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Abstract

RNA-sequencing technology provides an effective tool for understanding miRNA regulation
in complex human diseases, including cancers. A large number of computational methods
have been developed to make use of bulk and single-cell RNA-sequencing data to identify
miRNA regulations at the resolution of multiple samples (i.e. group of cells or tissues).
However, due to the heterogeneity of individual samples, there is a strong need to infer
mMiRNA regulation specific to individual samples to uncover miRNA regulation a single-
sample resolution level. Here, we develop a framework, Scan, for scanning sample-specific
miRNA regulation. Since a single network inference method or strategy cannot perform well
for al types of new data, Scan incorporates 27 network inference methods and two strategies

to infer tissue-specific or cell-specific mMIRNA regulation from bulk or single-cell RNA-
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sequencing data. Results on bulk and single-cell RNA-sequencing data demonstrate the
effectiveness of Scan in inferring sample-specific miRNA regulation. Moreover, we have
found that incorporating priori information of mMiRNA targets can improve the accuracy of
miRNA target prediction. In addition, Scan can contribute to the clustering cells/tissues and
construction of cell/tissue correlation networks. Finaly, the comparison results have shown
that the performance of network inference methods is likely to be data-specific, and selecting
optimal network inference methods is required for more accurate prediction of miRNA
targets. We have made Scan freely available to the public to help infer sample-specific

miRNA regulation for new data, benchmark new network inference methods and deepen the

understanding of miRNA regulation at the resolution of individual samples.

Introduction

As a type of regulatory non-coding RNA (ncRNA), microRNA (miRNA, 19-25 nt in length)
can modulate the expression levels of thousands of coding RNAs, thereby playing a key role
in biological processes, signaling pathways and pathological processes of human cancers'™.
Due to the importance of miRNAs in biological system, they have the potential to be
biomarkers of human cancers, e.g. breast cancer’, leukemia® and prostate cancer® in clinical
applications. In addition to the miRNA-directed regulation which results in inhibition or

degradation of messenger RNAs (mMRNAs), miRNAs can also act as mediators of the
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crosstalk between other ncRNAs (e.g. long non-coding RNAs, circular RNAs and
pseudogenes) and mRNAs . The miRNA-mediated or miRNA-indirect regulation is also
known as competing endogenous RNA (ceRNA) regulation, and has been demonstrated to be
involved in the regulatory mechanism of human cancers’™.

There are multiple types of biological networks, including gene regulatory network within
a biological sample (cell or tissue). Among the different types of biological networks, gene
regulatory network is regarded as an important feature of biological samples, and givesrise to
the unique characteristics of each biological sample®. In the gene regulation field, miRNA
regulation has attracted broad attentions on account of its potential clinical translation.
Therefore, inferring and characterizing miRNA regulation is a central problem for revealing
miRNA regulatory mechanisms in systems biology. Just like dynamic biological system in a
biological sample (cell or tissue), miRNA regulation also tends to be dynamic. For example,
by using bulk and single-cell RNA-sequencing data, existing studies™ ™’ have found that the
miRNA regulatory networks are condition-specific, tissue-specific and cell-specific.
Moreover, it is widely known that biological samples are characterized by heterogeneity, and
are shown to be unique. Thus, to understand the miRNA regulation specific to biological
samples (cancer tissues or cells in particular), it is essential to investigate sample-specific

miRNA regulation (i.e. the miRNA regulatory network for a specific sample).
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At the single-sample level, previous methods including CeSpGRN*, CSN*®, DEVC-net®®,
EdgeBiomarker®, SSN#, LIONESS?, c-CSN?® and LocCSN* have been presented to
identify sample-specific gene regulation (one gene regulatory network for one sample), and
the identified gene regulatory networks with these methods are undirected networks. To infer
causal regulatory networks (represented as directed networks) specific to individua samples,
an inference method® using drift-diffusion processes is also proposed. However, the above

computational methods'>*#°

are designed for exploring sample-specific transcriptional
regulation rather than sample-specific miRNA regulation. To study miRNA regulation at
single-cell level, CSmiR™ is introduced to infer cell-specific miRNA regulation from
singlel]cell mIRNA TJmRNA collsequencing data (where each single cell is considered as a
sample). As stated in CSmiR, for singlel’cell miIRNAL mRNA collsequencing data with less
than 100 single-cells, CSmiR needs to interpolate pseudo-cells by using a re-sampling
technique. However, the original single-cell miRNA-mRNA co-sequencing data itself
contains technical noise (e.g. high dropout rate), thus as a result, the enlarged data by adding
pseudo-cells may aggravate the technical noise.

To model the dynamic regulatory processes of miRNAs at the single-sample level, in this
work, we propose a Sample-specific miRNA regulation (Scan) framework to scan sample-
specific mMiRNA regulation from bulk and single-cell RNA-sequencing data. Due to the fact

that that a single network inference method or strategy does not always perform the best in al
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types of new data, Scan incorporates 27 network inference methods and two strategies to
infer tissue-specific or cell-specific mMIRNA regulation from bulk or single-cell RNA-
sequencing data. Given bulk or single-cell RNA-sequencing data with or without priori
information of MIRNA-MRNA interactions, 27 well-used network inference methods in Scan
can be used to calculate the strength between miRNAs and mRNAs. Based on the strength
between miRNAs and mRNAs, Scan adapts two strategies: statistical perturbation” and
linear interpolation® to infer sample-specific miRNA regulatory networks.

By applying Scan to two RNA-sequencing datasets, a bulk dataset from breast cancer
tissues, and a single-cell dataset from chronic myelogenous leukemia cells, we demonstrate
the effectiveness of Scan in terms of accuracy and efficiency of miRNA target prediction.
Moreover, the performance comparison between with using and without using priori
information indicates that the priori information of miRNA targets can improve the accuracy
of miRNA target prediction. We aso revea that Scan can help to cluster samples and
construct sample correlation network. The comparison with CSmiR shows that with using
priori information of mMiIRNA targets, Scan mostly has better or similar performance
compared with CSmiR™ in inferring cell-specific miRNA regulation from the chronic
myelogenous leukemia dataset. Furthermore, without using priori information of miRNA
targets, the performance of Scan is mostly better than or comparable to the performance of

CSmiR in inferring tissue-specific miRNA regulation from the breast cancer dataset.
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Altogether, Scan provides a useful way to identify sample-specific miRNA regulation in

human cancers, and can help to elucidate miRNA regulation mechanisms at the resolution of

individual samples.

