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SUMMARY

The ch12q13 obesity locus is among the most significant childhood obesity loci identified
in genome-wide association studies. This locus resides in a non-coding region within FAIMZ2;
thus, the underlying causal variant(s) presumably influence disease susceptibility via an
influence on cis-regulation within the genomic region. We implicated rs7132908 as a putative
causal variant at this locus leveraging a combination of our inhouse 3D genomic data, public
domain datasets, and several computational approaches. Using a luciferase reporter assay in
human primary astrocytes, we observed allele-specific cis-regulatory activity of the immediate
region harboring rs7132908. Motivated by this finding, we went on to generate isogenic human
embryonic stem cell lines homozygous for either rs7132908 allele with CRISPR-Cas9
homology-directed repair to assess changes in gene expression due to genotype and chromatin
accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to
regulate feeding behavior. We observed that the rs7132908 obesity risk allele influenced the
expression of FAIM2 along with other genes, decreased the proportion of neurons produced
during differentiation, up-regulated cell death gene sets, and conversely down-regulated neuron
differentiation gene sets. We have therefore functionally validated rs7132908 as a causal
obesity variant which temporally regulates nearby effector genes at the ch12q13 locus and

influences neurodevelopment and survival.
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INTRODUCTION

Childhood obesity affects approximately 14.7 million individuals aged 2-19 years in the
United States, corresponding to approximately one in five children and adolescents®. The global
prevalence of childhood obesity has increased substantially, rising from less than 1% to more
than 7% in recent decades®. Obesity in childhood leads to a higher likelihood of obesity in
adulthood® and increases the risk of developing leading causes of poor health and early death
via hypertension, metabolic disorders, cardiovascular disease, and common cancers®.

Monogenic cases of obesity arise from highly deleterious chromosomal deletions or
mutations in crucial genes, while in contrast, common cases of polygenic obesity are driven by a
combination of multiple environmental and genetic factors®. This genetic component to
polygenic obesity can explain a large portion of obesity risk, with heritability estimates ranging
from 40-85%°, but remains incompletely understood. However, it is known that neuronal
pathways in the hypothalamus control food intake and are key regulators for both monogenic

and polygenic obesity>. Several human stem cell-derived hypothalamic neuron models have
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been develope and used to investigate the molecular basis of body weight regulation
Genome-wide association studies (GWAS) have identified genomic regions that harbor
susceptibility variants conferring common adult obesity?®?* and childhood obesity?*?° risk. An
ongoing challenge in the field is to translate such GWAS loci into meaningful discoveries that
can expand our knowledge of the genomic basis of complex traits. Most variants identified by
GWAS reside within non-coding regions, so their underlying molecular mechanism of action is
frequently far from obvious®. It is widely thought that these non-coding variants likely influence
disease risk by functioning within cis-regulatory elements and altering expression of effector
genes within their corresponding topologically associating domain (TAD). These effector genes
are not necessarily the most proximal gene to the association signal, as cis-regulatory elements

can influence gene expression up to megabases away. Therefore, functional characterization

must be carried out to determine specifically which variants are causal and in turn which
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corresponding effector genes, near or far, confer susceptibility to disease. To date, most
attention has been focused on only the very strongest GWAS loci, such as at FTO?**?, while
many other significantly associated loci that rank lower in the signal list remain relatively
understudied.

Our latest childhood obesity trans-ancestral GWAS meta-analysis on behalf of the Early
Growth Genetics (EGG) consortium identified 19 loci that achieved genome-wide
significance®*?. This included a locus on chr12q13 that was initially annotated based on its

nearest gene, FAIM2. This signal has also been independently reported for obesity risk in

29,30 31-34

children and adults across several ancestral populations. Crucially, this locus is more
pronounced in children than in adults and ranks among more well-studied loci such as FTO,
MC4R, TMEM18, and BDNF in the pediatric settingZ3; as such, it has been less studied to date
given its less obvious role in adult obesity pathogenesis.

Our variant-to-gene mapping efforts have identified candidate cis-regulatory elements
harboring childhood obesity risk variants in human embryonic stem cell (ESC)-derived
hypothalamic neurons™ and other neural cell types®>. In this study, we elected to characterize
the relatively understudied chr12ql13 locus and investigate the function of the lead candidate
causal variant, rs7132908. We observed that the rs7132908 region contacts the promoters of

FAIM2 and several other genes within its TAD*?3°

and therefore nominated these genes as
candidate effector genes at this locus, with FAIM2 having additional support via colocalization
with expression quantitative trait loci (eQTL) data®®. FAIM2 protects neurons from Fas-induced

3738 and regulates neurite outgrowth®, neuroplasticity*®, and synapse formation** but

apoptosis
has not been directly implicated in obesity pathogenesis to date. In this study, we initially used
reporter assays in a relatively accessible astrocyte cell model to characterize the cis-regulatory
activity of the region harboring rs7132908 and found that this variant regulated FAIM2

expression with allele-specificity. Next, we used an established differentiation protocol’ to

generate a relatively challenging model of hypothalamic neural progenitors and a
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heterogeneous population of hypothalamic neurons that were homozygous for either rs7132908
allele. We used bulk ATAC-seq pre-differentiation and single-nucleus ATAC-seq post-
differentiation, when the cells were heterogenous, to assess chromatin accessibility both at
rs7132908 and globally. We found that the rs7132908 region transitioned from closed to open
chromatin during differentiation from ESCs to hypothalamic neurons. We also used bulk or
single-nucleus RNA-seq to characterize changes in gene expression within the rs7132908 TAD
and globally at three timepoints throughout differentiation, finding that rs7132908 genotype
regulated the expression of FAIM2 and other genes in multiple cell types. Finally, we report the
striking observation that the rs7132908 obesity risk A allele decreased the proportion of neurons
generated from our differentiation protocol from 61% to 11%. As such, we outline how our data
strongly implicates rs7132908 as a causal variant at the chr12g13 obesity locus and nominates

FAIM2 as one candidate effector gene at this genomic location for further study.
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RESULTS
rs7132908 is the putative causal variant at the chr12q13 childhood obesity locus

Each GWAS locus represents a genomic region harboring many single nucleotide
polymorphisms (SNPs) in strong linkage disequilibrium, where any of these variants could be
potentially causal and responsible for driving the significant association with the given trait. To
implicate candidate causal non-coding variants at the chr12q13 obesity locus, our initial trans-
ancestral fine mapping refined this specific signal to a 99% credible set consisting of six SNPs**.
More recently, Bayesian fine mapping further refined this signal to 95% credible sets of 1-3
SNPs depending on which body weight trait definition was used*’. These credible sets
consistently implicate rs7132908 as the variant with the highest computed probability of being
causal at this locus?**2. The childhood obesity risk A allele is common, with reported
frequencies ranging from 10.25-60.53% across ethnicities®® and 28.86% globally**. In addition to
childhood obesity, this locus is also associated with related traits such as increased body mass
index (BMI) in adults, increased weight in adults, elevated type 2 diabetes susceptibility, and
earlier age at menarche®.

After implicating a strong candidate causal variant computationally, we conducted a
comprehensive characterization of the evidence supporting the cis-regulatory activity of the
surrounding region in various cell types. First, we used our established variant-to-gene mapping
approach which implicates potential cis-regulatory elements at GWAS loci using ATAC-seq to
identify regions of accessible chromatin and then integrates high-resolution promoter-focused
Capture-C or Hi-C to identify distal promoter interactions with those given open regions*#3>4%49,
At the chr12q13 locus, we observed that rs7132908 resides within a putative cis-regulatory
element in several human neural cell types, including primary astrocytes, induced pluripotent
stem cell (iPSC)-derived cortical neural progenitors, ESC-derived hypothalamic neural
progenitors, iPSC-derived cortical neurons, and ESC-derived hypothalamic neurons (Fig. 1A,

Supp. Table 1)*?**. This is consistent with publicly available data from the Encyclopedia of DNA
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Elements (ENCODE) consortium’s ‘Registry of candidate cis-Regulatory Elements’ (version 3)
which has annotated a cell type-agnostic candidate distal enhancer encompassing rs7132908
(candidate cis-regulatory element EH38E3015886)*°. Second, we predicted the impact of the
obesity risk A allele on transcription factor binding and identified 12 transcription factors that
potentially regulate gene expression at the chr12q13 locus, namely HNF4A, HNF4G, PRD14,
PRDM14, SRBP2, SREBF1, SREBF2, ZN143, ZN423, ZN554, ZN768, and ZNF416. Taken
together, we concluded that rs7132908 is a strong candidate causal variant with predicted

effects on gene expression through cis-regulatory mechanisms.
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Figure 1. rs7132908 regulates FAIM2 expression with allele- and cell type-specificity A) Chromatin accessibility
represented by ATAC-seq tracks depicting normalized reads and chromatin loops at the TAD containing rs7132908 in
neural cell types. Chromatin loops represent significant contacts between regions of open chromatin that harbored
rs7132908 and a gene promoter. Grey dashed vertical line indicates rs7132908 position. B) Graphic representation of
firefly luciferase reporter vectors used in luciferase reporter assays. C-F) Fold change of firefly luciferase
fluorescence normalized to the promoter only control vector driven by the FAIM2 promoter in primary astrocytes (n =
7 biological replicates) (C), FAIM2 promoter in HEK293Ts (n = 7 biological replicates) (D), LIMA1 promoter in primary
astrocytes (n = 8 biological replicates) (E), and RACGAP1 promoter in primary astrocytes (n = 9 biological replicates)
(F). Data are represented as mean = SD. *P-value < 0.05, *P-value < 0.01, **P-value < 0.001 by one-way ANOVA
with Tukey’s correction for multiple comparisons.

FAIM2 is the lead candidate effector gene at the chr12q13 childhood obesity locus
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Chromosome conformation capture methods identify physical interactions between
genomic regions and can nominate possible functional relationships, such as enhancer-
promoter interactions. Analysis of our data indicated that the putative cis-regulatory element
harboring rs7132908 interacted variably with the promoters of AC025154.2, AQP2, AQP5,
AQP6, ASIC1, BCDIN3D, FAIM2, LIMAL, LINC02395, LINC02396, and RACGAP1 across

12,35

neural cell types (Fig. 1A, Supp. Table 1)~°, suggesting potential temporal and cell type-
specific control of multiple genes in the region, in a similar manner to the FTO locus®®*’. We
then performed colocalization analysis to intersect eQTL signals from the Genotype-Tissue
Expression project (GTEX) with our variant-to-gene mapping results®®. With the conservative
overlap of the two approaches, we found only one gene at the chr12ql13 locus, FAIM2, to be

implicated by both our variant-to-gene mapping approach and eQTL analyses (Supp. Table 1).

We therefore implicated FAIM2 as a primary candidate effector gene at this locus.

Hypothalamic neurons and astrocytes are relevant in vitro models to study the regulatory
effects of rs7132908 genotype

rs7132908 is located in the 3’ untranslated region (UTR) of FAIM2 and 34,612 base
pairs (bp) from the FAIM2 transcription start site. The physical interaction between rs7132908
and the FAIM2 promoter was observed in three neural cell types: primary astrocytes, iPSC-
derived cortical neural progenitors, and ESC-derived hypothalamic neurons (Fig. 1A, Supp.
Table 1)*2*°. We measured gene expression in the neural cell types using bulk RNA-seq to aid
in prioritizing in vitro models for our study. FAIM2 expression was 2.26 transcripts per million
(TPM) in iPSC-derived cortical neural progenitors, 42.85 TPM in primary astrocytes, and 136.75
TPM in ESC-derived hypothalamic neurons (Supp. Table 1)**°*°. We have also previously
identified that BMI-associated variants are significantly enriched in cis-regulatory elements

|12

annotated in an ESC-derived hypothalamic neuron model™~. While this significant enrichment

has not been detected in primary astrocytes, 7 out of 9 candidate effector genes nominated at
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the chr12g13 locus in ESC-derived hypothalamic neurons were also nominated in primary
astrocytes (Fig. 1A, Supp. Table 1), suggesting similar genomic architecture in this region in
these two cellular settings. Therefore, ESC-derived hypothalamic neurons and primary
astrocytes were selected as in vitro models for studying the putative cis-regulatory relationship

between rs7132908 and FAIM2, as well as other genes within their given TAD.

rs7132908 regulates FAIM2 expression with allele- and cell type-specificity

Many commonly used reporter assays to assess cis-regulatory function require an in
vitro cell model that can be efficiently transfected. Neuron-like cells produced by stem cell
differentiation are post-mitotic and transfection of these cells is very inefficient. For this reason,
and given the comparable observations described above, we nominated primary astrocytes as a
model to characterize the cis-regulatory function of the region harboring rs7132908 with
luciferase reporter assays.

Given the ENCODE consortium’s 'Registry of candidate cis-Regulatory Elements’
(version 1) annotated a cell type-agnostic regulatory element with a distal enhancer-like
signature surrounding rs7132908 at chr12:49,868,837-49,869,798 (GRCh38)5°, we elected to
clone this putative enhancer sequence with an additional 50 bp flanking each side along with
the FAIM2 promoter sequence into a luciferase reporter vector. We then used site-directed
mutagenesis to introduce the childhood obesity risk A allele at rs7132908. Each of these
vectors, as well as normalization and negative control vectors (Fig. 1B), were transfected into
astrocytes and luciferase fluorescence was quantified approximately 20 hours post-transfection.

We observed that the putative enhancer sequence with the non-risk allele significantly
increased luciferase expression 1.75-fold when normalized to co-transfection and FAIM2
promoter controls (adjusted P-value < 0.001) (Fig. 1C). In contrast, the same vector with a
single base change to the obesity risk A allele significantly decreased luciferase expression
0.53-fold after normalization (adjusted P-value = 0.003) (Fig. 1C). We then sought to carry out

10
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this experiment using HEK293T cells to determine if this cis-regulatory activity could also be
observed in a non-neural cell type. In HEK293Ts, we found that the putative enhancer
sequence harboring the non-risk G allele did not significantly increase luciferase expression,
while the obesity risk allele decreased luciferase expression by 0.60-fold after normalization
(adjusted P-value = 0.037) (Fig. 1D). From this, we conclude that the rs7132908 obesity risk
allele negatively regulates expression from the FAIM2 promoter in astrocytes but displays
weaker effects in non-neuronal HEK293Ts.

In addition to FAIM2, our 3D genomic variant-to-gene mapping efforts in primary
astrocytes also nominated LIMA1 and RACGAPL1 as possible effector genes at the chr12q13
locus (Fig. 1A, Supp. Table 1). This was determined using the criteria that the promoters of
these genes interacted with rs7132908, the promoters of these genes and rs7132908 were both
in open chromatin, and that these genes were expressed (TPM > 1) in this cell type. However,
when we assessed the cis-regulatory activity of this region with the LIMAL1 and RACGAP1
promoter sequences in astrocytes, we observed no significant changes in luciferase expression
with either rs7132908 allele after normalization, although we note the results for the risk A allele

with the RACGAP1 promoter were highly variable (Fig. 1E-F).

The putative cis-regulatory region harboring rs7132908 is inactive in ESCs

After characterizing the cis-regulatory activity of the region harboring rs7132908 in
astrocytes, we were motivated to characterize the effect of the rs7132908 childhood obesity risk
allele in cells at multiple timepoints throughout differentiation to hypothalamic neurons. We used
the H9 ESC line, which is homozygous for the rs7132908 non-risk G allele, and leveraged
CRISPR-Cas9 homology-directed repair to generate three isogenic, clonal lines that were
homozygous for the rs7132908 risk A allele.

To characterize chromatin accessibility in homogenous ESCs, we performed bulk ATAC-
seq using three replicates of the parent ESC line and the three clonal ESC lines generated with

11
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CRISPR. We detected 240,760 peaks but then performed filtering to limit our analysis to peaks
present in at least two samples and removed peaks with low read support (one count per million
or less), which reduced our peak list to 94,543. We observed that the first principal component,
explaining 27.8% of the variation between samples, was due to genotype at rs7132908 (Fig.
2A). 286 peaks were differentially accessible using an adjusted P-value < 0.05 and |log2 fold
change| > 1 (Fig. 2B, Supp. Table 2). 145 peaks were significantly more accessible in the
ESCs with the non-risk allele and 141 peaks were more accessible with the risk allele. However,
rs7132908 itself was not found in a peak of accessible chromatin in these undifferentiated ESCs

(Fig. 2C).
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Figure 2. The putative cis-regulatory region harboring rs7132908 is inactive in ESCs A) PCA plot of ESC
ATAC-seq libraries (GG n = 3, AA n = 3 lines). B) Volcano plot of adjusted P-values (-log10) and fold change (log2) of
a total of 94,543 ATAC-seq peaks tested for differential accessibility due to the rs7132908 obesity risk allele in ESCs.
Red dots indicate significantly differentially accessible peaks (adjusted P-value < 0.05 and |log2 fold change| > 1) in
ESCs homozygous for the obesity risk allele and black dots indicate peaks with no significant differences in
accessibility. C) Chromatin accessibility represented by ATAC-seq tracks depicting normalized reads across FAIM2 in
ESCs homozygous for either rs7132908 allele. Red vertical line indicates rs7132908 position. D) PCA plot of ESC
RNA-seq libraries (GG n =2, AA n = 3 lines). E) Volcano plot of adjusted P-values (-log10) and fold change (log2) of
a total of 14,581 genes tested for differential expression due to the rs7132908 obesity risk allele in ESCs. Blue dots
indicate significantly down-regulated genes (adjusted P-value < 0.05 and log2 fold change < -0.58) and red dots
indicate significantly up-regulated genes (adjusted P-value < 0.05 and log2 fold change > 0.58) in ESCs homozygous
for the obesity risk allele. Grey dots indicate genes with no significant differences in expression. F) Heatmap depicting
significantly differentially expressed genes (adjusted P-value < 0.05 and |log2 fold change| > 0.58) due to the
rs7132908 obesity risk allele in ESCs.

