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Abstract:
Background: Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level
dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB)

have recently been linked to early AD pathology.

Objective: Examine how AD risk factors (age, APOE-¢4, amyloid-p) relate to hippocampal EIB in cognitively

normal males and females using connectome-level measures.

Methods: Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+

undergoing neuropsychological testing (N = 231).

Results: In absence of AD risk factors (APOE-e4/AB+), whole-brain EIB decreases with age more significantly in
males than females (p = 0.021, p = -0.007). Regression modeling including APOE-¢4 allele carriers (Ap-) yielded a
significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, p =0.014),
persisting with inclusion of AR+ individuals (p = 0.012, B = 0.014). Partial correlation analyses of
neuropsychological testing showed significant associations with EIB in females: positive correlations between right

hippocampal EIB with categorical fluency and whole-brain EIB with the trail-making test (p < 0.05).

Conclusion: Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results
suggest APOE-e4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates
positively with neuropsychological performance in the female group, suggesting a duality in terms of potential
beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOE-¢4 related
hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD

progression in this vulnerable population.
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Introduction

With networks composed of billions of neurons and synaptic connections, the human brain is a highly complex
dynamical system wherein neural populations coordinate electrical activity to balance excitatory and inhibitory neural
activity across different brain regions. Balanced excitation and inhibition is crucial for adjusting neural input/output
relationships in cortical networks, regulating their dynamic range of responses to stimuli [1], and achieving optimal
information capacity and transfer [2]. Moreover, maintaining this balance is essential for healthy cerebral activity,
homeostatic control, and potentially contributing to lifespan longevity [3-5]. Imbalances, however, may lead to
serious neurological disorders such as autism, characterized by a shift towards a more excitatory state [6,7], and Down
syndrome, linked to increased inhibition (or decreased excitation) [8].

Growing evidence supports the hypothesis that neuronal hyperexcitation, due to the susceptibility of
inhibitory GABAergic interneurons to Apolipoprotein (APOE) e4-mediated neurotoxicity (particularly in the
hippocampal dentate gyrus), may represent the earliest changes indicative of Alzheimer’s disease (AD) pathology
[9-11]. Normal age-related declines in excitatory connectivity may result from alterations in synaptic plasticity,
receptor expression, and neuronal morphology, leading to changes in excitatory and inhibitory signaling [9-11].
Here, we leverage a recently developed framework based on a pairwise maximum entropy model from statistical
physics to computationally infer excitation-inhibition balance (EIB) from combined structural and functional MRI
imaging data [12]. Inspired by the Ising spin-glass model representation of brain dynamics, self-organized patterns
of connectivity form through the spontaneous fluctuations of random spins [13]. Spin-glass models have been used
to characterize both complex microscale dynamics of the human brain [14-17] and macroscale interactions [18-23].
In fact, unconstrained maximum entropy models have been shown to accurately represent spatiotemporal
coactivations in neuronal spike trains [23-26] and patterns of BOLD activity [26-29] . Recently, Zanoci and
colleagues [30] demonstrated that the Ising model can capture collective neuronal behavior during wakefulness,
light sleep, and deep sleep when both excitatory (E) and inhibitory (1) neurons are modeled.

Sex differences play an important role in AD risk, with females being more susceptible to APOE-related
pathogenic changes than males [31,32]. Among other genetic and epigenetic factors, this risk may be attributed to
hormonal differences, such as the protective effects of estrogen on neuronal function and synaptic plasticity, which
decline during menopause in females, potentially increasing their susceptibility to APOE-related pathogenic changes

like hyperexcitation [33,34]. However, the field of clinical AD often treats sex as a covariate, limiting the potential
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for discovering interacting effects regarding disease progression [35]. Recent studies from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) suggest that approximately seventy-five percent of patients with AD are female and
appear to progress to AD more often than males [36]. While the subjects of this study are unimpaired, our
hypothesis is that our metric describing EIB can detect subtle shifts in hippocampal dynamics related to APOE or
amyloid-f influences.

We apply our computational framework on a large cohort (OASIS-3: Open Access Series of Imaging
Studies [37]) of individuals aged 42 to 95 years without cognitive impairment. The first aim is to test the hypothesis
that female €4 carriers would exhibit connectome signatures of hyperexcitation within hippocampal regions
compared to non-g4 carriers, which may confer a greater vulnerability to Alzheimer’s disease neuropathology.
Moreover, we hypothesize that even females without elevated risk of developing AD (either through APOE4 or
AP+) also have diverging EIB compared to men, contributing to higher risk of APOE or amyloid-mediated effects of
hyperexcitation. Lastly, we investigate sex differences in EIB concerning neuropsychological testing with a focus on
hippocampal dynamics, which play distinct roles in detecting and monitoring cognitive and functional changes
associated with dementia-associated diseases [38].

While studies assessing the effects of sex and APOE4 or AB+ on specific MRI-based BOLD signal changes
have produced varied results, early identification and intervention are critical to improving patient outcomes. We
aim to expand on these sex differences, providing new insights and suggesting that a network with spatiotemporal
structure may help in better understanding AD progression and identify subtle changes to neural dynamics before
the onset of irreversible degeneration. This can lead to more informed therapeutic targets and early interventions to
mitigate AD progression in vulnerable populations, potentially guiding the development of tailored, effective
treatments and improving early diagnosis. Enhanced understanding of EIB dynamics could contribute to

personalized medicine approaches in AD, ultimately leading to better patient outcomes.

Materials and Methods

Participants
The Open Access Series of Imaging Studies (OASIS-3) is a retrospective compilation of over 1000+ participants with
imaging data collected over the course of 30 years across several ongoing projects at the Charles F. and Joanne Knight

Alzheimer Disease Research Center at Washington University in St. Louis. These projects include the Memory and
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Aging Project, Adult Children Study, and Healthy Aging and Senile Dementia. In total, OASIS-3 comprises a diverse
collection of clinical, neuropsychological, neuroimaging, and biomarker data for 1098 participants (age: 4295 years).
It is important to note that not all participants completed the full protocol, and only individuals aged 65 or older
completed neuropsychological testing [39].

Thus, in this study we analyzed a cross-section of individuals with combined structural MRI, functional MR,
and PET imaging sessions (N = 437), including apolipoprotein E gene (APOE) genotyping, extracted from
(https://central.xnat.org). In this study, genotype was analyzed as a dichotomous variable defined as APOE4 non-
carriers (g3/e3 allele combination) and APOE4 carriers (€3/e4 or €4/e4 allele combinations) since the &4 allele is
commonly associated with an increased AD risk [40-42]. Herein, NC will refer to APOE4 non-carriers, and APOE4
will refer to carriers of at least one €4 carrier.

For the purposes of this study, we included only participants classified as cognitively normal (no impairment)
according to the Clinical Dementia Rating (CDR) scale (CDR = 0). Inclusion of only cognitively normal participants
(CDR = 0) ensures that the analysis focuses on individuals without any impairment, providing a clearer picture of the
factors affecting healthy aging. We further excluded participants carrying one or more APOE-g2 alleles due to the
neuroprotective effect associated with this allele against AD-related neurodegeneration [43,44]. Consequently, this
group could not be considered as part of either the control or carrier groups. Exclusion of participants carrying one or
more APOE-¢€2 alleles eliminates potential bias introduced by the neuroprotective effect of this allele, resulting in a
more accurate assessment of the impact of other factors on AD risk [45,46].

We matched each MRI-PET session with the closest clinical session. For each participant, the first MRI-
clinical-session pair with an absolute time difference of < 1 year was selected as the baseline session. In cases where
duplicate data were available for subjects, we used the earliest or initial MR imaging session. Using the earliest or
initial MR imaging session for participants with duplicate data reduces the potential for confounding effects of disease
progression or other time-dependent factors on the analysis. The aggregated participant information used in this study

is presented in Table 1.

