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Abstract 
Perception and behaviour are significantly moulded by 

expectations derived from our prior knowledge. Hierarchical 

predictive processing theories provide a principled account of 

the neural mechanisms underpinning these processes, 

casting perception as a hierarchical inference process. While 

numerous studies have shown stronger neural activity for 

surprising inputs, in line with this account, it is unclear what 

predictions are made across the cortical hierarchy, and 

therefore what kind of surprise drives this upregulation of 

activity. Here we leveraged fMRI and visual dissimilarity 

metrics derived from a deep neural network to arbitrate 

between two hypotheses: prediction errors may signal a local 

mismatch between input and expectation at each level of the 

cortical hierarchy, or prediction errors may incorporate 

feedback signals and thereby inherit complex tuning 

properties from higher areas. Our results are in line with this 

second hypothesis. Prediction errors in both low- and high-

level visual cortex primarily scaled with high-level, but not low-

level, visual surprise. This scaling with high-level surprise in 

early visual cortex strongly diverges from feedforward tuning, 

indicating a shift induced by predictive contexts. 

Mechanistically, our results suggest that high-level predictions 

may help constrain perceptual interpretations in earlier areas 

thereby aiding perceptual inference. Combined, our results 

elucidate the feature tuning of visual prediction errors and 

bolster a core hypothesis of hierarchical predictive processing 

theories, that predictions are relayed top-down to facilitate 

perception. 

 

 

Introduction 
Predictive processing (PP) theories  promise to provide a 

principled account of cortical computation (Bastos et al., 2012; 

Friston, 2005, 2009; Rao & Ballard, 1999). One critical 

ingredient of PP is the computation of prediction errors, i.e. 

the mismatch between prediction, usually thought of as a top-

down signal, and bottom-up input. Such prediction errors then 

serve as input to the next level in the cortical hierarchy. The 

brain minimizes prediction errors by recurrently updating its 

predictions. This process enables the formation of a coherent, 

stable, and efficient representation of the world. Despite 

variations in specific predictive processing implementations 

(Ali et al., 2022; Bastos et al., 2012; Friston, 2005, 2009; Rao 

& Ballard, 1999; Spratling, 2017), the core concept of 

prediction error computation is ubiquitous and supported by 

many empirical observations. For instance, after visual 

statistical learning, visual cortex is sensitive to the likelihood 

of an object's appearance. In particular, activity throughout the 

ventral visual stream has been shown to be attenuated to 

expected compared to unexpected appearances of the same 

stimuli (Egner et al., 2010; Kaposvari et al., 2018; Kok et al., 

2012; Richter & de Lange, 2019; Utzerath et al., 2017). This 

attenuation, also known as expectation suppression, has 

been observed across different species and modalities (de 

Lange et al., 2018; Keller & Mrsic-Flogel, 2018; Walsh et al., 

2020) and occurs also when predictions and stimuli are task-

irrelevant (Meyer & Olson, 2011; Ramachandran et al., 2016; 

Richter et al., 2018; Schneider et al., 2018). Combined, 

expectation suppression has frequently been interpreted in 

the context of PP as reflecting larger prediction errors for 

unexpected stimuli, and thus taken as crucial evidence that 

perception fundamentally relies on prediction (de Lange et al., 

2018; Walsh et al., 2020). 

 If prediction and prediction error computations underlie 

perceptual inference, as suggested by PP theories, we can 

stipulate that cortical predictions and the associated 

prediction error signatures must reflect stimulus features that 

are represented in the respective cortical area. For example, 

prediction errors in primary visual cortex (V1) may signal 

deviations from expectation in terms of simple features such 

as stimulus orientation, edges and contrasts – i.e., visual 

features that V1 neurons are tuned to (Hubel & Wiesel, 1962). 

On the other hand, prediction errors in higher visual areas 

(HVC), for instance in fusiform gyrus, may reflect more 

complex high-level visual features, such as object identities, 

spatial relationships between object parts and more abstract 

concepts such as faces, commonly represented in those 

areas (Kanwisher et al., 1997; Kravitz et al., 2013; 

Kriegeskorte et al., 2008). This account suggests that 

prediction errors mirror local feature tuning, unique to each 

visual cortical area. While some studies have provided indirect 

support for the feature specificity of sensory prediction errors 

by investigating tuning specific modulations (Kok et al., 2012; 

Richter et al., 2022; Yon et al., 2018), little evidence directly 

shows which visual feature surprise, if in fact any, is reflected 

in visual prediction errors.  

 In contrast to local feature tuning, prediction error tuning 

may be inherited top-down. Top-down inheritance is in line 

with hierarchical PP, because predictions are proposed to be 

relayed top-down from higher to lower visual areas (Friston, 

2005), and thus lower visual areas may come to reflect tuning 

properties of higher areas in predictive contexts due to the 

top-down prediction signals. Empirical support for this notion 
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has been obtained in the macaque face 

processing system (Schwiedrzik & Freiwald, 

2017). Schwiedrzik and Freiwald (2017) 

showed that early areas in the macaque face 

processing hierarchy inherit viewpoint 

invariance from later areas when faces are 

shown in a predictable context. However, 

whether a similar principle of top-down 

prediction error tuning inheritance applies 

across species, to stimuli outside the domain 

of faces and viewpoints, and importantly 

across the visual hierarchy remains unknown. 

Given that prediction error computation is 

a core mechanism of PP it is crucial to 

characterize what kind of visual surprise is 

tracked by the visual system. Here we aimed 

to close this gap by exploring features 

reflected in the visual surprise response after 

statistical learning. Specifically, we asked (1) 

whether prediction errors come to reflect any 

visual feature tuning in predictive contexts, and if so, whether 

(2) this tuning is in line with the local visual features or 

inherited top-down. To do so, we exposed human volunteers 

to images that were either expected or unexpected in terms of 

their identity, given a preceding cue, while recording whole-

brain fMRI. To quantify visual feature surprise across multiple 

levels of description we used representational dissimilarity 

metrics derived from a visual deep neural network (DNN). Our 

results demonstrate that neural responses across multiple 

visual cortical areas monotonically increased with how 

visually dissimilar a surprising object was compared to the 

expected object. Crucially, high-level visual dissimilarity 

accounted for the surprise induced increase of neural 

responses, including in the earliest visual cortical area, V1. 

Prediction errors thus appear to reflect surprise primarily in 

terms of high-level visual features, demonstrating that earlier 

visual areas inherit feature tuning usually associated with 

higher visual areas in predictive contexts, presumably due to 

feedback signals.  

 

 

Results 
Human volunteers (n = 33) viewed images that could contain 

either animate or inanimate entities. Each image was 

preceded by a letter cue that probabilistically predicted the 

identity of the image. The expected image was seven times 

more likely to follow its associated letter cue compared to 

each of the seven unexpected images. Participants were 

tasked to classify the content of the image as animate or 

inanimate. Further details are in the Methods: Stimuli and 

experimental paradigm section. 

 

Behavioral facilitation by valid prediction 

Participants were faster and more accurate when categorizing 

expected compared to unexpected images (Figure 1). 

Response times to expected images were faster by an 

average of 16 ms (Wilcoxon signed rank test: W(32) = 15, z = -

4.74, p < 0.001, r = -0.947) and more accurate by 1.1% 

(Wilcoxon signed rank test: W(32) = 425.5, z = 2.59, p = 0.010, 

r = 0.517). This behavioural facilitation thus demonstrated that 

participants learned and used the underlying statistical 

regularities to predict inputs. Moreover, accuracy in general 

was very high (> 95%), indicating effective task compliance. 

 

Deep neural network models mirror a gradient from low-

to-high level visual features in visual cortex 

While (visual) DNNs have been used to successfully explain 

a variety of neural data (Doerig et al., 2023), we first ensured 

that the specific feature models utilized here were able to 

explain visual responses in our data in a prediction-free 

context. Specifically, we extracted the correlation distance 

between images from an implementation of AlexNet trained 

on ecoset (Mehrer et al., 2021). Then we performed 

representational similarity analysis (RSA) using the 

representational distances derived from the DNN layers and 

from the fMRI data obtained during localizer runs. During 

these runs each image was presented in isolation, without 

preceding cue and without predictive associations between 

the images. To assess possible contributions of all DNN 

layers we repeated this analysis using representational 

dissimilarity matrices (RDMs) from each of the DNN layers 

separately. Finally, for each voxel (sphere searchlight) we 

determined the best DNN layer for explaining neural variance 

based on the RSA results (correlation coefficient). 

 Results (Figure 2), showed a gradient from early to higher 

visual cortex with the corresponding early to late DNN layers 

best explaining neural variance. Specifically, early visual 

cortex (EVC) responses were best explained by early layers 

of the DNN (mostly layers 2-3), intermediate visual areas such 

as lateral occipital complex (LOC) by intermediate layers 

(mostly layers 4-6), and HVC responses, for example in the 

fusiform gyrus, were best explained by late layers of the DNN 

(layers 7-8). These outcomes affirm previous reports (Guclu 

& van Gerven, 2015; Mehrer et al., 2021) and validate that our 

visual feature models, including the low-level (layer 2) and 

high-level visual model (layer 8), accounted for cortical 

variance elicited by visual stimulation in an expected pattern 

of a low-to-high level gradient. 

Figure 1. Behavioural facilitation due to prediction. A) Reaction times (RT) to 
expected objects were faster compared to unexpected images. B) Accuracy of 
responses was high overall, but responses were more accurate to expected 
compared to unexpected images. *** p < 0.001, ** p < 0.01. 
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Figure 2. Representational similarity analysis of visual responses in prediction-free contexts. Results show that (feedforward) visual 
responses during the prediction-free localizer were best explained by a gradient of low-level to high-level visual features going up the ventral 
visual hierarchy. Cold colors (purple – blue) represent early DNN layers (i.e., low-level visual features), which dominated neural responses in 
EVC. Warm colors (yellow – red) indicate late DNN layers (i.e., high-level visual features), which best accounted for neural responses in HVC. 
Analysis was masked to visual cortex and thresholded at z > 3.1 (p < 0.001, uncorrected) of the RSA.