Results

Sample-specific miRNA regulation (Scan)

To investigate miRNA regulation at the resolution of single samples, we develop an approach
called Scan to infer sample-specific mMiRNA regulation from bulk and single-cell RNA-
sequencing data (Fig. 1). The bulk RNA-sequencing data of 690 breast cancer (BRCA)
tissues is obtained from The Cancer Genome Atlas (TCGA)® project, and the single-cell
RNA-sequencing data of 19 half K562 cells (the first human chronic myeloid leukemia cell
line) is from the Gene Expression Omnibus (GEO)*’ database (Methods). The optional priori
information of MIRNA-mRNA interactions is from two well-known databases: TargetScan
v8.0”® and ENCORI® (Methods).

Given bulk or single-cell RNA-sequencing data with or without priori information of
miRNA-MRNA interactions, Scan apply one of 27 network inference methods (Methods)
spanning seven types (including Correlation, Distance, Information, Regression, Bayesian,
Proportionality and Causality) to infer miRNA-mRNA relation matrix. For each sample (cell

or tissue), Scan needs to infer two miRNA-mRNA relation matrices (one for al samples and
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the other for all samples except the sample of interest). Based on the two identified miRNA-

MRNA relation matrices, Scan further adapts one strategy (statistical perturbation or linear

interpolation) to infer miRNA regulatory network specific to the sample of interest (Methods).
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Fig. 1 Schematic |IIustrat|on of Scan. Given bulk or smglecell RNA-sequencing data with or without
priori information of MiIRNA-mRNA interactions, Scan applies one of 27 network inference methods
covering seven types (Correlation, Distance, Information, Regression, Bayesian, Proportionality and
Causality) to construct miRNA-mRNA relation matrix. By using one of 27 network inference methods,
Scan constructs two miRNA-mRNA relation matrices (one for al samples and the other for al samples
except the k-th sample). Then for sample (cell or tissue) k, Scan conducts sample-specific network
inference from the two constructed miRNA-mRNA relation matrices to infer amiRNA regulatory network
specific to the sample k. In total, Scan can identify m sample-specific miRNA regulatory networks across
m sampl es (one network for one sample).


https://doi.org/10.1101/2023.08.21.554111
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.554111; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cell-specific miRNA regulation in K562

Using the single-cell mMIRNA-mRNA co-sequencing data in K562, we apply Scan to infer
cell-specific miRNA regulation across 19 half K562 cells. Scan firstly uses 27 network
inference methods to infer miRNA-mRNA relation matrices. For each cell, each network
inference method infers two miRNA-mRNA relation matrices (one for all cells and the other
for al cells except the cell of interest). Based on the identified miRNA-mRNA relation
matrices, Scan further applies two strategies Scan.interp (using linear interpolation strategy)
and Scan.perturb (using statistical perturbation strategy) to construct cell-specific miRNA
regulatory networks across 19 half K562 cells. To systematically compare the performance of
different combinations of network inference methods and strategies used, we have analyzed a
total of 1026 networks: 27 (network inference methods) times 2 (strategies) times 19 (cells).
We have found that using different network inference methods results in different number of
cell-specific mMIRNA-mRNA interactions, and Dcor® has the largest number of miRNA-
mMRNA interactions predicted (Supplementary Fig. 1a and 2a in Supplementary File 1).
Furthermore, when priori information of miRNA targets is used, more cell-specific miRNA
regulatory networks are found to have their node degree obey a power law distribution and
thus are regarded as scale-free networks (Supplementary Fig. 1b and 2b in Supplementary

File 1). Interestingly, with or without using priori information of miRNA targets, the node

degree of the identified cell-specific miRNA regulatory networks by Dcor does not follow a
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power law distribution. In terms of the predicted miRNA-mRNA interactions, the similarity
of the majority of cell pairs is less than 0.50 (Supplementary Fig. 1c and 2c in
Supplementary File 1), indicating the heterogeneity of miRNA regulation for each K562
cell.

When Scan.interp is used for inferring cell-specific miRNA regulation, using Lasso®" for
strength calculation gives the best final performance in terms of accuracy and using Bcor™
leads to the highest efficiency (Fig. 2). Overall, using Canberra® has the largest overall rank
score when using Scan.interp for inferring cell-specific miRNA regulation. When
Scan.perturb is used for inferring cell-specific miRNA regulation, using Lasso aso has the
best final performance in terms of accuracy whereas using Bcor also leads to the highest
efficiency (Fig. 2). Overall, using Chebyshev* shows the best overall performance when
using Scan.perturb for inferring cell-specific mIRNA regulation. This result indicates that in
terms of accuracy and efficiency, Lasso and Bcor are consistent in the K562 dataset
regardless of which strategy is used for inferring cell-specific miRNA regulation. Although
the best network inference method (in terms of overall rank score) is different between
Scan.interp and Scan.perturb, the network inference methods which lead to the best final
result are all distance based network inference methods. Furthermore, in terms of efficiency,
the rank scores obtained by using 27 network inference methods between Scan.interp and

Scan.perturb are consistent (p-value less than 2.22E-16 with Cohen’'s kappa). However, in
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terms of accuracy and overall, the rank scores obtained by using 27 network inference
methods between Scan.interp and Scan.perturb are not consistent (p-values are 0.53 and 0.69
with Cohen's kappa, respectively). This result suggests that the performance of the network

inference methods with the K562 dataset is closely related to the selected strategy for sample-

specific miRNA regulatory networks.