Cognitive assessment measures and neuropsychological testing
In this study, three screening measures were included to ensure that included subjects are without cognitively

impairment: the Mini-Mental Status Examination (MMSE), Geriatric Depression Scale (GDS) and the Clinical
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Dementia Rating (CDR). The MMSE is a screening tool used to assess global mental status. It is comprised of an
11-question measure (scored from 0 to 30) assessing orientation, attention and concentration, registration, recall, and
language. Scores below 24 have been shown to be effective in identifying individuals with possible cognitive
impairment [47]. The GDS is a 30-item measure that assesses symptoms of depression in middle-aged and older
populations. Scores above 10 indicate possible Major Depressive Disorder [48]. The standardized collection of
OASIS-3 was developed at the Alzheimer’s Disease Centers (ADC) program of the National Institute on Aging
(NIA) as a central component of the Uniform Data Set (UDS) [49,50]. Here, the clinical labeling of dementia
severity was determined based on the Clinical Dementia Rating (CDR). The CDR is a semi-structured interview
intended to provide a global dementia severity rating, which is commonly employed for staging and tracking decline
in AD [51,52]. The score here represents multiple levels of functional impairment (0 = no impairment;

0.5 = questionable or very mild impairment; 1 = mild impairment; 2 = moderate impairment) and summarizes the
estimate of dementia severity [53,54]. As mentioned in the previous section, this study comprises only of individuals
with a CDR equal to zero (signifying no impairment).

Further, the protocol used in the OAISIS-3 for neuropsychological testing consists of a battery based on the
Uniform Data Set (UDSNB), which was developed in Alzheimer’s Disease Centers (ADC) to establish a
standardized data collection system [55]. Participants aged 65 and older completed a battery of neuropsychological
tests at the ADRC to evaluate several tests measuring attention, working memory, executive function, processing
speed, language and episodic memory. Logical Memory - Story A, a subtest of the Wechsler Memory Scale-Revised
measures episodic memory. Participants recall as many details as they can from a short story containing 25 bits of
information after it is read aloud by the examiner (LM-1) and again after a 30-minute delay (LM-11, with scores
ranging from 0 (no recall) to 25 (complete recall). Semantic memory and language were measured using the
Category Fluency test, requiring participants to name as many words belonging to a category, animal and vegetable,
in 60 seconds, and the Boston Naming Test, in which participants name drawings of common objects. Psychomotor
speed was measured using the WAIS-R Digit Symbol test and the Trail Making Test Part A. The WAIS-R Digit
Symbol test is scored on the number of digit symbol pairs completed in 90 seconds. Executive function was
measured using the Trail Making Test Part B. In the Trail Making Test participants were asked to make a trail by
connecting a series of numbers (1-26) for part A and connecting a series of alternating numbers and letters (1-A-2-

B) for part B. The outcome measure used in this manuscript is the total time to complete in seconds with a max of
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150s for Trails A and 300s for Trails B. A complete description of cognitive assessment measure and
neuropsychological testing completed for the OASIS-3 dataset can be found in the data dictionary

(https://www.0asis-brains.org/)

MRI and PET imaging

MRI and PET imaging used in this study from the OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive
dataset for Normal Aging and Alzheimer’s disease [37] was collected in a 16-channel head coil of a Siemens TIM
Trio 3T scanner. In this study, only cognitively normal individuals with structural (Diffusion-weighted imaging and
T1-weighted imaging), resting-state functional (fMRI) and PET imaging were included. Processing of the MRI
imaging is described in the supplementary materials detailing the processing of structural and functional networks,
as well as the procedure for constructing a hybrid resting-state structural connectome. In short, our team recently
combined MRI-derived multimodal connectome data (resting-state functional and structural) with statistical physics
to obtain a macroscopic account of inhibitory and excitatory long-range connections [12,56]. Here, we employed the
Ising model, a well-known spin-glass model from statistical physics in which the states, also referred to as “spin
configurations”, of interacting units — in our case brain regions connected by white matter edges — are constrained to
be either 1 (“active”) or -1 (“inactive”). As described previously [12,56], we construct a function-by-structure
embedding (FSE) using a constrained pseudolikelihood estimation technique wherein pairwise interaction
coefficients are inferred from the observed data (BOLD time series) and underlying structural connectome, resulting
in a spatiotemporal network describing both structure and function (called the hybrid resting-state structural
connectome, or rs-SC).

Note that although our framework for constructing the rs-SC does not explicitly model brain activity at a
neuronal level, several seminal studies have used the Ising model to investigate neuronal firing patterns with
success, showing that ensemble level activities can be well explained by pairwise Ising interactions [24,57]. To be
clear, from a connectomics perspective, if several brain regions are identified to have an increase in positive edges in
the rs-SC, collectively, that would suggest a wider-spread pattern of coupling (i.e., more likely to exhibit a pattern of
global coupling) that may subserve hyperexcitation. It is in this context that we conceptualize the Excitation-
Inhibition (E-I) ratio, a global (whole-brain) or local (ROI-level) estimation of EIB, computed as the sum of positive

edges divided by the sum of negative edges. For example, if a brain region in the network has 45 positive
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interactions (edges) and 34 negative interactions with other brain regions, then the E/I ratio = 45/34, or 1.32 (a value
of 1 indicates perfect EIB).
PET imaging included both [11C]-Pittsburgh compound B, as well as Florbetapir ([18F]-AV45). The PET

image processing steps can be found in the data dictionary (https://www.0asis-brains.org/). For this study, we utilized

the partial volume corrected mean cortical Standard Uptake Value Ratio (SUVR) with regional spread function (SUVR

rsf) provided in the dataset database (https://central.xnat.org). To assess global amyloid burden based on the PET

imaging, the mean cortical SVUR was defined as the arithmetic mean of SUVRs from the precuneus, prefrontal cortex,
gyrus rectus, and lateral temporal regions (include citations). A positive amyloid-p PET scan (AB+) was defined as
having a mean cortical SUVR rsf > 1.42 for [11C]-Pittsburgh compound B PET or SUVR rsf > 1.19 for Florbetapir
PET [39,58]. For simplicity with two different PET tracers utilized in this dataset, in the ensuing analyses we treat A}

as a dichotomous variable wherein an individual may be either AB- or Ap+.

Statistical analysis

Demographic, screening and clinical measures for males and females were compared using the Wilcoxon rank-sum
tests for continuous variables and Fisher's exact test for categorical variables. These non-parametric tests were
chosen due to their robustness to non-normality and applicability to small or unbalanced sample sizes. The statistical
tests were initially used to identify differences in demographic, screening, or clinical measures between males and
females. However, the decision to include these variables as covariates in the regression models was also based on
their potential impact on the outcome variables as informed by existing literature. This consideration led to the
addition to the AD risk factors being evaluated (g4 carriers (APOE)/non-carriers (NC), sex, age, and amyloid-f
positivity (AB+/AB-).

Whole-brain and hippocampal EIB were evaluated using linear regression models, which allowed us to
estimate the relationships between the predictors and the outcome variables, as well as assess potential interaction
effects. Three separate regression models were tested (with sex = 1 for females and sex = 0 for males): The first
regression model examined EIB as a function of age and sex interactions for cognitively normal males and females
without any known predispositions to AD neuropathology (i.e., individuals with CDR = 0, AB-, and APOE-£3/¢3
allele combinations). This model aimed to identify and evaluate the progression of EIB between sexes under normal-

aging conditions (N = 228, 143 Female) without any known genetic risk factors for AD. The second regression
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model assessed EIB as a function of age and APOE interactions for individuals that are AB- to evaluate the influence
of the APOE4 allele on EIB in healthy aging (N = 321, 202 Female). APOE is a dichotomous variable indicating
individuals with at least one APOE4 allele or none (€3/¢3). The third regression model examined EIB as a function
of the interactions between age, APOE, and amyloid (allowing for up to 4-way interactions between predictors), as
well as two-way interactions of APOE — amyloid when controlling for other confounds (N = 437, 269 Female).
Amyloid positivity is a dichotomous variable (Ap+/ApB-) based on thresholding of SUVR data from PET imaging, as
described in the methods section. This model was analyzed separately for each sex to investigate the effect of €4 and
amyloid on EIB specific to males and females.

