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Abstract

Perception and behaviour are significantly moulded by
expectations derived from our prior knowledge. Hierarchical
predictive processing theories provide a principled account of
the neural mechanisms underpinning these processes,
casting perception as a hierarchical inference process. While
numerous studies have shown stronger neural activity for
surprising inputs, in line with this account, it is unclear what
predictions are made across the cortical hierarchy, and
therefore what kind of surprise drives this upregulation of
activity. Here we leveraged fMRI and visual dissimilarity
metrics derived from a deep neural network to arbitrate
between two hypotheses: prediction errors may signal a local
mismatch between input and expectation at each level of the
cortical hierarchy, or prediction errors may incorporate
feedback signals and thereby inherit complex tuning
properties from higher areas. Our results are in line with this
second hypothesis. Prediction errors in both low- and high-
level visual cortex primarily scaled with high-level, but not low-
level, visual surprise. This scaling with high-level surprise in
early visual cortex strongly diverges from feedforward tuning,
indicating a shift induced by predictive contexts.
Mechanistically, our results suggest that high-level predictions
may help constrain perceptual interpretations in earlier areas
thereby aiding perceptual inference. Combined, our results
elucidate the feature tuning of visual prediction errors and
bolster a core hypothesis of hierarchical predictive processing
theories, that predictions are relayed top-down to facilitate
perception.

Introduction

Predictive processing (PP) theories promise to provide a
principled account of cortical computation (Bastos et al., 2012;
Friston, 2005, 2009; Rao & Ballard, 1999). One critical
ingredient of PP is the computation of prediction errors, i.e.
the mismatch between prediction, usually thought of as a top-
down signal, and bottom-up input. Such prediction errors then
serve as input to the next level in the cortical hierarchy. The
brain minimizes prediction errors by recurrently updating its
predictions. This process enables the formation of a coherent,
stable, and efficient representation of the world. Despite
variations in specific predictive processing implementations
(Ali et al., 2022; Bastos et al., 2012; Friston, 2005, 2009; Rao
& Ballard, 1999; Spratling, 2017), the core concept of
prediction error computation is ubiquitous and supported by
many empirical observations. For instance, after visual

statistical learning, visual cortex is sensitive to the likelihood
of an object's appearance. In particular, activity throughout the
ventral visual stream has been shown to be attenuated to
expected compared to unexpected appearances of the same
stimuli (Egner et al., 2010; Kaposvari et al., 2018; Kok et al.,
2012; Richter & de Lange, 2019; Utzerath et al., 2017). This
attenuation, also known as expectation suppression, has
been observed across different species and modalities (de
Lange et al., 2018; Keller & Mrsic-Flogel, 2018; Walsh et al.,
2020) and occurs also when predictions and stimuli are task-
irrelevant (Meyer & Olson, 2011; Ramachandran et al., 2016;
Richter et al., 2018; Schneider et al., 2018). Combined,
expectation suppression has frequently been interpreted in
the context of PP as reflecting larger prediction errors for
unexpected stimuli, and thus taken as crucial evidence that
perception fundamentally relies on prediction (de Lange et al.,
2018; Walsh et al., 2020).

If prediction and prediction error computations underlie
perceptual inference, as suggested by PP theories, we can
stipulate that cortical predictions and the associated
prediction error signatures must reflect stimulus features that
are represented in the respective cortical area. For example,
prediction errors in primary visual cortex (V1) may signal
deviations from expectation in terms of simple features such
as stimulus orientation, edges and contrasts — i.e., visual
features that V1 neurons are tuned to (Hubel & Wiesel, 1962).
On the other hand, prediction errors in higher visual areas
(HVC), for instance in fusiform gyrus, may reflect more
complex high-level visual features, such as object identities,
spatial relationships between object parts and more abstract
concepts such as faces, commonly represented in those
areas (Kanwisher et al.,, 1997; Kravitz et al.,, 2013;
Kriegeskorte et al., 2008). This account suggests that
prediction errors mirror /ocal feature tuning, unique to each
visual cortical area. While some studies have provided indirect
support for the feature specificity of sensory prediction errors
by investigating tuning specific modulations (Kok et al., 2012;
Richter et al., 2022; Yon et al., 2018), little evidence directly
shows which visual feature surprise, if in fact any, is reflected
in visual prediction errors.

In contrast to local feature tuning, prediction error tuning
may be inherited top-down. Top-down inheritance is in line
with hierarchical PP, because predictions are proposed to be
relayed top-down from higher to lower visual areas (Friston,
2005), and thus lower visual areas may come to reflect tuning
properties of higher areas in predictive contexts due to the
top-down prediction signals. Empirical support for this notion
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characterize what kind of visual surprise is
tracked by the visual system. Here we aimed
to close this gap by exploring features
reflected in the visual surprise response after
statistical learning. Specifically, we asked (1)
whether prediction errors come to reflect any
visual feature tuning in predictive contexts, and if so, whether
(2) this tuning is in line with the local visual features or
inherited top-down. To do so, we exposed human volunteers
to images that were either expected or unexpected in terms of
their identity, given a preceding cue, while recording whole-
brain fMRI. To quantify visual feature surprise across multiple
levels of description we used representational dissimilarity
metrics derived from a visual deep neural network (DNN). Our
results demonstrate that neural responses across multiple
visual cortical areas monotonically increased with how
visually dissimilar a surprising object was compared to the
expected object. Crucially, high-level visual dissimilarity
accounted for the surprise induced increase of neural
responses, including in the earliest visual cortical area, V1.
Prediction errors thus appear to reflect surprise primarily in
terms of high-level visual features, demonstrating that earlier
visual areas inherit feature tuning usually associated with
higher visual areas in predictive contexts, presumably due to
feedback signals.

Results

Human volunteers (n = 33) viewed images that could contain
either animate or inanimate entities. Each image was
preceded by a letter cue that probabilistically predicted the
identity of the image. The expected image was seven times
more likely to follow its associated letter cue compared to
each of the seven unexpected images. Participants were
tasked to classify the content of the image as animate or
inanimate. Further details are in the Methods: Stimuli and
experimental paradigm section.

Behavioral facilitation by valid prediction

Participants were faster and more accurate when categorizing
expected compared to unexpected images (Figure 1).
Response times to expected images were faster by an
average of 16 ms (Wilcoxon signed rank test: W(s2)= 15, z= -
4.74, p < 0.001, r = -0.947) and more accurate by 1.1%
(Wilcoxon signed rank test: W(s2) = 425.5, z=2.59, p = 0.010,

Expectation status

Expectation status

Figure 1. Behavioural facilitation due to prediction. A) Reaction times (RT) to
expected objects were faster compared to unexpected images. B) Accuracy of
responses was high overall, but responses were more accurate to expected
compared to unexpected images. *** p < 0.001, ** p < 0.01.

r=0.517). This behavioural facilitation thus demonstrated that
participants learned and used the underlying statistical
regularities to predict inputs. Moreover, accuracy in general
was very high (> 95%), indicating effective task compliance.

Deep neural network models mirror a gradient from low-
to-high level visual features in visual cortex

While (visual) DNNs have been used to successfully explain
a variety of neural data (Doerig et al., 2023), we first ensured
that the specific feature models utilized here were able to
explain visual responses in our data in a prediction-free
context. Specifically, we extracted the correlation distance
between images from an implementation of AlexNet trained
on ecoset (Mehrer et al.,, 2021). Then we performed
representational similarity analysis (RSA) using the
representational distances derived from the DNN layers and
from the fMRI data obtained during localizer runs. During
these runs each image was presented in isolation, without
preceding cue and without predictive associations between
the images. To assess possible contributions of all DNN
layers we repeated this analysis using representational
dissimilarity matrices (RDMs) from each of the DNN layers
separately. Finally, for each voxel (sphere searchlight) we
determined the best DNN layer for explaining neural variance
based on the RSA results (correlation coefficient).

Results (Figure 2), showed a gradient from early to higher
visual cortex with the corresponding early to late DNN layers
best explaining neural variance. Specifically, early visual
cortex (EVC) responses were best explained by early layers
of the DNN (mostly layers 2-3), intermediate visual areas such
as lateral occipital complex (LOC) by intermediate layers
(mostly layers 4-6), and HVC responses, for example in the
fusiform gyrus, were best explained by late layers of the DNN
(layers 7-8). These outcomes affirm previous reports (Guclu
& van Gerven, 2015; Mehrer et al., 2021) and validate that our
visual feature models, including the low-level (layer 2) and
high-level visual model (layer 8), accounted for cortical
variance elicited by visual stimulation in an expected pattern
of a low-to-high level gradient.
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Figure 2. Representational similarity analysis of visual responses in prediction-free contexts. Results show that (feedforward) visual
responses during the prediction-free localizer were best explained by a gradient of low-level to high-level visual features going up the ventral
visual hierarchy. Cold colors (purple — blue) represent early DNN layers (i.e., low-level visual features), which dominated neural responses in
EVC. Warm colors (yellow — red) indicate late DNN layers (i.e., high-level visual features), which best accounted for neural responses in HVC.
Analysis was masked to visual cortex and thresholded at z > 3.1 (p < 0.001, uncorrected) of the RSA.

