

Space and epigenetic inheritance determine inter-individual differences in siderophore

2 gene expression in bacterial colonies

4 Subham Mridha^{1,*}, Tobias Wechsler^{1,*}, Rolf Kümmerli¹

¹ Department of Quantitative Biomedicine, Winterthurerstrasse 190, 8057 Zurich, Switzerland

6 * Authors contributed equally

8 Corresponding authors

Subham Mridha, subhammridha@yahoo.com; Rolf Kümmerli: rolf.kuemmerli@uzh.ch

10

12

Abstract

14 Heterogeneity in gene expression among cells in clonal groups is common in bacteria. Albeit
ubiquitous, it often remains unclear what the sources of variation are and whether variation
16 has functional significance. Here, we tracked the expression of genes involved in the synthesis
of iron-chelating siderophores (pyoverdine and pyochelin) in individual cells of the bacterium
18 *Pseudomonas aeruginosa* during colony growth on surfaces using time-lapse fluorescence
microscopy, to explore potential sources and functions of cellular heterogeneity. Regarding
20 sources, we found that the physical position of cells within the colony and epigenetic gene
expression inheritance from mother to daughter cells significantly contributed to cellular
22 heterogeneity. In contrast, cell pole age and cellular lifespan had no effect. Regarding
functions, our results indicate that cells optimize their siderophore investment strategies
24 (pyoverdine vs. pyochelin) along a gradient from the centre to the edge of the colony.
Moreover, we found evidence that cell lineages with above-average siderophore investment
26 increase the fitness of cell lineages with below-average investment through cooperative
sharing of secreted siderophores. Altogether, our study highlights that single-cell experiments
28 combined with automated image and cell-tracking analyses can identify sources of
heterogeneity and yield adaptive explanations for gene expression variation among clonal
30 bacterial cells.

32

Introduction

34 It is commonly observed that bacteria in a group show variation in their behaviour albeit being
35 clonal and living in the same environment¹⁻⁷. Both intrinsic and extrinsic factors can contribute
36 to individual heterogeneity. At the extrinsic level, individual cells might experience differences
37 in their micro-environment, which can spur differences in their molecular activities and thus
38 trigger variation in their behavioral responses⁸⁻¹⁰. For example, cells growing at the edge of a
39 biofilm face different environmental conditions than cells at the interior of the biofilm¹¹. At the
40 intrinsic level, heterogeneity can arise because biological processes such as gene expression
41 and protein synthesis are noisy¹. Random noise plays an important role, but there are also
42 deterministic factors such as cell age^{12,13} or epigenetic inheritance^{9,14} that can contribute to
43 cellular heterogeneity. Although heterogeneity is ubiquitous in microbial systems, it is often
44 hard to identify its underlying sources, and it is even harder to assess whether the observed
45 heterogeneity is beneficial for the bacteria and reflects an evolved adaptive strategy⁵.

46

47 Here, we explore both putative sources and adaptive functions of cellular heterogeneity in the
48 expression of two siderophore synthesis genes in clonal colonies of the bacterium
49 *Pseudomonas aeruginosa*. Siderophores are secondary metabolites secreted by bacteria to
50 scavenge iron from the environment^{15,16}. While genes involved in the synthesis of the two
51 siderophores pyoverdine and pyochelin are heterogeneously expressed in *P. aeruginosa*, little
52 is known on the underlying sources of heterogeneity¹⁷⁻¹⁹. Moreover, siderophore molecules are
53 secreted and their function (iron-acquisition) is shared between cells in a group, leading to
54 several possible adaptive explanations for heterogeneity⁷. We use fluorescent time-lapse
55 microscopy to simultaneously track cellular heterogeneity in the expression of two genes
56 encoding enzymes involved in the synthesis of pyoverdine and pyochelin. We start with single
57 cells placed on agarose pads and track cell identity, spatial positioning, cell division events,
58 and siderophore gene expression over five hours (every 10 minutes). Cells divide five to eight
59 times during this time frame and form a single-layer colony. The tracking of cellular
60 heterogeneity through space and time allows us to differentiate between extrinsic and intrinsic

sources of variation, and to test adaptive hypotheses. We focus on four potential sources of
62 heterogeneity and two adaptive explanations. Below, we formulate specific hypotheses for
each source and adaptive explanation.

64

Extrinsic factor – the micro-environment. *P. aeruginosa* (like other bacteria) senses iron
66 limitation and secretes siderophores to scavenge this essential trace element from the
environment²⁰⁻²². Previous work revealed sophisticated regulatory mechanisms that allow
68 bacteria to sense both iron limitation and the rate of incoming iron-loaded siderophores to
adjust siderophore synthesis in a fine-tuned manner²³⁻²⁶. Due to this high sensitivity, we
70 hypothesize that cells will sense differences in iron and siderophore concentrations in their
micro-environment depending on their spatial position in the colony (e.g., center versus edge)
72 and adjust their siderophore gene expression accordingly.

74 Intrinsic factor A – cell life span. In growing colonies, individual cells will divide at different time
points, leading to heterogeneity in a cell's life span. We hypothesize that variation in life spans
76 can translate into heterogeneity in siderophore gene expression. For example, cells with longer
life spans might show higher gene expression than cells that divide more quickly. Intrinsic
78 factor B – genealogy. Mother cells can pass on their gene expression status to their daughter
cells⁹. We hypothesize that this form of epigenetic inheritance results in gene expression levels
80 to be more similar between sister cells than between non-related cells in the group. This
hypothesis thus assumes that gene expression noise is propagated through genealogical
82 lineages. Intrinsic factor C – cell pole age. Upon binary cell division, each bacterium has an
old and a new pole (Fig. S1). The old pole is inherited from the mother cell, while the new pole
84 is formed upon division. During the next cell division, one of the daughter cells inherits the cell
pole of the grandmother, while the other daughter cell inherits the pole of the mother. Like this,
86 relative cell pole age can be tracked through time. We hypothesize that variation in cell pole
age will translate into gene expression heterogeneity¹². For instance, cellular functions might

88 change with age such that cells with older cell poles show different siderophore gene
expression levels than cells with younger cell poles.

90

Adaptive explanation A – cost-to-benefit optimization. Previous work revealed that the costs
92 and benefits differ for pyoverdine and pyochelin^{19,27,28}. While pyoverdine has a higher affinity
for iron than pyochelin (K_a : 10^{32} M^{-1} vs. 10^{18} M^{-2})²⁹, it is more costly to make. We previously
94 showed that a plastic dual siderophore investment strategy is most beneficial for *P.*
aeruginosa, whereby the bacteria predominantly invest in pyoverdine under stringent iron
96 limitation and switch to increased pyochelin investment under moderate iron limitation²⁸.

Assuming that cells can sense variation in iron availability in their micro-environment, we
98 hypothesize that cells optimize their pyoverdine vs. pyochelin gene expression strategy
depending on their spatial position in the colony. Adaptive explanation B – public goods
100 production to help clonemates. Pyoverdine and pyochelin are secreted in the environment.
They can deliver iron to other cells than the producer and are therefore considered public
102 goods, accessible to other colony members³⁰. Given this shared function, we hypothesize that
cells with low individual fitness (i.e., cells with slow division rates, old cells) can indirectly
104 increase group fitness via a disproportionately high siderophore investment to improve iron
nutrition and growth of clonemates.

106

Results

108 Colony-level siderophore gene expression varies in response to iron limitation and time

We exposed cells of *P. aeruginosa* PAO1 to either moderate iron limitation (casamino acids
110 medium, CAA, characterized by naturally low iron content) or stringent iron limitation (CAA
supplemented with 400 μ M of the synthetic iron chelator 2-2'-bipyridyl). We used a variant of
112 *P. aeruginosa* PAO1 that featured a double gene expression reporter construct. Specifically,
the reporter strain *PAO1pvdA::mcherry–pchEF::gfp* had the promoters of the *pvdA* gene
114 (encoding a pyoverdine synthesis enzyme) and *pchEF* genes (encoding two pyochelin

synthesis enzymes) fused to *mcherry* and *gfp* genes, respectively. The reporter construct is

116 stably integrated as a single copy into the chromosome¹⁹.

