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SUMMARY 

The ch12q13 obesity locus is among the most significant childhood obesity loci identified 

in genome-wide association studies. This locus resides in a non-coding region within FAIM2; 

thus, the underlying causal variant(s) presumably influence disease susceptibility via an 

influence on cis-regulation within the genomic region. We implicated rs7132908 as a putative 

causal variant at this locus leveraging a combination of our inhouse 3D genomic data, public 

domain datasets, and several computational approaches. Using a luciferase reporter assay in 

human primary astrocytes, we observed allele-specific cis-regulatory activity of the immediate 

region harboring rs7132908. Motivated by this finding, we went on to generate isogenic human 

embryonic stem cell lines homozygous for either rs7132908 allele with CRISPR-Cas9 

homology-directed repair to assess changes in gene expression due to genotype and chromatin 

accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to 

regulate feeding behavior. We observed that the rs7132908 obesity risk allele influenced the 

expression of FAIM2 along with other genes, decreased the proportion of neurons produced 

during differentiation, up-regulated cell death gene sets, and conversely down-regulated neuron 

differentiation gene sets. We have therefore functionally validated rs7132908 as a causal 

obesity variant which temporally regulates nearby effector genes at the ch12q13 locus and 

influences neurodevelopment and survival. 

 

Keywords: childhood obesity, obesity, genome-wide association study, risk variant, 

hypothalamus, stem cells, neuron differentiation 
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INTRODUCTION 

 Childhood obesity affects approximately 14.7 million individuals aged 2-19 years in the 

United States, corresponding to approximately one in five children and adolescents1. The global 

prevalence of childhood obesity has increased substantially, rising from less than 1% to more 

than 7% in recent decades2. Obesity in childhood leads to a higher likelihood of obesity in 

adulthood3 and increases the risk of developing leading causes of poor health and early death 

via hypertension, metabolic disorders, cardiovascular disease, and common cancers4.  

 Monogenic cases of obesity arise from highly deleterious chromosomal deletions or 

mutations in crucial genes, while in contrast, common cases of polygenic obesity are driven by a 

combination of multiple environmental and genetic factors5. This genetic component to 

polygenic obesity can explain a large portion of obesity risk, with heritability estimates ranging 

from 40-85%6, but remains incompletely understood. However, it is known that neuronal 

pathways in the hypothalamus control food intake and are key regulators for both monogenic 

and polygenic obesity5. Several human stem cell-derived hypothalamic neuron models have 

been developed7-11 and used to investigate the molecular basis of body weight regulation7,11-19.  

 Genome-wide association studies (GWAS) have identified genomic regions that harbor 

susceptibility variants conferring common adult obesity20,21 and childhood obesity22-25 risk. An 

ongoing challenge in the field is to translate such GWAS loci into meaningful discoveries that 

can expand our knowledge of the genomic basis of complex traits. Most variants identified by 

GWAS reside within non-coding regions, so their underlying molecular mechanism of action is 

frequently far from obvious5. It is widely thought that these non-coding variants likely influence 

disease risk by functioning within cis-regulatory elements and altering expression of effector 

genes within their corresponding topologically associating domain (TAD). These effector genes 

are not necessarily the most proximal gene to the association signal, as cis-regulatory elements 

can influence gene expression up to megabases away. Therefore, functional characterization 

must be carried out to determine specifically which variants are causal and in turn which 
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corresponding effector genes, near or far, confer susceptibility to disease. To date, most 

attention has been focused on only the very strongest GWAS loci, such as at FTO26-28, while 

many other significantly associated loci that rank lower in the signal list remain relatively 

understudied.  

 Our latest childhood obesity trans-ancestral GWAS meta-analysis on behalf of the Early 

Growth Genetics (EGG) consortium identified 19 loci that achieved genome-wide 

significance22,23. This included a locus on chr12q13 that was initially annotated based on its 

nearest gene, FAIM2. This signal has also been independently reported for obesity risk in 

children29,30 and adults31-34 across several ancestral populations. Crucially, this locus is more 

pronounced in children than in adults and ranks among more well-studied loci such as FTO, 

MC4R, TMEM18, and BDNF in the pediatric setting23; as such, it has been less studied to date 

given its less obvious role in adult obesity pathogenesis.  

Our variant-to-gene mapping efforts have identified candidate cis-regulatory elements 

harboring childhood obesity risk variants in human embryonic stem cell (ESC)-derived 

hypothalamic neurons12 and other neural cell types35. In this study, we elected to characterize 

the relatively understudied chr12q13 locus and investigate the function of the lead candidate 

causal variant, rs7132908. We observed that the rs7132908 region contacts the promoters of 

FAIM2 and several other genes within its TAD12,35 and therefore nominated these genes as 

candidate effector genes at this locus, with FAIM2 having additional support via colocalization 

with expression quantitative trait loci (eQTL) data36. FAIM2 protects neurons from Fas-induced 

apoptosis37,38 and regulates neurite outgrowth39, neuroplasticity40, and synapse formation41 but 

has not been directly implicated in obesity pathogenesis to date. In this study, we initially used 

reporter assays in a relatively accessible astrocyte cell model to characterize the cis-regulatory 

activity of the region harboring rs7132908 and found that this variant regulated FAIM2 

expression with allele-specificity. Next, we used an established differentiation protocol7 to 

generate a relatively challenging model of hypothalamic neural progenitors and a 
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heterogeneous population of hypothalamic neurons that were homozygous for either rs7132908 

allele. We used bulk ATAC-seq pre-differentiation and single-nucleus ATAC-seq post-

differentiation, when the cells were heterogenous, to assess chromatin accessibility both at 

rs7132908 and globally. We found that the rs7132908 region transitioned from closed to open 

chromatin during differentiation from ESCs to hypothalamic neurons. We also used bulk or 

single-nucleus RNA-seq to characterize changes in gene expression within the rs7132908 TAD 

and globally at three timepoints throughout differentiation, finding that rs7132908 genotype 

regulated the expression of FAIM2 and other genes in multiple cell types. Finally, we report the 

striking observation that the rs7132908 obesity risk A allele decreased the proportion of neurons 

generated from our differentiation protocol from 61% to 11%. As such, we outline how our data 

strongly implicates rs7132908 as a causal variant at the chr12q13 obesity locus and nominates 

FAIM2 as one candidate effector gene at this genomic location for further study. 
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RESULTS 

rs7132908 is the putative causal variant at the chr12q13 childhood obesity locus 

 Each GWAS locus represents a genomic region harboring many single nucleotide 

polymorphisms (SNPs) in strong linkage disequilibrium, where any of these variants could be 

potentially causal and responsible for driving the significant association with the given trait. To 

implicate candidate causal non-coding variants at the chr12q13 obesity locus, our initial trans-

ancestral fine mapping refined this specific signal to a 99% credible set consisting of six SNPs23. 

More recently, Bayesian fine mapping further refined this signal to 95% credible sets of 1-3 

SNPs depending on which body weight trait definition was used42. These credible sets 

consistently implicate rs7132908 as the variant with the highest computed probability of being 

causal at this locus23,42. The childhood obesity risk A allele is common, with reported 

frequencies ranging from 10.25-60.53% across ethnicities43 and 28.86% globally44. In addition to 

childhood obesity, this locus is also associated with related traits such as increased body mass 

index (BMI) in adults, increased weight in adults, elevated type 2 diabetes susceptibility, and 

earlier age at menarche45.  

After implicating a strong candidate causal variant computationally, we conducted a 

comprehensive characterization of the evidence supporting the cis-regulatory activity of the 

surrounding region in various cell types. First, we used our established variant-to-gene mapping 

approach which implicates potential cis-regulatory elements at GWAS loci using ATAC-seq to 

identify regions of accessible chromatin and then integrates high-resolution promoter-focused 

Capture-C or Hi-C to identify distal promoter interactions with those given open regions12,35,46-49. 

At the chr12q13 locus, we observed that rs7132908 resides within a putative cis-regulatory 

element in several human neural cell types, including primary astrocytes, induced pluripotent 

stem cell (iPSC)-derived cortical neural progenitors, ESC-derived hypothalamic neural 

progenitors, iPSC-derived cortical neurons, and ESC-derived hypothalamic neurons (Fig. 1A, 

Supp. Table 1)12,35. This is consistent with publicly available data from the Encyclopedia of DNA 
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Elements (ENCODE) consortium’s ‘Registry of candidate cis-Regulatory Elements’ (version 3) 

which has annotated a cell type-agnostic candidate distal enhancer encompassing rs7132908 

(candidate cis-regulatory element EH38E3015886)50. Second, we predicted the impact of the 

obesity risk A allele on transcription factor binding and identified 12 transcription factors that 

potentially regulate gene expression at the chr12q13 locus, namely HNF4A, HNF4G, PRD14, 

PRDM14, SRBP2, SREBF1, SREBF2, ZN143, ZN423, ZN554, ZN768, and ZNF416. Taken 

together, we concluded that rs7132908 is a strong candidate causal variant with predicted 

effects on gene expression through cis-regulatory mechanisms.  
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Figure 1. rs7132908 regulates FAIM2 expression with allele- and cell type-specificity A) Chromatin accessibility 
represented by ATAC-seq tracks depicting normalized reads and chromatin loops at the TAD containing rs7132908 in 
neural cell types. Chromatin loops represent significant contacts between regions of open chromatin that harbored 
rs7132908 and a gene promoter. Grey dashed vertical line indicates rs7132908 position. B) Graphic representation of 
firefly luciferase reporter vectors used in luciferase reporter assays. C-F) Fold change of firefly luciferase 
fluorescence normalized to the promoter only control vector driven by the FAIM2 promoter in primary astrocytes (n = 
7 biological replicates) (C), FAIM2 promoter in HEK293Ts (n = 7 biological replicates) (D), LIMA1 promoter in primary 
astrocytes (n = 8 biological replicates) (E), and RACGAP1 promoter in primary astrocytes (n = 9 biological replicates) 
(F). Data are represented as mean ± SD. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001 by one-way ANOVA 
with Tukey’s correction for multiple comparisons. 

 

FAIM2 is the lead candidate effector gene at the chr12q13 childhood obesity locus 
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 Chromosome conformation capture methods identify physical interactions between 

genomic regions and can nominate possible functional relationships, such as enhancer-

promoter interactions. Analysis of our data indicated that the putative cis-regulatory element 

harboring rs7132908 interacted variably with the promoters of AC025154.2, AQP2, AQP5, 

AQP6, ASIC1, BCDIN3D, FAIM2, LIMA1, LINC02395, LINC02396, and RACGAP1 across 

neural cell types (Fig. 1A, Supp. Table 1)12,35, suggesting potential temporal and cell type-

specific control of multiple genes in the region, in a similar manner to the FTO locus26,27. We 

then performed colocalization analysis to intersect eQTL signals from the Genotype-Tissue 

Expression project (GTEx) with our variant-to-gene mapping results36. With the conservative 

overlap of the two approaches, we found only one gene at the chr12q13 locus, FAIM2, to be 

implicated by both our variant-to-gene mapping approach and eQTL analyses (Supp. Table 1). 

We therefore implicated FAIM2 as a primary candidate effector gene at this locus. 

 

Hypothalamic neurons and astrocytes are relevant in vitro models to study the regulatory 

effects of rs7132908 genotype 

rs7132908 is located in the 3’ untranslated region (UTR) of FAIM2 and 34,612 base 

pairs (bp) from the FAIM2 transcription start site. The physical interaction between rs7132908 

and the FAIM2 promoter was observed in three neural cell types: primary astrocytes, iPSC-

derived cortical neural progenitors, and ESC-derived hypothalamic neurons (Fig. 1A, Supp. 

Table 1)12,35. We measured gene expression in the neural cell types using bulk RNA-seq to aid 

in prioritizing in vitro models for our study. FAIM2 expression was 2.26 transcripts per million 

(TPM) in iPSC-derived cortical neural progenitors, 42.85 TPM in primary astrocytes, and 136.75 

TPM in ESC-derived hypothalamic neurons (Supp. Table 1)12,35. We have also previously 

identified that BMI-associated variants are significantly enriched in cis-regulatory elements 

annotated in an ESC-derived hypothalamic neuron model12. While this significant enrichment 

has not been detected in primary astrocytes, 7 out of 9 candidate effector genes nominated at 
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the chr12q13 locus in ESC-derived hypothalamic neurons were also nominated in primary 

astrocytes (Fig. 1A, Supp. Table 1), suggesting similar genomic architecture in this region in 

these two cellular settings. Therefore, ESC-derived hypothalamic neurons and primary 

astrocytes were selected as in vitro models for studying the putative cis-regulatory relationship 

between rs7132908 and FAIM2, as well as other genes within their given TAD. 

 

rs7132908 regulates FAIM2 expression with allele- and cell type-specificity 

 Many commonly used reporter assays to assess cis-regulatory function require an in 

vitro cell model that can be efficiently transfected. Neuron-like cells produced by stem cell 

differentiation are post-mitotic and transfection of these cells is very inefficient. For this reason, 

and given the comparable observations described above, we nominated primary astrocytes as a 

model to characterize the cis-regulatory function of the region harboring rs7132908 with 

luciferase reporter assays.  