Lastly, we tested for relationships between cognitive measures, neuropsychological tests, and EIB for each
sex using partial correlation analysis to control for age, APOE, and amyloid as confounds. Partial correlation
analysis was chosen as it allows for the evaluation of the association between two variables while controlling for the
effects of other variables. We further performed correlation analysis to test for associations between EIB and
screening measures (MMSE, GDS, Education). P-values were adjusted for multiple comparisons using the Holm
correction to control the family-wise error rate and reduce the likelihood of false positives. A p-value < 0.05 was
considered statistically significant, and p < 0.1 was considered marginally significant. Analyses were conducted in

MATLAB R2021b.
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Table 1. Demographics and screening measures of participants from OASIS-3 [39] used in this study. All subjects

are cognitively normal with CDR = 0

Females Males
(N =269) (N =168) P-Value
Age (years) 67.6 (9.3) 68.3 (8.9) 1.0
APOE Alleles
33 | 170 27 AB+) 104 (19 Ap+)
34| 82(29ABH) 5827 APH)
44 | 17 (11 Ap+) 6 (3 Ap+)
Total APOE-¢4 99 64 1.0
Total Ap+ 67 49 1.0
Education (years) 15.5 (2.5) 16.7 (2.6) <0.001
MMSE (total) |  29.2 (1.1) 29.0 (1.3) 1.0
GDS (total) 1.3(1.7) 1.2 (1.6) 1.0
rs-SC Quality (S,,) 0.95 (0.01) 0.95 (0.01) 1.0
rs-SC Quality (max f.) | 0.88 (0.02) 0.88 (0.02) 1.0
EIB — Whole Brain |  1.26 (0.08) 1.27 (0.08) 1.0
EIB - Right Hippocampus 1.35(0.35) 1.37 (0.31) 1.0
EIB — Left Hippocampus 1.35(0.32) 1.32 (0.31) 1.0

Mean values (SD), Holm-corrected P-Values, Excitation-inhibition balance (EIB), hybrid resting-state structural

connectome (rs-SC), Mini-Mental State Exam (MMSE), Geriatric depression scale (GDS)
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Table 2. Demographics, and screening measures of participants from OASIS-3 [39] used in secondary analyses
involving neuropsychological testing (a subset of those presented in Table 1). All individuals are cognitively normal

(CDR = 0) with completed neuropsychological testing

Females Males
(N =138) (N =093) P-Value
Age (years) | 72.3(6.2) 72.1(6.1) 1.0
APOE Alleles 1.0

33 | 89 (19 AB+) 57 (16 AB+)
34 | 42(19 Ap+) 33 (18 ABH)
44 | 7(5 ABH) 3 (2 Ap+)
Total APOE-¢4 49 36 1.0
Total Ap+ 43 36 1.0
Education (years) 15.1 (2.5) 16.7 (2.6) 0.011
MMSE (total) | 29 (1.2) 28.9 (1.3) 1.0
GDS (total) | 1.3 (1.8) 1.2 (1.6) 1.0
LM-1 | 14.6(3.9) 13.1(3.9)  <0.001
LM-11 | 13.9 (4.4) 12.5 (4.1) 0.052
ANIMALS | 20.8 (5.7) 21.3(.5.1) 1.0
VEGETABLES | 16.1(3.9) 13.2 (3.3) <0.001
TRAIL-A | 33.8(12.3)  34.3(14.5) 1.0
TRAIL-B | 90.1(49.3)  80.9(27.9) 1.0
WAIS-R | 57.1(13.2)  53.9(10.2) 0.322

BOSTON | 27.4(2.5) 28.3 (1.9) 0.031

Mean values (SD), Holm -corrected P-Values, Mini-Mental State Exam (MMSE), Geriatric depression scale (GDS),
Scored neuropsychological tests (higher scores imply better performance): LM — 1 (logical memory task), LM-II
(delayed logical memory), WAIS-R (Wechsler Adult Intelligence Scale), BOSTON (naming test), ANIMALS and
VEGETABLES (category and letter fluency test), timed neuropsychological tests (lower scores imply better

performance): TRAIL-A and TRAIL-B (trail making tests)
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Figure 1 Progression of EIB in cognitively normal males and females without AD risk factors (APOE-g3/e3, and

AB-). Progression of global EIB suggests that males may have a greater increase in inhibitory tone than females with

age (or decrease in excitatory interactions). Linear mixed effects regression analysis evaluating the interaction

effects of age x sex result in p = 0.021 (B =-0.002, SE = 0.001). No group differences were identified in the right or

left hippocampus. Results suggest that EIB is more stable in females than males with increasing age (in absence of

AD risk factors), perhaps due to some underlying compensatory mechanisms.
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Figure 2. Progression of EIB in cognitively normal males and females, comparing APOE4 and non-carrier (NC)
groups that are AB-. Top panel: whole-brain comparisons for male and female APOE4 carriers and non-carriers
(NC) based on linear regression analysis. While there is a group difference in whole-brain EIB between female
APOEA4 carriers and non-carriers, the difference can be partially explained by age differences in this cross-section,

resulting in a p-value of 0.06 for the main effect of APOE4 status. Middle and Bottom Panels: Here, only the right
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hippocampus for females demonstrates divergence for APOE4 carriers as compared to non-carriers. Linear
regression modeling to evaluate the interaction of age x APOE4 results in p = 0.013 (§ = 0.014, SE = 0.005). Results
suggest that females APOE4 carriers exhibit an increasing effect in EIB in the right hippocampus as compared to
non-carriers in the absence of significant amyloid deposits. No significant group differences were identified in the

left hippocampus for females or for either side of the hippocampus for men.
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Figure 3. Hippocampal EIB progression for cognitively normal males and females that are Ap-/Ap+ (with and
without APOE4). Panels from top to bottom (A-D): first is a comparison of hippocampal EIB progression in the
absence of known AD risk factors (APOE4 and AB+), then hippocampal EIB progression for amyloid negative (Af-

) individuals with at least one APOEA4 allele, followed by hippocampal EIB progression of amyloid positive (Ap+)
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that are non-carriers (NC) of APOE4, and last is hippocampal EIB progression for individuals that are APOE4
carriers and also AB+. These plots suggest that in the presence of significant amyloid (AB+), divergence between
APOE carriers and non-carriers is significant in the right hippocampus for males and females, however regression
modeling to evaluate the interaction effects of age x APOEA4 results in p =0.012 (3 = 0.014, S.E. = 0.012) for
females only. Further, linear regression modeling identified a marginally significant interaction effect of age and
amyloid status with p = 0.071 (B = -0.02, S.E. = 0.012) in the left hippocampus for females as well. Regression
results are insignificant in the hippocampus (right and left) for males (p > 0.1). Results suggest that features of
hyperexcitation (increasing EIB) in hippocampal regions may be driven by APOE4 rather than amyloid for

cognitively normal individuals, with more significant impact on females.
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Partial correlation analysis of E-I balance and neuropsychological testing
for females (controlling for age, APOE4, amyloid status, and education)
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Figure 4. Partial correlation analysis of EIB (whole-brain, left and right hippocampus) and neuropsychological
testing for females, controlling for co-variates of age, APOE4, and amyloid status. Presented here are partial
correlation analysis of EIB for the whole-brain, as well as left and right hippocampus with neuropsychological
measures. Statistically significant correlations are indicated with two stars (Holm-corrected p < 0.05) and partially
significant correlations are indicated with a single star (Holm-corrected p < 0.1). There are no statistically significant
(or marginally significant) results for males, and therefore are not included in this figure (all results for both sexes
included in Table 3). The plot here highlights differences in both whole-brain and hippocampal relationships with
neuropsychological tests when controlling for well-known covariates in this cognitively normal cross-section in
terms of susceptibility to AD neuropathology. Here, performance in category fluency tests (ANIMALS)
demonstrates a significant positive correlation of the right hippocampus, while performance in trail making test B is
significantly correlated with the EIB of the whole-brain. We further note that logical memory tests (1, I1) have
marginally significant positive partial correlations with right hippocampus EIB as well, while trail making test A is
also marginally significant with whole-brain EIB. We note that for trail-making tests, performance is determined by
the shortest time to completion, so negative correlations indicate a positive association with performance. Further,
visually we see a hemispherical dominance in terms of right hippocampal EIB with neuropsychological test
performance. We note here the pattern of Trail making tests having more influence from whole-brain dynamics than

either hippocampal region for both males and females (albeit more significantly for the latter). In sum, results
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suggest that increasing EIB of the hippocampus seen in females, particularly those at increased risk of developing

AD, correlated with improved performance in neuropsychological tests for females.
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Table 3. Partial correlation analyses of EIB and neuropsychological testing, controlling for the effects of age, sex,

APOE4, and amyloid status.