Prediction errors scale with high-level, but not low-level
visual feature dissimilarity

Next, we turned our attention to the nature of prediction
errors, asking which visual features, if any, they reflect across
multiple regions along the ventral visual hierarchy. Figure 3
illustrates the analysis rationale. If low-level visual features,
such as local oriented edges and spatial frequency, are
predicted in a specific cortical area (e.g., V1) then prediction
error magnitudes should scale with low-level surprise in that
area. As an example, expecting a specific image of a guitar
but seeing an image of another guitar from a different angle
should yield a large prediction error as the two images are
different from a low-level visual feature standpoint. On the
other hand, if high-level visual features, such as more abstract
and general guitar features (e.g., a neck and guitar body) are
predicted, invariant to local orientation, then the unexpected
guitar should not yield a strong prediction error, whereas
seeing an image of an unexpected category should result in
a large prediction error (even if low-level features are similar).
Based on our analyses of DNN alignment with fMRI localizer
data and prior work (Mehrer et al., 2021), we decided to use
layer 2 of the visual DNN as low-level feature model, and layer
8 (before softmax of the output layer) as high-level visual
feature models. This allowed for maximal differentiation of the
low- vs high-level models. To model how the BOLD response
changed as a function of how visually surprising an
unexpected stimulus was in terms of low-level (layer 2) and
high-level (layer 8) visual features respectively, we used the
dissimilarity of each surprising image, compared to the
stimulus expected on that trial, as parametric modulators in
the fMRI GLM analysis (for details see Methods: Data
analysis). In addition, we included multiple control variables,
such as task-relevant stimulus animacy and word-level
(semantic) dissimilarity.

Results, depicted in Figure 4A, demonstrated that surprise
responses scaled significantly with high-level visual
dissimilarity (layer 8) in visual cortex, encompassing early and
intermediate visual areas (cluster size 779 voxel, 6232 mm?3;
Supplementary Table 1 contains additional details). That is,
the more an unexpected stimulus diverged from the expected
image in terms of high-level visual features, the more the
sensory response increased in magnitude. Surprisingly, we

did not find any modulation of neural responses by low-level
visual dissimilarity (layer 2) anywhere in visual cortex. In other
words, even in EVC prediction error magnitudes were
modulated by high-level but not low-level visual surprise, as
indexed by layer 2. In the example in Figure 3A this
corresponds to the unexpected image of the elephant eliciting
a larger prediction error in V1 compared to the unexpected
guitar. On the other hand, the low-level surprise elicited by the
unexpected guitar would not result in an additional
upregulation of prediction errors in visual cortex beyond the
associated high-level visual surprise.

Our whole-brain results were corroborated by an ROI
analysis, depicted in Figure 4B. Results showed a strong
difference between high- and low-level visual feature models
in modulating BOLD surprise responses (main effect of
model: F(1,32) = 22.70, p < 0.001, n; = 0.42). We found reliable
modulations of surprise responses by high-level visual, but no
significant modulation by low-level visual features, in primary
visual cortex (V1: Layer 8: fi32) = 6.79, p < 0.001, d = 1.18;
Layer 2: W = 190, p = 0.159, d = -0.32, BF1o = 0.58),
intermediate visual areas in the lateral occipital complex
(LOC: Layer 8: W =126, p = 0.017, d = 0.55; Layer 2: t32) = -
0.68, p = 0.504, d = -0.12, BF10 = 0.23) and high-level visual
cortex (HVC: Layer 8: fi32) = 2.59, p = 0.029, d = 0.45; Layer
2: t32) =-0.70, p = 0.586, d =-0.12, BF10 = 0.23). Contrasting
the modulation by layer 8 against layer 2 dissimilarity
confirmed that layer 8 modulated visual surprise responses
significantly more than layer 2 in V1 (f32) = 8.05, p < 0.001, d
=1.40), LOC (f32) = 4.24, p = 0.003, d = 0.74), and HVC (t32)
= 2.85, p = 0.008, d = 0.50). Hence, the larger the visual
dissimilarity of a surprising stimulus in terms of high-level
visual features, the more vigorous the visual response across
the ventral visual stream, including V1. No corresponding
modulation by low-level visual features was observed,
suggesting that high-level features are predominantly
reflected in visual prediction error signals.

In a subsequent analysis, we asked which DNN layer
explained most neural variance of the prediction error
response. We analyzed how neural responses to unexpected
stimuli were scaled as a function of surprise indexed by each
layer of the DNN. To this end we regressed layer 1-8
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Figure 3. Analytical approach. A) If you expect to see the first guitar on the left, what kind of visual features does visual cortex predict? Low-
level visual features, illustrated next to the expected image, concern local oriented edges, spatial frequency, and similar properties. High-level
visual features entail more abstract visual representations, core object parts and their relationships, such as features shared by all instances of
an object, irrespective of the specific depiction. Depending on which features are predicted, the two ‘seen’ images will result in different prediction
error magnitudes. The image of the elephant is very different in high-level visual features, but shares some local orientation with the expected
guitar, hence resulting primarily in high-level visual surprise. On the other hand, the image of the other guitar is very different in terms of low-
level visual features, as it is differently rotated compared to the expected guitar, but it is still a guitar and thus shares high-level visual features.
The key question of the analysis is whether and where in the visual system low-level or high-level surprise results in larger prediction errors. B)
Analysis procedure. The left side shows a single trial with a letter cue predicting a specific image. Below multiple unexpected images are
illustrated, which were presented on other trials. The right side depicts the extraction of low-level and high-level visual feature dissimilarity from
layer 2 (low-level) and layer 8 (high-level) of the visual DNN. Dissimilarity of the unexpected seen image compared to the expected stimulus
was then added as a parametric modulator in the first level GLMs of the fMRI analysis. The graph at the bottom uses data from an example
participant to illustrate how BOLD responses in V1 (ordinate) are modulated as a function of low-level (blue) and high-level (red) visual
dissimilarity (abscissa). A positive slope thus indicates that the more dissimilar a seen image was relative to the expected stimulus the more
vigorous the neural response. In the example data, the image of the unexpected elephant would hence result in larger prediction errors compared
to the image of the unexpected guitar, because of the larger high-level surprise. Additional control variables for task relevance (animacy) and
word meaning, discussed in more detail later, were also included. We performed this parametric modulation analysis in a voxel-wise fashion
across the whole brain.
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Figure 4. Prediction error magnitude scales with high-level visual feature surprise. A) Whole-brain results assessing the modulation of
surprise responses as a function of high-level (top row) and low-level (bottom row) visual feature dissimilarity. The top row shows that surprise
responses to unexpected images were increased if the image was more distant from the expected image in terms of high-level visual features.
Colour indicates the beta parameter estimate of the parametric modulation, with red and yellow representing increased responses. Black outlines
denote statistically significant clusters (GRF cluster corrected). No significant modulation of sensory responses was observed by low-level visual
surprise. B) ROI analysis zooming in on ROls in early visual (V1), intermediate (LOC) and higher visual cortex (HVC; encompassing occipito-
temporal sulcus and fusiform cortex). Results mirror those of the whole-brain analysis, with significant modulations of the visual responses by
high-level visual surprise, but not low-level visual surprise. P values are FDR corrected. *** p < 0.001, * p < 0.05, = BF, < 1/3. C) Prediction
errors preferentially scale with high-level visual features (layer 8 and layer 7) throughout most of the visual system, including EVC, LOC and
HVC. Color indicates the DNN layer with the largest effect (explained variance) on scaling the neural responses to surprising inputs. Cold colors
(purple — blue) represent early layers (i.e., low-level visual features), while warm colors (yellow — red) indicate late layers (i.e., high-level visual
features). Analysis was masked to visual cortex and thesholded at a liberal z = 1.96 (i.e., p < 0.05, two-sided) to explore the landscape of
prediction error modulations across DNN layers. Results strongly contrast with those observed for prediction-free visual responses during the
localizer (Figure 2). D) ROI analysis regressing BOLD responses onto high-level visual dissimilarity. Results show a monotonic relationship
between BOLD responses and high-level surprise across all three ROIs. For display purposes dissimilarities were ranked, while statistical
inference was performed on the correlation distances.

dissimilarity onto single trial parameter estimates and
determined for each voxel which layer had the largest
explained variance. Results (Figure 4C) showed that
prediction error magnitudes primarily scaled with high-level
visual surprise (layer 8 and layer 7) across most parts of the

ventral visual stream, including EVC, LOC, and HVC. We note
additional minor clusters in HVC scaled by intermediate layer
4, as well as layer 1 and 3 in EVC and LOC, suggesting that
some neural populations scaled with intermediate and low-
level surprise as well. In sum, these results present a stark
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contrast to the modulation of responses during the prediction-
free localizer (Figure 2) where a clear gradient from early-to-
late layers was observed, with early layers dominating EVC
representations. In contrast, prediction errors appear to be
scaled preferentially by high-level visual surprise across the
visual system, including EVC.

Finally, we assessed the shape of the response
modulation by high-level visual surprise by regressing BOLD
responses for unexpected stimuli onto layer 8 dissimilarity
using an ROI approach. Results, shown in Figure 4D, show
that the increased BOLD response to surprising stimuli
follows a positive monotonic association across the
dissimilarity spectrum in all three ROlIs (V1: f32) = 9.35, p <
0.001, d = 1.63; LOC: t@32) = 3.27, p = 0.004, d = 0.57; HVC:
fis2) = 2.05, p = 0.049, d = 0.36). In sum, visual responses
across major parts of the ventral visual system appear to
monotonically scale with high-level visual surprise.

Prediction error scaling with high-level visual surprise is
not explained by task-relevance, semantic surprise, or
inherent properties of the DNN architecture

Multiple alternative explanations could account for a
correlation of prediction error magnitudes with high-level
visual features. To rule out alternative accounts for our
observations, we included multiple control variables as
parametric modulators in our GLM analysis. First, layer 8
representations from an untrained (i.e., random) but
otherwise identical DNN were included. This contrast ruled
out that the inherent structure of the DNN architecture or
correlations in the input images caused the scaling of
prediction errors with late layer representations. Second,
animacy category was included in the GLM to assess whether
high-level visual modulations result from a correlation of high-
level visual features with the task-relevant dimension of
animacy. Since participants had to distinguish between
animate and inanimate entities in the images, prediction error
modulations could potentially reflect task responses. Finally,
because high-level visual features may significantly correlate
with semantic, word category level surprise, we also
contrasted the high-level visual model against a word2vec
(Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013)
derived model aimed at indexing non-visual, semantic
surprise.