 Given the ENCODE consortium’s ’Registry of candidate cis-Regulatory Elements’ 

(version 1) annotated a cell type-agnostic regulatory element with a distal enhancer-like 

signature surrounding rs7132908 at chr12:49,868,837-49,869,798 (GRCh38)50, we elected to 

clone this putative enhancer sequence with an additional 50 bp flanking each side along with 

the FAIM2 promoter sequence into a luciferase reporter vector. We then used site-directed 

mutagenesis to introduce the childhood obesity risk A allele at rs7132908. Each of these 

vectors, as well as normalization and negative control vectors (Fig. 1B), were transfected into 

astrocytes and luciferase fluorescence was quantified approximately 20 hours post-transfection. 

 We observed that the putative enhancer sequence with the non-risk allele significantly 

increased luciferase expression 1.75-fold when normalized to co-transfection and FAIM2 

promoter controls (adjusted P-value < 0.001) (Fig. 1C). In contrast, the same vector with a 

single base change to the obesity risk A allele significantly decreased luciferase expression 

0.53-fold after normalization (adjusted P-value = 0.003) (Fig. 1C). We then sought to carry out 
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this experiment using HEK293T cells to determine if this cis-regulatory activity could also be 

observed in a non-neural cell type. In HEK293Ts, we found that the putative enhancer 

sequence harboring the non-risk G allele did not significantly increase luciferase expression, 

while the obesity risk allele decreased luciferase expression by 0.60-fold after normalization 

(adjusted P-value = 0.037) (Fig. 1D). From this, we conclude that the rs7132908 obesity risk 

allele negatively regulates expression from the FAIM2 promoter in astrocytes but displays 

weaker effects in non-neuronal HEK293Ts. 

In addition to FAIM2, our 3D genomic variant-to-gene mapping efforts in primary 

astrocytes also nominated LIMA1 and RACGAP1 as possible effector genes at the chr12q13 

locus (Fig. 1A, Supp. Table 1). This was determined using the criteria that the promoters of 

these genes interacted with rs7132908, the promoters of these genes and rs7132908 were both 

in open chromatin, and that these genes were expressed (TPM > 1) in this cell type. However, 

when we assessed the cis-regulatory activity of this region with the LIMA1 and RACGAP1 

promoter sequences in astrocytes, we observed no significant changes in luciferase expression 

with either rs7132908 allele after normalization, although we note the results for the risk A allele 

with the RACGAP1 promoter were highly variable (Fig. 1E-F).  

 

The putative cis-regulatory region harboring rs7132908 is inactive in ESCs 

 After characterizing the cis-regulatory activity of the region harboring rs7132908 in 

astrocytes, we were motivated to characterize the effect of the rs7132908 childhood obesity risk 

allele in cells at multiple timepoints throughout differentiation to hypothalamic neurons. We used 

the H9 ESC line, which is homozygous for the rs7132908 non-risk G allele, and leveraged 

CRISPR-Cas9 homology-directed repair to generate three isogenic, clonal lines that were 

homozygous for the rs7132908 risk A allele.  

 To characterize chromatin accessibility in homogenous ESCs, we performed bulk ATAC-

seq using three replicates of the parent ESC line and the three clonal ESC lines generated with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.553157doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

CRISPR. We detected 240,760 peaks but then performed filtering to limit our analysis to peaks 

present in at least two samples and removed peaks with low read support (one count per million 

or less), which reduced our peak list to 94,543. We observed that the first principal component, 

explaining 27.8% of the variation between samples, was due to genotype at rs7132908 (Fig. 

2A). 286 peaks were differentially accessible using an adjusted P-value < 0.05 and |log2 fold 

change| > 1 (Fig. 2B, Supp. Table 2). 145 peaks were significantly more accessible in the 

ESCs with the non-risk allele and 141 peaks were more accessible with the risk allele. However, 

rs7132908 itself was not found in a peak of accessible chromatin in these undifferentiated ESCs 

(Fig. 2C). 
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Figure 2. The putative cis-regulatory region harboring rs7132908 is inactive in ESCs A) PCA plot of ESC 
ATAC-seq libraries (GG n = 3, AA n = 3 lines). B) Volcano plot of adjusted P-values (-log10) and fold change (log2) of 
a total of 94,543 ATAC-seq peaks tested for differential accessibility due to the rs7132908 obesity risk allele in ESCs. 
Red dots indicate significantly differentially accessible peaks (adjusted P-value < 0.05 and |log2 fold change| > 1) in 
ESCs homozygous for the obesity risk allele and black dots indicate peaks with no significant differences in 
accessibility. C) Chromatin accessibility represented by ATAC-seq tracks depicting normalized reads across FAIM2 in 
ESCs homozygous for either rs7132908 allele. Red vertical line indicates rs7132908 position. D) PCA plot of ESC 
RNA-seq libraries (GG n = 2, AA n = 3 lines). E) Volcano plot of adjusted P-values (-log10) and fold change (log2) of 
a total of 14,581 genes tested for differential expression due to the rs7132908 obesity risk allele in ESCs. Blue dots 
indicate significantly down-regulated genes (adjusted P-value < 0.05 and log2 fold change < -0.58) and red dots 
indicate significantly up-regulated genes (adjusted P-value < 0.05 and log2 fold change > 0.58) in ESCs homozygous 
for the obesity risk allele. Grey dots indicate genes with no significant differences in expression. F) Heatmap depicting 
significantly differentially expressed genes (adjusted P-value < 0.05 and |log2 fold change| > 0.58) due to the 
rs7132908 obesity risk allele in ESCs. 

 To identify any transcriptional differences due to rs7132908 genotype in homogenous 

ESCs, we performed bulk RNA-seq using two replicates of the parent ESC line and the three 

clonal ESC lines generated with CRISPR. We achieved reads from 35,595 genes and then 

performed filtering to detect those expressed at greater than one count per million in at least two 

samples, which reduced our gene list to 14,581. We observed that the first principal component, 

explaining 44.5% of the variation between samples, was due to genotype at rs7132908 (Fig. 

2D). 44 genes were differentially expressed using an adjusted P-value < 0.05 and |log2 fold 

change| > 0.58 (Fig. 2E-F, Supp. Table 3). 42 genes were significantly down-regulated in the 

rs7132908 risk A allele homozygote ESCs, while just two genes were up-regulated. As most 

enhancer-promoter interactions are known to occur within the same TAD, we were motivated to 

determine if rs7132908 genotype affected the expression of genes within its TAD. However, 

none of the genes in the TAD harboring rs713290851 were differentially expressed in this 

undifferentiated ESC setting. Taken together, we observed relatively small changes in 

expression and accessibility due to the introduction of the obesity risk allele in undifferentiated 

ESCs, consistent with the notion that rs7132908 primarily functions in neural cells. 

 

rs7132908 genotype influences gene expression in ESC-derived hypothalamic neural 

progenitors 
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 To generate hypothalamic neural progenitors and characterize the effects of rs7132908 

at this stage, we differentiated two replicates of the parent ESC line which were homozygous for 

the rs7132908 non-risk G allele and the two clonal ESC lines generated with CRISPR which 

were homozygous for the rs7132908 risk A allele for 14 days using an established protocol (Fig. 

3A)7. Day 14 was selected given it was the last day after direction towards ventral diencephalon 

hypothalamic identity and cell cycle exit but before neuron maturation7. We compared the global 

transcriptomic profile of the hypothalamic neural progenitors homozygous for the rs7132908 

non-risk allele to profiles of primary human tissues in the GTEx RNA-seq database36 (donor 

ages 20-71 years old, with 68.1% 50 years or older) as well as primary human pediatric 

hypothalamus tissue from three donors homozygous for the rs7132908 non-risk allele (donor 

ages 4-14 years old, average age = 8.67). The non-risk hypothalamic neural progenitors most 

highly correlated with the primary human pediatric hypothalamus tissue (correlation coefficient = 

0.80, P-value < 0.001) (Fig. S1A).  
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Figure 3. rs7132908 genotype influences gene expression in ESC-derived hypothalamic neural progenitors A) 
Schematic of differentiation of ESCs to hypothalamic neurons, including duration, phases, and key small molecules to 
direct cell fates. B) Volcano plot of adjusted P-values (-log10) and fold change (log2) of a total of 29,302 genes tested 
for differential expression due to the rs7132908 obesity risk allele in hypothalamic neural progenitors. Blue dots 
indicate significantly down-regulated genes (adjusted P-value < 0.05 and log2 fold change < -0.58) and red dots 
indicate significantly up-regulated genes (adjusted P-value < 0.05 and log2 fold change > 0.58) in hypothalamic 
neural progenitors homozygous for the obesity risk allele. Grey dots indicate genes with no significant differences in 
expression. C) Heatmap depicting module 4 genes significantly up-regulated (adjusted P-value < 0.05 and log2 fold 
change > 0.58) due to the rs7132908 obesity risk allele in hypothalamic neural progenitors. D) Heatmap depicting 
module 5 genes significantly down-regulated (adjusted P-value < 0.05 and log2 fold change < -0.58) due to the 
rs7132908 obesity risk allele in hypothalamic neural progenitors. E) Box plots of gene expression (normalized log2 
cpm) for genes in the rs7132908 TAD that were significantly differentially expressed (adjusted P-value < 0.05, |log2 
fold change| > 0.58). See also Figure S1. 
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Supplemental Figure 1. Hypothalamic neural progenitors, related to Figure 3 A) Dot plot of Spearman’s rank 
correlation coefficients resulting from comparing TPMs of 16,159 genes expressed in rs7132908 non-risk allele 
homozygous hypothalamic neural progenitors, rs7132908 non-risk allele homozygous human pediatric hypothalamus 
tissue, and human tissues or cells in the GTEx RNA-seq database. Red dots indicate significant correlations (P-value 
< 0.05). Tissue names in red indicate brain tissues. B-C) Representative images of hypothalamic neural progenitors 
on day 14, with immunostaining for a marker of the developing hypothalamus, NKX2-1 (red) (B) and a marker of post-
mitotic neurons, NeuN (red) (C) (scale bar = 20 µm). Nuclei were stained with DAPI (blue). Cells were homozygous 
for either the rs7132908 non-risk allele (left) or obesity risk allele (right). D) PCA plot of hypothalamic neural 
progenitor RNA-seq libraries (GG n = 2 biological replicates with 3 technical replicates each, AA n = 2 biological 
replicates with 3 technical replicates each). E) Heatmap depicting significantly differentially expressed genes 
(adjusted P-value < 0.05, |log2 fold change| > 0.58) due to the rs7132908 obesity risk allele in hypothalamic neural 
progenitors. Genes were clustered into 5 modules using hierarchical clustering (green, orange, light blue, dark blue, 
pink). 
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To identify transcriptional differences due to rs7132908 genotype in homogeneous 

hypothalamic neural progenitors, we performed bulk RNA-seq. We detected reads mapping to 

35,595 genes and then performed filtering to detect those expressed at greater than one count 

per million in at least two samples which reduced our gene list to 29,302. We observed that the 

first principal component, explaining 86.2% of the variation between samples, was due to batch 

as we differentiated pairs of non-risk and risk allele cells at two separate times (Fig. S1D). 

Therefore, we incorporated batch information as a covariate in our linear model to adjust for this 

effect for our differential expression analysis. As a result, 6,494 genes were differentially 

expressed using an adjusted P-value < 0.05 and |log2 fold change| > 0.58 (Fig. 3B, Supp. 

Table 4). Of these, 3,232 genes were significantly down-regulated in the neural progenitors 

homozygous for the rs7132908 risk allele, while 3,262 genes were up-regulated. Five genes in 

the TAD harboring rs713290851 were differentially expressed. FAIM2 and three other genes 

(TMBIM6, LARP4, and COX14) were down-regulated in these neural progenitors homozygous 

for the rs7132908 risk A allele and AQP2 was up-regulated (Fig. 3E).  

To explore global changes in gene expression, we clustered the differentially expressed 

genes into five modules with hierarchical clustering (Fig. S1E) and selected two modules 

(modules 4 and 5) representing the genes most strongly differentially expressed due to 

genotype at rs7132908 for downstream analysis. Module 4 consisted of 216 genes consistently 

up-regulated in neural progenitors homozygous for the rs7132908 risk A allele (Fig. 3C). 

Functional enrichment analysis of the module 4 up-regulated genes identified significantly 

enriched Gene Ontology terms52,53, including biological processes such as programmed cell 

death, apoptotic process, and intrinsic apoptotic signaling pathway in response to endoplasmic 

reticulum stress (Supp. Table 5). Module 5 consisted of 152 genes consistently down-regulated 

in neural progenitors homozygous for the rs7132908 risk allele (Fig. 3D). The module 5 down-

regulated genes were also used to determine any enriched Gene Ontology terms52,53, however, 

no significantly enriched biological processes were identified (Supp. Table 5).  
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ESC-derived hypothalamic neurons molecularly resemble the human hypothalamus 

 Next, we generated hypothalamic-like neurons using two replicates of the parent ESC 

line which were homozygous for the rs7132908 non-risk G allele and the two clonal ESC lines 

generated with CRISPR which were homozygous for the rs7132908 risk A allele for 40 days in 

four independent differentiations using an established protocol7 and then collected nuclei (Fig. 

3A). Day 40 was selected given a previous characterization of this protocol found that this 

duration was sufficient to produce heterogenous populations of functional neurons that closely 

resemble those found in the human hypothalamus7. These nuclei from several cell types were 

used to simultaneously profile gene expression and open chromatin in each cell using a multi-

omic single-nucleus RNA-seq and ATAC-seq approach.  