To identify any transcriptional differences due to rs7132908 genotype in homogenous
ESCs, we performed bulk RNA-seq using two replicates of the parent ESC line and the three
clonal ESC lines generated with CRISPR. We achieved reads from 35,595 genes and then
performed filtering to detect those expressed at greater than one count per million in at least two
samples, which reduced our gene list to 14,581. We observed that the first principal component,
explaining 44.5% of the variation between samples, was due to genotype at rs7132908 (Fig.
2D). 44 genes were differentially expressed using an adjusted P-value < 0.05 and |log2 fold
change| > 0.58 (Fig. 2E-F, Supp. Table 3). 42 genes were significantly down-regulated in the
rs7132908 risk A allele homozygote ESCs, while just two genes were up-regulated. As most
enhancer-promoter interactions are known to occur within the same TAD, we were motivated to
determine if rs7132908 genotype affected the expression of genes within its TAD. However,
none of the genes in the TAD harboring rs7132908°" were differentially expressed in this
undifferentiated ESC setting. Taken together, we observed relatively small changes in
expression and accessibility due to the introduction of the obesity risk allele in undifferentiated

ESCs, consistent with the notion that rs7132908 primarily functions in neural cells.

rs7132908 genotype influences gene expression in ESC-derived hypothalamic neural

progenitors
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To generate hypothalamic neural progenitors and characterize the effects of rs7132908
at this stage, we differentiated two replicates of the parent ESC line which were homozygous for
the rs7132908 non-risk G allele and the two clonal ESC lines generated with CRISPR which
were homozygous for the rs7132908 risk A allele for 14 days using an established protocol (Fig.
3A)’. Day 14 was selected given it was the last day after direction towards ventral diencephalon
hypothalamic identity and cell cycle exit but before neuron maturation’. We compared the global
transcriptomic profile of the hypothalamic neural progenitors homozygous for the rs7132908
non-risk allele to profiles of primary human tissues in the GTEx RNA-seq database®® (donor
ages 20-71 years old, with 68.1% 50 years or older) as well as primary human pediatric
hypothalamus tissue from three donors homozygous for the rs7132908 non-risk allele (donor
ages 4-14 years old, average age = 8.67). The non-risk hypothalamic neural progenitors most
highly correlated with the primary human pediatric hypothalamus tissue (correlation coefficient =

0.80, P-value < 0.001) (Fig. S1A).
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Figure 3. rs7132908 genotype influences gene expression in ESC-derived hypothalamic neural progenitors A)
Schematic of differentiation of ESCs to hypothalamic neurons, including duration, phases, and key small molecules to
direct cell fates. B) Volcano plot of adjusted P-values (-log10) and fold change (log2) of a total of 29,302 genes tested
for differential expression due to the rs7132908 obesity risk allele in hypothalamic neural progenitors. Blue dots
indicate significantly down-regulated genes (adjusted P-value < 0.05 and log2 fold change < -0.58) and red dots
indicate significantly up-regulated genes (adjusted P-value < 0.05 and log2 fold change > 0.58) in hypothalamic
neural progenitors homozygous for the obesity risk allele. Grey dots indicate genes with no significant differences in
expression. C) Heatmap depicting module 4 genes significantly up-regulated (adjusted P-value < 0.05 and log2 fold
change > 0.58) due to the rs7132908 obesity risk allele in hypothalamic neural progenitors. D) Heatmap depicting
module 5 genes significantly down-regulated (adjusted P-value < 0.05 and log2 fold change < -0.58) due to the
rs7132908 obesity risk allele in hypothalamic neural progenitors. E) Box plots of gene expression (normalized log2
cpm) for genes in the rs7132908 TAD that were significantly differentially expressed (adjusted P-value < 0.05, |log2
fold change| > 0.58). See also Figure S1.
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Supplemental Figure 1. Hypothalamic neural progenitors, related to Figure 3 A) Dot plot of Spearman’s rank
correlation coefficients resulting from comparing TPMs of 16,159 genes expressed in rs7132908 non-risk allele
homozygous hypothalamic neural progenitors, rs7132908 non-risk allele homozygous human pediatric hypothalamus
tissue, and human tissues or cells in the GTEx RNA-seq database. Red dots indicate significant correlations (P-value
< 0.05). Tissue names in red indicate brain tissues. B-C) Representative images of hypothalamic neural progenitors
on day 14, with immunostaining for a marker of the developing hypothalamus, NKX2-1 (red) (B) and a marker of post-
mitotic neurons, NeuN (red) (C) (scale bar = 20 um). Nuclei were stained with DAPI (blue). Cells were homozygous
for either the rs7132908 non-risk allele (left) or obesity risk allele (right). D) PCA plot of hypothalamic neural
progenitor RNA-seq libraries (GG n = 2 biological replicates with 3 technical replicates each, AA n = 2 biological
replicates with 3 technical replicates each). E) Heatmap depicting significantly differentially expressed genes
(adjusted P-value < 0.05, |log2 fold change| > 0.58) due to the rs7132908 obesity risk allele in hypothalamic neural
progenitors. Genes were clustered into 5 modules using hierarchical clustering (green, orange, light blue, dark blue,

pink).
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To identify transcriptional differences due to rs7132908 genotype in homogeneous
hypothalamic neural progenitors, we performed bulk RNA-seq. We detected reads mapping to
35,595 genes and then performed filtering to detect those expressed at greater than one count
per million in at least two samples which reduced our gene list to 29,302. We observed that the
first principal component, explaining 86.2% of the variation between samples, was due to batch
as we differentiated pairs of non-risk and risk allele cells at two separate times (Fig. S1D).
Therefore, we incorporated batch information as a covariate in our linear model to adjust for this
effect for our differential expression analysis. As a result, 6,494 genes were differentially
expressed using an adjusted P-value < 0.05 and |log2 fold change| > 0.58 (Fig. 3B, Supp.
Table 4). Of these, 3,232 genes were significantly down-regulated in the neural progenitors
homozygous for the rs7132908 risk allele, while 3,262 genes were up-regulated. Five genes in
the TAD harboring rs7132908°" were differentially expressed. FAIM2 and three other genes
(TMBIM6, LARP4, and COX14) were down-regulated in these neural progenitors homozygous
for the rs7132908 risk A allele and AQP2 was up-regulated (Fig. 3E).

To explore global changes in gene expression, we clustered the differentially expressed
genes into five modules with hierarchical clustering (Fig. S1E) and selected two modules
(modules 4 and 5) representing the genes most strongly differentially expressed due to
genotype at rs7132908 for downstream analysis. Module 4 consisted of 216 genes consistently
up-regulated in neural progenitors homozygous for the rs7132908 risk A allele (Fig. 3C).
Functional enrichment analysis of the module 4 up-regulated genes identified significantly

enriched Gene Ontology terms®*°®

, including biological processes such as programmed cell
death, apoptotic process, and intrinsic apoptotic signaling pathway in response to endoplasmic
reticulum stress (Supp. Table 5). Module 5 consisted of 152 genes consistently down-regulated
in neural progenitors homozygous for the rs7132908 risk allele (Fig. 3D). The module 5 down-
regulated genes were also used to determine any enriched Gene Ontology terms®?°% however,

no significantly enriched biological processes were identified (Supp. Table 5).
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ESC-derived hypothalamic neurons molecularly resemble the human hypothalamus

Next, we generated hypothalamic-like neurons using two replicates of the parent ESC
line which were homozygous for the rs7132908 non-risk G allele and the two clonal ESC lines
generated with CRISPR which were homozygous for the rs7132908 risk A allele for 40 days in
four independent differentiations using an established protocol’ and then collected nuclei (Fig.
3A). Day 40 was selected given a previous characterization of this protocol found that this
duration was sufficient to produce heterogenous populations of functional neurons that closely
resemble those found in the human hypothalamus’. These nuclei from several cell types were
used to simultaneously profile gene expression and open chromatin in each cell using a multi-
omic single-nucleus RNA-seq and ATAC-seq approach.

After quality control, a previously published human hypothalamus single-cell RNA-seq
reference dataset™ was used to identify cell types in our dataset (Fig. S2D). To ensure that the
cell type identifications were likely to be accurate, we prioritized cells with high-confidence
annotations using a classification score threshold (= 0.8) that was previously demonstrated to
increase accuracy®. This method identified cells annotated as neurons, oligodendrocyte
precursors (OPCs), or fibroblasts based on their transcriptional profile with classification scores
above our threshold (Fig. 4A). These annotations are further supported by expression patterns
of known marker genes for each cell type, including MAP2 and TUBB3 for neurons and
COL1A1, COL1A2, and COLB6A2 for fibroblasts (Fig. 4B). We note that the OPC population did
not highly or uniformly express conventional marker genes, such as PDGFRA, CSPG4, OLIG1,
OLIG2, and SOX10 (Fig. S2E), although this population did express cell cycle genes, such as
CENPF and TOP2A, which have been observed in OPCs®® and neural intermediate

progenitors®’ (Fig. 4B).

19


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

o0
10 10 10- L
®2
®3
®4
®5
5 ® AA1 5 5 ®6
® AA2 o7
N ® AA3 N & °8
o ® AAd o * GG a ®9
Lo ° GG1 Lo Ly Lo ® 10
= ® GG2 = = * N
2 2 2
® GG3 ® 12
® GG4 ® 13
-5 5 5 o 14
® 15
® 16
.17
® 18
-10 -10 -10- 19
10
Average Expression
1.0
Neuron . I 05
0.0
5 -0.5
® Fi -1.0
o~ o forobast  Eiproblast| @ °
o Percent Expressed
Tanycyte
go o Astrocyte - 10
35 @ Ependymal . 20
® OPC OPC . : : ® 30
® 40
@ 50
* > N 2 o
<) & ~
& o & &
-10
-5 0 5 10
UMAP_1
Pediatric Hypothalamus = [ ] CGultured Fibroblasts= [ ] Cultured Fibroblasts =
Hypothalamus - [ ] Pediatric Hypothalamus- Tibial Artery =
Frontal Cortex = [ Tibial Artery- Aorta=
Cerebellar Hemisphere = [ ] Ovary- Sigmoid Colon=
Nucleus Accumbens - [ ] C1 Cervical Spinal Corg- QOvary =
Anterior Cingulate Cortex - ® Hypothalamus- Coronary Artery -
Amygdala = ® Sigmoid Colon= Ectocervix=
Hippacampus = [ ] Substantia Nigra- Uterus =
‘Caudate Nucleus = Amygdala= Esophagus Muscularis =
Cerebellum = Nucleus Accumbens= Gastroesophageal Junction=
Cortex = Uterus- Endocervix=
Putamen = L Ectocervix- Bladder=
Substantia Nigra = [ ] Esophagus Muscularis= Tibial Nerve =
C1 Cervical Spinal Cord = o Caudate Nucleus= Subcutaneous Adipose =
Pituitary = [ ] Hippocampus= Adrenal Gland =
Cultured Fibroblasts = @ Gastroesophageal Junction= Fallopian Tube=
Ovary - ® Anterior Cingulate Cortex= Heart Atrial Appendage -
Sigmoid Colon = [ ] Frontal Cortex= Pediatric Hypathalamus =
Tibial Artery - L] Aorta- Mammary =
Esophagus Muscularis = (] Putamen-= C1 Cervical Spinal Cord=
Gastroesophageal Junction = [ ] Endocervix- [ Thyroid =
Uterus - [ ] Cerebellar Hemisphere- Visceral Omentum Adipose -
Ectocervix = [ ] Tibial Nerve- Substantia Nigra=
Adrenal Gland - Adrenal Gland- Heart Left Ventricle =
Skeletal Muscle - Coronary Artery- Prostate -
Endecervix - Bladder- Skeletal Muscle-
Aorta = Pituitary= Hypathalamus =
Tibial Nerve - 9 Testis- Pituitary -
Testis - ® EBV Transformed Lymphocytes- Vagina-
Bladder - [ ] Skeletal Muscle- Amygdala=
Coronary Artery - [ ] Cortex- Hippocampus =
Heart Atrial Appendage - ( ] Cerebellum- Caudate Nucleus -
Heart Left Ventricle - Subcutaneaus Adipose- Nucleus Accumbens =
Thyroi Fallopian Tube- Putamen=
Fallopian Tube = Thyroid- Anterior Cingulate Cortex =
Subcutaneous Adipose = Heart Atrial Appendage- Pancreas-
Pancreas - Heart Left Ventricle- Frontal Cortex =
EBV Transformed Lymphocytes - Mammary- Stomach =
Prostate - Prostate- Kidney Medulla-
Mammary - Visceral Omentum Adipase- Lung=
Visceral Omentum Adipose = Vagina- Cortex=
Vagina = Pancreas- Miner Salivary Gland -
Kidney Medulla - Stomach= Cerebellar Hemisphere -
Stomach = Kidney Medulla- Transverse Colon=
Kidney Cortex - Esophagus Mucosa- Kidney Cortex -
Transverse Colon - Suprapubic Skin- Lower Leg Skin=
‘Suprapubic Skin - Transverse Colon- Suprapubic Skin=
Minor Salivary Gland - Minor Salivary Gland- Esophagus Mucosa-
Lower Leg Ski Lower Leg Skin- Cerebellum-
Esophagus Mucosa - Kidney Cortex- Testis -
Lung - Lung- EBV Transformed Lymphocytes -
Liver - Liver- Small Intestine Terminal lleum -
Small Intestine Terminal lleum = Small Intestine Terminal lleum- [ 3 Liver=
Spleen- @ Spleen- ® Spleen- [ ]
Whole Blood - @ Whole Blood- @ Whole Blood - @
' ' ' . ' ' ' ' '
03 0.4 0.5 0.3 0.4 0.5 0.4 0.5 08
Correlation Coefficient Correlation Coefficient Correlation Coefficient
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0.8 threshold were removed (D). E) Dot plot depicting average expression (scaled and log2 normalized counts) and
percent of cells that expressed canonical OPC marker genes (PDGFRA, CSPG4, OLIG1, OLIG2, and SOX10), split
by cell type. F-H) Dot plots of Spearman’s rank correlation coefficients resulting from comparing TPMs of genes
expressed in rs7132908 non-risk allele homozygous hypothalamic neurons (F), OPCs (G), and fibroblasts (H) to
human pediatric hypothalamus tissue from donors homozygous for the rs7132908 non-risk allele and human tissues
or cells in the GTEx RNA-seq database. Red dots indicate significant correlations (P-value < 0.05). Tissue names in
red indicate brain tissues.
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Figure 4. ESC-derived hypothalamic neurons molecularly resemble the human hypothalamus A) UMAP
depicting all cells clustered by single-nucleus RNA-seq profile and annotated by cell type. B) Dot plot depicting
average expression (scaled and log2 normalized counts) and percent of cells that expressed neuron (MAP2 and
TUBB3), fibroblast (COL1A1, COL1A2, and COL6A2), and OPC (CENPF and TOP2A) marker genes, split by cell
type. C) UMAP depicting all neurons clustered by single-nucleus RNA-seq profile and annotated by cluster identity.
D) Dot plot depicting average expression (scaled and log2 normalized counts) and percent of cells that expressed
inhibitory (GAD1), excitatory (SLC17A6), GABAergic (SLC32A1), and hypothalamic (POMC, NPY, OTP, and SST)
neuron marker genes, split by cluster identity. E) Heatmap showing average module scores across all neuron clusters
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for each human prenatal hypothalamic nucleus gene set published in the Allen Brain Atlas database, plotted as the
column Z-score per neuron cluster. See also Figure S2.

Additionally, we compared the transcriptomic signatures of each cell type to expression
data in the GTEx RNA-seq database® (donor ages 20-71 years old, with 68.1% 50 years or
older) as well as primary human pediatric hypothalamus tissue from three donors homozygous
for the rs7132908 non-risk allele (donor ages 4-14 years old, average age = 8.67). We found
that the neurons were most strongly correlated with pediatric hypothalamus and adult
hypothalamus (correlation coefficients = 0.56 and 0.54, respectively, P-values < 0.001), the
OPCs correlated most strongly with fibroblasts and pediatric hypothalamus (correlation
coefficients = 0.57 and 0.52, respectively, P-values < 0.001), and the fibroblasts most strongly
correlated with fibroblasts and tibial artery (correlation coefficients = 0.66 and 0.63, respectively,
P-values < 0.001) (Fig. S2F-H).

Within the neuron population (Fig. 4C), there were distinct expression patterns of
markers for several neuron types, including inhibitory (GAD1), excitatory (SLC17A6), and
GABAergic (SLC32A1) neurons (Fig. 4D). We also identified neuronal clusters expressing
known hypothalamus genes, such as POMC, NPY, OTP, and SST (Fig. 4D). Next, we were
motivated to compare the transcriptomic signatures of each neuronal cluster (Fig. 4C) to human
prenatal hypothalamic subregion gene sets published in the Allen Brain Atlas database®*®,
given that the neuron population displayed expression patterns most similar to pediatric
hypothalamus tissue. We found that each cluster closely resembled the hypothalamic arcuate
nucleus which regulates feeding behavior and energy expenditure®, the dorsomedial
hypothalamic nucleus which regulates food intake and body weight®*, and the anterior

hypothalamic nucleus which regulates defensive behaviors® (Fig. 4E).

The putative cis-regulatory region harboring rs7132908 is active in ESC-derived

hypothalamic cell types
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We used the single-nucleus ATAC-seq data to characterize chromatin accessibility in the
heterogenous ESC-derived hypothalamic cells. Unlike in the ESCs, the cis-regulatory element
containing rs7132908 was open in all derived cell types (Fig. 5A). When comparing chromatin
accessibility globally between rs7132908 genotypes across all annotated cells, 12,586 ATAC-
seq peaks were differentially accessible using an adjusted P-value < 0.05 and |log2 fold change|
> 1, with 5,604 peaks displaying decreased accessibility with the risk A allele and 6,982 peaks
displaying increased accessibility (Fig. 5B, Supp. Table 6). We also detected transcription
factor motifs enriched in differentially accessible peaks with an adjusted P-value < 0.005 and
|log2 fold change| =z 1. We found that 565 transcription factor motifs were significantly enriched
(adjusted P-value < 0.05) in peaks more accessible with the rs7132908 non-risk G allele and
446 were enriched in peaks more accessible with the risk A allele (Supp. Table 7). The peak
harboring rs7132908 at chr12:49,868,731-49,869,775 (GRCh38) displayed decreased
accessibility with the risk A allele by 27.62% (adjusted P-value = 1.08x10°®) when considering
all annotated cells. We also repeated these analyses in each annotated cell type and detected
3,406, 12,386, and 7,543 significantly differentially accessible regions in neurons, OPCs, and
fibroblasts, respectively (Fig. 5C-E, Supp. Table 6). The peak surrounding rs7132908 was less
accessible with the risk A allele by 40.74% in fibroblasts (adjusted P-value = 1.35x10*%), but
more accessible in neurons with the risk A allele by 78.92% (adjusted P-value = 2.31x10?%) and
not significantly different in OPCs. We then identified significantly differentially accessible
regions that were consistent between analyses when considering each individual cell type and
all annotated cells combined (Fig. 5F) and their top enriched transcription factor motifs (Fig.
5G). We conclude that rs7132908 is in an active chromatin region post-differentiation and that

the rs7132908 risk A allele influences accessibility both locally and globally.
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Figure 5. The putative cis-regulatory region harboring rs7132908 is active in ESC-derived hypothalamic cell
types A) Chromatin accessibility represented by ATAC-seq tracks depicting normalized reads across FAIM2 in ESC-
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derived neurons, OPCs, and fibroblasts. Red vertical line indicates rs7132908 position. B-E) Volcano plots of
adjusted P-values (-log10) and fold change (log2) of ATAC-seq peaks tested for differential accessibility due to the
rs7132908 obesity risk allele in total cells (B), neurons (C), OPCs (D), and fibroblasts (E). Black or colored dots
indicate significantly differentially accessible peaks (adjusted P-value < 0.05 and |log2 fold change| > 1) and grey dots
indicate peaks with no significant differences in accessibility. F) Bar plot of numbers of differentially accessible
regions from B-E that overlapped between analyses. G) ATAC-seq read enrichment heatmaps for groups of regions
categorized in F and their corresponding top-most enriched transcription factor binding motifs. Windows indicate
which cell type(s) yielded such groups of differentially accessible regions.