118 In a first step, we conducted colony-level analysis to obtain an overview on the siderophore

gene expression of *P. aeruginosa* in a spatially structured environment over time and in

120 response to iron limitation (Fig. 1). As expected, we found that pyoverdine gene expression

was significantly higher under stringent iron limitation than under moderate iron limitation (Fig

122 1a+b, $F_{1,43} = 42.24$, $p < 0.0001$). Pyoverdine gene expression significantly declined over time

in both media (Fig 1c, moderate iron limitation: $t_{18} = -5.82$, $p < 0.0001$; stringent iron limitation:

124 $t_{25} = -10.77$, $p < 0.0001$). Similar patterns were observed for pyochelin gene expression, which

was significantly higher under stringent versus moderate iron limitation (Fig 1d+e, $F_{1,43} = 25.59$,

126 $p < 0.0001$). Pyochelin gene expression also significantly declined with time (Fig 1f, moderate

iron limitation: $t_{18} = -3.82$, $p = 0.0025$; stringent iron limitation: $t_{25} = -2.31$, $p = 0.0296$) although

128 the drop is less pronounced than for pyoverdine gene expression.

130 We then asked whether pyoverdine and pyochelin gene expression are correlated at the

individual cell level. For this analysis, we considered all time points during which colonies

132 contained at least 16 cells because correlation coefficients varied stochastically between -1

and +1 in very small colonies (Fig. 1g). We found that pyoverdine and pyochelin gene

134 expression were positively correlated across cells within a colony (Fig 1h, moderate iron

limitation: $t_{18} = 10.14$, $p < 0.0001$; stringent iron limitation: $t_{25} = 17.50$, $p < 0.0001$), whereby

136 the positive association was significantly stronger under stringent iron limitation compared to

moderate iron limitation (Fig. 1h, ANOVA: $F_{1,43} = 20.75$, $p < 0.0001$). The strength of the

138 positive association significantly increased over time under stringent iron limitation ($t_{25} = 2.92$,

$p = 0.0145$), but did not change under moderate iron limitation ($t_{18} = 0.81$, $p = 0.4280$) (Fig. 1i).

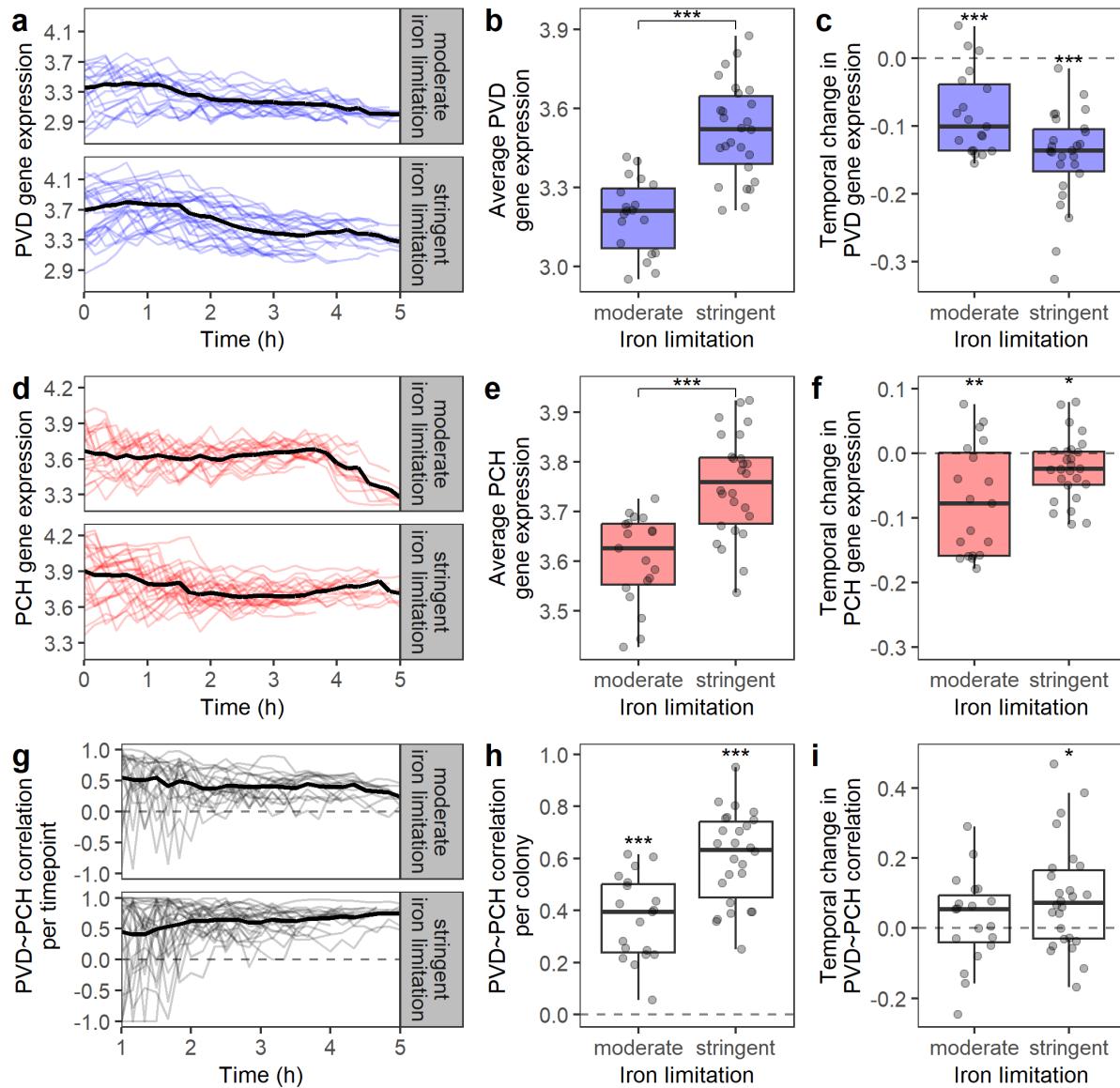
140

In summary, our colony-level analyses confirm results from liquid-culture experiments¹⁹,

142 showing that (i) *P. aeruginosa* cells respond to variation in iron limitation by adjusting

siderophore gene expression, and (ii) pyoverdine and pyochelin gene expression is positively

144 correlated across cells, but less so under moderate iron limitation.



146 **Fig 1. Patterns of siderophore gene expression in growing colonies of *P. aeruginosa* in response**

148 **to different levels of iron limitation. (a+d)** Pyoverdine (blue) and pyochelin (red) gene expression per

150 colony (mean across all cells) under moderate (CAA + 0 μM bipyridyl, N = 19) and high iron limitation

152 (CAA + 400 μM bipyridyl, N = 26). Black lines indicate the average values across all colonies. (b+e)

154 Average gene expression correlation between pyoverdine and pyochelin across all time points with

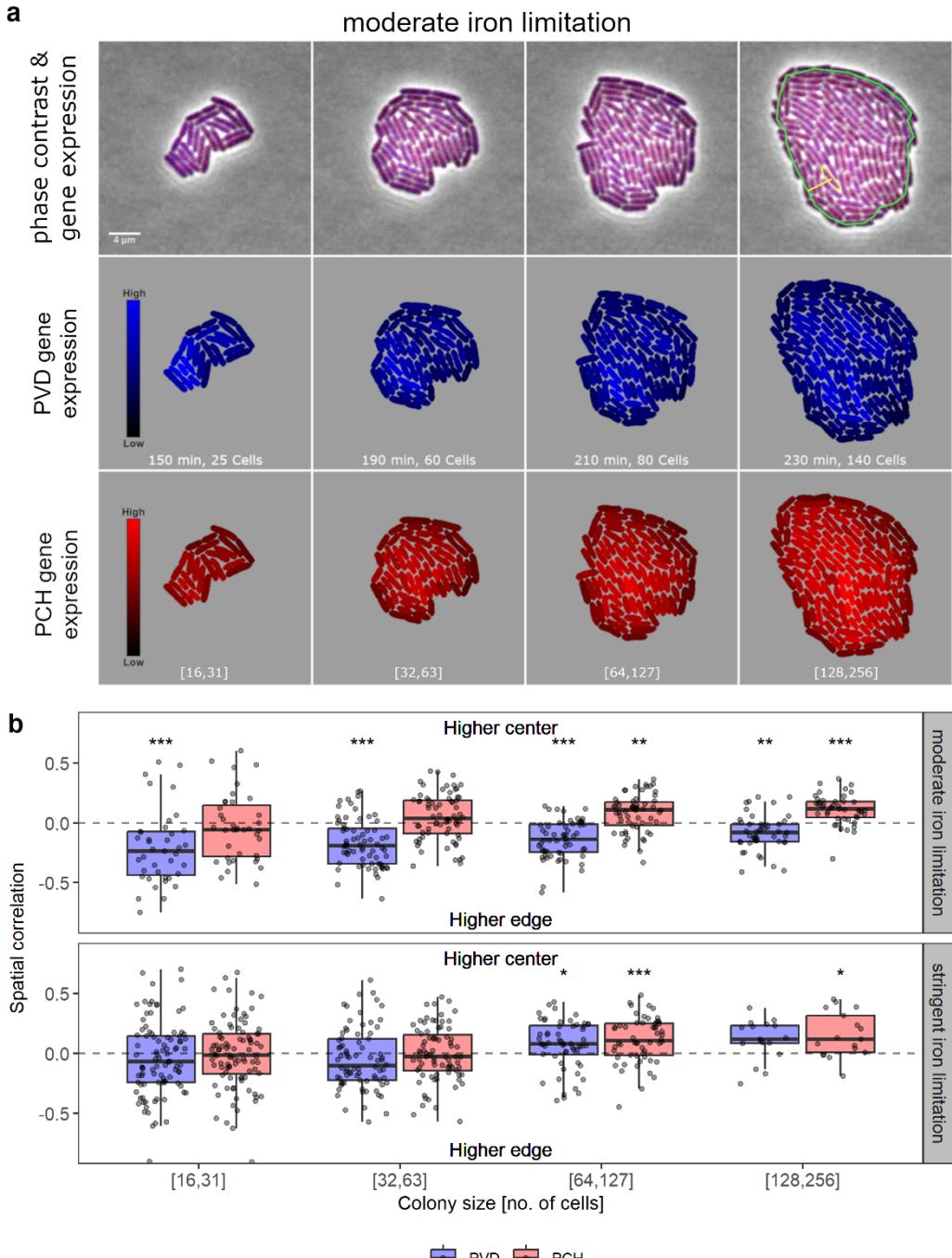
156 colony size ≥ 16 cells. (i) Temporal change in the gene expression correlation between pyoverdine and