These controls revealed that high-level visual surprise
(layer 8) best accounted for the data, significantly
outperforming an untrained random layer 8 model, animacy
category, word category (semantic), and the low-level visual
surprise models in explaining prediction error magnitudes
(Figure 5A). Statistically significant clusters were found in
EVC as well as intermediate visual areas in LOC, and HVC in
some contrasts. The exact extent of the modulation varies
slightly between contrasts, but overall corroborate that
prediction error magnitudes mainly result from high-level
visual feature surprise and that none of the control variables
likely account for the observed results. Corresponding whole-
brain figures contrasting the control parametric modulators
against baseline (no modulation) can be found in
Supplementary Figure 1.

An ROI analysis (Figure 5B) of the same four contrasts
confirmed the whole-brain results. We observed reliable
differences between models, which differed across ROls
(main effect of model: Fu,128) = 12.20, p < 0.001, 77;2; = 0.28;
interaction ROI by model: F4.40,140.93) = 11.09, p < 0.001, n; =
0.26). Specifically, we found significantly stronger
modulations of BOLD responses by high-level visual
dissimilarity compared to all other four parametric modulators
in V1 (paired t-tests: all FDR corrected p < 0.001; all d > 0.99;
see Supplementary Table 2 and Supplementary Table 3 for
details). Similar, albeit less pronounced results were found in
LOC (Layer 8 vs. Layer 2: p = 0.001, d = 0.74; Layer 8 vs.
Animacy category: p=0.010, d=0.61; Layer 8 vs. Word2Vec:
p =0.060, d = 0.47; Layer 8 vs. Random layer 8: p = 0.078, d
= 0.44) and HVC (Layer 8 vs. Layer 2: p = 0.028, d = 0.50;
Layer 8 vs. Animacy category: p = 0.081, d = 0.40; Layer 8
vs. Word2Vec: p = 0.016, d = 0.54; Layer 8 vs. Random layer
8: p =0.189, d = 0.32). An additional negative modulation of
prediction error magnitudes by word category surprise was
observed in V1 (p = 0.020, d = -0.60), and by animacy
category surprise in LOC (p = 0.039, d = -0.51), suggesting
that prediction errors may be attenuated for more
semantically dissimilar surprising images in V1 and for stimuli
of a different animacy category in LOC compared to the
expected image. Finally, to ensure that our results were not
dependent on the exact ROl mask size, we repeated the
analysis across multiple mask sizes. Results were largely
consistent across ROI sizes; see Supplementary Figure 2.

High-level visual surprise correlates with behavioral
response slowing
Participants were asked to classify the contents of the images
as animate or inanimate. High-level visual features often
correlate with this task-relevant animacy axis. Hence, we
assessed whether high-level visual feature surprise might
also correlate with increased response times by regressing
image dissimilarity onto reaction times to unexpected images.
Our findings, shown in Figure 6A, demonstrate that
reaction times were indeed modulated by high-level visual
(layer 8) dissimilarity. Responses were slower the more
dissimilar the surprising images were in high-level visual (f(32)
=3.47,p=0.001, d=0.61), but not in low-level visual features
(t32) = -1.85, p = 0.074, d = -0.32; Layer 8 > Layer 2: f32) =
3.10, p = 0.004, d = 0.54) compared to the expected stimulus.
Indeed, the relationship of layer 8 dissimilarity and response
slowing was monotonic (Figure 6B). Thus, high-level visual
dissimilarity did not only scale with prediction error
magnitudes in visual cortex but was also associated with
slower RTs.

Discussion

Hierarchical PP theories (Bastos et al., 2012; Clark, 2013;
Friston, 2005, 2009; Rao & Ballard, 1999) have received
significant attention as they propose a fundamental
framework for cortical computation. Numerous studies have
corroborated the main tenets of predictive processing, such
as demonstrating that sensory responses to surprising inputs
are enhanced compared to expected ones, likely reflecting
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Figure 5. Prediction error magnitudes are best explained by high-level visual feature dissimilarity. A) Whole-brain contrasts of the high-
level visual feature model (layer 8) contrasted against four control variables. The top row shows that high-level visual models performed
significantly better than low-level visual models (layer 2). Similarly, high-level visual surprise better accounted for prediction error magnitudes
than the task-relevant animacy category of the unexpected stimuli (second row) and the semantic, word category surprise model (word2vec;
third row). The bottom row shows that high-level visual dissimilarity significantly better explained prediction error magnitudes compared to an
untrained but otherwise identical DNN layer 8. B) ROI analysis including primary (V1), intermediate (LOC) and high-level visual cortex (HVC).
Results confirm the whole-brain results, showing significant modulations of BOLD responses by high-level visual surprise compared to low-level
visual, response category, and word category surprise. P values are FDR corrected. *** p < 0.001, ** p < 0.01, * p < 0.05.
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Figure 6. Behavioural response slowing correlates
with high-level visual surprise. A) Behavioral
responses were slower the more dissimilar surprising
images were in terms of high-level, but not low-level
visual features. Depicted are the slope coefficients
(betas) regressing RT onto layer 8 (red) and layer 2
(blue) dissimilarity. Positive betas indicate response
slowing the more dissimilar the seen unexpected image
was compared to the expected stimulus. B) Depicts RT
as a function of ranked dissimilarity (from least to most
dissimilar). Dots represent the averaged RT for each
dissimilarity rank. Results show a positive monotonic
relationship between RT and layer 8 dissimilarity,

Layér 8 Layér 2 least dissimilar

Dissimilarity

larger sensory prediction errors (Alink et al., 2010; Kok et al.,
2012; Meyer & Olson, 2011; Ramachandran et al., 2016;
Richter et al., 2018). However, while evidence for this core
mechanism of predictive processing has been shown across
modalities, paradigms and species (de Lange et al., 2018;
Heilbron & Chait, 2018; Walsh et al., 2020), it remains
unknown what kind of surprise is reflected in these putative
prediction errors. Here we set out to elucidate the nature of

most dis'similar
Dissimilarity Layer 8 [ranked]

indicating that unexpected stimuli that were more
surprising in terms of high-level visual features resulted
in slower behavioral responses. ** p < 0.01.

the surprise scaling of visual prediction errors and thus what
information is predicted across the visual hierarchy.

Visual prediction errors scale with high-level visual
surprise

Using fMRI and representational distance measures derived
from a visual DNN, our data showed that throughout multiple
visual cortical areas sensory responses to unexpected
images scale with the representational distance of a seen
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unexpected stimulus relative to the expected input.
Specifically, responses monotonically scaled with high-level
visual feature surprise: the larger the high-level deviation from
expectation, the larger the prediction error response.
Interestingly, and in contrast to feedforward processing, even
early visual areas, such as V1, predominantly responded to
high-level visual over low-level surprise, while being best
explained in terms of low-level features in cases where no
prediction was possible (localizer). These results are in line
with a recent study demonstrating that firing rates in macaque
V1 correlate with predictability of high-level and not low-level
visual features (Uran et al., 2022). The increased prediction
error to high-level visual surprise in EVC, a region not known
for tuning to high-level visual features during feedforward
processing, suggests that predictions are relayed top-down
and hence result in the observed inheritance of feature
surprise from higher areas in earlier processing stages. Thus,
our results support and extend previous studies by
demonstrating that (1) top-down inheritance during predictive
vision generalizes across species and recording modalities,
and (2) crucially appears to be a general principle of visual
sensory processing evident across multiple cortical areas
from EVC over LOC to the highly specialized areas in the face
processing system (Issa et al., 2018; Schwiedrzik & Freiwald,
2017). Additionally, our results further demonstrate that
predictive signatures and top-down inheritance of high-level
feature surprise can arise, at least in humans, with little
exposure to the predictive regularities, requiring only several
dozen exposures rather than extensive exposure as in the
case of studies in non-human primates (Schwiedrzik &
Freiwald, 2017). This flexibility of the visual system to learn
and rapidly utilize novel sensory priors to generate high-level
predictions to inform sensory processing in earlier stages of
the hierarchy further supports the hypothesis that top-down
inheritance is a ubiquitous and general principle of visual
processing.

What kind of mechanism may underlie the here observed
modulations of sensory responses? An inherent limitation of
fMRI BOLD is the temporal resolution. However, similar
reports of prediction error responses in macaques
(Schwiedrzik & Freiwald, 2017; Uran et al., 2022), suggest
that a late stage of the neural response is modulated by top-
down predictions. Albeit speculative, it is plausible that we
observed the fMRI BOLD correlates of a similar late-stage
top-down modulation of sensory processing. This
interpretation aligns well with our observation that the
feedforward response, mostly reflected during the prediction-
free localizer, is dominated by local tuning properties (e.g.,
low-level features in V1), while recurrent processing due to
prediction during the main task, relying on feedback and
reflecting high-level visual surprise, takes time to arise given
the necessary computations and signal relaying across
multiple cortical areas. In other words, combined our results
suggest that following the activation of high-level areas,
during the initial feedforward sweep, a prediction is
subsequently relayed down the processing hierarchy
modulating the sustained phase of neural responses across
earlier areas.