The rs7132908 obesity risk allele dramatically decreases the proportion of neurons
produced by hypothalamic neuron differentiation

As expected, during each hypothalamic neuron differentiation, we began to observe
neuron morphology with brightfield microscopy once the cells were exposed to BDNF in the
neuron maturation phase (days 14-40) (Fig. 3A). Strikingly, there were fewer cells exhibiting
neuron morphology for those homozygous for the rs7132908 risk A allele (Fig. 6A). To confirm
this observation, we stained day 40 cells from each genotype to detect MAP2, which is a marker
of mature neuron dendrites. Indeed, although each well was seeded at the same density and
cultured simultaneously, fewer MAP2+ cells were observed in the risk A allele condition (Fig.

6B).
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Figure 6. The rs7132908 obesity risk allele dramatically decreases the proportion of neurons produced by
hypothalamic neuron differentiation A) Representative brightfield images of hypothalamic neurons mid-
differentiation on day 29 (scale bar = 100 um). Cells were homozygous for either the rs7132908 non-risk allele (left)
or obesity risk allele (right). B) Representative images of hypothalamic neurons post-differentiation on day 40, with
immunostaining for a mature neuron marker, MAP2 (green) (scale bar = 100 um). Nuclei were stained with DAPI
(blue). Cells were homozygous for either the rs7132908 non-risk allele (left) or obesity risk allele (right). C-D)
Proportion of total cells homozygous for the rs7132908 non-risk allele annotated as each cell type (n =4
differentiation replicates) (C) and homozygous for the rs7132908 obesity risk allele annotated as each cell type (n =4
differentiation replicates) (D). Data are represented as mean = SD.
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Next, we set out to further confirm this result using our annotated single-nucleus RNA-
seq dataset. We partitioned the 38,044 annotated cells by genotype at rs7132908 and
differentiation replicate sample, then quantified the proportions of cells identified as neurons,
OPCs, or fibroblasts in each condition. On average, the cells homozygous for the rs7132908
non-risk G allele were comprised of 60.90% neurons, 18.33% OPCs, and 20.77% fibroblasts
(Fig. 6C). In contrast, the cells homozygous for the rs7132908 risk A allele comprised of
10.69% neurons, 12.78% OPCs, and 76.53% fibroblasts (Fig. 6D). Taken together, we
observed that a single base change from the rs7132908 non-risk G allele to the obesity risk A
allele in the same genetic background is sufficient to substantially decrease the proportion of

neurons produced by hypothalamic neuron differentiation.

rs7132908 genotype influences gene expression in ESC-derived hypothalamic cell types
In addition to identifying differences in cell type proportions, we were also motivated to
identify changes in gene expression due to genotype at rs7132908 in the ESC-derived
hypothalamic cells. First, we included all cells that passed our quality control, detected 36,601
genes, and performed principal component analysis to determine that 85% of the variation
between replicate samples was explained by rs7132908 genotype (Fig. S3A). We then
identified that 6,409 genes were differentially expressed using an adjusted P-value < 0.05 and
[log2 fold change| > 0.58 (Fig. 7A, Fig. 7E, Supp. Table 8). 3,212 genes were significantly
down-regulated in the cells homozygous for the rs7132908 risk allele, while 3,197genes were
up-regulated. Four genes in the TAD harboring rs7132908°, including FAIM2, were differentially
expressed; two were down-regulated in cells homozygous for the rs7132908 risk A allele

(FAIM2, and ASIC1) and two were up-regulated (FMNL3 and LIMA1L) (Fig. 71).
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Supplemental Figure 3. Hypothalamic single-nucleus RNA-seq differential expression analysis, related to
Figure 7 A-D) PCA plots of single-nucleus RNA-seq libraries (GG n = 4, AA n = 4) when considering all cells (A),

neurons (B), OPCs (C), and fibroblasts (D).
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Figure 7. rs7132908 genotype influences gene expression in ESC-derived hypothalamic cell types A-D)
Heatmaps depicting significantly differentially expressed genes (adjusted P-value < 0.05, |log2 fold change| > 0.58)
due to the rs7132908 risk allele in all cells (A), neurons (B), OPCs (C), and fibroblasts (D) produced by ESC
differentiation. E-H) Volcano plots of adjusted P-values (-log10) and fold change (log2) of genes tested for differential
expression due to the rs7132908 obesity risk allele in all cells (E), neurons (F), OPCs (G), and fibroblasts (H)
produced by ESC differentiation. Colored dots indicate significantly differentially expressed genes (adjusted P-value <
0.05, |log2 fold change| > 0.58) due to the rs7132908 risk allele and grey dots indicate genes with no significant
differences in expression. I-K) Box plots of gene expression (log10 normalized counts) for genes in the rs7132908
TAD that were significantly differentially expressed (adjusted P-value < 0.05, |log2 fold change| > 0.58) in all cells (l),
OPCs (J), and fibroblasts (K). See also Figure S3 and S4.

Next, we identified genes differentially expressed within each annotated cell type.
rs7132908 genotype explained 21%, 84%, and 78% of the variation between replicate samples
in the neurons, OPCs, and fibroblasts, respectively (Fig. S3B-D). In neurons, 52 genes were
differentially expressed, with 35 down-regulated in neurons homozygous for the risk allele and
17 up-regulated (Fig. 7B, Fig. 7F, Supp. Table 8). In OPCs, 2,678 genes were differentially

expressed, with 1,084 down-regulated in OPCs homozygous for the risk allele and 1,594 up-
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regulated (Fig. 7C, Fig. 7G, Supp. Table 8), while in fibroblasts, 1,911 genes were differentially
expressed, with 1,450 down-regulated in fibroblasts homozygous for the risk allele and 461 up-
regulated (Fig. 7D, Fig. 7H, Supp. Table 8). When considering genes located in the same TAD
as rs7132908, no genes were differentially expressed in neurons, while one gene was
differentially expressed in OPCs (LIMAL up-regulated) (Fig. 7J), and two genes were
differentially expressed in fibroblasts (FAIM2 down-regulated; FMNL3 up-regulated) (Fig. 7K).
Functional enrichment analyses of up-regulated genes in both OPCs and fibroblasts identified

similar Gene Ontology terms®2°3

, including the biological processes of cell death and apoptosis
(Supp. Table 9), while processes such as nervous system development, neuron differentiation,
and neuron projection development were enriched among down-regulated genes (Supp. Table
9). However, the comparably shorter lists of significantly up- and down-regulated genes in
neurons did not identify any significantly enriched biological processes.

As our sequencing efforts only captured transcriptional differences at three timepoints,
we were therefore motivated to quantify FAIM2 expression in all cells throughout the 40-day
hypothalamic neuron differentiation using quantitative real-time polymerase chain reaction (RT-
gPCR). FAIM2 expression peaked around day 14 in cells homozygous for either rs7132908
allele (Fig. S4A-B), which represents the hypothalamic neural progenitor phase of the
differentiation (Fig. 3A). We also characterized FAIM2 expression in vivo using our primary
human pediatric (donor ages 4-14 years old, average age = 7.5) hypothalamus tissue RNA-seq

data and determined that FAIM2 was highly expressed (median TPM = 415.66, n = 4) (Fig.

S4C, Supp. Table 10).
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DISCUSSION

The chr12q13 locus was first associated with variation in adult BMI and weight in 2009°°,
BMI as a longitudinal trait during childhood (ages 3-17) in 2012*°, and childhood obesity as a
dichotomous trait by our meta-analysis with the EGG consortium in 2012, It was also noted
that the genotypic risk effect at the chr12q13 locus during childhood decreased as age
increased®, which suggests this locus may regulate age-dependent pathways in early childhood
and could explain why this locus is more pronounced in childhood than adulthood. More than
1,000 independent loci are now associated with measurements of obesity? and only a few have
been studied extensively enough to pinpoint a causal variant and implicate effector genes, such
as the FTO?*? and 2q24.3 loci®.

A recent global functional investigation of BMI-associated SNPs in 3' UTRs included the
FAIM2 3' UTR variant rs7132908 in their study and found that the obesity-associated risk A
allele disrupted miRNA binding activity of miR-330-5p in hamster ovary cells and human
subcutaneous preadipocytes, leading to an increase in FAIM2 expression®’. These results may
however not accurately reflect regulation of FAIM2 expression in vivo as this gene is primarily
expressed in the brain; furthermore, this miRNA product is a passenger strand that is typically
found in lower abundance due to degradation after its complementary guide miRNA is loaded
into an Argonaute protein during miRNA processing®®. More recently, others carrying out global
analyses have implicated an enhancer in the region harboring rs7132908 with a luciferase
reporter assay and found that, in mouse neuronal hypothalamus cells, the obesity risk A allele
significantly decreased enhancer activity with a minimal promoter®, consistent with our results.

We first utilized a luciferase reporter assay in a model tolerant of transfection, human
primary astrocytes, to characterize the regulatory effects of the non-coding region surrounding
rs7132908 on genes within its TAD that were nominated by our variant-to-gene mapping efforts
in this cell type. Ectopic expression of this non-coding region with the rs7132908 non-risk G
allele significantly increased reporter expression driven by the FAIM2 promoter, while the
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obesity risk A allele significantly decreased reporter expression driven by the FAIM2 promoter.
These results further support FAIM2 as the lead candidate effector gene at the chr12ql3
obesity locus and rule out LIMAL1 and RACGAPL1 as effector genes specifically in astrocytes.
While this tractable in vitro model was used to characterize cis-regulatory activity, we note that
BMI-associated SNPs are not enriched in astrocyte-specific cis-regulatory elements and that
FAIM2 likely functions primarily in neurons®™*.

Next, we used a human stem cell-derived model of hypothalamic neural progenitors and
neurons. Given the dynamic changes in genomic architecture that occur during stem cell
differentiation, we characterized gene expression and chromatin accessibility at several
timepoints. We used bulk sequencing approaches when the cells were expected to be
homogenous and leveraged multi-omic single-nucleus RNA-seq and ATAC-seq at the post-
differentiation hypothalamic neuron stage to capture cell type-specific differences in this now
heterogeneous model. We determined that the rs7132908 obesity risk A allele led to significant
differential expression of 0 TAD genes in ESCs, 5 TAD genes in hypothalamic neural
progenitors (AQP2, COX14, FAIM2, LARP4, and TMBIMG6), 1 TAD gene in OPCs (LIMA1), and
2 TAD genes in fibroblasts (FAIM2 and FMNL3). These results, in combination with our
observation that rs7132908 is not accessible in ESCs, suggest that rs7132908 does not
regulate gene expression in stem cells. These results also implicate different effector genes
depending on cell type, in agreement with the luciferase assay results where enhancer activity
was observed for FAIMZ2 in primary astrocytes but not in HEK293Ts. Only FAIM2 was implicated
in more than one cell type and its expression was consistently down-regulated with the obesity
risk A allele. Taken together, we demonstrated that rs7132908 resides within a cis-regulatory
element that confers allele-specific and cell type-specific effects on the expression of FAIM2
and other genes within its TAD.

We did not observe large differences in accessibility at rs7132908 due to genotype in
any cell type. Therefore, significant changes in effector gene expression are likely due to
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differences in transcription factor binding affinity. We predicted that the rs7132908 risk A allele
disrupts binding of 12 transcription factors, many of which are known to be both activators and
repressors and are ubiquitously expressed. Further investigation is warranted to determine
which specific transcription factors bind at and temporally regulate gene expression at the
chr12q13 locus.

In this study, we made the striking observation that the rs7132908 obesity risk A allele
decreased the proportion of hypothalamic neurons produced by stem cell differentiation. In
addition, we observed that the obesity risk A allele led to up-regulation of cell death and
apoptosis gene sets and down-regulation of neuron development gene sets. However, we did
not observe that any orexigenic or anorexigenic neuronal cell cluster or subpopulation was more
severely decreased, highlighting the need for more experiments to determine how the
rs7132908 obesity risk allele could increase appetite and risk of childhood obesity.

Our working hypothesis is that rs7132908 regulates FAIM2 and possibly other genes
that are required for normal anorexigenic neuron development or survival at a crucial timepoint
in development. When FAIM2 expression was highest in hypothalamic neural progenitors, its
expression was approximately 50% less in progenitors homozygous for the rs7132908 obesity

37,38

risk allele. FAIM2 protects neurons from Fas-induced apoptosis and regulates neurite

outgrowth*®®, neuroplasticity®’, and synapse formation*'. While Faim2 null mice have only been

1”73 and immune’® phenotypes, one study reported that

previously used to study neurologica
Faim2 null mice at 10-12 weeks of age and fed a standard diet ad libitum did display subtle
increases in fat content’®. Rodent studies have also demonstrated that Faim2 expression
increased in the hypothalamic arcuate nucleus in response to restricted food intake” and food
deprivation. Future work must be dedicated to directly test our hypothesis that FAIM2 is a

causal effector gene for childhood obesity and a more complex model system may be

appropriate for such studies.
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There are several limitations to our study to consider. First, although our ESC-derived in
vitro model of hypothalamic neurogenesis expresses some appropriate marker genes, it likely
does not fully recapitulate the hypothalamus during childhood. We also generated non-neuronal
cell types (OPCs and fibroblasts) that correlated most highly with cultured fibroblasts in the
GTEx RNA-seq database® but still expressed neuronal markers (MAP2 and TUBB3) at some
level, likely due to exposure to neuron maturation cell culture medium for 26 days. While we
reported changes in gene expression and chromatin accessibility in these additional cell types,
they may not be as biologically relevant. Second, we used the female H9 ESC line which
prevented us from detecting sex-specific differences. Third, we did not investigate the effects of
the rs7132908 obesity risk A allele in vivo. We were able to obtain four pediatric hypothalamus
tissue samples, but with just three homozygous for the rs7132908 non-risk allele and only one
heterozygote, this sample size was insufficient for allele-specific expression or eQTL analyses.
In the future, increased accessibility to human pediatric hypothalamus tissue would aid
investigation at the chr12q13 childhood obesity locus.

Overall, we functionally validated rs7132908 as a causal SNP at one of the strongest but
commonly overlooked childhood obesity GWAS loci, implicated FAIM2 and other cell type-
specific effector genes, and nominated pathways acting downstream of the SNP involving
nervous system development and cell death. We have also generated datasets from primary
astrocytes and multiple timepoints throughout hypothalamic neuron differentiation, including
multi-omic single-nucleus RNA-seq and ATAC-seq data, that will serve as a resource to aid
investigation of other loci and traits relevant to our cell models. This progress towards
characterizing the precise mechanism underlying the association between the chr12q13
genomic region and obesity should in turn enable future work with this key locus and guide

comparable efforts to validate other causal genes and to ultimately identify therapeutic targets.
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STAR METHODS

Resource availability

Lead contact
Further information and requests for resources and reagents should be directed to and

will be fulfilled by the lead contact, Struan F. A. Grant (grants@chop.edu).

Materials availability

Vectors (pGL4.10[luc2]-rs7132908G-FAIM2, pGL4.10[luc2]-rs7132908A-FAIM2,
pGL4.10[luc2]-FAIM2, pGL4.10[luc2]-rs7132908G-LIMAL, pGL4.10[luc2]-rs7132908A-LIMAL,
pGL4.10[luc2]-LIMAL, pGL4.10[luc2]-rs7132908G-RACGAP1, pGL4.10[luc2]-rs7132908A-
RACGAP1, pGL4.10[luc2]-RACGAPL, and gRNA_Cloning-rs7132908gRNA) and cell lines
(WAO09 (H9) rs7132908 AA human embryonic stem cell clones 2.1, 9.1, and 10.1) generated in
this study will be available from the lead contact with a completed Materials Transfer

Agreement. This study did not generate any other new unique reagents.

Data and code availability

Genotyping, Hi-C, RNA-seq, ATAC-seq, single-nucleus RNA-seq, and single-nucleus
ATAC-seq data have been deposited at Gene Expression Omnibus (GEO) and are publicly
available as of the date of publication. Accession numbers are listed in the key resources table.
This paper does not report original code. Any additional information required to reanalyze the

data reported in this paper is available from the lead contact upon request.

Experimental model and subject details

Primary astrocyte model
Primary Normal Human Astrocytes (NHA) of unknown sex were obtained from Lonza as

cryopreserved cells. The cells were obtained at passage 1 and used before passage 10, as

40


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

recommended. They were cultured following Lonza technical instructions in Lonza Astrocyte
Growth Medium and in a humidified incubator at 37°C with 5% CO,. For thawing, cells were
thawed quickly at 37°C, resuspended, and added slowly to an excess of warmed medium to
seed at approximately 6,500 cells/cm?in a T75 flask. For passaging, 70-80% confluent cells
were washed with 30 mM HEPES buffered saline solution in water, incubated at 37°C with
0.025% trypsin-EDTA in DPBS for 3-4 minutes or until 90% of the cells rounded up, treated with
2 volumes of 5% FBS in DPBS to neutralize the trypsin, rinsed off the culture vessel with gentle
pipetting, pelleted by centrifugation at 160 rcf for 5 minutes at 4°C, and then resuspended and
seeded at the desired density. The cells were cultured in T75 flasks, 6-well plates, and 24-well
plates. For freezing, cells were lifted as for passaging, resuspended to 1,000,000 cells/mL in
FBS with 10% DMSO, frozen in 1 mL aliquots at -1°C/minute, and stored long-term in liquid

nitrogen. The cells tested negative for mycoplasma contamination (Fig. S5D).
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produced by Sanger sequencing around rs7132908 in ESC lines. B) Bfal restriction enzyme digestion screening in

ESC lines. H9 ESCs have one Bfal restriction site in the PCR product around rs7132908, where digestion should

produce two bands of 320 bp and 248 bp. After CRISPR to introduce the rs7132908 obesity risk A allele, a second

Bfal restriction site is introduced, where digestion should produce three bands of 294 bp, 248 bp, and 26 bp (not

pictured). C) G-band karyotyping reports for ESC lines. D) Mycoplasma PCR detection results for all experimental
models. Cell lines with bands matching the size of the negative control are not contaminated with mycoplasma.

