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Abstract 

Heterogeneity in gene expression among cells in clonal groups is common in bacteria. Albeit 14 

ubiquitous, it often remains unclear what the sources of variation are and whether variation 

has functional significance. Here, we tracked the expression of genes involved in the synthesis 16 

of iron-chelating siderophores (pyoverdine and pyochelin) in individual cells of the bacterium 

Pseudomonas aeruginosa during colony growth on surfaces using time-lapse fluorescence 18 

microscopy, to explore potential sources and functions of cellular heterogeneity. Regarding 

sources, we found that the physical position of cells within the colony and epigenetic gene 20 

expression inheritance from mother to daughter cells significantly contributed to cellular 

heterogeneity. In contrast, cell pole age and cellular lifespan had no effect. Regarding 22 

functions, our results indicate that cells optimize their siderophore investment strategies 

(pyoverdine vs. pyochelin) along a gradient from the centre to the edge of the colony. 24 

Moreover, we found evidence that cell lineages with above-average siderophore investment 

increase the fitness of cell lineages with below-average investment through cooperative 26 

sharing of secreted siderophores. Altogether, our study highlights that single-cell experiments 

combined with automated image and cell-tracking analyses can identify sources of 28 

heterogeneity and yield adaptive explanations for gene expression variation among clonal 

bacterial cells.  30 

 

  32 
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Introduction 

It is commonly observed that bacteria in a group show variation in their behaviour albeit being 34 

clonal and living in the same environment1-7. Both intrinsic and extrinsic factors can contribute 

to individual heterogeneity. At the extrinsic level, individual cells might experience differences 36 

in their micro-environment, which can spur differences in their molecular activities and thus 

trigger variation in their behavioral responses8-10. For example, cells growing at the edge of a 38 

biofilm face different environmental conditions than cells at the interior of the biofilm11. At the 

intrinsic level, heterogeneity can arise because biological processes such as gene expression 40 

and protein synthesis are noisy1. Random noise plays an important role, but there are also 

deterministic factors such as cell age12,13 or epigenetic inheritance9,14 that can contribute to 42 

cellular heterogeneity. Although heterogeneity is ubiquitous in microbial systems, it is often 

hard to identify its underlying sources, and it is even harder to assess whether the observed 44 

heterogeneity is beneficial for the bacteria and reflects an evolved adaptive strategy5.  

 46 

Here, we explore both putative sources and adaptive functions of cellular heterogeneity in the 

expression of two siderophore synthesis genes in clonal colonies of the bacterium 48 

Pseudomonas aeruginosa. Siderophores are secondary metabolites secreted by bacteria to 

scavenge iron from the environment15,16. While genes involved in the synthesis of the two 50 

siderophores pyoverdine and pyochelin are heterogeneously expressed in P. aeruginosa, little 

is known on the underlying sources of heterogeneity17-19. Moreover, siderophore molecules are 52 

secreted and their function (iron-acquisition) is shared between cells in a group, leading to 

several possible adaptive explanations for heterogeneity7. We use fluorescent time-lapse 54 

microscopy to simultaneously track cellular heterogeneity in the expression of two genes 

encoding enzymes involved in the synthesis of pyoverdine and pyochelin. We start with single 56 

cells placed on agarose pads and track cell identity, spatial positioning, cell division events, 

and siderophore gene expression over five hours (every 10 minutes). Cells divide five to eight 58 

times during this time frame and form a single-layer colony. The tracking of cellular 

heterogeneity through space and time allows us to differentiate between extrinsic and intrinsic 60 
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sources of variation, and to test adaptive hypotheses. We focus on four potential sources of 

heterogeneity and two adaptive explanations. Below, we formulate specific hypotheses for 62 

each source and adaptive explanation. 

 64 

Extrinsic factor – the micro-environment. P. aeruginosa (like other bacteria) senses iron 

limitation and secretes siderophores to scavenge this essential trace element from the 66 

environment20-22. Previous work revealed sophisticated regulatory mechanisms that allow 

bacteria to sense both iron limitation and the rate of incoming iron-loaded siderophores to 68 

adjust siderophore synthesis in a fine-tuned manner23-26. Due to this high sensitivity, we 

hypothesize that cells will sense differences in iron and siderophore concentrations in their 70 

micro-environment depending on their spatial position in the colony (e.g., center versus edge) 

and adjust their siderophore gene expression accordingly.  72 

 

Intrinsic factor A – cell life span. In growing colonies, individual cells will divide at different time 74 

points, leading to heterogeneity in a cell’s life span. We hypothesize that variation in life spans 

can translate into heterogeneity in siderophore gene expression. For example, cells with longer 76 

life spans might show higher gene expression than cells that divide more quickly. Intrinsic 

factor B – genealogy. Mother cells can pass on their gene expression status to their daughter 78 

cells9. We hypothesize that this form of epigenetic inheritance results in gene expression levels 

to be more similar between sister cells than between non-related cells in the group. This 80 

hypothesis thus assumes that gene expression noise is propagated through genealogical 

lineages. Intrinsic factor C – cell pole age. Upon binary cell division, each bacterium has an 82 

old and a new pole (Fig. S1). The old pole is inherited from the mother cell, while the new pole 

is formed upon division. During the next cell division, one of the daughter cells inherits the cell 84 

pole of the grandmother, while the other daughter cell inherits the pole of the mother. Like this, 

relative cell pole age can be tracked through time. We hypothesize that variation in cell pole 86 

age will translate into gene expression heterogeneity12. For instance, cellular functions might 
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change with age such that cells with older cell poles show different siderophore gene 88 

expression levels than cells with younger cell poles.   