After quality control, a previously published human hypothalamus single-cell RNA-seq 

reference dataset54 was used to identify cell types in our dataset (Fig. S2D). To ensure that the 

cell type identifications were likely to be accurate, we prioritized cells with high-confidence 

annotations using a classification score threshold (≥ 0.8) that was previously demonstrated to 

increase accuracy55. This method identified cells annotated as neurons, oligodendrocyte 

precursors (OPCs), or fibroblasts based on their transcriptional profile with classification scores 

above our threshold (Fig. 4A). These annotations are further supported by expression patterns 

of known marker genes for each cell type, including MAP2 and TUBB3 for neurons and 

COL1A1, COL1A2, and COL6A2 for fibroblasts (Fig. 4B). We note that the OPC population did 

not highly or uniformly express conventional marker genes, such as PDGFRA, CSPG4, OLIG1, 

OLIG2, and SOX10 (Fig. S2E), although this population did express cell cycle genes, such as 

CENPF and TOP2A, which have been observed in OPCs56 and neural intermediate 

progenitors57 (Fig. 4B).  
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Supplemental Figure 2. Hypothalamic single-nucleus RNA-seq analysis, related to Figure 4 A-D) UMAP 
depicting all cells clustered by single-nucleus RNA-seq profile and annotated by replicate sample (A), rs7132908 
genotype (B), cluster identity (C), and predicted cell type annotation before cells with classification scores below the 
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0.8 threshold were removed (D). E) Dot plot depicting average expression (scaled and log2 normalized counts) and 
percent of cells that expressed canonical OPC marker genes (PDGFRA, CSPG4, OLIG1, OLIG2, and SOX10), split 
by cell type. F-H) Dot plots of Spearman’s rank correlation coefficients resulting from comparing TPMs of genes 
expressed in rs7132908 non-risk allele homozygous hypothalamic neurons (F), OPCs (G), and fibroblasts (H) to 
human pediatric hypothalamus tissue from donors homozygous for the rs7132908 non-risk allele and human tissues 
or cells in the GTEx RNA-seq database. Red dots indicate significant correlations (P-value < 0.05). Tissue names in 
red indicate brain tissues. 
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Figure 4. ESC-derived hypothalamic neurons molecularly resemble the human hypothalamus A) UMAP 
depicting all cells clustered by single-nucleus RNA-seq profile and annotated by cell type. B) Dot plot depicting 
average expression (scaled and log2 normalized counts) and percent of cells that expressed neuron (MAP2 and 
TUBB3), fibroblast (COL1A1, COL1A2, and COL6A2), and OPC (CENPF and TOP2A) marker genes, split by cell 
type. C) UMAP depicting all neurons clustered by single-nucleus RNA-seq profile and annotated by cluster identity. 
D) Dot plot depicting average expression (scaled and log2 normalized counts) and percent of cells that expressed 
inhibitory (GAD1), excitatory (SLC17A6), GABAergic (SLC32A1), and hypothalamic (POMC, NPY, OTP, and SST) 
neuron marker genes, split by cluster identity. E) Heatmap showing average module scores across all neuron clusters 
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for each human prenatal hypothalamic nucleus gene set published in the Allen Brain Atlas database, plotted as the 
column Z-score per neuron cluster. See also Figure S2. 

Additionally, we compared the transcriptomic signatures of each cell type to expression 

data in the GTEx RNA-seq database36 (donor ages 20-71 years old, with 68.1% 50 years or 

older) as well as primary human pediatric hypothalamus tissue from three donors homozygous 

for the rs7132908 non-risk allele (donor ages 4-14 years old, average age = 8.67). We found 

that the neurons were most strongly correlated with pediatric hypothalamus and adult 

hypothalamus (correlation coefficients = 0.56 and 0.54, respectively, P-values < 0.001), the 

OPCs correlated most strongly with fibroblasts and pediatric hypothalamus (correlation 

coefficients = 0.57 and 0.52, respectively, P-values < 0.001), and the fibroblasts most strongly 

correlated with fibroblasts and tibial artery (correlation coefficients = 0.66 and 0.63, respectively, 

P-values < 0.001) (Fig. S2F-H).  

Within the neuron population (Fig. 4C), there were distinct expression patterns of 

markers for several neuron types, including inhibitory (GAD1), excitatory (SLC17A6), and 

GABAergic (SLC32A1) neurons (Fig. 4D). We also identified neuronal clusters expressing 

known hypothalamus genes, such as POMC, NPY, OTP, and SST (Fig. 4D). Next, we were 

motivated to compare the transcriptomic signatures of each neuronal cluster (Fig. 4C) to human 

prenatal hypothalamic subregion gene sets published in the Allen Brain Atlas database58-61, 

given that the neuron population displayed expression patterns most similar to pediatric 

hypothalamus tissue. We found that each cluster closely resembled the hypothalamic arcuate 

nucleus which regulates feeding behavior and energy expenditure62, the dorsomedial 

hypothalamic nucleus which regulates food intake and body weight63, and the anterior 

hypothalamic nucleus which regulates defensive behaviors64 (Fig. 4E).  

 

The putative cis-regulatory region harboring rs7132908 is active in ESC-derived 

hypothalamic cell types 
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 We used the single-nucleus ATAC-seq data to characterize chromatin accessibility in the 

heterogenous ESC-derived hypothalamic cells. Unlike in the ESCs, the cis-regulatory element 

containing rs7132908 was open in all derived cell types (Fig. 5A). When comparing chromatin 

accessibility globally between rs7132908 genotypes across all annotated cells, 12,586 ATAC-

seq peaks were differentially accessible using an adjusted P-value < 0.05 and |log2 fold change| 

> 1, with 5,604 peaks displaying decreased accessibility with the risk A allele and 6,982 peaks 

displaying increased accessibility (Fig. 5B, Supp. Table 6). We also detected transcription 

factor motifs enriched in differentially accessible peaks with an adjusted P-value < 0.005 and 

|log2 fold change| ≥ 1. We found that 565 transcription factor motifs were significantly enriched 

(adjusted P-value < 0.05) in peaks more accessible with the rs7132908 non-risk G allele and 

446 were enriched in peaks more accessible with the risk A allele (Supp. Table 7). The peak 

harboring rs7132908 at chr12:49,868,731-49,869,775 (GRCh38) displayed decreased 

accessibility with the risk A allele by 27.62% (adjusted P-value = 1.08x10-88) when considering 

all annotated cells. We also repeated these analyses in each annotated cell type and detected 

3,406, 12,386, and 7,543 significantly differentially accessible regions in neurons, OPCs, and 

fibroblasts, respectively (Fig. 5C-E, Supp. Table 6). The peak surrounding rs7132908 was less 

accessible with the risk A allele by 40.74% in fibroblasts (adjusted P-value = 1.35x10-14), but 

more accessible in neurons with the risk A allele by 78.92% (adjusted P-value = 2.31x10-21) and 

not significantly different in OPCs. We then identified significantly differentially accessible 

regions that were consistent between analyses when considering each individual cell type and 

all annotated cells combined (Fig. 5F) and their top enriched transcription factor motifs (Fig. 

5G). We conclude that rs7132908 is in an active chromatin region post-differentiation and that 

the rs7132908 risk A allele influences accessibility both locally and globally. 
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Figure 5. The putative cis-regulatory region harboring rs7132908 is active in ESC-derived hypothalamic cell 
types A) Chromatin accessibility represented by ATAC-seq tracks depicting normalized reads across FAIM2 in ESC-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.553157doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

derived neurons, OPCs, and fibroblasts. Red vertical line indicates rs7132908 position. B-E) Volcano plots of 
adjusted P-values (-log10) and fold change (log2) of ATAC-seq peaks tested for differential accessibility due to the 
rs7132908 obesity risk allele in total cells (B), neurons (C), OPCs (D), and fibroblasts (E). Black or colored dots 
indicate significantly differentially accessible peaks (adjusted P-value < 0.05 and |log2 fold change| > 1) and grey dots 
indicate peaks with no significant differences in accessibility. F) Bar plot of numbers of differentially accessible 
regions from B-E that overlapped between analyses. G) ATAC-seq read enrichment heatmaps for groups of regions 
categorized in F and their corresponding top-most enriched transcription factor binding motifs. Windows indicate 
which cell type(s) yielded such groups of differentially accessible regions. 

 

The rs7132908 obesity risk allele dramatically decreases the proportion of neurons 

produced by hypothalamic neuron differentiation 

As expected, during each hypothalamic neuron differentiation, we began to observe 

neuron morphology with brightfield microscopy once the cells were exposed to BDNF in the 

neuron maturation phase (days 14-40) (Fig. 3A). Strikingly, there were fewer cells exhibiting 

neuron morphology for those homozygous for the rs7132908 risk A allele (Fig. 6A). To confirm 

this observation, we stained day 40 cells from each genotype to detect MAP2, which is a marker 

of mature neuron dendrites. Indeed, although each well was seeded at the same density and 

cultured simultaneously, fewer MAP2+ cells were observed in the risk A allele condition (Fig. 

6B).  
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Figure 6. The rs7132908 obesity risk allele dramatically decreases the proportion of neurons produced by 
hypothalamic neuron differentiation A) Representative brightfield images of hypothalamic neurons mid-
differentiation on day 29 (scale bar = 100 µm). Cells were homozygous for either the rs7132908 non-risk allele (left) 
or obesity risk allele (right). B) Representative images of hypothalamic neurons post-differentiation on day 40, with 
immunostaining for a mature neuron marker, MAP2 (green) (scale bar = 100 µm). Nuclei were stained with DAPI 
(blue). Cells were homozygous for either the rs7132908 non-risk allele (left) or obesity risk allele (right). C-D) 
Proportion of total cells homozygous for the rs7132908 non-risk allele annotated as each cell type (n = 4 
differentiation replicates) (C) and homozygous for the rs7132908 obesity risk allele annotated as each cell type (n = 4 
differentiation replicates) (D). Data are represented as mean ± SD. 
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Next, we set out to further confirm this result using our annotated single-nucleus RNA-

seq dataset. We partitioned the 38,044 annotated cells by genotype at rs7132908 and 

differentiation replicate sample, then quantified the proportions of cells identified as neurons, 

OPCs, or fibroblasts in each condition. On average, the cells homozygous for the rs7132908 

non-risk G allele were comprised of 60.90% neurons, 18.33% OPCs, and 20.77% fibroblasts 

(Fig. 6C). In contrast, the cells homozygous for the rs7132908 risk A allele comprised of 

10.69% neurons, 12.78% OPCs, and 76.53% fibroblasts (Fig. 6D). Taken together, we 

observed that a single base change from the rs7132908 non-risk G allele to the obesity risk A 

allele in the same genetic background is sufficient to substantially decrease the proportion of 

neurons produced by hypothalamic neuron differentiation. 

 

rs7132908 genotype influences gene expression in ESC-derived hypothalamic cell types 

 In addition to identifying differences in cell type proportions, we were also motivated to 

identify changes in gene expression due to genotype at rs7132908 in the ESC-derived 

hypothalamic cells. First, we included all cells that passed our quality control, detected 36,601 

genes, and performed principal component analysis to determine that 85% of the variation 

between replicate samples was explained by rs7132908 genotype (Fig. S3A). We then 

identified that 6,409 genes were differentially expressed using an adjusted P-value < 0.05 and 

|log2 fold change| > 0.58 (Fig. 7A, Fig. 7E, Supp. Table 8). 3,212 genes were significantly 

down-regulated in the cells homozygous for the rs7132908 risk allele, while 3,197genes were 

up-regulated. Four genes in the TAD harboring rs713290851, including FAIM2, were differentially 

expressed; two were down-regulated in cells homozygous for the rs7132908 risk A allele 

(FAIM2, and ASIC1) and two were up-regulated (FMNL3 and LIMA1) (Fig. 7I). 
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Supplemental Figure 3. Hypothalamic single-nucleus RNA-seq differential expression analysis, related to 
Figure 7 A-D) PCA plots of single-nucleus RNA-seq libraries (GG n = 4, AA n = 4) when considering all cells (A), 
neurons (B), OPCs (C), and fibroblasts (D). 
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Figure 7. rs7132908 genotype influences gene expression in ESC-derived hypothalamic cell types A-D) 
Heatmaps depicting significantly differentially expressed genes (adjusted P-value < 0.05, |log2 fold change| > 0.58) 
due to the rs7132908 risk allele in all cells (A), neurons (B), OPCs (C), and fibroblasts (D) produced by ESC 
differentiation. E-H) Volcano plots of adjusted P-values (-log10) and fold change (log2) of genes tested for differential 
expression due to the rs7132908 obesity risk allele in all cells (E), neurons (F), OPCs (G), and fibroblasts (H) 
produced by ESC differentiation. Colored dots indicate significantly differentially expressed genes (adjusted P-value < 
0.05, |log2 fold change| > 0.58) due to the rs7132908 risk allele and grey dots indicate genes with no significant 
differences in expression. I-K) Box plots of gene expression (log10 normalized counts) for genes in the rs7132908 
TAD that were significantly differentially expressed (adjusted P-value < 0.05, |log2 fold change| > 0.58) in all cells (I), 
OPCs (J), and fibroblasts (K). See also Figure S3 and S4. 

