ  

specific to sample k is estimated as: 
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( )k
ijZ is further normalized as: 
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where ( )kμ and ( )kσ  denote the mean value and standard deviation of ( )kZ , and the 

normalized miRNA-mRNA relation matrix '( )kZ  is: 
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Each value of '( )k
ijZ  corresponds to a significance p-value. The p-value is calculated as 

follows: 

( ) '( )1 (| |)k k
ij ijp pnorm Z= −  

where '( )| |k
ijZ  is the absolute value of '( )k

ijZ , and the pnorm function is used to calculate the 

probability a random value from the standard normal distribution being less than '( )| |k
ijZ .  
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Smaller value of ( )k
ijp  indicates that miRNA j is more likely to interact with mRNA i in 

sample k. If the value of ( )k
ijp  is less than a cutoff (e.g. 0.05), miRNA j is considered to 

interact with mRNA i in sample k. 

Statistical perturbation strategy 

For the Correlation, Distance, Information, Regression, Bayesian, Proportionality and 

Causality methods, each value of ( )kX ( '( )kX ) and ( )kY ( '( )kY ) corresponds to a significance p-

value. The corresponding p-value matrices of ( )kX ( '( )kX ) and ( )kY ( '( )kY ) are denoted as ( )k
xp  

and ( )k
yp , respectively.  

( )

( ) ( ) ( )
11 12 1
( ) ( ) ( )
21 22 2( ) ( )

( ) ( ) ( )
1 2

k k k
p

k k k
pk k q p

x ij

k k k
q q qp

x x x

x x x
p x

x x x

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ∈
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L
�

M M O M

L

 

( )

( ) ( ) ( )
11 12 1
( ) ( ) ( )
21 22 2( ) ( )

( ) ( ) ( )
1 2

k k k
p

k k k
pk k q p

y ij

k k k
q q qp

y y y

y y y
p y

y y y

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ∈
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L
�

M M O M

L

 

Smaller value of ( )k
ijx  and ( )k

ijy  indicates that miRNA j is more likely to interact with 

mRNA i in all samples and all samples except k, respectively. Given a p-value cutoff (e.g. 

0.05), we can obtain two zero-one matrices ( )k
xZO  and ( )k

yZO  in all samples and all samples 

except k. Scan further uses a statistical perturbation strategy21 to calculate the miRNA-mRNA 

zero-one matrix ( )kZO  for sample k as follows:  

( ) ( ) ( )( , )k k k
x yZO xor ZO ZO=  
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where xor is the XOR logical function. One value of ( )k
ijZO  indicates that miRNA j interacts 

with mRNA i in sample k, and zero value of ( )k
ijZO  represents that miRNA j doesn’t interact 

with mRNA i in sample k. 

In this work, the cutoff of significant p-value for both linear interpolation and statistical 

perturbation strategies is set to be 0.05 in default. By applying linear interpolation or 

statistical perturbation strategy, Scan can identify m sample-specific miRNA regulatory 

networks across m samples. Each sample-specific miRNA regulatory network is a directed 

graph where the direction of an edge is from a miRNA to a mRNA. 

Degree distribution analysis 

The degree of a node in a sample-specific miRNA regulatory network is the number of 

connections with other nodes, and the degree distribution denotes the probability distribution 

of node degrees over the sample-specific miRNA regulatory network. If the node degree of a 

sample-specific miRNA regulatory network obeys a power law distribution, the network is 

considered as a scale-free network. In this work, we use the R package igraph72 to calculate 

the degree distribution of the identified sample-specific miRNA regulatory networks. The 

Kolmogorov-Smirnov (KS) test73 is used to determine whether the node degree of a sample-

specific miRNA regulatory network obeys a power law distribution. If the p-value of the KS 

test is smaller than a cutoff (e.g. 0.05), the node degree of a sample-specific miRNA 
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regulatory network does not obey a power law distribution, suggesting that the sample-

specific miRNA regulatory network is not a scale-free network, and vice versa. 

Clustering analysis 

We use sample-specific miRNA regulatory networks to compute the similarities between 

samples. In the context of sample-specific miRNA regulatory networks, the similarity 

between samples a and b is calculated in the following. 

| |

(| |,| |)
a b

ab
a b

Net Net
sim

min Net Net
= I

 

where aNet  and bNet  represent the miRNA regulatory networks specific to samples a and b, 

respectively, | |a bNet NetI  is the number of common miRNA-mRNA interactions between 

aNet  and bNet , and (| |, | |)a bmin Net Net  denotes the smaller number of miRNA-mRNA 

interactions between aNet  and bNet .  