Whole-Brain Hippocampus (right) Hippocampus (left)
Females Males Females Males Females Males

LM —1 0.011 (0.9) -0.084 (1.0) 0.22 (0.078*) -0.043 (1.0)  -0.004 (0.965)  -0.261 (0.1)

LM-11 0.041 (1.0) -0.047 (0.66) 0.21 (0.097%*) -0.063 (1.0) -0.013 (1.0) -0.21 (0.213)
ANIMALS 0.048 (1.0) -0.082 (1.0) 0.23 (0.048**)  -0.029 (1.0) 0.027 (1.0) -0.161 (0.517)
VEGETABLES -0.026 (1.0) 0.133 (1.0) 0.072 (0.413) 0.112 (1.0) 0.019 (1.0) 0.243 (0.152)

TRAIL-A | -0.21(0.098%) -0.184 (0.652) -0.1 (0.75) -0.112 (1.0)  -0.051 (1.0) 0.062 (1.0)
TRAIL-B | -0.252 (0.034**) -0.113 (1.0) -0.1 (0.951) -0.112 (1.0)  -0.144 (0.855)  -0.016 (0.886)

WAIS-R 0.133 (0.731) 0.061 (1.0) 0.142 (0.49) 0.025(0.821)  -0.009 (1.0) -0.1 (1.0)

BOSTON 0.067 (1.0) 0.182 (0.721) 0.082 (0.662) 0.133 (1.0) 0.041 (1.0) 0.252 (0.148)

Linear partial correlation coefficient p (Holm-corrected P-Values), scored neuropsychological tests (higher scores
imply better performance): LM — 1 (logical memory task), LM-II (delayed logical memory test), WAIS-R (Wechsler
Adult Intelligence Scale), BOSTON (naming test), ANIMALS and VEGETABLES (category and letter fluency
test), timed neuropsychological tests (lower scores imply better performance): TRAIL-A and TRAIL-B (trail

making tests),

*: Adjusted P < 0.1

**: Adjusted P < 0.05
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Results

Computationally inferring excitation-inhibition balance from MRI imaging data

We compute excitation-inhibition balance (EIB) for the whole-brain as well as for left and right hippocampal
regions as determined by the Harvard-Oxford Atlas used in the processing of the MRI imaging. Here we follow the
three-stage process for obtaining an optimized hybrid resting-state structural connectome (rs-SC) via a function-by-
structure (FSE) embedding. To evaluate the quality of the generated rs-SC, we compute the similarity metric and
evaluate the quality of reconstructing observed FC. As described in the supplement, the similarity metric S,
evaluates the constraint and is computed as the correlation between the magnitude of rs-SC and the structural
connectome. The max f. metric measures the quality of reconstructing observed FC using Monte Carlo simulations
of the Ising model with our rs-SC being used to define the interaction network. The value for structural similarity
(S,) in this dataset is 0.9, the max is 0.98, with a mean of 0.95 and variance of 0.0001. The minimum correlation
between observed and simulated FC (max f.) in this dataset is 0.82, the maximum is 0.93, the mean is 0.88 with
variance of 0.0004. This suggests that the FSE framework works well in constructing the hybrid connectome with
low inter-subject variability. From the rs-SC, we compute E-1 by summing the positive edges in the network
(excitatory interactions) divided by the negative edges in the network (inhibitory interactions). This is computed for
the whole brain (105 ROIs) as well as isolating the bilateral hemispheres of the hippocampus (left and right) for

further analyses.

Excitation-inhibition balance of cognitively normal individuals without APOE4 or significant amyloid

With EIB computed for each subject at the whole brain and hippocampal levels, we first evaluate sex differences in
EIB for cognitively normal individuals without known risks of developing AD (e.g., APOE-£3/¢3 and AB-). A
subset of subjects from table 1, we note only a statistically significant difference in male (N = 85) and female (N =
143) education (in years) with Holm-corrected P < 0.001, noting that on average the females in this group have less
education (15.5 years) as compared to males (16.7). As a result, we account for education in our regression models
due to significant group difference between males and females. In figure 1 we present the progression of global EIB
and hippocampal EIB (left and right). Here, linear regression analysis evaluating whole-brain EIB with interaction
effects of age x sex result in p = 0.021 (B = -0.002, SE = 0.001), suggesting that males may have a greater increase

in global inhibitory tone than females (or decrease in excitatory interactions). No difference is found for this subset
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of the OASIS-3 cohort in terms of hippocampal EIB. The result presented in the figure suggests that females
maintain EIB from middle age to old age better than men, potentially a result of some compensatory mechanisms to
a decline in excitatory tone. Regression results including estimates, p-values and standard error for all main and
interaction effects are shared in Supplemental Table 1. Sensitivity analysis was performed using Cook's Distance for
outlier detection in our model. Exclusion of this outlier resulted in only marginal changes in our regression analysis
without significant changes to results or overall conclusion, suggesting that the influence of this single data point on
the estimated regression line is minimal. Therefore, the inclusion or exclusion of this outlier did not significantly
impact the overall results, lending further credibility to our conclusion that men may have a greater increase in

global inhibitory tone than women (or decrease in excitatory interactions) in the absence of AD risk factors.

Influence of APOE-¢4 on excitation-inhibition balance

Additionally in this study we aimed to evaluate on a larger scale, findings from our previous investigations of sex
differences in EIB with respect to the APOE4 allele [12,59], namely that cognitively unimpaired females with at
least one APOE4 allele exhibit shifts in excitatory interactions which may confer greater vulnerability to AD
neuropathology. Specifically, here we evaluate the progression of EIB with respect to age for whole-brain and
hippocampal regions for males and females separately to elucidate the impact of the APOE genotype. Presented in
Figure 2 is a comparison of hippocampal EIB progression for cognitively normal males (N = 119) and females (N =
202) that are AB-. While our data is not age or sex-matched as in our previous work, figure 2 includes whole-brain
comparisons for male and female APOE carriers and non-carriers (NC) based on linear regression analysis. While
there is a group difference in whole-brain EIB between female APOE carriers and non-carriers, the difference can be
partially explained by age differences in this cross-section, resulting in a p-value of p=0.061 (f = 0.02, SE =0.01)
for the main effect of APOE status. Visually, only the right hippocampus diverges for female APOE4 carriers as
compared to non-carriers. Linear regression analysis evaluating the interaction effects of age x APOE for females
results in p = 0.013 (B = 0.014, SE = 0.005). No significant group difference was identified in whole-brain dynamics
for either sex, the left hippocampus for women, or for either side of the hippocampus for men. This result suggests
that cognitively normal females that are APOEA4 carriers and amyloid negative exhibit an increasing effect with age

in the EIB of the right hippocampus as compared to non-carriers in the absence of significant amyloid. Regression


https://doi.org/10.1101/2023.08.21.554061
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.554061; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

results including estimates, p-values, and standard error for all main and interaction effects are shared in

Supplemental Table 2.

Excitation-inhibition balance in the presence of APOE4 and Amyloid Beta

With the inclusion of individuals with significant Ap deposits for both APOE4 carriers and non-carriers as described
in Table 1, we aim to determine results for three cases in the linear modeling of sex difference in whole brain and
hippocampal EIB. First, we evaluate age x APOE interaction, second, we evaluate age x Amyloid interactions, and
third we evaluate APOE x Amyloid interactions (noting here that both APOE and amyloid are dichotomous
variables). In Figure 3 we present a comparison of hippocampal EIB progression for cognitively normal males and
females that are AB+. The right hippocampus appears to be significant for both males and females with diverging
progression between APOE carriers and non-carriers, however linear regression analysis evaluating interaction
effects of age x APOE results in p = 0.012 (8 = 0.014, S.E. = 0.012) for the right hippocampus of females only.
Regression results are insignificant for males (p > 0.1). Further, linear regression modeling identified a marginally
significant interaction effect of age and amyloid status with p = 0.07 (p = -0.02, S.E. = 0.012) for the left
hippocampus in females only. No other interaction effects have any significance. Regression results including
estimates, p-values, and standard error for all main and interaction effects are shared in Supplemental Table 3. This
suggests that the association of EIB with age for both men and women may be affected by amyloid plagues, with

more significant differences in female APOEA4 carriers.