Prediction errors scale with high-level, but not low-level 

visual feature dissimilarity 

Next, we turned our attention to the nature of prediction 

errors, asking which visual features, if any, they reflect across 

multiple regions along the ventral visual hierarchy. Figure 3 

illustrates the analysis rationale. If low-level visual features, 

such as local oriented edges and spatial frequency, are 

predicted in a specific cortical area (e.g., V1) then prediction 

error magnitudes should scale with low-level surprise in that 

area. As an example, expecting a specific image of a guitar 

but seeing an image of another guitar from a different angle 

should yield a large prediction error as the two images are 

different from a low-level visual feature standpoint. On the 

other hand, if high-level visual features, such as more abstract 

and general guitar features (e.g., a neck and guitar body) are 

predicted, invariant to local orientation, then the unexpected 

guitar should not yield a strong prediction error, whereas 

seeing an image of an unexpected category should result in 

a large prediction error (even if low-level features are similar). 

Based on our analyses of DNN alignment with fMRI localizer 

data and prior work (Mehrer et al., 2021), we decided to use 

layer 2 of the visual DNN as low-level feature model, and layer 

8  (before softmax of the output layer) as high-level visual 

feature models. This allowed for maximal differentiation of the 

low- vs high-level models. To model how the BOLD response 

changed as a function of how visually surprising an 

unexpected stimulus was in terms of low-level (layer 2) and 

high-level (layer 8) visual features respectively, we used the 

dissimilarity of each surprising image, compared to the 

stimulus expected on that trial, as parametric modulators in 

the fMRI GLM analysis (for details see Methods: Data 

analysis). In addition, we included multiple control variables, 

such as task-relevant stimulus animacy and word-level 

(semantic) dissimilarity. 

 Results, depicted in Figure 4A, demonstrated that surprise 

responses scaled significantly with high-level visual 

dissimilarity (layer 8) in visual cortex, encompassing early and 

intermediate visual areas (cluster size 779 voxel, 6232 mm3; 

Supplementary Table 1 contains additional details). That is, 

the more an unexpected stimulus diverged from the expected 

image in terms of high-level visual features, the more the 

sensory response increased in magnitude. Surprisingly, we 

did not find any modulation of neural responses by low-level 

visual dissimilarity (layer 2) anywhere in visual cortex. In other 

words, even in EVC prediction error magnitudes were 

modulated by high-level but not low-level visual surprise, as 

indexed by layer 2. In the example in Figure 3A this 

corresponds to the unexpected image of the elephant eliciting 

a larger prediction error in V1 compared to the unexpected 

guitar. On the other hand, the low-level surprise elicited by the 

unexpected guitar would not result in an additional 

upregulation of prediction errors in visual cortex beyond the 

associated high-level visual surprise. 

 Our whole-brain results were corroborated by an ROI 

analysis, depicted in Figure 4B. Results showed a strong 

difference between high- and low-level visual feature models 

in modulating BOLD surprise responses (main effect of 

model: F(1,32) = 22.70, p < 0.001, ��
� = 0.42). We found reliable 

modulations of surprise responses by high-level visual, but no 

significant modulation by low-level visual features, in primary 

visual cortex (V1: Layer 8: t(32) = 6.79, p < 0.001, d = 1.18; 

Layer 2: W = 190, p = 0.159, d = -0.32, BF10 = 0.58), 

intermediate visual areas in the lateral occipital complex 

(LOC: Layer 8: W = 126, p = 0.017, d = 0.55; Layer 2: t(32) = -

0.68, p = 0.504, d = -0.12, BF10 = 0.23) and high-level visual 

cortex (HVC: Layer 8: t(32) = 2.59, p = 0.029, d = 0.45; Layer 

2: t(32) = -0.70, p = 0.586, d = -0.12, BF10 = 0.23). Contrasting 

the modulation by layer 8 against layer 2 dissimilarity 

confirmed that layer 8 modulated visual surprise responses 

significantly more than layer 2 in V1 (t(32) = 8.05, p < 0.001, d 

= 1.40), LOC (t(32) = 4.24, p = 0.003, d = 0.74), and HVC (t(32) 

= 2.85, p = 0.008, d = 0.50). Hence, the larger the visual 

dissimilarity of a surprising stimulus in terms of high-level 

visual features, the more vigorous the visual response across 

the ventral visual stream, including V1. No corresponding 

modulation by low-level visual features was observed, 

suggesting that high-level features are predominantly 

reflected in visual prediction error signals.  

 In a subsequent analysis, we asked which DNN layer 

explained most neural variance of the prediction error 

response. We analyzed how neural responses to unexpected 

stimuli were scaled as a function of surprise indexed by each 

layer of the DNN. To this end we regressed layer 1-8 
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Figure 3. Analytical approach. A) If you expect to see the first guitar on the left, what kind of visual features does visual cortex predict? Low-
level visual features, illustrated next to the expected image, concern local oriented edges, spatial frequency, and similar properties. High-level 
visual features entail more abstract visual representations, core object parts and their relationships, such as features shared by all instances of 
an object, irrespective of the specific depiction. Depending on which features are predicted, the two ‘seen’ images will result in different prediction 
error magnitudes. The image of the elephant is very different in high-level visual features, but shares some local orientation with the expected 
guitar, hence resulting primarily in high-level visual surprise. On the other hand, the image of the other guitar is very different in terms of low-
level visual features, as it is differently rotated compared to the expected guitar, but it is still a guitar and thus shares high-level visual features. 
The key question of the analysis is whether and where in the visual system low-level or high-level surprise results in larger prediction errors. B) 
Analysis procedure. The left side shows a single trial with a letter cue predicting a specific image. Below multiple unexpected images are 
illustrated, which were presented on other trials. The right side depicts the extraction of low-level and high-level visual feature dissimilarity from 
layer 2 (low-level) and layer 8 (high-level) of the visual DNN. Dissimilarity of the unexpected seen image compared to the expected stimulus 
was then added as a parametric modulator in the first level GLMs of the fMRI analysis. The graph at the bottom uses data from an example 
participant to illustrate how BOLD responses in V1 (ordinate) are modulated as a function of low-level (blue) and high-level (red) visual 
dissimilarity (abscissa). A positive slope thus indicates that the more dissimilar a seen image was relative to the expected stimulus the more 
vigorous the neural response. In the example data, the image of the unexpected elephant would hence result in larger prediction errors compared 
to the image of the unexpected guitar, because of the larger high-level surprise. Additional control variables for task relevance (animacy) and 
word meaning, discussed in more detail later, were also included. We performed this parametric modulation analysis in a voxel-wise fashion 
across the whole brain.
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Figure 4. Prediction error magnitude scales with high-level visual feature surprise. A) Whole-brain results assessing the modulation of 
surprise responses as a function of high-level (top row) and low-level (bottom row) visual feature dissimilarity. The top row shows that surprise 
responses to unexpected images were increased if the image was more distant from the expected image in terms of high-level visual features. 
Colour indicates the beta parameter estimate of the parametric modulation, with red and yellow representing increased responses. Black outlines 
denote statistically significant clusters (GRF cluster corrected). No significant modulation of sensory responses was observed by low-level visual 
surprise. B) ROI analysis zooming in on ROIs in early visual (V1), intermediate (LOC) and higher visual cortex (HVC; encompassing occipito-
temporal sulcus and fusiform cortex). Results mirror those of the whole-brain analysis, with significant modulations of the visual responses by 
high-level visual surprise, but not low-level visual surprise. P values are FDR corrected. *** p < 0.001, * p < 0.05, = BF10 < 1/3. C) Prediction 
errors preferentially scale with high-level visual features (layer 8 and layer 7) throughout most of the visual system, including EVC, LOC and 
HVC. Color indicates the DNN layer with the largest effect (explained variance) on scaling the neural responses to surprising inputs. Cold colors 
(purple – blue) represent early layers (i.e., low-level visual features), while warm colors (yellow – red) indicate late layers (i.e., high-level visual 
features). Analysis was masked to visual cortex and thesholded at a liberal z ≥ 1.96 (i.e., p < 0.05, two-sided) to explore the landscape of 
prediction error modulations across DNN layers. Results strongly contrast with those observed for prediction-free visual responses during the 
localizer (Figure 2). D) ROI analysis regressing BOLD responses onto high-level visual dissimilarity. Results show a monotonic relationship 
between BOLD responses and high-level surprise across all three ROIs. For display purposes dissimilarities were ranked, while statistical 
inference was performed on the correlation distances. 

dissimilarity onto single trial parameter estimates and 

determined for each voxel which layer had the largest 

explained variance. Results (Figure 4C) showed that 

prediction error magnitudes primarily scaled with high-level 

visual surprise (layer 8 and layer 7) across most parts of the 

ventral visual stream, including EVC, LOC, and HVC. We note 

additional minor clusters in HVC scaled by intermediate layer 

4, as well as layer 1 and 3 in EVC and LOC, suggesting that 

some neural populations scaled with intermediate and low-

level surprise as well. In sum, these results present a stark 
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contrast to the modulation of responses during the prediction-

free localizer (Figure 2) where a clear gradient from early-to-

late layers was observed, with early layers dominating EVC 

representations. In contrast, prediction errors appear to be 

scaled preferentially by high-level visual surprise across the 

visual system, including EVC. 

 Finally, we assessed the shape of the response 

modulation by high-level visual surprise by regressing BOLD 

responses for unexpected stimuli onto layer 8 dissimilarity 

using an ROI approach. Results, shown in Figure 4D, show 

that the increased BOLD response to surprising stimuli 

follows a positive monotonic association across the 

dissimilarity spectrum in all three ROIs (V1: t(32) = 9.35, p < 

0.001, d = 1.63; LOC: t(32) = 3.27, p = 0.004, d = 0.57; HVC: 

t(32) = 2.05, p = 0.049, d = 0.36). In sum, visual responses 

across major parts of the ventral visual system appear to 

monotonically scale with high-level visual surprise. 