 90 

Adaptive explanation A – cost-to-benefit optimization. Previous work revealed that the costs 

and benefits differ for pyoverdine and pyochelin19,27,28.  While pyoverdine has a higher affinity 92 

for iron than pyochelin (Ka: 1032 M−1 vs. 1018 M−2)29, it is more costly to make. We previously 

showed that a plastic dual siderophore investment strategy is most beneficial for P. 94 

aeruginosa, whereby the bacteria predominantly invest in pyoverdine under stringent iron 

limitation and switch to increased pyochelin investment under moderate iron limitation28. 96 

Assuming that cells can sense variation in iron availability in their micro-environment, we 

hypothesize that cells optimize their pyoverdine vs. pyochelin gene expression strategy 98 

depending on their spatial position in the colony. Adaptive explanation B – public goods 

production to help clonemates. Pyoverdine and pyochelin are secreted in the environment. 100 

They can deliver iron to other cells than the producer and are therefore considered public 

goods, accessible to other colony members30. Given this shared function, we hypothesize that 102 

cells with low individual fitness (i.e., cells with slow division rates, old cells) can indirectly 

increase group fitness via a disproportionally high siderophore investment to improve iron 104 

nutrition and growth of clonemates. 

 106 

Results 

Colony-level siderophore gene expression varies in response to iron limitation and time 108 

We exposed cells of P. aeruginosa PAO1 to either moderate iron limitation (casamino acids 

medium, CAA, characterized by naturally low iron content) or stringent iron limitation (CAA 110 

supplemented with 400μM of the synthetic iron chelator 2-2′-bipyridyl). We used a variant of 

P. aeruginosa PAO1 that featured a double gene expression reporter construct. Specifically, 112 

the reporter strain PAO1pvdA::mcherry–pchEF::gfp had the promotors of the pvdA gene 

(encoding a pyoverdine synthesis enzyme) and pchEF genes (encoding two pyochelin 114 
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synthesis enzymes) fused to mcherry and gfp genes, respectively. The reporter construct is 

stably integrated as a single copy into the chromosome19. 116 

 

In a first step, we conducted colony-level analysis to obtain an overview on the siderophore 118 

gene expression of P. aeruginosa in a spatially structured environment over time and in 

response to iron limitation (Fig. 1). As expected, we found that pyoverdine gene expression 120 

was significantly higher under stringent iron limitation than under moderate iron limitation (Fig 

1a+b, F1,43 = 42.24, p < 0.0001). Pyoverdine gene expression significantly declined over time 122 

in both media (Fig 1c, moderate iron limitation: t18 = -5.82, p < 0.0001; stringent iron limitation: 

t25 = -10.77, p < 0.0001). Similar patterns were observed for pyochelin gene expression, which 124 

was significantly higher under stringent versus moderate iron limitation (Fig 1d+e, F1,43 = 25.59, 

p < 0.0001). Pyochelin gene expression also significantly declined with time (Fig 1f, moderate 126 

iron limitation: t18 = -3.82, p = 0.0025; stringent iron limitation: t25 = -2.31, p = 0.0296) although 

the drop is less pronounced than for pyoverdine gene expression. 128 

 

We then asked whether pyoverdine and pyochelin gene expression are correlated at the 130 

individual cell level. For this analysis, we considered all time points during which colonies 

contained at least 16 cells because correlation coefficients varied stochastically between -1 132 

and +1 in very small colonies (Fig. 1g). We found that pyoverdine and pyochelin gene 

expression were positively correlated across cells within a colony (Fig 1h, moderate iron 134 

limitation: t18 = 10.14, p < 0.0001; stringent iron limitation: t25 = 17.50, p < 0.0001), whereby 

the positive association was significantly stronger under stringent iron limitation compared to 136 

moderate iron limitation (Fig. 1h, ANOVA: F1,43 = 20.75, p < 0.0001). The strength of the 

positive association significantly increased over time under stringent iron limitation (t25 = 2.92, 138 

p = 0.0145), but did not change under moderate iron limitation (t18 = 0.81, p = 0.4280) (Fig. 1i). 

