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Abstract

Axolotls are uniquely able to completely regenerate the spinal cord after amputation.
The underlying governing mechanisms of this regenerative response have not yet been fully
elucidated. We previously found that spinal cord regeneration is mainly driven by cell cy-
cle acceleration of ependymal cells, recruited by a hypothetical signal propagating from
the injury. However, the nature of the signal and its propagation remain unknown. In
this theoretical study, we investigated whether the regeneration-inducing signal can follow
a reaction-diffusion process. We developed a computational model, validated it with exper-
imental data and showed that the signal dynamics can be understood in terms of reaction-
diffusion mechanism. By developing a theory of the regenerating outgrowth in the limit of
fast reaction-diffusion, we demonstrate that control of regenerative response solely relies on
cell-to-signal sensitivity and the signal reaction-diffusion characteristic length. This study
lays foundations for further identification of the signal controlling regeneration of the spinal
cord.

1 Introduction

In contrast to most vertebrates, salamanders are capable of remarkable regeneration traits. Al-
though more than 250 years have passed since the original discovery of salamander tail regenera-
tion after amputation by Spallanzani', the governing mechanisms underlying these unparalleled
regeneration capabilities have not yet been completely elucidated. The axolotl (Ambystoma
mezicanum) is a paedomorphic salamander which can resolve severe and extreme injuries of the
spinal cord throughout complete and faithful regeneration”*.

Tail amputation in the axolotl triggers the reactivation of a developmental-like program in the
ependymal cells, neural stem cells lining in the central canal of the spinal cord”. Although cell
influx, cell rearrangements, and re-entrance to the cell cycle from quiescence can be observed,
the main driver of the spinal cord outgrowth is the acceleration of the cell cycle’. Indeed, during
regeneration, ependymal cells anterior to the amputation plane shorten their cycle length three
times”. We previously identified a high-proliferation zone emerging 4 days after amputation
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within the 800 um anterior to the amputation plane that shifts posteriorly during spinal cord
regeneration”. This particular spatiotemporal pattern was quantified with a recruitment limit
curve separating the high-proliferation from the low-proliferation zones”. We recently developed
the first 1D cell-based computational model of the axolotl spinal cord in which each ependymal
cell was simulated with an internal clock portraying its age/position along its cell cycle’. The
model assumed that tail amputation triggers a hypothetical signal that propagates anteriorly with
constant velocity for a certain time along the spinal cord, supposedly one-dimensional, recruiting
ependymal cells when the signal concentration is higher than zero. By adapting the Fluorescent
Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI), we were
able to visualize cell cycles in vivo, qualitatively reproducing the model predicted distribution
of ependymal cells in coordinates of time, space and cell cycle’. Nevertheless, the signal and its
nature remain to be elucidated.

Numerous signalling pathways control morphogenetic processes whose dynamics operate under
a reaction-diffusion mechanism during development®”'%'" and regeneration'? '’
known example consists of one morphogenetic signal propagating through the tissue while being
subjected to an enzymatic degradation or cellular uptake / elimination'*. This last process con-
stitutes the “reaction” responsible for the consumption of the signal and the consequent reduction
in signal concentration. In this study, we aim to determine whether this mechanism could explain
the regenerative response observed in the axolotl spinal cord by following a modelling approach
combining computational modelling with theory.

To that aim, we here propose a hybrid multi-scale cell-based computational model of the axolotl
spinal cord combining the ependymal cell layer with a signal that follows a reaction-diffusion
scheme while orchestrating the regenerative response by accelerating the ependymal cell cycle.
The model successfully fits the aforementioned recruitment limit curve” and correctly predicts the
spinal cord outgrowth”, providing a first estimate of the diffusion coefficient and half-life of the
hypothetical regeneration-inducing signal. By using a subsequent rigorous theoretical approach,
we prove that the spinal cord growth emerging during regeneration in the axolotl can be controlled
by the reaction-diffusion characteristic length and the ependymal cell-to-signal sensitivity in
the regime of fast diffusion and reaction. Finally, we further corroborated the estimations of
signal diffusion coefficient and half-life by comparing the computational model simulations with
the experimental spatiotemporal distribution of cells in G1/G0 and S/G2 cells extracted from
AxFUCCI axolotl spinal cords during regeneration. Ultimately, this study provides insights into
the biophysical properties of signalling processes responsible for successful axolotl spinal cord
regeneration.

. A very well-

2 Results

2.1 Hybrid multi-scale model of the ependymal tube controlled by a reaction-
diffusion signal qualitatively reproduces spinal cord regeneration in the
axolotl

To assess whether spinal cord regeneration in the axolotl can be explained by a potential signaling
mechanism operating under a reaction-diffusion scheme, we developed a computational model
of the regenerating spinal cord where the ependymal cell division rate is under the control of a
generic signal. Specifically, we proposed a multi-scale and hybrid model: while the ependymal
cells are featured as non-overlapping and proliferating rigid discs in a “cellular” scale, the density
of the signal controlling the ependymal cells is represented by a continuous field in the “signaling”
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scale (Fig. 1 A, B).

We assumed a 2D domain for both scales, where the two spatial dimensions correspond to the
Anterior-Posterior (AP) axis and the perpendicular direction given by the arc length along the
circumference of the central canal apical surface (Circumference axis, Fig. 1. A). We modeled the
reaction-diffusion mechanism for the signal by assuming that the signal density ps(z,t) linearly
degrades with a degradation rate & (which is inversely proportional to the half-life 7) and diffuses
with diffusion coefficient D in the domain occupied by the ependymal cells. Mathematically, this
can be summarized as follows:

dips = DAps — kps, (1)

where the signal density is assumed equal to a non-zero constant at the posterior front of the
spinal cord, at any given time ¢, modeling the secretory signalling centre of the wound epider-
mis (see details of the boundary conditions for both scales in STAR methods section). Note
that although reaction-diffusion models are typically composed of two or more species capable of
Turing patterns'”'%1%1% "Eq. (1) describes the simplest reaction-diffusion equation one can con-
sider, in which the signal diffuses while undergoing homogeneous degradation within the tissue.
We numerically solved the signaling dynamics by using the Smoothed-Particle Hydrodynamics
(SPH) method'” which approximates the density function pg(z,t) by a cloud of N "signalling"
particles of equal and constant masses, convected along their regularized concentration gradient
following the diffusion velocity method”’ (see justification of this method as well as details on
the numerical implementation in STAR method section).

Based on our previous study’, we assumed that in the absence of the signal, the ependymal
cells progress along their cell cycle with a certain pace (essentially, the cell cycle length is sup-
posed lognormally distributed and the initial position of the cells within the cell cycle follows
an exponential distribution; for more details of the stochastic component of the model, see’).
Cells exposure to a high signal density leads to cell recruitment, manifested by G1 and S phase
shortening and, ultimately, reduction of cell cycle length. In contrast to our previous article, we
now assume that the recruitment sensitivity Sg is finite (defined as the inverse of the minimal
signal density required to recruit an ependymal cell, p™" Fig. 1 C). We arbitrarily considered
that cells are not exposed to the signal if there are less than two signalling particles around them.
We supposed that cell recruitment is irreversible and inherited by the daughter cells. Thus, in
our model, spinal cord growth during regeneration is driven by ependymal cell proliferation, in
turn controlled by the signal diffusing from the spinal cord regenerating tip towards the anterior
side while irreversibly recruiting new ependymal cells. We first validated the cellular scale of the
model by by comparing our model results with a previous 1D model?’ ( Supplementary section
2.1, Fig. S1 C). Next, we validated the numerical scheme of the reaction-diffusion process gov-
erning the signaling scale of our model by comparing the 1D density profile of the signal with
the analytical solution of the reaction-diffusion model in a finite domain (without ependymal
cell proliferation), derived following our method previously reported”’ ( Supplementary section
2.2, Supplementary Fig. S1 D,EF). After both scales of the model were validated, we evaluated
whether the full model could generate a dynamical behavior consistent with the regenerative
response observed in the axolotl spinal cord after amputation. Our simulations showed that
the spatial distribution of the signal is shifted posteriorly as the spinal cord expands, result
qualitatively equivalent to that previously reported” (Fig. 2 A, B, Supplementary Movie 1).
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2.2 Axolotl spinal cord regeneration can be quantitatively explained by a
signal operating under a reaction-diffusion regime

By exploring the model parameters space we observed that the evolution of spinal cord outgrowth
is controlled by the interplay between the diffusion coefficient D and the degradation constant k
(Fig. 2 C, C’ and C”, Supplementary Movie 2). Indeed, decreasing the degradation constant (for
a fixed diffusion coefficient value) is followed by an increase of the tissue outgrowth (compare
Fig. 2 C and C’). On the contrary, decreasing the diffusion speed (while fixing the degradation)
led to a remarkable decrease of the tissue outgrowth (compare Fig. 2 C’ and C”). Thus, there
is an optimal balance between the diffusion of the signal (that governs the speed of the signal
spreading and therefore the recruitment of new cells) and its degradation constant (that prevents
the signal to travel too far during its half-life) that shapes the simulated regenerative response.