HEK?293T model

293T human female cells were obtained from ATCC as cryopreserved cells (ATCC Cat#

CRL-3216; RRID: CVCL_0063). They were cultured following ATCC product information in

Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% FBS, 1X Antibiotic-Antimycotic, and 2
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mM L-glutamine and in a humidified incubator at 37°C with 5% CO,. For thawing, cells were
thawed quickly at 37°C, resuspended, added slowly to an excess of warmed medium, pelleted
by centrifugation at 125 rcf for 7 minutes at 25°C, resuspended in warmed medium, and seeded
at approximately 17,500 cells/cm? in a 10 cm dish. For passaging, 90% confluent cells were
washed with PBS, incubated at 37°C with 0.25% trypsin-EDTA for 4-5 minutes, treated with 2
volumes of medium to neutralize the trypsin, pelleted by centrifugation at 1,200 rcf for 2 minutes
at 25°C, and then resuspended and seeded at the desired density. The cells were cultured in 10
cm dishes, 6-well plates, and 24-well plates. For freezing, cells were lifted as for passaging,
resuspended to 1,000,000 cells/mL in medium with 5% DMSO, frozen in 1 mL aliquots at -
1°C/minute, and stored long-term in liquid nitrogen. The cells tested negative for mycoplasma

contamination (Fig. S5D).

ESC model

WAOQ9 (H9) human female embryonic stem cells were obtained from the WiCell
Research Institute as cryopreserved cells (WiCell Lot# DL-05; RRID: CVCL_9773). Before use,
the cells were authenticated with short tandem repeat analysis to confirm cell line identity. They
were cultured following WiCell protocols in mTeSR1 medium, on Matrigel hESC-qualified matrix,
and in a humidified incubator at 37°C with 5% CO,. During CRISPR editing, the cells were
briefly cultured on Matrigel Growth Factor Reduced Basement Membrane Matrix diluted in
IMDM and mouse embryonic fibroblasts (MEFs) and in DMEM/F12 medium supplemented with
15% volume KnockOut Serum Replacement, 100 uM non-essential amino acids, 1 mM sodium
pyruvate, 2 mM L-glutamine, 50 U/mL penicillin-streptomycin, 0.1 mM (-mercaptoethanol, and
10 ng/mL human bFGF. For thawing, cells were thawed quickly at 37°C, resuspended, added
slowly to an excess of warmed medium, pelleted by centrifugation at 200 rcf for 5 minutes at
25°C, resuspended in warmed medium, and seeded into 1 well of a 6-well plate. For passaging
as colonies, cells in large colonies were washed with Versene, incubated at room temperature
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with Versene for 6-9 minutes, rinsed off the culture vessel with medium and gentle pipetting,
and then split across new culture vessels, generally using a 1:12 ratio. For passaging as single
cells, cells in large colonies were washed with DPBS, incubated at 37°C with Accutase for 2-5
minutes, treated with 2 volumes of medium to neutralize the Accutase, pelleted by centrifugation
at 200 rcf for 4 minutes at 25°C, and then resuspended and seeded at the desired density. For
passaging when cultured on MEFs, MEFs were removed by incubating with TrypLE Express
Enzyme for 3 minutes at room temperature. 10 uM ROCK Inhibitor Y-27632 was added to the
medium for 24 hours after thawing or passaging as single cells. The cells were cultured in 10
cm dishes, T25 flasks, 6-well plates, and 24-well plates. For freezing, cells were lifted as
colonies as for passaging, pelleted by centrifugation at 200 rcf for 4 minutes at 25°C,
resuspended in 2 mL mFreSR medium/lifted well of a 6-well plate, frozen in 1 mL aliquots at -
1°C/minute, and stored long-term in liquid nitrogen. The cells were validated with karyotyping

(Fig. S5C) and tested negative for mycoplasma contamination (Fig. S5D).

Pediatric post-mortem brain tissue

Frozen human pediatric hypothalamus tissue from 4 post-mortem individuals were
obtained. The tissue donors included a 4-year-old male, 8-year-old male, 4-year-old female, and
14-year-old female, all classified as white and with no clinical diagnoses. The number of

samples was limited by tissue availability.

Method details

Mycoplasma contamination testing

Cells were cultured in the absence of antibiotics for several days and until 90-100%
confluent. Medium was then collected and used to detect mycoplasma by PCR using the
LookOut Mycoplasma PCR Detection kit with JumpStart Tag DNA polymerase, following
manufacturer’s instructions. PCR products, including positive and negative controls, were
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visualized with gel electrophoresis. Band sizes from experimental samples were compared to
the negative control to determine that all cell cultures were negative for mycoplasma

contamination (Fig. S5D).

Bulk ATAC-seq library preparation

ATAC-seq libraries were prepared from primary astrocytes with 3 technical replicates,
the rs7132908 non-risk G allele ESCs with 3 technical replicates and the rs7132908 risk A allele
ESCs with 3 biological replicates. 50,000-100,000 cells from each replicate were centrifuged at
550 rcf for 5 minutes at 4°C to pellet. Each cell pellet was washed with cold PBS and
resuspended in 50 yL cold lysis buffer (10 mM Tris-HCI, pH 7.4, 10 mM NacCl, 3 mM MgCl,, and
0.1% IGEPAL CA-630) then immediately centrifuged at 550 rcf for 10 minutes at 4°C. Nuclei
were resuspended in transposition reaction mix (25 UL 2X Tagment DNA Buffer, 2.5 uL TDE1
Tagment DNA Enzyme, and 22.5 L nuclease-free water) on ice, then incubated for 45 minutes
at 37°C. The tagmented DNA was then purified using the Qiagen MinElute PCR Purification kit
and eluted in 10.5 yL elution buffer. 10 uL of each purified tagmented DNA sample was
amplified with PCR using the Nextera DNA CD Indexes kit and NEBNext High-Fidelity PCR
Master Mix for 12 cycles to generate each library. The libraries were purified using AMPure XP
beads at a 1.8X concentration. Library concentrations were measured with Qubit dsDNA High
Sensitivity Assays. The completed libraries were assessed with the Agilent Bioanalyzer DNA
1000 kit and 2100 Bioanalyzer Expert software (RRID: SCR_019715). Completed libraries were

pooled and sequenced on the lllumina NovaSeq 6000 platform using paired-end 51 bp reads.

Hi-C library preparation

Hi-C libraries were prepared from primary astrocytes with two technical replicates using
the Arima-HiC kit, following manufacturer’s instructions and as previously described*’. In brief,
cells were crosslinked with formaldehyde and then chromatin was digested with multiple
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restriction enzymes. The purified proximally-ligated DNA was then sheared and 200-600 bp
DNA fragments were selected with AMPure XP beads. The size-selected fragments were then
enriched using Enrichment Beads and then converted to Illumina-compatible sequencing
libraries using the Swift Accel-NGS 2S Plus DNA Library kit and Swift 2S Indexing kit. The
libraries were assessed using the Agilent Bioanalyzer DNA 1000 kit and 2100 Bioanalyzer
Expert software (RRID: SCR_019715) and the KAPA Library Quantification kit. Completed
libraries were pooled and sequenced on the Illlumina NovaSeq 6000 platform using paired-end

101 bp reads.

RNA extraction from cells
To extract RNA from cultured cells for RNA-seq or RT-qPCR, cells were lifted and
resuspended in TRIzol. RNA was extracted from each TRIzol sample with the Zymo Direct-zol

RNA Miniprep kit, following manufacturer’s instructions, with recommended DNase | treatment.

DNA and RNA extraction from tissue

DNA and RNA were extracted from frozen human pediatric hypothalamus tissue
samples in parallel. Each tissue sample was homogenized in DNA/RNA Shield in 2 mm ZR
BashingBead Lysis Tubes with a FastPrep-24 5G high-speed benchtop homogenizer at 10 m/s
at room temperature for 45 seconds. DNA and RNA were then extracted using the Zymo Quick-

DNA/RNA Miniprep Plus kit, following manufacturer’s instructions.

Bulk RNA-seq library preparation

RNA extracted from each cell line and tissue sample was quantified and assessed with
the Agilent Bioanalyzer RNA 6000 Nano kit and 2100 Bioanalyzer Expert software (RRID:
SCR_019715). Cell line samples with an RNA integrity number (RIN) greater than 7 and tissue
samples with a RIN greater than 5 were used for RNA-seq library preparation. RNA-seq libraries

46


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

were prepared from each tissue sample with 3 technical replicates, primary astrocytes with 3
technical replicates, the rs7132908 non-risk G allele ESCs with 2 technical replicates, the
rs7132908 risk A allele ESCs with 3 biological replicates, and hypothalamic neural progenitors
with either allele from two independent differentiations (biological replicates) with 3 technical
replicates. 40 ng to 1 pg of each RNA sample was used as input, depending on RNA extraction
yield. Ribosomal RNA was depleted using the QIAseq FastSelect RNA Removal kit, following
manufacturer’s instructions. Libraries were prepared using the NEBNext Ultra Il Directional RNA
Library Prep for lllumina kit, NEBNext Oligos for lllumina (Dual Index Primers Set 1), and
AMPure XP beads, following manufacturer’s instructions. Library concentrations were quantified
with Qubit dsDNA High Sensitivity Assays. 5 ng of each library was used for assessment with
the Agilent Bioanalyzer DNA 1000 kit and 2100 Bioanalyzer Expert software (RRID:
SCR_019715). If the electropherogram did not display a harrow sample distribution around 300
bp, an additional bead cleanup or column purification was used to remove any contaminating
primers, adapter-dimers, or large fragments generated by over-amplification. Completed
libraries were pooled and sequenced on the lllumina NovaSeq 6000 platform using paired-end

51 bp reads.

Primary astrocyte transfection optimization

To optimize transfection of the primary astrocytes, we transfected with varying amounts
of LentiCRISPRv2-mCherry vector DNA, which was a gift from Agata Smogorzewska (Addgene
Cat# 99154; http://n2t.net/addgene:99154; RRID: Addgene_99154), Lipofectamine LTX, and
PLUS Reagent and then quantified transfection efficiency and cell viability with flow cytometry in
two separate experiments. Primary astrocytes were seeded at 50,000 cells/well in a 24-well
plate and maintained until they reached 70-80% confluence. Lipofectamine LTX-DNA
complexes with PLUS Reagent were prepared following manufacturer’s instructions in Opti-
MEM so that each well would receive either 0 ng, 250 ng, 500 ng, or 750 ng vector DNA, 1 uL
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PLUS Reagent/1 ug of vector DNA, and either a 1:1, 1.2, 1:2.5, 1:3, 1:4, or 1.5 vector DNA
(ug):Lipofectamine LTX (uL) ratio.

Approximately 22 hours post-transfection, the cells were lifted, resuspended in PBS,
fixed in 2% paraformaldehyde for 10 minutes at room temperature, resuspended in PBS,
strained using a 35 pm strainer, and then counted using a CytoFLEX S N2-V3-B5-R3 Flow
Cytometer. 10,000 events were collected for each condition and gating was set using the non-
transfected control condition. Percent single cell events was calculated by dividing the number
of single cell events by all events (10,000). Percent cell viability was then calculated by dividing
the percent single cell events for each condition by the average percent single cell events for 2
replicates of non-transfected controls. Transfection efficiency was calculated by dividing the
number of mCherry+ single cell events by the number of single cell events in each condition.
This optimization experiment determined that ideal conditions for transfecting primary astrocytes
at 70-80% confluence in a 24-well plate for 22 hours are 750 ng vector DNA, 0.75 pL PLUS
Reagent, and 1.875 pL Lipofectamine LTX (1:2.5 ratio) diluted in Opti-MEM for a total volume of
50 uL/well, which was used for all future primary astrocyte transfection experiments. These
transfection conditions yielded high transfection efficiency (11.26%) when considering that the

expected efficiency is 5-12%’’ and high cell viability (85.69%) (Fig. S6A-B).
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Supplemental Figure 6. Primary astrocyte transfection optimization, related to STAR Methods A) Transfection
efficiency resulting from transfecting with 250, 500, or 700 ng DNA per well and varying DNA to Lipofectamine LTX
ratios (n = 2 biological replicates). B) Cell viability resulting from transfecting with 250, 500, or 700 ng DNA per well
and varying DNA to Lipofectamine LTX ratios (n = 2 biological replicates). Data are represented as mean + SD.
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Generation of luciferase assay vectors

The ENCODE consortium’s ‘Registry of candidate cis-Regulatory Elements’ (version 1)
(RRID: SCR_006793) annotated a cell type-agnostic regulatory element with a distal enhancer-
like signature surrounding rs7132908 at chr12:50,262,620-50,263,581 (GRCh37)*. To generate
a DNA fragment containing this sequence with an additional 50 bp flanking each side for
cloning, we designed PCR primers to amplify this region of interest and used a FAIM2 3’ UTR
mMiRNA target clone (purchased from GeneCopoeia) as the PCR template and NEBNext High-
Fidelity PCR Master Mix. To generate DNA fragments containing the FAIM2, LIMA1, and
RACGAP1 promoter sequences, we also designed PCR primers to amplify these regions and
used promoter clones (purchased from GeneCopoeia) as PCR templates. The promoterless
pGL4.10[luc?2] firefly luciferase reporter vector (purchased from Promega) was linearized at the
multiple cloning site upstream of the luc2 reporter gene using the Xhol restriction enzyme. Each
PCR product and the linearized plasmid were extracted after visualization with gel
electrophoresis with the NEB Monarch DNA Gel Extraction kit to ensure that a fragment of
correct length was purified. The putative enhancer region containing rs7132908 and each
promoter were inserted at the multiple cloning site of pGL4.10[luc2] using the Codex Gibson
Assembly HiFi HC 1-Step kit to generate pGL4.10[luc2]-rs7132908G-FAIM2, pGL4.10[luc2]-
rs7132908G-LIMAL, and pGL4.10[luc2]-rs7132908G-RACGAP1 vectors. Each promoter alone
was also inserted at the multiple cloning site to generate pGL4.10[luc2]-FAIM2, pGL4.10[luc2]-
LIMA1, and pGL4.10[luc2]-RACGAPL1 control vectors. Each Gibson Assembly product was used
to transform NEB Stable Competent E. coli which were then plated on LB agarose plates with
100 pg/mL ampicillin to select for successfully transformed colonies. Bacterial plates were
incubated overnight at 37°C and then individual colonies were selected for overnight growth in
LB broth with 100 pg/mL ampicillin at 30°C with shaking at 250 rpm. Vector DNA was extracted
from each overnight culture using the Qiagen QlAprep Spin Miniprep kit and then Sanger
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sequenced on both strands throughout the modified region to confirm successful insertion and
sequence. Electropherograms and sequence files produced from Sanger sequencing were
analyzed using SnapGene software (RRID: SCR_015052). Once vectors with perfect
sequences were identified, we used the NEB Q5 Site-Directed Mutagenesis kit to introduce the
childhood obesity risk A allele at rs7132908 and generate pGL4.10[luc2]-rs7132908A-FAIM2,
pGL4.10[luc2]-rs7132908A-LIMA1L, and pGL4.10[luc2]-rs7132908A-RACGAP1 vectors. We
used Sanger sequencing on both strands throughout the modified region to confirm successful
mutagenesis and lack of polymerase errors. Bacteria glycerol stocks were prepared to store
each transformed strain with verified sequences long-term. Each experimental vector, the
unmodified pGL4.10[luc2] control vector, and pRL-TK (purchased from Promega) co-
transfection control vector were then purified for transfection using the Qiagen EndoFree
Plasmid Maxi kit. Each purified vector was used for three transfections and purification from

glycerol stock was repeated, as needed.

Transfection of primary astrocytes

Primary astrocytes were seeded in three 24-well plates at varying densities so that they
would reach 70-80% confluence on three different days for independent transfections. Once
each plate reached 70-80% confluence, the cells were transfected in triplicate using optimized
conditions to deliver 750 ng pGL4.10[luc2] firefly luciferase reporter vector DNA (unmodified,
modified with promoter only, or modified with putative enhancer region and promoter) and 75 ng
pRL-TK renilla luciferase reporter vector DNA. Three wells were also treated with only Opti-
MEM and transfection reagents to serve as a mock transfected control. The cells were then
cultured for approximately 22 hours in a humidified incubator at 37°C with 5% CO,. This
transfection process was repeated two more times with freshly thawed primary astrocytes with
matched passage numbers and freshly purified vectors so that 9 independent transfections
were completed.
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Transfection of HEK293Ts

HEK293Ts were seeded in three 24-well plates at varying densities so that they would
reach 70-90% confluence on three different days for independent transfections. Once each
plate reached 70-90% confluence, the cells were transfected in triplicate with 500 ng
pGL4.10[luc?2] firefly luciferase reporter vector DNA (unmodified, modified with promoter only, or
modified with putative enhancer region and promoter) and 50 ng pRL-TK renilla luciferase
reporter vector DNA with 1 uL P3000 Reagent and 0.75 uL Lipofectamine 3000 diluted in Opti-
MEM for a total volume of 50 uL/well. Three wells were also treated with only Opti-MEM and
transfection reagents to serve as a mock transfected control. The cells were then cultured for
approximately 24 hours in a humidified incubator at 37°C with 5% CO,. This transfection
process was repeated two more times with freshly thawed HEK293Ts with matched passage

numbers and freshly purified vectors so that 9 independent transfections were completed.