For m samples, the sample-sample similarity matrix SM (a symmetric matrix) is: 
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Based on the sample-sample similarity matrix SM, we further conduct clustering analysis 

of samples, e.g. hierarchical clustering analysis. 

Sample correlation network construction 
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In addition to the clustering analysis of samples, the sample-sample similarity matrix is also 

used for sample correlation network construction74. For each sample pair, a higher similarity 

value indicates that the pair of samples is more correlated with each other. We use an 

empirical similarity cutoff (e.g. 0.50) to infer whether two samples are correlated or not. In 

other words, if the similarity value between samples a and b is larger than the cutoff, samples 

a and b are correlated with each other. After assembling the correlated sample pairs, we can 

construct a sample correlation network.  

Dynamic and conservative analysis 

The miRNA-mRNA interaction existing in only one cell or tissue are defined as a dynamic 

miRNA-mRNA interaction, whereas the miRNA-mRNA interaction existing in at least a half 

of cells or tissues are defined as a conservative miRNA-mRNA interaction. Given the 

identified sample-specific miRNA regulatory networks, we can obtain dynamic and 

conservative miRNA-mRNA interactions which form dynamic and conservative miRNA 

regulatory networks, respectively. 

Hub miRNA identification 

Hub miRNAs are defined as highly connected miRNAs in a dynamic and conservative 

miRNA regulatory network. In this work, we use the cumulative probability of Poisson 

distribution to evaluate whether a miRNA is a hub: 

1

0

( ) 1
!

iz

i

e
p d z

i

λλ −−

=

≥ = −∑  
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where npλ = ,
t

p
C

= , n is the number of genes (including miRNAs and mRNAs), t is the 

number of miRNA-mRNA interactions in a dynamic or conservative miRNA regulatory 

network, and C  is the number of all possible miRNA-mRNA interaction pairs. Smaller p-

value of a miRNA shows that the miRNA is more likely to be a hub. Here, the cutoff of the p-

value is set to 0.05. 

Validation analysis 

To understand whether the identified dynamic and conservative hub miRNAs are closely 

associated with CML and BRCA, we get a list of CML-related and BRCA-related miRNAs 

from RNADisease v4.075. As a result, we have obtained 203 CML-related and 1493 BRCA-

related miRNAs (Supplementary Data 9). If a dynamic or conservative hub miRNA is 

overlapped with the list of CML-related or BRCA-related miRNAs, the dynamic or 

conservative hub miRNA is regarded as a CML-related or BRCA-related miRNA. 

Comparison metrics 

We use two metrics (accuracy and efficiency) to compare different instances of Scan using 

different network inference methods, and compare Scan with other methods for inferring 

sample-specific miRNA regulation. For accuracy, the ground truth of miRNA-mRNA 

interactions are acquired from miRTarBase v9.076 and TarBase v8.077 for validation. If a 

method has a larger percentage of validated miRNA-mRNA interactions, the method will 

have higher accuracy. For efficiency, we compare the runtime of different methods in the 
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same bulk or single-cell RNA-sequencing data. If a method takes less runtime in the same 

bulk or single-cell RNA-sequencing data, the method will have better efficiency.  

In terms of accuracy and efficiency, we use an overall rank score78 to evaluate the 

performance of each method. For the method i, the overall rank score orsi is calculated as: 

1 2

1
( )

2i i iors rs rs= +  

where 1irs  and 2irs  denote the rank scores of  method i in terms of accuracy and efficiency, 

respectively.  

A method with higher accuracy or better efficiency will obtain a larger rank score. A 

method with a larger overall rank score is regarded as a better or practical method.  

Method execution 

Each execution of Scan and CSmiR on bulk or single-cell RNA-sequencing data is performed 

in a separate task. Each task is allocated 32 CPU cores of Intel(R) Xeon(R) Platinum 8375C 

CPU at 2.90 GHz, and one R session is opened for each task. The network inference methods 

of Scan with runtime more than 10 days or with memory usage more than 256 GB are 

discarded.  

Data availability 

All accession codes, unique identifiers, and web links for publicly available datasets are 

described in the paper. All data supporting the findings of the current study are listed in 

Supplementary Data and our GitHub website (https://github.com/zhangjunpeng411/Scan/). 
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Code availability 

Scan is released under the GPL-3.0 License, and is available at 

https://github.com/zhangjunpeng411/Scan/. 
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