Next, we identified genes differentially expressed within each annotated cell type. 

rs7132908 genotype explained 21%, 84%, and 78% of the variation between replicate samples 

in the neurons, OPCs, and fibroblasts, respectively (Fig. S3B-D). In neurons, 52 genes were 

differentially expressed, with 35 down-regulated in neurons homozygous for the risk allele and 

17 up-regulated (Fig. 7B, Fig. 7F, Supp. Table 8). In OPCs, 2,678 genes were differentially 

expressed, with 1,084 down-regulated in OPCs homozygous for the risk allele and 1,594 up-
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regulated (Fig. 7C, Fig. 7G, Supp. Table 8), while in fibroblasts, 1,911 genes were differentially 

expressed, with 1,450 down-regulated in fibroblasts homozygous for the risk allele and 461 up-

regulated (Fig. 7D, Fig. 7H, Supp. Table 8). When considering genes located in the same TAD 

as rs713290851, no genes were differentially expressed in neurons, while one gene was 

differentially expressed in OPCs (LIMA1 up-regulated) (Fig. 7J), and two genes were 

differentially expressed in fibroblasts (FAIM2 down-regulated; FMNL3 up-regulated) (Fig. 7K). 

Functional enrichment analyses of up-regulated genes in both OPCs and fibroblasts identified 

similar Gene Ontology terms52,53, including the biological processes of cell death and apoptosis 

(Supp. Table 9), while processes such as nervous system development, neuron differentiation, 

and neuron projection development were enriched among down-regulated genes (Supp. Table 

9). However, the comparably shorter lists of significantly up- and down-regulated genes in 

neurons did not identify any significantly enriched biological processes.  

As our sequencing efforts only captured transcriptional differences at three timepoints, 

we were therefore motivated to quantify FAIM2 expression in all cells throughout the 40-day 

hypothalamic neuron differentiation using quantitative real-time polymerase chain reaction (RT-

qPCR). FAIM2 expression peaked around day 14 in cells homozygous for either rs7132908 

allele (Fig. S4A-B), which represents the hypothalamic neural progenitor phase of the 

differentiation (Fig. 3A). We also characterized FAIM2 expression in vivo using our primary 

human pediatric (donor ages 4-14 years old, average age = 7.5) hypothalamus tissue RNA-seq 

data and determined that FAIM2 was highly expressed (median TPM = 415.66, n = 4) (Fig. 

S4C, Supp. Table 10). 
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Supplemental Figure 4. FAIM2 expression, related to Figure 7 A-B) Relative normalized FAIM2 mRNA expression 
in cells homozygous for the rs7132908 non-risk allele (A) and obesity risk allele (B) measured by RT-qPCR 
throughout ESC differentiation to hypothalamic neurons. FAIM2 expression was normalized to 18S ribosomal RNA 
expression. Relative FAIM2 expression was calculated relative to non-risk allele cells on day 0. Data are represented 
as mean ± SD when n > 1. C) FAIM2 expression (TPM) in primary human pediatric hypothalamus tissue. Black 
horizontal line indicates median expression (n=4). Blue bars indicate donors homozygous for the rs7132908 non-risk 
G allele and the indigo bar indicates a donor heterozygous at rs7132908.  
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DISCUSSION 

 The chr12q13 locus was first associated with variation in adult BMI and weight in 200965, 

BMI as a longitudinal trait during childhood (ages 3-17) in 201230, and childhood obesity as a 

dichotomous trait by our meta-analysis with the EGG consortium in 201222. It was also noted 

that the genotypic risk effect at the chr12q13 locus during childhood decreased as age 

increased30, which suggests this locus may regulate age-dependent pathways in early childhood 

and could explain why this locus is more pronounced in childhood than adulthood. More than 

1,000 independent loci are now associated with measurements of obesity25 and only a few have 

been studied extensively enough to pinpoint a causal variant and implicate effector genes, such 

as the FTO26-28 and 2q24.3 loci66. 

 A recent global functional investigation of BMI-associated SNPs in 3’ UTRs included the 

FAIM2 3’ UTR variant rs7132908 in their study and found that the obesity-associated risk A 

allele disrupted miRNA binding activity of miR-330-5p in hamster ovary cells and human 

subcutaneous preadipocytes, leading to an increase in FAIM2 expression67. These results may 

however not accurately reflect regulation of FAIM2 expression in vivo as this gene is primarily 

expressed in the brain; furthermore, this miRNA product is a passenger strand that is typically 

found in lower abundance due to degradation after its complementary guide miRNA is loaded 

into an Argonaute protein during miRNA processing68. More recently, others carrying out global 

analyses have implicated an enhancer in the region harboring rs7132908 with a luciferase 

reporter assay and found that, in mouse neuronal hypothalamus cells, the obesity risk A allele 

significantly decreased enhancer activity with a minimal promoter69, consistent with our results.  

 We first utilized a luciferase reporter assay in a model tolerant of transfection, human 

primary astrocytes, to characterize the regulatory effects of the non-coding region surrounding 

rs7132908 on genes within its TAD that were nominated by our variant-to-gene mapping efforts 

in this cell type. Ectopic expression of this non-coding region with the rs7132908 non-risk G 

allele significantly increased reporter expression driven by the FAIM2 promoter, while the 
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obesity risk A allele significantly decreased reporter expression driven by the FAIM2 promoter. 

These results further support FAIM2 as the lead candidate effector gene at the chr12q13 

obesity locus and rule out LIMA1 and RACGAP1 as effector genes specifically in astrocytes. 

While this tractable in vitro model was used to characterize cis-regulatory activity, we note that 

BMI-associated SNPs are not enriched in astrocyte-specific cis-regulatory elements and that 

FAIM2 likely functions primarily in neurons37-41.  

Next, we used a human stem cell-derived model of hypothalamic neural progenitors and 

neurons. Given the dynamic changes in genomic architecture that occur during stem cell 

differentiation, we characterized gene expression and chromatin accessibility at several 

timepoints. We used bulk sequencing approaches when the cells were expected to be 

homogenous and leveraged multi-omic single-nucleus RNA-seq and ATAC-seq at the post-

differentiation hypothalamic neuron stage to capture cell type-specific differences in this now 

heterogeneous model. We determined that the rs7132908 obesity risk A allele led to significant 

differential expression of 0 TAD genes in ESCs, 5 TAD genes in hypothalamic neural 

progenitors (AQP2, COX14, FAIM2, LARP4, and TMBIM6), 1 TAD gene in OPCs (LIMA1), and 

2 TAD genes in fibroblasts (FAIM2 and FMNL3). These results, in combination with our 

observation that rs7132908 is not accessible in ESCs, suggest that rs7132908 does not 

regulate gene expression in stem cells. These results also implicate different effector genes 

depending on cell type, in agreement with the luciferase assay results where enhancer activity 

was observed for FAIM2 in primary astrocytes but not in HEK293Ts. Only FAIM2 was implicated 

in more than one cell type and its expression was consistently down-regulated with the obesity 

risk A allele. Taken together, we demonstrated that rs7132908 resides within a cis-regulatory 

element that confers allele-specific and cell type-specific effects on the expression of FAIM2 

and other genes within its TAD. 

 We did not observe large differences in accessibility at rs7132908 due to genotype in 

any cell type. Therefore, significant changes in effector gene expression are likely due to 
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differences in transcription factor binding affinity. We predicted that the rs7132908 risk A allele 

disrupts binding of 12 transcription factors, many of which are known to be both activators and 

repressors and are ubiquitously expressed.  Further investigation is warranted to determine 

which specific transcription factors bind at and temporally regulate gene expression at the 

chr12q13 locus. 

 In this study, we made the striking observation that the rs7132908 obesity risk A allele 

decreased the proportion of hypothalamic neurons produced by stem cell differentiation. In 

addition, we observed that the obesity risk A allele led to up-regulation of cell death and 

apoptosis gene sets and down-regulation of neuron development gene sets. However, we did 

not observe that any orexigenic or anorexigenic neuronal cell cluster or subpopulation was more 

severely decreased, highlighting the need for more experiments to determine how the 

rs7132908 obesity risk allele could increase appetite and risk of childhood obesity.  

Our working hypothesis is that rs7132908 regulates FAIM2 and possibly other genes 

that are required for normal anorexigenic neuron development or survival at a crucial timepoint 

in development. When FAIM2 expression was highest in hypothalamic neural progenitors, its 

expression was approximately 50% less in progenitors homozygous for the rs7132908 obesity 

risk allele. FAIM2 protects neurons from Fas-induced apoptosis37,38 and regulates neurite 

outgrowth39, neuroplasticity40, and synapse formation41. While Faim2 null mice have only been 

previously used to study neurological70-73 and immune74 phenotypes, one study reported that 

Faim2 null mice at 10-12 weeks of age and fed a standard diet ad libitum did display subtle 

increases in fat content70. Rodent studies have also demonstrated that Faim2 expression 

increased in the hypothalamic arcuate nucleus in response to restricted food intake75 and food 

deprivation76. Future work must be dedicated to directly test our hypothesis that FAIM2 is a 

causal effector gene for childhood obesity and a more complex model system may be 

appropriate for such studies.  
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 There are several limitations to our study to consider. First, although our ESC-derived in 

vitro model of hypothalamic neurogenesis expresses some appropriate marker genes, it likely 

does not fully recapitulate the hypothalamus during childhood. We also generated non-neuronal 

cell types (OPCs and fibroblasts) that correlated most highly with cultured fibroblasts in the 

GTEx RNA-seq database36 but still expressed neuronal markers (MAP2 and TUBB3) at some 

level, likely due to exposure to neuron maturation cell culture medium for 26 days. While we 

reported changes in gene expression and chromatin accessibility in these additional cell types, 

they may not be as biologically relevant. Second, we used the female H9 ESC line which 

prevented us from detecting sex-specific differences. Third, we did not investigate the effects of 

the rs7132908 obesity risk A allele in vivo. We were able to obtain four pediatric hypothalamus 

tissue samples, but with just three homozygous for the rs7132908 non-risk allele and only one 

heterozygote, this sample size was insufficient for allele-specific expression or eQTL analyses. 

In the future, increased accessibility to human pediatric hypothalamus tissue would aid 

investigation at the chr12q13 childhood obesity locus. 

 Overall, we functionally validated rs7132908 as a causal SNP at one of the strongest but 

commonly overlooked childhood obesity GWAS loci, implicated FAIM2 and other cell type-

specific effector genes, and nominated pathways acting downstream of the SNP involving 

nervous system development and cell death. We have also generated datasets from primary 

astrocytes and multiple timepoints throughout hypothalamic neuron differentiation, including 

multi-omic single-nucleus RNA-seq and ATAC-seq data, that will serve as a resource to aid 

investigation of other loci and traits relevant to our cell models. This progress towards 

characterizing the precise mechanism underlying the association between the chr12q13 

genomic region and obesity should in turn enable future work with this key locus and guide 

comparable efforts to validate other causal genes and to ultimately identify therapeutic targets. 
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STAR METHODS 

Resource availability 

Lead contact 

 Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the lead contact, Struan F. A. Grant (grants@chop.edu). 

 

Materials availability 

 Vectors (pGL4.10[luc2]-rs7132908G-FAIM2, pGL4.10[luc2]-rs7132908A-FAIM2, 

pGL4.10[luc2]-FAIM2, pGL4.10[luc2]-rs7132908G-LIMA1, pGL4.10[luc2]-rs7132908A-LIMA1, 

pGL4.10[luc2]-LIMA1, pGL4.10[luc2]-rs7132908G-RACGAP1, pGL4.10[luc2]-rs7132908A-

RACGAP1, pGL4.10[luc2]-RACGAP1, and gRNA_Cloning-rs7132908gRNA) and cell lines 

(WA09 (H9) rs7132908 AA human embryonic stem cell clones 2.1, 9.1, and 10.1) generated in 

this study will be available from the lead contact with a completed Materials Transfer 

Agreement. This study did not generate any other new unique reagents.  

 

Data and code availability 

 Genotyping, Hi-C, RNA-seq, ATAC-seq, single-nucleus RNA-seq, and single-nucleus 

ATAC-seq data have been deposited at Gene Expression Omnibus (GEO) and are publicly 

available as of the date of publication. Accession numbers are listed in the key resources table. 

This paper does not report original code. Any additional information required to reanalyze the 

data reported in this paper is available from the lead contact upon request. 

 

Experimental model and subject details 

Primary astrocyte model 

 Primary Normal Human Astrocytes (NHA) of unknown sex were obtained from Lonza as 

cryopreserved cells. The cells were obtained at passage 1 and used before passage 10, as 
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recommended. They were cultured following Lonza technical instructions in Lonza Astrocyte 

Growth Medium and in a humidified incubator at 37°C with 5% CO2. For thawing, cells were 

thawed quickly at 37°C, resuspended, and added slowly to an excess of warmed medium to 

seed at approximately 6,500 cells/cm2 in a T75 flask. For passaging, 70-80% confluent cells 

were washed with 30 mM HEPES buffered saline solution in water, incubated at 37°C with 

0.025% trypsin-EDTA in DPBS for 3-4 minutes or until 90% of the cells rounded up, treated with 

2 volumes of 5% FBS in DPBS to neutralize the trypsin, rinsed off the culture vessel with gentle 

pipetting, pelleted by centrifugation at 160 rcf for 5 minutes at 4°C, and then resuspended and 

seeded at the desired density. The cells were cultured in T75 flasks, 6-well plates, and 24-well 

plates. For freezing, cells were lifted as for passaging, resuspended to 1,000,000 cells/mL in 

FBS with 10% DMSO, frozen in 1 mL aliquots at -1°C/minute, and stored long-term in liquid 

nitrogen. The cells tested negative for mycoplasma contamination (Fig. S5D). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.553157doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

 

Supplemental Figure 5. Validation of experimental models, related to STAR Methods A) Electropherograms 
produced by Sanger sequencing around rs7132908 in ESC lines. B) BfaI restriction enzyme digestion screening in 
ESC lines. H9 ESCs have one BfaI restriction site in the PCR product around rs7132908, where digestion should 
produce two bands of 320 bp and 248 bp. After CRISPR to introduce the rs7132908 obesity risk A allele, a second 
BfaI restriction site is introduced, where digestion should produce three bands of 294 bp, 248 bp, and 26 bp (not 
pictured). C) G-band karyotyping reports for ESC lines. D) Mycoplasma PCR detection results for all experimental 
models. Cell lines with bands matching the size of the negative control are not contaminated with mycoplasma. 