Luciferase assay

Luciferase assay reagents were prepared using the Promega Dual-Luciferase Reporter
Assay System, according to manufacturer’s instructions. After transfection with luciferase
reporter vectors, primary astrocytes were washed with PBS, incubated in 500 pyL Passive Lysis
Buffer/well with rocking at room temperature for 15 minutes, and then gently pipetted to aid lysis
with mechanical force. After transfection with luciferase reporter vectors, HEK293Ts were
washed with PBS and lysed in 500 pL Passive Lysis Buffer/well with rocking at room
temperature for 10 minutes. Each lysate was then collected and vortexed for 10 seconds. 20 pL
of each lysate was added to a white, flat-bottom 96-well plate in triplicate for a total of 9
wells/condition. 20 pL Passive Lysis Buffer was also added to 9 wells to serve as a negative
control. Each well was assayed using a SpectraMax iD5 Multi-Mode Microplate Reader by
injecting 100 pL Luciferase Assay Reagent Il, waiting 2 seconds, measuring firefly luciferase
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fluorescence for 10 seconds, injecting 100 pL Stop & Glo Reagent, waiting 2 seconds, and

measuring renilla luciferase fluorescence for 10 seconds.

Generation of rs7132908 risk allele ESC clones

A guide RNA and homology-directed repair template were designed to change the
rs7132908 non-risk G allele to the obesity risk A allele with CRISPR-Cas9 in the ESC model.
These methods were adapted from a previously published protocol for highly efficient CRISPR-
Cas9 editing in human stem cells’®. The guide RNA was designed with the help of the
CRISPOR program (RRID: SCR_015935)"°. The guide RNA was prepared by incorporating the
20 bp target sequence into two 60-mer oligos purchased as 25 nmole DNA oligos from IDT
which were then annealed, amplified with PCR using Phusion High-Fidelity DNA polymerase,
and purified with extraction with the Takara NucleoSpin Gel and PCR Clean-Up kit after
visualization with gel electrophoresis. The guide RNA was then cloned into the gRNA_Cloning
vector®, which was a gift from George Church (Addgene Cat# 41824;
http://n2t.net/addgene:41824; RRID: Addgene_41824), at the Aflll restriction site with the NEB
Gibson Assembly kit to generate the gRNA_Cloning-rs7132908gRNA vector. The homology-
directed repair template was prepared by designing a 100 bp single-stranded oligonucleotide
centered around the gRNA sequence and with the desired base change, which was then
purchased as a 4 nmole Ultramer DNA oligo from IDT. 0.5 pg gRNA_Cloning-rs7132908gRNA
vector, 0.5 pg pCas9_GFP vector®, which was a gift from Kiran Musunuru (Addgene Cat#
44719; http://n2t.net/addgene:44719; RRID: Addgene_44719), and 1 pg homology-directed
repair template/well were transfected into 70-80% confluent ESCs on irradiated MEFs in a 6-
well plate with 3 uL/well Lipofectamine Stem in 50 uL DMEM/F12. The cells were cultured in a
humidified incubator at 37°C with 5% CO, for 48 hours. After transfection, single cells were lifted
and 5,000-15,000 GFP+ cells were sorted into a 10 cm dish coated with Matrigel Growth Factor
Reduced Basement Membrane Matrix diluted in IMDM and MEFs with fluorescence-activated
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cell sorting. After 10-15 days of maintenance, individual clones were manually picked and used
for both screening and expansion. Some cells from each clone were used for Proteinase K DNA
extraction. This DNA was used as a template for PCR across the edited region using the
Phusion High-Fidelity DNA polymerase and the PCR products were then used for both
restriction digestion screening and Sanger sequencing to confirm the base change (Fig. S5A-
B). Restriction digestion was a possible screening method because the change from the
rs7132908 non-risk G allele to obesity risk A allele generated a unique Bfal restriction site.
Electropherograms and sequence files produced from Sanger sequencing were analyzed using
SnapGene software (RRID: SCR_015052). Clones confirmed to be homozygous for the
rs7132908 obesity risk A allele underwent further validation with karyotyping (Fig. S5C), de
novo CNV analysis (Supp. Table 11), mycoplasma contamination testing (Fig. S5D), and

Sanger sequencing at the top 10 most likely off-target sites (Supp. Table 12).

Karyotyping

ESCs were passaged into a T25 flask and cultured under normal conditions until the
cells reached 60-70% confluence. The flask was then packaged and shipped to Cell Line
Genetics for G-band karyotyping of live cultures. Karyotyping reports indicated that all ESC lines

had a normal human female karyotype (Fig. S5C).

DNA extraction from cells

To extract DNA from cultured cells for genotyping, PCR, or Sanger sequencing, cells

were lifted and then DNA was extracted with the Zymo Quick-DNA Miniprep Plus kit, following

manufacturer’s instructions.

SNP genotyping
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Genome-wide genotyping of DNA from ESC lines for de novo CNV analysis was
performed using the Illlumina Infinium Global Screening Array v3.0 BeadChip genotyping array.
Genome-wide genotyping of DNA from human pediatric hypothalamus tissue was performed
using the Illlumina OmniExpressExome v1.6 BeadChip genotyping array. Genotyping arrays
consist of many thousands of short invariant 50mer oligonucleotide probes conjugated to silica
beads. Sample DNA is hybridized to the probes and a single-base, hybridization-dependent
extension reaction is performed at each target SNP. Arrays are loaded onto an iScan System
and scanned to extract data. DMAP files enable identification of bead locations on the BeadChip
and quantification of the signal associated with each bead. Alternate alleles (herein denoted A
and B) are labeled with different fluorophores. Raw fluorescence intensity from the two-color
channels is processed into a discrete genotype call (normalized to continuous value 0-1 B-Allele
Frequency (BAF)) and the total intensity from both channels (normalized to continuous value

with median=0 Log R Ratio (LRR)) at each SNP which are informative for copy number.

Screening for CRISPR off-target effects

The CRISPOR program (RRID: SCR_015935)"° was used to identify potential off-target
sites for the guide RNA designed to change the rs7132908 non-risk G allele to the obesity risk A
allele. Each potential off-target site was ranked by Cutting Frequency Determination score
which is used to measure guide RNA specificity. Primers were designed to PCR amplify and
Sanger sequence the top 10 potential off-target sites. Six potential off-target sites were
excluded from screening because primers could not be designed in these regions with a melting
temperature between 56-70°C, likely because these regions were too repetitive. Each potential
off-target site was amplified using the Phusion High-Fidelity DNA polymerase. Each PCR
product was extracted after visualization with gel electrophoresis with the NEB Monarch DNA
Gel Extraction kit to ensure that a fragment of correct length was purified. Each purified PCR
product was then Sanger sequenced on both strands. Electropherograms and sequence files

54


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

produced from Sanger sequencing were analyzed using SnapGene software (RRID:
SCR_015052). Sequences from each CRISPR clone were compared to sequences from the
parent H9 ESC line to determine that there were no off-target effects in all clones at the top 10

most likely off-target sites (Supp. Table 12).

Preparation of differentiation medium

Differentiation medium was prepared as previously published” with some modifications.
This medium is an optimized, serum-free reformulation of B27 which supports high quality
neuronal cultures and overcomes quality variability of B27 due to different sources of bovine
serum albumin. A 50X differentiation supplement was prepared containing DMEM/F12 with 1
Hg/mL corticosterone, 50 pg/mL linoleic acid, 50 pg/mL linolenic acid, 2.35 pug/mL (£)-a-lipoic
acid, 0.32 pg/mL progesterone, 5 pg/mL retinyl acetate, 50 pg/mL (z)-a-tocopherol, 50 ug/mL
DL-a-tocopherol acetate, 125 mg/mL bovine serum albumin, 27.15 mg/mL sodium bicarbonate,
3.2 mg/mL L-ascorbic acid, 805 pg/mL putrescine dihydrochloride, 750 pg/mL D(+)-galactose,
250 pg/mL holo-transferrin, 125 yg/mL catalase, 100 ug/mL L-carnitine hydrochloride, 50 ug/mL
glutathione, 0.7 pg/mL sodium selenite, 50 ug/mL ethanolamine, 0.1 pg/mL triiodo-L-thyronine
sodium salt, and 200 pg/mL insulin. Differentiation medium was then prepared containing
DMEM/F12 with 1X differentiation supplement, 1X Antibiotic-Antimycotic, 1X GlutaMAX, and 2.5

Hg/mL superoxide dismutase.

Differentiation to hypothalamic neural progenitors

ESCs were plated as single cells at 1 million cells/well in a matrigel-coated 6-well plate
or 200,000 cells/well in a matrigel-coated 24-well plate and cultured in mTeSR1 medium with 10
UM ROCK Inhibitor Y-27632 for 24 hours in a humidified incubator at 37°C with 5% CO,. After
24 hours, on day 0, the medium was changed to differentiation medium with 1 yM LDN-193189
and 10 uM SB-431542 for dual SMAD inhibition. On days 2, 4, 6, and 8, the medium was
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changed to differentiation medium with 1 yM LDN-193189, 10 uM SB-431542, 1 uM SAG, 1 uM
Purmorphamine, and 10 uM IWR-1-endo for dual SMAD and Wnt signaling inhibition and Shh
activation. This method directed the ESCs toward ventral diencephalon forebrain cell identity.
On days 9, 11, and 13, the medium was changed to differentiation medium with 10 uM DAPT
and 0.01 uM retinoic acid to direct the cells to exit cell cycle. Hypothalamic neural progenitors
were collected for downstream experiments on day 14 (Fig. 3A). These methods were
previously optimized and validated’. To confirm hypothalamic neural progenitor identity, we
performed immunohistochemistry and observed expected expression of NKX2-1, which is a
marker for the developing hypothalamus® (Fig. S1B), and NeuN, which is a marker for post-

mitotic neurons (Fig. S1C).

Differentiation to hypothalamic neurons

On day 14, hypothalamic neural progenitors were washed with DPBS, incubated at 37°C
with Accutase for up to 7 minutes, treated with 2 volumes of medium to neutralize the Accutase,
pelleted by centrifugation at 200 rcf for 3 minutes at 25°C, resuspended in differentiation
medium with 10 ng/mL BDNF, and seeded at 1 million cells/well in a laminin-coated 6-well plate
or 200,000 cells/well in a laminin-coated 24-well plate. Laminin-coated plates were prepared by
diluting laminin to 0.05 mg/mL in cold Hanks’ Balanced Salt Solution, distributing 10 mL laminin
solution across each plate, incubating overnight at 4°C, incubating at 37°C for 2 hours before
use, and washing with PBS 3 times before use. The medium was replaced with fresh
differentiation medium with 10 ng/mL BDNF every 2-3 days until day 40 to promote

hypothalamic neuron maturation. These methods were previously optimized and validated’.

Fluorescent immunohistochemistry
Cells for immunohistochemistry were cultured on acid-treated #1.5 glass coverslips. The
cells were washed with PBS, fixed with 4% paraformaldehyde for 10 minutes at room
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temperature, and then incubated with PBS for 5 minutes at room temperature three times to
wash. The cells were incubated in blocking solution (PBS with 5% (w/v) bovine serum albumin
and 0.3% Triton X-100) for 1 hour at room temperature. After blocking, primary antibodies (Anti-
MAP2 (Abcam Cat# ab5392; RRID: AB_2138153), Anti-NKX2-1 (Cell Marque Cat# 343M-95;
RRID: AB_1158934), and Anti-NeuN (Millipore Sigma Cat# MAB377; RRID: AB_2298772))
diluted in blocking solution (1:500) were added to the cells, then incubated overnight at 4°C with
gentle rocking. After the primary antibody incubation, the cells were incubated with PBST for 10
minutes at room temperature three times to wash. Appropriate secondary antibodies (Anti-
Chicken (Abcam Cat# ab150169; RRID: AB_2636803) and Anti-Mouse (Invitrogen Cat# A-
11001; RRID: AB_2534069)) diluted in blocking solution (1:500) were added to the cells, then
incubated for 1 hour at room temperature, protected from light. After the secondary antibody
incubation, the cells were incubated with PBST for 5 minutes at room temperature three times to
wash. The cells were then washed with PBS for 3 minutes at room temperature and incubated
with 300 nM DAPI for 5 minutes at room temperature to stain nuclei. After DAPI incubation, the
cells were washed with PBS three times. The glass coverslips were mounted on glass slides
with ProLong Gold Antifade Mountant. The cells were visualized with an Olympus DP74 camera
using appropriate fluorescent filters and Olympus cellSens Standard software. Images for each

fluorescent channel were merged using ImageJ (RRID: SCR_003070)%.

Nuclei isolation

After hypothalamic neuron differentiation, the cells were washed with PBS, incubated at
37°C with Accutase for up to 7 minutes, treated with 2 volumes of medium to neutralize the
Accutase, and pelleted by centrifugation at 300 rcf for 5 minutes at 4°C. The cell pellet was
resuspended in PBS with 0.04% bovine serum albumin. 1 million cells or less were pelleted by
centrifugation at 300 rcf for 5 minutes at 4°C and then resuspended in 100 uL chilled lysis buffer
(water with 10 mM Trizma hydrochloride, 10 mM sodium chloride, 3 mM magnesium chloride,
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1% bovine serum albumin, 0.1% Tween-20, 1 mM DTT, 1 U/uL RNase inhibitor, and 0.1%
IGEPAL CA-630). The cells were incubated in lysis buffer on ice for 1 minute and then 500 pL
chilled wash buffer (water with 10 mM Trizma hydrochloride, 10 mM sodium chloride, 3 mM
magnesium chloride, 1% bovine serum albumin, 0.1% Tween-20, 1 mM DTT, and 1 U/pL
RNase inhibitor) was added. The nuclei were pelleted by centrifugation at 500 rcf for 5 minutes
at 4°C. Addition of chilled wash buffer and pelleting were repeated two more times. The nuclei
were then resuspended in chilled nuclei buffer (water with 1X Nuclei Buffer, 1 mM DTT, and 1
U/uL RNase inhibitor) to a concentration of 8,000 nuclei/pL in at least 25 L and strained using

a 35 uym strainer.

Single-nucleus RNA-seq and ATAC-seq library preparation

Single-nucleus RNA-seq and ATAC-seq libraries were prepared using the 10X
Genomics Chromium Single Cell Multiome ATAC + Gene Expression workflow. Libraries were
prepared from the rs7132908 non-risk G allele cells from two independent differentiations
(biological replicates) for a total of 4 technical replicates and from the rs7132908 risk A allele
cells from two CRISPR clones (biological replicates) and three independent differentiations
(biological replicates) for a total of 4 technical replicates. In brief, isolated nuclei in chilled nuclei
buffer were transposed in bulk which simultaneously fragmented DNA in regions of open
chromatin and added adapter sequences to the ends of the DNA fragments. The transposed
nuclei were then loaded onto a microfluidic chip which was run in the Chromium Controller
instrument. In the instrument, nuclei were individually partitioned with Gel Beads-in-emulsion
(GEMS). Each Gel Bead contains oligonucleotides with a unique 16 bp 10X Barcode sequence,
a poly(dT) sequenced to capture mRNA, and a Spacer sequence that enables barcode
attachment to transposed DNA fragments. The GEMs were then incubated to attach unique 10X
Barcodes to mRNA and transposed DNA fragments which served to associate mRNA and
transposed DNA fragments back to the same nucleus. Unique molecular identifiers (UMIs) were
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also used to distinguish individual, captured mRNA molecules for quantification. A reverse
transcription reaction converted the mRNA into full-length cDNA. The GEMs were then broken
and pooled fractions were recovered and purified. The products were taken through a pre-
amplification PCR step to fill gaps and ensure maximum recovery of barcoded ATAC and cDNA
fragments. The pre-amplified products were then used as input for both ATAC-seq library
preparation and cDNA amplification for RNA-seq library preparation. Completed RNA-seq
libraries were quantified and assessed with Agilent High Sensitivity D1000 ScreenTape assays
and ATAC-seq libraries were quantified and assessed with Agilent High Sensitivity D5000
ScreenTape assays. RNA-seq libraries were then pooled and sequenced on the lllumina
NovaSeq 6000 platform to reach a minimum of 20,000 paired-end reads/nucleus. ATAC-seq
libraries were then pooled and sequenced on the lllumina NovaSeq 6000 platform to reach a

minimum of 25,000 paired-end reads/nucleus.

cDNA generation

RNA samples were quantified with Qubit RNA High Sensitivity Assays. 30 ng of each
RNA sample was used for cDNA generation using SuperScript IV VILO Master Mix after
treatment with ezDNase to remove any DNA contamination. No reverse transcriptase controls

were also generated using SuperScript IV VILO ‘No RT’ Control Master Mix.

Quantitative real-time polymerase chain reaction (RT-gPCR)

TagMan Gene Expression Assays for FAIM2 and human 18S ribosomal RNA were
validated with standard curves generated by pooling all cDNA samples quantified in an
experiment to represent average conditions of all samples. The FAIM2 standard curve consisted
of 5 points generated by a 1:5 serial dilution ranging from 0.0024 to 1.5 ng in triplicate. The 18S
standard curve consisted of 8 points generated by a 1:5 serial dilution ranging from 0.0000192
to 1.5 ng in triplicate. Each sample was quantified with TagMan Fast Advanced Master Mix and
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the Agilent AriaMX Real-Time PCR System. After assay validation, 0.5 ng of each experimental
cDNA sample and no reverse transcriptase control were assayed in duplicate. Additionally, no

template controls were assayed in triplicate.

Quantification and statistical analysis

Prediction of risk allele’s effect on transcription factor binding

The genomic position and alternative allele of rs7132908 (determined using
SNPlocs.Hsapiens.dbSNP155.GRCh38 and BSgenome R packages) were used to scan
through all position frequency matrix databases using the R package MotifDb to identify
potential transcription factor binding disruption effects. The motifbreakR function® was used
with parameters filter=TRUE, threshold=0.0005, method="ic’, bkg=c(A=0.25, C=0.25, G=0.25,

T=0.25), and BPPARAM=BiocParallel::SerialParam().

GWAS-eQTL colocalization

Childhood obesity GWAS summary statistics from the European ancestry population in
the EGG consortium were used. Common variants (minor allele frequency = 0.01) from the
1000 Genomes Project (v3)®®> were used as a reference panel. SNP-gene sets from our variant-
to-gene mapping efforts were used as leads. We used ColoQuial® to test genome-wide
colocalization of each lead against GTEx eQTLs (v8) (RRID: SCR_013042)® from all 49
available tissues. Evidence of colocalization between a given childhood obesity GWAS signal

and eQTL signal was identified by a conditional posterior probability of colocalization = 0.8.

Luciferase assay data analysis

All fluorescence values were reduced by the average signal in the 9 negative control
wells to correct for background fluorescence in the Passive Lysis Buffer and 96-well plate. The
firefly luciferase fluorescence signal was then divided by the renilla luciferase fluorescence
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signal in each well to adjust for sample-to-sample variability due to differences in cell numbers,
transfection efficiency, and pipetting. Normalized firefly luciferase fluorescence values were
averaged for each condition (n=9). Normalized fold change was calculated by dividing the
average normalized firefly luciferase fluorescence values for each condition by this value
produced by the promoter only vector (pGL4.10[luc2]-FAIM2, pGL4.10[luc2]-LIMAL, or
pGL4.10[luc2]-RACGAP1).