 140 

In summary, our colony-level analyses confirm results from liquid-culture experiments19, 

showing that (i) P. aeruginosa cells respond to variation in iron limitation by adjusting 142 
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siderophore gene expression, and (ii) pyoverdine and pyochelin gene expression is positively 

correlated across cells, but less so under moderate iron limitation. 144 

 

Fig 1. Patterns of siderophore gene expression in growing colonies of P. aeruginosa in response 146 

to different levels of iron limitation. (a+d) Pyoverdine (blue) and pyochelin (red) gene expression per 

colony (mean across all cells) under moderate (CAA + 0μM bipyridyl, N = 19) and high iron limitation 148 

(CAA + 400μM bipyridyl, N = 26). Black lines indicate the average values across all colonies. (b+e) 
Average pyoverdine and pyochelin gene expression per colony (shown as individual dots). (c+f) 150 

Temporal change in pyoverdine and pyochelin gene expression, measured as the slope of the linear 

regression between time and gene expression within a colony. (g) Temporal patterns of gene expression 152 

correlations between pyoverdine and pyochelin (mean grey value) among cells within a colony. (h) 
Average gene expression correlation between pyoverdine and pyochelin across all time points with 154 

colony size ≥ 16 cells. (i) Temporal change in the gene expression correlation between pyoverdine and 

pyochelin, measured as the slope of the linear regression between time and pyoverdine and pyochelin 156 
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correlation coefficients per colony. Boxplots show the median and the interquartile range (IQR), while 

whiskers indicate minimum and maximum values. * p < 0.05, ** p < 0.01, *** p < 0.001. 158 

 

Spatial gradients of siderophore gene expression activities within colonies 160 

We hypothesized that gradients of iron availability exist within colonies, which will manifest in 

cells adjusting their siderophore gene expression depending on their spatial position within the 162 

colony. To test this hypothesis, we measured the Euclidean distance of each cell from the edge 

of the colony and correlated its siderophore gene expression with this distance (Fig. S2). We 164 

calculated the spatial gene expression correlation for each time point imaged and grouped the 

extracted values into four distinct classes of colony size (Fig 2a + b). 166 

 

Under moderate iron limitation, we found significant spatial gradients, whereby pyoverdine 168 

gene expression significantly increased in cells that were closer to the colony edge (Fig. 2b 

top panel, Table S1). The relationship held for all colony sizes, but the strength of the 170 

association declined in larger colonies (ANOVA: F3,447 = 6.26, p = 0.0004). We observed the 

opposite pattern for pyochelin, for which gene expression significantly declined towards the 172 

colony edge (Fig. 2b top panel, Table S2) with the association becoming stronger in larger 

colonies (ANOVA: F3,447 = 8.49, p < 0.0001). Spatial gradients were much weaker under 174 

stringent iron limitation. In this environment, cells closer to the center of the colony tend to 

invest more in both siderophores – pyoverdine (Fig 2b bottom panel) and pyochelin (Fig 2b 176 

bottom panel) – but the effects only became significant in larger colonies (Table S1+S2). 
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 178 

Fig 2. Spatial gradients in gene expression arise under moderate iron limitation. (a) Snapshots of 

a representative colony over time under moderate iron limitation (CAA + 0μM bipyridyl). Top row shows 180 

the overlay of phase contrast, GFP (pyochelin, blue) and mCherry (pyoverdine, red) channels. The 
green line indicates the edge of the colony and the yellow line the distance to the edge for an individual 182 

cell. Middle and bottom rows show segmented cells with heatmap colors indicating pyoverdine (blue) 

and pyochelin (red) gene expression levels, respectively. (b) Spatial correlation coefficients between 184 

pyoverdine (blue) or pyochelin (red) gene expression and the distance of cells from the colony edge 

calculated per colony and timepoint and grouped by colony size category. Boxplots show the median 186 
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and the interquartile range (IQR), while whiskers indicate minimum and maximum values. Asterisks 

indicate significant differences from the dashed line. * p < 0.05, ** p < 0.01, *** p < 0.001. 188 

 

Cell lifespan does not correlate with siderophore gene expression 190 

We hypothesized that variation in the lifespan of cells (defined as time between two cell 

divisions) could be an intrinsic factor contributing to variation in siderophore gene expression. 192 

To test our hypothesis, we first created lineage trees for each colony, where nodes represent 

individual cells and branch length reflect their lifespans (Fig 3a shows a representative 194 

example). We then calculated the average siderophore gene expression per branch length 

and correlated this metric to the lifespan of the cell.  196 

 

We indeed found that cell life span correlated positively with both pyoverdine and pyochelin 198 

gene expression (Fig. 3b shows a representative example). However, the lineage trees also 

revealed that cell division rates accelerated over time, such that the first generations of cells 200 

have longer life spans than the later generations of cells (Fig. 3a). To control for this 

confounding factor, we calculated the partial correlations between lifespans of cells and gene 202 

expression, whilst controlling for generation identity. We found no longer any positive 

associations, neither between pyoverdine gene expression and lifespan (moderate iron 204 

limitation, t18 = -1.85, p = 0.0807, stringent iron limitation, t25 = -0.65, p = 0.5200), nor between 

pyochelin gene expression and lifespan (under moderate iron limitation, the association is 206 

negative, t18 = -3.20, p = 0.0049, stringent iron limitation, t25 = 1.37, p = 0.1830). Thus, variation 

in cellular lifespan does not seem to contribute to siderophore gene expression heterogeneity. 208 
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 210 

Fig 3. No positive associations between lifespans of cells and siderophore gene expression. (a) 
Lineage tree of a colony showing pyoverdine gene expression under stringent iron limitation (CAA + 212 

400μM bipyridyl) used as a representative example. Branch length indicates the lifespan of a cell and 

color indicates the intensity of average pyoverdine gene expression of the respective cell during its 214 

lifespan.  (b) Positive associations between the lifespans of cells and their siderophore gene expression 

(pyoverdine =blue, pyochelin=red) when not controlling for cell generation as a confounding factor. The 216 

panel shows data from the lineage tree in (a).  The lines indicate the smoothed conditional means. (c+d) 
Partial correlation coefficients between the lifespan of cells and their siderophore gene expression, 218 

controlling for generation identity under moderate (CAA + 0μM bipyridyl) and stringent (CAA + 400μM 
bipyridyl) iron limitation. Each dot represents the partial correlation coefficient of a colony (excluding the 220 

cells on the tip of the trees, which did not divide during the duration of the assay). Boxplots show the 

median and the interquartile range (IQR), while whiskers indicate minimum and maximum values. 222 

Asterisks indicate significant differences from the dashed line. ** p < 0.01. 