To gain a quantitative understanding of the regenerative response of the axolotl spinal cord,
we fully parametrized the model. To that aim, we fixed the model parameters controlling the cell
cycle paces and cellular geometry by using our previously reported experimental data obtained
from ependymal cells in regenerating and uninjured spinal cords’ (see Table S1). Since the
signal here proposed is hypothetical, we considered D, k and Sg as free parameters and explored
the resulting model parameters space.

To assess if the model could explain the regenerative response of the axolotl spinal cord and
to simultaneously estimate the free parameters, we fitted the model to the previously reported
experimental recruitment limit, defined as the spatial position (in the AP axis) separating the
(posterior) high-proliferation region from the (anterior) low-proliferation region® (for details of
the fitting procedure, see STAR methods). To this aim, we tracked the AP-axis position of
the most anteriorly recruited cell in our simulations, denoted as £(t), and referred to it as the
theoretical recruitment limit". The model-predicted recruitment limit successfully reproduced
the experimental switchpoint in a region along the curve \/D/k = 270 um (Fig. 2 D). Impor-
tantly, this parametrization leading to the best-fitting of the switchpoint curve quantitatively
predicted the time course of tissue outgrowth observed in vivo" (Fig. 2 E). We found that there
is a zone within the parameter space that allows the experimental switchpoint curve to be re-
covered (Fig. 2 F). This zone remarkably recapitulates the experimental outgrowth at day 6
(Fig. 2 G). Indeed, the distance between the experimental and the simulated recruitment limit
curves (denoted by E(£, Ce) and defined in Eq. (12) in STAR Methods) is minimal in a region
along the curve \/D/k = 270 pm (Fig. 2 F). In this zone of the parameters space, we find
the best agreement between the experimental spinal cord outgrowth at day 6 and the simulated
outgrowth predicted by our model (Fig. 2 G). We emphasise that the model was not fitted
directly to the experimental outgrowth quantified during axolotl spinal cord regeneration, but
rather to the experimental recruitment limit dataset, and the best-fitting model prediction of
tissue growth was then compared with experimental spinal cord outgrowth (Fig. 2 panels D and
F). Altogether, these results suggest that spinal cord regeneration could be mainly controlled by
a signal created at the (moving) boundary of the tissue while evolving via a reaction-diffusion
process and recruiting cells as it spreads over the spinal cord. New cells are locally activated
by the presence of this signal, accelerating tissue growth. In this scenario, the speed of tissue
expansion is mainly controlled by the interplay between diffusion and degradation of the signal
via the quantity /D/k. This quantity is well known in developmental biology in the cases of
exponential morphogen gradient formation and referred to as the Characteristic Length A, It
corresponds to the distance between the signal source (in our case, the posterior border of the
tissue) and the position at which a concentration profile exponentially decaying equals a fraction
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1/e of its concentration at the source.

2.3 The regenerative response of the spinal cord can be modulated by the

cell sensitivity to the signal
In the previous section, we assumed a relatively small value of p7"
sensitivity of the ependymal cells to the signal density. Higher values of this parameter reduce
the cell sensitivity to the signal (Supp. Fig. S2 A). In this section we investigated the role of
the cell to signal sensitivity on the emergent regenerative outgrowth, by exploring the values of
the parameter p™" in the range indicated in Table S1. As expected, decreasing the sensitivity
of cells to the signal leads to a reduction in the recruitment limit that reduces the spinal cord
outgrowth (Fig. 3 A, A’, Supplementary Movie 3). The pool of recruited cells that activate their
high proliferation program is directly linked to the ability of individual cells to measure the signal
density around them. This result shows that the main component of tissue regeneration lies in
the pool of recruited ependymal cells, the size of which is controlled by the signal properties and
the cells sensitivity to the signal.

We set out to determine quantitatively the influence of the ependymal cells sensitivity to the
signal on spinal cord regeneration in the axolotl. To achieve this, we observed the outgrowth
predicted by the model at day 6 post amputation, within the surface of the parameters space
corresponding to the diffusion coefficient and the cell-to-signal sensitivity (Fig. 3 B and Supp.
Fig. S2 B). We observed that decreasing the cell-to-signal sensitivity (by increasing p™") from
the best-fitting value (that coincides with the experimental response previously observed at that
time®) leads to the reduction of the outgrowth predicted at day 6 (Fig. 3 B and C). Interestingly,
the model predicts that reducing the cell-to-signal sensitivity in 92.5% leads to a spinal cord
outgrowth in agreement with that measured in the axolotl when the neural stem cell marker
Sox?2 is knocked-out*” (Fig. 3 B, C). Thus, our computational model of the axolot] spinal cord
governed by cell cycle acceleration, in turn controlled by a reaction-diffusion signal, was validated
by fitting to the previously reported experimental recruitment limit curve and correctly predicted
spinal cord outgrowth observed under regenerative conditions. Importantly, our model gives a
conceptual framework to interpret the lack of regenerative response of the Sox2 knock-out axolotls
by turning down the sensitivity of the ependymal cells to the signal.

which results on extreme

2.4 The control of spinal cord regeneration lies in the characteristic length
of the signal and the cell-to-signal sensitivity.

The previous sections showed that spinal cord regeneration in the axolotl can be quantitatively
explained in terms of cell cycle acceleration of ependymal cells, controlled by a signal operat-
ing under a reaction-diffusion mechanism. This could imply that the control of the regener-
ative response relies on the three model parameters, the diffusion coefficient, the degradation
constant /half-life of the signal and the cell-to-signal sensitivity. Nevertheless, visual inspection
of Fig. 2 F, G depicts a clear domain identified by the characteristic length A that recapitulates
both the experimental switchpoint and the outgrowth at day 6. This suggests that the regenera-
tive response is not controlled by the diffusion coefficient, half-life of the signal and cell-to-signal
sensitivity, but rather by this sensitivity and A. To test this hypothesis, we used our computa-
tional model to predict the regenerative response at a fixed time (We have arbitrarily chosen day
8) for different combinations of signal-related parameters and plotted the spinal cord outgrowth
as a function of the characteristic length (Fig. 4 A). Interestingly, our results showed that the
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tissue outgrowth is almost an affine function of A (i.e., showing a linear correlation with \), the
slope of which depends on the cell-to-signal sensitivity. This result indicates that the control of
the regenerative response falls on the signal characteristic length and the sensitivity of the cells
to the signal.

The cell-based computational model developed in previous sections assumes that the signal
recruits cycling cells by reducing G1 and S phase, which accelerates their cell cycle, expanding
the spinal cord tissue where the signal operates, as previously reported’. Thus, we wondered
whether the control of the regenerative response by the characteristic length of the signal and
cell-to-signal sensitivity could be an intrinsic feature of the non-Markovian cell cycle dynamics
of the cell-based computational model. To explore this hypothesis, we simplified our cell-based
computational model by approximating the more correct cell division mechanism with a random
(Poisson) process of signal-dependent frequency (see STAR Methods for more details).

Importantly, we observed that the seemingly linear correlation between the regenerative out-
growth and the signal characteristic length is preserved (Fig. 4 B). Although the Poisson-based
model is definitely less biologically relevant to describe the regenerative response in the axolotl
spinal cord, its simplicity makes it ideal to theoretically understand the linear dependence of the
tissue outgrowth with the signal characteristic length, where the slope depends on the cell-to-
signal sensitivity. In this vein, we developed a theoretical framework of the regenerative growth
controlled by a signal whose dynamics is under a reaction-diffusion mechanism.