C‘o
/’/-@ /a l/
%

]
—_
o
O
7]

@ Spearman
(@ Kendall

(S@ Dcor
@ (@ Hoeffding

(@ Pearson

Accuracy

i
o P
Efficiency @ DD MO
Overall @ PDO® D DD
2

Rank | 7 142025261921 914221316 1 21012 3

Score
Accuracy (BRDDPDADADDCBDDOOANDI® >
Efficiency @ DADOOV@DCDODDCBA@DD DV DIII

Overall QDDA BDDIDDDIDDOPDDVDIDDIDO®

27
18.33
9.67
1
Rank 718202324117 8/ 415191610 2| 12725 61022 3| 5131211142126

Fig. 2 Performance of each network inference method in K562 using Scan.interp and Scan.perturb.
Scores for each network inference method are calculated to evaluate the performance of predicting cell-
specific miRNA regulation in terms of accuracy, efficiency and overall. Higher scores and smaller ranks
denote better performance. The rank is visualized as a clock where clockwise direction indicates
descending order.
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Tissue-specific miRNA regulation in BRCA

Using the bulk miRNA and mRNA expression datain BRCA, we apply Scan to infer tissue-

specific mMiIRNA regulation across 690 BRCA tissues. Firstly, Scan uses 22 network inference

methods (five methods are discarded due to long runtime or large memory usage) to infer

miRNA-mRNA relation matrices. For each tissue, each network inference method infers two
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mMiRNA-MRNA relation matrices (one for all tissues and the other for all tissues except the
tissue of interest). For Scan.interp and Scan.perturb, Scan generates tissue-specific miRNA
regulatory networks across 690 BRCA tissues based on the identified miRNA-mRNA
relation matrices. To systematically evaluate the performance of different combinations of
network inference methods and strategies used, we have analyzed atotal of 30,360 networks:
22 (network inference methods) times 2 (strategies) times 690 (tissues). We have discovered
that using different network inference methods leads to different number of tissue-specific
mMiRNA-MRNA interactions (Supplementary Fig. 3a and 4a in Supplementary File 1).
Moreover, when priori information of miRNA targets is used, more tissue-specific miRNA
regulatory networks are found to have their node degree follow a power law distribution and
thus are regarded as scale-free networks (Supplementary Fig. 3b and 4b in Supplementary
File 1). In terms of the predicted miRNA-mRNA interactions, the similarity of most of tissue
pairs is aso less than 0.50 (Supplementary Fig. 3c and 4c in Supplementary File 1),
revealing the heterogeneity of miRNA regulation for each BRCA tissue.

When Scan.interp is used for inferring tissue-specific miRNA regulation, using
GenMiR++® for strength calculation gives the best final results in terms of accuracy and
whereas using Beor® has the highest efficiency (Fig. 3). Overall, using Phis® has the largest
overall rank score when using Scan.interp for inferring tissue-specific miRNA regulation.

When Scan.perturb is used for inferring tissue-specific miRNA regulation, using Rhop®

11
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gives the best final results in terms of accuracy whereas using Bcor also has the highest
efficiency (Fig. 3). Overall, using Rhop® displays the best performance when using
Scan.perturb for inferring tissue-specific miRNA regulation. This result suggests that in terms
of efficiency, Bcor is consistent in the BRCA dataset regardless of which strategy is used for
inferring tissue-specific miRNA regulation. Although the best network inference method (in
terms of overall rank score) is different between Scan.interp and Scan.perturb, the network
inference methods which lead to the best final result are all proportionality based network
inference methods. Moreover, in terms of efficiency, the rank scores obtained by using 22
network inference methods between Scan.interp and Scan.perturb are consistent (p-value less
than 2.22E-16 with Cohen’s kappa). However, in terms of accuracy and overal, the rank
scores obtained by using 22 network inference methods between Scan.interp and
Scan.perturb are not consistent (p-values are 0.58 and 0.75 with Cohen's kappa, respectively).

This result implies that the performance of the network inference methods with the BRCA

dataset is also closely associated with the selected strategy.

12
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Fig. 3 Perfor mance of each network inference method in BRCA using Scan.interp and Scan.perturb.
Scores for each network inference method are calculated to evaluate the performance of predicting tissue-
specific mMiRNA regulation in terms of accuracy, efficiency and overall. Higher scores and smaller ranks
represent better performance. The rank is visualized as a clock where clockwise direction indicates
descending order.
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Priori information can improve the accuracy of miRNA target prediction

To understand whether priori information of miRNA targets can improve the accuracy of

mMiRNA target prediction, we compare the average percentage of validated miRNA targets

predicted by Scan with and without using priori information of miRNA targets. We find that

incorporating priori information of MRNA targets generally results in a larger average

percentage of validated miRNA targets in both K562 and BRCA datasets (Fig. 4). Moreover,

the higher the confidence of the priori information is, generally the larger the average

percentage of validated miRNA targets in both K562 and BRCA datasets is (Fig. 4). This

finding demonstrates that the priori information of mMiRNA targets can improve the accuracy

of miRNA target prediction.
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Fig. 4 Validation of sample-specific miRNA regulations with and without using priori information. a
Validation in the K562 dataset using Scan.interp and Scan.perturb. b Validation in the BRCA dataset using
Scan.interp and Scan.perturb.

Clusters of K562 cellsand BRCA tissues

With the K562 dataset, when Scan.interp and Scan.perturb are used together with Canberra

and Chebyshev respectively, the best result in terms of overall rank score is achieved. For the

BRCA dataset, when Scan.interp and Scan.perturb are used together with Phis and Rhop

respectively, the best result in terms of overall rank score is obtained. As a result, we select

the optima combinations, Scan.interp_Canberra (Scan.interp with Canberra) and

Scan.perturb_Chebyshev (Scan.perturb with Chebyshev) for the K562 dataset to infer cell-
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specific mMIRNA regulatory networks, and Scan.interp_Phis (Scan.interp with Phis) and
Scan.perturb_Rhop (Scan.perturb with Rhop) for the BRCA dataset to identify tissue-specific
miRNA regulatory networks. We use the identified cell-specific (or tissue-specific) miRNA
regulatory networks without using priori information to construct cell-cell (or tissue-tissue)
similarity matrices. Based on the constructed cell-cell and tissue-tissue similarity matrices,
we further conduct hierarchical clustering analysis to cluster K562 cells and BRCA tissues,
respectively (Methods).