correlation coefficients per colony. Boxplots show the median and the interquartile range (IQR), while
158 whiskers indicate minimum and maximum values. * p < 0.05, ** p < 0.01, *** p < 0.001.

160 **Spatial gradients of siderophore gene expression activities within colonies**

We hypothesized that gradients of iron availability exist within colonies, which will manifest in
162 cells adjusting their siderophore gene expression depending on their spatial position within the
colony. To test this hypothesis, we measured the Euclidean distance of each cell from the edge
164 of the colony and correlated its siderophore gene expression with this distance (Fig. S2). We
calculated the spatial gene expression correlation for each time point imaged and grouped the
166 extracted values into four distinct classes of colony size (Fig 2a + b).

168 Under moderate iron limitation, we found significant spatial gradients, whereby pyoverdine
gene expression significantly increased in cells that were closer to the colony edge (Fig. 2b
170 top panel, Table S1). The relationship held for all colony sizes, but the strength of the
association declined in larger colonies (ANOVA: $F_{3,447} = 6.26$, p = 0.0004). We observed the
172 opposite pattern for pyochelin, for which gene expression significantly declined towards the
colony edge (Fig. 2b top panel, Table S2) with the association becoming stronger in larger
174 colonies (ANOVA: $F_{3,447} = 8.49$, p < 0.0001). Spatial gradients were much weaker under
stringent iron limitation. In this environment, cells closer to the center of the colony tend to
176 invest more in both siderophores – pyoverdine (Fig 2b bottom panel) and pyochelin (Fig 2b
bottom panel) – but the effects only became significant in larger colonies (Table S1+S2).



178

Fig 2. Spatial gradients in gene expression arise under moderate iron limitation. (a) Snapshots of a representative colony over time under moderate iron limitation (CAA + 0 μM bipyridyl). Top row shows the overlay of phase contrast, GFP (pyochelin, blue) and mCherry (pyoverdine, red) channels. The green line indicates the edge of the colony and the yellow line the distance to the edge for an individual cell. Middle and bottom rows show segmented cells with heatmap colors indicating pyoverdine (blue) and pyochelin (red) gene expression levels, respectively. (b) Spatial correlation coefficients between pyoverdine (blue) or pyochelin (red) gene expression and the distance of cells from the colony edge calculated per colony and timepoint and grouped by colony size category. Boxplots show the median

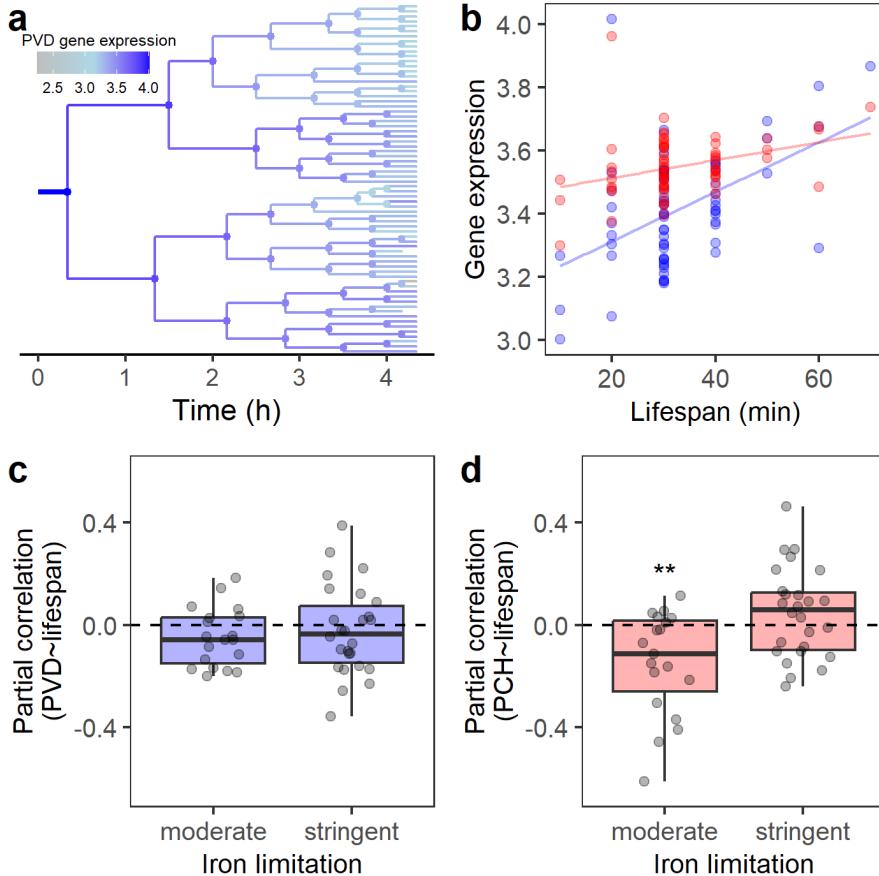
and the interquartile range (IQR), while whiskers indicate minimum and maximum values. Asterisks
188 indicate significant differences from the dashed line. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

190 **Cell lifespan does not correlate with siderophore gene expression**

We hypothesized that variation in the lifespan of cells (defined as time between two cell
192 divisions) could be an intrinsic factor contributing to variation in siderophore gene expression.

To test our hypothesis, we first created lineage trees for each colony, where nodes represent
194 individual cells and branch length reflect their lifespans (Fig 3a shows a representative
example). We then calculated the average siderophore gene expression per branch length
196 and correlated this metric to the lifespan of the cell.

198 We indeed found that cell life span correlated positively with both pyoverdine and pyochelin
gene expression (Fig. 3b shows a representative example). However, the lineage trees also
200 revealed that cell division rates accelerated over time, such that the first generations of cells
have longer life spans than the later generations of cells (Fig. 3a). To control for this
202 confounding factor, we calculated the partial correlations between lifespans of cells and gene
expression, whilst controlling for generation identity. We found no longer any positive
204 associations, neither between pyoverdine gene expression and lifespan (moderate iron
limitation, $t_{18} = -1.85$, $p = 0.0807$, stringent iron limitation, $t_{25} = -0.65$, $p = 0.5200$), nor between
206 pyochelin gene expression and lifespan (under moderate iron limitation, the association is
negative, $t_{18} = -3.20$, $p = 0.0049$, stringent iron limitation, $t_{25} = 1.37$, $p = 0.1830$). Thus, variation
208 in cellular lifespan does not seem to contribute to siderophore gene expression heterogeneity.



210

Fig 3. No positive associations between lifespans of cells and siderophore gene expression. (a) Lineage tree of a colony showing pyoverdine gene expression under stringent iron limitation (CAA + 400µM bipyridyl) used as a representative example. Branch length indicates the lifespan of a cell and color indicates the intensity of average pyoverdine gene expression of the respective cell during its lifespan. (b) Positive associations between the lifespans of cells and their siderophore gene expression (pyoverdine =blue, pyochelin=red) when not controlling for cell generation as a confounding factor. The panel shows data from the lineage tree in (a). The lines indicate the smoothed conditional means. (c+d) Partial correlation coefficients between the lifespan of cells and their siderophore gene expression, controlling for generation identity under moderate (CAA + 0µM bipyridyl) and stringent (CAA + 400µM bipyridyl) iron limitation. Each dot represents the partial correlation coefficient of a colony (excluding the cells on the tip of the trees, which did not divide during the duration of the assay). Boxplots show the median and the interquartile range (IQR), while whiskers indicate minimum and maximum values. Asterisks indicate significant differences from the dashed line. ** p < 0.01.