We formally considered the case of instantaneous signal diffusion and degradation (ideally infi-
nite values of D and k, corresponding to an instantaneous relaxation of the signal profile towards
its steady state). We obtained analytical expressions for the tissue domain occupied by the re-
cruited fast proliferating cells Ly and the domain occupied by non-recruited slow proliferating
cells L as functions of time (see formal derivation in STAR Methods):

Ly(t) = —€£(0)e”", (2)
Ly(t) = (£(0) + Lo)e"s". (3)

In these expressions, Lg is the initial length of the spinal cord tissue, immediately after am-
putation (defined as the distance between the most anterior boundary of the domain and the
amputation plane) whereas £(0) < 0 is the position of the recruitment limit at time zero; (i.e.,
the spatial point in the AP axis separating the populations of non-recruited and recruited cells
(Note that we are using a coordinates system centered in the amputation plane, see Supp. Fig.
S3). We found that £(0) is defined by:

£(0) = A sinh ! <p8 sinh <°>> — Lo (4)
Po A
Since the signal lives on the domain occupied by the ependymal cells, we require that A < Ly.
By using Eqgs. (2)-(4), we can directly write the theoretical spinal cord outgrowth as a function
of time as
Outgrowth(t) = Ls(t) + L¢(t) — Lo. (5)

To evaluate the merits of our theory, we decided to test it by comparing the theoretical predictions
with simulations of the Poisson-based computational model for large enough values of D and k.
Remarkably, we obtained a very good correspondence between the theoretical values of £(t) (see
the general expression of Eq. (4) in STAR Methods), Ly(t) and L (t) and their corresponding
values computed on the simulations, for all times ¢ (Fig. 4 C-E).
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This novel theory of spinal cord regeneration allows us to demonstrate how cell recruitment
depends on the signal characteristic length as well as the cell to signal sensitivity at a given time
(Fig. 4 F). First, by classical asymptotic arguments, one directly obtains that the recruitment
limit £(0) gets closer to 0 immediately after amputation, as the signal characteristic length tends
to zero. These results are expected since without diffusion, D = 0, the signal is only present on
the posterior boundary of the spinal cord and only a small fraction of the population accelerate
its cell cycle. Moreover, Eq. (4) reveals how the cell sensitivity to the signal controls the
regenerative response. First, notice that p7" = p (the density of the signal at the front) leads
to £(0) =0 (Fig. 4 F). Again, in this case, the cells can only be recruited if the signal density is
larger than the one prescribed on the front, i.e., only the cells at the very spinal cord front will
accelerate their cell cycles and this leads to the same behavior as a non-diffusive signal (D = 0).
As p™m increases, so does £(0), indicating that higher sensitivity of tissue cells to the signal
leads to larger outgrowth (Fig. 4 F). Finally, plotting the theoretical value of the outgrowth
given by (5)-(4) as function of A (Fig. 4.H) showed that indeed for small values of A (red box
corresponding to the range of A used for our simulations), the outgrowth evolved almost linearly

min

with A, the slope depending on the threshold density p

We further validated the formal derivation by comparing the theoretical dependence of the
recruitment limit £(¢) on the signal characteristic length with that dependence observed from
simulations using the Poisson-based computational model (Fig. 4 G). We obtained a very good
agreement between the theory and the simulations for different values of cell to signal sensitivity
(Fig. 4 G). It is noteworthy that we were only able to perform simulations for A < 400 pm
because of computational time limitations. Indeed, as the characteristic length increases, the
numerical time-step required for the simulation decreases, leading to an increase of the overall
computation time.

By using our new theory (Egs. (2) - (5)), we represented the predicted spinal cord outgrowth
at a given time (8 days post amputation) as a function of the signal characteristic length, for
different cell to signal sensitivities. Remarkably, our results demonstrate that both magnitudes
are linearly correlated for characteristic lengths approximately smaller than 400 pm (see the
rectangle within Fig. 4 H), with a slope depending on the cell sensitivity to the signal p7"
good agreement with our simulation results (Fig. 4 A, B). However as our theory predicts, the
tissue length evolves as a saturated exponential for larger values of A. This saturation effect is
due to the finite size of the initial domain for ependymal cells. As the signal invades the domain,
it recruit more cells up until reaching the anterior boundary where no more cells can be recruited

anymore, saturating the overall evolution of the tissue.

n

Finally, to investigate the limitations of our theory, we determined the regime within the
parameters space in which the theoretical derivation is valid. As the theoretical derivation
was made under the regime of instantaneous reaction-diffusion of the signal (i.e., high diffusion
coefficient and degradation rate), we expected that the numerical simulations get closer to the
theoretical predictions as the time scale of the reaction-diffusion process dominates the time
scale of cell division. To this aim, we arbitrarily fixed the value of the signal characteristic length
A = 41.74pm and computed the error, as defined in Eq. (12) in STAR Methods, between
the theoretical and simulated tissue domains occupied by the recruited fast proliferating cells
Ly and the domain occupied by non-recruited slow proliferating cells L, for different values of
the diffusion coefficient D. As expected, we observed that the error decreases as the diffusion
coefficient increases (Fig. 4 1, J).

Taken together, the results of this section explain why the regenerative spinal cord outgrowth
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is approximately linear with the signal characteristic length for a given cell to signal sensitivity.
Our theoretical results demonstrate that the regenerative response of the modelled spinal cord
in the regime of fast diffusion and reaction is determined by the sensitivity of the cells to the
signal, and is not controlled by the diffusion coefficient of the signal and its half-life, but rather
by the characteristic length of the signal.

2.5 Identification of a signal-dependent transient modulation of cell cycling
during axolotl spinal cord regeneration.

The previous section showed that the fast reaction and diffusion regime leads to a tissue out-
growth controlled by the signal characteristic length and the cell-to-signal sensitivity. This regime
is consistent with the regeneration-inducing signal instantaneously reaching its steady state spa-
tial distribution. Nevertheless, the model best-fitting results obtained in section 2.2 and 2.3
indicated a transient evolution of the signal before converging towards the steady state. Indeed,
our computational model predicts a signal density, which is higher in the posterior region while
propagating anteriorly over time. Thus, the higher posterior values of the signal density recruit
ependymal cells by reducing G1 and S phases, transiently leading to more cells in S phase in
posterior locations, as previously demonstrated’. This is why we sought to validate deeper the
model by determining the spatiotemporal distributions of cells in G1/G0 and S/G2 phases from
the model simulations and to confront them with the corresponding experimental distributions
extracted from regenerating spinal cords of AXFUCCI animals. These transgenic animals allow us
to visualize cells in the aforementioned cell cycle phases in vivo by using the FUCCI technology’.
We fixed A = 270 m (i.e., the best-fitting value of \), by using a signal diffusion coefficient
and degradation constant of 0.08 y m?sec™! and 0.1 days™!, respectively. The computational
simulations qualitatively resemble the AXFUCCI regenerating spinal cords (Fig. 5 A, A’). In
Fig. 5 B, we show these distributions at different days post-amputation, for different values of
(D,vy) at fixed A = 270 m (i.e., the best-fitting value of ). As one can observe in Fig. 5 B, the
simulations reveal the same behavior as the experimental data: Up until day 2, cells are mostly
in the G0/G1 phase, and the proportion of cells in G2/S phase increases at the amputation site,
spreading anteriorly from day 3. While we recovered a very good agreement between simulations
and experimental data for (D,vy) = (0.08um?.s71,0.1days~!) (dotted-markers), faster signals
failed to recover the correct switch point at days 2 and 3 ((D,vq) = (8um?.s~!,10days™1),
round-markers or (D,vg) = (0.8um?.s7!, 1days™!), cross-markers). In order to quantify the
agreement between the simulations and the data, we computed the relative error between the
spatial distributions of cells in GO/G1 (respectively G2/S phase) obtained numerically and with
the experiments (see STAR Methods for details on the computation of the error), and plot-
ted this measure as function of time and for different set of parameters in Fig. 5 (C). Indeed,
Fig. 5 (C) confirms that the error between the experiments and the simulations is minimal for
(D,vy) = (0.08um?.s71,0.1days™!) (dotted line), compared to faster signals (lines with cross
and round markers) which favour faster anterior spreading of the recruitment limit from days 1
to 3. Moreover, consistently with the results shown in previous sections, parameter values lead-
ing to different signal characteristic lengths do not recover the correct distributions (Supp. Fig.
S4). Therefore, the agreement between the spatiotemporal distribution predicted by the model
and the AxFUCCI experiments indicate that the optimal values of the signal parameters are
(D,vq) = (0.08um?.s71,0.1days™ ). These results reveal that the signal temporal dynamics is
crucial for the kinetics of the distribution of cells in the different phases of their cell cycle. Indeed,
even if the signal reaches the same steady state on the spatial scale (with fixed characteristic
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length \), a faster signal needs less time to establish its steady profile and recruits cells earlier in
the regeneration process. To better understand the cell recruitment process, we quantified the
number of newly recruited cells by the signal and represented it as function of time (Fig 5 C’).
This enabled us to discover two major findings: first, although continuously created at the front
of the tissue, we found that the signal only has action (i.e., actively recruit new cells) during a
transient time window. Interestingly, one observes that for each pair of values of (D,vy), The
number of newly recruited cells first increases and then decreases until it reaches 0 in a finite
time window, corresponding to the time that the signal only lives on the already recruited cells.
Secondly, we observed that the distribution is more picked and happens on shorter timescales
when increasing the signal dynamics (D, v4). We observed a very peaked distribution in the first
day post-amputation for (D, vg) = (8um?.s7!,10days~!) while the distribution is spread over 2
days for the slower signal (D, v4) = (0.8um?.57% 1days~!) and up until 4 days for an even slower
signal (D, vg) = (0.08um?.s71,0.1days'). Further analysis of this distribution as a function of
D and v, demonstrates that the size of the peak is entirely controlled by the diffusion coefficient
D (i.e., increasing diffusion leads to more recruitment, Supp. Fig. S4 B) while the length of
the time window is completely determined by vy (i.e., increasing vy decreases the time window)
(Supp. Fig. S4 D).