With the K562 dataset, we have three distinct clusters of K562 cells (Fig. 5a and 5b).
With the BRCA dataset, we obtain five clear clusters of BRCA tissues (Supplementary Fig.
5a and 5b in Supplementary File 1, Supplementary Data 1). It is noted that the different
clustering results of K562 cells or BRCA tissues are explained by using different network
inference methods and different strategies. Since gene regulatory networks (e.g. miRNA

637'38, our

regulatory networks) are regarded as stable forms to characterize a cell or a tissu
clustering results based on the identified cell-specific or tissue-specific miRNA regulatory

networks may help to identify novel cell or tissue subtypes.
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Fig. 5 Clusters of K562 cells. a Clusters of K562 cells, and Scan.interp with Canberrais used to identify
cell-specific miRNA regulatory networks. b Clusters of K562 cells, and Scan.perturb with Chebyshev is
used to infer cell-specific miRNA regulatory networks. Each color denotes a cluster.

Correlation networ ks of K562 cellsand BRCA tissues
Similar to the clustering of K562 cells and BRCA tissues, we also select the four optimal
combinations  (Scan.interp_Canberra, Scan.perturb_Chebyshev, Scan.interp_Phis,
Scan.perturb_Rhop) without using priori information to infer cell-specific and tissue-specific
mMiRNA regulatory networks respectively for the two datasets. We use the inferred cell-
specific (or tissue-specific) miRNA regulatory networks to generate cell-cell (or tissue-tissue)
similarity matrices. Based on the generated cell-cell and tissue-tissue similarity matrices, we
further construct correlation networks of K562 cells and BRCA tissues respectively
(Methods).

We have constructed two correlation networks for the K562 cells and two correlation
networks for the BRCA tissues (Supplementary Data 2). Based on the identified cell-

specific miRNA regulatory networks by Scan.interp_Canberra and Scan.perturb_Chebyshev,
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the numbers of cell-cell correlation pairs are 171 and 22 respectively for the K562 dataset,

Based on the identified tissue-specific miRNA regulatory networks by Scan.interp_Phis and

Scan.perturb_Rhop, the numbers of tissue-tissue correlation pairs are 51,769 and 8805

respectively for BRCA dataset. Network topological analysis reveals that the node degree of

the identified cell-cell correlation network (10 nodes and 22 edges) by

Scan.perturb_Chebyshev obeys a power law distribution (p-value more than 0.99 with

Kolmogorov-Smirnov test), and the node degrees of two identified tissue-tissue correlation

networks by Scan.interp_Phis and Scan.perturb_Rhop also follow power law distributions (p-

values more than 0.85 with Kolmogorov-Smirnov test). Additionally, the identified cell-cell

correlation network (19 nodes and 171 edges) by Scan.interp_Canberra is a fully connected

network. This result indicates that the identified correlation networks of cells or tissues tend

to be scale-free or fully connected networks.

Dynamic and conser vative miRNA regulation across K562 cellsand BRCA tissues

We aso choose the four optima  combinations  (Scan.interp_Canberra,

Scan.perturb_Chebyshev, Scan.interp_Phis, Scan.perturb_Rhop) without using priori

information to infer mMiRNA regulatory networks specific to K562 cells and BRCA tissues.

Based on the identified cell-specific or tissue-specific miRNA regulatory networks, we

further investigate the dynamic and conservative miRNA regulation across K562 cells and

BRCA tissues (Methods).
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With both K562 and BRCA dataset, the numbers of dynamic and conservative miRNA-
MRNA interactions identified tend to be varying (Supplementary Data 3). With the K562
dataset, the number of dynamic mMIRNA-mMRNA interactions identified by
Scan.interp_Canberra (13786) is smaller than that identified by Scan.perturb_Chebyshev
(77627), but the number of conservative miIRNA-mRNA interactions identified by
Scan.interp_Canberra (6490) is larger than that identified by Scan.perturb_Chebyshev (3213).
With the BRCA dataset, the numbers of dynamic and conservative miRNA-mRNA
interactions identified by Scan.interp_Phis (82850 and 29053, respectively) are larger than
those identified by Scan.perturb Rhop (5549 and 36, respectively). Moreover, for
Scan.interp_Canberra, Scan.perturb_Chebyshev, Scan.interp_Phis and Scan.perturb_Rhop,
the number of miRNAs involved in the dynamic miRNA regulation (45, 212, 163 and 98,
respectively) is larger than or equal to that of the conservative miRNA regulation (8, 212, 37
and 25, respectively).

With the K562 dataset, the node degrees of the identified dynamic and conservative
miRNA regulatory networks by Scan.interp_Canberra do not follow power law distributions
(p-values are 2.41E-05 and 3.77E-04 with Kolmogorov-Smirnov test, respectively), but the
node degrees of the identified dynamic and conservative miRNA regulatory networks by
Scan.perturb_Chebyshev obey power law distributions (p-values are 1.00 and 0.99 with

Kolmogorov-Smirnov test, respectively). With the BRCA dataset, the node degrees of the
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identified dynamic miRNA regulatory networks by Scan.interp_Phis and the identified

conservative miRNA regulatory networks by Scan.perturb Rhop follow power law

distributions (p-values are 0.21 and 1.00 with Kolmogorov-Smirnov test, respectively).

However, with the BRCA dataset, the node degrees of the identified conservative miRNA

regulatory networks by Scan.interp_Phis and the identified dynamic miRNA regulatory

networks by Scan.perturb_Rhop do not obey power law distributions (p-values are 2.77E-33

and 9.47E-05 with Kolmogorov-Smirnov test, respectively).