224

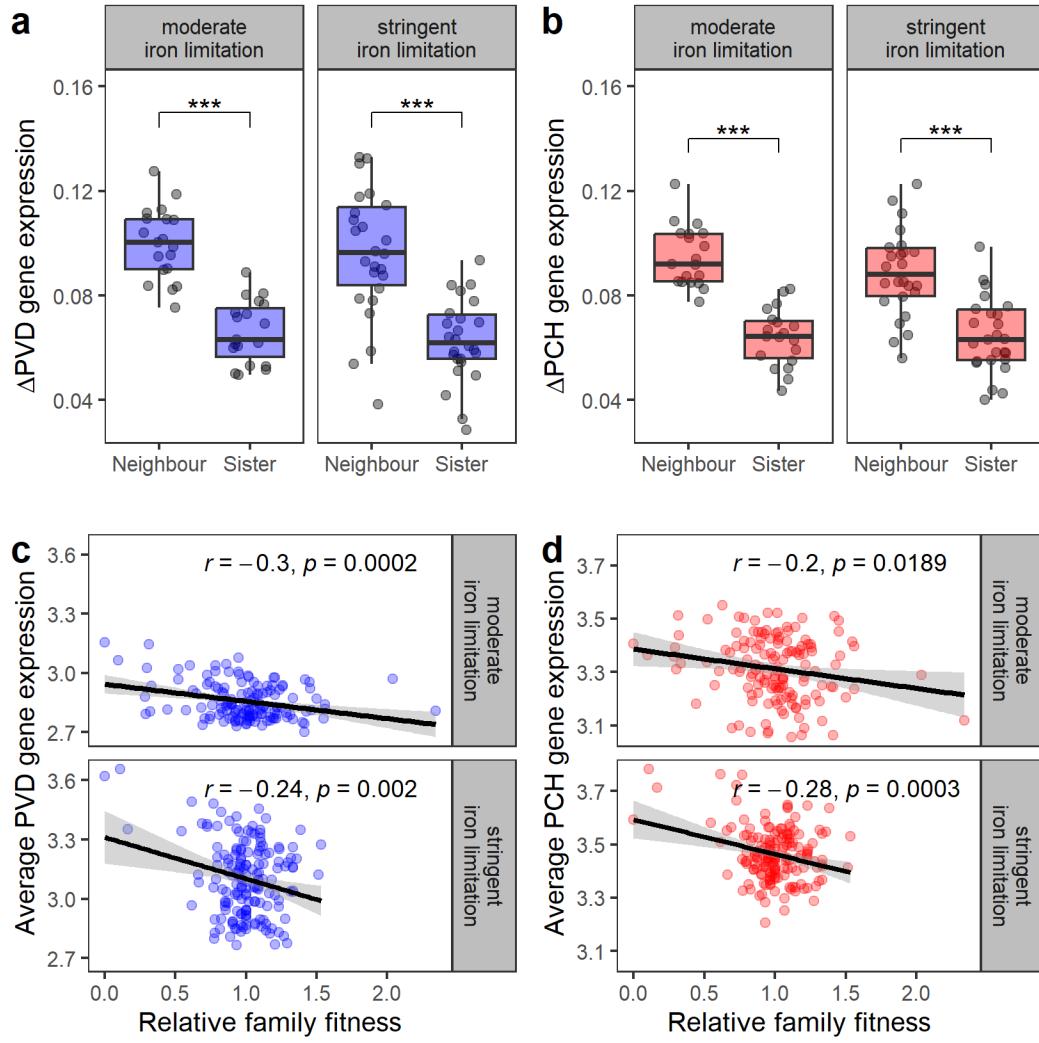
Sister cells have more similar siderophore gene expression patterns than neighbors

We hypothesized that epigenetic inheritance results in daughter cells showing more similar gene expression levels than non-related cells. When testing this hypothesis, it is important to consider that sister cells are often spatially next to one another after cell division on structured

surfaces. Thus, sisters likely experience similar micro-environmental conditions, such that
230 gene expression might be similar because they share the same environment and not because
of shared genealogy. To disentangle environmental from genealogical effects, we used our
232 lineage trees to identify sister cells and their closest neighbors originating from a different
mother cell. On average, we analyzed 138 sister-sister vs. sister-neighbor pairs per colony and
234 found that sister cells consistently showed more similar gene expression levels than unrelated
neighbors (Fig. 4). Specifically, gene expression differences between sister cells were
236 significantly smaller than gene expression differences between closest neighbors for both
pyoverdine (Fig. 4a, $F_{1,86} = 37.44$, $p < 0.0001$) and pyochelin (Fig. 4b, $F_{1,86} = 28.06$, $p < 0.0001$)
238 gene expression. The gene expression differences between sister cells and closest neighbors
were similar between the two levels of iron limitation (pyoverdine: $F_{1,86} = 0.023$, $p = 0.879$;
240 pyochelin: $F_{1,86} = 0.134$, $p = 0.715$). Hence, genealogy is an important determinant of
siderophore gene expression heterogeneity.

242

Given that there are genealogical differences in siderophore gene expression among cell
244 lineages within a colony, we asked whether siderophore over-expression or under-expression,
relative to the colony average, is associated with fitness consequences. If siderophores
246 primarily benefit the producer, one would expect cell lineages that over-produce siderophores
to have more offspring. By contrast, if siderophores are evenly shared within the colony one
248 would expect cell lineages that under-produce siderophores to have more offspring, because
they save production costs whilst reaping equal benefits. To differentiate between the two
250 scenarios, we split each colony into four family lineages (after the second cell division) and
related the number of offspring in each family lineage to its average siderophore gene
252 expression level. We found significant negative correlations between the two metrics under
moderate and stringent iron limitations for pyoverdine (Fig. 4c) and pyochelin (Fig. 4d), lending
254 support to the second scenario and thus a shared function of siderophores.