Assays were excluded from statistical analysis if there was fluorescence detected
(normalized fold change > 0.1) in the negative control condition or if at least one normalized fold
change value was greater than 2 standard deviations away from the mean of all other assays
performed. Multiple independent transfections and assays were performed and are stated in the
figure legend. All data are represented as mean * standard deviation. Statistical analyses and
visualization were performed using GraphPad Prism (RRID: SCR_002798) and ordinary one-
way ANOVA tests with Tukey’s correction for multiple comparisons. P-values < 0.05 were

considered significant. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001.

CNV detection

Samples must meet minimum quality control standards of call rate > 98% and LRR
standard deviation < 0.3 to be used for CNV detection. We used PennCNV (RRID:
SCR_002518) as our main CNV detection algorithm of the lllumina Infinium Global Screening
Array v3.0 data due to its widespread usage. We filtered PennCNYV calls to include CNVs with
number of SNPs supporting 220, length 100,000, and Segmental Duplication track coverage <
0.5. Related cell line clone CNV calls were compared to ensure consistency in CNV calling. All

genomic coordinates are in human genome build version GRCh37.

De novo CNV detection
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The related cell line clones annotated for each sample were verified by pairwise
comparison of genome-wide SNP genotyping content using PLINK (RRID: SCR_001757). The
"child" cell line CNVs were compared to their corresponding "parent"” cell line CNVs using
bedtools and if at least 50% reciprocal overlap is not observed, annotated as de novo. Such
putative de novo calls were BAF LRR plotted for each pair of "child" and "parent"” to allow for

side-by-side comparison to ensure the de novo was not an erroneous call.

Bulk RNA-seq analysis

Sequencing data was demultiplexed to generate FASTQ files using lllumina bcl2fastg2
Conversion Software (RRID: SCR_015058). FASTQ files were assessed with FastQC (RRID:
SCR_014583)%"% to verify that there was high sequence quality, expected sequence length,
and no adapter contamination. Paired-end FASTQ files for each replicate of primary astrocytes
were mapped to the human reference genome (GRCh38) using STAR (RRID: SCR_004463)%°.
Genes were annotated using GENCODE human release 40 (RRID: SCR_014966)%. Raw read
counts were calculated using HTSeq-count (RRID: SCR_011867). Paired-end FASTQ files for
each replicate of all other cell types and tissue were mapped to the Ensembl human reference
transcriptome (GRCh38)% using Kallisto (RRID: SCR_016582)**. Abundance data generated
with Kallisto was read into R (RRID: SCR_001905) using the package tximport (RRID:
SCR_016752)%, annotated with Ensembl human gene annotation data (version 86)* using
ensembldb (RRID: SCR_019103)% and EnsDb.Hsapiens.v86, and summarized as counts per
million (cpm) at the gene level using edgeR (RRID: SCR_012802)*". Genes with less than 1
cpm in 2 or 3 samples, depending on the smallest set of replicates in the analysis, were
removed to increase statistical power to detect differentially expressed genes. Samples within
each analysis were normalized with the timmed mean of M values (TMM) method®. The R
package limma (RRID: SCR_010943)% was used to identify differentially expressed genes by
first applying precision weights to each gene based on its mean-variance relationship using the

62


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

voom function and then linear modeling and Bayesian statistics were employed to detect genes
that were up- or down-regulated in each condition. Genes with an adjusted P-value < 0.05 and
|log2 fold change| > 0.58 were considered significantly differentially expressed. Coordinates for
the rs7132908 TAD were determined using the TADKB database® and considering the most
conservative region documented in all reported human cell lines (GRCh37). A list of genes in
the rs7132908 TAD region were exporting using the UCSC Genome Browser (GRCh37) (RRID:
SCR_005780)'*°!, Significantly differentially expressed genes were clustered using Pearson
correlation and the R function hclust. The clustered genes were cut into 2 modules in ESCs and
5 modules in hypothalamic neural progenitors. Significantly enriched Gene Ontology terms®2>3

in each module were identified using gprofiler2 (RRID: SCR_018190)'%%%, Results were

visualized using ggplot2 (RRID: SCR_014601)'%, gplots, and plotly.

Bulk ATAC-seq analysis

Sequencing data was demultiplexed to generate FASTQ files using lllumina bcl2fastg2
Conversion Software (RRID: SCR_015058). ATAC-seq peaks were called following the
ENCODE ATAC-seq pipeline (https://www.encodeproject.org/atac-seq/). Briefly, paired-end
reads from three replicates for each cell type were aligned to the human reference genome
(GRCh38) using bowtie2 (RRID: SCR_016368)'"°, and duplicate reads were removed from the
alignment using Picard (RRID: SCR_006525) MarkDuplicates and SAMtools (RRID:
SCR_002105)'. Narrow peaks were called independently for each replicate using MACS2'%’
with parameters -p 0.01 --nomodel --shift -75 --extsize 150 -B --SPMR --keep-dup all --call-
summits. Reproducible peaks, peaks called in at least 2 replicates (with at least 1 bp overlap),
were used to generate a consensus set of peaks. Signal peaks were normalized using csaw'®
in 10 kilobase (kb) bin background regions. A threshold of cpm > 1 was used to exclude peaks
with low abundance from the analysis. Tests for differential accessibility between rs7132908
genotypes were conducted with the gimQLFit approach implemented in edgeR (RRID:
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SCR_012802)°" using the normalization factors calculated by csaw. Open chromatin regions
with adjusted P-value < 0.05 and |log2 fold change| > 1 were considered differentially

accessible. Results were visualized using ggplot2 (RRID: SCR_014601)%*.

Hi-C analysis

Hi-C analysis was performed as previously described®’. In brief, sequencing data was
demultiplexed to generate FASTQ files using Illumina bcl2fastq2 Conversion Software (RRID:
SCR_015058). Paired-end reads from each replicate were pre-processed using the HICUP
pipeline (RRID: SCR_005569)'*° and aligned to the human reference genome (GRCh38) with
bowtie2 (RRID: SCR_016368)*°. The alignments files were parsed to pairtools (RRID:
SCR_023038)'" to process and pairix*** to index and compress, then converted to Hi-C matrix
binary format (.cool) by cooler**? at multiple resolutions (500 bp, 1, 2, 4, 10, 40, 500 kb and 1
megabase (Mb)) and normalized with the ICE method'*®. The matrices from different replicates
were merged at each resolution using cooler'*?. Mustache™* and Fit-Hi-C2™° were used to call
significant intra-chromosomal interaction loops from merged replicates matrices at three
resolutions (1 kb, 2 kb, and 4 kb), with significance thresholds of g-value < 0.1 and P-value <
1x107°. The identified interaction loops were merged between both tools at each resolution.
Lastly, interaction loops from all three resolutions were merged with preference for smaller

resolution if there was overlap.

Single-nucleus RNA-seq and ATAC-seq pre-processing

Cell Ranger ARC analysis pipelines were used to process sequencing data generated
with the 10X Genomics Chromium Single Cell Multiome ATAC + Gene Expression workflow.
Sequencing data was demultiplexed to generate FASTQ files using mkfastq. The FASTQ files

were aligned to the GRCh38 human reference genome with the Cell Ranger ARC package
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(RRID: SCR_023897) and cells were called using parameters -count --min-atac-count=2000 --
min-gex-count=1000.

66,120 cells homozygous for the rs7132908 non-risk G allele representing two separate
differentiations were sequenced. 45,916 cells homozygous for the rs7132908 obesity risk A
allele representing two different clonal lines and three different differentiations were also
sequenced. All 112,036 cells then underwent quality control to remove ambient RNA using
SoupX (RRID: SCR_019193)"® with the contamination fraction automatically estimated for each
sample and the count matrices were re-adjusted after removal. Doublets were detected and
removed using the Python package Scrublet (RRID: SCR_018098)""", and cells with >10%
mitochondrial reads were filtered out using Seurat (RRID: SCR_016341)"'8. After quality control,
we retained 71,818 cells for downstream analyses.

RNA-seq data from all samples was SCTransformed (RRID: SCR_022146)'%12°,
integrated using the IntegrateData function, and then batch corrected using Harmony (RRID:
SCR_022206)"* for differentiation, biological, and technical replicates. PCA and UMAP
reduction were performed using the first 30 empirically selected principal components with
standard pipelines (Fig. S2A-C).

We ran peak calling using MACS3 (https://macs3-project.github.io/MACS/) for each
sample with their corresponding ATAC-seq fragments files. Peaks from all samples were pooled
and reduced to a final set of 383,029 peaks accessible in at least one sample. This peak set
was used to create a ChromatinAssay using Signac (RRID: SCR_021158)'%. The peaks were
filtered through ENCODE hg38 blacklist regions (https://github.com/Boyle-
Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz) and annotated with
EnsDb.Hsapiens.v86. We performed quality control following metrics recommended by
Signac'??, including nucleosome banding pattern, TSS enrichment score, total number of
fragments in peaks, fraction of fragments in peaks, and ratio of reads in genomic blacklist
regions; we removed cells that were outliers by these metrics. We performed term frequency-
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inverse document frequency normalization with the RunTFIDF function and feature selection
and dimension reduction using singular value decomposition (SVD) on the TD-IDF matrix with
the RunSVD function, which produced latent semantic indexing components (LSI)*?%. Uniform
manifold approximation and projection embedding was computed based on the first 29 LSI
components (second to the 30™) for visualization in two-dimensional space with the RunUMAP
function. The first component, being in strong correlation with total counts, was not used.

Results were visualized using Seurat™® and ggplot2 (RRID: SCR_014601)"*.

Single-nucleus RNA-seq cell type identification

A previously published human hypothalamic arcuate nucleus single-cell RNA-seq
dataset™ was used as a reference dataset to identify cell types in our single-nucleus RNA-seq
dataset. Pairwise correspondences or ‘anchors’ between individual cells in each dataset were
defined using the Seurat (RRID: SCR_016341) function FindTransferAnchors®. Then each cell
in our dataset was classified as one of the cell types in the reference dataset (neuron, astrocyte,
OPC, mature oligodendrocyte, microglia, ependymal, pericyte, immature oligodendrocyte,
fibroblast, choroid, and tanycyte) using the Seurat function TransferData®®, where the reference
cell type with the highest observed classification score was assigned. As a result, neuron,
astrocyte, OPC, ependymal, fibroblast, and tanycyte annotations were added to our dataset
(Fig. S2D). We then prioritized cells with a classification score = 0.8 for downstream analyses
as this threshold has been previously demonstrated to increase accuracy™. In summary, we
identified 38,044 cells as neurons, OPCs, or fibroblasts with a classification score above our
threshold. PCA and UMAP reduction were performed using the first 20 empirically selected
principal components with standard pipelines (Fig. 4A). All cells annotated as neurons were
then subset and reclustered with PCA and UMAP reduction using the first 15 empirically

selected principal components (Fig. 4C). Results were visualized using Seurat**®

and ggplot2
(RRID: SCR_014601)*.
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Transcriptome correlation with pediatric hypothalamus tissue and GTEx RNA-seq data
Pseudobulk TPMs were calculated for each annotated cell type and replicate sample in
the single-nucleus RNA-seq dataset by normalizing SoupX-corrected counts by gene size using
gene annotation data from GENCODE human release 38 (GRCh37) (RRID: SCR_014966)%
and previously published code®*. TPMs from all rs7132908 non-risk allele replicate samples for
each annotated cell type were then averaged. Similarly, average TPMs were also calculated for
the rs7132908 non-risk allele replicate samples in the bulk RNA-seq datasets generated from
the hypothalamic neural progenitors and human pediatric hypothalamus tissue sequenced
inhouse. Median gene-level TPM data by tissue was downloaded from the GTEx Analysis RNA-
seq database (v8) (RRID: SCR_013042)*. Ensembl gene IDs with version suffixes were
converted to gene names using gene annotation data from GENCODE human release 26
(GRCh37) (RRID: SCR_014966)®. Average TPMs for each cell type of interest were merged
with average TPMs from the human pediatric hypothalamus tissue and GTEx data. Then, the
spearman rank correlation of genes expressed at greater than 5 TPMs in at least 2 samples
were calculated using the R (RRID: SCR_001905) cor function. P-values for each correlation
were calculated using the R cor.test function. Results were visualized in dot plots using ggplot2

(RRID: SCR_014601)%*.

Neuron transcriptome comparison to human prenatal hypothalamus tissue

To compare the transcriptome of the cells annotated as neurons in the single-nucleus
RNA-seq dataset to human prenatal hypothalamic nuclei, data from the Allen Brain Atlas®®®*
was downloaded as upregulated gene sets from the Harmonizome database’®. Left and right
hemisphere gene sets for each hypothalamic nucleus were combined and used for downstream
analysis. To infer the average expression of each gene set per single cell in the neuron dataset

compared to random control genes, module scores for each gene set were calculated using the
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Seurat (RRID: SCR_016341) function AddModuleScore?®. Average module scores per neuron
cluster were plotted as the column Z-score for visualization. Results were visualized using

ggplot2 (RRID: SCR_014601)"%*,

Single-nucleus RNA-seq differential expression analyses

Differential expression analysis of single-nucleus RNA-seq data was performed with
DESeq2 (RRID: SCR_015687)"’, following the standard workflow. In brief, raw counts and
appropriate metadata for cell aggregation and comparison were extracted and used to create a
SingleCellExperiment object using the R package SingleCellExperiment*?®?°_ Counts were
aggregated to the sample level for each cell type using the Matrix.utils function
aggregate.Matrix. DESeqg2 objects were created from the raw counts, appropriate metadata,
and design formula to compare the rs7132908 obesity risk allele to the non-risk allele in each
cell type using the DESeq2 function DESeqDataSetFromMatrix'?’. Differential expression

analysis in each cell type was run using the DESeq2 function results**’

and an adjusted P-value
threshold of 0.05. The resulting log2 fold changes were shrunk using the apeglm method**.
Genes with an adjusted P-value < 0.05 and [log2 fold change| > 0.58 were considered
significantly differentially expressed. Results were visualized in volcano plots using ggplot2
(RRID: SCR_014601)'%*. Significantly differentially expressed genes were clustered using the R
(RRID: SCR_001905) function hclust and plotted in heatmaps using the R package pheatmap
(RRID: SCR_016418). Significantly enriched Gene Ontology terms®*°® in each set of genes

significantly up- or down-regulated in each cell type were identified using gprofiler2 (RRID:

SCR_018190)"%%1%,

Single-nucleus ATAC-seq differential accessibility analyses
To find differentially accessible regions due to rs7132908 genotype, we performed
differential accessibility tests between cells homozygous for either rs7132908 allele. We
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implemented logistic regression using the FindMarkers function from Sighac (RRID:
SCR_021158)'%, with the total number of fragments in peaks as a latent variable to mitigate the
effect of differential sequencing depth and using a min.pct threshold of 0.01 due to sparse
single-nucleus ATAC-seq data. To ensure data correspondence, we used only the 38,044
annotated cells that had a classification score = 0.8 by the RNA-seq analysis for this differential
accessibility analysis. P-value adjustment was performed internally using Bonferroni correction
based on the total number of peaks in the dataset. We repeated this analysis for each
annotated cell type: neurons, OPCs, and fibroblasts.

We performed DNA motif analysis to identify potentially important genotype-specific
regulatory sequences in different groups of differentially accessible peaks. We used motif
position frequency matrices from the JASPAR 2022 CORE collection database®. The
FindMotifs function from Signac'? performed hypergeometric test on these differentially
accessible peaks to test the probability of observing the motif at the given frequency by chance,

compared to a background set of peaks matched for GC content.

Quantitative real-time polymerase chain reaction (RT-qPCR) analysis

Cq values for each sample were determined with the Agilent Aria software. To validate
each TagMan Gene Expression Assay using a standard curve, Cg values from each triplicate of
samples were averaged and then plotted against the log of their corresponding mass of cDNA
input (ng) using Microsoft Excel (RRID: SCR_016137). A linear trendline was then added to
each graph and the R?values and linear equations were displayed. Primer efficiency was

calculated with 100%/sP®)

. Percent primer efficiency was calculated by dividing the primer
efficiency by 2. TagMan Gene Expression Assays passed standard curve validation if the R?
value was greater than 0.99 and the percent primer efficiency was between 90-110%. Assays
were used to calculate normalized relative expression if the no reverse transcriptase and no

template control samples did not generate a Cq value. Normalized relative expression was
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calculated using (EFAIMZ((mean FAIM2 Cq in non-risk cells on day 0) — (mean FAIM2 Cq in experimental sample)))/(ElSS((mean 18S Cq
in non-risk cells on day 0) — (mean 18S Cq in experimental sample)))’ where E is primer efficiency. Results were
visualized using GraphPad Prism (RRID: SCR_002798). Independent differentiations were

performed and are represented by individual points on each graph. All data are represented as

mean + standard deviation.
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SUPPLEMENTAL INFORMATION TITLES AND LEGENDS

Supplemental Table 1. rs7132908 variant-to-gene mapping in neural cell types.

Supplemental Table 2. rs7132908 obesity risk vs. non-risk allele differential accessibility

analysis in ESCs.

Supplemental Table 3. rs7132908 obesity risk vs. non-risk allele differential expression

analysis in ESCs.

Supplemental Table 4. rs7132908 obesity risk vs. non-risk allele differential expression

analysis in hypothalamic neural progenitors.

Supplemental Table 5. GO terms significantly enriched in hypothalamic neural progenitor

modules 4 and 5.

Supplemental Table 6. rs7132908 obesity risk vs. non-risk allele significantly differentially

accessible peaks in hypothalamic cell types.

Supplemental Table 7. Transcription factor motifs significantly enriched in differentially

accessible peaks in hypothalamic cell types.

Supplemental Table 8. rs7132908 obesity risk vs. non-risk allele significantly differentially

expressed genes in hypothalamic cell types.

Supplemental Table 9. GO terms significantly enriched in hypothalamic cell types.
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Supplemental Table 10. Gene expression in pediatric hypothalamus tissue.

Supplemental Table 11. ESC de novo CNV analysis.

Supplemental Table 12. ESC CRISPR off-target site validation.

72


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REFERENCES

1. Bryan, S., Afful, J., Carroll, M., Te-Ching, C., Orlando, D., Fink, S., and Fryar, C. (2021).
National Health and Nutrition Examination Survey 2017—March 2020 Prepandemic Data
Files Development of Files and Prevalence Estimates for Selected Health Outcomes.
National Health Statistics Reports. 10.15620/cdc:106273.