In addition, the numbers of dynamic and conservative hub miRNAs by Scan.interp and

Scan.perturb are also different (Supplementary Data 4). With the K562 dataset, the number

of dynamic and conservative hub miRNAs identified by Scan.interp_Canberra (16 and 1,

respectively) is larger than those identified by Scan.perturb_Chebyshev (0 and O,

respectively). With the BRCA dataset, the numbers of dynamic and conservative hub

miRNAs identified by Scan.interp_Phis (44 and 15, respectively) are larger than those

identified by Scan.perturb_Rhop (39 and 0, respectively). Furthermore, with the K562 dataset,

4 out of 16 dynamic hub miRNAs and 1 out of 1 conservative hub miRNA identified by

Scan.interp_Canberra are confirmed to be CML-related miRNAs. With the BRCA dataset, 38

out of 44 dynamic hub miRNAs and 15 out of 15 conservative hub miRNAS identified by

Scan.interp_Phis are confirmed to be BRCA-related miRNAS, and 39 out of 39 dynamic hub

miRNAs identified by Scan.perturb_Rhop are validated to be BRCA-related miRNAS.
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Altogether, the above results suggest that the findings of the dynamic and conservative
miRNA regulation across K562 cells and BRCA tissues depend on the selected network
inference methods and strategies.

Perfor mance comparison

To evaluate the effectiveness of Scan, we compare the performance of Scan (Scan.interp and
Scan.perturb) with CSmiR™ on the K562 and BRCA datasets. Here, CSmiR is the first
method to explore miRNA regulation at a single-cell resolution level, so we use it as the
baseline for comparison. With the K562 dataset, without using priori information of miRNA
targets, Scan.interp with 8 network inference methods and Scan.perturb with 7 network
inference methods perform better than CSmiR in terms of accuracy (Fig. 6a). After
integrating priori information of MIRNA targets from TargetScan, Scan.interp with 14
network inference methods and Scan.perturb with 18 network inference methods perform
better than CSmiR in terms of accuracy, and after integrating priori information of miRNA
targets from ENCORL, Scan.interp with 21 network inference methods and Scan.perturb with
20 network inference methods perform better than CSmiR in terms of accuracy (Fig. 6a).
This result shows that in terms of accuracy, Scan mostly performs better than or comparable
to CSmiR with the K562 dataset when using priori information of miRNA targets.

Furthermore, in terms of efficiency, both Scan.interp and Scan.perturb with all of the network

inference methods perform better than CSmiR (Fig. 6b).
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With the BRCA dataset, without using priori information of miRNA targets, Scan.interp
with 11 network inference methods and Scan.perturb with 12 network inference methods
perform better than CSmiR in terms of accuracy (Fig. 6c¢). After integrating priori
information of MIRNA targets from TargetScan, Scan.interp with 7 network inference
methods and Scan.perturb with 10 network inference methods perform better than CSmiR in
terms of accuracy, and after integrating priori information of miRNA targets from ENCORL,
Scan.interp with 4 network inference methods and Scan.perturb with 7 network inference
methods perform better than CSmiR in terms of accuracy (Fig. 6¢). This result shows that in
terms of accuracy, Scan mostly performs better than or comparable to CSmiR with the BRCA
dataset when without using priori information of miRNA targets. In addition, in terms of
efficiency, Scan.interp with 3 network inference methods and Scan.perturb with 9 network
inference methods perform better than CSmiR (Fig. 6d).

The above performance comparison suggests that in the small-scale K562 dataset, Scan
with priori information generally performs better than or comparable to CSmiR in terms of
accuracy and efficiency. In the large-scale BRCA dataset, Scan without using priori
information generally performs better than or comparable to CSmiR in terms of accuracy, but
in terms of efficiency, only a few instances of Scan (Scan with a few network inference

methods) perform better than CSmiR. The inconsistent result of performance comparison
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with the two datasets implies that the performance of Scan is more likely to be data-specific,

and it is necessary to select optimal network inference methods for new data.
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Fig. 6 Performance comparison in inferring sample-specific miRNA regulation between Scan.interp,
Scan.perturb and CSmiR. a Accuracy comparison with the K562 dataset. b Efficiency comparison with
the K562 dataset. ¢ Accuracy comparison with the BRCA dataset. d Efficiency comparison with the
BRCA dataset.

Discussion

It is well-established that miIRNASs are important regulators of gene expression, and their

dysregulations can lead to the occurrence and development of complex human diseases,
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including cancers. Y et, the research on miRNA regulation at the resolution of single samples
(cells or tissues) is still limited. Here, we present the Scan framework, and further show the
effectiveness of it in inferring sample-specific miRNA regulation. By applying Scan into bulk
and single-cell RNA-sequencing data, we have discovered that adding priori information of
miRNA targets can improve the accuracy of miRNA target prediction. By instantiating the
Scan framework with 27 network inference methods, we have found that the performance of
Scan instantiated with different network inference methods exhibits to be data-specific. In
addition, the identified sample-specific miRNA regulatory network by Scan can be used for
downstream analysis, e.g. clustering samples and constructing sample correlation network.
The freely available framework Scan provides a useful method for exploring miRNA
regulation at the resolution of single samples.

For constructing miRNA-mRNA relation matrix, Scan includes 27 network inference
methods spanning seven types (Correlation, Distance, Information, Regression, Bayesian,
Proportionality and Causality). It is noted that other types of computational methods (e.g.
deep learning®, probabilistic modeling™®) can be also plugged into Scan for generating
mMiRNA-mMRNA relation matrix. To improve the generalization ability of Scan, it is our plan
to add more types of network inference methods in future.

When applying Scan to a new data, user can choose one or multiple network inference

methods according to the rank score in terms of accuracy or efficiency or overall. For

23


https://doi.org/10.1101/2023.08.21.554111
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.554111; this version posted August 22, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

example, for the K562 dataset, we can select network inference method Canberra to be used

with Scan.interp and Chebyshev with Scan.perturb in terms of overall rank score. But for the

BRCA dataset, we can select network inference method Phis to be used with Scan.interp and

Rhop with Scan.perturb in terms of overall rank score.