Elaborating further on this account, one possible
explanation for the observed results is that predictions allow
the visual system to settle into a valid perceptual
interpretation faster and more efficiently, because predictions
match the bottom-up inputs. In contrast, unexpected input will
result in slower and less efficient neural processing,
potentially requiring more extensive and slower recurrent
processing for the visual system to derive a valid
interpretation of the current inputs. The longer temporal
extends but also lower efficiency of sensory inference in the
case of unexpected input could then contribute to the larger
BOLD signal observed here. But why would high-level instead
of low-level visual feature predictability primarily modulate
sensory responses? Perceptual interpretations can be
constrained top-down, with higher cortical areas constraining
lower areas via feedback connections (Friston, 2005). Hence,
on this account, the key features for facilitating perceptual
interpretation may be represented in terms of the high-level
visual features encoded in the higher cortical areas sending
the feedback signals. Thus, the more difficult a seen object is
to reconcile with predictions by these higher-level visual areas
the larger BOLD the responses (i.e., a monotonic increase),
because arriving at a valid interpretation is slower and less
efficient with less reliable feedback, requiring more recurrent
processing across the visual hierarchy to update predictions
to match the current inputs. In other words, the degree of
belief updating, reflected in the prediction error magnitudes,
appears to be contingent on high-level visual surprise across
the visual hierarchy, including in V1.

Our analyses also demonstrated that the modulation of
prediction error responses by high-level visual surprise was
not explained by the task-relevant animacy category
dimension or by word-level (semantic) surprise. These results
thus suggest that visual prediction errors are predominantly
influenced by high-level visual and not abstract linguistic or
response-related surprise. This preference aligns with our
earlier proposition of facilitated perceptual inference, with
visual prediction errors scaling primarily with visual surprise
due to the role of top-down feedback in constraining
perceptual interpretations in lower areas. Consequently,
because high-level regions in the ventral stream primarily
encode advanced visual features, the surprise signal is
expressed in terms of these visual features instead of abstract
non-visual representations.

High-level visual predictions aid perceptual inference
and consequently behavioral responses

Besides sensory response modulation, high-level visual
surprise was also seen to slow behavioral responses. This
suggests that increased visual prediction errors may not
merely reflect an epiphenomenon of predictive processing but
may translate into tangible behavioral effects. Our account,
that valid predictions expedite perceptual inference, could
also explain why high-level visual surprise may correlate with
response slowing. Essentially, slower perceptual inference
could directly translate into slower behavioral responses
because perceptual inference ought to conclude before
response initiation. However, this interpretation is speculative
as our data do not provide causal evidence, and alternative
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interpretations, such as slower responses due to more difficult
decision making for unexpected stimuli cannot be ruled out.

That said, this account is consistent with the observation
that we found reliable upregulations of prediction error
amplitudes by high-level visual (layer 8) surprise in the visual
system, but not in the motor system or other areas outside the
visual system, such as inferior frontal gyrus or anterior insula,
known to generate prediction errors especially when
predictions are task-relevant (Fazeli & Biichel, 2018; Ferrari
et al., 2022; Loued-Khenissi et al., 2020; Richter & de Lange,
2019). This suggests that the modulation by high-level visual
surprise primarily concerns facilitated perceptual inference
rather than facilitated decision making or response initiation.
Yet, this does not mean that predictions do not facilitate these
processes as well. Our results concern the modulation of
neural responses for different unexpected inputs. The
contrast of unexpected compared to expected inputs (i.e.,
expectation suppression) can be found in Supplementary
Figure 3 and matches previous studies showing additional
prediction error signatures in decision, attention and motor
processing related areas (Fazeli & Biichel, 2018; Ferrari et
al., 2022; Loued-Khenissi et al., 2020; Richter & de Lange,
2019), suggesting that prediction facilitates processing across
multiple cortical systems.

Flexible prediction (error) tuning

While we found no reliable upregulation of prediction error
magnitudes by any of the control models (also see:
Supplementary Figure 1), this does not imply that the visual
system exclusively encodes high-level visual surprise.
Although we dismissed that animacy category explained our
results, this does not rule out that task requirements shaped
the acquisition and generation of predictions, and
consequently the scaling of prediction errors. Indeed, it is
possible that the focus on high-level features, due to the task
requirements, shaped what kind of features were predicted,
given the substantial effect that tasks can have on visual
processing (Harel et al., 2014). Thus, our results are
consistent with recent models of adaptive efficient coding
(Miynarski & Tkacik, 2022). Specifically, because our task
required a high-level decision, such task demands might be
reflected in the adaptive compression (silencing) of non-task
relevant sensory representations due to top-down feedback,
thereby resulting in the observed scaling of early visual
responses with high-level visual surprise. Moreover, from an
evolutionary perspective it is advantageous to develop flexible
predictions, allowing the visual system to adapt to
environmental requirements. In line with this hypothesis,
recent evidence suggests that semantic (word level) priors
can be used to generate category specific sensory
predictions, even in early visual cortex (Yan et al., 2023).
Therefore, more abstract, semantic representations could
potentially modulate visual prediction errors under certain
conditions.

On the other hand, it is also plausible that visual prediction
errors can reflect low-level features, particularly if required by
the environment. Indeed, in the present data small additional
clusters across multiple areas scaled with intermediate-level
surprise (mostly layer 3 and 4), suggesting variety in the

surprise reflected in visual prediction errors. Moreover, a
different task, focused on low-level features, may result in a
different pattern of prediction error tuning, representing low-
level surprise instead. However, it is likely that there are limits
to this flexibility imposed by the architecture and
representational constraints of the visual system. As argued
above, high-level visual predictions may be relayed top-down
and constrain visual interpretations in lower areas, because
neurons in higher visual areas are tuned to high-level
features. In contrast, itis less likely that high-level visual areas
have the necessary representational structure and acuity to
predict detailed low-level features, and hence these areas
may be unable to constrain visual interpretations in EVC for
low-level visual features to the same degree as for high-level
predictions. Nonetheless, we believe that it is essential for
future work to chart the extent to which prediction error tuning
is flexibly adjusted to reflect environmental and task
demands.

Limitations

There are some limitations to the present research. A superior
low-level visual feature model may have yielded prediction
error modulations by such features. In addition, the specific
stimulus set could have discouraged or obscured low-level
surprise modulations. Nevertheless, we demonstrated that
early DNN layers best explain feedforward visual activity in
EVC during the prediction-free localizer runs suggesting that
the employed model does reliably explain visual responses
for our stimulus set. Moreover, we chose a commonly used
visual DNN. This and similar models have repeatedly been
shown to share representational geometry with visual cortex
(Eickenberg et al., 2017; Guclu & van Gerven, 2015; Khaligh-
Razavi & Kriegeskorte, 2014; Mehrer et al., 2021). Finally,
there is no evidence for a strong positive, but sub-threshold,
modulation of visual responses by low-level visual surprise
evident in either the whole-brain or ROI results. This suggests
that it is unlikely that a quantitative issue, such as low
statistical power due to a subpar low-level feature model or
non-ideal stimulus set for evoking low-level visual predictions,
explains the current results. Nonetheless, future work could
improve on the generalization of the present results by
utilizing different, ideally more complex stimulus sets and
improved feature models, thereby further investigating
whether (other aspects of) low-level features may modulate
visual prediction errors.

The word category (semantic) model has similar
limitations. While word2vec and related models have been
widely used to index semantic dissimilarity (Huth et al., 2016;
Mitchell et al., 2008; Pereira et al., 2018), they may no longer
constitute state-of-the-art models. Thus, given a different
semantic feature model or task, visual prediction errors could
be modulated by semantic surprise. However, while
improvements in the semantic model are possible, it seems
unlikely that incremental improvements in the model can fully
account for the observed results, especially in EVC, given that
semantic modulations tend to arise later in the processing
hierarchy. In sum, while we cannot rule out that in some
circumstances other models, stimuli, or tasks could result in
low-level visual or linguistic semantic features modulating
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sensory prediction errors, our data indicates a propensity of
the visual system to scale prediction errors in terms of high-
level visual surprise.

Adaptation and attention-based accounts

One concern in predictive processing studies is differentiating
prediction from stimulus repetition effects such as neural
adaptation. Stimulus adaptation is not a viable explanation for
the present results, because all stimuli were shown equally
often. Moreover, our results concern modulations of
prediction error responses to unexpected stimuli based on
how different they were from the expected stimuli, thereby
further ruling out repetition frequency or adaptation as
explanations.

Another possible interpretation is that surprising stimuli
capture attention, which subsequently amplifies neural
responses (Alink & Blank, 2021). While we cannot
conclusively rule out this alternative account, there are
multiple factors suggesting that it is not the primary factor.
First, we observed the most pronounced modulation of
prediction error magnitudes in EVC. If attention were the main
driver, we may instead expect modulations to be more
uniformly distributed across the visual hierarchy or even more
pronounced in higher areas (Buffalo et al., 2010; Reynolds &
Chelazzi, 2004). Second, an attention-based account must
explain why attention allocation would scale primarily with
high-level visual surprise, rather than semantic features or the
task-relevant dimension of animacy. Even without
considering these arguments, if we treat the observed
modulation as an effect of attention, high-level visual surprise
must be detected before attention allocation, raising the
question where this surprise detection occurs if not reflected
by the modulation reported here. Therefore, the predictive
processing account detailed earlier appears to provide the
more parsimonious explanation.

Conclusion

We find that visual prediction errors, a key feature of
hierarchical PP, primarily reflect high-level visual surprise,
including in early visual cortex. These findings are consistent
with predictions being relayed top-down, from higher to lower
sensory areas, thereby resulting in prediction errors in early
visual areas reflecting high-level visual surprise, unlike during
feedforward processing. Relying on top-down feedback to
constrain perception may provide computational and
metabolic advantages for the sensory system, thus allowing
for more efficient and rapid convergence on valid perceptual
interpretations across the visual stream. Collectively, our
results thereby bolster a central mechanism of hierarchical PP
— the reliance of perceptual inference on prediction and
prediction error generation, thus reinforcing the crucial role of
predictions in perception.