 

Prediction error scaling with high-level visual surprise is 

not explained by task-relevance, semantic surprise, or 

inherent properties of the DNN architecture 

Multiple alternative explanations could account for a 

correlation of prediction error magnitudes with high-level 

visual features. To rule out alternative accounts for our 

observations, we included multiple control variables as 

parametric modulators in our GLM analysis. First, layer 8 

representations from an untrained (i.e., random) but 

otherwise identical DNN were included. This contrast ruled 

out that the inherent structure of the DNN architecture or 

correlations in the input images caused the scaling of 

prediction errors with late layer representations. Second, 

animacy category was included in the GLM to assess whether 

high-level visual modulations result from a correlation of high-

level visual features with the task-relevant dimension of 

animacy. Since participants had to distinguish between 

animate and inanimate entities in the images, prediction error 

modulations could potentially reflect task responses. Finally, 

because high-level visual features may significantly correlate 

with semantic, word category level surprise, we also 

contrasted the high-level visual model against a word2vec 

(Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013) 

derived model aimed at indexing non-visual, semantic 

surprise.  

 These controls revealed that high-level visual surprise 

(layer 8) best accounted for the data, significantly 

outperforming an untrained random layer 8 model, animacy 

category, word category (semantic), and the low-level visual 

surprise models in explaining prediction error magnitudes 

(Figure 5A). Statistically significant clusters were found in 

EVC as well as intermediate visual areas in LOC, and HVC in 

some contrasts. The exact extent of the modulation varies 

slightly between contrasts, but overall corroborate that 

prediction error magnitudes mainly result from high-level 

visual feature surprise and that none of the control variables 

likely account for the observed results. Corresponding whole-

brain figures contrasting the control parametric modulators 

against baseline (no modulation) can be found in 

Supplementary Figure 1. 

 An ROI analysis (Figure 5B) of the same four contrasts 

confirmed the whole-brain results. We observed reliable 

differences between models, which differed across ROIs 

(main effect of model: F(4,128) = 12.20, p < 0.001, ��
� = 0.28; 

interaction ROI by model: F(4.40,140.93) = 11.09, p < 0.001, ��
� = 

0.26). Specifically, we found significantly stronger 

modulations of BOLD responses by high-level visual 

dissimilarity compared to all other four parametric modulators 

in V1 (paired t-tests: all FDR corrected p < 0.001; all d > 0.99; 

see Supplementary Table 2 and Supplementary Table 3 for 

details). Similar, albeit less pronounced results were found in 

LOC (Layer 8 vs. Layer 2: p = 0.001, d = 0.74; Layer 8 vs. 

Animacy category: p = 0.010, d = 0.61; Layer 8 vs. Word2Vec: 

p = 0.060, d = 0.47; Layer 8 vs. Random layer 8: p = 0.078, d 

= 0.44) and HVC (Layer 8 vs. Layer 2: p = 0.028, d = 0.50; 

Layer 8 vs. Animacy category: p = 0.081, d = 0.40; Layer 8 

vs. Word2Vec: p = 0.016, d = 0.54; Layer 8 vs. Random layer 

8: p = 0.189, d = 0.32). An additional negative modulation of 

prediction error magnitudes by word category surprise was 

observed in V1 (p = 0.020, d = -0.60), and by animacy 

category surprise in LOC (p = 0.039, d = -0.51), suggesting 

that prediction errors may be attenuated for more 

semantically dissimilar surprising images in V1 and for stimuli 

of a different animacy category in LOC compared to the 

expected image. Finally, to ensure that our results were not 

dependent on the exact ROI mask size, we repeated the 

analysis across multiple mask sizes. Results were largely 

consistent across ROI sizes; see Supplementary Figure 2.  

 

High-level visual surprise correlates with behavioral 

response slowing 

Participants were asked to classify the contents of the images 

as animate or inanimate. High-level visual features often 

correlate with this task-relevant animacy axis. Hence, we 

assessed whether high-level visual feature surprise might 

also correlate with increased response times by regressing 

image dissimilarity onto reaction times to unexpected images.  

 Our findings, shown in Figure 6A, demonstrate that 

reaction times were indeed modulated by high-level visual 

(layer 8) dissimilarity. Responses were slower the more 

dissimilar the surprising images were in high-level visual (t(32) 

= 3.47, p = 0.001, d = 0.61), but not in low-level visual features 

(t(32) = -1.85, p = 0.074, d = -0.32; Layer 8 > Layer 2: t(32) = 

3.10, p = 0.004, d = 0.54) compared to the expected stimulus. 

Indeed, the relationship of layer 8 dissimilarity and response 

slowing was monotonic (Figure 6B). Thus, high-level visual 

dissimilarity did not only scale with prediction error 

magnitudes in visual cortex but was also associated with 

slower RTs. 

 

 

Discussion 
Hierarchical PP theories (Bastos et al., 2012; Clark, 2013; 

Friston, 2005, 2009; Rao & Ballard, 1999) have received 

significant attention as they propose a fundamental 

framework for cortical computation. Numerous studies have 

corroborated the main tenets of predictive processing, such 

as demonstrating that sensory responses to surprising inputs 

are enhanced compared to expected ones, likely reflecting  
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Figure 5. Prediction error magnitudes are best explained by high-level visual feature dissimilarity. A) Whole-brain contrasts of the high-
level visual feature model (layer 8) contrasted against four control variables. The top row shows that high-level visual models performed 
significantly better than low-level visual models (layer 2). Similarly, high-level visual surprise better accounted for prediction error magnitudes 
than the task-relevant animacy category of the unexpected stimuli (second row) and the semantic, word category surprise model (word2vec; 
third row). The bottom row shows that high-level visual dissimilarity significantly better explained prediction error magnitudes compared to an 
untrained but otherwise identical DNN layer 8. B) ROI analysis including primary (V1), intermediate (LOC) and high-level visual cortex (HVC). 
Results confirm the whole-brain results, showing significant modulations of BOLD responses by high-level visual surprise compared to low-level 
visual, response category, and word category surprise. P values are FDR corrected. *** p < 0.001, ** p < 0.01, * p < 0.05. 

Figure 6. Behavioural response slowing correlates 
with high-level visual surprise. A) Behavioral 
responses were slower the more dissimilar surprising 
images were in terms of high-level, but not low-level 
visual features. Depicted are the slope coefficients 
(betas) regressing RT onto layer 8 (red) and layer 2 
(blue) dissimilarity. Positive betas indicate response 
slowing the more dissimilar the seen unexpected image 
was compared to the expected stimulus. B) Depicts RT 
as a function of ranked dissimilarity (from least to most 
dissimilar). Dots represent the averaged RT for each 
dissimilarity rank. Results show a positive monotonic 
relationship between RT and layer 8 dissimilarity, 
indicating that unexpected stimuli that were more 
surprising in terms of high-level visual features resulted 
in slower behavioral responses. ** p < 0.01. 

 

larger sensory prediction errors (Alink et al., 2010; Kok et al., 

2012; Meyer & Olson, 2011; Ramachandran et al., 2016; 

Richter et al., 2018). However, while evidence for this core 

mechanism of predictive processing has been shown across 

modalities, paradigms and species (de Lange et al., 2018; 

Heilbron & Chait, 2018; Walsh et al., 2020), it remains 

unknown what kind of surprise is reflected in these putative 

prediction errors. Here we set out to elucidate the nature of 

the surprise scaling of visual prediction errors and thus what 

information is predicted across the visual hierarchy.  

 

Visual prediction errors scale with high-level visual 

surprise 

Using fMRI and representational distance measures derived 

from a visual DNN, our data showed that throughout multiple 

visual cortical areas sensory responses to unexpected 

images scale with the representational distance of a seen 
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unexpected stimulus relative to the expected input. 

Specifically, responses monotonically scaled with high-level 

visual feature surprise: the larger the high-level deviation from 

expectation, the larger the prediction error response. 

Interestingly, and in contrast to feedforward processing, even 

early visual areas, such as V1, predominantly responded to 

high-level visual over low-level surprise, while being best 

explained in terms of low-level features in cases where no 

prediction was possible (localizer). These results are in line 

with a recent study demonstrating that firing rates in macaque 

V1 correlate with predictability of high-level and not low-level 

visual features (Uran et al., 2022). The increased prediction 

error to high-level visual surprise in EVC, a region not known 

for tuning to high-level visual features during feedforward 

processing, suggests that predictions are relayed top-down 

and hence result in the observed inheritance of feature 

surprise from higher areas in earlier processing stages. Thus, 

our results support and extend previous studies by 

demonstrating that (1) top-down inheritance during predictive 

vision generalizes across species and recording modalities, 

and (2) crucially appears to be a general principle of visual 

sensory processing evident across multiple cortical areas 

from EVC over LOC to the highly specialized areas in the face 

processing system (Issa et al., 2018; Schwiedrzik & Freiwald, 

2017). Additionally, our results further demonstrate that 

predictive signatures and top-down inheritance of high-level 

feature surprise can arise, at least in humans, with little 

exposure to the predictive regularities, requiring only several 

dozen exposures rather than extensive exposure as in the 

case of studies in non-human primates (Schwiedrzik & 

Freiwald, 2017). This flexibility of the visual system to learn 

and rapidly utilize novel sensory priors to generate high-level 

predictions to inform sensory processing in earlier stages of 

the hierarchy further supports the hypothesis that top-down 

inheritance is a ubiquitous and general principle of visual 

processing. 

 What kind of mechanism may underlie the here observed 

modulations of sensory responses? An inherent limitation of 

fMRI BOLD is the temporal resolution. However, similar 

reports of prediction error responses in macaques 

(Schwiedrzik & Freiwald, 2017; Uran et al., 2022), suggest 

that a late stage of the neural response is modulated by top-

down predictions. Albeit speculative, it is plausible that we 

observed the fMRI BOLD correlates of a similar late-stage 

top-down modulation of sensory processing. This 

interpretation aligns well with our observation that the 

feedforward response, mostly reflected during the prediction-

free localizer, is dominated by local tuning properties (e.g., 

low-level features in V1), while recurrent processing due to 

prediction during the main task, relying on feedback and 

reflecting high-level visual surprise, takes time to arise given 

the necessary computations and signal relaying across 

multiple cortical areas. In other words, combined our results 

suggest that following the activation of high-level areas, 

during the initial feedforward sweep, a prediction is 

subsequently relayed down the processing hierarchy 

modulating the sustained phase of neural responses across 

earlier areas.  