Relationship between excitation-inhibition balance and neuropsychological tests

To evaluate the relationship between EIB for whole-brain dynamics as well as for the hippocampal regions, we
perform partial correlation analysis between the neuropsychological test completed in this cohort and EIB of the
whole-brain, as well as the left and right hippocampus (for each sex separately). Here we are controlling for primary
co-factors of age, APOE4, amyloid status (with the latter two being dichotomous variables), and education due to
significant group differences between males and females (shown in table 1). The screening measures of subjects are
presented in Table 2, noting that they are a subset of the overall 437 used in this study. Further, as presented in table
2, we note significant differences between males and females for learning memory task I (LM-1), learning memory

task Il (LM-I1), category fluency for vegetables, and the Boston naming test (p < 0.05).
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Partial correlation analysis of EIB for the whole-brain, as well as left and right hippocampus with
neuropsychological measures are presented in figure 4. Statistically significant correlations are indicated with a star
(Holm-corrected P < 0.05), with all results presented in Table 3. The plot in figure 4 highlights differences in both
whole-brain and hippocampal relationships with neuropsychological tests in females when controlling for well-
known covariates in this dataset related to susceptibility of AD neuropathology. Here, the partial correlation of EIB
of the right hippocampus with categorical fluency (ANIMALS) is significant (p < 0.05) and marginally significant
with logical memory tests (p < 0.1). Further, the partial correlation of EIB of the whole-brain with trail making test
B is significant (p < 0.05) and marginally significant with trail making test A (p < 0.1). We note that the
performance in trail making tests is measured in seconds to completion, hence shorter times imply better
performance. Both sets of results are specific to the female group. Partial correlations of EIB with
neuropsychological tests are insignificant for the male group when controlling for co-factors of age, APOE, and
amyloid status. Further, there is a more right hemispherical dominance in terms of hippocampal EIB for females
compared to left hemispherical dominance for males in most tasks, however males do not have any statistically
significant correlations between EIB of the hippocampus or whole-brain with these neuropsychological tests when
controlling for co-factors of age, APOE, and amyloid status, and education. This, in contrast to females that do have
more significant relationships with the right hippocampus. We note here the pattern of Trail making tests having
more influence from whole-brain dynamics than either hippocampal region for both males and females (albeit more

significantly for the latter).

Discussion

The present study was conducted to determine how excitation-inhibition balance (EIB) in cognitively normal
individuals may be associated or influenced by AD risk factors such as age, sex, APOE genotype, and Ap. Using a
framework based on statistical physics, we computationally inferred EIB to macroscopically evaluate whole brain and
hippocampal signatures of hyperexcitation. The novelty of this model lies in integrating microscale principles at a
connectome level to bridge the gap between cell-to-network level degeneration. We previously demonstrated age- and
sex-dependent hyper-excitation within regions of the default mode network (DMN) in a cohort of AB- cognitively
normal female carriers of APOE4 allele [12,59] where traditional measures of functional connectivity were unable to

detect the subtle differences in brain dynamics between female carriers and non-carriers in middle age [60,61]. Several
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studies have investigated EIB as an effect of the normal aging and neurodevelopmental process [3,62—64], however
few incorporate known sex-differences in brain activity and development [65].

The results presented herein demonstrated that in the absence of AD risk factors (APOE-e4/AB+), whole-brain
EIB progresses differently between males and females with age, with males decreasing more significantly as they get
older. Further, performing regression modeling with the inclusion of individuals having at least one APOE-¢4 allele
(AB-) produced a significant age-by-APOE interaction in the right hippocampus for females only. The effect remained
unchanged with inclusion of AP+ individuals. Last, we performed partial correlation analyses between EIB and
neuropsychological testing, revealing positive associations between hippocampal and whole-brain EIB with test
performance (for females only). Significant relationships between EIB in the right hippocampus with categorical
fluency and whole-brain EIB with a trail-making test were identified. Each of these results will be discussed below.

The investigation in the context of normal aging is based on N = 228 (143 Female) individuals that have the
APOE £3/€3 combination and classified as AB-. We note as mentioned in the methods section, the exclusion of
individuals with the APOE-g2 allele. Deciding whether to include or exclude subjects with additional allele
combinations including APOE-E2 merits further discussion. In this study, we aimed to expand on our previous work
in a larger cohort evaluating EIB as a potential MRI-based biomarker demonstrating pathophysiological differences
in males and females that may confer latter greater vulnerability to AD neuropathology. By including individuals with
additional allele combinations, we would then have to include an additional variable in our analysis, namely allele
pair combinations. While it may provide additional insight into an EIB spectrum among different allele combinations,
it would also decrease the statistical power of our results as some allele combinations would have significantly fewer
subjects than others for each sex (even more so when breaking down by amyloid positivity as well). Our future work
will aim to drill down further, beyond simple €3-g4 comparisons to better understand the relationship between the
allele combinations and EIB. Here, our study demonstrates that alterations in the excitation/inhibition balance (EIB)
are complex mechanisms that are associated with aging, sex, and the APOE4 genotype before cognitive impairment
occurs. Interestingly, we observed a reduction in EIB with age in males, presented in Figure 1, which may be protective
against hyperexcitability. It has been reported that alterations of tonic inhibition lead to hyperexcitability, which could
contribute to the development of neurodegenerative diseases [66]. Thus, the reduction of excitation with aging in
males might serve as a protective mechanism against neurodegeneration. Further research is needed to determine the

underlying mechanisms of this phenomenon and its implications for disease progression. We acknowledge that it is
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difficult to interpret whether females have increased excitatory tone or males have increased inhibitory tone with
respect to healthy aging and what other factors may be involved (genetic, hormonal, physiological, etc.).

These sex differences are highlighted further with the inclusion of individuals with APOE- &4 and provide
additional support to our previous findings in that females with at least one APOE4 allele are at higher risk of AD
neuropathology due to a hyperexcitation of critical brain regions. Specifically, we found that EIB diverges
significantly in the right hippocampus for female carriers, with no change in either side of the hippocampus for males.
Shown in Figure 2, these findings are biologically significant in the following two important ways:

1) They are consistent with the recently proposed theory of a hyper-excitable state in the earliest AD pathology,
due to the susceptibility of inhibitory GABAergic interneurons to ApoE4 fragment-mediated neurotoxicity (in the
dentate gyrus or DG of hippocampus).

2) They may help explain sex differences in AD (females are at a substantially greater risk of developing AD) by
linking the earliest pre-clinical changes of AD pathology, i.e., hyper-excitability in the hippocampus, to reported sex-
differences in functional connectivity developed in early adulthood and sustained across the life span. Indeed, fMRI
studies have shown that females exhibit higher resting-state functional connectivity in the temporal lobe, and thus
likely a differentially higher excitation relative to inhibition). Given the complexity multifactorial nature of AD,
network-level neuroimaging metrics may be more sensitive to subtle structural and functional disruptions than
traditional analyses [67,68].