10

Methods

Participants and data exclusion
In total 40 healthy, right-handed participants were recruited from the
Radboud University research participation system. Of these, data
from two participants were incomplete due to the participants
withdrawing from the experiment. In addition, we excluded data from
two further participants due to poor MRI data quality, caused by
excessive motion during MRI scanning in one case and anterior coil
failure in the other. Furthermore, data of three participants were
excluded because of subpar behavioral performance (see Data
analysis, Data exclusion). Thus, in total data from 33 participants (21
female, age 23.8 + 4.5, mean £ SD) were included in the final sample.
The study followed institutional guidelines and was approved by
the local ethics committee (CMO Arnhem-Nijmegen, now METC
Oost-Nederland) under the blanket approval ‘Imaging Human
Cognition’ (2014/288) granted to the Donders Centre for Cognitive
Neuroimaging. Written informed consent was obtained before study
participation and participants were compensated 10€/hour.

Stimuli and experimental paradigm

During the experiment participants were exposed to pairs of letter
cues and full-colour images of various categories while recording
fMRI. On each trial the letter probabilistically predicted the identity of
the image. A trial is depicted in Figure 7A. The expected image was
seven times more likely to follow its associated letter cue compared
to each unexpected image. The same images appeared both as
expected and unexpected stimuli, with the expectation status only
contingent on the cue after which the image appeared.

Stimuli
Full-color images were selected from a database of 233 photographs,
originally collected for a previous study (Yan et al., 2023). The image
database included multiple exemplar images of various categories,
including animate (dogs, dolphins, elephants, feet, hands, women
and men, male and female faces, swans, tigers) and inanimate
objects (cars, airplanes, churches, guitars, hammers, houses,
spoons). Of the original 233 stimuli in the database 20 stimuli were
excluded as outliers. Specifically, we used hierarchical agglomerative
clustering to cluster image representations of layer 2 and 8 of AlexNet
trained on ecoset (for more details see: Deep Neural Network). We
then excluded any outliers, such as same category objects in a
different cluster than all other exemplars of the same category in
terms of layer 8 representations. From the remaining 213 stimuli eight
images were selected for each participant, including four animate and
four inanimate images. The selection of the eight images was
optimized using the following criteria. First, we derived
representational dissimilarity matrices (RDM) from the layers of
interest (layer 2 and layer 8) from the DNN using correlation distance.
We then randomly selected eight images (four animate and four
inanimate) and calculated the variances within layer RDMs.
Additionally, we calculated the across layer RDM correlation. Finally,
we maximized the within layer variances and the minimized the
across layer correlation. This procedure is a simple method to select
image samples that maximized the detectability of effects within
RDMs, while also minimizing the correlation between RDMs, thereby
increasing our ability to detect distinct contributions of the RDMs from
the two layers of interest. For each participant we selected a set of
eight images using this procedure.

Images were presented in the center of the screen, subtending a
maximum of 6 x 6 degrees of visual angle. The exact image size


https://doi.org/10.1101/2023.08.21.554095
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.554095; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Predicts TPM C Localizer

ﬂ_

Object images

Leﬂercues

Letter Trailing Object S|
cue image ITI image 300 ms iject S|
500 ms 500 ms ~5000 ms 500 ms image
[3000 ms to 500 ms 300 ms

12000 ms] Expected objects \
\ Unexpected objects

Figure 7. Paradigm. A) A single trial, showing a letter cue (500 ms) followed by an image (500 ms) and a variable ITI (~5000 ms). The image
was expected or unexpected given the preceding letter cue. Participants responded by button press to the images, indicating whether the entity
in the image was animate or inanimate. B) Transitional probability matrix determining the associations between cues and images. Each of the
eight images was associated with one of the eight letter cues. The expected image was seven times more likely to appear than any other image
given its cue. Numbers in each cell indicate the number of trials per run. The specific cue-image associations were randomized and differed
between participants. Moreover, the set of eight images also varied for different participants. C) Two cycles of a localizer trial. During the localizer
one image was presented repeatedly (500 ms on, 300 ms off) for 12000 ms. The identity of the images was not predictable. Participants
responded to a high brightness version of the images, which was shown once during each trial for one cycle.

depended on the shape of the specific object. A fixation bulls-eye, 7500ms) and an adjusted TPM. Specifically, expected pairs were
outer circle 0.5 degrees of visual angle, was displayed on top of the shown three times more often during behavioral blocks compared to
center of the image. fMRI runs (i.e., each pair had 21 repetitions instead of 7) to facilitate

statistical learning. Moreover, twice as many no-go trials were shown
to compensate for the increased number of expected trials. Thus,
behavioral blocks consisted of a total of 256 trials per block.

On day one participants first performed one functional localizer
run (see: Functional localizer), followed by a short practice of the main
task using different letters and images. Then, the four fMRI main task
runs followed, and finally two behavioral blocks were performed
outside the MRI. On the next day the order of runs was reversed.
Thus, participants first did the two behavioral blocks, then the four
fMRI main task runs, followed by another run of the functional
localizer, and finally an anatomical scan was acquired.

Experimental paradigm and procedure

On each trial (Figure 7A) participants were presented with a letter cue
for 500ms, followed by an image for 500ms without interstimulus
interval. The letter cues were predictive of the image with ~50%
reliability — the transitional probability matrix (TPM) is depicted in
Figure 7B. Thus, participants could predict the identity of the images
given the letter. Participants were not informed about these
regularities. Instead, they were tasked to categorize the entities in the
images as animate or inanimate as quickly and accurately as
possible. Thus, while learning the statistical regularities was not
required to perform the task, the regularities could be used to facilitate

task performance. To promote statistical learning, participants were Functional localizer
required to withhold the response if the letter cue was a vowel (a, e, A functional localizer, depicted in Figure 7C, was performed to define
i, 0, u), thereby directing attention also towards the letter cues. No-go object selective LOC, constrain anatomical ROl masks using
letters (vowels) were not associated with any specific stimulus and independent fMRI data, and to perform RSA to validate the RDMs
appeared in addition to the regularities depicted in Figure 7B. No-go derived from the DNN layers of interest. The functional localizer used
trials were discarded from all analyses. Responses on each trial were a block design, presenting one stimulus at a time for 12000ms,
given by button press (right index or middle finger) as soon as the flashing every 800ms (500ms on, 300ms off), during each miniblock.
image appeared, with a maximum allowed reaction time of 1500ms Miniblock order was randomized, thus precluding prediction of the
before a trial would be considered a miss. Trials were separated by next stimulus, but excluded direct repetitions of the same stimulus.
an intertrial interval of on average 5000ms (range 3000ms — Participants were tasked to press a button whenever the image
12000ms, sampled from a truncated exponential distribution), changed in brightness. The image noticeably increased in brightness
displaying only the fixation bulls-eye. (~200%) at a random cycle exactly once per miniblock, except for
Each run, that is one continuous fMRI data acquisition, consisted during the first three and last two cycles. Each image was presented
of 128 trials (~13 minutes). During a run the TPM shown in Figure 7B during four miniblocks per localizer run. In addition, a phase
was presented once. Thus, each unexpected cue stimulus pair was scrambled version of each image was shown, with each scrambled
shown exactly one time (8 x 7 combinations = 56 unexpected trials) image being repeated in two miniblocks. As during the main fMRI task
and each expected pair was shown seven times (8 expected pairs x runs, images subtended 6 x 6 degrees of visual angle and a fixation
7 repetitions = 56 expected trials), with the remaining 16 trials being bulls-eye was displayed at the center of the image throughout the
no-go trails. Trial order was randomized, except for excluding entire run.
repetitions of the same cue stimulus pair on two consecutive trials.
Participants performed four runs per session and two sessions, fMRI data acquisition
resulting in a total of eight fMRI runs. In addition to the fMRI runs, the MRI data was acquired on a Siemens 3T Prisma and a 3T PrismaFit
experiment also included an additional two behavioral blocks in each scanner, using a 32-channel head coil. Functional images were
session. acquired using a whole-brain T2*-weighted multiband-6 sequence
The behavioral blocks were identical to the fMRI runs, except for (TR/TE = 1000/34 ms, 66 slices, voxel size 2 mm isotropic, FOV =
a shorter intertrial interval (average 2500ms, range 1500ms — 210 mm, 60° flip angle, A/P phase encoding direction, bandwidth =

1"
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2090 Hz/Px). Anatomical images were acquired using a T1-weighted
MP-RAGE sequence (GRAPPA acceleration factor = 2, TR/TE =
2300/3.03 ms, voxel size 1 mm isotropic, 8° flip angle).

Data analysis

Behavioral data analysis

Behavioral data was analyzed in terms of reaction time (RT) and
accuracy. Trials with too fast (< 100ms) or too slow (>1500ms) RTs
were excluded. Only trials with correct responses were analyzed for
the RT analysis. RTs and accuracy were calculated for expected and
unexpected image trials separately. Paired t-tests across participants
on the RTs and accuracies were then performed, contrasting
expected compared to unexpected images. Expectation induced
behavioral benefits were calculated as RToeneit = RTunexpected —
RTexpec!ed and AccuraCYbenefit = AccuraCYexpecled - Accuracyunexpec!ed-
Behavioral data was also used to reject outliers based on poor overall
response accuracy and speed (for details see: Data exclusion).

Correlating RT and visual dissimilarity

We assessed the relationship between RT and visual surprise by
regressing dissimilarity, as indexed by layer 8 and layer 2 of the DNN
onto the RTs per participant. The obtained betas were then averaged
across participants and subjected to one-sample t-tests to assess
their individual effect, as well as their difference using a paired t-test.
Non-parametric tests (Wilcoxon signed-rank test) were used as
appropriate. For display purposes we also ranked the data for each
participant into 28 dissimilarity bins (i.e., 28 unexpected image cells;
see Figure 7B).

Effect size calculation

We provide the following estimates of effect size to support statistical
inference. For t-tests we report Cohen’s d (Lakens, 2013), for
Wilcoxon signed-rank tests matched-pairs rank-biserial correlation
(r), and partial eta-squared (n3) for repeated measures ANOVAs.

fMRI data preprocessing

fMRIprep boilerplate text: MRI data was preprocessed using
fMRIPrep 22.1.0 (Esteban et al., 2019), which is based on Nipype
1.8.5 (Gorgolewski et al., 2011).