3 Discussion

Severe trauma of the spine leads to irreversible and usually irreparable consequences in most ver-
tebrates. In humans, these traumatic injuries often have dramatic repercussions not only for the
patients suffering from those injures but also for their families who take on caring responsibilities
for the patients. These overwhelming consequences observed in humans after traumatic injuries
in the spine strikingly contrast with the complete structural and functional regeneration of the
spinal cord displayed by the axolotl after the most extreme possible injury: tail amputation.
Why this salamander is capable of such remarkable regeneration traits while we are not is still
elusive”’.

To address the complexity of the regenerative response observed in the axolotl spinal cord, a
first non-spatial mathematical model has been proposed”. This first model focused on the kinetics
of proliferating and quiescent cells and was encoded in a system of two ordinary non-autonomous
differential equations. A subsequent 1D computational model was developed in which cells
were simulated as hard segments while the signal was modelled following a phenomenological
approach’ (For details on the comparison between the model reported in” and the one presented
in this study, see Section 2.1 of the Supplementary Information). By combining this simple model
with functional experiments using FUCCI technology in axolotls, we have previously shown that
spinal cord regeneration in the axolotl is consistent with a process of ependymal cell recruitment
triggered by an unknown signal that propagates ~ 830 pum anteriorly from the injury site during
~ 85 hours post amputation’ However, the signal and the precise mechanism of its propagation
within the axolot] spinal cord remain to be elucidated.

During development, numerous tissues are shaped through morphogenetic processes controlled
by morphogens or signals whose dynamics are governed by reaction-diffusion processes. As an ex-
ample, growth regulation of the Drosophila wing imaginal disc is governed by the Decapentaplegic
(Dpp) morphogen gradient, in turn ruled by a reaction-diffusion mechanism”*. In vertebrates, a
reaction-diffusion system explains the dynamics of the transforming growth factor—3 superfamily
signals Nodal and Lefty during zebrafish embryogenesis”’. In a chick embryo, a reaction-diffusion
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mechanism was proposed to explain the antagonistic effect of BMP2 and BMP7 on the feather
patterning”®. These and other examples show that the reaction—diffusion models constitute effec-
tive and accurate mathematical constructs guiding mathematical approaches in development”’
and possibly in regeneration'”. Thus, it is conceivable that the particular spatiotemporal distri-
bution of the signal responsible for the regenerative response observed in the axolotl spinal cord
might reflect a reaction-diffusion mechanism at work. This is why, in this theoretical study, we
decided to test this hypothesis.

To that aim, we have developed a 2D multi-scale hybrid computational model featuring ependy-
mal cells which interact with a signal continuously produced at the posterior tip of the spinal cord,
which diffuses within the tissue while being consumed with a given degradation rate. When the
local signal density overcomes a certain threshold, the ependymal cells in contact with the signal
accelerate their cell cycle, increasing the overall tissue growth speed (Fig. 1). After validating
both the cellular and the signalling scales individually ( Supplementary sections 2.1 and 2.2),
we tested the model by fitting the previously reported recruitment limit curve®. Interestingly,
the model is able to recover the spinal cord outgrowth experimentally observed® ( Fig. 2 F, G,
Fig. 3 B, C, Supp. Fig. S1 B), and comparison with AxFUCCI experimental data allowed us to
have a first estimate of the biophysical parameters governing the hypothetical signal responsible
for the regenerative process observed in the axolotl spinal cord. The predicted signal diffusion
coefficient and degradation rate are ~ 0.1pum?sec™! and 0.1days™!, respectively. While there
are no measurements of diffusivity or stability of morphogenetic signals in the axolotl during
regeneration, these biophysical parameters were determined for a variety of morphogens in ze-
brafish embryos in vivo. As an example, the diffusion coefficients of Cyclops, Squint, Leftyl and
Lefty2 were estimated in (um2?sec™!) 0.7 £ 0.2, 3.2 + 0.5, 11.1 £ 0.6, and 18.9 + 3.0, respec-
tively, while their half-lives ranged from (min) 95 to 218 in the blastula stage during zebrafish
embryogenesis”’. Interestingly, in the same animal model, BMP2b and Chordin have clearance
rate constants of (107°s7!) 8.9 & 0.1 and 9.6 & 0.3, corresponding to half-lives of (min) 130
and 120, and effective diffusion coefficients of (um?sec™!) 2-3 and 6-7, respectively””. Hence,
the diffusion coefficient and half-life of the hypothetical signal predicted by our model are not
very different from those observed in Cyclops and BMP gradients determined in the zebrafish
embryo. These differences could be attributed to the differences in animals, stage and anatomi-
cal orientation (anterior-posterior axis in the axolotl spinal cord versus dorsal-ventral axis in the
zebrafish embryo) or they could of course reflect different signals.

Importantly, our computational model results indicate that the regenerative growth response
scales with the characteristic length of the signal, where the slope depends on the ependymal cell-
to-signal sensitivity (Fig. 4 A), result that was also recapitulated when the proliferative response
of the ependymal cells was simulated with a naive Poisson-based proliferation model (Fig. 4 B).
To explain this result, we developed a theory that allowed us to unveil a profound feature
of the regenerative response displayed by the computational model. Our rigorous mathematical
demonstration reveals that the spinal cord outgrowth emerging during regeneration in the axolotl
can be controlled by the characteristic length of the signal rather than by its individual diffusion
coeflicient or half-life. This study predicts that the signal governing the regenerating spinal cord
in the axolotl has a characteristic length of about 270 pym. Interestingly, gradients of BMP
and Chordin display characteristic lengths of 168 and 260 um, respectively (calculated from>®),
suggesting that the our regeneration-inducing signals could operate within the BMP pathway.

Our model predicts that a reduction in the diffusion coefficient would result in a shortened
spatial expansion of recruited cells, reflected in a correspondingly shortened posterior domain
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dominated by S-phase cells, leading to a reduced regenerative response. Although the identity
of the regeneration-inducing signal remains to be elucidated, the diffusion coefficient suggests
a molecular size similar to that of BMP or Chordin. Interestingly, a difference in diffusion
coefficient has been reported for BMP using FRAP and FCS, which has been attributed to
differential binding to extracellular molecules””, as has been proposed for other developmental
signals such as Nodal and FGF*>%. Similarly, according to our model, reducing the half-life of the
regeneration-inducing signal would be the expected result of upregulating the antagonist of the
regeneration-inducing signal. Indeed, BMP gradients are modulated by a network of extracellular
regulators in both vertebrates and invertebrates’’*'. In the context of our model, modulation of
the diffusion coefficient or half-life could lead to recruitment and thus to a regenerative response
that would ultimately be indistinguishable from up- or down-regulation of the signal itself.