We provide two strategies, Scan.interp (linear interpolation strategy) and Scan.perturb

(statistical perturbation strategy) to infer miRNA regulation specific to single cells or tissues.

Generally, using the same network inference method, Scan.interp can generate larger cell-

specific or tissue-specific mMIRNA regulatory networks than those by Scan.perturb. This can

be explained by the fact that Scan.interp infers cell-specific miRNA regulatory networks with

differential values (e.g. differential correlation, distance or regression) between all samples

and all samples except sample k, but Scan.perturb identifies differential miRNA regulatory

networks between the networks of using all samples and the networks of using all samples

except sample k (see details in Methods). Moreover, the runtime of Scan.interp and

Scan.perturb with the K562 and BRCA datasets is similar. For new data, we suggest use both

Scan.interp and Scan.perturb for comprehensively exploring miRNA regulation specific to

samples.

To infer sample-specific miRNA regulation, we have applied Scan into bulk and single-

cell RNA-sequencing data across tumor cells or tissues. Certainly, Scan is also applicable in

bulk and single-cell RNA-sequencing data across healthy cells or tissues. In future, it will be
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a meaningful direction to reveal dynamic and conservative miRNA regulation between
matched tumor and healthy cells or tissues. Moreover, with the advancement of spatial RNA-
sequencing technology™, Scan is also a potential method to explore the heterogeneity of
miRNA regulation between different spatial positions from spatial RNA-sequencing data.

When Scan is applied to large-scale transcriptomics data, the process of inferring miRNA-
mMRNA relation matrix using network inference methods will be computationally intensive.
This is a common issue of existing computational methods, including Scan. To alleviate the
issue, users can allocate more CPU cores to identify miRNA-mRNA relation matrix in
parallel. Furthermore, users can also use priori information of samples to divide samplesinto
several subtypes, and then focus on investigating sample-specific miRNA regulation across
cells or tissues of each subtype. Finally, selecting a fast network inference method (e.g.
Pearson and Bcor) is also a feasible way to quickly infer sample-specific miRNA regulation
from large-scal e transcri ptomi cs data.

In addition to studying miRNA regulation at single-sample resolved level, Scan aso can
be used for other types of gene regulation specific to individual samples, e.g. transcriptional
regulation, long non-coding RNA regulation, circular RNA regulation and PIWI-interacting
RNA regulation.

Since miRNAs play important roles in tumor microenvironments, it is important for us to

understand the regulation of MiRNAS in tumor cells or tissues. In-depth investigation of
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mMiRNA regulation specific to individual tumor cells or tissues will help to figure out the

heterogeneity of tumor microenvironments and discover novel subtypes of tumor cells or

tissues.

Methods

Bulk and single-cell RNA-sequencing data

From TCGA?, we have obtained the expression data of 894 miRNAs and 19,068 mRNAs in
690 matching breast cancer tissues. Since epithelial-mesenchymal transition (EMT) is closely
related to the development, progression and metastasis of breast cancer** ™, we obtain a list
of 315 EMT signatures™ (Supplementary Data 5) and further divide the matched 690 breast
cancer tissues into four EMT types (epithelial, intermediate epithelial, intermediate
mesenchymal and mesenchymal) by using GSVA R package®. As a result, the numbers of
breast cancer tissues belonging to epithelial, intermediate epithelial, intermediate
mesenchymal and mesenchymal types are 491, 107, 46 and 46, respectively (Supplementary
Data 6). By using the limma-trend approach in limma R package®®, we have identified 163
miRNAs and 5801 mRNAs that are differentially expressed between epithelia and
mesenchymal type (adjusted p-value < 0.01, fold change > 1.5) (Supplementary Data 7).

Here, the p-values are adjusted by the Benjamini—Hochberg (BH) method®. Therefore, the
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input bulk RNA-sequencing data used in our case study includes the expression data of 163
miRNAs and 5801 mRNASs in 690 breast cancer tissues.

The K562 single-cell RNA-sequencing data (the accession number is GSE114071 in GEO
database™) includes the expression data of 2822 miRNAs and 21,704 mRNAs in 19 half
K562 cells (the first human chronic myeloid leukemia cell line). In the single-cell RNA-
sequencing data, we calculate the average expression values of the duplicate miRNAs or
MRNAs as their ultimate expression values. As a feature selection step, we discard the
miRNAs or mRNAs with constant expression values, and we are interested in the high
expression miRNAs or mRNAs with mean values greater than the median of mean values of
all non-constant expresson miRNAs or mRNAS. Moreover, the reserved miRNA data and
MRNA expression data are then log-transformed. As a result, the input single-cell RNA-
sequencing data used in our case study includes the expression data of 212 miRNAs and 7680
MRNAs in 19 half K562 cells.

Priori information of miRNA targets

To improve the prediction of sample-specific mIRNA regulation, the miRNA target
information in TargetScan v8.0°° and ENCORI® (the pilot version is starBase) is used as
priori information for Scan. From TargetScan, a list of 235,109 predicted miRNA-mRNA
interactions has been obtained. To identify miRNA-mRNA interactions, ENCORI provides

seven prediction tools (PITA*®, RNA22%", miRmap™, DIANA-microT>?, miRanda™, PicTar>
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and TargetScan®) for users. To obtain high-confidence miRNA-mRNA interactions, we only
retain the miRNA-mRNA interactions predicted by at |east five prediction agorithms. In total,
alist of 55,343 high-confidence miRNA-mRNA interactions are obtained from ENCORI.
Networ k inference methods