 Elaborating further on this account, one possible 

explanation for the observed results is that predictions allow 

the visual system to settle into a valid perceptual 

interpretation faster and more efficiently, because predictions 

match the bottom-up inputs. In contrast, unexpected input will 

result in slower and less efficient neural processing, 

potentially requiring more extensive and slower recurrent 

processing for the visual system to derive a valid 

interpretation of the current inputs. The longer temporal 

extends but also lower efficiency of sensory inference in the 

case of unexpected input could then contribute to the larger 

BOLD signal observed here. But why would high-level instead 

of low-level visual feature predictability primarily modulate 

sensory responses? Perceptual interpretations can be 

constrained top-down, with higher cortical areas constraining 

lower areas via feedback connections (Friston, 2005). Hence, 

on this account, the key features for facilitating perceptual 

interpretation may be represented in terms of the high-level 

visual features encoded in the higher cortical areas sending 

the feedback signals. Thus, the more difficult a seen object is 

to reconcile with predictions by these higher-level visual areas 

the larger BOLD the responses (i.e., a monotonic increase), 

because arriving at a valid interpretation is slower and less 

efficient with less reliable feedback, requiring more recurrent 

processing across the visual hierarchy to update predictions 

to match the current inputs. In other words, the degree of 

belief updating, reflected in the prediction error magnitudes, 

appears to be contingent on high-level visual surprise across 

the visual hierarchy, including in V1. 

 Our analyses also demonstrated that the modulation of 

prediction error responses by high-level visual surprise was 

not explained by the task-relevant animacy category 

dimension or by word-level (semantic) surprise. These results 

thus suggest that visual prediction errors are predominantly 

influenced by high-level visual and not abstract linguistic or 

response-related surprise. This preference aligns with our 

earlier proposition of facilitated perceptual inference, with 

visual prediction errors scaling primarily with visual surprise 

due to the role of top-down feedback in constraining 

perceptual interpretations in lower areas. Consequently, 

because high-level regions in the ventral stream primarily 

encode advanced visual features, the surprise signal is 

expressed in terms of these visual features instead of abstract 

non-visual representations. 

 

High-level visual predictions aid perceptual inference 

and consequently behavioral responses 

Besides sensory response modulation, high-level visual 

surprise was also seen to slow behavioral responses. This 

suggests that increased visual prediction errors may not 

merely reflect an epiphenomenon of predictive processing but 

may translate into tangible behavioral effects. Our account, 

that valid predictions expedite perceptual inference, could 

also explain why high-level visual surprise may correlate with 

response slowing. Essentially, slower perceptual inference 

could directly translate into slower behavioral responses 

because perceptual inference ought to conclude before 

response initiation. However, this interpretation is speculative 

as our data do not provide causal evidence, and alternative 
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interpretations, such as slower responses due to more difficult 

decision making for unexpected stimuli cannot be ruled out. 

 That said, this account is consistent with the observation 

that we found reliable upregulations of prediction error 

amplitudes by high-level visual (layer 8) surprise in the visual 

system, but not in the motor system or other areas outside the 

visual system, such as inferior frontal gyrus or anterior insula, 

known to generate prediction errors especially when 

predictions are task-relevant (Fazeli & Büchel, 2018; Ferrari 

et al., 2022; Loued-Khenissi et al., 2020; Richter & de Lange, 

2019). This suggests that the modulation by high-level visual 

surprise primarily concerns facilitated perceptual inference 

rather than facilitated decision making or response initiation. 

Yet, this does not mean that predictions do not facilitate these 

processes as well. Our results concern the modulation of 

neural responses for different unexpected inputs. The 

contrast of unexpected compared to expected inputs (i.e., 

expectation suppression) can be found in Supplementary 

Figure 3 and matches previous studies showing additional 

prediction error signatures in decision, attention and motor 

processing related areas (Fazeli & Büchel, 2018; Ferrari et 

al., 2022; Loued-Khenissi et al., 2020; Richter & de Lange, 

2019), suggesting that prediction facilitates processing across 

multiple cortical systems. 

 

Flexible prediction (error) tuning 

While we found no reliable upregulation of prediction error 

magnitudes by any of the control models (also see: 

Supplementary Figure 1), this does not imply that the visual 

system exclusively encodes high-level visual surprise. 

Although we dismissed that animacy category explained our 

results, this does not rule out that task requirements shaped 

the acquisition and generation of predictions, and 

consequently the scaling of prediction errors. Indeed, it is 

possible that the focus on high-level features, due to the task 

requirements, shaped what kind of features were predicted, 

given the substantial effect that tasks can have on visual 

processing (Harel et al., 2014). Thus, our results are 

consistent with recent models of adaptive efficient coding 

(Młynarski & Tkačik, 2022). Specifically, because our task 

required a high-level decision, such task demands might be 

reflected in the adaptive compression (silencing) of non-task 

relevant sensory representations due to top-down feedback, 

thereby resulting in the observed scaling of early visual 

responses with high-level visual surprise. Moreover, from an 

evolutionary perspective it is advantageous to develop flexible 

predictions, allowing the visual system to adapt to 

environmental requirements. In line with this hypothesis, 

recent evidence suggests that semantic (word level) priors 

can be used to generate category specific sensory 

predictions, even in early visual cortex (Yan et al., 2023). 

Therefore, more abstract, semantic representations could 

potentially modulate visual prediction errors under certain 

conditions. 

 On the other hand, it is also plausible that visual prediction 

errors can reflect low-level features, particularly if required by 

the environment. Indeed, in the present data small additional 

clusters across multiple areas scaled with intermediate-level 

surprise (mostly layer 3 and 4), suggesting variety in the 

surprise reflected in visual prediction errors. Moreover, a 

different task, focused on low-level features, may result in a 

different pattern of prediction error tuning, representing low-

level surprise instead. However, it is likely that there are limits 

to this flexibility imposed by the architecture and 

representational constraints of the visual system. As argued 

above, high-level visual predictions may be relayed top-down 

and constrain visual interpretations in lower areas, because 

neurons in higher visual areas are tuned to high-level 

features. In contrast, it is less likely that high-level visual areas 

have the necessary representational structure and acuity to 

predict detailed low-level features, and hence these areas 

may be unable to constrain visual interpretations in EVC for 

low-level visual features to the same degree as for high-level 

predictions. Nonetheless, we believe that it is essential for 

future work to chart the extent to which prediction error tuning 

is flexibly adjusted to reflect environmental and task 

demands. 

 

Limitations 

There are some limitations to the present research. A superior 

low-level visual feature model may have yielded prediction 

error modulations by such features. In addition, the specific 

stimulus set could have discouraged or obscured low-level 

surprise modulations. Nevertheless, we demonstrated that 

early DNN layers best explain feedforward visual activity in 

EVC during the prediction-free localizer runs suggesting that 

the employed model does reliably explain visual responses 

for our stimulus set. Moreover, we chose a commonly used 

visual DNN. This and similar models have repeatedly been 

shown to share representational geometry with visual cortex 

(Eickenberg et al., 2017; Guclu & van Gerven, 2015; Khaligh-

Razavi & Kriegeskorte, 2014; Mehrer et al., 2021). Finally, 

there is no evidence for a strong positive, but sub-threshold, 

modulation of visual responses by low-level visual surprise 

evident in either the whole-brain or ROI results. This suggests 

that it is unlikely that a quantitative issue, such as low 

statistical power due to a subpar low-level feature model or 

non-ideal stimulus set for evoking low-level visual predictions, 

explains the current results. Nonetheless, future work could 

improve on the generalization of the present results by 

utilizing different, ideally more complex stimulus sets and 

improved feature models, thereby further investigating 

whether (other aspects of) low-level features may modulate 

visual prediction errors. 

 The word category (semantic) model has similar 

limitations. While word2vec and related models have been 

widely used to index semantic dissimilarity (Huth et al., 2016; 

Mitchell et al., 2008; Pereira et al., 2018), they may no longer 

constitute state-of-the-art models. Thus, given a different 

semantic feature model or task, visual prediction errors could 

be modulated by semantic surprise. However, while 

improvements in the semantic model are possible, it seems 

unlikely that incremental improvements in the model can fully 

account for the observed results, especially in EVC, given that 

semantic modulations tend to arise later in the processing 

hierarchy. In sum, while we cannot rule out that in some 

circumstances other models, stimuli, or tasks could result in 

low-level visual or linguistic semantic features modulating 
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sensory prediction errors, our data indicates a propensity of 

the visual system to scale prediction errors in terms of high-

level visual surprise. 

 

Adaptation and attention-based accounts 

One concern in predictive processing studies is differentiating 

prediction from stimulus repetition effects such as neural 

adaptation. Stimulus adaptation is not a viable explanation for 

the present results, because all stimuli were shown equally 

often. Moreover, our results concern modulations of 

prediction error responses to unexpected stimuli based on 

how different they were from the expected stimuli, thereby 

further ruling out repetition frequency or adaptation as 

explanations. 

 Another possible interpretation is that surprising stimuli 

capture attention, which subsequently amplifies neural 

responses (Alink & Blank, 2021). While we cannot 

conclusively rule out this alternative account, there are 

multiple factors suggesting that it is not the primary factor. 

First, we observed the most pronounced modulation of 

prediction error magnitudes in EVC. If attention were the main 

driver, we may instead expect modulations to be more 

uniformly distributed across the visual hierarchy or even more 

pronounced in higher areas (Buffalo et al., 2010; Reynolds & 

Chelazzi, 2004). Second, an attention-based account must 

explain why attention allocation would scale primarily with 

high-level visual surprise, rather than semantic features or the 

task-relevant dimension of animacy. Even without 

considering these arguments, if we treat the observed 

modulation as an effect of attention, high-level visual surprise 

must be detected before attention allocation, raising the 

question where this surprise detection occurs if not reflected 

by the modulation reported here. Therefore, the predictive 

processing account detailed earlier appears to provide the 

more parsimonious explanation. 

 

Conclusion 

We find that visual prediction errors, a key feature of 

hierarchical PP, primarily reflect high-level visual surprise, 

including in early visual cortex. These findings are consistent 

with predictions being relayed top-down, from higher to lower 

sensory areas, thereby resulting in prediction errors in early 

visual areas reflecting high-level visual surprise, unlike during 

feedforward processing. Relying on top-down feedback to 

constrain perception may provide computational and 

metabolic advantages for the sensory system, thus allowing 

for more efficient and rapid convergence on valid perceptual 

interpretations across the visual stream. Collectively, our 

results thereby bolster a central mechanism of hierarchical PP 

– the reliance of perceptual inference on prediction and 

prediction error generation, thus reinforcing the crucial role of 

predictions in perception. 