The existence of a transient time window of newly recruited ependymal cells observed with
the model simulations (Fig. 5 D) is reminiscent of the kinetics of AXMLP protein expression
measured in the axolotl upon tail amputation®”. Indeed, the AxMLP protein levels is upregulated
with a peak of expression at 12 to 24 h post-amputation, returning to basal levels at 2 days post-
amputation’”.

Noteworthy, the reaction-diffusion mechanism under consideration here may be an effective
mechanism arising from a process which does not necessarily involve morphogen gradients. In-
deed, there is a growing appreciation that morphogenetic processes can be moulded by physical
cues®’. A clear example is the fluid-to-solid jamming transition observed during posterior axis
elongation in zebrafish embryos® . In this system, there is a transition of rigidity from anterior
to posterior tissues where the fluid-like posterior tissues remodel before their maturation. A
similar process takes place during development of the zebrafish blastoderm where the rigidity
transitions from a network of high to low intercellular adhesions®’. Hence, the reaction-diffusion
mechanism governing our hypothetical signal responsible for spinal cord regeneration after am-
putation could correspond to a mechanical process. Interestingly, a mechanical reaction-diffusion
mechanism elegantly explains wound-induced regeneration of hair follicles in mice®®. In fact, the
idea was already anticipated in the seminal study of George Oster, James D. Murray and Albert
K. Harris®’ that showed pattern formation emerging from cell motility and rigidity perturba-
tions, very much like reaction-diffusion instabilities predicted by the Gierer-Meinhardt®® and the
Turing models™”.

3.1 Limitations of this study

It is noteworthy that this simple 2D model can be reduced to a 1D model due to the choice
of boundary conditions (periodic in the y-direction) and spatially homogeneous rules for cell
divisions. Future perspectives considering different domain geometries will take into account
the variation of the spinal cord diameter along the AP axis and study its impact on tissue
outgrowth. The extension to 3D will allow more realistic mechanical interactions to be taken
into account, reflecting both cell-cell stresses and intracellular pressures. The 2D cell-based
computational model developed here focuses on the early regenerative response of the spinal cord
in the axolotl. A control mechanism via a negative feedback process that effectively turns down
proliferation, and thus regeneration, must be present within the first few weeks after amputation.
Indeed, asymmetric cell divisions of ependymal cells are observed during the second week of
regeneration’. Since the dynamics of newly generated neurons occur along the radial coordinate
of the ependymal tube (perpendicular to the AP axis), a 3D model would be advisable to study
the regenerative response of the spinal cord in the long term. A possible strategy to circumvent
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the resulting complexity of the spinal cord during this later regulatory phase of regeneration
could involve mapping the cell-based computational models with a macroscopic (continuous)
description, as those used in'"*'*?. Additionally, the theory demonstrating that the regenerative
growth scales with the characteristic length of the signal relies on the fast diffusion and reaction
approximation. Future studies should address whether this scaling extends to other reaction-
diffusion regimes.

This study shows that spinal cord regeneration in the axolotl can be orchestrated by a hypo-
thetical signal operating under a reaction-diffusion scheme under the control of its characteristic
length and the sensitivity of the ependymal cells to the signal. Further investigation is required
to unveil the nature of the signal to then explore how conserved and thus general this mechanism
of regeneration might be.
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7 Main Figure titles and legends

Figure 1: Schematic representation of the computational model of the signal-dependent
regeneration of axolotl spinal cord. (A) Sketch of the axolotl showing the regenerating
spinal cord in the tail. (B) Scheme of the model components. The y-axis represents position
along the spinal cord circumference and the x-axis corresponds to the Anterior-Posterior axis.
The ependymal cells are represented as discs coloured with a French flag-like code, depending
on whether they are not exposed to the signal and are not recruited (blue), or they are exposed
to the signal but are not recruited (white), or they are exposed to the signal and are recruited
(red). The signal is represented as cyan particles that are produced at the front of the tissue,
have a finite half-life (degradation) and diffuse in the domain populated by ependymal cells. (C)
Cell recruitment depends on the local signal density (whose density is here represented in a 1D

12


https://doi.org/10.1101/2023.08.21.554065
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.554065; this version posted May 21, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

view). A cell is recruited when it is exposed to a signal density that overcomes the threshold
p™" (indicated in cyan). The x-axis represents the AP axis, the blue curve is the density of the
signal. In (B) and (C), the amputation plane is indicated by a dashed black line and the spinal
cord front is indicated by a dotted black line.

Figure 2: Axolotl spinal cord regeneration can be qualitatively and quantitatively
explained by a signal operating under a reaction-diffusion regime. (A) Images of a
regenerating spinal cord upon tail amputation at different times post amputation(modified from®,
Fig. 1A). Scale bar, 1000 pm. (B) Simulations of the modelled regenerating spinal cord after tail
amputation at the indicated times. In (A, B), the black dashed line represents the amputation
plane while the black arrowheads indicate the tip of the regenerating spinal cord. Ependymal
cells are represented as discs and colored using a French flag-like code, as explained in the legend
of Fig. 1. B,C. Smaller cyan discs represent the signalling particles. Signal diffusion coefficient
D =1 um?- 57!, degradation rate k = 1 days~! and p™" = 3. (C,C’,C”) Simulation results
at day 8 post amputation: large diffusion and degradation of the signal (C), large diffusion and
small degradation of the signal (C’), small diffusion and degradation of the signal (C”). Same
representation as in panel (B). (D) Model-predicted time course of recruitment limit (yellow)
fitted to the experimental counterpart’ (black). (E) Model-predicted time evolution of the
spinal cord outgrowth (yellow) and the experimental counterpart® (black). (D) and (E): for
the model predictions, means are represented as solid lines and each shaded area corresponds
to 1 standard deviation out of the best fitting simulations identified following the procedure
described in STAR Methods); for the experimental data, means are represented by points while
error bars represent the standard deviation of the recruitment limit posterior distribution in
(D) and the standard deviation of the outgrowth measurements in (E), both obtained from the
experiments reported in”. Black error bars correspond to 1 ¢ while grey error bars correspond to
20. (F) Phase portrait depicting the error between the model-predicted recruitment limit and
the experimentally measured one” at day 6, as a function of the diffusion coefficient D (x-axis)
and the degradation rate k (y-axis), with the curve /D/k = 270 £+ 38 uwm superimposed. (G)
Phase portrait showing the tissue outgrowth predicted by the model at day 6 post amputation
as a function of the diffusion coefficient D (x-axis) and the degradation rate k (y-axis), with
the experimental outgrowth from® (mean is represented by the red dashed line, the striped area
corresponds to 1 standard deviation, obtained from the experiments as reported in®) and the
curve y/D/k = 270 pm (white dashed line) superimposed.

Figure 3: The regenerative response of the spinal cord can be modulated by the
cell sensitivity to the signal. (A, A’) High cell-to-signal sensitivity (small p™" = 3, A)
results in a higher recruitment limit (the domain of red recruited cells and outgrowth) compared
to low cell-to-signal sensitivity (large p7" = 30, B). In (A, A’), model simulation results of the
regenerating spinal cord at day 6 post amputation. Ependymal cells are represented as discs and
colored using a French flag-like code, as explained in the legend of Fig. 1 B,C. (B) Phase portrait
showing the model-predicted spinal cord outgrowth at day 6 for k = 1 days™! as a function of
the cell-to-signal sensitivity p™" (x-axis) and the signal diffusion coefficient D (y-axis), with
experimental measurements of’ (red) and”” (yellow) superimposed. (C) Spinal cord outgrowth
at day 6 post amputation as a function of the cell-to-signal sensitivity p™". Decreasing the
cell-to-signal sensitivity reduces the spinal cord outgrowth predicted at time 6 post amputation
from values consistent with normal regenerative conditions” (green) to those corresponding to
impeded regeneration by knocking out SOX2?* (red). Means are represented as lines and each

shadowed area corresponds to 1 standard deviation. In (A, C), signal diffusion coefficient D = 1
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um? - s~ and degradation rate k = 1 days~".