2. Collaboration, N.C.D.R.F. (2017). Worldwide trends in body-mass index, underweight,
overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based
measurement studies in 128.9 million children, adolescents, and adults. Lancet 390,
2627-2642. 10.1016/S0140-6736(17)32129-3.

3. Simmonds, M., Llewellyn, A., Owen, C.G., and Woolacott, N. (2016). Predicting adult
obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev 17,
95-107. 10.1111/0br.12334.

4, Lobstein, T., Baur, L., Uauy, R., and TaskForce, I.1.O. (2004). Obesity in children and
young people: a crisis in public health. Obes Rev 5 Suppl 1, 4-104. 10.1111/j.1467-
789X.2004.00133.x.

5. Loos, R.J.F., and Yeo, G.S.H. (2022). The genetics of obesity: from discovery to biology.
Nat Rev Genet 23, 120-133. 10.1038/s41576-021-00414-z.

6. Silventoinen, K., Jelenkovic, A., Sund, R., Hur, Y.M., Yokoyama, Y., Honda, C.,

Hjelmborg, J., Moller, S., Ooki, S., Aaltonen, S., et al. (2016). Genetic and environmental
effects on body mass index from infancy to the onset of adulthood: an individual-based
pooled analysis of 45 twin cohorts participating in the Collaborative project of
Development of Anthropometrical measures in Twins (CODATwins) study. Am J Clin
Nutr 104, 371-379. 10.3945/ajcn.116.130252.

7. Rajamani, U., Gross, A.R., Hjelm, B.E., Sequeira, A., Vawter, M.P., Tang, J.,
Gangalapudi, V., Wang, Y., Andres, A.M., Gottlieb, R.A., and Sareen, D. (2018). Super-
Obese Patient-Derived iPSC Hypothalamic Neurons Exhibit Obesogenic Signatures and
Hormone Responses. Cell Stem Cell 22, 698-712 €699. 10.1016/j.stem.2018.03.009.

8. Wang, L., Egli, D., and Leibel, R.L. (2016). Efficient Generation of Hypothalamic
Neurons from Human Pluripotent Stem Cells. Curr Protoc Hum Genet 90, 21 25 21-21
25 14.10.1002/cphg.3.

9. Wang, L., Meece, K., Williams, D.J., Lo, K.A., Zimmer, M., Heinrich, G., Martin Carli, J.,
Leduc, C.A., Sun, L., Zeltser, L.M., et al. (2015). Differentiation of hypothalamic-like
neurons from human pluripotent stem cells. J Clin Invest 125, 796-808.
10.1172/3CI179220.

10. Merkle, F.T., Maroof, A., Wataya, T., Sasai, Y., Studer, L., Eggan, K., and Schier, A.F.
(2015). Generation of neuropeptidergic hypothalamic neurons from human pluripotent
stem cells. Development 142, 633-643. 10.1242/dev.117978.

11. Kirwan, P., Jura, M., and Merkle, F.T. (2017). Generation and Characterization of
Functional Human Hypothalamic Neurons. Curr Protoc Neurosci 81, 3 33 31-33 33 24.
10.1002/cpns.40.

12. Pahl, M.C., Doege, C.A., Hodge, K.M., Littleton, S.H., Leonard, M.E., Lu, S., Rausch, R.,
Pippin, J.A., De Rosa, M.C., Basak, A., et al. (2021). Cis-regulatory architecture of
human ESC-derived hypothalamic neuron differentiation aids in variant-to-gene mapping
of relevant complex traits. Nat Commun 12, 6749. 10.1038/s41467-021-27001-4.

13. Wang, L., Liu, Y., Stratigopoulos, G., Panigrahi, S., Sui, L., Zhang, Y., Leduc, C.A.,
Glover, H.J., De Rosa, M.C., Burnett, L.C., et al. (2021). Bardet-Biedl syndrome proteins
regulate intracellular signaling and neuronal function in patient-specific iPSC-derived
neurons. J Clin Invest 131. 10.1172/JC1146287.

14. Torz, L., Niss, K., Lundh, S., Rekling, J.C., Quintana, C.D., Frazier, S.E.D., Mercer, A.J.,
Cornea, A., Bertelsen, C.V., Gerstenberg, M.K., et al. (2022). NPFF Decreases Activity

73


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of Human Arcuate NPY Neurons: A Study in Embryonic-Stem-Cell-Derived Model. Int J
Mol Sci 23. 10.3390/ijms23063260.

15. Joslin, A.C., Sobreira, D.R., Hansen, G.T., Sakabe, N.J., Aneas, I., Montefiori, L.E.,
Farris, K.M., Gu, J., Lehman, D.M., Ober, C., et al. (2021). A functional genomics
pipeline identifies pleiotropy and cross-tissue effects within obesity-associated GWAS
loci. Nat Commun 12, 5253. 10.1038/s41467-021-25614-3.

16. Sobreira, D.R., Joslin, A.C., Zhang, Q., Williamson, I., Hansen, G.T., Farris, K.M.,
Sakabe, N.J., Sinnott-Armstrong, N., Bozek, G., Jensen-Cody, S.O., et al. (2021).
Extensive pleiotropism and allelic heterogeneity mediate metabolic effects of IRX3 and
IRX5. Science 372, 1085-1091. 10.1126/science.abf1008.

17. Kirwan, P., Kay, R.G., Brouwers, B., Herranz-Perez, V., Jura, M., Larraufie, P., Jerber,
J., Pembroke, J., Bartels, T., White, A., et al. (2018). Quantitative mass spectrometry for
human melanocortin peptides in vitro and in vivo suggests prominent roles for beta-MSH
and desacetyl alpha-MSH in energy homeostasis. Mol Metab 17, 82-97.
10.1016/j.molmet.2018.08.006.

18. Wang, L., Sui, L., Panigrahi, S.K., Meece, K., Xin, Y., Kim, J., Gromada, J., Doege, C.A.,
Wardlaw, S.L., Egli, D., and Leibel, R.L. (2017). PC1/3 Deficiency Impacts Pro-
opiomelanocortin Processing in Human Embryonic Stem Cell-Derived Hypothalamic
Neurons. Stem Cell Reports 8, 264-277. 10.1016/j.stemcr.2016.12.021.

19. Yao, L., Liu, Y., Qiu, Z., Kumar, S., Curran, J.E., Blangero, J., Chen, Y., and Lehman,
D.M. (2017). Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived
Hypothalamic Neurones Provides Developmental Insights into Genetic Loci for Body
Weight Regulation. J Neuroendocrinol 29. 10.1111/jne.12455.

20. Locke, A.E., Kahali, B., Berndt, S.1., Justice, A.E., Pers, T.H., Day, F.R., Powell, C.,
Vedantam, S., Buchkovich, M.L., Yang, J., et al. (2015). Genetic studies of body mass
index yield new insights for obesity biology. Nature 518, 197-206. 10.1038/nature14177.

21. Yengo, L., Sidorenko, J., Kemper, K.E., Zheng, Z., Wood, A.R., Weedon, M.N., Frayling,
T.M., Hirschhorn, J., Yang, J., Visscher, P.M., and Consortium, G. (2018). Meta-analysis
of genome-wide association studies for height and body mass index in approximately
700000 individuals of European ancestry. Human molecular genetics 27, 3641-3649.
10.1093/hmg/ddy271.

22. Bradfield, J.P., Taal, H.R., Timpson, N.J., Scherag, A., Lecoeur, C., Warrington, N.M.,
Hypponen, E., Holst, C., Valcarcel, B., Thiering, E., et al. (2012). A genome-wide
association meta-analysis identifies new childhood obesity loci. Nat Genet 44, 526-531.
10.1038/ng.2247.

23. Bradfield, J.P., Vogelezang, S., Felix, J.F., Chesi, A., Helgeland, O., Horikoshi, M.,
Karhunen, V., Lowry, E., Cousminer, D.L., Ahluwalia, T.S., et al. (2019). A trans-
ancestral meta-analysis of genome-wide association studies reveals loci associated with
childhood obesity. Hum Mol Genet 28, 3327-3338. 10.1093/hmg/ddz161.

24. Frayling, T.M., Timpson, N.J., Weedon, M.N., Zeggini, E., Freathy, R.M., Lindgren, C.M.,
Perry, J.R., Elliott, K.S., Lango, H., Rayner, N.W., et al. (2007). A common variant in the
FTO gene is associated with body mass index and predisposes to childhood and adult
obesity. Science 316, 889-894. 10.1126/science.1141634.

25. Buniello, A., MacArthur, J.A.L., Cerezo, M., Harris, L.W., Hayhurst, J., Malangone, C.,
McMahon, A., Morales, J., Mountjoy, E., Sollis, E., et al. (2019). The NHGRI-EBI GWAS
Catalog of published genome-wide association studies, targeted arrays and summary
statistics 2019. Nucleic Acids Res 47, D1005-D1012. 10.1093/nar/gky1120.

26. Smemo, S., Tena, J.J., Kim, K.H., Gamazon, E.R., Sakabe, N.J., Gomez-Matrin, C.,
Aneas, |., Credidio, F.L., Sobreira, D.R., Wasserman, N.F., et al. (2014). Obesity-
associated variants within FTO form long-range functional connections with IRX3.
Nature 507, 371-375. 10.1038/nature13138.

74


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

27. Claussnitzer, M., Dankel, S.N., Kim, K.H., Quon, G., Meuleman, W., Haugen, C., Glunk,
V., Sousa, |.S., Beaudry, J.L., Puviindran, V., et al. (2015). FTO Obesity Variant Circuitry
and Adipocyte Browning in Humans. N Engl J Med 373, 895-907.
10.1056/NEJMoal1502214.

28. Zhang, Z., Chen, N., Yin, N., Liu, R., He, Y., Li, D., Tong, M., Gao, A., Lu, P., Zhao, Y.,
et al. (2023). The rs1421085 variant within FTO promotes brown fat thermogenesis. Nat
Metab. 10.1038/s42255-023-00847-2.

29. Ntalla, 1., Panoutsopoulou, K., Vlachou, P., Southam, L., William Rayner, N., Zeggini, E.,
and Dedoussis, G.V. (2013). Replication of established common genetic variants for
adult BMI and childhood obesity in Greek adolescents: the TEENAGE study. Ann Hum
Genet 77, 268-274. 10.1111/ahg.12012.

30. Mei, H., Chen, W., Jiang, F., He, J., Srinivasan, S., Smith, E.N., Schork, N., Murray, S.,
and Berenson, G.S. (2012). Longitudinal replication studies of GWAS risk SNPs
influencing body mass index over the course of childhood and adulthood. PLoS One 7,
e31470. 10.1371/journal.pone.0031470.

31. Hotta, K., Nakamura, M., Nakamura, T., Matsuo, T., Nakata, Y., Kamohara, S.,
Miyatake, N., Kotani, K., Komatsu, R., Itoh, N., et al. (2009). Association between
obesity and polymorphisms in SEC16B, TMEM18, GNPDA2, BDNF, FAIM2 and MC4R
in a Japanese population. J Hum Genet 54, 727-731. 10.1038/jhg.2009.106.

32. Hong, K.W., and Oh, B. (2012). Recapitulation of genome-wide association studies on
body mass index in the Korean population. Int J Obes (Lond) 36, 1127-1130.
10.1038/ij0.2011.202.

33. Jaaskelainen, T., Paananen, J., Lindstrom, J., Eriksson, J.G., Tuomilehto, J., Uusitupa,
M., and Finnish Diabetes Prevention Study, G. (2013). Genetic predisposition to obesity
and lifestyle factors--the combined analyses of twenty-six known BMI- and fourteen
known waist:hip ratio (WHR)-associated variants in the Finnish Diabetes Prevention
Study. Br J Nutr 110, 1856-1865. 10.1017/S0007114513001116.

34. Poveda, A., Ibanez, M.E., and Rebato, E. (2014). Common variants in BDNF, FAIM2,
FTO, MC4R, NEGR1, and SH2B1 show association with obesity-related variables in
Spanish Roma population. Am J Hum Biol 26, 660-669. 10.1002/ajhb.22576.

35. Su, C., Argenziano, M., Lu, S., Pippin, J.A., Pahl, M.C., Leonard, M.E., Cousminer, D.L.,
Johnson, M.E., Lasconi, C., Wells, A.D., et al. (2021). 3D promoter architecture re-
organization during iPSC-derived neuronal cell differentiation implicates target genes for
neurodevelopmental disorders. Prog Neurobiol 201, 102000.
10.1016/j.pneurobio.2021.102000.

36. Consortium, G.T. (2020). The GTEx Consortium atlas of genetic regulatory effects
across human tissues. Science 369, 1318-1330. 10.1126/science.aaz1776.

37. Urresti, J., Ruiz-Meana, M., Coccia, E., Arevalo, J.C., Castellano, J., Fernandez-Sanz,
C., Galenkamp, K.M., Planells-Ferrer, L., Moubarak, R.S., Llecha-Cano, N., et al. (2016).
Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release
Mandatory for Apoptosis in Type Il Apoptotic Cells. J Biol Chem 291, 1221-1234.
10.1074/jbc.M115.677682.

38. Somia, N.V., Schmitt, M.J., Vetter, D.E., Van Antwerp, D., Heinemann, S.F., and Verma,
[.M. (1999). LFG: an anti-apoptotic gene that provides protection from Fas-mediated cell
death. Proceedings of the National Academy of Sciences of the United States of
America 96, 12667-12672.

39. Merianda, T.T., Vuppalanchi, D., Yoo, S., Blesch, A., and Twiss, J.L. (2013). Axonal
transport of neural membrane protein 35 mMRNA increases axon growth. J Cell Sci 126,
90-102. 10.1242/jcs.107268.

40. Tauber, S.C., Harms, K., Falkenburger, B., Weis, J., Sellhaus, B., Nau, R., Schulz, J.B.,
and Reich, A. (2014). Modulation of hippocampal neuroplasticity by Fas/CD95 regulatory

75


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

protein 2 (Faim?2) in the course of bacterial meningitis. J Neuropathol Exp Neurol 73, 2-
13. 10.1097/NEN.0000000000000020.

41. Schweitzer, B., Suter, U., and Taylor, V. (2002). Neural membrane protein 35/Lifeguard
is localized at postsynaptic sites and in dendrites. Brain Res Mol Brain Res 107, 47-56.
10.1016/s0169-328x(02)00445-x.

42. Verma, A., Huffman, J.E., Rodriguez, A., Conery, M., Liu, M., Ho, Y.-L., Kim, Y., Heise,
D.A., Guare, L., Panickan, V.A., et al. (2023). Diversity and Scale: Genetic Architecture
of 2,068 Traits in the VA Million Veteran Program. medRxiv, 2023.2006.2028.23291975.
10.1101/2023.06.28.23291975.

43. National Library of Medicine (US) National Center for Biotechnology Information. dbSNP.
(1998). https://www.ncbi.nlm.nih.gov/snp/.

44, Taliun, D., Harris, D.N., Kessler, M.D., Carlson, J., Szpiech, Z.A., Torres, R., Taliun,
S.A.G,, Corvelo, A., Gogarten, S.M., Kang, H.M., et al. (2021). Sequencing of 53,831
diverse genomes from the NHLBI TOPMed Program. Nature 590, 290-299.
10.1038/s41586-021-03205-y.

45, Common Metabolic Diseases Knowledge Portal (cmdkp.org). rs7132908 Variant page.
https://hugeamp.org/variant.html?variant=rs7132908 (RRID:SCR_020937).

46. Pahl, M.C., Le Coz, C., Su, C., Sharma, P., Thomas, R.M., Pippin, J.A., Cruz Cabrera,
E., Johnson, M.E., Leonard, M.E., Lu, S., et al. (2022). Implicating effector genes at
COVID-19 GWAS loci using promoter-focused Capture-C in disease-relevant immune
cell types. Genome Biol 23, 125. 10.1186/s13059-022-02691-1.

47. Su, C., Gao, L., May, C.L., Pippin, J.A., Boehm, K., Lee, M., Liu, C., Pahl, M.C., Golson,
M.L., Naji, A., et al. (2022). 3D chromatin maps of the human pancreas reveal lineage-
specific regulatory architecture of T2D risk. Cell Metab 34, 1394-1409 e1394.
10.1016/j.cmet.2022.08.014.

48. Lasconi, C., Pahl, M.C., Pippin, J.A., Su, C., Johnson, M.E., Chesi, A., Boehm, K.,
Manduchi, E., Ou, K., Golson, M.L., et al. (2022). Variant-to-gene-mapping analyses
reveal a role for pancreatic islet cells in conferring genetic susceptibility to sleep-related
traits. Sleep 45. 10.1093/sleep/zsac109.

49. Chesi, A., Wagley, Y., Johnson, M.E., Manduchi, E., Su, C,, Lu, S., Leonard, M.E.,
Hodge, K.M., Pippin, J.A., Hankenson, K.D., et al. (2019). Genome-scale Capture C
promoter interactions implicate effector genes at GWAS loci for bone mineral density.
Nat Commun 10, 1260. 10.1038/s41467-019-09302-x.

50. Consortium, E.P., Moore, J.E., Purcaro, M.J., Pratt, H.E., Epstein, C.B., Shoresh, N.,
Adrian, J., Kawli, T., Davis, C.A., Dobin, A., et al. (2020). Expanded encyclopaedias of
DNA elements in the human and mouse genomes. Nature 583, 699-710.
10.1038/s41586-020-2493-4.

51. Liu, T., Porter, J., Zhao, C., Zhu, H., Wang, N., Sun, Z., Mo, Y.Y., and Wang, Z. (2019).
TADKB: Family classification and a knowledge base of topologically associating
domains. BMC Genomics 20, 217. 10.1186/s12864-019-5551-2.

52. Gene Ontology, C. (2021). The Gene Ontology resource: enriching a GOId mine. Nucleic
Acids Res 49, D325-D334. 10.1093/nar/gkaal113.

53. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-29.
10.1038/75556.

54. Huang, W.K., Wong, S.Z.H., Pather, S.R., Nguyen, P.T.T., Zhang, F., Zhang, D.Y.,
Zhang, Z., Lu, L., Fang, W., Chen, L., et al. (2021). Generation of hypothalamic arcuate
organoids from human induced pluripotent stem cells. Cell Stem Cell 28, 1657-1670
€1610. 10.1016/j.stem.2021.04.006.