 

HEK293T model 

 293T human female cells were obtained from ATCC as cryopreserved cells (ATCC Cat# 

CRL-3216; RRID: CVCL_0063). They were cultured following ATCC product information in 

Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% FBS, 1X Antibiotic-Antimycotic, and 2 
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mM L-glutamine and in a humidified incubator at 37°C with 5% CO2. For thawing, cells were 

thawed quickly at 37°C, resuspended, added slowly to an excess of warmed medium, pelleted 

by centrifugation at 125 rcf for 7 minutes at 25°C, resuspended in warmed medium, and seeded 

at approximately 17,500 cells/cm2 in a 10 cm dish. For passaging, 90% confluent cells were 

washed with PBS, incubated at 37°C with 0.25% trypsin-EDTA for 4-5 minutes, treated with 2 

volumes of medium to neutralize the trypsin, pelleted by centrifugation at 1,200 rcf for 2 minutes 

at 25°C, and then resuspended and seeded at the desired density. The cells were cultured in 10 

cm dishes, 6-well plates, and 24-well plates. For freezing, cells were lifted as for passaging, 

resuspended to 1,000,000 cells/mL in medium with 5% DMSO, frozen in 1 mL aliquots at -

1°C/minute, and stored long-term in liquid nitrogen. The cells tested negative for mycoplasma 

contamination (Fig. S5D). 

 

ESC model 

 WA09 (H9) human female embryonic stem cells were obtained from the WiCell 

Research Institute as cryopreserved cells (WiCell Lot# DL-05; RRID: CVCL_9773). Before use, 

the cells were authenticated with short tandem repeat analysis to confirm cell line identity. They 

were cultured following WiCell protocols in mTeSR1 medium, on Matrigel hESC-qualified matrix, 

and in a humidified incubator at 37°C with 5% CO2. During CRISPR editing, the cells were 

briefly cultured on Matrigel Growth Factor Reduced Basement Membrane Matrix diluted in 

IMDM and mouse embryonic fibroblasts (MEFs) and in DMEM/F12 medium supplemented with 

15% volume KnockOut Serum Replacement, 100 µM non-essential amino acids, 1 mM sodium 

pyruvate, 2 mM L-glutamine, 50 U/mL penicillin-streptomycin, 0.1 mM β-mercaptoethanol, and 

10 ng/mL human bFGF. For thawing, cells were thawed quickly at 37°C, resuspended, added 

slowly to an excess of warmed medium, pelleted by centrifugation at 200 rcf for 5 minutes at 

25°C, resuspended in warmed medium, and seeded into 1 well of a 6-well plate. For passaging 

as colonies, cells in large colonies were washed with Versene, incubated at room temperature 
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with Versene for 6-9 minutes, rinsed off the culture vessel with medium and gentle pipetting, 

and then split across new culture vessels, generally using a 1:12 ratio. For passaging as single 

cells, cells in large colonies were washed with DPBS, incubated at 37°C with Accutase for 2-5 

minutes, treated with 2 volumes of medium to neutralize the Accutase, pelleted by centrifugation 

at 200 rcf for 4 minutes at 25°C, and then resuspended and seeded at the desired density. For 

passaging when cultured on MEFs, MEFs were removed by incubating with TrypLE Express 

Enzyme for 3 minutes at room temperature. 10 µM ROCK Inhibitor Y-27632 was added to the 

medium for 24 hours after thawing or passaging as single cells. The cells were cultured in 10 

cm dishes, T25 flasks, 6-well plates, and 24-well plates. For freezing, cells were lifted as 

colonies as for passaging, pelleted by centrifugation at 200 rcf for 4 minutes at 25°C, 

resuspended in 2 mL mFreSR medium/lifted well of a 6-well plate, frozen in 1 mL aliquots at -

1°C/minute, and stored long-term in liquid nitrogen. The cells were validated with karyotyping 

(Fig. S5C) and tested negative for mycoplasma contamination (Fig. S5D). 

 

Pediatric post-mortem brain tissue 

 Frozen human pediatric hypothalamus tissue from 4 post-mortem individuals were 

obtained. The tissue donors included a 4-year-old male, 8-year-old male, 4-year-old female, and 

14-year-old female, all classified as white and with no clinical diagnoses. The number of 

samples was limited by tissue availability. 

 

Method details 

Mycoplasma contamination testing 

 Cells were cultured in the absence of antibiotics for several days and until 90-100% 

confluent. Medium was then collected and used to detect mycoplasma by PCR using the 

LookOut Mycoplasma PCR Detection kit with JumpStart Taq DNA polymerase, following 

manufacturer’s instructions. PCR products, including positive and negative controls, were 
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visualized with gel electrophoresis. Band sizes from experimental samples were compared to 

the negative control to determine that all cell cultures were negative for mycoplasma 

contamination (Fig. S5D). 

 

Bulk ATAC-seq library preparation 

 ATAC-seq libraries were prepared from primary astrocytes with 3 technical replicates, 

the rs7132908 non-risk G allele ESCs with 3 technical replicates and the rs7132908 risk A allele 

ESCs with 3 biological replicates. 50,000-100,000 cells from each replicate were centrifuged at 

550 rcf for 5 minutes at 4°C to pellet. Each cell pellet was washed with cold PBS and 

resuspended in 50 μL cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, and 

0.1% IGEPAL CA-630) then immediately centrifuged at 550 rcf for 10 minutes at 4°C. Nuclei 

were resuspended in transposition reaction mix (25 μL 2X Tagment DNA Buffer, 2.5 μL TDE1 

Tagment DNA Enzyme, and 22.5 μL nuclease-free water) on ice, then incubated for 45 minutes 

at 37°C. The tagmented DNA was then purified using the Qiagen MinElute PCR Purification kit 

and eluted in 10.5 μL elution buffer. 10 μL of each purified tagmented DNA sample was 

amplified with PCR using the Nextera DNA CD Indexes kit and NEBNext High-Fidelity PCR 

Master Mix for 12 cycles to generate each library. The libraries were purified using AMPure XP 

beads at a 1.8X concentration. Library concentrations were measured with Qubit dsDNA High 

Sensitivity Assays. The completed libraries were assessed with the Agilent Bioanalyzer DNA 

1000 kit and 2100 Bioanalyzer Expert software (RRID: SCR_019715). Completed libraries were 

pooled and sequenced on the Illumina NovaSeq 6000 platform using paired-end 51 bp reads. 

 

Hi-C library preparation 

 Hi-C libraries were prepared from primary astrocytes with two technical replicates using 

the Arima-HiC kit, following manufacturer’s instructions and as previously described47. In brief, 

cells were crosslinked with formaldehyde and then chromatin was digested with multiple 
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restriction enzymes. The purified proximally-ligated DNA was then sheared and 200-600 bp 

DNA fragments were selected with AMPure XP beads. The size-selected fragments were then 

enriched using Enrichment Beads and then converted to Illumina-compatible sequencing 

libraries using the Swift Accel-NGS 2S Plus DNA Library kit and Swift 2S Indexing kit. The 

libraries were assessed using the Agilent Bioanalyzer DNA 1000 kit and 2100 Bioanalyzer 

Expert software (RRID: SCR_019715) and the KAPA Library Quantification kit. Completed 

libraries were pooled and sequenced on the Illumina NovaSeq 6000 platform using paired-end 

101 bp reads. 

 

RNA extraction from cells 

 To extract RNA from cultured cells for RNA-seq or RT-qPCR, cells were lifted and 

resuspended in TRIzol. RNA was extracted from each TRIzol sample with the Zymo Direct-zol 

RNA Miniprep kit, following manufacturer’s instructions, with recommended DNase I treatment.  

 

DNA and RNA extraction from tissue 

 DNA and RNA were extracted from frozen human pediatric hypothalamus tissue 

samples in parallel. Each tissue sample was homogenized in DNA/RNA Shield in 2 mm ZR 

BashingBead Lysis Tubes with a FastPrep-24 5G high-speed benchtop homogenizer at 10 m/s 

at room temperature for 45 seconds. DNA and RNA were then extracted using the Zymo Quick-

DNA/RNA Miniprep Plus kit, following manufacturer’s instructions.  

 

Bulk RNA-seq library preparation 

 RNA extracted from each cell line and tissue sample was quantified and assessed with 

the Agilent Bioanalyzer RNA 6000 Nano kit and 2100 Bioanalyzer Expert software (RRID: 

SCR_019715). Cell line samples with an RNA integrity number (RIN) greater than 7 and tissue 

samples with a RIN greater than 5 were used for RNA-seq library preparation. RNA-seq libraries 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.553157doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 
 

were prepared from each tissue sample with 3 technical replicates, primary astrocytes with 3 

technical replicates, the rs7132908 non-risk G allele ESCs with 2 technical replicates, the 

rs7132908 risk A allele ESCs with 3 biological replicates, and hypothalamic neural progenitors 

with either allele from two independent differentiations (biological replicates) with 3 technical 

replicates. 40 ng to 1 µg of each RNA sample was used as input, depending on RNA extraction 

yield. Ribosomal RNA was depleted using the QIAseq FastSelect RNA Removal kit, following 

manufacturer’s instructions. Libraries were prepared using the NEBNext Ultra II Directional RNA 

Library Prep for Illumina kit, NEBNext Oligos for Illumina (Dual Index Primers Set 1), and 

AMPure XP beads, following manufacturer’s instructions. Library concentrations were quantified 

with Qubit dsDNA High Sensitivity Assays. 5 ng of each library was used for assessment with 

the Agilent Bioanalyzer DNA 1000 kit and 2100 Bioanalyzer Expert software (RRID: 

SCR_019715). If the electropherogram did not display a narrow sample distribution around 300 

bp, an additional bead cleanup or column purification was used to remove any contaminating 

primers, adapter-dimers, or large fragments generated by over-amplification. Completed 

libraries were pooled and sequenced on the Illumina NovaSeq 6000 platform using paired-end 

51 bp reads.   

 

Primary astrocyte transfection optimization 

 To optimize transfection of the primary astrocytes, we transfected with varying amounts 

of LentiCRISPRv2-mCherry vector DNA, which was a gift from Agata Smogorzewska (Addgene 

Cat# 99154; http://n2t.net/addgene:99154; RRID: Addgene_99154), Lipofectamine LTX, and 

PLUS Reagent and then quantified transfection efficiency and cell viability with flow cytometry in 

two separate experiments. Primary astrocytes were seeded at 50,000 cells/well in a 24-well 

plate and maintained until they reached 70-80% confluence. Lipofectamine LTX-DNA 

complexes with PLUS Reagent were prepared following manufacturer’s instructions in Opti-

MEM so that each well would receive either 0 ng, 250 ng, 500 ng, or 750 ng vector DNA, 1 µL 
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PLUS Reagent/1 µg of vector DNA, and either a 1:1, 1:2, 1:2.5, 1:3, 1:4, or 1:5 vector DNA 

(µg):Lipofectamine LTX (µL) ratio.  

Approximately 22 hours post-transfection, the cells were lifted, resuspended in PBS, 

fixed in 2% paraformaldehyde for 10 minutes at room temperature, resuspended in PBS, 

strained using a 35 μm strainer, and then counted using a CytoFLEX S N2-V3-B5-R3 Flow 

Cytometer. 10,000 events were collected for each condition and gating was set using the non-

transfected control condition. Percent single cell events was calculated by dividing the number 

of single cell events by all events (10,000). Percent cell viability was then calculated by dividing 

the percent single cell events for each condition by the average percent single cell events for 2 

replicates of non-transfected controls. Transfection efficiency was calculated by dividing the 

number of mCherry+ single cell events by the number of single cell events in each condition. 

This optimization experiment determined that ideal conditions for transfecting primary astrocytes 

at 70-80% confluence in a 24-well plate for 22 hours are 750 ng vector DNA, 0.75 µL PLUS 

Reagent, and 1.875 µL Lipofectamine LTX (1:2.5 ratio) diluted in Opti-MEM for a total volume of 

50 µL/well, which was used for all future primary astrocyte transfection experiments. These 

transfection conditions yielded high transfection efficiency (11.26%) when considering that the 

expected efficiency is 5-12%77 and high cell viability (85.69%) (Fig. S6A-B). 