Figure 4: The control of spinal cord regeneration lies in the characteristic length
of the signal and the cell-to-signal sensitivity. (A) Spinal cord outgrowth predicted by
the computational model as function of the characteristic length A of the signal for different
values of the signal degradation rate k (k = 1 day~! (triangle markers), k = 5 day~! (round
markers), k = 10 day!(square markers), & = 100 day~! (diamond markers). (B) Tissue
outgrowth of the computational model assuming Poisson-based cell divisions, same legend as
for panel (A). (C,D,E) Recruitment limit of the Poisson-based model as a function of time for
two sets of parameters (D, k) with the same A = 41.74 pum (orange and blue) compared with
the corresponding analytical solution (yellow dashed line and shadowed areas, each shadowed
area corresponds to one ependymal cell diameter) (C). Same representation for the length of the
fast-cycling population Lp(t) (D) and the slow-cycling population Lg(t) (E). In (C), (D) and
(E), for each set of parameters (D, k), means are represented as lines and each shadowed area
corresponds to 1 standard deviation out of 5 simulations. (F,H) Theoretical predictions of the
recruitment limit £(¢) (F) and tissue outgrowth (H) as a function of A, for different values of
the cell-to-signal sensitivity (p™"). (G) Theoretical prediction (yellow) of the recruitment limit
£(t) at time t = 8 days post amputation as a function of A superimposed with the simulated
values using the Poisson-based computational model (blue), for p7" = 20 (mean is represented
as solid line and each shadowed area corresponds to 1 standard deviation out of 10 simulations).
(I,J) Error between the theoretical and the numerical values obtained with the Poisson-based
computational model of the fast-cycling population length Lg(t) (I) and slow-cycling population
length Lg(t) (J) at time ¢t = 8 days as function of the diffusion coefficient D for fixed value of
A =41.74 pm. In (I) and (J) means are represented as lines and each shadowed area corresponds
to 1 standard deviation out of 5 simulations.

Figure 5: The computational model recapitulates the experimental spatiotemporal
distribution of cells in G1/G0 and S/G2 phases obtained in AxFUCCI animals. (A)
Experimental axolotl spinal cords imaged during regeneration after amputation, using the FUCCI
technology, at different days post-amputation (from top to bottom: 0dpa, 3dpa and 5dpa), where
cells have been marked according to their position in the cell cycle (green cells in GO/G1 phase,
magenta cells in S/G2 phases, for more details see’). (A’) Same representation with a model
simulation for (v4, D) = (0.1days—*,0.08um?.s~1). (B) Percentage of cells along the AP-axis
that are in GO/G1 phase (green curves) and in S/G2 phase (magenta) as function of the AP
position, for different times post-amputation (different subplots). Dotted lines are experimental
data from”, solid lines are simulations for different pairs of (D, vy) and fixed A = 270 m. For
each set of parameters, simulated data are averaged over 10 realisations (solid lines represent
the mean, errorbars the standard deviation). (C) Relative error (see STAR Methods for details
on its computation) between the simulated and experimental cell distributions as function of
time post-amputation for the different pairs (D, v4) (values in the legend) (C’) Number of newly
recruited cells by the regeneration-inducing signal computed every 0.2 days as function of time
post-amputation for the different pairs (D, v4) (values in the legend). AxFUCCI Images in (A)
courtesy of Leo Otsuki and Elly Tanaka and correspond to one of the animals represented in (B)
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8 STAR Methods

RESOURCE AVAILABILITY
Lead Contact

Further information and requests for resources should be directed to Osvaldo Chara
(Osvaldo.Chara@nottingham.ac.uk).

Materials availability

This study did not generate new materials.

Data and Code availability

e Data: This is a computational study. No new experimental data has been generated.

e Code: The computational model in this study was implemented in Fortran 90 while visual-
ization of simulations and analyses were executed with MATLAB. All original codes for sim-
ulations and post-processing have been deposited at https://doi.org/10.5281/zenodo.8111099

e Any additional information required to reanalyze the data reported in this work paper is
available from the Lead Contact upon request.

METHOD DETAILS
A mathematical 2D hybrid model for spinal cord repair after injury

The 2D mathematical hybrid model features a number N (t) of ependymal cells represented as
individual 2D hard-disks of centers X;(¢) and uniform and fixed radii R for i =1... N(¢), and a
signal represented as a continuous concentration field ps(z,t) depending on space and time. The
ependymal cells live in a 2D domain Q(t) = [— Lo, L(t) — Lo] X [Ymin, Ymax], Where L(t) indicates
the size of the tissue at time ¢ and Ly = L(0), aiming at modelling the spinal cord apical surface
as the surface of a cylinder (see Fig. 1A). Note that the coordinate system is centered in the
amputation plane. We equip this domain with periodic boundary conditions in the y-direction
(representing the spinal cord circumference), Dirichlet boundary condition on the left (anterior
part of the tissue supposed to be fixed) and free boundary on the right (posterior/amputated
part of the tissue that can grow). The signal is supposed to be produced at the posterior tip of
the tissue (the free boundary on the right in Fig. 1A), degrade with constant degradation rate
k € Rt and diffuse in the domain occupied by the ependymal cells Q(t).

Reaction-diffusion equation for the signal

These simple assumptions lead to the following reaction-diffusion equation for the signal density

ps(z,t):
Ops(z,t) = DAps(z,t) — kps(z,t)  for z € Q(t)
ps(z,t)  =po for zeT(t), (6)
ps(zut) =0 for z€ {_LO} X [ymin7ymaa:]7

where I'(t) = {L(t) — Lo} X [Ymin, Ymax] is the front of ependymal cells. The tissue length L(t) is
determined by the average of the x-coordinates of the front cells (see definition of front cells in
Section "Identification of front cells").
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Ependymal cells recruitment and division

Cells surrounded by a signal concentration above a certain threshold p”" are supposed to be
instantaneously recruited. We sketch cell recruitment as function of the signal in Fig. 1B, where
we show the signal concentration as function of the AP-axis position, where the amputation plane
is indicated with a vertical dashed line. Cells are supposed to cycle with given cell cycle lengths
drawn from lognormal distributions Log(u, o) which parameters depend upon their status (long
cell cycle length with mean p = 340h and standard deviation ¢ = 32 h for non-recruited cells,
small cell cycle length with mean p = 119h and standard deviation ¢ = 10h for recruited
cells), and divide when reaching the end of their cell cycle. We assume that, when recruited,
an ependymal cell shortens its cell cycle by partial skipping of the G; phase and proportional
mapping between long and short S phases (see’ for more details).

Note that the ependymal cells recruited by the signal reduce G1 and S phases, effectively
shortening the cell cycle and inducing partial synchronisation. Since the modelled signal is
generated in the posterior tip and propagates anteriorly by the reaction-diffusion mechanism,
cells progressively acquire partial synchronisation from posterior to anterior.

We consider that cell growth is faster than any other mechanisms and therefore upon division,
an ependymal cell of radius R produces instantaneously a new daughter cell of the same radius
positioned randomly in a disc centered around its center and of radius 2R. When the ependymal
cell 7 of center X; has reached the end of its cycle, it generates two ependymal cells j and k:
cell j is placed at X; = X;, while cell k is placed at a random distance in (0,2R) from the cell
j and with an angle 6 chosen randomly in (—6*,6*). We checked that the choice of 8* does not
impact the outcome of the process (data not shown), and arbitrarily set 6* = g in this paper.
We suppose that cell recruitment is irreversible and inherited from mother to the daughter cells,
i.e., once recruited, a cell and all its progeny will stay recruited. We suppose that ependymal
cells behave as hard discs, i.e., they move instantaneously to avoid the overlapping induced by
the division of cells (see next section for the numerical details).

Therefore in this model, tissue growth is induced by ependymal cell proliferation, increasing
the internal pressure of the system that expands to avoid overcrowding. The cell proliferation
is itself controlled by the presence of a signal that diffuses from the front of tissue cells towards
the anterior side of the AP-axis, and recruits irreversibly new cells as it diffuses in the tissue.
As tissue grows, the signal profile (living on a growing domain) is shifted to the posterior axis,
until it only lives on already recruited cells.

We give in Supplementary table S1 the model parameters we used for our simulations. The cell
cycle lengths pg and pp for slow and fast cycling cells (respectively) are taken from measurements
in”. As we don’t have access to direct measurements for our signal (i.e for the diffusion coefficient
D and degradation rate k as well as cell sensitivity to the signal p™"), we consider them as free
parameters and explore a broaden range of values. Note that the values we consider are still
in the range of realistic experimental measurements for morphogens diffusion and degradation

rates extracted in different types of tissues™.