Anatomical data preprocessing

A total of 1 T1-weighted (T1w) images were found within the input
BIDS dataset. The T1-weighted (T1w) image was corrected for
intensity non-uniformity (INU) with N4BiasFieldCorrection
(Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al,,
2008), and used as T1w-reference throughout the workflow. The
T1w-reference was then skull-stripped with a Nipype implementation
of the antsBrainExtraction.sh workflow (from ANTSs), using
OASIS30ANTs as target template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM)
was performed on the brain-extracted T1w using fast (FSL 6.0.5.1;
(Zhang et al., 2001) RRID:SCR_002823). Brain surfaces were
reconstructed using recon-all (FreeSurfer 7.2.0; (Dale et al.,
1999); RRID:SCR_001847), and the brain mask estimated previously
was refined with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cortical gray-
matter of Mindboggle (Klein et al., 2017) RRID:SCR_002438).
Volume-based spatial normalization to one standard space
(MNI152NLin2009cAsym) was performed through nonlinear
registration with antsRegistration (ANTs 2.3.3), using brain-
extracted versions of both T1w reference and the T1w template. The
following template was selected for spatial normalization: ICBM 152
Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009)
RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym).
Functional data preprocessing

For each of the 10 BOLD runs found per subject (across all tasks and
sessions), the following preprocessing was performed. First, a
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reference volume and its skull-stripped version were generated by
aligning and averaging 1 single-band references (SBRefs). Head-
motion parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and
translation parameters) are estimated before any spatiotemporal
filtering using mcflirt (FSL 6.0.5.1; Jenkinson et al., 2002). BOLD
runs were slice-time corrected to 0.445s (0.5 of slice acquisition range
0s-0.89s) using 3dTshift from AFNI ((Cox & Hyde, 1997);
RRID:SCR_005927). The BOLD time-series (including slice-timing
correction when applied) were resampled onto their original, native
space by applying the transforms to correct for head-motion. These
resampled BOLD time-series will be referred to as preprocessed
BOLD in original space, or just preprocessed BOLD. The BOLD
reference was then co-registered to the T1w reference using
bbregister (FreeSurfer) which implements boundary-based
registration (Greve & Fischl, 2009). Co-registration was configured
with six degrees of freedom. First, a reference volume and its skull-
stripped version were generated using a custom methodology of
fMRIPrep. Several confounding time-series were calculated based on
the preprocessed BOLD: framewise displacement (FD), DVARS and
three region-wise global signals. FD was computed using two
formulations following Power (absolute sum of relative motions,
Power et al. (2014)) and Jenkinson (relative root mean square
displacement between affines, Jenkinson et al. (2002)). FD and
DVARS are calculated for each functional run, both using their
implementations in Nipype (following the definitions by Power et al.
(2014)). The three global signals are extracted within the CSF, the
WM, and the whole-brain masks. Additionally, a set of physiological
regressors were extracted to allow for component-based noise
correction (CompCor, (Behzadi et al., 2007)). Principal components
are estimated after high-pass filtering the preprocessed BOLD time-
series (using a discrete cosine filter with 128s cut-off) for the two
CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components are then calculated from the top
2% variable voxels within the brain mask. For aCompCor, three
probabilistic masks (CSF, WM and combined CSF+WM) are
generated in anatomical space. The implementation differs from that
of Behzadi et al. in that instead of eroding the masks by 2 pixels on
BOLD space, a mask of pixels that likely contain a volume fraction of
GM is subtracted from the aCompCor masks. This mask is obtained
by dilatihng a GM mask extracted from the FreeSurfer's aseg
segmentation, and it ensures components are not extracted from
voxels containing a minimal fraction of GM. Finally, these masks are
resampled into BOLD space and binarized by thresholding at 0.99 (as
in the original implementation). Components are also calculated
separately within the WM and CSF masks. For each CompCor
decomposition, the k components with the largest singular values are
retained, such that the retained components’ time series are sufficient
to explain 50 percent of variance across the nuisance mask (CSF,
WM, combined, or temporal). The remaining components are
dropped from consideration. The head-motion estimates calculated
in the correction step were also placed within the corresponding
confounds file. The confound time series derived from head motion
estimates and global signals were expanded with the inclusion of
temporal derivatives and quadratic terms for each (Satterthwaite et
al., 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5
standardized DVARS were annotated as motion outliers. Additional
nuisance timeseries are calculated by means of principal components
analysis of the signal found within a thin band (crown) of voxels
around the edge of the brain, as proposed by (Patriat et al., 2013).
The BOLD time-series were resampled into standard space,
generating a preprocessed BOLD run in MNI152NLin2009cAsym
space. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. All resamplings
can be performed with a single interpolation step by composing all
the pertinent transformations (i.e., head-motion transform matrices,
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susceptibility distortion correction when available, and co-
registrations to anatomical and output spaces). Gridded (volumetric)
resamplings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to minimize the
smoothing effects of other kernels. Non-gridded (surface)
resamplings were performed using mri vol2surf (FreeSurfer).
For more details of the pipeline, see the section corresponding to
workflows in fMRIPrep’s documentation
(https://fmriprep.org/en/latest/workflows.html).

Additional preprocessing

After preprocessing using fMRIPrep, additional fMRI data
preprocessing steps were performed using FSL FEAT and Nilearn,
including high-pass filtering (128s cutoff) and spatial smoothing (5mm
fwhm).

fMRI data analysis

Univariate fMRI analyses consisted of fitting voxel-wise general linear
models (GLM) to each participant’s run data, using an event-related
approach. Stimuli were modelled as events of 500ms duration with
the onset corresponding to the onset of the stimuli. Hence, cues,
presented 500ms before stimulus onset, were not explicitly modelled.
Events were convolved with a double gamma haemodynamic
response function. Expected and unexpected image trials were
modelled as separate regressors. Moreover, parametric modulators
were added to the design matrix, reflecting how different an
unexpected image was compared to the expected image.
Specifically, a parametric modulator was added based on the
representational dissimilarity of the unexpected compared to the
expected image on a given trial in terms of layer 2 and layer 8
representations of AlexNet (see: Deep Neural Network data for
details). Additional parametric modulators were included to serve as
control variables, consisting of animacy category, word category
(word2vec) and layer 8 distance from an untrained (random) AlexNet
instance. The parametric modulators were z scored before being
added to the design matrix. A regressor of no interest was included
for no-go trials. First order temporal derivatives of these regressors
were also added to the GLM.

Nuisance regressors were added, consisting of six standard
motion parameters (rotation and translation in x, y and z), framewise
displacement, CSF and white matter. All nuisance regressors were
derived from fMRIPrep. To deal with temporal autocorrelation FSL’s
FILM with local autocorrelation correction was used (Smith et al.,
2004). Parameter estimates were averaged across runs using a fixed
effects analysis, and across participants using FSL FEAT’s mixed-
effects model. All fMRI analyses were performed in normalized space
(MNI152NLin2009cAsym).

Contrasts of interest were the modulation of the BOLD response
by the parametric modulators indexing the representational
dissimilarity of the unexpected compared to the expected image;
especially, AlexNet layer 2 and layer 8. Statistical maps were
corrected for multiple comparisons using Gaussian random-field
cluster thresholding, as implemented in FSL FEAT 6.0, with a cluster
formation threshold of z = 3.29 (i.e.,, p < 0.001, two-sided) and a
cluster significance threshold of p < 0.05.

Regression of BOLD onto dissimilarity

In addition to the parametric modulation analysis, we performed a
complementary analysis, regressing single trial BOLD parameter
estimates (see: Single trial parameter estimation) onto the z scored
dissimilarity metrics. This regression was performed for each
participant separately, in a whole-brain and ROI fashion. The
resulting slope coefficients for each voxel or ROI, indexing the
modulation of BOLD responses as a function of dissimilarity were
then subjected to a one-sample t-test contrasting the obtained slope
against zero (no modulation). For the whole-brain analysis additional
spatial smoothing of 3mm fwhm was applied (i.e., total smoothing
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8mm). Finally, we colored each voxel according to which layer had
the largest effect on the visual responses, indexed by explained
variance. We thresholded this whole-brain analysis to a liberal z =
1.96 (i.e., p < 0.05, two-sided) to explore the landscape of the
predictive modulations.

Single trial parameter estimation

Single trial parameter estimates were obtained using a least squares
separate approach (Mumford et al., 2012; Turner et al., 2012). A GLM
was fit per trial to the BOLD data using Nilearn, where each design
matrix contained a regressor for the trial of interest (iterating over all
trials) and regressors of no interest for the remaining images, split by
image identity, as well as a regressor for no-go trials. Nuisance
regressors were also included, consisting of six motion parameters
(rotation and translation in x, y and z), framewise displacement, CSF
and white matter. From this we extracted the parameter estimates for
each trial, with particular interest in the parameter estimates of
unexpected appearances of the stimuli.