 

Supplemental Figure 6. Primary astrocyte transfection optimization, related to STAR Methods A) Transfection 
efficiency resulting from transfecting with 250, 500, or 700 ng DNA per well and varying DNA to Lipofectamine LTX 
ratios (n = 2 biological replicates). B) Cell viability resulting from transfecting with 250, 500, or 700 ng DNA per well 
and varying DNA to Lipofectamine LTX ratios (n = 2 biological replicates). Data are represented as mean ± SD. 
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Generation of luciferase assay vectors 

 The ENCODE consortium’s ‘Registry of candidate cis-Regulatory Elements’ (version 1) 

(RRID: SCR_006793) annotated a cell type-agnostic regulatory element with a distal enhancer-

like signature surrounding rs7132908 at chr12:50,262,620-50,263,581 (GRCh37)50. To generate 

a DNA fragment containing this sequence with an additional 50 bp flanking each side for 

cloning, we designed PCR primers to amplify this region of interest and used a FAIM2 3’ UTR 

miRNA target clone (purchased from GeneCopoeia) as the PCR template and NEBNext High-

Fidelity PCR Master Mix. To generate DNA fragments containing the FAIM2, LIMA1, and 

RACGAP1 promoter sequences, we also designed PCR primers to amplify these regions and 

used promoter clones (purchased from GeneCopoeia) as PCR templates. The promoterless 

pGL4.10[luc2] firefly luciferase reporter vector (purchased from Promega) was linearized at the 

multiple cloning site upstream of the luc2 reporter gene using the XhoI restriction enzyme. Each 

PCR product and the linearized plasmid were extracted after visualization with gel 

electrophoresis with the NEB Monarch DNA Gel Extraction kit to ensure that a fragment of 

correct length was purified. The putative enhancer region containing rs7132908 and each 

promoter were inserted at the multiple cloning site of pGL4.10[luc2] using the Codex Gibson 

Assembly HiFi HC 1-Step kit to generate pGL4.10[luc2]-rs7132908G-FAIM2, pGL4.10[luc2]-

rs7132908G-LIMA1, and pGL4.10[luc2]-rs7132908G-RACGAP1 vectors. Each promoter alone 

was also inserted at the multiple cloning site to generate pGL4.10[luc2]-FAIM2, pGL4.10[luc2]-

LIMA1, and pGL4.10[luc2]-RACGAP1 control vectors. Each Gibson Assembly product was used 

to transform NEB Stable Competent E. coli which were then plated on LB agarose plates with 

100 µg/mL ampicillin to select for successfully transformed colonies. Bacterial plates were 

incubated overnight at 37°C and then individual colonies were selected for overnight growth in 

LB broth with 100 µg/mL ampicillin at 30°C with shaking at 250 rpm. Vector DNA was extracted 

from each overnight culture using the Qiagen QIAprep Spin Miniprep kit and then Sanger 
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sequenced on both strands throughout the modified region to confirm successful insertion and 

sequence. Electropherograms and sequence files produced from Sanger sequencing were 

analyzed using SnapGene software (RRID: SCR_015052). Once vectors with perfect 

sequences were identified, we used the NEB Q5 Site-Directed Mutagenesis kit to introduce the 

childhood obesity risk A allele at rs7132908 and generate pGL4.10[luc2]-rs7132908A-FAIM2, 

pGL4.10[luc2]-rs7132908A-LIMA1, and pGL4.10[luc2]-rs7132908A-RACGAP1 vectors. We 

used Sanger sequencing on both strands throughout the modified region to confirm successful 

mutagenesis and lack of polymerase errors. Bacteria glycerol stocks were prepared to store 

each transformed strain with verified sequences long-term. Each experimental vector, the 

unmodified pGL4.10[luc2] control vector, and pRL-TK (purchased from Promega) co-

transfection control vector were then purified for transfection using the Qiagen EndoFree 

Plasmid Maxi kit. Each purified vector was used for three transfections and purification from 

glycerol stock was repeated, as needed. 

 

Transfection of primary astrocytes 

 Primary astrocytes were seeded in three 24-well plates at varying densities so that they 

would reach 70-80% confluence on three different days for independent transfections. Once 

each plate reached 70-80% confluence, the cells were transfected in triplicate using optimized 

conditions to deliver 750 ng pGL4.10[luc2] firefly luciferase reporter vector DNA (unmodified, 

modified with promoter only, or modified with putative enhancer region and promoter) and 75 ng 

pRL-TK renilla luciferase reporter vector DNA. Three wells were also treated with only Opti-

MEM and transfection reagents to serve as a mock transfected control. The cells were then 

cultured for approximately 22 hours in a humidified incubator at 37°C with 5% CO2. This 

transfection process was repeated two more times with freshly thawed primary astrocytes with 

matched passage numbers and freshly purified vectors so that 9 independent transfections 

were completed.  
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Transfection of HEK293Ts 

 HEK293Ts were seeded in three 24-well plates at varying densities so that they would 

reach 70-90% confluence on three different days for independent transfections. Once each 

plate reached 70-90% confluence, the cells were transfected in triplicate with 500 ng 

pGL4.10[luc2] firefly luciferase reporter vector DNA (unmodified, modified with promoter only, or 

modified with putative enhancer region and promoter) and 50 ng pRL-TK renilla luciferase 

reporter vector DNA with 1 µL P3000 Reagent and 0.75 µL Lipofectamine 3000 diluted in Opti-

MEM for a total volume of 50 µL/well. Three wells were also treated with only Opti-MEM and 

transfection reagents to serve as a mock transfected control. The cells were then cultured for 

approximately 24 hours in a humidified incubator at 37°C with 5% CO2. This transfection 

process was repeated two more times with freshly thawed HEK293Ts with matched passage 

numbers and freshly purified vectors so that 9 independent transfections were completed.  

 

Luciferase assay 

 Luciferase assay reagents were prepared using the Promega Dual-Luciferase Reporter 

Assay System, according to manufacturer’s instructions. After transfection with luciferase 

reporter vectors, primary astrocytes were washed with PBS, incubated in 500 µL Passive Lysis 

Buffer/well with rocking at room temperature for 15 minutes, and then gently pipetted to aid lysis 

with mechanical force. After transfection with luciferase reporter vectors, HEK293Ts were 

washed with PBS and lysed in 500 µL Passive Lysis Buffer/well with rocking at room 

temperature for 10 minutes. Each lysate was then collected and vortexed for 10 seconds. 20 µL 

of each lysate was added to a white, flat-bottom 96-well plate in triplicate for a total of 9 

wells/condition. 20 µL Passive Lysis Buffer was also added to 9 wells to serve as a negative 

control. Each well was assayed using a SpectraMax iD5 Multi-Mode Microplate Reader by 

injecting 100 µL Luciferase Assay Reagent II, waiting 2 seconds, measuring firefly luciferase 
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fluorescence for 10 seconds, injecting 100 µL Stop & Glo Reagent, waiting 2 seconds, and 

measuring renilla luciferase fluorescence for 10 seconds.  

 

Generation of rs7132908 risk allele ESC clones 

 A guide RNA and homology-directed repair template were designed to change the 

rs7132908 non-risk G allele to the obesity risk A allele with CRISPR-Cas9 in the ESC model. 

These methods were adapted from a previously published protocol for highly efficient CRISPR-

Cas9 editing in human stem cells78. The guide RNA was designed with the help of the 

CRISPOR program (RRID: SCR_015935)79. The guide RNA was prepared by incorporating the 

20 bp target sequence into two 60-mer oligos purchased as 25 nmole DNA oligos from IDT 

which were then annealed, amplified with PCR using Phusion High-Fidelity DNA polymerase, 

and purified with extraction with the Takara NucleoSpin Gel and PCR Clean-Up kit after 

visualization with gel electrophoresis. The guide RNA was then cloned into the gRNA_Cloning 

vector80, which was a gift from George Church (Addgene Cat# 41824; 

http://n2t.net/addgene:41824; RRID: Addgene_41824), at the AflII restriction site with the NEB 

Gibson Assembly kit to generate the gRNA_Cloning-rs7132908gRNA vector. The homology-

directed repair template was prepared by designing a 100 bp single-stranded oligonucleotide 

centered around the gRNA sequence and with the desired base change, which was then 

purchased as a 4 nmole Ultramer DNA oligo from IDT. 0.5 µg gRNA_Cloning-rs7132908gRNA 

vector, 0.5 µg pCas9_GFP vector81, which was a gift from Kiran Musunuru (Addgene Cat# 

44719; http://n2t.net/addgene:44719; RRID: Addgene_44719), and 1 µg homology-directed 

repair template/well were transfected into 70-80% confluent ESCs on irradiated MEFs in a 6-

well plate with 3 µL/well Lipofectamine Stem in 50 µL DMEM/F12. The cells were cultured in a 

humidified incubator at 37°C with 5% CO2 for 48 hours. After transfection, single cells were lifted 

and 5,000-15,000 GFP+ cells were sorted into a 10 cm dish coated with Matrigel Growth Factor 

Reduced Basement Membrane Matrix diluted in IMDM and MEFs with fluorescence-activated 
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cell sorting. After 10-15 days of maintenance, individual clones were manually picked and used 

for both screening and expansion. Some cells from each clone were used for Proteinase K DNA 

extraction. This DNA was used as a template for PCR across the edited region using the 

Phusion High-Fidelity DNA polymerase and the PCR products were then used for both 

restriction digestion screening and Sanger sequencing to confirm the base change (Fig. S5A-

B). Restriction digestion was a possible screening method because the change from the 

rs7132908 non-risk G allele to obesity risk A allele generated a unique BfaI restriction site. 

Electropherograms and sequence files produced from Sanger sequencing were analyzed using 

SnapGene software (RRID: SCR_015052). Clones confirmed to be homozygous for the 

rs7132908 obesity risk A allele underwent further validation with karyotyping (Fig. S5C), de 

novo CNV analysis (Supp. Table 11), mycoplasma contamination testing (Fig. S5D), and 

Sanger sequencing at the top 10 most likely off-target sites (Supp. Table 12).  

 

Karyotyping 

 ESCs were passaged into a T25 flask and cultured under normal conditions until the 

cells reached 60-70% confluence. The flask was then packaged and shipped to Cell Line 

Genetics for G-band karyotyping of live cultures. Karyotyping reports indicated that all ESC lines 

had a normal human female karyotype (Fig. S5C). 

 

DNA extraction from cells 

 To extract DNA from cultured cells for genotyping, PCR, or Sanger sequencing, cells 

were lifted and then DNA was extracted with the Zymo Quick-DNA Miniprep Plus kit, following 

manufacturer’s instructions. 

 

SNP genotyping 
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 Genome-wide genotyping of DNA from ESC lines for de novo CNV analysis was 

performed using the Illumina Infinium Global Screening Array v3.0 BeadChip genotyping array. 

Genome-wide genotyping of DNA from human pediatric hypothalamus tissue was performed 

using the Illumina OmniExpressExome v1.6 BeadChip genotyping array. Genotyping arrays 

consist of many thousands of short invariant 50mer oligonucleotide probes conjugated to silica 

beads. Sample DNA is hybridized to the probes and a single-base, hybridization-dependent 

extension reaction is performed at each target SNP. Arrays are loaded onto an iScan System 

and scanned to extract data. DMAP files enable identification of bead locations on the BeadChip 

and quantification of the signal associated with each bead. Alternate alleles (herein denoted A 

and B) are labeled with different fluorophores. Raw fluorescence intensity from the two-color 

channels is processed into a discrete genotype call (normalized to continuous value 0-1 B-Allele 

Frequency (BAF)) and the total intensity from both channels (normalized to continuous value 

with median=0 Log R Ratio (LRR)) at each SNP which are informative for copy number.  

 

Screening for CRISPR off-target effects 

 The CRISPOR program (RRID: SCR_015935)79 was used to identify potential off-target 

sites for the guide RNA designed to change the rs7132908 non-risk G allele to the obesity risk A 

allele. Each potential off-target site was ranked by Cutting Frequency Determination score 

which is used to measure guide RNA specificity. Primers were designed to PCR amplify and 

Sanger sequence the top 10 potential off-target sites. Six potential off-target sites were 

excluded from screening because primers could not be designed in these regions with a melting 

temperature between 56-70°C, likely because these regions were too repetitive. Each potential 

off-target site was amplified using the Phusion High-Fidelity DNA polymerase. Each PCR 

product was extracted after visualization with gel electrophoresis with the NEB Monarch DNA 

Gel Extraction kit to ensure that a fragment of correct length was purified. Each purified PCR 

product was then Sanger sequenced on both strands. Electropherograms and sequence files 
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produced from Sanger sequencing were analyzed using SnapGene software (RRID: 

SCR_015052). Sequences from each CRISPR clone were compared to sequences from the 

parent H9 ESC line to determine that there were no off-target effects in all clones at the top 10 

most likely off-target sites (Supp. Table 12). 

 

Preparation of differentiation medium 

 Differentiation medium was prepared as previously published7 with some modifications. 

This medium is an optimized, serum-free reformulation of B27 which supports high quality 

neuronal cultures and overcomes quality variability of B27 due to different sources of bovine 

serum albumin. A 50X differentiation supplement was prepared containing DMEM/F12 with 1 

μg/mL corticosterone, 50 μg/mL linoleic acid, 50 μg/mL linolenic acid, 2.35 μg/mL (±)-α-lipoic 

acid, 0.32 μg/mL progesterone, 5 μg/mL retinyl acetate, 50 μg/mL (±)-α-tocopherol, 50 μg/mL 

DL-α-tocopherol acetate, 125 mg/mL bovine serum albumin, 27.15 mg/mL sodium bicarbonate, 

3.2 mg/mL L-ascorbic acid, 805 μg/mL putrescine dihydrochloride, 750 μg/mL D(+)-galactose, 

250 μg/mL holo-transferrin, 125 μg/mL catalase, 100 μg/mL L-carnitine hydrochloride, 50 μg/mL 

glutathione, 0.7 μg/mL sodium selenite, 50 μg/mL ethanolamine, 0.1 μg/mL triiodo-L-thyronine 

sodium salt, and 200 μg/mL insulin. Differentiation medium was then prepared containing 

DMEM/F12 with 1X differentiation supplement, 1X Antibiotic-Antimycotic, 1X GlutaMAX, and 2.5 

μg/mL superoxide dismutase.  