Numerical methods

A major difficulty in the simulation of systems of large number of particles is the high computa-
tional cost, typically quadratic in the number of particles. In order to reduce the computational
cost of our simulations, we used localization techniques to compute the interactions and imple-
mented the scheme in Fortran90, offering high efficiency, computational precision, vast libraries
of matrix, physics and engineering functions and parallelization tools enabling to perform high
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precision simulations.

Initial conditions

We initialize the model with N ependymal cells in non-overlapping configuration in the domain
[0, Lo] X [Ymin, Ymaz)- This is achieved by throwing randomly N1 > N cells in [0, Lo| X [Ymin, Ymaz),
letting the system reach the steady-state of Eq. (9) (non-overlapping configuration), and remov-
ing all cells which z-position is above Lg. We suppose that initially, all ependymal cells are
proliferating slowly and each cell cycle length T;(0) is drawn from a lognormal distribution with
mean 4 = 340h and standard deviation o = 32h (see supplementary table S1 for more details

on the parameter values). Each cell has initial age C;(0) drawn randomly from an exponential
2C;(0)

distribution given by TZ%)ZPW.

After this initialization step for the ependymal cells, we initialize the signal by distributing
randomly Ng signalling particles close to the amputation plane, more precisely in the domain
[Lo—2R, Lo| X [Ymins Ymaz] Wwhere R is the radius of an ependymal cell. The number of signalling
particles Ng is chosen to account for the Dirichlet condition pg = pg at the boundary, which

gives:

NS = 2R(ymam - ymin)p07

where pg is the density of the signal imposed at the front (see supplementary table S1 for more
details on the parameter values).

Reaction-diffusion of the signal

In order to solve the reaction-diffusion equation (6), we use a splitting method. In the first
splitting step, we use the Smoothed Particle Hydrodynamics (SPH) method to solve for the
diffusion term (first term on the right hand side of Eq. (6)), and in the second step, we solve
for the reaction term (second term on the right hand side of Eq. (6)). The choice of a SPH
method is motivated by the initially zero signal concentration. Regions of zero concentration are
difficult to handle with classical grid methods such as finite volume methods, since it often leads
to the appearance of negative values breaking down the simulations. The SPH method is not
subject to this risk and is the method of choice for problems involving jets or injections of gases
in vacuum. This method has been extensively studied and its accuracy has been practically
assessed'?"*7 For the first step, We discretize the signal by means of Ng particles, the so-
called signalling particles, of mass m; placed at Z;(t) € Q(t), as done by'". The density of the
signalling particles, governed by diffusion, evolves in time as follows:

8PS(X7t) VPS(th) )
ot ps(X,t) +p5)’

Where we have introduced the constant parameter pg > 0 prevent any singularity in case of
ps = 0. Switching to a Lagrangian description of the fluid and following the individual particles
through which the continuum field has been discretized, we describe the time evolution of the
position Z; of particle j as follows:

=DV (ps<X, t)

dt T pi+ oy
where p; = ps(Z;) and Vp; = Vpg(Z;) are computed using the Smoothed-Particle Hydrody-
namics (SPH) method*’,** as follows

AZj _ 5 Vo

Ng
pj =Y miW(Z; — Zi,h),
=1
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Ng
Vo =Y miVW(Z; — Z;,h),
i=1
where W is the ‘Poly6’ kernel proposed by”’, adapted to a 2D domain, with support radius h,
which is defined as follows

as(P=1al?)? if0<]qgl<h

0 otherwise

Wi(q,h) = {

and whose gradient is

—2L(h2— |l q|*%q if0<|q|<h
VW(q,h):{ s (= llal®) e f0<[lql<h

0 otherwise

Finally, considering an explicit time discretization, we define " = At! + ...+ At". Then, the
position of particle j at time t"*! can be computed as follows:

N RN, WL
! ’ P+ p%
The time step At™ must be chosen such that
AZ* 2
At" < C<Z))a (7)

with C' < %, to ensures that, during the time step At™ each particle j can move at most AZ*,
where AZ* was chosen equal to the diameter of an ependymal cell, i.e. AZ* = 2R.

We assume that the signalling particles are removed following a Poisson process of frequency
k, i.e. the probability of a signalling particle to disappear in the time interval (¢,t + dt) is

P(signalling particle disappears in (¢, + dt)) = 1 — e "4,

In order to obtain a good approximation of Poisson process, the time step At™ must be chosen

such that
kAL < 1. (8)
Because of the two conditions introduced in Eqs (7) and (8), the time step At™ is chosen as
follows: )
. (AZ*)* 1
At" = C—7—, —
min < SRR

Ependymal cells interaction and motion
As explained in the modelling section, cell motion is supposed to be an instantaneous mech-
anism, i.e at all times, cells are supposed to be in non-overlapping configuration. Numerically,

this is treated according to the following scheme: Given a configuration (X7, ..., X}) of N non-
overlapping cells at time ¢” undergoing M divisions between t" and t"*! = t” + At positioned at
(XN41s-- > Xnpa) (inducing some overlapping), the configuration of the N + M cells at time
t"*1 is the steady state of
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N+M
\Y Yj|
Vy, |[®(—5-1) (9)
J ;7&1 [ 28 }
(Yi(o)v"-:YN—&—M(O)) = (X7, XRiur)s

where the repulsion interaction potential ® is defined as follows:

o(r) = {2/43R2(T —1)? ifr< L
0 otherwise
with 4,5 = 1,..., N(t), where x € R¥ is the repulsion intensity. Note that taking XV*! to be
the steady-state of the dynamics (9) amounts to consider that cells behave as hard spheres, i.e
they are in non-overlapping configurations at all times.
Numerically and in between each time " and t"*!, we solve (9) using a classical explicit Euler
scheme. In order to identify the steady-state, we fix a tolerance £ > 0 and we let the repulsion
dynamics run until the following stopping criterion is satisfied:

I%%X{(2R — dist (X, Xj))]l(dist(Xi, Xj) < QR)} <e-2R,

where dist(X;, X;) is the standard Euclidean distance, R is the radius of an ependymal cell and
€ = %. Using this criterion, a non-overlapping configuration is reached when the maximum
overlapping between two ependymal cells is less than the 10% of the cell diameter.

Ependymal cell division in the Poisson-based model

As described in the results section of the main text, we aimed to test whether the results of
our complete model could be an intrinsic feature of the non-Markovian cell cycle dynamics. To
explore this hypothesis, we consider a simplified version of our cell-based computational model by
approximating the more correct cell division mechanism by a Poisson process of given frequency
vg (for slow cycling cells) or vp (fast cycling cells) with vp < vg. Numerically, this is treated by
defining the probability of a fast-cycling (FC) cell to divide between times ¢ and t" + At as:

P(FC cell division between " and ¢" + At) = 1 — e VFAL,

and the same expression holds with vg for a slow cycling cell.

Theoretical study of the model in the regime of fast reaction-diffusion

In this section, we give the details of the derivation of the model in the regime of fast diffusion
and degradation of the signal. We first simplify the model and consider that cell division follows
a Poisson process of given frequency vg (for slow cycling cells) or v (fast cycling cells) with
vp < vg (see previous section 'Numerical methods’ for details on the numerical implementation
of the Poisson-based computational model). We further simplify the model by considering the 1D
case, but the arguments hold in 2D. For the sake of simplicity, we consider shifted x-coordinates
and work with the new spatial variable x = z + Ly € [0, L(¢)] such that the origin of the new
coordinate system is given by the left boundary of the tissue.

We consider the regime of fast diffusion and degradation of the signal, while all the other
mechanisms stay of order 1. To this aim, we introduce a small € < 1 and set D = €D, k = €k,
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p = p where D,k and p are of order 1 and all the other variables stay of order 1. We get

Qi = Dp— 5, xel0, L)
pOt) =0

while the dynamics for the cells stay unchanged. We call L(t) the size of the tissue. Therefore,
we obtain that formally as e — 0 (omitting the tildes for the sake of clarity)

Ozzp = kp, €L 6]07 L(t)[
p(L(t),1) = po (10)
p(0,1) = 0.