In fact, our results suggest that APOE, but not amyloid, may be the driver for increased EIB deviations as
demonstrated by the interaction effect of APOE and age, having no change in statistical significance with the
inclusion of AB+ individuals. However, in this cohort (OASIS-3), the cognitively normal group is heavily skewed in
terms of AB- individuals, which may result in low statistical power for differentiating between APOE and amyloid-
mediated effects in this cross-section. In our analysis, we recognize several limitations that may impact the
interpretation of our findings. An age-matched cohort was not included in our comparisons, an aspect which may
have influenced our results and interpretation., Inclusion of an age-matched cohort in the future may allow for a
more robust comparison and analysis of an APOE4 effect. Further, our study lacks information regarding tau load,
preventing the study of EIB with relation to the triad of AD risk (APOE4, amyloid, and tau) in terms of healthy
aging and AD risk. Some studies have found that the interaction effect between APOE4 and amyloid-f, rather than

the sum of their independent effects, was related to increased tau load in Alzheimer’s disease-vulnerable regions
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[69,70]. This may help to explain the lack of interaction between APOE4 and amyloid-p. The interaction between
one APOEA allele and amyloid- is hypothesized to be related to increased tau load, while the interaction between
amyloid-f and two APOE4 alleles was related to a more widespread pattern of tau aggregation [69,71]. With Ap-
mediated hyper-excitation emerging as a promising candidate mechanism of AD pathogenesis: inhibitory
GABAergic dysfunction is predictive of increased neuronal activity, while the increased damage of dendrites may
be associated with a silencing effect of neuronal circuits (the yin and the yang of AD degeneration). However, recent
evidence however, points to hyper-excitability of neuronal circuits as a precursor to the formation of amyloid
plaques [70,72,73], and a major driver of the cascading effect of tau pathology, propagating from the entorhinal
cortex to the hippocampus and beyond to other cortical regions [74]. In fact, one study has even demonstrated
differential effects of sex by APOE interaction on tau accumulation, in that only one APOE &4 allele is sufficient to
increase tau accumulation in females, while two APOE &4 alleles are needed to cause a similar effect in males [75].
In future studies, we aim to identify EIB changes which may be related to APOE, A, and tau in healthy aging as
well as in individuals that are cognitively impaired and/or have AD to identify a more complete picture of EIB
progression in relation to neurodegeneration and these risk factors. The complex, multifactorial nature of
Alzheimer’s disease makes it essential that we continue to develop techniques to meaningfully integrate multiple
neuroimaging modalities to increase the sensitivity to detect very early network aberrations associated with risk for
this disease.

Last, we found an association between EIB and neuropsychological testing, specifically in females when
controlling for age, education, APOE, and amyloid positivity. We note that while it is true that amyloid presence is a
defining feature of AD pathology, it is also a risk factor that may precede the clinical manifestations of the disease.
Controlling for amyloid status allows us to account for the influence of preclinical AD pathology on the observed
associations between EIB and neuropsychological variables. Further, including both APOE and amyloid in the study
of hyperexcitation differences in cognitively normal individuals allows us to account for potential genetic and
pathological influences on neural activity, as both factors have been implicated in the development and progression
of Alzheimer's disease.

As shown in figure 4, partial correlation analyses revealed positive associations between EIB and
neuropsychological testing for females, having significant relationships between EIB in the right hippocampus with

categorical fluency and whole-brain EIB with a trail-making test. Performance in category fluency tests
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(ANIMALS) is significantly correlated with EIB of the right hippocampus for women, while performance in trail
making test B is significantly correlated with the EIB of the whole-brain. We further note that logical memory tests
(1, 1) have marginally significant partial correlations with EIB of the right hippocampus as well, while trail making
test A is also marginally significant with whole-brain EIB. We should clarify that the partial correlations we've
presented highlight the unique contribution of EIB to neuropsychological performance, independent of the influence
of covariates such as age, education, APOE, and amyloid status. For example, a lower partial correlation between
left hippocampal EIB and verbal memory tasks does not necessarily signify a negligible overall association. The
traditionally acknowledged association between left Hippocampus and verbal memory could indeed be a
downstream consequence of factors such as APOE and amyloid.

Further, there is also a more hemispherical dominance in terms of hippocampal EIB however males have
no significant correlations in the EIB as compared to females that have more significant relationships with the right
hippocampus. The observed association between right hippocampal EIB and verbal memory tasks, as opposed to left
hippocampal (left) EIB, might appear surprising given the traditional view of left Hippocampus being more involved
in verbal memory processing. However, recent research has suggested that the lateralization of memory functions is
more complex than initially thought, with some studies showing the involvement of both sides of the hippocampus
in verbal memory tasks [76,77]. To that end, these results shed light on a pattern of hemispheric dominance in the
hippocampus, with women demonstrating a stronger correlation with the right hippocampal EIB. This finding might
suggest sex-specific patterns of hippocampal involvement within the context of AD risk, a potentially important
consideration when assessing the cognitive status and potential AD risk of female patients. Further research is
needed to confirm this hypothesis and better understand the underlying mechanisms. We note here the pattern of
Trail making tests having more influence from whole-brain dynamics than either hippocampal region for both males
and females (albeit more significantly for the latter). The pattern of Trail Making Tests having more influence from
whole-brain dynamics than hippocampal regions for both males and females suggests that these tests might be more
sensitive to global cognitive changes associated with AD risk, rather than being specific to hippocampal function
[78]. This further highlights the importance of considering sex-specific differences when evaluating the relationship
between EIB and cognitive performance in the context of AD risk. Further, while our analysis does control for

factors like APOE and amyloid status, it's crucial to note that our intention is not to dismiss the role of AD risk
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factors. Instead, we aim to delve deeper into the independent role of EIB in cognitive performance, beyond these
known risk factors.

These results suggest that increasing EIB is correlated with improved performance in neuropsychological
tests for females and related two ongoing hypothesis; the first being that increased excitation (a positive shift in EIB)
is associated with better performance in neuropsychiatric testing (as others have demonstrated with transcranial
magnetic stimulation and transcranial direct current stimulation [79,80]), and second being that potential
hyperexcitation due to APOE-E4 both precedes and may even influence increased spread of amyloid plaques before
cognitive impairment is identified [81]. It is also possible that the APOE-E4 genotype may be protective against a
subtle deficit associated with B-amyloid pathology, and consistent with the antagonistic pleiotropy hypothesis;
whereby a gene controls both beneficial and detrimental traits — and provides novel evidence that these effects
persist into older age, even among individuals who cognitively unimpaired (but may have additional AD risk
factors) [82—84]. Despite strong evidence of the clinical utility of neuropsychological tests, however, it is unclear
what neurobiological information the test scores provide. While the progression of the pathophysiological process of
dementia strongly affects neuropsychological function [85,86], a large amount of variance is left unexplained even
with multimodal biomarker information [87—89]. Moreover, it is hard to predict whether the presence of
pathophysiological markers directly leads to neural dysfunction within the behaviorally relevant regions [90].

Further, the cross-sectional design of our study precludes us from making causal inferences about the
relationship between EIB and Alzheimer's disease (AD) neuropathology. Longitudinal analysis would be necessary
to investigate EIB as a predictor of individuals who subsequently develop AD neuropathology. In addition,
neuropsychological test data was only available for individuals aged 65 or older, which may limit the
generalizability of our findings to younger populations. Last, we recognize that hormonal differences between males
and females could be a confounding factor in our study, as they may influence EIB and susceptibility to AD. Future
research should consider hormonal information when investigating sex differences in EIB and its relation to
neurodegenerative diseases (in particular, evaluating female EIB progression separated by pre - and post-
menopause).

Last, our findings contribute to the understanding of how EIB is involved in neurodevelopmental disorders
and neurodegenerative diseases (such as autism spectrum disorder, schizophrenia, attention deficit/hyperactivity

disorder and Alzheimer’s disease) and how sex differences in EIB may be leveraged to inform therapeutic
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intervention and clinical endpoints. As a therapeutic target, transcranial direct current stimulation (tDCS) has
emerged as a promising therapy for rehabilitating neurodevelopmental disorders such as autism, schizophrenia,
attention deficit/hyperactivity disorder, and even epilepsy [80,91-93]. The mechanism behind tDCS's effects is the
modulation of excitatory and inhibitory activity, making it a valuable tool for restoring excitation-inhibition balance.
Clinical studies have demonstrated that tDCS therapy is well-tolerated by patients and appears to improve behavior
and cognitive functions. Further, AD patients present an increased prevalence of epilepsy, with neural
hypersynchrony and aberrant oscillatory activity contributing to cognitive deterioration [94-96]. Levetiracetam
(LEV) has shown effectiveness in reducing epileptiform activity in AD patients, correlating with improved cognitive
performance [97,98]. Ongoing clinical trials are assessing LEV's effectiveness in AD patients without epilepsy,
indicating potential future clinical applications of our hybrid connectome and EIB in the context of epilepsy and
Alzheimer's disease [99].