 224 

Sister cells have more similar siderophore gene expression patterns than neighbors 

We hypothesized that epigenetic inheritance results in daughter cells showing more similar 226 

gene expression levels than non-related cells. When testing this hypothesis, it is important to 

consider that sister cells are often spatially next to one another after cell division on structured 228 
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surfaces. Thus, sisters likely experience similar micro-environmental conditions, such that 

gene expression might be similar because they share the same environment and not because 230 

of shared genealogy. To disentangle environmental from genealogical effects, we used our 

lineage trees to identify sister cells and their closest neighbors originating from a different 232 

mother cell. On average, we analyzed 138 sister-sister vs. sister-neighbor pairs per colony and 

found that sister cells consistently showed more similar gene expression levels than unrelated 234 

neighbors (Fig. 4). Specifically, gene expression differences between sister cells were 

significantly smaller than gene expression differences between closest neighbors for both 236 

pyoverdine (Fig. 4a, F1,86 = 37.44, p< 0.0001) and pyochelin (Fig. 4b, F1,86 = 28.06, p < 0.0001) 

gene expression. The gene expression differences between sister cells and closest neighbors 238 

were similar between the two levels of iron limitation (pyoverdine: F1,86 = 0.023, p = 0.879; 

pyochelin: F1,86 = 0.134, p = 0.715). Hence, genealogy is an important determinant of 240 

siderophore gene expression heterogeneity. 

 242 

Given that there are genealogical differences in siderophore gene expression among cell 

lineages within a colony, we asked whether siderophore over-expression or under-expression, 244 

relative to the colony average, is associated with fitness consequences. If siderophores 

primarily benefit the producer, one would expect cell lineages that over-produce siderophores 246 

to have more offspring. By contrast, if siderophores are evenly shared within the colony one 

would expect cell lineages that under-produce siderophores to have more offspring, because 248 

they save production costs whilst reaping equal benefits. To differentiate between the two 

scenarios, we split each colony into four family lineages (after the second cell division) and 250 

related the number of offspring in each family lineage to its average siderophore gene 

expression level. We found significant negative correlations between the two metrics under 252 

moderate and stringent iron limitations for pyoverdine (Fig. 4c) and pyochelin (Fig. 4d), lending 

support to the second scenario and thus a shared function of siderophores. 254 
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 256 

 

Fig 4. Sisters have more similar siderophore gene expression levels than closest neighbors. 258 
Comparison of gene expression differences between sister cells and closest neighbors for pyoverdine 

(a, blue, PVD) and pyochelin (b, red, PCH) gene expression. The difference in gene expression between 260 

all sister cell pairs and closest neighbor pairs (excluding sisters) was calculated. Data points represent 

mean differences per colony, for neighbors or sisters. Boxplots show the median and the interquartile 262 

range (IQR), while whiskers indicate minimum and maximum values, excluding outliers. Four outlier 

values (all from the same colony under stringent iron limitation, one each in the four categories in a) are 264 

not shown but were included in the statistical analyses. (c) Correlations between the number of offspring 
in a family branch and its average pyoverdine gene expression level. (d) Correlations between the 266 

number of offspring in a family branch and its average pyochelin gene expression level. For (c) and (d), 

each colony was split into four family branches and the fitness (number of cells) of each branch was 268 

calculated relative to the average within the colony, which was then contrasted against the average 

siderophore gene expression within the family branch. R-values indicate Pearson’s correlation 270 

coefficients. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 272 
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Cell pole age does not correlate with siderophore gene expression 

We hypothesized that variation in cell pole age could translate into gene expression 274 

heterogeneity across cells. To test this hypothesis, we used the DeLTA tracking algorithm 31 

to infer cell pole age from the previously constructed lineage trees across three generations 276 

(Fig. S1). We then tested whether siderophore gene expression is associated with cell pole 

age. We found no support for our hypothesis, as there was no association between cell pole 278 

age and siderophore gene expression, neither for pyoverdine (Fig. 5a; F5,258 = 0.186, p = 

0.9676) nor for pyochelin (Fig. 5b; F5,258 = 0.828, p = 0.5304). 280 

 

  282 

Fig 5. Cell pole age does not correlate with siderophore gene expression. (a) Pyoverdine and (b) 

pyochelin gene expression in response to cell pole age under moderate (CAA + 0μM bipyridyl) and 284 

stringent iron limitation (CAA + 400μM bipyridyl). Cells are categorized based on the cell pole they 

inherited from their mother (n or o, first letter), as well as the pole their mothers (nn or oo, second letter) 286 

and grandmothers (nnn or ooo, third letter) received. The analysis only considered ‘pure’ cousins (nn 
and oo) and second cousins (nnn and ooo), whereas cells with mixed cell poll age histories (e.g., nno) 288 

were not included. Individual dots show the mean gene expression of the corresponding pole age 
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category per colony. Boxplots show the median and the interquartile range (IQR), while whiskers 290 

indicate minimum and maximum values. 