Therefore, at each time ¢, p is the steady state of the reaction diffusion equation with Dirichlet
boundary conditions on the domain [0, L(t)]. Solving for p, we get

ps(z,t) = sjnhp(0L§t)> sinh (;) , (11)

where A\ = \/%. This expression allows us to extract the z position denoted xo(¢) at which

2*(t) = Asinh ™! (pg;n sinh <L§t)> )

Therefore, in this regime, the signal instantaneously relaxes to its steady-state profile, depending
on the tissue length L(¢). At initial time, where Lg is the tissue length, all the ependymal cells
surrounded by a chemical concentration above p”" will be instantaneously recruited. Therefore,
the initial condition will be composed of slow cycling cells on [0, zg[ and fast-cycling cells on
[0, Lo]. As both populations divide, this shifts the boundary of the tissue L(t), instantaneously
leading to a new signal profile defined by (11). We now denote by Lg(t) the length of the slow-
cycling population (living on [0, Ls(t)]), and by L (t) the length of the fast-cycling population
(living on |Ls(t), Ls(t) + Li(b)]).
We now claim the following

min.

IOS(Z7 t) = ps

Proposition 1. If the initial condition is such that

then
x*(t) > Lg(t) VYVt > 0.

This proposition indicates that the position x*(¢) after which cells might be recruited lives on
already recruited cells for all times ¢ > 0. We now proceed with the proof

Proof. As cell division is the only phenomenon leading to tissue expansion, the tissue outgrowth
is given by
L'(t) = vsLg(t) + vpLp(t).
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We therefore have to prove that z*(¢) moves faster than the expansion of the slow-cycling pop-
ulation given by vgLs(t). We compute:

(a%)'(t) = L’(t)ﬁ sinh’ <L§“> (sinh™!)’ (PTW sinh (Lit)))

0 P0
()

" (s ()
()

e Y (2 o (H2))?
o cosh (42)

\/(pgﬂ-nf — 1+ cosh? (@))
Therefore, the condition z/(t) > vgLg(t) amounts to

cosh (@)

\/(pfﬁn)Q — 1+ cosh? (@)

(I/SLS(t) + VFLF(LL)) > llsLs(t),

leading to

(e 1+ con (42)
vpLp(t) > VsLs(t)< 10 — 1>.
cosh (T)

Therefore, as the fast-cycling population expands faster than the slow-cycling one (vp > vg), we
need:

(Po )2_1.

min
Ps

vELp(0) > vgLg(0
#Le(0) sLs(0) cosh(%)

O

Under the initial condition given by proposition 1, we therefore showed that only the initial
cells will be recruited as the recruitment zone lives on already-recruited cells for all times ¢ > 0.
Therefore, we can compute the evolution of the population of fast- and slow-cycling cells as:

Ls(t) = 2" (0) exp”",
Lp(t) = (Lo — 2*(0)) exp”*".

Note that in the original variables, {(t) = x*(¢t) — L.
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QUANTIFICATION AND STATISTICAL ANALYSIS
Model fitting to the experimental recruitment limit curve

In this section we give details on the procedure we use to fit the model to the previously reported
experimental switchpoint®.

We denote by & = {{(t;) }i<n, the simulated recruitment limit and with Ce = {Ce(t;) }i<ny
the experimental recruitment limit curve®. Then, we introduce C = {C(t;) }i<n, with C(t;) =
|€(ti) — Ce(t;)| and we define the error between the two curves as follows:

Np—1
B(6.Co) = | 3o St Ol (12)
n=1

where At,, =ty 41 — ty.

For each combination of values of the signal diffusion coefficient D and degradation rate k we
compute the error, defined in Eq. (13), between the recruitment limit predicted by our model
and the one experimentally measured by". We minimize the error by fixing a tolerance ¢ and
identifying, among the combinations of values used to perform the simulations, the pairs of D and
k such that E(&, Ce) < € where £ is the simulated curve and Cp is the experimental curve’ and
€ = 0.5 is chosen arbitrarily. This procedure allows to fit the recruitment limit experimentally
measured by" with the model-predicted recruitment limit and to identify the combinations of D
and &k which best recover the experimental recruitment limit (Fig. 2 D).

8.1 Error between simulated and analytical curve

General definition

In this section we give the definition of the error between a simulated and an analytical curve.
We denote with Cs = {C5(t;) }i<n, the simulated curve and with C = {C(¢;) }i<n, the analytical
curve. Then, as done in the previous section, we introduce C = {C(t;)}i<n, with C(t;) =
|Cs(t;) — C(t;)| and we define the error between the two curves as follows:

_ Nr—1 2 2
B(C,C) = ¥ C(tn) +20(t"+1) At,, (13)
n=1

where At,, = ty11 — ty.

Relative error between the simulations and AzFucci experimental data (Figh of the main text
and FigS5)

Let (X = (Xj)1<i<n, being a vector of points indicating the spatial position along the AP-axis
and Cy(t]‘) = {Céw<Xiatj)}1§i§NL (resp. C?(tj) = {Csc(Xi,tj)}1§i§NL) the spatial distribu-
tions of cells in S/G2 phase (resp GO/G1 phase) obtained with a simulation at time ¢;. We
denote by CM(¢;) (resp. C%(¢;)) the experimental spatial distributions of cells in S/G2 phase
(resp GO/G1 phase) of animal number k, interpolated on the points X;. Then, the relative error
E(t;) between the simulation and experiments is defined by:

E(Cé\/[(tj)vcg/[(tj)) E(CsG(tj)? gt]))})
E(Cljcv[(tj)vo) ’ E(Cg(tj)ao) ’

E(t;) = mkin <min |
where the minimum is taken over all experiments.
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Identification of front cells

We identify the cell i as a front cell if there is no cell j such that
e the cell j is placed to the right of cell 4, i.e. z; > x;,
e y; € (yi — R,y; + R), with R the cell radius.

For example, in Supp. Fig. S1.A, the ependymal cell i (cyan disc) is a front cell because no other
ependymal cell (red disc) placed to its right has its center placed in (y; — R, y; + R). Instead, in
Supp. Fig. S1.B, the ependymal cell ¢ (blue disc) is not a front cell since the there is a ependymal
cell j (yellow disc) such that x; > x; and y; € (y; — R,y; + R).

9 Legends of Supplementary Movies

Supplementary Movie 1: Simulation of the modelled regenerating spinal cord af-
ter tail amputation. Related to Figure 2 and Section 2. Signal diffusion coefficient D = 1
um? - 571 degradation rate k = 1 days~! and p™" = 3. Ependymal cells are represented as
discs depicted in three colors: blue, if they are non recruited (slow-cycling) and not exposed to
the signal; white, if they are non recruited (slow-cycling) even if exposed to the signal; red, if
they are recruited (fast cycling cells). Smaller cyan discs represent the signalling particles. The

black dashed line represents the amputation plane.

Supplementary Movie 2: The evolution of spinal cord outgrowth is controlled by
the interplay between the diffusion coefficient D and the degradation constant k.
Related to Figure 2 and Section 2. Simulations of the modelled regenerating spinal cord after
tail amputation: large diffusion (D = 2.02 ym?-s~!) and large degradation (k = 100 days~!) of
the signal (top), large diffusion (D = 2.02 pum? - s~!) and small degradation (k = 1 days™!) of
the signal (middle), small diffusion (D = 0.02 pum? - s71) and small degradation (k = 1 days™!)
of the signal (bottom). The cell-to-signal sensitivity is fixed in p™" = 3. The black dashed
line represents the amputation plane. Ependymal cells are represented as discs depicted in three
colors: blue, if they are non recruited (slow-cycling) and not exposed to the signal; white, if
they are non recruited (slow-cycling) even if exposed to the signal; red, if they are recruited (fast
cycling cells). Smaller cyan discs represent the signalling particles.

Supplementary Movie 3: Tissue regeneration can be modulated by the cell sensitiv-
ity to the signal. Related to Figure 3 and Section 2. Simulations of the regenerating spinal
cord after tail amputation. Signal diffusion coefficient D = 1 pum? - s~! and degradation rate
k =1 days~'. Ependymal cells are represented as discs depicted in three colors: blue, if they
are non recruited (slow-cycling) and not exposed to the signal; white, if they are non recruited
(slow-cycling) even if exposed to the signal; red, if they are recruited (fast cycling cells). Smaller
cyan discs represent the signalling particles. At the top, for large sensitivity to the signal (small
P = 3), a large zone of high proliferative cells is observed. At the bottom, for small sensitivity
to the signal (large p™" = 30), only cells close to the front are activated.
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