We select 27 network inference methods (Supplementary Data 8) for constructing miRNA-
mRNA relation matrix: Pearson®, Spearman®’, Kendall®®, Distance correlation (Dcor)®,
Random Dependence Coefficient (RDC)*°, Hoeffding's D statistics (Hoeffding)®, Z-score™,
Biweight midcorrelation (Bcor)®, Weighted rank correlation (Wcor)®, Cosine®, Euclidean®,
Manhattan®, Canberra®, Chebyshev®, Dice®, Jaccard®’, Mahalanobise®, Mutual
Information (M1)®, Maximal Information Coefficient (MIC)”, Lasso®, Elastic®, Ridge™,
GenMiR++>, ¢ (Phit)*®, ¢, (Phis)*, p, (Rhop)*®, and Intervention calculus when the Directed
acyclic graph is Absent (IDA)™. These methods can be divided into seven types: Correlation,
Distance, Information, Regression, Bayesian, Proportionality and Causality. Ten methods
(Pearson, Spearman, Kendall, Dcor, RDC, Hoeffding, Z-score, Bcor, Wcor and Cosine)
belong to the Correlation type, seven methods (Euclidean, Manhattan, Canberra, Chebyshev,
Dice, Jaccard and Mahalanobise) belong to the Distance type, two methods (M1 and MIC) are
of the Information type, three methods (Lasso, Elastic and Ridge) belong to the Regression
type, three methods (Phit, Phis and Rhop) belong to the Proportionality type, and GenMiR++

and IDA are of the Bayesian and Causality types, respectively.
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Sample-specific network inference

Given bulk or single-cell RNA-sequencing data with m samples, with or without priori
information of MIRNA-mRNA interactions, Scan constructs two miRNA-mRNA relation
matrices (one for all samples and the other for all samples except the k-th sample of interest,
ke [1,m]) by using one of the network inference methods. The two constructed miRNA-
MRNA relation matrices (of p miRNAs and g mRNAS) for all samples and all samples except

the k-th sample (denoted as X* and Y™ respectively) are as follows.

(k) (k) (k)
X11 x12 le
(k) (k) (k)
xto | e Ka o Xap |y e
: : : ij
(k) (k) (k)
qu xq2 qu
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where X and Y represent the connection between mRNA i and miRNA j.

For the network inference methods which are of the Correlation, Information, Regression,
Bayesian, Proportionality and Causality types, larger absolute values of X and Y
indicate higher connections between mRNA i and miRNA j. In contrast, for Distance based

network inference methods, larger absolute values of X and Y indicate weaker
connections between mRNA i and miRNA j. To keep consistency between the constructed

mMiRNA-mRNA relation matrices by different types of network inference methods, we
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transform the two miRNA-mRNA relation matrices (X and Y®) generated by Distance

based methodsinto X ® and Y' asfollows:

X' — 1 e []¥P
X +eps

Y® = S 1 el ®P
Yij +eps

where eps refers to the precision of floating numbers (the value is 2.22E-16 in default).

After transformation, a larger absolute value in a relation matrix generated by any type of
the network inference methods indicates a higher connection between a miRNA and a
MRNA.

Linear inter polation strategy

Following the use of a network inference method of the Correlation, Information,
Regression, Bayesian, Proportionality or Causality type to obtain the two constructed
miRNA-mRNA relation matrices ( X® and Y® ), Scan applies a linear interpolation

strategy® to estimate the miRNA-mRNA relation matrix Z® specific to sample k as follows:

(k) (k) (k)
Zy Ly o le
zw oz 70
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where m denotes the number of samples in bulk or single-cell RNA-sequencing data.
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When a Distance based network inference method is used to obtain the two constructed

miRNA-mRNA relation matrices (X ® and Y™®), the miRNA-mRNA relation matrix Z®

specific to samplek is estimated as:

(k) (k) (k)
Z11 le le
‘ oz 0 700
20 =mx © - (m-qy® =| 7 72 |2 (z0)en e
(k) (k) (k)
qu Zq2 qu
Z{is further normalized as:
(K)_,, (k)
7 ® _ Zij H
i (k)
o

where 4® and o™ denote the mean value and standard deviation of Z® , and the

normalized miRNA-mRNA relation matrix Z® is:

z0 Z9 -z
(k) ) ., (k)
Z'(k) — ZZl ZZZ ZZp — (Z(k) )E [] %P
: : ’ : ]
(k) « ., (k)
qu Zq2 qu

Each value of Z{ corresponds to a significance p-value. The p-value is calculated as
follows:
p{) =1- pnorm(] Z{*' |)
where | Z{ | is the absolute value of Z{, and the pnorm function is used to calculate the

probability a random value from the standard normal distribution being less than | Z{ |.
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Smaller value of p{ indicates that miRNA j is more likely to interact with mRNA i in

sample k. If the value of p{ is less than a cutoff (e.g. 0.05), MIRNA j is considered to
interact with mRNA i in sample k.
Statistical perturbation strategy

For the Correlation, Distance, Information, Regression, Bayesian, Proportionality and
Causality methods, each value of X® (X' ®) and Y™ ('Y'™) corresponds to a significance p-

value. The corresponding p-value matrices of X® (X' ®) and Y™ (Y'™) are denoted as p*

X

and p, respectively.

y

(k) (k) (k)

X9 x5 X

ML .
SRR
vy vy yiy)

pilk): Y%l;) y%;) y%i;) :(yi(jk))Equp
WA

Smaller value of x and y{ indicates that miRNA j is more likely to interact with

mRNA i in al samples and all samples except k, respectively. Given a p-value cutoff (e.g.
0.05), we can obtain two zero-one matrices ZO{ and ZO{ in all samples and all samples
except k. Scan further uses a statistical perturbation strategy* to calculate the miRNA-mRNA
zero-one matrix ZOY for sample k as follows:

Z0™ = xor (ZO®,ZOM)

X
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where xor is the XOR logical function. One value of ZO{ indicates that miRNA j interacts
with mRNA i in sample k, and zero value of ZO{ represents that miRNA j doesn’t interact
with mRNA i in samplek.

In this work, the cutoff of significant p-value for both linear interpolation and statistical
perturbation strategies is set to be 0.05 in default. By applying linear interpolation or
statistical perturbation strategy, Scan can identify m sample-specific miRNA regulatory
networks across m samples. Each sample-specific miRNA regulatory network is a directed
graph where the direction of an edgeis from amiRNA to amRNA.