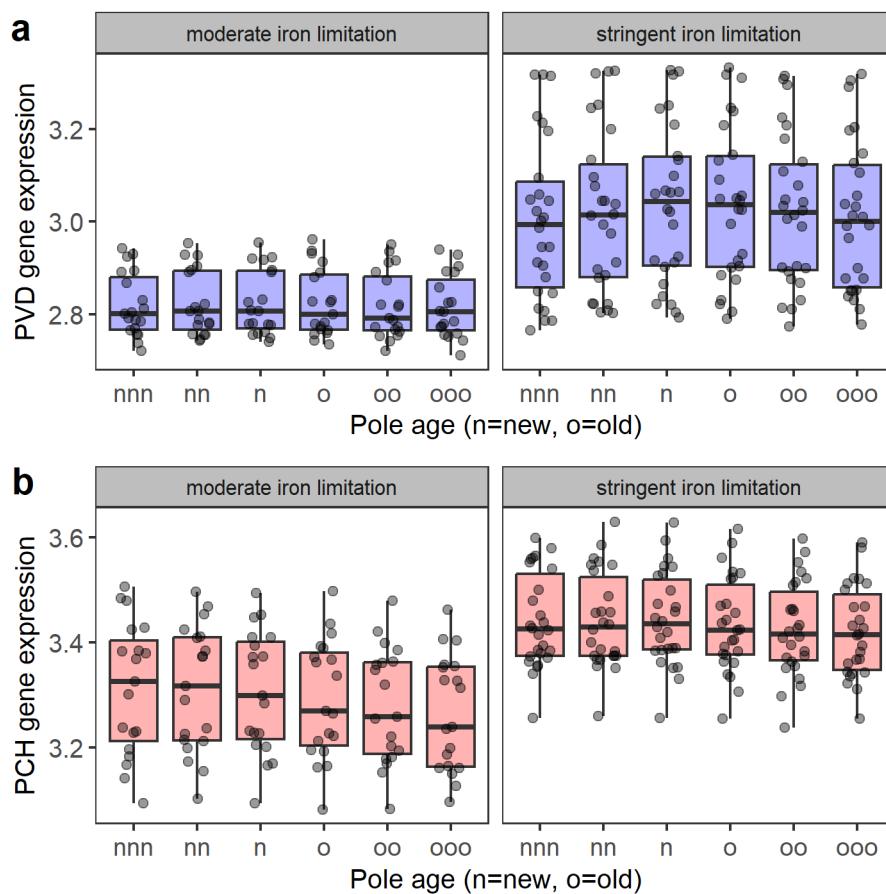


256

258 **Fig 4. Sisters have more similar siderophore gene expression levels than closest neighbors.**
 Comparison of gene expression differences between sister cells and closest neighbors for pyoverdine
 260 (a, blue, PVD) and pyochelin (b, red, PCH) gene expression. The difference in gene expression between
 262 all sister cell pairs and closest neighbor pairs (excluding sisters) was calculated. Data points represent
 264 mean differences per colony, for neighbors or sisters. Boxplots show the median and the interquartile
 266 range (IQR), while whiskers indicate minimum and maximum values, excluding outliers. Four outlier
 268 values (all from the same colony under stringent iron limitation, one each in the four categories in a) are
 270 not shown but were included in the statistical analyses. (c) Correlations between the number of offspring
 272 in a family branch and its average pyoverdine gene expression level. (d) Correlations between the
 number of offspring in a family branch and its average pyochelin gene expression level. For (c) and (d),
 each colony was split into four family branches and the fitness (number of cells) of each branch was
 calculated relative to the average within the colony, which was then contrasted against the average
 siderophore gene expression within the family branch. R-values indicate Pearson's correlation
 coefficients. * p < 0.05, ** p < 0.01, *** p < 0.001.

Cell pole age does not correlate with siderophore gene expression

274 We hypothesized that variation in cell pole age could translate into gene expression
heterogeneity across cells. To test this hypothesis, we used the DeLTA tracking algorithm³¹
276 to infer cell pole age from the previously constructed lineage trees across three generations
(Fig. S1). We then tested whether siderophore gene expression is associated with cell pole
278 age. We found no support for our hypothesis, as there was no association between cell pole
age and siderophore gene expression, neither for pyoverdine (Fig. 5a; $F_{5,258} = 0.186$, $p =$
280 0.9676) nor for pyochelin (Fig. 5b; $F_{5,258} = 0.828$, $p = 0.5304$).



282
284 **Fig 5. Cell pole age does not correlate with siderophore gene expression.** (a) Pyoverdine and (b)
286 pyochelin gene expression in response to cell pole age under moderate (CAA + 0 μM bipyridyl) and
288 stringent iron limitation (CAA + 400 μM bipyridyl). Cells are categorized based on the cell pole they
inherited from their mother (n or o, first letter), as well as the pole their mothers (nn or oo, second letter)
and grandmothers (nnn or ooo, third letter) received. The analysis only considered 'pure' cousins (nn
and oo) and second cousins (nnn and ooo), whereas cells with mixed cell pole age histories (e.g., nno)
were not included. Individual dots show the mean gene expression of the corresponding pole age

290 category per colony. Boxplots show the median and the interquartile range (IQR), while whiskers indicate minimum and maximum values.

292

294 **Discussion**

We set out to identify extrinsic and intrinsic sources of cellular heterogeneity in the expression
296 of pyoverdine and pyochelin synthesis genes in the bacterium *Pseudomonas aeruginosa* and
relate them to adaptive (evolutionary) functions. The siderophores pyoverdine and pyochelin
298 are secreted in the environment and shared as public good between cells³⁰, meaning that
heterogeneity in siderophore investment can have fitness consequences for the producing
300 individual and the other group members. When grown on surfaces, we found that the spatial
positioning of cells within the colony and cell lineage genealogy were major sources of cellular
302 heterogeneity. By contrast, cellular lifespan and cell pole age had no significant effect on
heterogeneity. At the functional level, our results suggest that bacteria optimize iron acquisition
304 strategies depending on their location in the colony. Optimization was particularly apparent
under moderate iron limitation, under which edge cells predominantly invested in the potent
306 yet expensive pyoverdine, while interior cells specialized on the production of the cheaper,
less potent pyochelin. We further observed negative correlations between siderophore gene
308 expression of cell lineages within colonies and their fitness, suggesting that siderophore-
overproducing cell lineages boost the fitness of siderophore-underproducing lineages through
310 siderophore sharing. Altogether, our study shows that a combination of single-cell time-lapse
microscopy together with quantitative image analysis is a powerful tool to reveal mechanistic
312 and adaptive causes of cellular heterogeneity in clonal bacterial populations.

314 We observed spatial gradients of siderophore gene expression activities from the center to the
edge of colonies (Fig. 2). Gradients were more prominent in larger colonies and predominantly
316 occurred under moderate iron limitation. At the mechanistic level, these results indicate that
bacteria can sense small differences in iron availabilities. Indeed, *P. aeruginosa* can adjust
318 siderophore production in a remarkably fine-tuned manner. Upon the depletion of intra-cellular

iron stocks, Fur (ferric uptake regulator) loses its inhibitory effect, resulting in the basal
320 expression of siderophore synthesis enzymes^{21,32}. Pyoverdine and pyochelin are both
produced via non-ribosomal peptide synthesis and are actively secreted via specific
322 exporters^{21,33}. Production levels are then fine-tuned based on incoming iron-loaded
siderophores triggering positive feedback loops. For pyoverdine, the signaling cascade
324 involves an interplay between the sigma factor PvdS and its antagonist FpvR^{23,34}. For
pyochelin, signaling is based on a direct interaction between ferri-pyochelin and the
326 transcriptional regulator PchR^{24,35}. A fine-tuned response is achieved by the relative strength
of FUR-mediated repression and signaling-mediated activation. While pyoverdine and
328 pyochelin are co-regulated overall¹⁹, preferential pyochelin production can occur under
moderate iron limitation because FUR repression seems to be more relaxed for this
330 siderophore²⁸. Conversely, preferential pyoverdine production can occur under stringent iron
limitation, most likely because pyoverdine inhibits pyochelin-mediated signaling as it has
332 stronger affinity for iron^{19,27,28}. At the evolutionary level, our results suggest that bacteria
optimize their iron acquisition strategy under moderate iron limitation, depending on their
334 position in the colony as captured by our adaptive explanation A. In larger colonies, center
cells might predominantly recycle the pyoverdine that has already been produced by earlier
336 generations and thus switch to the production of the cheaper pyochelin. By contrast, edge cell
might still experience a shortage of siderophores and iron, and therefore predominantly invest
338 in the more potent pyoverdine. Compatible with previous work, this optimization only occurs
under moderate iron limitation, conditions under which pyochelin becomes a potent
340 siderophore²⁸.

342 Besides spatial effects, we found that epigenetic inheritance is a major factor explaining
cellular heterogeneity in siderophore gene expression. Daughter cells inherit the gene
344 expression status from their mother and differences between families are propagated through
the lineage tree. Similar observations were made for the expression of several genes in
346 *Escherichia coli*⁹. While patterns of epigenetic inheritance are consistent across genes and

levels of iron limitation (Fig. 4), the genealogical effects do not explain how variation in gene
348 expression across cell lineages arises in the first place. One option is that random noise in
gene expression leads to variation among the first few founder cells in a colony and this
350 variation is then passed on to all the subsequent lineage members. However, the fact that
random noise is expected to dilute rather than propagate genealogical differences speaks
352 against this hypothesis. Alternatively, we have previously shown that siderophore gene
expression heterogeneity is positively linked to the metabolic activity of cells¹⁹. Accordingly,
354 cells could therefore differ in their vigour⁷, whereby cells with relatively low vigor invest less in
siderophores than cells with relatively high vigor, and the vigor status is inherited from mother
356 to daughter cells. Based on our data, we consider this as a likely explanation that would need
to be experimentally substantiated in the future.

358

Important to note is that pyoverdine and pyochelin are diffusible molecules that serve as
360 signals when taken up by cells in their iron-bound forms^{23,24}. This means that siderophores
produced by one cell can induce siderophore production in a neighboring cell. In a spatial
362 setting, siderophore diffusion and signaling are expected to affect cellular heterogeneity. For
example, molecule diffusion is limited in structured environments^{17,36,37} such that siderophore-
364 mediated signaling should primarily occur between neighboring cells. Local signaling should
strengthen spatial correlations. This is indeed supported by our data showing that spatial
366 correlations predominantly arise in larger colonies (Fig. 2b), in which signaling is expected to
be more intense and local. These spatial effects can also be seen at a qualitative (visual) level
368 in Fig. 2a, where we observe patches of cells with above- and below-average gene expression,
patterns that can be induced by high and low local signaling, respectively. In contrast, local
370 siderophore signaling is expected to weaken the genealogical effects (Fig. 4a+b) since
diffusing siderophores should induce siderophore production in both sister and unrelated
372 neighbors.