Our results, along with the growing body of evidence conceptualizing AD neuropathology in terms of an
imbalance of excitation and inhibition suggests that females early in the disease progression (particularly those with
the APOE-E4 genotype) may be more responsive to tDCS or low doses of anticonvulsants. The hybrid connectome
(rs-SC) framework used to infer excitation-inhibition balance at an individual level, may be a step towards an MRI-
based biomarker to identify hyperexcitation-induced neurodegeneration before traditional indicators of AD arise and
potentially evaluate therapeutic interventions and clinical endpoints.
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Supplementary Material

MRI data preprocessing

First, extra-cerebral tissue was removed from the T1-weighted anatomical scans using a robust automated brain
extraction program trained on manually “skull-stripped” MRI data (ROBEX) [100]. Skull-stripped volumes were
visually inspected, and manually edited if needed. Intensity inhomogeneity normalization using the

MNI nu_correct tool (www.bic.mni.mcqill.ca/software/) was performed on the anatomical scans. For diffusion-

weighted MRI (DWI) data, we use FSL eddy-correct tool (http://www.fmrib.ox.ac.uk/fsl) to correct for head motion

and eddy current distortions, each subject’s raw DWI volumes were aligned to the by image, and the gradient table
modified accordingly. Using the Brain Extraction Tool (BET) from FSL [101], non-brain tissue was removed from
the DWIs. And lastly, we adopt dtifit function from FSL to compute fractional anisotropy (FA) map for each
subject.

Whole brain tractography

For computing whole-brain tractography, we leveraged the Runge-Kutta (RK2) algorithm, which uses the second
order Runge—Kutta method to solve a differential equation to estimate the fiber trajectory more reliably [102]. The
main mathematical technique behind RK2 is to equate the tangent vector with the principal eigenvector. The

Diffusion toolkit (http://trackvis.org/dtk/) was used to implement the RK2 approach. Further, fiber tracking was

restricted to regions where FA > 0.18, thus avoiding grey matter (GM) and cerebrospinal fluid (CSF). Note that fiber
paths were stopped if the fiber direction encountered a sharp turn (with a critical angle threshold > 45°). These
parameter settings for each method that had been previously optimized by our group [103] or others; in most cases,

they were the default parameter settings of the methods. To avoid undue complexity, we concede that changing
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these parameters could conceivably affect how the methods are ranked. Moreover, all fibers shorter than 10 mm
were filtered out, as these were much more likely to be false positive fibers. During the processing stage of the

imaging sessions a further 18 sessions were excluded from this study due to poor structural imaging.

Computing structural networks

Brain regions (ROIs) covering the entire brain comprised 132 regions (91 cortical ROIs from the FSL Harvard-
Oxford Atlas maximum likelihood cortical atlas, 15 subcortical ROIs from the FSL Harvard-Oxford Atlas maximum
likelihood subcortical atlas [104] and 26 cerebellar ROIs from the AAL atlas [105] which are included in the Conn
toolbox. Midline cortical masks were bisected to separate left and right components so as to define hemispheric
ROIs for each cortical region where possible. As this is a probabilistic atlas, masks were thresholded at 10% to
ensure inclusion of tissue along the gray-WM interface, where fiber orientation mapping and tractography are most
reliable [103]. In order to map these 132 ROIs from atlas space to subject’s DWI space, we firstly map the atlas T1
to the subject T1 using a correlation ratio cost function and map a subject’s T1 to subject’s FA using a mutual
information cost function. These two steps can be done using linear registration (i.e., flirt[101] function in FSL
toolbox) as described in the processing steps. Last, after combining transformation matrices from previous steps, the
132 ROIs were transformed to each subject’s DWI or FA space using nearest-neighbor interpolation. Each voxel
was uniquely assigned to the mask for which it had the highest probability of membership, thus ensuring that ROI
masks did not overlap with each other after registration.

The number of detected fibers connecting brain regions was determined from the tractography results. If a fiber
intersected two ROls, it was considered as connection between them. This process was repeated for all ROl pairs, to
compute a whole-brain fiber connectivity matrix. This matrix is symmetric, by definition, and has a zero diagonal
(no self-connections [106]). In this study, to avoid computation bias when constructing the hybrid resting-state
structural connectome, each brain matrix was normalized by the maximum value in the matrix, as matrices derived
from different subjects may have different scales and ranges.

Functional MRI processing and functional network construction
The raw fMRI signals were processed using the CONN toolbox (McGovern Institute for Brain Research, MIT,
USA) running under MATLAB (Mathworks), and FSL (FMRIB Software Library

v5.0, http://www.fmrib.ox.ac.uk/fslwiki, Analysis Group, FMRIB, Oxford, UK). For a detailed description of the

CONN pipeline, the online documentation can be consulted (https://web.conn-toolbox.org/home). Here a short
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summary is provided for the main steps of functional realignment and unwarping, slice-timing correction, outlier
identification, direct segmentation and normalization, functional smoothing, followed by regressing out confound
effects.

First, a realigning and unwarping procedure is used for co-registration and resampling of all scans to the
first scan using b-spline interpolation [107]. This is followed by temporal misalignment correction by time-shifting
and resampling the slices using the sinc-interpolation (this matches the time in the middle of each acquisition) [108].
Next, the outlier identification procedure is followed, with the individual volumes flagged as potential outliers if the
framewise displacement (FD) of a given volume is above the default CONN Toolbox threshold of 0.9 mm or global
BOLD signal changes above five standard deviations. Once potential outliers are removed, averaging the remaining
volumes determines the new reference image. This image is then used for segmentation and normalization. All
samples must then be normalized into standard MNI space. Scans are segmented into white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF). In this step, the structural T1 images are used to improve the quality of
the registration, using the unified segmentation and normalization procedure [109]. To increase the signal-to-noise
ratio, fMRI signals are smoothed by convolving them with an 8 mm Gaussian kernel. Last, confound effects from
motion artifact, WM, and CSF were regressed out of the signal [110]. This pipeline has been applied and verified in
our previous studies [59,60,110]. In this study, the completeness of the fMRI imaging is an important component for
our methodology. Thus, after evaluating the processed fMRI imaging results, a further 26 imaging sessions were
removed from this study for missing more than fifty percent of fMRI volumes (i.e., less than 82 points in the time
series). Once the resting-state fMRI signal is preprocessed, functional brain networks can be derived by computing
Pearson correlations between all pairs of ROIs in the BOLD signal time series using the same 132 labels as in the
structural brain networks. Using the same 132 labels as in the structural brain networks, functional brain networks
were derived by computing Pearson correlations between all pairs of ROIs in the BOLD signal time series. A subset
of 105 regions was used in this study (after computing the functional networks, a subnetwork was extracted

excluding the brain stem and cerebellar regions).

Constructing a metric of excitation-inhibition balance (EIB) based hybrid resting-state structural connectivity
Recently our team [12,56] combined MRI-derived multimodal connectome data (resting-state functional and
structural) with statistical physics to obtain a macroscopic account of inhibitory and excitatory long-range connections.

Here, we employed the Ising model, a well-known spin-glass model from statistical physics in which the states, also
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referred to as “spin configurations”, of interacting units — in our case brain regions connected by white matter edges
— are constrained to be either 1 (“active”) or -1 (“inactive”). As described in [12,56] we construct a function-by-
structure embedding (FSE) using a constrained pseudolikelihood estimation technique wherein pairwise interaction
coefficients are inferred from the observed data (BOLD time series). The model assumes binary data, hence we
binarize the resting-state fMRI signals. The binarized activity pattern of all ROIs at time t (t = 1,2, ..., tmaxs ) IS
denoted s(t) = s, (t),s,(t), ...sn(t) € {—1, +1}N. Note that tmax is determined as a result of the fMRI scan time. Here
s, (t) = = 1 indicates that an ROI is either active (+1) or inactive (-1). First, the time series goes through a z-score
normalization procedure, resulting in zero mean and unitary variance. The interaction J;; between two regions should
be directly linked back to the diffusion MRI-derived structural connectivity between them as informed by
tractography, so we add a constraint to the Hamiltonian function as H(s) = — }i<;Ji;sis;j , such that |]i‘]-| o W; ;, where
W;; is the structural connectivity between pairs of ROIs, and the external force or bias terms are dropped in the case
of resting-state. This ensures that in the pseudolikelihood estimation of J, we constrain it with the structural
connectivity (under the assumption that structural connectivity informs spin models governing brain dynamics).