 

 

Methods 
Participants and data exclusion 

In total 40 healthy, right-handed participants were recruited from the 

Radboud University research participation system. Of these, data 

from two participants were incomplete due to the participants 

withdrawing from the experiment. In addition, we excluded data from 

two further participants due to poor MRI data quality, caused by 

excessive motion during MRI scanning in one case and anterior coil 

failure in the other. Furthermore, data of three participants were 

excluded because of subpar behavioral performance (see Data 

analysis, Data exclusion). Thus, in total data from 33 participants (21 

female, age 23.8 ± 4.5, mean ± SD) were included in the final sample. 

 The study followed institutional guidelines and was approved by 

the local ethics committee (CMO Arnhem-Nijmegen, now METC 

Oost-Nederland) under the blanket approval ‘Imaging Human 

Cognition’ (2014/288) granted to the Donders Centre for Cognitive 

Neuroimaging. Written informed consent was obtained before study 

participation and participants were compensated 10€/hour. 

 

Stimuli and experimental paradigm 

During the experiment participants were exposed to pairs of letter 

cues and full-colour images of various categories while recording 

fMRI. On each trial the letter probabilistically predicted the identity of 

the image. A trial is depicted in Figure 7A. The expected image was 

seven times more likely to follow its associated letter cue compared 

to each unexpected image. The same images appeared both as 

expected and unexpected stimuli, with the expectation status only 

contingent on the cue after which the image appeared. 

 

Stimuli 

Full-color images were selected from a database of 233 photographs, 

originally collected for a previous study (Yan et al., 2023). The image 

database included multiple exemplar images of various categories, 

including animate (dogs, dolphins, elephants, feet, hands, women 

and men, male and female faces, swans, tigers) and inanimate 

objects (cars, airplanes, churches, guitars, hammers, houses, 

spoons). Of the original 233 stimuli in the database 20 stimuli were 

excluded as outliers. Specifically, we used hierarchical agglomerative 

clustering to cluster image representations of layer 2 and 8 of AlexNet 

trained on ecoset (for more details see: Deep Neural Network). We 

then excluded any outliers, such as same category objects in a 

different cluster than all other exemplars of the same category in 

terms of layer 8 representations. From the remaining 213 stimuli eight 

images were selected for each participant, including four animate and 

four inanimate images. The selection of the eight images was 

optimized using the following criteria. First, we derived 

representational dissimilarity matrices (RDM) from the layers of 

interest (layer 2 and layer 8) from the DNN using correlation distance. 

We then randomly selected eight images (four animate and four 

inanimate) and calculated the variances within layer RDMs. 

Additionally, we calculated the across layer RDM correlation. Finally, 

we maximized the within layer variances and the minimized the 

across layer correlation. This procedure is a simple method to select 

image samples that maximized the detectability of effects within 

RDMs, while also minimizing the correlation between RDMs, thereby 

increasing our ability to detect distinct contributions of the RDMs from 

the two layers of interest. For each participant we selected a set of 

eight images using this procedure.  
 Images were presented in the center of the screen, subtending a 

maximum of 6 x 6 degrees of visual angle. The exact image size 
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Figure 7. Paradigm. A) A single trial, showing a letter cue (500 ms) followed by an image (500 ms) and a variable ITI (~5000 ms). The image 
was expected or unexpected given the preceding letter cue. Participants responded by button press to the images, indicating whether the entity 
in the image was animate or inanimate. B) Transitional probability matrix determining the associations between cues and images. Each of the 
eight images was associated with one of the eight letter cues. The expected image was seven times more likely to appear than any other image 
given its cue. Numbers in each cell indicate the number of trials per run. The specific cue-image associations were randomized and differed 
between participants. Moreover, the set of eight images also varied for different participants. C) Two cycles of a localizer trial. During the localizer 
one image was presented repeatedly (500 ms on, 300 ms off) for 12000 ms. The identity of the images was not predictable. Participants 
responded to a high brightness version of the images, which was shown once during each trial for one cycle.

depended on the shape of the specific object. A fixation bulls-eye, 

outer circle 0.5 degrees of visual angle, was displayed on top of the 

center of the image. 

 

Experimental paradigm and procedure 

On each trial (Figure 7A) participants were presented with a letter cue 

for 500ms, followed by an image for 500ms without interstimulus 

interval. The letter cues were predictive of the image with ~50% 

reliability – the transitional probability matrix (TPM) is depicted in 

Figure 7B. Thus, participants could predict the identity of the images 

given the letter. Participants were not informed about these 

regularities. Instead, they were tasked to categorize the entities in the 

images as animate or inanimate as quickly and accurately as 

possible. Thus, while learning the statistical regularities was not 

required to perform the task, the regularities could be used to facilitate 

task performance. To promote statistical learning, participants were 

required to withhold the response if the letter cue was a vowel (a, e, 

i, o, u), thereby directing attention also towards the letter cues. No-go 

letters (vowels) were not associated with any specific stimulus and 

appeared in addition to the regularities depicted in Figure 7B. No-go 

trials were discarded from all analyses. Responses on each trial were 

given by button press (right index or middle finger) as soon as the 

image appeared, with a maximum allowed reaction time of 1500ms 

before a trial would be considered a miss. Trials were separated by 

an intertrial interval of on average 5000ms (range 3000ms – 

12000ms, sampled from a truncated exponential distribution), 

displaying only the fixation bulls-eye. 

 Each run, that is one continuous fMRI data acquisition, consisted 

of 128 trials (~13 minutes). During a run the TPM shown in Figure 7B 

was presented once. Thus, each unexpected cue stimulus pair was 

shown exactly one time (8 x 7 combinations = 56 unexpected trials) 

and each expected pair was shown seven times (8 expected pairs x 

7 repetitions = 56 expected trials), with the remaining 16 trials being 

no-go trails. Trial order was randomized, except for excluding 

repetitions of the same cue stimulus pair on two consecutive trials. 

Participants performed four runs per session and two sessions, 

resulting in a total of eight fMRI runs. In addition to the fMRI runs, the 

experiment also included an additional two behavioral blocks in each 

session.  

 The behavioral blocks were identical to the fMRI runs, except for 

a shorter intertrial interval (average 2500ms, range 1500ms – 

7500ms) and an adjusted TPM. Specifically, expected pairs were 

shown three times more often during behavioral blocks compared to 

fMRI runs (i.e., each pair had 21 repetitions instead of 7) to facilitate 

statistical learning. Moreover, twice as many no-go trials were shown 

to compensate for the increased number of expected trials. Thus, 

behavioral blocks consisted of a total of 256 trials per block.  

 On day one participants first performed one functional localizer 

run (see: Functional localizer), followed by a short practice of the main 

task using different letters and images. Then, the four fMRI main task 

runs followed, and finally two behavioral blocks were performed 

outside the MRI. On the next day the order of runs was reversed. 

Thus, participants first did the two behavioral blocks, then the four 

fMRI main task runs, followed by another run of the functional 

localizer, and finally an anatomical scan was acquired. 

 

Functional localizer 

A functional localizer, depicted in Figure 7C, was performed to define 

object selective LOC, constrain anatomical ROI masks using 

independent fMRI data, and to perform RSA to validate the RDMs 

derived from the DNN layers of interest. The functional localizer used 

a block design, presenting one stimulus at a time for 12000ms, 

flashing every 800ms (500ms on, 300ms off), during each miniblock. 

Miniblock order was randomized, thus precluding prediction of the 

next stimulus, but excluded direct repetitions of the same stimulus. 

Participants were tasked to press a button whenever the image 

changed in brightness. The image noticeably increased in brightness 

(~200%) at a random cycle exactly once per miniblock, except for 

during the first three and last two cycles. Each image was presented 

during four miniblocks per localizer run. In addition, a phase 

scrambled version of each image was shown, with each scrambled 

image being repeated in two miniblocks. As during the main fMRI task 

runs, images subtended 6 x 6 degrees of visual angle and a fixation 

bulls-eye was displayed at the center of the image throughout the 

entire run.  

 

fMRI data acquisition 

MRI data was acquired on a Siemens 3T Prisma and a 3T PrismaFit 

scanner, using a 32-channel head coil. Functional images were 

acquired using a whole-brain T2*-weighted multiband-6 sequence 

(TR/TE = 1000/34 ms, 66 slices, voxel size 2 mm isotropic, FOV = 

210 mm, 60° flip angle, A/P phase encoding direction, bandwidth = 
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2090 Hz/Px). Anatomical images were acquired using a T1-weighted 

MP-RAGE sequence (GRAPPA acceleration factor = 2, TR/TE = 

2300/3.03 ms, voxel size 1 mm isotropic, 8° flip angle). 

 

Data analysis 

Behavioral data analysis 

Behavioral data was analyzed in terms of reaction time (RT) and 

accuracy. Trials with too fast (< 100ms) or too slow (>1500ms) RTs 

were excluded. Only trials with correct responses were analyzed for 

the RT analysis. RTs and accuracy were calculated for expected and 

unexpected image trials separately. Paired t-tests across participants 

on the RTs and accuracies were then performed, contrasting 

expected compared to unexpected images. Expectation induced 

behavioral benefits were calculated as RTbenefit = RTunexpected – 

RTexpected and Accuracybenefit = Accuracyexpected - Accuracyunexpected. 

Behavioral data was also used to reject outliers based on poor overall 

response accuracy and speed (for details see: Data exclusion). 

Correlating RT and visual dissimilarity 

We assessed the relationship between RT and visual surprise by 

regressing dissimilarity, as indexed by layer 8 and layer 2 of the DNN 

onto the RTs per participant. The obtained betas were then averaged 

across participants and subjected to one-sample t-tests to assess 

their individual effect, as well as their difference using a paired t-test. 

Non-parametric tests (Wilcoxon signed-rank test) were used as 

appropriate. For display purposes we also ranked the data for each 

participant into 28 dissimilarity bins (i.e., 28 unexpected image cells; 

see Figure 7B). 

 

Effect size calculation 

We provide the following estimates of effect size to support statistical 

inference. For t-tests we report Cohen’s d (Lakens, 2013), for 

Wilcoxon signed-rank tests matched-pairs rank-biserial correlation 

(r), and partial eta-squared (��
�) for repeated measures ANOVAs. 