374 We found no support for the adaptive explanation B, namely that cells with low individual fitness
375 can indirectly increase group fitness via disproportionately high siderophore investment levels.
376 There was no support for this hypothesis when relating cell life span to siderophore gene
377 expression (Fig. 3). Cells differ in their lifespan, but slower dividing cells did not have higher
378 siderophore investment than faster dividing cells. There was also no support for our hypothesis
379 when focusing on cell pole age, as this metric showed no association with siderophore gene
380 expression levels (Fig. 5). However, we unexpectedly observed a link between epigenetic
381 inheritance and fitness, whereby cell lineages with below-average siderophore investment
382 levels had above-average cell division rates (Fig. 4). Building on our vigor model, this result
383 indicates that cell lineages with high vigor produce high amounts of siderophore to boost not
384 only their own fitness but also the fitness of low-vigor cell lineages through the cooperative
sharing of siderophores.

386
387 In conclusion, we conducted simple time-lapse microscopy experiments to track gene
388 expression of individual bacterial cells and cell lineages in growing colonies on surfaces over
389 time. Together with automated image analysis and cell-tracking software, we show that an
390 enormous amount of information can be extracted from such simple experiments. The
391 approach chosen in our paper does not only allow to test hypotheses regarding the sources of
392 cellular gene expression heterogeneity but also to examine potential fitness consequences.
393 Taken together, we advocate that future bacterial single-cell studies should have a strong
394 focus on fitness aspects to examine to what extent gene expression heterogeneity reflects
random noise as opposed to exerting an adaptive function.

395

Materials and methods

396
397 **Bacterial strains**

398 For all our experiments, we used the standard laboratory strain *P. aeruginosa* PAO1, which
399 produces the siderophores pyochelin and pyoverdine. To measure gene expression, we used
400 PAO1 strains with fluorescent gene reporter constructs chromosomally integrated as single

402 copies, at the *attTn7* site of the wild type using the mini-Tn7 system³⁸ and our customized
403 protocols³⁹. To simultaneously track the expression of two genes, we used a double gene
404 expression reporter: PAO1*pvdA::mcherry-pchEF::gfp*, in which the promoter for the
405 pyoverdine biosynthetic gene *pvdA* is fused to the red fluorescent gene *mcherry* and the
406 pyochelin biosynthetic genes *pchE* and *pchF* (forming an operon) are fused to the green
407 fluorescent gene *gfpmut3*. For simplicity of nomenclature the *gfpmut3* is referred to as *gfp*. The
408 genetic scaffold of the double gene reporter construct, and its construction is described in detail
409 elsewhere¹⁹. In this earlier study, we have also demonstrated that gene expression levels
410 correlate well with the actual amount of siderophores produced.

412 **Growth conditions**

Prior to experiments, we prepared overnight cultures from -80 °C stocks, in 8ml Lysogeny broth
413 (LB) in 50ml tubes, incubated at 37°C, shaken at 220 rpm for approximately 18 hours. Cells
414 were then harvested by centrifugation (5000 rpm for 3 minutes), subsequently washed in 0.8%
415 saline, and adjusted to OD₆₀₀ = 0.001 (optical density at 600nm). To stimulate a substrate
416 attached mode of growth, harvested cells were then seeded onto 1% agarose pads on a
417 microscopy slide. The medium of the pad consisted of CAA (5g casamino acids, 1.18g
418 K₂HPO₄*3H₂O, 0.25g MgSO₄*7H₂O, per litre), buffered at physiological pH by the addition of
419 25mM HEPES. To induce a gradient of iron limitation, we used either plain CAA or CAA
420 supplemented with 400µM of the synthetic iron chelator 2-2'-bipyridyl. All chemicals were
421 purchased from Sigma Aldrich (Buchs SG, Switzerland). The gene expression of individuals
422 within growing colonies was quantified using a widefield fluorescence microscope (Olympus
423 ScanR), featuring an incubation chamber where cells were incubated at 37 °C for 5 hours.

426 **Preparation of microscope slides**

To prepare agarose pads on microscopy slides, we adapted a method previously described
427 elsewhere^{19,40,41}. Standard microscope slides (76mm x 26mm) were sterilized with 70%
428 ethanol. We used 'Gene Frames' (Thermo Fisher Scientific, Vernier, Switzerland) to prepare

430 agarose pads on which bacteria were seeded. Each frame features a single chamber (17 mm
x 28 mm) of 25 mm thickness. The frames are coated with adhesives on both sides so that
432 they stick to the microscope slide and the coverslip. The sealed chamber is airtight, which
prevents pad deformation and evaporation during experimentation.

434 To prepare agarose pads, we heated 40 ml of plain CAA medium with 1% agarose in
a microwave. The agarose-CAA solution was first cooled to approximately 50°C. Then 25mM
436 HEPES buffer along with the required concentration of bipyridyl was added. We pipetted 700
μl of the solution into the gene frame and immediately covered it with a sterile coverslip. The
438 coverslip was gently pressed to let superfluous medium escape and solidify for around 20
minutes. After solidification, we removed the coverslip (by carefully sliding it sideways) and
440 divided the agarose pad into four smaller pads of roughly equal size with a sterile scalpel. We
introduced channels between pads, that served as oxygen reservoirs for the growing colonies.
442 To ensure that colonies started to grow from a single cell, we put 1 μl of diluted bacteria (OD₆₀₀
= 0.001) on each agarose pad. Upon the addition of bacteria, we let the agarose pads air-dry
444 for 2 minutes, and then sealed them with a new sterile coverslip.

446 **Microscope set-up and time-lapse imaging**

Following the preparation steps described above, we immediately started time-lapse imaging
448 of the bacteria at the Center for Microscopy and Image Analysis of the University of Zurich
(ZMB) using an inverted widefield Olympus ScanR HCS microscope, featuring an incubation
450 chamber. The microscope has an automatic movable stage, capable of imaging multiple fields
of view repeatedly and a motorized Z-drive, which enables autofocus of the objects. The
452 microscope is controlled by the OLYMPUS cellSens Dimensions software. Images were
captured with a PLAPON 60x phase oil immersion objective (NA=1.42, WD=0.15mm) and a
454 Hamamatsu ORCA_FLASH 4.0V2, high sensitive digital monochrome scientific cooled
sCMOS camera (resolution: 2048x2048 pixels, 16-bit).

456 For time-lapse microscopy, we first imaged the growing colonies with phase contrast
(exposure time 56.4 ms). For fluorescence imaging, we used a fast emission filter wheel,

458 featuring a FITC SEM filter for GFP (exposure time 50 ms, excitation=470±24 nm,
emission=515±30nm, DM=485) and a TRITC SEM filter for mCherry (exposure time 50 ms,
460 excitation=550±15nm, emission=595±40nm, DM=558). Imaging with phase contrast and the
respective fluorescent channels was done sequentially for every time point and field of view.
462 The time-lapse image recording was performed at 37 °C for 5 hours with images taken every
10 minutes. We started the time-lapse image recording with a field of view having a maximum
464 of three separate cells.

466 **Image processing, single cell segmentation and tracking**

We used FIJI⁴², llastik⁴³ and DeLTA³¹ to (i) process images, (ii) segment single cells, (iii) track
468 lineages and (iv) measure fluorescence in our time-lapse recordings. We conducted a
preliminary quality check by inspecting all time-lapses in FIJI. We removed recordings that
470 were blurry, had excessive drift, and cases in which cells began to grow in double layers.
Recordings of two positions without cells were used to create average blank images for the
472 two fluorescence channels. These average blank images were then subtracted from all
fluorescence images to correct for microscope vignetting across the fields of view. Thereafter,
474 we performed a drift correction of our time-lapse recordings (https://github.com/fiji/Correct_3D_Drift) and exported the images for segmentation into llastik.

476 We segmented the single cells based on the phase contrast images with the pixel and
object classification workflow in llastik version 1.3.2⁴³: The classifier was trained with a random
478 sample of 12 images from our collection. Subsequently, the bulk of images were segmented
in batch mode. Based on the llastik segmentations, we create regions of interest (ROI) for
480 individual cells using FIJI. To correct for background fluorescence, we measured the mean
fluorescence intensity outside the ROIs for each image and subtracted the corresponding
482 value from the image.

We used DeLTA, a segmentation and tracking pipeline based on deep convolutional
484 neural networks. We used this platform for cell identity and lineage tracking for all our time-
lapse recordings. The workflow also involves segmentation, which allowed us to compare

486 segmentation results from DeLTA and Ilastik. We found that segmentation with DeLTA leads
487 to slightly smaller cells, compared to Ilastik segmentation (Fig. S3a+b). To validate automated
488 cell tracking, we manually tracked cell lineages for eight colonies using the segmentation from
489 DeLTA. We found that tracking accuracy decreased at later time points, but cell and division
490 tracking accuracy were still $\geq 95\%$ for seven out of eight and five out of eight colonies,
491 respectively (Tab. S3).