 292 

 

Discussion  294 

We set out to identify extrinsic and intrinsic sources of cellular heterogeneity in the expression 

of pyoverdine and pyochelin synthesis genes in the bacterium Pseudomonas aeruginosa and 296 

relate them to adaptive (evolutionary) functions. The siderophores pyoverdine and pyochelin 

are secreted in the environment and shared as public good between cells30, meaning that 298 

heterogeneity in siderophore investment can have fitness consequences for the producing 

individual and the other group members. When grown on surfaces, we found that the spatial 300 

positioning of cells within the colony and cell lineage genealogy were major sources of cellular 

heterogeneity. By contrast, cellular lifespan and cell pole age had no significant effect on 302 

heterogeneity. At the functional level, our results suggest that bacteria optimize iron acquisition 

strategies depending on their location in the colony. Optimization was particularly apparent 304 

under moderate iron limitation, under which edge cells predominantly invested in the potent 

yet expensive pyoverdine, while interior cells specialized on the production of the cheaper, 306 

less potent pyochelin. We further observed negative correlations between siderophore gene 

expression of cell lineages within colonies and their fitness, suggesting that siderophore-308 

overproducing cell lineages boost the fitness of siderophore-underproducing lineages through 

siderophore sharing. Altogether, our study shows that a combination of single-cell time-lapse 310 

microscopy together with quantitative image analysis is a powerful tool to reveal mechanistic 

and adaptive causes of cellular heterogeneity in clonal bacterial populations.   312 

 

We observed spatial gradients of siderophore gene expression activities from the center to the 314 

edge of colonies (Fig. 2). Gradients were more prominent in larger colonies and predominantly 

occurred under moderate iron limitation. At the mechanistic level, these results indicate that 316 

bacteria can sense small differences in iron availabilities. Indeed, P. aeruginosa can adjust 

siderophore production in a remarkably fine-tuned manner. Upon the depletion of intra-cellular 318 
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iron stocks, Fur (ferric uptake regulator) loses its inhibitory effect, resulting in the basal 

expression of siderophore synthesis enzymes21,32. Pyoverdine and pyochelin are both 320 

produced via non-ribosomal peptide synthesis and are actively secreted via specific 

exporters21,33. Production levels are then fine-tuned based on incoming iron-loaded 322 

siderophores triggering positive feedback loops. For pyoverdine, the signaling cascade 

involves an interplay between the sigma factor PvdS and its antagonist FpvR23,34. For 324 

pyochelin, signaling is based on a direct interaction between ferri-pyochelin and the 

transcriptional regulator PchR24,35. A fine-tuned response is achieved by the relative strength 326 

of FUR-mediated repression and signaling-mediated activation. While pyoverdine and 

pyochelin are co-regulated overall19, preferential pyochelin production can occur under 328 

moderate iron limitation because FUR repression seems to be more relaxed for this 

siderophore28. Conversely, preferential pyoverdine production can occur under stringent iron 330 

limitation, most likely because pyoverdine inhibits pyochelin-mediated signaling as it has 

stronger affinity for iron19,27,28. At the evolutionary level, our results suggest that bacteria 332 

optimize their iron acquisition strategy under moderate iron limitation, depending on their 

position in the colony as captured by our adaptive explanation A. In larger colonies, center 334 

cells might predominantly recycle the pyoverdine that has already been produced by earlier 

generations and thus switch to the production of the cheaper pyochelin. By contrast, edge cell 336 

might still experience a shortage of siderophores and iron, and therefore predominantly invest 

in the more potent pyoverdine. Compatible with previous work, this optimization only occurs 338 

under moderate iron limitation, conditions under which pyochelin becomes a potent 

siderophore28. 340 

 

Besides spatial effects, we found that epigenetic inheritance is a major factor explaining 342 

cellular heterogeneity in siderophore gene expression. Daughter cells inherit the gene 

expression status from their mother and differences between families are propagated through 344 

the lineage tree. Similar observations were made for the expression of several genes in 

Escherichia coli9. While patterns of epigenetic inheritance are consistent across genes and 346 
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levels of iron limitation (Fig. 4), the genealogical effects do not explain how variation in gene 

expression across cell lineages arises in the first place. One option is that random noise in 348 

gene expression leads to variation among the first few founder cells in a colony and this 

variation is then passed on to all the subsequent lineage members. However, the fact that 350 

random noise is expected to dilute rather than propagate genealogical differences speaks 

against this hypothesis. Alternatively, we have previously shown that siderophore gene 352 

expression heterogeneity is positively linked to the metabolic activity of cells19. Accordingly, 

cells could therefore differ in their vigour7, whereby cells with relatively low vigor invest less in 354 

siderophores than cells with relatively high vigor, and the vigor status is inherited from mother 

to daughter cells. Based on our data, we consider this as a likely explanation that would need 356 

to be experimentally substantiated in the future.  