Degreedistribution analysis

The degree of a node in a sample-specific mMiRNA regulatory network is the number of
connections with other nodes, and the degree distribution denotes the probability distribution
of node degrees over the sample-specific miRNA regulatory network. If the node degree of a
sample-specific miRNA regulatory network obeys a power law distribution, the network is
considered as a scale-free network. In this work, we use the R package igraph’ to calculate
the degree distribution of the identified sample-specific miRNA regulatory networks. The
K olmogorov-Smirnov (KS) test” is used to determine whether the node degree of a sample-
specific miRNA regulatory network obeys a power law distribution. If the p-value of the KS

test is smaller than a cutoff (e.g. 0.05), the node degree of a sample-specific miRNA

33


https://doi.org/10.1101/2023.08.21.554111
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.554111; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

regulatory network does not obey a power law distribution, suggesting that the sample-

specific miRNA regulatory network is not a scale-free network, and vice versa

Clustering analysis

We use sample-specific miRNA regulatory networks to compute the similarities between

samples. In the context of sample-specific miRNA regulatory networks, the similarity

between samples a and b is calculated in the following.

| NEta ﬂ Netb |
min(| Net, || Net, |)

sm, =
where Net, and Net, represent the miRNA regulatory networks specific to samples a and b,
respectively, | Net, (N Net, | is the number of common miIRNA-mRNA interactions between
Net, and Net, , and min(| Net, |,| Net, |) denotes the smaller number of miRNA-mRNA

interactions between Net, and Net, .
For m samples, the sample-sample similarity matrix SM (a symmetric matrix) is:

Simn Simn Sirnlm

M = S|r:T121 S”;nzz Ser]zm =(sirT1ab)eF”‘x”‘

sim, sm,, - sm,,
Based on the sample-sample similarity matrix SM, we further conduct clustering analysis

of samples, e.g. hierarchical clustering analysis.

Sample correlation network construction


https://doi.org/10.1101/2023.08.21.554111
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.554111; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In addition to the clustering analysis of samples, the sample-sample similarity matrix is also
used for sample correlation network construction’. For each sample pair, a higher similarity
value indicates that the pair of samples is more correlated with each other. We use an
empirical similarity cutoff (e.g. 0.50) to infer whether two samples are correlated or not. In
other words, if the similarity value between samples a and b is larger than the cutoff, samples
a and b are correlated with each other. After assembling the correlated sample pairs, we can
construct a sample correlation network.

Dynamic and conser vative analysis

The miRNA-mRNA interaction existing in only one cell or tissue are defined as a dynamic
mMiRNA-mRNA interaction, whereas the miRNA-mRNA interaction existing in at least a half
of cells or tissues are defined as a conservative miRNA-mRNA interaction. Given the
identified sample-specific miRNA regulatory networks, we can obtain dynamic and
conservative miRNA-mRNA interactions which form dynamic and conservative miRNA
regulatory networks, respectively.

Hub miRNA identification

Hub miRNAs are defined as highly connected miRNAs in a dynamic and conservative
miRNA regulatory network. In this work, we use the cumulative probability of Poisson

distribution to evaluate whether amiRNA is ahub:

z-1 i e—ﬂ

p(d > z):l—z |
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where A =np, p:é, n is the number of genes (including MiRNAs and mRNAs), t is the
number of MIRNA-mRNA interactions in a dynamic or conservative miRNA regulatory
network, and C is the number of al possible miRNA-mRNA interaction pairs. Smaller p-
value of amiRNA shows that the miRNA is more likely to be a hub. Here, the cutoff of the p-
valueis set to 0.05.
Validation analysis
To understand whether the identified dynamic and conservative hub miRNAs are closely
associated with CML and BRCA, we get a list of CML-related and BRCA-related miRNAs
from RNADisease v4.0”. As a result, we have obtained 203 CML-related and 1493 BRCA-
related miRNAs (Supplementary Data 9). If a dynamic or conservative hub miRNA is
overlapped with the list of CML-related or BRCA-related miRNAs, the dynamic or
conservative hub miRNA is regarded asa CML-related or BRCA-related miRNA.
Comparison metrics
We use two metrics (accuracy and efficiency) to compare different instances of Scan using
different network inference methods, and compare Scan with other methods for inferring
sample-specific miRNA regulation. For accuracy, the ground truth of miRNA-mRNA
interactions are acquired from miRTarBase v9.0° and TarBase v8.0"’ for validation. If a
method has a larger percentage of validated miRNA-mRNA interactions, the method will

have higher accuracy. For efficiency, we compare the runtime of different methods in the
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same bulk or single-cell RNA-sequencing data. If a method takes less runtime in the same
bulk or single-cell RNA-sequencing data, the method will have better efficiency.

In terms of accuracy and efficiency, we use an overall rank score™ to evaluate the
performance of each method. For the method i, the overall rank score ors is calculated as:

ors =%(rs11+rs12)

where rs, and rs, denote the rank scores of method i in terms of accuracy and efficiency,
respectively.

A method with higher accuracy or better efficiency will obtain a larger rank score. A
method with alarger overall rank score is regarded as a better or practical method.
Method execution
Each execution of Scan and CSmiR on bulk or single-cell RNA-sequencing data is performed
in a separate task. Each task is allocated 32 CPU cores of Intel(R) Xeon(R) Platinum 8375C
CPU at 2.90 GHz, and one R session is opened for each task. The network inference methods
of Scan with runtime more than 10 days or with memory usage more than 256 GB are
discarded.
Data availability
All accession codes, unique identifiers, and web links for publicly available datasets are
described in the paper. All data supporting the findings of the current study are listed in

Supplementary Data and our GitHub website (https://github.com/zhangjunpeng411/Scan/).
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Code availability

Scan is released under the GPL-3.0 License, and is available at

https://github.com/zhangjunpeng411/Scan.
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