492

Single-cell measurements and data analysis

493 We extracted information on each cell's position, size, and fluorescence intensity in the two
494 fluorescent channels (GFP and mCherry) with FIJI. The subsequent analyses were conducted
495 using R (4.3.0). The single cell data allowed us to determine the number of cells present at
496 each timepoint of a recording. For positions where the time-lapse recording started with one
497 single cell, the number of cells at each timepoint gave us the colony size over time. In positions
498 that started with multiple single cells scattered over the field of view, we grouped cells into
499 individual colonies with a hierarchical cluster analysis of the distance between cells. To
500 quantify siderophore gene expression, we generally used the integrated density of the
501 fluorescence intensity. There was one exception: we used the mean fluorescence intensity
502 when analyzing expression correlations between the two siderophore genes. This is because
503 the integrated density correlates with cell size, such that positive correlations necessarily arise
504 when there is variation in cell size. We applied a \log_{10} transformation to both types of
505 fluorescence intensity values.

506 For colony-level analysis, we calculated the average siderophore gene expression
507 intensity across cells within a colony per timepoint. These values were then regressed over
508 time to test whether average siderophore gene expression changes over time (positive or
509 negative slope). We further analyzed correlations between the expression of the two
510 siderophore genes, including all colonies with at least 16 cells or larger, and assessed whether
511 the correlations change over time.

For single-cell analyses, we determined the position of each cell within a colony by the
514 distance of a cell to the edge of the colony. For each time-point, we identified the edge of the
colony by computing the α -convex hull for the colony with an alpha value of 30 pixels, which
516 corresponds approximately to the length of a cell. This approach allowed us to identify the cells
that were on the edge of a colony. Connecting the centers of these cells gave us the outer
518 contour of a colony. Subsequently, we calculated the Euclidean distance between each cell's
centre and its distance to the nearest edge of the colony. For each colony, we then calculated
520 the spatial correlation between siderophore gene expression and distance to the edge across
cells per timepoint. For statistical comparisons, we grouped the colonies into four size
522 categories ([16,31], [32,63], [51,127], [128,256]), excluding colonies with less than 16 or more
than 256 cells.

524 We used the results from the DeLTA pipeline for three different analyses involving cell
lineage tracking. First, we calculated the lifespan of each cell, defined as the number of
526 timepoints between two consecutive cell divisions. This metric was then correlated with the
average siderophore gene expression intensity over the lifespan of cells. Given that lifespans
528 decreased in later generations, we conducted partial correlation analyses, controlling for the
generation number a cell belongs to. Second, we identified a sister and a closest neighbor cell
530 for each cell in a colony. Sister cell pairs could be directly derived from the lineage tree. To
identify closest neighbors, we first calculated the average position (coordinates) of cells over
532 their lifespans. We then determined closest neighbors as pairs of cells with the shortest
distance between their average positions that were born at most one timepoint apart, and that
534 were not sisters. This analysis was conducted for all colonies with four and more cells. To
avoid double counting, the analysis was restricted to only one cell within sister pairs. Third, we
536 tracked the cell pole age for each cell across three generations. Upon cell division, each
daughter cell inherits an old pole from its mother and forms a new pole (Fig. S1). DeLTA
538 records pole age so that cells can be classified as "n" (new) or "o" (old) pole cells considering
the past cell division, and as "nn" or "oo" and "nnn" or "ooo" cells when further considering

540 division events of their mothers and grandmothers, respectively. For simplicity reasons, we did
541 not include cells with mixed cell pole age histories.

542

Statistical analysis

543 We used general linear models for statistical analysis in R 4.3.0. Prior to analysis, we used the
544 Shapiro-Wilk test to confirm that model residuals are normally distributed. For colony-level
545 analysis (Fig. 1), we used analysis of variance (ANOVA) models to assess whether pyoverdine
546 and pyochelin gene expression and the correlation between the two vary in response to iron
547 limitation. We further used two-sided one-sample *t*-tests to test for significant temporal
548 changes of these three variables (i.e. correlations coefficients being different from zero). At the
549 single-cell level, we used two-way ANOVAs to analyze whether spatial correlation of
550 siderophore gene expression differ in response to colony size and iron limitation (Fig. 2).
551 Subsequently we used two-sided one-sample *t*-tests to determine whether spatial correlation
552 coefficients across colonies are significantly different from zero. Reported P-values were
553 adjusted for multiple testing using the Holm-Bonferroni method. To analyze whether cell
554 lifespan relates to pyoverdine and pyochelin gene expression, we calculated the partial
555 correlation coefficients across cells separately for each colony, whilst controlling for the
556 generation number each cell belongs to (Fig. 3). Subsequently, we used two-sided one-sample
557 *t*-tests to test whether the partial correlation coefficients differ from zero. We used two-way
558 ANOVAs to test whether siderophore gene expression is more similar between sister cells than
559 between unrelated neighbors and whether differences depend on the level of iron limitation.
560 To test if there is an association between the average siderophore gene expression and the
561 number of offspring in a family branch we calculated the Pearson's correlation coefficient. To
562 analyse whether cell pole age influences siderophore gene expression, we used two-way
563 ANOVAs with pole age category and iron limitation as fixed factors (Fig. 5).

564

565 **Competing interests**

The authors declare that they have no conflict of interest.

568 **Acknowledgments**

We thank Priyanika Jayakumar for her help in the lab, and the Center for Microscopy and
570 Image Analysis for support. This project has received funding from the European Research
Council (ERC) under the European Union's Horizon 2020 research and innovation programme
572 (grant agreement no. 681295).

574 **Author contributions**

SM and RK designed the study. SM carried out all experiments. TW wrote the image analysis
576 scripts. SM, TW and RK analyzed the data and wrote the paper.

578 **References**

1. Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. (2002). Stochastic gene expression in a single cell. *Science* 297, 1183-1186. 10.1126/science.1070919.
2. Eldar, A., and Elowitz, M.B. (2010). Functional roles for noise in genetic circuits. *Nature* 467, 167-173. 10.1038/nature09326.
3. Avery, A. (2006). Microbial cell individuality and the underlying sources of heterogeneity. *Nat. Rev. Microbiol.* 4, 577-587. 10.1038/nrmicro1460.
4. Stewart, P.S., and Franklin, M.J. (2008). Physiological heterogeneity in biofilms. *Nat. Rev. Microbiol.* 6, 119-130.
5. Ackermann, M. (2015). A functional perspective on phenotypic heterogeneity in microorganisms. *Nat. Rev. Microbiol.* 13, 497-508. 10.1038/nrmicro3491.
6. Striednig, B., and Hilbi, H. (2022). Bacterial quorum sensing and phenotypic heterogeneity: how the collective shapes the individual. *Trends Microbiol.* 30, 379-389. 10.1016/j.tim.2021.09.001.
7. Kümmeli, R., and Frank, S.A. (2023). Evolutionary explanations for heterogeneous behavior in clonal bacterial populations. *Trends Microbiol.* 10.1016/j.tim.2023.04.003.
8. Williamson, K.S., Richards, L.A., Perez-Osorio, A.C., Pitts, B., McInerney, K., Stewart, P.S., and Franklin, M.J. (2012). Heterogeneity in *Pseudomonas aeruginosa* biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. *J. Bacteriol.* 194, 2062-2073. 10.1128/JB.00022-12.
9. van Vliet, S., Dal Co, A., Winkler, A.R., Spriewald, S., Stecher, B., and Ackermann, M. (2018). Spatially correlated gene expression in bacterial groups: the role of lineage history, spatial gradients, and cell-cell interactions. *Cell Systems* 6, 496-507. 10.1016/j.cels.2018.03.009.
10. Dal Co, A., van Vliet, S., and Ackermann, M. (2019). Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations. *Phil. Trans. R. Soc. B* 374, 20190080. 10.1098/rstb.2019.0080.
11. Jo, J., Price-Whelan, A., and Dietrich, L.E.P. (2022). Gradients and consequences of heterogeneity in biofilms. *Nat. Rev. Microbiol.* 20, 593-607. 10.1038/s41579-022-00692-2.
12. Bergmiller, T., and Ackermann, M. (2011). Pole age affects cell size and the timing of cell division in *Methylobacterium extorquens* AM1. *J. Bacteriol.* 193, 5216-5221. 10.1128/JB.00329-11.

612 13. Levy, S.F., Ziv, N., and Siegal, M.L. (2012). Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. *PLoS Biol.* *10*, e1001325. 10.1371/journal.pbio.1001325.