 358 

Important to note is that pyoverdine and pyochelin are diffusible molecules that serve as 

signals when taken up by cells in their iron-bound forms23,24. This means that siderophores 360 

produced by one cell can induce siderophore production in a neighboring cell. In a spatial 

setting, siderophore diffusion and signaling are expected to affect cellular heterogeneity. For 362 

example, molecule diffusion is limited in structured environments17,36,37 such that siderophore-

mediated signaling should primarily occur between neighboring cells. Local signaling should 364 

strengthen spatial correlations. This is indeed supported by our data showing that spatial 

correlations predominantly arise in larger colonies (Fig. 2b), in which signaling is expected to 366 

be more intense and local. These spatial effects can also be seen at a qualitative (visual) level 

in Fig. 2a, where we observe patches of cells with above- and below-average gene expression, 368 

patterns that can be induced by high and low local signaling, respectively. In contrast, local 

siderophore signaling is expected to weaken the genealogical effects (Fig. 4a+b) since 370 

diffusing siderophores should induce siderophore production in both sister and unrelated 

neighbors.  372 
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We found no support for the adaptive explanation B, namely that cells with low individual fitness 374 

can indirectly increase group fitness via disproportionally high siderophore investment levels. 

There was no support for this hypothesis when relating cell life span to siderophore gene 376 

expression (Fig. 3). Cells differ in their lifespan, but slower dividing cells did not have higher 

siderophore investment than faster dividing cells. There was also no support for our hypothesis 378 

when focusing on cell pole age, as this metric showed no association with siderophore gene 

expression levels (Fig. 5). However, we unexpectedly observed a link between epigenetic 380 

inheritance and fitness, whereby cell lineages with below-average siderophore investment 

levels had above-average cell division rates (Fig. 4). Building on our vigor model, this result 382 

indicates that cell lineages with high vigor produce high amounts of siderophore to boost not 

only their own fitness but also the fitness of low-vigor cell lineages trough the cooperative 384 

sharing of siderophores.  

 386 

In conclusion, we conducted simple time-lapse microscopy experiments to track gene 

expression of individual bacterial cells and cell lineages in growing colonies on surfaces over 388 

time. Together with automated image analysis and cell-tracking software, we show that an 

enormous amount of information can be extracted from such simple experiments. The 390 

approach chosen in our paper does not only allow to test hypotheses regarding the sources of 

cellular gene expression heterogeneity but also to examine potential fitness consequences. 392 

Taken together, we advocate that future bacterial single-cell studies should have a strong 

focus on fitness aspects to examine to what extent gene expression heterogeneity reflects 394 

random noise as opposed to exerting an adaptive function. 

  396 

Materials and methods 

Bacterial strains 398 

For all our experiments, we used the standard laboratory strain P. aeruginosa PAO1, which 

produces the siderophores pyochelin and pyoverdine. To measure gene expression, we used 400 

PAO1 strains with fluorescent gene reporter constructs chromosomally integrated as single 
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copies, at the attTn7 site of the wild type using the mini-Tn7 system38 and our customized 402 

protocols39. To simultaneously track the expression of two genes, we used a double gene 

expression reporter: PAO1pvdA::mcherry–pchEF::gfp, in which the promoter for the 404 

pyoverdine biosynthetic gene pvdA is fused to the red fluorescent gene mcherry and the 

pyochelin biosynthetic genes pchE and pchF (forming an operon) are fused to the green 406 

fluorescent gene gfpmut3. For simplicity of nomenclature the gfpmut3 is referred to as gfp. The 

genetic scaffold of the double gene reporter construct, and its construction is described in detail 408 

elsewhere19. In this earlier study, we have also demonstrated that gene expression levels 

correlate well with the actual amount of siderophores produced. 410 

 

Growth conditions 412 

Prior to experiments, we prepared overnight cultures from -80 ºC stocks, in 8ml Lysogeny broth 

(LB) in 50ml tubes, incubated at 37ºC, shaken at 220 rpm for approximately 18 hours. Cells 414 

were then harvested by centrifugation (5000 rpm for 3 minutes), subsequently washed in 0.8% 

saline, and adjusted to OD600 = 0.001 (optical density at 600nm). To stimulate a substrate 416 

attached mode of growth, harvested cells were then seeded onto 1% agarose pads on a 

microscopy slide. The medium of the pad consisted of CAA (5g casamino acids, 1.18g 418 

K2HPO4*3H2O, 0.25g MgSO4*7H2O, per litre), buffered at physiological pH by the addition of 

25mM HEPES. To induce a gradient of iron limitation, we used either plain CAA or CAA 420 

supplemented with 400µM of the synthetic iron chelator 2-2’-bipyridyl. All chemicals were 

purchased from Sigma Aldrich (Buchs SG, Switzerland). The gene expression of individuals 422 

within growing colonies was quantified using a widefield fluorescence microscope (Olympus 

ScanR), featuring an incubation chamber where cells were incubated at 37 ºC for 5 hours.  424 

 

Preparation of microscope slides 426 

To prepare agarose pads on microscopy slides, we adapted a method previously described 

elsewhere19,40,41. Standard microscope slides (76mm x 26mm) were sterilized with 70% 428 

ethanol. We used ‘Gene Frames’ (Thermo Fisher Scientific, Vernier, Switzerland) to prepare 
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agarose pads on which bacteria were seeded. Each frame features a single chamber (17 mm 430 

x 28 mm) of 25 mm thickness. The frames are coated with adhesives on both sides so that 

they stick to the microscope slide and the coverslip. The sealed chamber is airtight, which 432 

prevents pad deformation and evaporation during experimentation. 