Conceptually, if two regions are co-active or co-inactive, then the interaction (J;;) is likely positive (excitatory), and

if one region is active while the other is inactive, then the interaction (J;;) is likely negative (inhibitory).

Hence, the framework for constructing the hybrid resting-state structural connectome (rs-SC) using the FSE
framework follows a 3-stage processes (described in more detail in our previous work) [12,56]. In stage 1, we estimate
both edge strength in the connectome network as well as a sign (+/-) representing excitatory or inhibitory interactions
(Ji;) based on structural and functional MRI imaging. In stage 2, two metrics are used to evaluate parameter quality,
namely a similarity metric S, and the maximum of a functional correlation function max f.. The similarity metric
Sm(]) is simply the correlation between |rs-SC| and the structural connectome. This metric is used to gauge the quality
of the constraint component in the framework. Further we generate a correlation function f.(FSE) by simulating the
Ising model with MCMC simulations to reconstruct FC from the inferred interactions between brain regions (J;;),
computing a Pearson correlation between observed and simulated functional connectivity. Here we identify the
max f.(J), which represents the maximum achieved correlation between observed and reconstructed FC under
empirically determined FSE parameters [12,56]. As these values are dependent on parameter choices within the FSE

framework, in Stage 3 a grid search is performed to find the optimal values for the tuned parameters which maximizes
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f(FSE) = max f, + S,, which intends to take equal weight between the underlying structure of the rs-SC and the
accuracy with which it can reconstruct FC These two metrics were computed for each subject individually, to identify
the optimal parameters for constructing a subject-level hybrid resting-state structural connectome (rs-SC). The code

used to compute the rs-SC can be found at https://github.com/iforte2/hybrid-connectome. This procedure is followed

for all subjects in constructing an optimized J matrix per subject, which we term the resting-state structural connectome
or rs-SC. In this manner, dynamics generated using this J matrix as the interaction coefficients of an Ising spin-glass

system maximally explain the observed resting-state fMRI time series.

Note that although our framework for constructing the rs-SC does not explicitly model brain activity at a
neuronal level, several seminal studies have used the Ising model to investigate neuronal firing patterns with success,
showing that ensemble level activities can be well explained by pairwise Ising interactions [24,30]. To be clear, from
a connectomics perspective, if several brain regions are identified to have an increase in positive edges in the rs-SC,
collectively, that would suggest a wider-spread pattern of coupling (i.e., more likely to exhibit a pattern of global
coupling) that may subserve hyperexcitation. It is in this context that we conceptualize the Excitation-Inhibition (E-I)
ratio, a global (whole-brain) or local (ROI-level) estimation of EIB, computed as the sum of positive edges divided

by the sum of negative edges. For example, if a brain region in the network has 45 positive interactions (edges) and

34 negative interactions with other brain regions, then the E/I ratio = g or 1.32 (a value of 1 indicates perfect EIB).

Partial correlation analysis of E-I balance and neuropsychological testing
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Supplemental Figure 1. Partial correlation analysis of EIB (whole-brain, left and right hippocampus) and

neuropsychological testing for females, controlling for co-variates of age and education. Presented here are partial


https://github.com/iforte2/hybrid-connectome
https://doi.org/10.1101/2023.08.21.554061
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.554061; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

correlation analysis of EIB for the whole-brain, as well as the hippocampus (right and left) with neuropsychological

measures. Statistically significant correlations are indicated with two stars (Holm-corrected p < 0.05).

Supplemental Table 1. Regression model results examining EIB as a function of age and sex interactions for
cognitively normal males and females without any known predispositions to AD neuropathology (i.e., individuals

with CDR = 0, AB-, and APOE-¢3/¢3 allele combinations).

Whole-Brain Hippocampus (RH) Hippocampus (LH)

B P S.E. B P SE B P SE
Intercept | 1.25 0  590E-03 1347 0 0026 1315 0  0.026
Age | -0.001 0.057 0.0006 -0.007 0.018 0.002 -0.002 0.496 0.002
Sex | 0.015 0.102 0009 0014 0735 0.043 -0.004 0.919 0.043

Age:Sex | -0.002 0.046  0.001 0.003 0.461 0.004 0.0004 0.936 0.004

Supplemental Table 2. Regression model results assessing EIB as a function of age and APOE4 interactions for

individuals that are AB- to evaluate the influence of the APOEA4 allele on EIB in healthy aging.

Whole-Brain Hippocampus (RH) Hippocampus (LH)

B P SE B P SE B P SE
Intercept | 1257 0  0.006 1354 0 0027 1317 0  0.026
Age | -0.001 0.065 0.0007 -0.007 0.022 0.003 -0.002 0.493 0.002
Sex | 0.018 0.071 001 0011 0.809 0045 -0.004 0.912 0.043
APOE4 | 0.022 0063 0011 0015 0769 0053 0.029 0.566 0.051
Age:Sex | -0.002 0.053 0.001 0.003 0478 0.004 0.0004 0935 0.004

Age;APOE4 | 0.0004 0.730 0.001 0.013 0.012 0.005 -0.002 0.602 0.005
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SeX:APOE4‘-0.029 0.117 0.019 0.034 0.692 0.086 0.088 0.286 0.082

Age:SeX:APOE4‘-0.000 0.881 0.002 -0.013 0.199 0.010 -0.007 0.443 0.009

Supplemental Table 3. Regression model results examining EIB as a function of the interactions between age,
APOE4, and amyloid (allowing for up to 4-way interactions between predictors), as well as two-way interactions of

APOE4 — amyloid when controlling for other confounds.

Whole-Brain Hippocampus (RH) Hippocampus (LH)

B P SE B P SE B P SE
Intercept | 1.255 0 0006 1.342 0 0027 1314 0 0025

Age | -0.001 0.066 0.0007 -0.007 0.021 0.003 -0.002 0.481 0.002

Sex | 0.014 0154 0011 0017 0.702 0.045 -0.004 0.922 0.042

APOE4 | 0.022 0.061 0012 0039 0475 0055 0.024 0.638 0.052

Amyloid | 0.004 0.840 0023 0052 0.613 0103 0.136 0.159 0.096

Age:Sex | -0.002 0.053 0.001 0.003 0475 0.004 0.0004 00933 0.004
Age:APOE4 | 0.0004 0731 0.001 0.013 0.012 0.005 -0.002 0592 0.005
Sex:APOE4 | -0.030 0128 0.021 0011 0902 0091 0.074 0.375 0.084
Age:Amyloid | -0.002 0402 0.002 -0.005 0.685 0.012 -0.021 0.073 0.011
Sex:Amyloid | 0.0005 0.988 0.033 -0.089 0551 0149 -0.172 0219 0.14
APOE4:Amyloid | -0.014 0.615 0.028 -0.079 0536 0.128 0054 0.649 0.121
Age:Sex:APOE4 | -0.0003 0.881 0.002 -0.0132 0.196 0.012 -0.007 0.430 0.009
Age:Sex:Amyloid | -0.001 0.661 0.003 -0.004 0.811 0.017 0.015 0.347 0.016
Age:APOE4:Amyloid | 0.001 0717 0.003 -0.001 00929 0.015 0016 0.263 0.014
Sex:APOE4:Amyloid | 0.034 0417 0.042 0.112 0561 0.193 -0.155 0.389 0.181

Age:Sex:APOE4:Amyloid | 0.001 0.734 0.005 0.015 0.485 0.022 0.002 0.896 0.021
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