614 14. Hormoz, S., Desprat, N., and Shraiman, B.I. (2015). Inferring epigenetic dynamics from kin correlations. *Proceedings of the National Academies of Sciences of the United States of America* *112*, E2281–E2289. 10.1073/pnas.1504407112.

618 15. Miethke, M., and Marahiel, M.A. (2007). Siderophore-based iron acquisition and pathogen control. *Microbiol. Mol. Biol. Rev.* *71*, 413-451. 10.1128/MMBR.00012-07.

620 16. Kramer, J., Özkaya, Ö., and Küpperli, R. (2020). Bacterial siderophores in community and host interactions. *Nat. Rev. Microbiol.* *18*, 152-163. 10.1038/s41579-019-0284-4.

622 17. Julou, T., Mora, T., Guillon, L., Croquette, V., Schalk, I.J., Bensimon, D., and Desprat, N. (2013). Cell-cell contacts confine public goods diffusion inside *Pseudomonas aeruginosa* clonal microcolonies. *Proc. Natl. Acad. Sci. U.S.A.* *110*, 12577-12582. 10.1073/pnas.1301428110.

626 18. Schiessl, K.T., Ross-Gillespie, A., Cornforth, D.M., Weigert, M., Bigosch, C., Brown, S.P., Ackermann, M., and Küpperli, R. (2019). Individual- versus group-optimality in the production of secreted bacterial compounds. *Evolution* *73*, 675-688. 10.1111/evo.13701.

630 19. Mridha, S., and Küpperli, R. (2022). Coordination of siderophore gene expression among clonal cells of the bacterium *Pseudomonas aeruginosa*. *Commun. Biol.* *5*, 545. 10.1038/s42003-022-03493-8.

632 20. Visca, P., Imperi, F., and Lamont, I.L. (2007). Pyoverdine siderophores: from biogenesis to biosignificance. *Trends Microbiol.* *15*, 22-30. 10.1016/j.tim.2006.11.004.

634 21. Youard, Z.A., Wenner, N., and Reimann, C. (2011). Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in *Pseudomonas* species. *Biometals* *24*, 513-522. 10.1007/s10534-010-9399-9.

638 22. Küpperli, R. (2022). Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. *Biometals*. 10.1007/s10534-022-00480-8.

640 23. Lamont, I.L., Beare, P., Ochsner, U., Vasil, A.I., and Vasil, M.L. (2002). Siderophore-mediated signaling regulates virulence factor production in *Pseudomonas aeruginosa*. *Proc. Natl. Acad. Sci. U.S.A.* *99*, 7072-7077. 10.1073/pnas.092016999.

642 24. Michel, L., Bachelard, A., and Reimann, C. (2007). Ferrypyochelin uptake genes are involved in pyochelin-mediated signalling in *Pseudomonas aeruginosa*. *Microbiology* *153*, 1508-1518. 10.1099/mic.0.2006/002915-0.

644 25. Küpperli, R., Jiricny, N., Clarke, L.S., West, S.A., and Griffin, A.S. (2009). Phenotypic plasticity of a cooperative behaviour in bacteria. *J. Evol. Biol.* *22*, 589-598. 10.1111/j.1420-9101.2008.01666.x.

26. Schalk, I.J., Rigouin, C., and Godet, J. (2020). An overview of siderophore biosynthesis
650 among fluorescent Pseudomonads and new insights into their complex cellular
organization. *Environ. Microbiol.* 22, 1447-1466. 10.1111/1462-2920.14937.

652 27. Cornelis, P., and Dingemans, J. (2013). *Pseudomonas aeruginosa* adapts its iron
uptake strategies in function of the type of infections. *Front. Cell. Infect. Microbiol.* 3,
654 75. 10.3389/fcimb.2013.00075.

656 28. Dumas, Z., Ross-Gillespie, A., and Kümmerli, R. (2013). Switching between apparently
redundant iron-uptake mechanisms benefits bacteria in changeable environments
Proc. R. Soc. B 280, 20131055. 10.1098/rspb.2013.1055.

658 29. Perraud, Q., Cantero, P., Munier, M., Hoegy, F., Zill, N., Gasser, V., Mislin, G.L.A.,
660 Ehret-Sabatier, L., and Schalk, I.J. (2020). Phenotypic adaptation of *Pseudomonas*
aeruginosa in the presence of siderophore-antibiotic conjugates during epithelial cell
infection. *Microorganisms* 8, 1820. 10.3390/microorganisms8111820.

662 30. Ross-Gillespie, A., Dumas, Z., and Kümmerli, R. (2015). Evolutionary dynamics of
interlinked public goods traits: an experimental study of siderophore production in
664 *Pseudomonas aeruginosa*. *J. Evol. Biol.* 28, 29-39. 10.1111/jeb.12559.

666 31. O'Connor, O.M., Alnahhas, R.N., Lugagne, J.B., and Dunlop, M.J. (2022). DeLTA 2.0:
A deep learning pipeline for quantifying single-cell spatial and temporal dynamics.
PLoS Comput. Biol. 18, e1009797. 10.1371/journal.pcbi.1009797.

668 32. Ochsner, U.A., and Vasil, M.L. (1996). Gene repression by the ferric uptake regulator
in *Pseudomonas aeruginosa*: cycle selection of iron-regulated genes. *Proc. Natl. Acad.*
670 *Sci. U.S.A.* 93, 4409-4414.

672 33. Schalk, I.J., and Guillon, L. (2013). Pyoverdine biosynthesis and secretion in
Pseudomonas aeruginosa: implications for metal homeostasis. *Environ. Microbiol.* 15,
1661-1673. 10.1111/1462-2920.12013.

674 34. Edgar, R.J., Xu, X., Shirley, M., Konings, A.F., Martin, L.W., Ackerley, D.F., and
Lamont, I.L. (2014). Interactions between an anti-sigma protein and two sigma factors
676 that regulate the pyoverdine signaling pathway in *Pseudomonas aeruginosa*. *BMC*
Microbiol. 14, 287. 10.1186/s12866-014-0287-2.

678 35. Michel, L., Gonzalez, N., Jagdeep, S., Nguyen-Ngoc, T., and Reimann, C. (2005).
PchR-box recognition by the AraC-type regulator PchR of *Pseudomonas aeruginosa*
680 requires the siderophore pyochelin as an effector. *Microbiology* 58, 495-509.
10.1111/j.1365-2958.2005.04837.x.

682 36. Darch, S.E., Simoska, O., Fitzpatrick, M., Barraza, J.P., Stevenson, K.J., Bonnecaze,
R.T., Shear, J.B., and Whiteley, M. (2018). Spatial determinants of quorum signaling in
684 a *Pseudomonas aeruginosa* infection model. *Proc. Natl. Acad. Sci. U.S.A.* 115, 4779-
4784. 10.1073/pnas.1719317115.

686 37. Dal Co, A., van Vliet, S., Kiviet, D.J., Schlegel, S., and Ackermann, M. (2020). Short-
range interactions govern the dynamics and functions of microbial communities. *Nat.*
688 *Ecol. Evol.* 4, 366-375. 10.1038/s41559-019-1080-2.

690 38. Choi, K.-H., and Schweizer, H.P. (2006). mini-Tn7 insertion in bacteria with single
attTn7 sites: example *Pseudomonas aeruginosa*. *Nat. Protoc.* 1, 153-161.
10.1038/nprot.2006.24.

692 39. Rezzoagli, C., Granato, E.T., and Kümmeli, R. (2019). In-vivo microscopy reveals the
impact of *Pseudomonas aeruginosa* social interactions on host colonization. *ISME J.*
694 13, 2403-2414. 10.1038/s41396-019-0442-8.

696 40. de Jong, I.G., Beilharz, K., Kuipers, O.P., and Veening, J.W. (2011). Live cell imaging
of *Bacillus subtilis* and *Streptococcus pneumoniae* using automated time-lapse
microscopy. *J. Vis. Exp.* 53, e3145. 10.3791/3145.

698 41. Weigert, M., and Kümmeli, R. (2017). The physical boundaries of public goods
cooperation between surface-attached bacterial cells. *Proc. R. Soc. B* 284, 20170631.
700 10.1098/rspb.2017.0631.

702 42. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source
platform for biological-image analysis. *Nat. Methods* 9, 676-682. 10.1038/nmeth.2019.

704 43. Berg, S., Kutra, D., Kroeger, T., Straehle, C.N., Kausler, B.X., Haubold, C., Schiegg,
M., Ales, J., Beier, T., Rudy, M., et al. (2019). ilastik: interactive machine learning for
706 (bio)image analysis. *Nat. Methods* 16, 1226-1232. 10.1038/s41592-019-0582-9.