 

fMRI data preprocessing 

fMRIprep boilerplate text: MRI data was preprocessed using 

fMRIPrep 22.1.0 (Esteban et al., 2019), which is based on Nipype 

1.8.5 (Gorgolewski et al., 2011). 

Anatomical data preprocessing 

A total of 1 T1-weighted (T1w) images were found within the input 

BIDS dataset. The T1-weighted (T1w) image was corrected for 

intensity non-uniformity (INU) with N4BiasFieldCorrection 

(Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 

2008), and used as T1w-reference throughout the workflow. The 

T1w-reference was then skull-stripped with a Nipype implementation 

of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) 

was performed on the brain-extracted T1w using fast (FSL 6.0.5.1; 

(Zhang et al., 2001) RRID:SCR_002823). Brain surfaces were 

reconstructed using recon-all (FreeSurfer 7.2.0; (Dale et al., 

1999); RRID:SCR_001847), and the brain mask estimated previously 

was refined with a custom variation of the method to reconcile ANTs-

derived and FreeSurfer-derived segmentations of the cortical gray-

matter of Mindboggle (Klein et al., 2017) RRID:SCR_002438). 

Volume-based spatial normalization to one standard space 

(MNI152NLin2009cAsym) was performed through nonlinear 

registration with antsRegistration (ANTs 2.3.3), using brain-

extracted versions of both T1w reference and the T1w template. The 

following template was selected for spatial normalization: ICBM 152 

Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009) 

RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym). 

Functional data preprocessing 

For each of the 10 BOLD runs found per subject (across all tasks and 

sessions), the following preprocessing was performed. First, a 

reference volume and its skull-stripped version were generated by 

aligning and averaging 1 single-band references (SBRefs). Head-

motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and 

translation parameters) are estimated before any spatiotemporal 

filtering using mcflirt (FSL 6.0.5.1; Jenkinson et al., 2002). BOLD 

runs were slice-time corrected to 0.445s (0.5 of slice acquisition range 

0s-0.89s) using 3dTshift from AFNI ((Cox & Hyde, 1997); 

RRID:SCR_005927). The BOLD time-series (including slice-timing 

correction when applied) were resampled onto their original, native 

space by applying the transforms to correct for head-motion. These 

resampled BOLD time-series will be referred to as preprocessed 

BOLD in original space, or just preprocessed BOLD. The BOLD 

reference was then co-registered to the T1w reference using 

bbregister (FreeSurfer) which implements boundary-based 

registration (Greve & Fischl, 2009). Co-registration was configured 

with six degrees of freedom. First, a reference volume and its skull-

stripped version were generated using a custom methodology of 

fMRIPrep. Several confounding time-series were calculated based on 

the preprocessed BOLD: framewise displacement (FD), DVARS and 

three region-wise global signals. FD was computed using two 

formulations following Power (absolute sum of relative motions, 

Power et al. (2014)) and Jenkinson (relative root mean square 

displacement between affines, Jenkinson et al. (2002)). FD and 

DVARS are calculated for each functional run, both using their 

implementations in Nipype (following the definitions by Power et al. 

(2014)). The three global signals are extracted within the CSF, the 

WM, and the whole-brain masks. Additionally, a set of physiological 

regressors were extracted to allow for component-based noise 

correction (CompCor, (Behzadi et al., 2007)). Principal components 

are estimated after high-pass filtering the preprocessed BOLD time-

series (using a discrete cosine filter with 128s cut-off) for the two 

CompCor variants: temporal (tCompCor) and anatomical 

(aCompCor). tCompCor components are then calculated from the top 

2% variable voxels within the brain mask. For aCompCor, three 

probabilistic masks (CSF, WM and combined CSF+WM) are 

generated in anatomical space. The implementation differs from that 

of Behzadi et al. in that instead of eroding the masks by 2 pixels on 

BOLD space, a mask of pixels that likely contain a volume fraction of 

GM is subtracted from the aCompCor masks. This mask is obtained 

by dilating a GM mask extracted from the FreeSurfer’s aseg 

segmentation, and it ensures components are not extracted from 

voxels containing a minimal fraction of GM. Finally, these masks are 

resampled into BOLD space and binarized by thresholding at 0.99 (as 

in the original implementation). Components are also calculated 

separately within the WM and CSF masks. For each CompCor 

decomposition, the k components with the largest singular values are 

retained, such that the retained components’ time series are sufficient 

to explain 50 percent of variance across the nuisance mask (CSF, 

WM, combined, or temporal). The remaining components are 

dropped from consideration. The head-motion estimates calculated 

in the correction step were also placed within the corresponding 

confounds file. The confound time series derived from head motion 

estimates and global signals were expanded with the inclusion of 

temporal derivatives and quadratic terms for each (Satterthwaite et 

al., 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardized DVARS were annotated as motion outliers. Additional 

nuisance timeseries are calculated by means of principal components 

analysis of the signal found within a thin band (crown) of voxels 

around the edge of the brain, as proposed by (Patriat et al., 2013). 

The BOLD time-series were resampled into standard space, 

generating a preprocessed BOLD run in MNI152NLin2009cAsym 

space. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. All resamplings 

can be performed with a single interpolation step by composing all 

the pertinent transformations (i.e., head-motion transform matrices, 
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susceptibility distortion correction when available, and co-

registrations to anatomical and output spaces). Gridded (volumetric) 

resamplings were performed using antsApplyTransforms 

(ANTs), configured with Lanczos interpolation to minimize the 

smoothing effects of other kernels. Non-gridded (surface) 

resamplings were performed using mri_vol2surf (FreeSurfer). 

For more details of the pipeline, see the section corresponding to 

workflows in fMRIPrep’s documentation 

(https://fmriprep.org/en/latest/workflows.html). 

Additional preprocessing 

After preprocessing using fMRIPrep, additional fMRI data 

preprocessing steps were performed using FSL FEAT and Nilearn, 

including high-pass filtering (128s cutoff) and spatial smoothing (5mm 

fwhm).  

 

fMRI data analysis 

Univariate fMRI analyses consisted of fitting voxel-wise general linear 

models (GLM) to each participant’s run data, using an event-related 

approach. Stimuli were modelled as events of 500ms duration with 

the onset corresponding to the onset of the stimuli. Hence, cues, 

presented 500ms before stimulus onset, were not explicitly modelled. 

Events were convolved with a double gamma haemodynamic 

response function. Expected and unexpected image trials were 

modelled as separate regressors. Moreover, parametric modulators 

were added to the design matrix, reflecting how different an 

unexpected image was compared to the expected image. 

Specifically, a parametric modulator was added based on the 

representational dissimilarity of the unexpected compared to the 

expected image on a given trial in terms of layer 2 and layer 8 

representations of AlexNet (see: Deep Neural Network data for 

details). Additional parametric modulators were included to serve as 

control variables, consisting of animacy category, word category 

(word2vec) and layer 8 distance from an untrained (random) AlexNet 

instance. The parametric modulators were z scored before being 

added to the design matrix. A regressor of no interest was included 

for no-go trials. First order temporal derivatives of these regressors 

were also added to the GLM.  

 Nuisance regressors were added, consisting of six standard 

motion parameters (rotation and translation in x, y and z), framewise 

displacement, CSF and white matter. All nuisance regressors were 

derived from fMRIPrep. To deal with temporal autocorrelation FSL’s 

FILM with local autocorrelation correction was used (Smith et al., 

2004). Parameter estimates were averaged across runs using a fixed 

effects analysis, and across participants using FSL FEAT’s mixed-

effects model. All fMRI analyses were performed in normalized space 

(MNI152NLin2009cAsym). 

 Contrasts of interest were the modulation of the BOLD response 

by the parametric modulators indexing the representational 

dissimilarity of the unexpected compared to the expected image; 

especially, AlexNet layer 2 and layer 8. Statistical maps were 

corrected for multiple comparisons using Gaussian random-field 

cluster thresholding, as implemented in FSL FEAT 6.0, with a cluster 

formation threshold of z ≥ 3.29 (i.e., p < 0.001, two-sided) and a 

cluster significance threshold of p < 0.05. 

 

Regression of BOLD onto dissimilarity 

In addition to the parametric modulation analysis, we performed a 

complementary analysis, regressing single trial BOLD parameter 

estimates (see: Single trial parameter estimation) onto the z scored 

dissimilarity metrics. This regression was performed for each 

participant separately, in a whole-brain and ROI fashion. The 

resulting slope coefficients for each voxel or ROI, indexing the 

modulation of BOLD responses as a function of dissimilarity were 

then subjected to a one-sample t-test contrasting the obtained slope 

against zero (no modulation). For the whole-brain analysis additional 

spatial smoothing of 3mm fwhm was applied (i.e., total smoothing 

8mm). Finally, we colored each voxel according to which layer had 

the largest effect on the visual responses, indexed by explained 

variance. We thresholded this whole-brain analysis to a liberal z ≥ 

1.96 (i.e., p < 0.05, two-sided) to explore the landscape of the 

predictive modulations.  

 

Single trial parameter estimation 

Single trial parameter estimates were obtained using a least squares 

separate approach (Mumford et al., 2012; Turner et al., 2012). A GLM 

was fit per trial to the BOLD data using Nilearn, where each design 

matrix contained a regressor for the trial of interest (iterating over all 

trials) and regressors of no interest for the remaining images, split by 

image identity, as well as a regressor for no-go trials. Nuisance 

regressors were also included, consisting of six motion parameters 

(rotation and translation in x, y and z), framewise displacement, CSF 

and white matter. From this we extracted the parameter estimates for 

each trial, with particular interest in the parameter estimates of 

unexpected appearances of the stimuli. 