Region of interest (ROI) analysis

ROls were defined a priori, based on previous studies (Richter & de
Lange, 2019), and consisted of early visual cortex (V1), intermediate
object-selective areas in the lateral occipital complex (LOC) and
higher visual cortex (HVC) consisting of primarily of temporal occipital
fusiform cortex. These three ROIls constitute well studied early,
intermediate, and late ventral visual stream areas. ROl masks were
defined both anatomically and functionally for each participant. First,
we used Freesurfer (http://surfer.nmr.mgh.harvard.edu/,
RRID:SCR_001847) for cortex segmentation and parcellation (Dale
et al., 1999; Fischl, 2004), run as part of the fMRIPrep pipeline. The
resulting V1 labels were transformed to native volumetric space using
mri label2vol. Additional atlas annotations were extracted from
the Destrieux Atlas (Destrieux et al., 2010). The LOC mask was
formed by combining two Freesurfer labels in the lateral occipital
cortex (Middle occipital gyrus (lateral occipital gyrus), and Inferior
occipital gyrus and sulcus). The HVC mask was obtained by merging
three labels corresponding to higher ventral visual stream areas
(Lateral occipito-temporal gyrus (fusiform gyrus), Lateral occipito-
temporal sulcus, and Medial occipito-temporal sulcus (collateral
sulcus) and lingual sulcus). Left and right hemisphere masks were
combined into bilateral masks and dilated using a 3mm gaussian
kernel. Overlapping voxels between the three ROl masks (V1, LOC,
HVC) were assigned to the mask containing less voxels. We then
resampled the masks to standard space (MNI152NLin2009cAsym)
for each participant.

Object-selective LOC

In line with previous studies (Haushofer et al., 2008; Kourtzi &
Kanwisher, 2001; Richter & de Lange, 2019), and to ensure that LOC
contained stimulus selective neural populations, we further
constrained the anatomical LOC masks per participant using data
from an independent localizer run. In brief, we contrasted the
response to intact compared to phase scrambled versions of the
images, thereby obtaining voxels that respond more intact stimuli for
each participant.

Voxel selection

In line with previous studies (Richter et al., 2018), we selected within
each ROI the 200 voxels most informative about the depicted
stimulus. To this end we performed a decoding analysis on the
localizer data and selected the voxels affording best stimulus
decoding (see: Decoding searchlight analysis). To ensure that our
results generalize beyond the a priori selected, but arbitrary ROI size,
we repeated all ROI analyses with masks ranging from 100 to 500
voxels (800 to 4000 mm?).

ROI analysis

For each subject and ROI, we extracted the contrast parameter
estimates from the second level GLMs (subject level, averaged


https://doi.org/10.1101/2023.08.21.554095
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.554095; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

across runs) of the parametric modulators. These parametric
modulators were then tested against zero (i.e., no modulation) using
one-sample t-tests or Wilcoxon signed-rank tests as appropriate, as
well as contrasted against one another. Resulting p-values were FDR
corrected for the number of ROIs and tested parametric modulators.

Deep Neural Network

We used AlexNet, trained on ecoset (Mehrer et al., 2021), to derive
representational dissimilarity estimates of the utilized stimuli. Early
and late layers of this network have previously been shown to map
well onto early and late visual cortex representations respectively
(Mehrer et al., 2021). We extracted representational dissimilarities
using correlation distance (1 — correlation) from all layers. RDMs of
ten different instances of the DNN were averaged to minimize effects
specific to any particular instance of the DNN (Mehrer et al., 2020).
We were especially interested in layer 2 representing an early low-
level visual feature space, and layer 8 constituting a high-level visual
feature space. For more information on the DNN see: Mehrer et al.
(2021). For each participant, we used the DNN derived RDMs to
index how different each unexpected stimulus was compared to the
expected stimulus in terms of low-level feature dissimilarity (layer 2)
and high-level feature dissimilarity (layer 8). The image dissimilarity
scores were z scored before being included as parametric modulators
in the first level GLMs (see: fMRI data analysis).

Untrained network control analysis

In addition, we included RDMs from layer 8 of the same DNN, using
the same procedure, but used an untrained (i.e., random) network
instance. RDMs from this untrained network serve as a control
condition to rule out DNN architecture or stimulus set specific
contributions to the results.

Word-level and animacy category feature spaces

Additionally, we derived RDMs using word embeddings to
approximate a semantic, non-visual dissimilarity metric. Specifically,
we used word2vec (Mikolov, Chen, et al., 2013; Mikolov, Sutskever,
et al., 2013), pre-trained on the Google News corpus (word2vec-
google-news-300), to derive the pairwise dissimilarity between
category words describing our image stimuli (airplane, car, church,
dog, elephant, face, foot, guitar, hammer, hand, house, man, spoon,
swan, tiger, woman).

Animacy category

As animacy was a task-relevant feature, we also derived an RDM
indexing animacy. This RDM thus constitutes an object category
dissimilarity and indirectly also task-response metric. To create this
parametric modulator, we created a vector with zeros for unexpected
stimuli with the same animacy category as the expected stimulus, and
hence also response, and ones representing unexpected stimuli with
a different animacy category. Dissimilarities from these control
metrics were included in the first level fMRI GLM.

Representational similarity analysis

We validated the AlexNet derived RDMs using independent localizer
data. Specifically, we used RSA (Kriegeskorte et al., 2008) to test
whether the utilized DNN layer RDMs did significantly resemble the
visual cortical RDMs. To this end we extracted parameter estimates
for each stimulus compared to baseline from the first level GLMs of
the localizer runs for each participant using a searchlight approach
(6mm radius). We then z scored these parameter estimates per voxel
and computed the representational dissimilarity in each searchlight
sphere between the different stimuli, as indexed by the cosine
distance between the vectors of the parameter estimates. This
resulted in the neural RDM. We then correlated the lower triangular
of the neural RDMs with the lower triangular of the DNN derived
RDMs using Kendall's Tau. For each voxel we selected the DNN layer
that explained most neural variance. Finally, we also subjected the
resulting correlation coefficients to one-sample t-tests across
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subjects for each voxel. A significant test would thus indicate that the
neural RDMs and DNN derived RDMs shared representational
geometry, suggesting that the DNN RDM was useful in explaining
neural variance during the localizer run. We considered this a
requirement for proceeding with the main task analysis of prediction
error representations.

Decoding searchlight analysis

An additional searchlight (radius 6mm) was used to decode stimulus
identity across the whole brain, using linear support vector machines
(SVM). We first derived for each participant separately, single trial
parameter estimate maps from the localizer run using the least
squares separate procedure outlined before. On these single trial
parameter estimates, using the searchlight approach, the SVM was
trained and tested using 4-fold cross-validation. The labels supplied
to this decoding analysis were the image identities. Thus, the
resulting decoding maps indicated the ability to decode stimulus
identity during the localizer runs. This decoding map was
subsequently used to refine the ROl masks (see: Region of interest
(ROI) analysis).

Bayesian analyses

We evaluated any non-significant frequentist tests shown in Figure 4
using equivalent Bayesian analyses to assess evidence for the
absence of an effect of the low-level visual feature parametric
modulator. To this end JASP 0.17.1.0 (JASP Team, 2023;
RRID:SCR_015823) with default settings was used for Bayesian t-
tests with a Cauchy prior width of 0.707. Qualitative interpretations of
the resulting Bayes Factors were based on Lee and Wagenmakers
(Lee & Wagenmakers, 2014).

Data exclusion

Data were excluded from analysis based on two independent criteria.
First, we excluded participants due to low quality fMRI data, quantified
in terms of high mean framewise displacement (FD), percentage of
framewise displacement exceeding 0.2mm (FD%), high temporal
derivative of variance over voxels (DVARS) and low temporal signal
to noise ratio (tSNR). These four image quality metrics were derived
using MRIQC (Esteban et al., 2017) for each run. For details
concerning the calculation of each image quality metric see Esteban
et al. (2017). Subsequently, we averaged these metrics across runs
within participants and compared each participant to the sample
mean. Participants with any image quality metric worse than the
sample mean plus (or minus depending on the metric) 2 SD was
rejected from further analysis. Two participants were excluded due to
these fMRI image quality metrics.

In addition, we excluded participants based on subpar
behavioural performance, indicating a lack of attention or task
compliance. Using a similar approach as for the MRI quality metrics,
we rejected each participant with an average behavioural response
accuracy or reaction time 2 SD worse than the sample mean. Three
participants were excluded for poor behavioral performance.

Software and data availability

Python 3.7.4 (Python Software Foundation, RRID:SCR_008394) was
used for data processing, analysis and visualization using the
following libraries: NumPy 1.18.1 (Harris et al., 2020; van der Walt et
al., 2011, RRID:SCR_008633), Pandas 1.1.4 (The pandas
development team, 2020), NiLearn 0.9.1 (RRID:SCR_001362),
Scikit-learn 0.24.2 (Pedregosa et al., 2011, RRID:SCR_002577),
SciPy 1.5.3 (Virtanen et al., 2020, RRID:SCR_008058), Matplotlib
3.1.3 (Hunter, 2007, RRID:SCR_008624), Gensim (Rehurek & Sojka,
2011, using word2vec, RRID:SCR_014776), and Seaborn 0.11.2
(Waskom, 2021, RRID:SCR_018132). A conda environment yml file
is included with the code. MRI data was preprocessed using
fMRIPrep (Esteban et al., 2019) and analyzed using FSL 6.0 (Smith
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et al, 2004; FMRIB Software Library; Oxford, UK;
www.fmrib.ox.ac.uk/fsl; RRID:SCR_002823). Whole-brain results
were visualized using Slice Display (Zandbelt, 2017), a MATLAB
(2022b; The MathWorks, Inc, Natick, Massachusetts, United States,
RRID:SCR_001622) data visualization toolbox. Stimuli were
presented with Presentation software (version 20.2, Neurobehavioral
Systems Inc, Berkeley, CA, RRID:SCR_002521). All data, stimuli, as
well as experiment and analysis code required to replicate the results
reported in this paper will be shared upon publication in a peer-
reviewed journal.
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Supplementary information

No modulation of prediction error magnitudes
by non-visual control models

Animacy category

Word category
(word2vec)

Beta [a.u.]