76


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

55. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao,
Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of
Single-Cell Data. Cell 177, 1888-1902 €1821. 10.1016/j.cell.2019.05.031.

56. Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcao, A., Xiao, L.,
Li, H., Haring, M., Hochgerner, H., Romanov, R.A., et al. (2016). Oligodendrocyte
heterogeneity in the mouse juvenile and adult central nervous system. Science 352,
1326-1329. 10.1126/science.aaf6463.

57. Franjic, D., Skarica, M., Ma, S., Arellano, J.l., Tebbenkamp, A.T.N., Choi, J., Xu, C., Li,
Q., Morozov, Y.M., Andrijevic, D., et al. (2022). Transcriptomic taxonomy and
neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal
cells. Neuron 110, 452-469 e414. 10.1016/j.neuron.2021.10.036.

58. Jones, A.R., Overly, C.C., and Sunkin, S.M. (2009). The Allen Brain Atlas: 5 years and
beyond. Nat Rev Neurosci 10, 821-828. 10.1038/nrn2722.

59. Sunkin, S.M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T.L., Thompson, C.L., Hawrylycz, M.,
and Dang, C. (2013). Allen Brain Atlas: an integrated spatio-temporal portal for exploring
the central nervous system. Nucleic Acids Res 41, D996-D1008. 10.1093/nar/gks1042.

60. Miller, J.A., Ding, S.L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Ebbert, A., Riley,
Z.L., Royall, J.J., Aiona, K., et al. (2014). Transcriptional landscape of the prenatal
human brain. Nature 508, 199-206. 10.1038/nature13185.

61. Shen, E.H., Overly, C.C., and Jones, A.R. (2012). The Allen Human Brain Atlas:
comprehensive gene expression mapping of the human brain. Trends Neurosci 35, 711-
714.10.1016/j.tins.2012.09.005.

62. Cowley, M.A., Pronchuk, N., Fan, W., Dinulescu, D.M., Colmers, W.F., and Cone, R.D.
(1999). Integration of NPY, AGRP, and melanocortin signals in the hypothalamic
paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24, 155-
163. 10.1016/s0896-6273(00)80829-6.

63. Bellinger, L.L., and Bernardis, L.L. (2002). The dorsomedial hypothalamic nucleus and
its role in ingestive behavior and body weight regulation: lessons learned from lesioning
studies. Physiol Behav 76, 431-442. 10.1016/s0031-9384(02)00756-4.

64. Xie, Z., Gu, H., Huang, M., Cheng, X., Shang, C., Tao, T., Li, D., Xie, Y., Zhao, J., Lu,
W., et al. (2022). Mechanically evoked defensive attack is controlled by GABAergic
neurons in the anterior hypothalamic nucleus. Nat Neurosci 25, 72-85. 10.1038/s41593-
021-00985-4.

65. Thorleifsson, G., Walters, G.B., Gudbjartsson, D.F., Steinthorsdottir, V., Sulem, P.,
Helgadottir, A., Styrkarsdottir, U., Gretarsdottir, S., Thorlacius, S., Jonsdottir, 1., et al.
(2009). Genome-wide association yields new sequence variants at seven loci that
associate with measures of obesity. Nature genetics 41, 18-24.

66. Glunk, V., Laber, S., Sinnott-Armstrong, N., Sobreira, D.R., Strobel, S.M., Batista, T.M.,
Kubitz, P., Moud, B.N., Ebert, H., Huang, Y., et al. (2023). A non-coding variant linked to
metabolic obesity with normal weight affects actin remodelling in subcutaneous
adipocytes. Nat Metab 5, 861-879. 10.1038/s42255-023-00807-w.

67. Kumar, P., Traurig, M., and Baier, L.J. (2020). Identification and functional validation of
genetic variants in potential miRNA target sites of established BMI genes. Int J Obes
(Lond) 44, 1191-1195. 10.1038/s41366-019-0488-8.

68. Medley, J.C., Panzade, G., and Zinovyeva, A.Y. (2021). microRNA strand selection:
Unwinding the rules. Wiley Interdiscip Rev RNA 12, e1627. 10.1002/wrna.1627.

69. Nguyen, H.P., Chan, C.S.Y., Cintron, D.L., Sheng, R., Harshman, L., Nobuhara, M.,
Ushiki, A., Biellak, C., An, K., Gordon, G.M., et al. (2022). Integrative single-cell
characterization of hypothalamus sex-differential and obesity-associated genes and
regulatory elements. bioRxiv, 2022.2011.2006.515311. 10.1101/2022.11.06.515311.

77


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

70. Komnig, D., Gertz, K., Habib, P., Nolte, K.W., Meyer, T., Brockmann, M.A., Endres, M.,
Rathkolb, B., Hrabe de Angelis, M., German Mouse Clinic, C., et al. (2018). Faim2
contributes to neuroprotection by erythropoietin in transient brain ischemia. J
Neurochem 145, 258-270. 10.1111/jnc.14296.

71. Reich, A., Spering, C., Gertz, K., Harms, C., Gerhardt, E., Kronenberg, G., Nave, K.A.,
Schwab, M., Tauber, S.C., Drinkut, A., et al. (2011). Fas/CD95 regulatory protein Faim2
is neuroprotective after transient brain ischemia. J Neurosci 31, 225-233.
10.1523/JNEUROSCI.2188-10.2011.

72. Hurtado de Mendoza, T., Perez-Garcia, C.G., Kroll, T.T., Hoong, N.H., O'Leary, D.D.,
and Verma, .M. (2011). Antiapoptotic protein Lifeguard is required for survival and
maintenance of Purkinje and granular cells. Proc Natl Acad Sci U S A 108, 17189-
17194. 10.1073/pnas.1114226108.

73. Pawar, M., Busov, B., Chandrasekhar, A., Yao, J., Zacks, D.N., and Besirli, C.G. (2017).
FAS apoptotic inhibitory molecule 2 is a stress-induced intrinsic neuroprotective factor in
the retina. Cell Death Differ 24, 1799-1810. 10.1038/cdd.2017.109.

74. Hurtado de Mendoza, T., Liu, F., and Verma, I.M. (2015). Antiapoptotic Role for
Lifeguard in T Cell Mediated Immune Response. PLoS One 10, e0142161.
10.1371/journal.pone.0142161.

75. Boender, A.J., van Rozen, A.J., and Adan, R.A. (2012). Nutritional state affects the
expression of the obesity-associated genes Etv5, Faim2, Fto, and Negrl. Obesity (Silver
Spring) 20, 2420-2425. 10.1038/0by.2012.128.

76. Chen, R., Wu, X,, Jiang, L., and Zhang, Y. (2017). Single-Cell RNA-Seq Reveals
Hypothalamic Cell Diversity. Cell Rep 18, 3227-3241. 10.1016/j.celrep.2017.03.004.

77. Alabdullah, A.A., Al-Abdulaziz, B., Alsalem, H., Magrashi, A., Pulicat, S.M., Almzroua,
A.A., Aimohanna, F., Assiri, A.M., Al Tassan, N.A., and Al-Mubarak, B.R. (2019).
Estimating transfection efficiency in differentiated and undifferentiated neural cells. BMC
Research Notes 12, 225. 10.1186/s13104-019-4249-5.

78. Maguire, J.A., Gadue, P., and French, D.L. (2022). Highly Efficient CRISPR/Cas9-
Mediated Genome Editing in Human Pluripotent Stem Cells. Curr Protoc 2, e590.
10.1002/cpz1.590.

79. Concordet, J.P., and Haeussler, M. (2018). CRISPOR: intuitive guide selection for
CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46, W242-
W245. 10.1093/nar/gky354.

80. Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and
Church, G.M. (2013). RNA-guided human genome engineering via Cas9. Science 339,
823-826. 10.1126/science.1232033.

81. Ding, Q., Regan, S.N., Xia, Y., Oostrom, L.A., Cowan, C.A., and Musunuru, K. (2013).
Enhanced efficiency of human pluripotent stem cell genome editing through replacing
TALENSs with CRISPRs. Cell Stem Cell 12, 393-394. 10.1016/j.stem.2013.03.006.

82. Xie, Y., and Dorsky, R.I. (2017). Development of the hypothalamus: conservation,
modification and innovation. Development 144, 1588-1599. 10.1242/dev.139055.

83. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25
years of image analysis. Nat Methods 9, 671-675. 10.1038/nmeth.2089.

84. Coetzee, S.G., Coetzee, G.A., and Hazelett, D.J. (2015). motiforeakR: an
R/Bioconductor package for predicting variant effects at transcription factor binding sites.
Bioinformatics 31, 3847-3849. 10.1093/bioinformatics/btv470.

85. Genomes Project, C., Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M.,
Korbel, J.0., Marchini, J.L., McCarthy, S., McVean, G.A., and Abecasis, G.R. (2015). A
global reference for human genetic variation. Nature 526, 68-74. 10.1038/nature15393.

78


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

available under aCC-BY-NC-ND 4.0 International license.

Chen, B.Y., Bone, W.P., Lorenz, K., Levin, M., Ritchie, M.D., and Voight, B.F. (2022).
ColocQuiaL: a QTL-GWAS colocalization pipeline. Bioinformatics 38, 4409-4411.
10.1093/bioinformatics/btac512.

Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data.
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

FastQC. (2015). https://qubeshub.org/resources/fastgc.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 29, 15-21. 10.1093/bioinformatics/bts635.

Frankish, A., Diekhans, M., Ferreira, A.M., Johnson, R., Jungreis, I., Loveland, J.,
Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., et al. (2019). GENCODE reference
annotation for the human and mouse genomes. Nucleic Acids Res 47, D766-D773.
10.1093/nar/gky955.

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeg--a Python framework to work with
high-throughput sequencing data. Bioinformatics 31, 166-169.
10.1093/bioinformatics/btu638.

Cunningham, F., Allen, J.E., Allen, J., Alvarez-Jarreta, J., Amode, M.R., Armean, .M.,
Austine-Orimoloye, O., Azov, A.G., Barnes, |., Bennett, R., et al. (2022). Ensembl 2022.
Nucleic Acids Res 50, D988-D995. 10.1093/nar/gkab1049.

Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic
RNA-seq quantification. Nat Biotechnol 34, 525-527. 10.1038/nbt.3519.

Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Erratum: Near-optimal
probabilistic RNA-seq quantification. Nat Biotechnol 34, 888. 10.1038/nbt0816-888d.
Soneson, C., Love, M.1., and Robinson, M.D. (2015). Differential analyses for RNA-seq:
transcript-level estimates improve gene-level inferences. F1000Res 4, 1521.
10.12688/f1000research.7563.2.

Rainer, J., Gatto, L., and Weichenberger, C.X. (2019). ensembldb: an R package to
create and use Ensembl-based annotation resources. Bioinformatics 35, 3151-3153.
10.1093/bioinformatics/btz031.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139-140. 10.1093/bioinformatics/btp616.

Robinson, M.D., and Oshlack, A. (2010). A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biol 11, R25. 10.1186/gb-2010-11-3-r25.
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015).
limma powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res 43, e47. 10.1093/nar/gkv007.

Nassar, L.R., Barber, G.P., Benet-Pages, A., Casper, J., Clawson, H., Diekhans, M.,
Fischer, C., Gonzalez, J.N., Hinrichs, A.S., Lee, B.T., et al. (2023). The UCSC Genome
Browser database: 2023 update. Nucleic Acids Res 51, D1188-D1195.
10.1093/nar/gkac1072.

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and
Haussler, D. (2002). The human genome browser at UCSC. Genome Res 12, 996-1006.
10.1101/gr.229102.

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J.
(2019). g:Profiler: a web server for functional enrichment analysis and conversions of
gene lists (2019 update). Nucleic Acids Res 47, W191-W198. 10.1093/nar/gkz369.
Kolberg, L., Raudvere, U., Kuzmin, 1., Vilo, J., and Peterson, H. (2020). gprofiler2 -- an R
package for gene list functional enrichment analysis and namespace conversion toolset
g:Profiler. F1000Res 9. 10.12688/f1000research.24956.2.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis (Springer-Verlag).

79


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

105. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2.
Nat Methods 9, 357-359. 10.1038/nmeth.1923.

106. Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham,
A., Keane, T., McCarthy, S.A., Davies, R.M., and Li, H. (2021). Twelve years of
SAMtools and BCFtools. Gigascience 10. 10.1093/gigascience/giab008.

107. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E.,
Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008). Model-based
analysis of ChIP-Seq (MACS). Genome Biol 9, R137. 10.1186/gb-2008-9-9-r137.

108. Lun, AT., and Smyth, G.K. (2016). csaw: a Bioconductor package for differential binding
analysis of ChlP-seq data using sliding windows. Nucleic Acids Res 44, e45.
10.1093/nar/gkv1191.

109. Wingett, S., Ewels, P., Furlan-Magaril, M., Nagano, T., Schoenfelder, S., Fraser, P., and
Andrews, S. (2015). HiCUP: pipeline for mapping and processing Hi-C data. F1000Res
4, 1310. 10.12688/f1000research.7334.1.

110. Open2C, Abdennur, N., Fudenberg, G., Flyamer, I.M., Galitsyna, A.A., Goloborodko, A.,
Imakaev, M., and Venev, S.V. (2023). Pairtools: from sequencing data to chromosome
contacts. bioRxiv, 2023.2002.2013.528389. 10.1101/2023.02.13.528389.

111. Lee, S., Bakker, C.R., Vitzthum, C., Alver, B.H., and Park, P.J. (2022). Pairs and Pairix:
a file format and a tool for efficient storage and retrieval for Hi-C read pairs.
Bioinformatics 38, 1729-1731. 10.1093/bioinformatics/btab870.

112. Abdennur, N., and Mirny, L.A. (2020). Cooler: scalable storage for Hi-C data and other
genomically labeled arrays. Bioinformatics 36, 311-316. 10.1093/bioinformatics/btz540.

113. Imakaev, M., Fudenberg, G., McCord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R.,
Dekker, J., and Mirny, L.A. (2012). Ilterative correction of Hi-C data reveals hallmarks of
chromosome organization. Nature Methods 9, 999-1003. doi:10.1038/nmeth.2148.

114. Roayaei Ardakany, A., Gezer, H.T., Lonardi, S., and Ay, F. (2020). Mustache: multi-
scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space
representation. Genome Biology 21, 1-17. d0i:10.1186/s13059-020-02167-0.

115. A, K, S, B., and F, A. (2020). Identifying statistically significant chromatin contacts from
Hi-C data with FitHiC2. Nature protocols 15. 10.1038/s41596-019-0273-0.

116. Young, M.D., and Behjati, S. (2020). SoupX removes ambient RNA contamination from
droplet-based single-cell RNA sequencing data. Gigascience 9.
10.1093/gigascience/giaal5l.

117. Wolock, S.L., Lopez, R., and Klein, A.M. (2019). Scrublet: Computational Identification of
Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst 8, 281-291 €289.
10.1016/j.cels.2018.11.005.

118. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee,
M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal
single-cell data. Cell 184, 3573-3587 €3529. 10.1016/j.cell.2021.04.048.

119. Choudhary, S., and Satija, R. (2022). Comparison and evaluation of statistical error
models for scRNA-seq. Genome Biol 23, 27. 10.1186/s13059-021-02584-9.

120. Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization of single-
cell RNA-seq data using regularized negative binomial regression. Genome Biol 20, 296.
10.1186/s13059-019-1874-1.

121. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y.,
Brenner, M., Loh, P.R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate
integration of single-cell data with Harmony. Nat Methods 16, 1289-1296.
10.1038/s41592-019-0619-0.

122. Stuart, T., Srivastava, A., Madad, S., Lareau, C.A., and Satija, R. (2021). Single-cell
chromatin state analysis with Signac. Nat Methods 18, 1333-1341. 10.1038/s41592-021-
01282-5.

80


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.21.553157; this version posted August 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

123. Srivatsan, S.R., McFaline-Figueroa, J.L., Ramani, V., Saunders, L., Cao, J., Packer, J.,
Pliner, H.A., Jackson, D.L., Daza, R.M., Christiansen, L., et al. (2020). Massively
multiplex chemical transcriptomics at single-cell resolution. Science 367, 45-51.
10.1126/science.aax6234.

124. Elgamal, R.M., Kudtarkar, P., Melton, R.L., Mummey, H.M., Benaglio, P., Okino, M.-L.,
and Gaulton, K.J. (2023). An integrated map of cell type-specific gene expression in
pancreatic islets. bioRxiv, 2023.2002.2003.526994. 10.1101/2023.02.03.526994.

125. Rouillard, A.D., Gundersen, G.W., Fernandez, N.F., Wang, Z., Monteiro, C.D.,
McDermott, M.G., and Ma'ayan, A. (2016). The harmonizome: a collection of processed
datasets gathered to serve and mine knowledge about genes and proteins. Database
(Oxford) 2016. 10.1093/database/baw100.

126. Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., 2nd, Treacy, D., Trombetta, J.J.,
Rotem, A., Rodman, C., Lian, C., Murphy, G., et al. (2016). Dissecting the multicellular
ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189-196.
10.1126/science.aad0501.

127. Love, M.l., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550. 10.1186/s13059-014-
0550-8.

128. Amezquita, R.A., Lun, A.T.L., Becht, E., Carey, V.J., Carpp, L.N., Geistlinger, L., Marini,
F., Rue-Albrecht, K., Risso, D., Soneson, C., et al. (2020). Orchestrating single-cell
analysis with Bioconductor. Nat Methods 17, 137-145. 10.1038/s41592-019-0654-x.

129. Amezquita, R.A., Lun, A.T.L., Becht, E., Carey, V.J., Carpp, L.N., Geistlinger, L., Marini,
F., Rue-Albrecht, K., Risso, D., Soneson, C., et al. (2020). Publisher Correction:
Orchestrating single-cell analysis with Bioconductor. Nat Methods 17, 242.
10.1038/s41592-019-0700-8.

130. Zhu, A, Ibrahim, J.G., and Love, M.I. (2019). Heavy-tailed prior distributions for
sequence count data: removing the noise and preserving large differences.
Bioinformatics 35, 2084-2092. 10.1093/bioinformatics/bty895.

131. Castro-Mondragon, J.A., Riudavets-Puig, R., Rauluseviciute, I., Lemma, R.B., Turchi, L.,
Blanc-Mathieu, R., Lucas, J., Boddie, P., Khan, A., Manosalva Perez, N., et al. (2022).
JASPAR 2022: the 9th release of the open-access database of transcription factor
binding profiles. Nucleic Acids Res 50, D165-D173. 10.1093/nar/gkab1113.

81


https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/