 

Region of interest (ROI) analysis 

ROIs were defined a priori, based on previous studies (Richter & de 

Lange, 2019), and consisted of early visual cortex (V1), intermediate 

object-selective areas in the lateral occipital complex (LOC) and 

higher visual cortex (HVC) consisting of primarily of temporal occipital 

fusiform cortex. These three ROIs constitute well studied early, 

intermediate, and late ventral visual stream areas. ROI masks were 

defined both anatomically and functionally for each participant. First, 

we used Freesurfer (http://surfer.nmr.mgh.harvard.edu/, 

RRID:SCR_001847) for cortex segmentation and parcellation (Dale 

et al., 1999; Fischl, 2004), run as part of the fMRIPrep pipeline. The 

resulting V1 labels were transformed to native volumetric space using 

mri_label2vol. Additional atlas annotations were extracted from 

the Destrieux Atlas (Destrieux et al., 2010). The LOC mask was 

formed by combining two Freesurfer labels in the lateral occipital 

cortex (Middle occipital gyrus (lateral occipital gyrus), and Inferior 

occipital gyrus and sulcus). The HVC mask was obtained by merging 

three labels corresponding to higher ventral visual stream areas 

(Lateral occipito-temporal gyrus (fusiform gyrus), Lateral occipito-

temporal sulcus, and Medial occipito-temporal sulcus (collateral 

sulcus) and lingual sulcus). Left and right hemisphere masks were 

combined into bilateral masks and dilated using a 3mm gaussian 

kernel. Overlapping voxels between the three ROI masks (V1, LOC, 

HVC) were assigned to the mask containing less voxels. We then 

resampled the masks to standard space (MNI152NLin2009cAsym) 

for each participant.  

Object-selective LOC 

In line with previous studies (Haushofer et al., 2008; Kourtzi & 

Kanwisher, 2001; Richter & de Lange, 2019), and to ensure that LOC 

contained stimulus selective neural populations, we further 

constrained the anatomical LOC masks per participant using data 

from an independent localizer run. In brief, we contrasted the 

response to intact compared to phase scrambled versions of the 

images, thereby obtaining voxels that respond more intact stimuli for 

each participant.  

Voxel selection 

In line with previous studies (Richter et al., 2018), we selected within 

each ROI the 200 voxels most informative about the depicted 

stimulus. To this end we performed a decoding analysis on the 

localizer data and selected the voxels affording best stimulus 

decoding (see: Decoding searchlight analysis). To ensure that our 

results generalize beyond the a priori selected, but arbitrary ROI size, 

we repeated all ROI analyses with masks ranging from 100 to 500 

voxels (800 to 4000 mm3).  

ROI analysis 

For each subject and ROI, we extracted the contrast parameter 

estimates from the second level GLMs (subject level, averaged 
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across runs) of the parametric modulators. These parametric 

modulators were then tested against zero (i.e., no modulation) using 

one-sample t-tests or Wilcoxon signed-rank tests as appropriate, as 

well as contrasted against one another. Resulting p-values were FDR 

corrected for the number of ROIs and tested parametric modulators. 

 

Deep Neural Network 

We used AlexNet, trained on ecoset (Mehrer et al., 2021), to derive 

representational dissimilarity estimates of the utilized stimuli. Early 

and late layers of this network have previously been shown to map 

well onto early and late visual cortex representations respectively 

(Mehrer et al., 2021). We extracted representational dissimilarities 

using correlation distance (1 – correlation) from all layers. RDMs of 

ten different instances of the DNN were averaged to minimize effects 

specific to any particular instance of the DNN (Mehrer et al., 2020). 

We were especially interested in layer 2 representing an early low-

level visual feature space, and layer 8 constituting a high-level visual 

feature space. For more information on the DNN see: Mehrer et al. 

(2021). For each participant, we used the DNN derived RDMs to 

index how different each unexpected stimulus was compared to the 

expected stimulus in terms of low-level feature dissimilarity (layer 2) 

and high-level feature dissimilarity (layer 8). The image dissimilarity 

scores were z scored before being included as parametric modulators 

in the first level GLMs (see: fMRI data analysis). 

Untrained network control analysis 

In addition, we included RDMs from layer 8 of the same DNN, using 

the same procedure, but used an untrained (i.e., random) network 

instance. RDMs from this untrained network serve as a control 

condition to rule out DNN architecture or stimulus set specific 

contributions to the results. 

 

Word-level and animacy category feature spaces 

Additionally, we derived RDMs using word embeddings to 

approximate a semantic, non-visual dissimilarity metric. Specifically, 

we used word2vec (Mikolov, Chen, et al., 2013; Mikolov, Sutskever, 

et al., 2013), pre-trained on the Google News corpus (word2vec-

google-news-300), to derive the pairwise dissimilarity between 

category words describing our image stimuli (airplane, car, church, 

dog, elephant, face, foot, guitar, hammer, hand, house, man, spoon, 

swan, tiger, woman).  

Animacy category 

As animacy was a task-relevant feature, we also derived an RDM 

indexing animacy. This RDM thus constitutes an object category 

dissimilarity and indirectly also task-response metric. To create this 

parametric modulator, we created a vector with zeros for unexpected 

stimuli with the same animacy category as the expected stimulus, and 

hence also response, and ones representing unexpected stimuli with 

a different animacy category. Dissimilarities from these control 

metrics were included in the first level fMRI GLM. 

 

Representational similarity analysis 

We validated the AlexNet derived RDMs using independent localizer 

data. Specifically, we used RSA (Kriegeskorte et al., 2008) to test 

whether the utilized DNN layer RDMs did significantly resemble the 

visual cortical RDMs. To this end we extracted parameter estimates 

for each stimulus compared to baseline from the first level GLMs of 

the localizer runs for each participant using a searchlight approach 

(6mm radius). We then z scored these parameter estimates per voxel 

and computed the representational dissimilarity in each searchlight 

sphere between the different stimuli, as indexed by the cosine 

distance between the vectors of the parameter estimates. This 

resulted in the neural RDM. We then correlated the lower triangular 

of the neural RDMs with the lower triangular of the DNN derived 

RDMs using Kendall's Tau. For each voxel we selected the DNN layer 

that explained most neural variance. Finally, we also subjected the 

resulting correlation coefficients to one-sample t-tests across 

subjects for each voxel. A significant test would thus indicate that the 

neural RDMs and DNN derived RDMs shared representational 

geometry, suggesting that the DNN RDM was useful in explaining 

neural variance during the localizer run. We considered this a 

requirement for proceeding with the main task analysis of prediction 

error representations. 

 

Decoding searchlight analysis 

An additional searchlight (radius 6mm) was used to decode stimulus 

identity across the whole brain, using linear support vector machines 

(SVM). We first derived for each participant separately, single trial 

parameter estimate maps from the localizer run using the least 

squares separate procedure outlined before. On these single trial 

parameter estimates, using the searchlight approach, the SVM was 

trained and tested using 4-fold cross-validation. The labels supplied 

to this decoding analysis were the image identities. Thus, the 

resulting decoding maps indicated the ability to decode stimulus 

identity during the localizer runs. This decoding map was 

subsequently used to refine the ROI masks (see: Region of interest 

(ROI) analysis). 

 

Bayesian analyses 

We evaluated any non-significant frequentist tests shown in Figure 4 

using equivalent Bayesian analyses to assess evidence for the 

absence of an effect of the low-level visual feature parametric 

modulator. To this end JASP 0.17.1.0 (JASP Team, 2023; 

RRID:SCR_015823) with default settings was used for Bayesian t-

tests with a Cauchy prior width of 0.707. Qualitative interpretations of 

the resulting Bayes Factors were based on Lee and Wagenmakers 

(Lee & Wagenmakers, 2014). 

 

Data exclusion 

Data were excluded from analysis based on two independent criteria. 

First, we excluded participants due to low quality fMRI data, quantified 

in terms of high mean framewise displacement (FD), percentage of 

framewise displacement exceeding 0.2mm (FD%), high temporal 

derivative of variance over voxels (DVARS) and low temporal signal 

to noise ratio (tSNR). These four image quality metrics were derived 

using MRIQC (Esteban et al., 2017) for each run. For details 

concerning the calculation of each image quality metric see Esteban 

et al. (2017). Subsequently, we averaged these metrics across runs 

within participants and compared each participant to the sample 

mean. Participants with any image quality metric worse than the 

sample mean plus (or minus depending on the metric) 2 SD was 

rejected from further analysis. Two participants were excluded due to 

these fMRI image quality metrics. 

 In addition, we excluded participants based on subpar 

behavioural performance, indicating a lack of attention or task 

compliance. Using a similar approach as for the MRI quality metrics, 

we rejected each participant with an average behavioural response 

accuracy or reaction time 2 SD worse than the sample mean. Three 

participants were excluded for poor behavioral performance. 

 

Software and data availability 

Python 3.7.4 (Python Software Foundation, RRID:SCR_008394) was 

used for data processing, analysis and visualization using the 

following libraries: NumPy 1.18.1 (Harris et al., 2020; van der Walt et 

al., 2011, RRID:SCR_008633), Pandas 1.1.4 (The pandas 

development team, 2020), NiLearn 0.9.1 (RRID:SCR_001362), 

Scikit-learn 0.24.2 (Pedregosa et al., 2011, RRID:SCR_002577), 

SciPy 1.5.3 (Virtanen et al., 2020, RRID:SCR_008058), Matplotlib 

3.1.3 (Hunter, 2007, RRID:SCR_008624), Gensim (Rehurek & Sojka, 

2011, using word2vec, RRID:SCR_014776), and Seaborn 0.11.2 

(Waskom, 2021, RRID:SCR_018132). A conda environment yml file 

is included with the code. MRI data was preprocessed using 

fMRIPrep (Esteban et al., 2019) and analyzed using FSL 6.0 (Smith 
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et al., 2004; FMRIB Software Library; Oxford, UK; 

www.fmrib.ox.ac.uk/fsl; RRID:SCR_002823). Whole-brain results 

were visualized using Slice Display (Zandbelt, 2017), a MATLAB 

(2022b; The MathWorks, Inc, Natick, Massachusetts, United States, 

RRID:SCR_001622) data visualization toolbox. Stimuli were 

presented with Presentation software (version 20.2, Neurobehavioral 

Systems Inc, Berkeley, CA, RRID:SCR_002521). All data, stimuli, as 

well as experiment and analysis code required to replicate the results 

reported in this paper will be shared upon publication in a peer-

reviewed journal. 
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Supplementary information 
 

 