 

Differentiation to hypothalamic neural progenitors 

 ESCs were plated as single cells at 1 million cells/well in a matrigel-coated 6-well plate 

or 200,000 cells/well in a matrigel-coated 24-well plate and cultured in mTeSR1 medium with 10 

μM ROCK Inhibitor Y-27632 for 24 hours in a humidified incubator at 37°C with 5% CO2. After 

24 hours, on day 0, the medium was changed to differentiation medium with 1 μM LDN-193189 

and 10 μM SB-431542 for dual SMAD inhibition. On days 2, 4, 6, and 8, the medium was 
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changed to differentiation medium with 1 μM LDN-193189, 10 μM SB-431542, 1 μM SAG, 1 μM 

Purmorphamine, and 10 μM IWR-1-endo for dual SMAD and Wnt signaling inhibition and Shh 

activation. This method directed the ESCs toward ventral diencephalon forebrain cell identity. 

On days 9, 11, and 13, the medium was changed to differentiation medium with 10 μM DAPT 

and 0.01 μM retinoic acid to direct the cells to exit cell cycle. Hypothalamic neural progenitors 

were collected for downstream experiments on day 14 (Fig. 3A). These methods were 

previously optimized and validated7. To confirm hypothalamic neural progenitor identity, we 

performed immunohistochemistry and observed expected expression of NKX2-1, which is a 

marker for the developing hypothalamus82 (Fig. S1B), and NeuN, which is a marker for post-

mitotic neurons (Fig. S1C). 

 

Differentiation to hypothalamic neurons 

 On day 14, hypothalamic neural progenitors were washed with DPBS, incubated at 37°C 

with Accutase for up to 7 minutes, treated with 2 volumes of medium to neutralize the Accutase, 

pelleted by centrifugation at 200 rcf for 3 minutes at 25°C, resuspended in differentiation 

medium with 10 ng/mL BDNF, and seeded at 1 million cells/well in a laminin-coated 6-well plate 

or 200,000 cells/well in a laminin-coated 24-well plate. Laminin-coated plates were prepared by 

diluting laminin to 0.05 mg/mL in cold Hanks’ Balanced Salt Solution, distributing 10 mL laminin 

solution across each plate, incubating overnight at 4°C, incubating at 37°C for 2 hours before 

use, and washing with PBS 3 times before use. The medium was replaced with fresh 

differentiation medium with 10 ng/mL BDNF every 2-3 days until day 40 to promote 

hypothalamic neuron maturation. These methods were previously optimized and validated7. 

 

Fluorescent immunohistochemistry 

 Cells for immunohistochemistry were cultured on acid-treated #1.5 glass coverslips. The 

cells were washed with PBS, fixed with 4% paraformaldehyde for 10 minutes at room 
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temperature, and then incubated with PBS for 5 minutes at room temperature three times to 

wash. The cells were incubated in blocking solution (PBS with 5% (w/v) bovine serum albumin 

and 0.3% Triton X-100) for 1 hour at room temperature. After blocking, primary antibodies (Anti-

MAP2 (Abcam Cat# ab5392; RRID: AB_2138153), Anti-NKX2-1 (Cell Marque Cat# 343M-95; 

RRID: AB_1158934), and Anti-NeuN (Millipore Sigma Cat# MAB377; RRID: AB_2298772)) 

diluted in blocking solution (1:500) were added to the cells, then incubated overnight at 4°C with 

gentle rocking. After the primary antibody incubation, the cells were incubated with PBST for 10 

minutes at room temperature three times to wash. Appropriate secondary antibodies (Anti-

Chicken (Abcam Cat# ab150169; RRID: AB_2636803) and Anti-Mouse (Invitrogen Cat# A-

11001; RRID: AB_2534069)) diluted in blocking solution (1:500) were added to the cells, then 

incubated for 1 hour at room temperature, protected from light. After the secondary antibody 

incubation, the cells were incubated with PBST for 5 minutes at room temperature three times to 

wash. The cells were then washed with PBS for 3 minutes at room temperature and incubated 

with 300 nM DAPI for 5 minutes at room temperature to stain nuclei. After DAPI incubation, the 

cells were washed with PBS three times. The glass coverslips were mounted on glass slides 

with ProLong Gold Antifade Mountant. The cells were visualized with an Olympus DP74 camera 

using appropriate fluorescent filters and Olympus cellSens Standard software. Images for each 

fluorescent channel were merged using ImageJ (RRID: SCR_003070)83. 

 

Nuclei isolation  

 After hypothalamic neuron differentiation, the cells were washed with PBS, incubated at 

37°C with Accutase for up to 7 minutes, treated with 2 volumes of medium to neutralize the 

Accutase, and pelleted by centrifugation at 300 rcf for 5 minutes at 4°C. The cell pellet was 

resuspended in PBS with 0.04% bovine serum albumin. 1 million cells or less were pelleted by 

centrifugation at 300 rcf for 5 minutes at 4°C and then resuspended in 100 μL chilled lysis buffer 

(water with 10 mM Trizma hydrochloride, 10 mM sodium chloride, 3 mM magnesium chloride, 
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1% bovine serum albumin, 0.1% Tween-20, 1 mM DTT, 1 U/μL RNase inhibitor, and 0.1% 

IGEPAL CA-630). The cells were incubated in lysis buffer on ice for 1 minute and then 500 μL 

chilled wash buffer (water with 10 mM Trizma hydrochloride, 10 mM sodium chloride, 3 mM 

magnesium chloride, 1% bovine serum albumin, 0.1% Tween-20, 1 mM DTT, and 1 U/μL 

RNase inhibitor) was added. The nuclei were pelleted by centrifugation at 500 rcf for 5 minutes 

at 4°C. Addition of chilled wash buffer and pelleting were repeated two more times. The nuclei 

were then resuspended in chilled nuclei buffer (water with 1X Nuclei Buffer, 1 mM DTT, and 1 

U/μL RNase inhibitor) to a concentration of 8,000 nuclei/μL in at least 25 μL and strained using 

a 35 μm strainer. 

 

Single-nucleus RNA-seq and ATAC-seq library preparation 

 Single-nucleus RNA-seq and ATAC-seq libraries were prepared using the 10X 

Genomics Chromium Single Cell Multiome ATAC + Gene Expression workflow. Libraries were 

prepared from the rs7132908 non-risk G allele cells from two independent differentiations 

(biological replicates) for a total of 4 technical replicates and from the rs7132908 risk A allele 

cells from two CRISPR clones (biological replicates) and three independent differentiations 

(biological replicates) for a total of 4 technical replicates. In brief, isolated nuclei in chilled nuclei 

buffer were transposed in bulk which simultaneously fragmented DNA in regions of open 

chromatin and added adapter sequences to the ends of the DNA fragments. The transposed 

nuclei were then loaded onto a microfluidic chip which was run in the Chromium Controller 

instrument. In the instrument, nuclei were individually partitioned with Gel Beads-in-emulsion 

(GEMs). Each Gel Bead contains oligonucleotides with a unique 16 bp 10X Barcode sequence, 

a poly(dT) sequenced to capture mRNA, and a Spacer sequence that enables barcode 

attachment to transposed DNA fragments. The GEMs were then incubated to attach unique 10X 

Barcodes to mRNA and transposed DNA fragments which served to associate mRNA and 

transposed DNA fragments back to the same nucleus. Unique molecular identifiers (UMIs) were 
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also used to distinguish individual, captured mRNA molecules for quantification. A reverse 

transcription reaction converted the mRNA into full-length cDNA. The GEMs were then broken 

and pooled fractions were recovered and purified. The products were taken through a pre-

amplification PCR step to fill gaps and ensure maximum recovery of barcoded ATAC and cDNA 

fragments. The pre-amplified products were then used as input for both ATAC-seq library 

preparation and cDNA amplification for RNA-seq library preparation. Completed RNA-seq 

libraries were quantified and assessed with Agilent High Sensitivity D1000 ScreenTape assays 

and ATAC-seq libraries were quantified and assessed with Agilent High Sensitivity D5000 

ScreenTape assays. RNA-seq libraries were then pooled and sequenced on the Illumina 

NovaSeq 6000 platform to reach a minimum of 20,000 paired-end reads/nucleus. ATAC-seq 

libraries were then pooled and sequenced on the Illumina NovaSeq 6000 platform to reach a 

minimum of 25,000 paired-end reads/nucleus.  

 

cDNA generation 

 RNA samples were quantified with Qubit RNA High Sensitivity Assays. 30 ng of each 

RNA sample was used for cDNA generation using SuperScript IV VILO Master Mix after 

treatment with ezDNase to remove any DNA contamination. No reverse transcriptase controls 

were also generated using SuperScript IV VILO ‘No RT’ Control Master Mix.  

 

Quantitative real-time polymerase chain reaction (RT-qPCR) 

 TaqMan Gene Expression Assays for FAIM2 and human 18S ribosomal RNA were 

validated with standard curves generated by pooling all cDNA samples quantified in an 

experiment to represent average conditions of all samples. The FAIM2 standard curve consisted 

of 5 points generated by a 1:5 serial dilution ranging from 0.0024 to 1.5 ng in triplicate. The 18S 

standard curve consisted of 8 points generated by a 1:5 serial dilution ranging from 0.0000192 

to 1.5 ng in triplicate. Each sample was quantified with TaqMan Fast Advanced Master Mix and 
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the Agilent AriaMX Real-Time PCR System. After assay validation, 0.5 ng of each experimental 

cDNA sample and no reverse transcriptase control were assayed in duplicate. Additionally, no 

template controls were assayed in triplicate. 

 

Quantification and statistical analysis 

Prediction of risk allele’s effect on transcription factor binding 

 The genomic position and alternative allele of rs7132908 (determined using 

SNPlocs.Hsapiens.dbSNP155.GRCh38 and BSgenome R packages) were used to scan 

through all position frequency matrix databases using the R package MotifDb to identify 

potential transcription factor binding disruption effects. The motifbreakR function84 was used 

with parameters filter=TRUE, threshold=0.0005, method=’ic’, bkg=c(A=0.25, C=0.25, G=0.25, 

T=0.25), and BPPARAM=BiocParallel::SerialParam(). 

 

GWAS-eQTL colocalization 

 Childhood obesity GWAS summary statistics from the European ancestry population in 

the EGG consortium were used. Common variants (minor allele frequency ≥ 0.01) from the 

1000 Genomes Project (v3)85 were used as a reference panel. SNP-gene sets from our variant-

to-gene mapping efforts were used as leads. We used ColoQuiaL86 to test genome-wide 

colocalization of each lead against GTEx eQTLs (v8) (RRID: SCR_013042)36 from all 49 

available tissues. Evidence of colocalization between a given childhood obesity GWAS signal 

and eQTL signal was identified by a conditional posterior probability of colocalization ≥ 0.8. 

 

Luciferase assay data analysis 

All fluorescence values were reduced by the average signal in the 9 negative control 

wells to correct for background fluorescence in the Passive Lysis Buffer and 96-well plate. The 

firefly luciferase fluorescence signal was then divided by the renilla luciferase fluorescence 
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signal in each well to adjust for sample-to-sample variability due to differences in cell numbers, 

transfection efficiency, and pipetting. Normalized firefly luciferase fluorescence values were 

averaged for each condition (n=9). Normalized fold change was calculated by dividing the 

average normalized firefly luciferase fluorescence values for each condition by this value 

produced by the promoter only vector (pGL4.10[luc2]-FAIM2, pGL4.10[luc2]-LIMA1, or 

pGL4.10[luc2]-RACGAP1).  

Assays were excluded from statistical analysis if there was fluorescence detected 

(normalized fold change > 0.1) in the negative control condition or if at least one normalized fold 

change value was greater than 2 standard deviations away from the mean of all other assays 

performed. Multiple independent transfections and assays were performed and are stated in the 

figure legend. All data are represented as mean ± standard deviation. Statistical analyses and 

visualization were performed using GraphPad Prism (RRID: SCR_002798) and ordinary one-

way ANOVA tests with Tukey’s correction for multiple comparisons. P-values < 0.05 were 

considered significant. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001. 

 

CNV detection 

 Samples must meet minimum quality control standards of call rate > 98% and LRR 

standard deviation < 0.3 to be used for CNV detection. We used PennCNV (RRID: 

SCR_002518) as our main CNV detection algorithm of the Illumina Infinium Global Screening 

Array v3.0 data due to its widespread usage. We filtered PennCNV calls to include CNVs with 

number of SNPs supporting ≥20, length ≥100,000, and Segmental Duplication track coverage < 

0.5. Related cell line clone CNV calls were compared to ensure consistency in CNV calling. All 

genomic coordinates are in human genome build version GRCh37. 