To prepare agarose pads, we heated 40 ml of plain CAA medium with 1% agarose in 434 

a microwave. The agarose-CAA solution was first cooled to approximately 50ºC. Then 25mM 

HEPES buffer along with the required concentration of bipyridyl was added. We pipetted 700 436 

µl of the solution into the gene frame and immediately covered it with a sterile coverslip. The 

coverslip was gently pressed to let superfluous medium escape and solidify for around 20 438 

minutes. After solidification, we removed the coverslip (by carefully sliding it sideways) and 

divided the agarose pad into four smaller pads of roughly equal size with a sterile scalpel. We 440 

introduced channels between pads, that served as oxygen reservoirs for the growing colonies. 

To ensure that colonies started to grow from a single cell, we put 1 µl of diluted bacteria (OD600 442 

= 0.001) on each agarose pad. Upon the addition of bacteria, we let the agarose pads air-dry 

for 2 minutes, and then sealed them with a new sterile coverslip. 444 

 

Microscope set-up and time-lapse imaging 446 

Following the preparation steps described above, we immediately started time-lapse imaging 

of the bacteria at the Center for Microscopy and Image Analysis of the University of Zurich 448 

(ZMB) using an inverted widefield Olympus ScanR HCS microscope, featuring an incubation 

chamber. The microscope has an automatic movable stage, capable of imaging multiple fields 450 

of view repeatedly and a motorized Z-drive, which enables autofocusing of the objects. The 

microscope is controlled by the OLYMPUS cellSens Dimensions software. Images were 452 

captured with a PLAPON 60x phase oil immersion objective (NA=1.42, WD=0.15mm) and a 

Hamamatsu ORCA_FLASH 4.0V2, high sensitive digital monochrome scientific cooled 454 

sCMOS camera (resolution: 2048x2048 pixels, 16-bit).  

For time-lapse microscopy, we first imaged the growing colonies with phase contrast 456 

(exposure time 56.4 ms). For fluorescence imaging, we used a fast emission filter wheel, 
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featuring a FITC SEM filter for GFP (exposure time 50 ms, excitation=470±24 nm, 458 

emission=515±30nm, DM=485) and a TRITC SEM filter for mCherry (exposure time 50 ms, 

excitation=550±15nm, emission=595±40nm, DM=558). Imaging with phase contrast and the 460 

respective fluorescent channels was done sequentially for every time point and field of view. 

The time-lapse image recording was performed at 37 ºC for 5 hours with images taken every 462 

10 minutes. We started the time-lapse image recording with a field of view having a maximum 

of three separate cells. 464 

 

Image processing, single cell segmentation and tracking 466 

We used FIJI42, Ilastik43 and DeLTA31 to (i) process images, (ii) segment single cells, (iii) track 

lineages and (iv) measure fluorescence in our time-lapse recordings. We conducted a 468 

preliminary quality check by inspecting all time-lapses in FIJI. We removed recordings that 

were blurry, had excessive drift, and cases in which cells began to grow in double layers. 470 

Recordings of two positions without cells were used to create average blank images for the 

two fluorescence channels. These average blank images were then subtracted from all 472 

fluorescence images to correct for microscope vignetting across the fields of view. Thereafter, 

we performed a drift correction of our time-lapse recordings (https: 474 

//github.com/fiji/Correct_3D_Drift) and exported the images for segmentation into Ilastik. 

We segmented the single cells based on the phase contrast images with the pixel and 476 

object classification workflow in Ilastik version 1.3.243: The classifier was trained with a random 

sample of 12 images from our collection. Subsequently, the bulk of images were segmented 478 

in batch mode. Based on the Ilastik segmentations, we create regions of interest (ROI) for 

individual cells using FIJI. To correct for background fluorescence, we measured the mean 480 

fluorescence intensity outside the ROIs for each image and subtracted the corresponding 

value from the image. 482 

We used DeLTA, a segmentation and tracking pipeline based on deep convolutional 

neural networks. We used this platform for cell identity and lineage tracking for all our time-484 

lapse recordings. The workflow also involves segmentation, which allowed us to compare 
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segmentation results from DeLTA and Ilastik. We found that segmentation with DeLTA leads 486 

to slightly smaller cells, compared to Ilastik segmentation (Fig. S3a+b). To validate automated 

cell tracking, we manually tracked cell lineages for eight colonies using the segmentation from 488 

DeLTA. We found that tracking accuracy decreased at later time points, but cell and division 

tracking accuracy were still ≥ 95% for seven out of eight and five out of eight colonies, 490 

respectively (Tab. S3). 