 
Supplementary Figure 1. Whole-brain results assessing the modulation of surprise responses as a function of feature dissimilarity indexed by 
animacy category (top row), word-level semantic surprise (middle row), and a random (i.e., untrained) but otherwise identical visual DNN instance 
(bottom row). Results show no reliable modulation by any of these control models anywhere in cortex, except for a small negative modulation 
by word category surprise (word2vec) in precuneus cortex, outside of stimulus driven voxels. Thus, unexpected stimuli of a similar semantic 
category as the expected stimulus may elicit larger BOLD responses. This modulation could reflect an increased requirement for processing 
resources to distinguish different exemplars of the same category, albeit its small size and localization to voxels in superior parts of precuneus 
cortex, that were not stimulus-driven during the localizer run, makes an interpretation challenging. Colour indicates the beta parameter estimate 
of the parametric modulation, with red and yellow representing increased responses. Black outlines denote statistically significant clusters (GRF 
cluster corrected). 
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Supplementary Figure 2. Control ROI analysis across different ROI mask sizes. Modulation of surprise as a function of high-level (layer 8; 
first panel), low-level (layer 2; second panel), animacy category (third panel), word level (word2vec; fourth panel), and random model (last panel) 
surprise. Reliable modulations of prediction error magnitudes were found for high-level visual surprise across all tested ROI sizes (100-500 
voxel) in V1, as well as most mask sizes in LOC (100-250 and 350-450 voxel) and TOFC (150-350 voxel). No statistically significant modulation 
was found for low-level visual surprise or the random layer 8 model for any ROI or mask size. A negative modulation of BOLD responses was 
found for word level (word2vec) surprise in V1 for several ROI masks (150-300 and 400-450 voxel) and three small mask sizes in LOC (100-
200 voxel) for animacy category. Thus, overall results closely match the results reported in Figure 5 for most mask sizes, confirming that the 
observed results are largely robust to variations in ROI size. Error bars depict 95% confidence intervals. Data points with black outlines indicate 
statistical significance at p < 0.05 (FDR corrected for the number of ROIs and models) compared to zero (i.e., no modulation). 
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Supplementary Figure 3. Expectation suppression. Generic prediction errors (unexpected – expected) were calculated from the voxel-wise 
GLM including regressors for expected and unexpected appearances of the image stimuli, as well as the parametric modulators. Here we depict 
the contrast unexpected – expected, thus indexing differences in neural responses contingent on whether the stimulus was expected or 
unexpected. Colour indicates the beta parameter estimate, with red and yellow representing increased responses to unexpected stimuli. Black 
outlines denote statistically significant clusters (GRF cluster corrected). Significant clusters can be seen in visual cortex, particularly in temporal 
occipital fusiform cortex, and outside visual cortex in anterior insula and inferior frontal gyrus. Additional significant cluster, not visible here, were 
found in superior parietal lobule, paracingulate gyrus, and supplementary motor cortex; see Supplementary Table 1 for details. These areas 
closely match previous reports of prediction error responses (Ferrari et al., 2022; Richter & de Lange, 2019). 
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Contrast Area labels 
MNI 
coordinates n voxel p cluster max z 

    x y z       
High-level visual 

features  

(layer 8) 

Occipital pole; Lateral Occipital Cortex, inferior 

division; Occipital Fusiform Gyrus -19 -96 -1 779 4.9e-19 5.76 

        

Low-level visual 

features  

(layer 2) No statistically significant clusters       

        

Word category 

(word2vec) Precuneous cortex (right) 19 -55 20 44 0.0384 -4.0 

 Precuneous cortex (left) -14 -63 24 44 0.0384 -4.2 

        

Animacy category No statistically significant clusters       

        

Random layer 8 Precuneous cortex 3 -66 30 48 0.0247 4.0 

        

Expectation 

suppression 

(unexp. – exp.) 

Superior parietal lobule; Lateral occipital 

cortex, superior division (left) -36 -56 47 839 9.9e-20 4.5 

 

Middle and inferior frontal gyrus; Precentral 

gyrus (left) -44 6 33 325 4.0e-10 4.8 

 Paracingulate gyrus 1 13 48 265 9.8e-9 4.9 

 

Superior parietal lobule; Lateral occipital 

cortex, superior division (right) 31 -67 37 232 6.0e-8 5.3 

 Frontal operculum cortex; Anterior insula (left) -37 18 3 153 8.1e-6 4.4 

        

 

Inferior temporal gyrus; Lateral occipital 

cortex, inferior division -45 -58 -13 150 9.8e-6 5.0 

 

Frontal operculum cortex; Anterior insula 

(right) 39 22 2 136 2.5e-5 4.2 

 Middle and inferior frontal gyrus (right) 48 29 24 110 1.0e-4 4.6 

 Precentral gyrus (right) 42 7 32 96 1.0e-4 4.2 

 Middle and inferior frontal gyrus (left) -41 33 18 53 0.0175 4.2 

        

Supplementary Table 1. Brain areas showing significant modulations of BOLD responses (GRF cluster corrected). Listed are the contrasts of 
the parametric modulators (layer 8, layer 2, word category, animacy category, and random layer 8), as well as the contrast ‘unexpected minus 
expected stimuli’ (Expectation suppression; Supplementary Figure 3) with corresponding area labels, numbers of voxels in the cluster, p value 
of the cluster, and peak z statistic. MNI coordinates indicate the X, Y, Z coordinates of the centre of gravity for the cluster, as derived by FSL 
FEAT’s cluster function, in MNI space. Area labels are based on the centre of gravity for the cluster and, especially for large clusters, additional 

areas encompassed by the cluster. 
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ROI Contrast Test statistic P value Effect size 
V1 Layer 8 t(32) = 6.79 p < 0.001 d = 1.18 

V1 Layer 2 W = 190 p = 0.199 r = -0.32 

V1 Animacy category t(32) = -2.32 p = 0.068 d = -0.40 

V1 Word2Vec W = 112 p = 0.020 r = -0.60 

V1 Random Layer 8 W = 253 p = 0.719 r = -0.10 

LOC Layer 8 W = 126 p = 0.029 r = 0.55 

LOC Layer 2 t(32) = -0.68 p = 0.630 d = -0.12 

LOC Animacy category W = 137 p = 0.039 r = -0.51 

LOC Word2Vec t(32) = -1.37 p = 0.298 d = -0.24 

LOC Random Layer 8 t(32) = 0.21 p = 0.892 d = 0.04 

HVC Layer 8 t(32) = 2.59 p = 0.043 d = 0.45 

HVC Layer 2 t(32) = -0.70 p = 0.666 d = -0.12 

HVC Animacy category W = 232 p = 0.579 r = -0.17 

HVC Word2Vec t(32) = -2.27 p = 0.065 d = -0.39 

HVC Random Layer 8 t(32) = 0.19 p = 0.852 d = 0.03 

 
Supplementary Table 2. Results of one sample t-tests and Wilcoxon signed rank test contrasting parameter estimates of the parametric 
modulators against zero (no modulation). We found reliable modulations by the high-level visual model (Layer 8) throughout all three ROIs, 
encompassing early (V1) and high level (HVC). P values are FDR corrected. 

 

 

 

 

ROI Contrast Test statistic P value Effect size 
V1 Layer 8 vs Layer 2 t(32) = 8.05 p < 0.001 d = 1.40 

V1 Layer 8 vs Animacy category t(32) = 5.71 p < 0.001 d = 0.99 

V1 Layer 8 vs Word2Vec t(32) = 5.91 p < 0.001 d = 1.03 

V1 Layer 8 vs Random layer 8 t(32) = 6.66 p < 0.001 d = 1.16 

V1 Layer 2 vs Animacy category t(32) = 0.44 p = 0.737 d = 0.08 

V1 Layer 2 vs Word2Vec W = 218.0 p = 0.440 r = 0.22 

V1 Layer 2 vs Random layer 8 W = 216.0 p = 0.440 r = -0.23 

V1 Animacy category vs Word2Vec t(32) = 0.28 p = 0.810 d = 0.05 

V1 Animacy category vs Random layer 8 t(32) = -0.66 p = 0.645 d = -0.11 

V1 Word2Vec vs Random layer 8 W = 204.0 p = 0.322 r = -0.27 

LOC Layer 8 vs Layer 2 t(32) = 4.24 p = 0.001 d = 0.74 

LOC Layer 8 vs Animacy category W = 108.0 p = 0.010 r = 0.61 

LOC Layer 8 vs Word2Vec W = 148.0 p = 0.060 r = 0.47 

LOC Layer 8 vs Random layer 8 W = 158.0 p = 0.078 r = 0.44 

LOC Layer 2 vs Animacy category t(32) = 0.71 p = 0.631 d = 0.12 

LOC Layer 2 vs Word2Vec W = 261.0 p = 0.780 r = -0.07 

LOC Layer 2 vs Random layer 8 t(32) = -0.64 p = 0.607 d = -0.11 

LOC Animacy category vs Word2Vec W = 238.0 p = 0.640 r = -0.15 

LOC Animacy category vs Random layer 8 t(32) = -1.63 p = 0.261 d = -0.28 

LOC Word2Vec vs Random layer 8 t(32) = -1.0 p = 0.490 d = -0.17 

HVC Layer 8 vs Layer 2 t(32) = 2.85 p = 0.028 d = 0.50 

HVC Layer 8 vs Animacy category t(32) = 2.32 p = 0.081 d = 0.40 

HVC Layer 8 vs Word2Vec t(32) = 3.13 p = 0.016 d = 0.54 

HVC Layer 8 vs Random layer 8 t(32) = 1.84 p = 0.189 d = 0.32 

HVC Layer 2 vs Animacy category t(32) = 0.13 p = 0.900 d = 0.02 

HVC Layer 2 vs Word2Vec t(32) = 1.03 p = 0.488 d = 0.18 

HVC Layer 2 vs Random layer 8 t(32) = -0.65 p = 0.628 d = -0.11 

HVC Animacy category vs Word2Vec W = 199.0 p = 0.291 r = 0.29 

HVC Animacy category vs Random layer 8 t(32) = -0.77 p = 0.612 d = -0.13 

HVC Word2Vec vs Random layer 8 t(32) = -1.61 p = 0.252 d = -0.28 

     
Supplementary Table 3. Results of paired t-tests and Wilcoxon signed rank test, contrasting the parameter estimates of the parametric 
modulators in a pair-wise fashion within each ROI. The high-level visual model (layer 8) modulated sensory responses significantly more than 
any of the four control models in V1, as well as some models in LOC and HVC. P values are FDR corrected. 
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