Supplementary Figure 1. Whole-brain results assessing the modulation of surprise responses as a function of feature dissimilarity indexed by
animacy category (top row), word-level semantic surprise (middle row), and a random (i.e., untrained) but otherwise identical visual DNN instance
(bottom row). Results show no reliable modulation by any of these control models anywhere in cortex, except for a small negative modulation
by word category surprise (word2vec) in precuneus cortex, outside of stimulus driven voxels. Thus, unexpected stimuli of a similar semantic
category as the expected stimulus may elicit larger BOLD responses. This modulation could reflect an increased requirement for processing
resources to distinguish different exemplars of the same category, albeit its small size and localization to voxels in superior parts of precuneus
cortex, that were not stimulus-driven during the localizer run, makes an interpretation challenging. Colour indicates the beta parameter estimate
of the parametric modulation, with red and yellow representing increased responses. Black outlines denote statistically significant clusters (GRF
cluster corrected).
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Supplementary Figure 2. Control ROl analysis across different ROl mask sizes. Modulation of surprise as a function of high-level (layer 8;
first panel), low-level (layer 2; second panel), animacy category (third panel), word level (word2vec; fourth panel), and random model (last panel)
surprise. Reliable modulations of prediction error magnitudes were found for high-level visual surprise across all tested ROI sizes (100-500
voxel) in V1, as well as most mask sizes in LOC (100-250 and 350-450 voxel) and TOFC (150-350 voxel). No statistically significant modulation
was found for low-level visual surprise or the random layer 8 model for any ROI or mask size. A negative modulation of BOLD responses was
found for word level (word2vec) surprise in V1 for several ROl masks (150-300 and 400-450 voxel) and three small mask sizes in LOC (100-
200 voxel) for animacy category. Thus, overall results closely match the results reported in Figure 5 for most mask sizes, confirming that the
observed results are largely robust to variations in ROl size. Error bars depict 95% confidence intervals. Data points with black outlines indicate
statistical significance at p < 0.05 (FDR corrected for the number of ROIs and models) compared to zero (i.e., no modulation).
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Expectation suppression
(unexpected - expected)

i 0 ‘ 1 1 1 1 1
-60 -40 -20 0 20 40 60

Beta [a.u.]

Supplementary Figure 3. Expectation suppression. Generic prediction errors (unexpected — expected) were calculated from the voxel-wise
GLM including regressors for expected and unexpected appearances of the image stimuli, as well as the parametric modulators. Here we depict
the contrast unexpected — expected, thus indexing differences in neural responses contingent on whether the stimulus was expected or
unexpected. Colour indicates the beta parameter estimate, with red and yellow representing increased responses to unexpected stimuli. Black
outlines denote statistically significant clusters (GRF cluster corrected). Significant clusters can be seen in visual cortex, particularly in temporal
occipital fusiform cortex, and outside visual cortex in anterior insula and inferior frontal gyrus. Additional significant cluster, not visible here, were
found in superior parietal lobule, paracingulate gyrus, and supplementary motor cortex; see Supplementary Table 1 for details. These areas
closely match previous reports of prediction error responses (Ferrari et al., 2022; Richter & de Lange, 2019).
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MNI
Contrast Area labels coordinates n voxel p cluster max z
X y 4

High-level visual

features Occipital pole; Lateral Occipital Cortex, inferior

(layer 8) division; Occipital Fusiform Gyrus 19 96 -1 779 4.9e-19 5.76

Low-level visual

features

(layer 2) No statistically significant clusters

Word category

(word2vec) Precuneous cortex (right) 19 -55 20 44 0.0384 -4.0
Precuneous cortex (left) -14 63 24 44 0.0384 -4.2

Animacy category  No statistically significant clusters

Random layer 8 Precuneous cortex 3 -66 30 48 0.0247 4.0

Expectation

suppression Superior parietal lobule; Lateral occipital

(unexp. — exp.) cortex, superior division (left) -36  -56 47 839 9.9e-20 4.5
Middle and inferior frontal gyrus; Precentral
gyrus (left) -44 6 33 325 4.0e-10 4.8
Paracingulate gyrus 1 13 48 265 9.8e-9 4.9
Superior parietal lobule; Lateral occipital
cortex, superior division (right) 31 -67 37 232 6.0e-8 5.3
Frontal operculum cortex; Anterior insula (left) -37 18 3 153 8.1e-6 4.4
Inferior temporal gyrus; Lateral occipital
cortex, inferior division -45 -58 -13 150 9.8e-6 5.0
Frontal operculum cortex; Anterior insula
(right) 39 22 2 136 2.5e-5 4.2
Middle and inferior frontal gyrus (right) 48 29 24 110 1.0e-4 4.6
Precentral gyrus (right) 42 7 32 96 1.0e-4 4.2
Middle and inferior frontal gyrus (left) -41 33 18 53 0.0175 4.2

Supplementary Table 1. Brain areas showing significant modulations of BOLD responses (GRF cluster corrected). Listed are the contrasts of
the parametric modulators (layer 8, layer 2, word category, animacy category, and random layer 8), as well as the contrast ‘unexpected minus
expected stimuli’ (Expectation suppression; Supplementary Figure 3) with corresponding area labels, numbers of voxels in the cluster, p value
of the cluster, and peak z statistic. MNI coordinates indicate the X, Y, Z coordinates of the centre of gravity for the cluster, as derived by FSL
FEAT’s cluster function, in MNI space. Area labels are based on the centre of gravity for the cluster and, especially for large clusters, additional
areas encompassed by the cluster.
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ROI Contrast Test statistic P value Effect size
V1 Layer 8 f32) = 6.79 p <0.001 d=1.18
V1 Layer 2 W=190 p=0.199 r=-0.32
V1 Animacy category ta2) = -2.32 p =0.068 d=-0.40
V1 Word2Vec Ww=112 p =0.020 r=-0.60
V1 Random Layer 8 W =253 p=0.719 r=-0.10
LOC Layer 8 W=126 p =0.029 r=0.55
LOC Layer 2 t32 = -0.68 p =0.630 d=-0.12
LOC Animacy category W=137 p =0.039 r=-0.51
LOC Word2Vec t32) = -1.37 p=0.298 d=-0.24
LOC Random Layer 8 t32) = 0.21 p =0.892 d=0.04
HVC Layer 8 t32)= 2.59 p=0.043 d=0.45
HVC Layer 2 t32) =-0.70 p = 0.666 d=-0.12
HVC Animacy category W =232 p=0.579 r=-017
HVC Word2Vec ta2) = -2.27 p =0.065 d=-0.39
HVC Random Layer 8 ta2) = 0.19 p =0.852 d=0.03

Supplementary Table 2. Results of one sample t-tests and Wilcoxon signed rank test contrasting parameter estimates of the parametric
modulators against zero (no modulation). We found reliable modulations by the high-level visual model (Layer 8) throughout all three ROls,
encompassing early (V1) and high level (HVC). P values are FDR corrected.

ROI Contrast Test statistic P value Effect size
V1 Layer 8 vs Layer 2 t32) = 8.05 p <0.001 d=1.40
V1 Layer 8 vs Animacy category t32) = 5.71 p <0.001 d=0.99
V1 Layer 8 vs Word2Vec t32) = 5.91 p <0.001 d=1.03
V1 Layer 8 vs Random layer 8 f(32) = 6.66 p <0.001 d=1.16
V1 Layer 2 vs Animacy category ta2) = 0.44 p=0.737 d=0.08
V1 Layer 2 vs Word2Vec Ww=218.0 p =0.440 r=0.22
V1 Layer 2 vs Random layer 8 W=216.0 p =0.440 r=-0.23
V1 Animacy category vs Word2Vec ta2) = 0.28 p=0.810 d=0.05
V1 Animacy category vs Random layer 8 t32) = -0.66 p =0.645 d=-0.11
V1 Word2Vec vs Random layer 8 W=204.0 p =0.322 r=-0.27
LOC Layer 8 vs Layer 2 ta2) = 4.24 p =0.001 d=0.74
LOC Layer 8 vs Animacy category W=108.0 p=0.010 r=20.61
LOC Layer 8 vs Word2Vec W=148.0 p =0.060 r=0.47
LOC Layer 8 vs Random layer 8 W=158.0 p=0.078 r=0.44
LOC Layer 2 vs Animacy category t32) = 0.71 p=0.631 d=0.12
LOC Layer 2 vs Word2Vec W=261.0 p=0.780 r=-0.07
LOC Layer 2 vs Random layer 8 t32) = -0.64 p =0.607 d=-0.11
LOC Animacy category vs Word2Vec W=238.0 p =0.640 r=-0.15
LOC Animacy category vs Random layer 8 t32) = -1.63 p =0.261 d=-0.28
LOC Word2Vec vs Random layer 8 ta2) =-1.0 p =0.490 d=-017
HVC Layer 8 vs Layer 2 t32) = 2.85 p=0.028 d=0.50
HVC Layer 8 vs Animacy category ta2) = 2.32 p =0.081 d=0.40
HVC Layer 8 vs Word2Vec t32) = 3.13 p=0.016 d=0.54
HVC Layer 8 vs Random layer 8 t32) = 1.84 p=0.189 d=0.32
HVC Layer 2 vs Animacy category t32 = 0.13 p =0.900 d=0.02
HVC Layer 2 vs Word2Vec t32 = 1.03 p =0.488 d=0.18
HVC Layer 2 vs Random layer 8 t32) = -0.65 p=0.628 d=-0.11
HVC Animacy category vs Word2Vec W=199.0 p=0.291 r=0.29
HvVC Animacy category vs Random layer 8 t32) =-0.77 p=0.612 d=-0.13
HVC Word2Vec vs Random layer 8 f32) = -1.61 p =0.252 d=-0.28

Supplementary Table 3. Results of paired t-tests and Wilcoxon signed rank test, contrasting the parameter estimates of the parametric
modulators in a pair-wise fashion within each ROI. The high-level visual model (layer 8) modulated sensory responses significantly more than
any of the four control models in V1, as well as some models in LOC and HVC. P values are FDR corrected.
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