 492 

Single-cell measurements and data analysis  

We extracted information on each cell’s position, size, and fluorescence intensity in the two 494 

fluorescent channels (GFP and mCherry) with FIJI. The subsequent analyses were conducted 

using R (4.3.0). The single cell data allowed us to determine the number of cells present at 496 

each timepoint of a recording. For positions where the time-lapse recording started with one 

single cell, the number of cells at each timepoint gave us the colony size over time. In positions 498 

that started with multiple single cells scattered over the field of view, we grouped cells into 

individual colonies with a hierarchical cluster analysis of the distance between cells. To 500 

quantify siderophore gene expression, we generally used the integrated density of the 

fluorescence intensity. There was one exception: we used the mean fluorescence intensity 502 

when analyzing expression correlations between the two siderophore genes. This is because 

the integrated density correlates with cell size, such that positive correlations necessarily arise 504 

when there is variation in cell size. We applied a log10 transformation to both types of 

fluorescence intensity values.  506 

For colony-level analysis, we calculated the average siderophore gene expression 

intensity across cells within a colony per timepoint. These values were then regressed over 508 

time to test whether average siderophore gene expression changes over time (positive or 

negative slope). We further analyzed correlations between the expression of the two 510 

siderophore genes, including all colonies with at least 16 cells or larger, and assessed whether 

the correlations change over time. 512 
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For single-cell analyses, we determined the position of each cell within a colony by the 

distance of a cell to the edge of the colony. For each time-point, we identified the edge of the 514 

colony by computing the α-convex hull for the colony with an alpha value of 30 pixels, which 

corresponds approximately to the length of a cell. This approach allowed us to identify the cells 516 

that were on the edge of a colony. Connecting the centers of these cells gave us the outer 

contour of a colony. Subsequently, we calculated the Euclidean distance between each cell’s 518 

centre and its distance to the nearest edge of the colony. For each colony, we then calculated 

the spatial correlation between siderophore gene expression and distance to the edge across 520 

cells per timepoint. For statistical comparisons, we grouped the colonies into four size 

categories ([16,31], [32,63], [51,127], [128,256]), excluding colonies with less than 16 or more 522 

than 256 cells. 

We used the results from the DeLTA pipeline for three different analyses involving cell 524 

lineage tracking. First, we calculated the lifespan of each cell, defined as the number of 

timepoints between two consecutive cell divisions. This metric was then correlated with the 526 

average siderophore gene expression intensity over the lifespan of cells. Given that lifespans 

decreased in later generations, we conducted partial correlation analyses, controlling for the 528 

generation number a cell belongs to. Second, we identified a sister and a closest neighbor cell 

for each cell in a colony. Sister cell pairs could be directly derived from the lineage tree. To 530 

identify closest neighbors, we first calculated the average position (coordinates) of cells over 

their lifespans. We then determined closest neighbors as pairs of cells with the shortest 532 

distance between their average positions that were born at most one timepoint apart, and that 

were not sisters. This analysis was conducted for all colonies with four and more cells. To 534 

avoid double counting, the analysis was restricted to only one cell within sister pairs. Third, we 

tracked the cell pole age for each cell across three generations. Upon cell division, each 536 

daughter cell inherits an old pole from its mother and forms a new pole (Fig. S1). DeLTA 

records pole age so that cells can be classified as “n” (new) or “o” (old) pole cells considering 538 

the past cell division, and as “nn” or “oo” and “nnn” or “ooo” cells when further considering 
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division events of their mothers and grandmothers, respectively. For simplicity reasons, we did 540 

not include cells with mixed cell poll age histories.  

 542 

Statistical analysis 

We used general linear models for statistical analysis in R 4.3.0. Prior to analysis, we used the 544 

Shapiro-Wilk test to confirm that model residuals are normally distributed. For colony-level 

analysis (Fig. 1), we used analysis of variance (ANOVA) models to assess whether pyoverdine 546 

and pyochelin gene expression and the correlation between the two vary in response to iron 

limitation. We further used two-sided one-sample t-tests to test for significant temporal 548 

changes of these three variables (i.e. correlations coefficients being different from zero). At the 

single-cell level, we used two-way ANOVAs to analyze whether spatial correlation of 550 

siderophore gene expression differ in response to colony size and iron limitation (Fig. 2). 

Subsequently we used two-sided one-sample t-tests to determine whether spatial correlation 552 

coefficients across colonies are significantly different from zero. Reported P-values were 

adjusted for multiple testing using the Holm-Bonferroni method. To analyze whether cell 554 

lifespan relates to pyoverdine and pyochelin gene expression, we calculated the partial 

correlation coefficients across cells separately for each colony, whilst controlling for the 556 

generation number each cell belongs to (Fig. 3). Subsequently, we used two-sided one-sample 

t-tests to test whether the partial correlation coefficients differ from zero. We used two-way 558 

ANOVAs to test whether siderophore gene expression is more similar between sister cells than 

between unrelated neighbors and whether differences depend on the level of iron limitation. 560 

To test if there is an association between the average siderophore gene expression and the 

number of offspring in a family branch we calculated the Pearson’s correlation coefficient. To 562 

analyse whether cell pole age influences siderophore gene expression, we used two-way 

ANOVAs with pole age category and iron limitation as fixed factors (Fig. 5). 564 
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