 

De novo CNV detection 
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 The related cell line clones annotated for each sample were verified by pairwise 

comparison of genome-wide SNP genotyping content using PLINK (RRID: SCR_001757). The 

"child" cell line CNVs were compared to their corresponding "parent" cell line CNVs using 

bedtools and if at least 50% reciprocal overlap is not observed, annotated as de novo. Such 

putative de novo calls were BAF LRR plotted for each pair of "child" and "parent" to allow for 

side-by-side comparison to ensure the de novo was not an erroneous call. 

 

Bulk RNA-seq analysis 

 Sequencing data was demultiplexed to generate FASTQ files using Illumina bcl2fastq2 

Conversion Software (RRID: SCR_015058). FASTQ files were assessed with FastQC (RRID: 

SCR_014583)87,88 to verify that there was high sequence quality, expected sequence length, 

and no adapter contamination. Paired-end FASTQ files for each replicate of primary astrocytes 

were mapped to the human reference genome (GRCh38) using STAR (RRID: SCR_004463)89. 

Genes were annotated using GENCODE human release 40 (RRID: SCR_014966)90. Raw read 

counts were calculated using HTSeq-count (RRID: SCR_011867)91. Paired-end FASTQ files for 

each replicate of all other cell types and tissue were mapped to the Ensembl human reference 

transcriptome (GRCh38)92 using Kallisto (RRID: SCR_016582)93,94. Abundance data generated 

with Kallisto was read into R (RRID: SCR_001905) using the package tximport (RRID: 

SCR_016752)95, annotated with Ensembl human gene annotation data (version 86)92 using 

ensembldb (RRID: SCR_019103)96 and EnsDb.Hsapiens.v86, and summarized as counts per 

million (cpm) at the gene level using edgeR (RRID: SCR_012802)97. Genes with less than 1 

cpm in 2 or 3 samples, depending on the smallest set of replicates in the analysis, were 

removed to increase statistical power to detect differentially expressed genes. Samples within 

each analysis were normalized with the trimmed mean of M values (TMM) method98. The R 

package limma (RRID: SCR_010943)99 was used to identify differentially expressed genes by 

first applying precision weights to each gene based on its mean-variance relationship using the 
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voom function and then linear modeling and Bayesian statistics were employed to detect genes 

that were up- or down-regulated in each condition. Genes with an adjusted P-value < 0.05 and 

|log2 fold change| > 0.58 were considered significantly differentially expressed. Coordinates for 

the rs7132908 TAD were determined using the TADKB database51 and considering the most 

conservative region documented in all reported human cell lines (GRCh37). A list of genes in 

the rs7132908 TAD region were exporting using the UCSC Genome Browser (GRCh37) (RRID: 

SCR_005780)100,101. Significantly differentially expressed genes were clustered using Pearson 

correlation and the R function hclust. The clustered genes were cut into 2 modules in ESCs and 

5 modules in hypothalamic neural progenitors. Significantly enriched Gene Ontology terms52,53 

in each module were identified using gprofiler2 (RRID: SCR_018190)102,103. Results were 

visualized using ggplot2 (RRID: SCR_014601)104,  gplots, and plotly.  

 

Bulk ATAC-seq analysis 

 Sequencing data was demultiplexed to generate FASTQ files using Illumina bcl2fastq2 

Conversion Software (RRID: SCR_015058). ATAC-seq peaks were called following the 

ENCODE ATAC-seq pipeline (https://www.encodeproject.org/atac-seq/). Briefly, paired-end 

reads from three replicates for each cell type were aligned to the human reference genome 

(GRCh38) using bowtie2 (RRID: SCR_016368)105, and duplicate reads were removed from the 

alignment using Picard (RRID: SCR_006525) MarkDuplicates and SAMtools (RRID: 

SCR_002105)106. Narrow peaks were called independently for each replicate using MACS2107 

with parameters -p 0.01 --nomodel --shift -75 --extsize 150 -B --SPMR --keep-dup all --call-

summits. Reproducible peaks, peaks called in at least 2 replicates (with at least 1 bp overlap), 

were used to generate a consensus set of peaks. Signal peaks were normalized using csaw108 

in 10 kilobase (kb) bin background regions. A threshold of cpm > 1 was used to exclude peaks 

with low abundance from the analysis. Tests for differential accessibility between rs7132908 

genotypes were conducted with the glmQLFit approach implemented in edgeR (RRID: 
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SCR_012802)97 using the normalization factors calculated by csaw. Open chromatin regions 

with adjusted P-value < 0.05 and |log2 fold change| > 1 were considered differentially 

accessible. Results were visualized using ggplot2 (RRID: SCR_014601)104.  

 

Hi-C analysis 

 Hi-C analysis was performed as previously described47. In brief, sequencing data was 

demultiplexed to generate FASTQ files using Illumina bcl2fastq2 Conversion Software (RRID: 

SCR_015058). Paired-end reads from each replicate were pre-processed using the HiCUP 

pipeline (RRID: SCR_005569)109 and aligned to the human reference genome (GRCh38) with 

bowtie2 (RRID: SCR_016368)105. The alignments files were parsed to pairtools (RRID: 

SCR_023038)110 to process and pairix111 to index and compress, then converted to Hi-C matrix 

binary format (.cool) by cooler112 at multiple resolutions (500 bp, 1, 2, 4, 10, 40, 500 kb and 1 

megabase (Mb)) and normalized with the ICE method113. The matrices from different replicates 

were merged at each resolution using cooler112. Mustache114 and Fit-Hi-C2115 were used to call 

significant intra-chromosomal interaction loops from merged replicates matrices at three 

resolutions (1 kb, 2 kb, and 4 kb), with significance thresholds of q-value < 0.1 and P-value < 

1x10−6. The identified interaction loops were merged between both tools at each resolution. 

Lastly, interaction loops from all three resolutions were merged with preference for smaller 

resolution if there was overlap. 

 

Single-nucleus RNA-seq and ATAC-seq pre-processing 

 Cell Ranger ARC analysis pipelines were used to process sequencing data generated 

with the 10X Genomics Chromium Single Cell Multiome ATAC + Gene Expression workflow. 

Sequencing data was demultiplexed to generate FASTQ files using mkfastq. The FASTQ files 

were aligned to the GRCh38 human reference genome with the Cell Ranger ARC package 
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(RRID: SCR_023897) and cells were called using parameters -count --min-atac-count=2000 --

min-gex-count=1000.  

 66,120 cells homozygous for the rs7132908 non-risk G allele representing two separate 

differentiations were sequenced. 45,916 cells homozygous for the rs7132908 obesity risk A 

allele representing two different clonal lines and three different differentiations were also 

sequenced. All 112,036 cells then underwent quality control to remove ambient RNA using 

SoupX (RRID: SCR_019193)116 with the contamination fraction automatically estimated for each 

sample and the count matrices were re-adjusted after removal. Doublets were detected and 

removed using the Python package Scrublet (RRID: SCR_018098)117, and cells with >10% 

mitochondrial reads were filtered out using Seurat (RRID: SCR_016341)118. After quality control, 

we retained 71,818 cells for downstream analyses. 

RNA-seq data from all samples was SCTransformed (RRID: SCR_022146)119,120, 

integrated using the IntegrateData function, and then batch corrected using Harmony (RRID: 

SCR_022206)121 for differentiation, biological, and technical replicates. PCA and UMAP 

reduction were performed using the first 30 empirically selected principal components with 

standard pipelines (Fig. S2A-C). 

We ran peak calling using MACS3 (https://macs3-project.github.io/MACS/) for each 

sample with their corresponding ATAC-seq fragments files. Peaks from all samples were pooled 

and reduced to a final set of 383,029 peaks accessible in at least one sample. This peak set 

was used to create a ChromatinAssay using Signac (RRID: SCR_021158)122. The peaks were 

filtered through ENCODE hg38 blacklist regions (https://github.com/Boyle-

Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz) and annotated with 

EnsDb.Hsapiens.v86. We performed quality control following metrics recommended by 

Signac122, including nucleosome banding pattern, TSS enrichment score, total number of 

fragments in peaks, fraction of fragments in peaks, and ratio of reads in genomic blacklist 

regions; we removed cells that were outliers by these metrics. We performed term frequency-
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inverse document frequency normalization with the RunTFIDF function and feature selection 

and dimension reduction using singular value decomposition (SVD) on the TD-IDF matrix with 

the RunSVD function, which produced latent semantic indexing components (LSI)123. Uniform 

manifold approximation and projection embedding was computed based on the first 29 LSI 

components (second to the 30th) for visualization in two-dimensional space with the RunUMAP 

function. The first component, being in strong correlation with total counts, was not used. 

Results were visualized using Seurat118 and ggplot2 (RRID: SCR_014601)104.  

 

Single-nucleus RNA-seq cell type identification 

 A previously published human hypothalamic arcuate nucleus single-cell RNA-seq 

dataset54 was used as a reference dataset to identify cell types in our single-nucleus RNA-seq 

dataset. Pairwise correspondences or ‘anchors’ between individual cells in each dataset were 

defined using the Seurat (RRID: SCR_016341) function FindTransferAnchors55. Then each cell 

in our dataset was classified as one of the cell types in the reference dataset (neuron, astrocyte, 

OPC, mature oligodendrocyte, microglia, ependymal, pericyte, immature oligodendrocyte, 

fibroblast, choroid, and tanycyte) using the Seurat function TransferData55, where the reference 

cell type with the highest observed classification score was assigned. As a result, neuron, 

astrocyte, OPC, ependymal, fibroblast, and tanycyte annotations were added to our dataset 

(Fig. S2D). We then prioritized cells with a classification score ≥ 0.8 for downstream analyses 

as this threshold has been previously demonstrated to increase accuracy55. In summary, we 

identified 38,044 cells as neurons, OPCs, or fibroblasts with a classification score above our 

threshold. PCA and UMAP reduction were performed using the first 20 empirically selected 

principal components with standard pipelines (Fig. 4A). All cells annotated as neurons were 

then subset and reclustered with PCA and UMAP reduction using the first 15 empirically 

selected principal components (Fig. 4C). Results were visualized using Seurat118 and ggplot2 

(RRID: SCR_014601)104. 
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Transcriptome correlation with pediatric hypothalamus tissue and GTEx RNA-seq data 

 Pseudobulk TPMs were calculated for each annotated cell type and replicate sample in 

the single-nucleus RNA-seq dataset by normalizing SoupX-corrected counts by gene size using 

gene annotation data from GENCODE human release 38 (GRCh37) (RRID: SCR_014966)90 

and previously published code124. TPMs from all rs7132908 non-risk allele replicate samples for 

each annotated cell type were then averaged. Similarly, average TPMs were also calculated for 

the rs7132908 non-risk allele replicate samples in the bulk RNA-seq datasets generated from 

the hypothalamic neural progenitors and human pediatric hypothalamus tissue sequenced 

inhouse. Median gene-level TPM data by tissue was downloaded from the GTEx Analysis RNA-

seq database (v8) (RRID: SCR_013042)36. Ensembl gene IDs with version suffixes were 

converted to gene names using gene annotation data from GENCODE human release 26 

(GRCh37) (RRID: SCR_014966)90. Average TPMs for each cell type of interest were merged 

with average TPMs from the human pediatric hypothalamus tissue and GTEx data. Then, the 

spearman rank correlation of genes expressed at greater than 5 TPMs in at least 2 samples 

were calculated using the R (RRID: SCR_001905) cor function. P-values for each correlation 

were calculated using the R cor.test function. Results were visualized in dot plots using ggplot2 

(RRID: SCR_014601)104.   

 

Neuron transcriptome comparison to human prenatal hypothalamus tissue 

 To compare the transcriptome of the cells annotated as neurons in the single-nucleus 

RNA-seq dataset to human prenatal hypothalamic nuclei, data from the Allen Brain Atlas58-61 

was downloaded as upregulated gene sets from the Harmonizome database125. Left and right 

hemisphere gene sets for each hypothalamic nucleus were combined and used for downstream 

analysis. To infer the average expression of each gene set per single cell in the neuron dataset 

compared to random control genes, module scores for each gene set were calculated using the 
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Seurat (RRID: SCR_016341) function AddModuleScore126. Average module scores per neuron 

cluster were plotted as the column Z-score for visualization. Results were visualized using 

ggplot2 (RRID: SCR_014601)104.   

 

Single-nucleus RNA-seq differential expression analyses 

Differential expression analysis of single-nucleus RNA-seq data was performed with 

DESeq2 (RRID: SCR_015687)127, following the standard workflow. In brief, raw counts and 

appropriate metadata for cell aggregation and comparison were extracted and used to create a 

SingleCellExperiment object using the R package SingleCellExperiment128,129. Counts were 

aggregated to the sample level for each cell type using the Matrix.utils function 

aggregate.Matrix. DESeq2 objects were created from the raw counts, appropriate metadata, 

and design formula to compare the rs7132908 obesity risk allele to the non-risk allele in each 

cell type using the DESeq2 function DESeqDataSetFromMatrix127. Differential expression 

analysis in each cell type was run using the DESeq2 function results127 and an adjusted P-value 

threshold of 0.05. The resulting log2 fold changes were shrunk using the apeglm method130. 

Genes with an adjusted P-value < 0.05 and |log2 fold change| > 0.58 were considered 

significantly differentially expressed. Results were visualized in volcano plots using ggplot2 

(RRID: SCR_014601)104. Significantly differentially expressed genes were clustered using the R 

(RRID: SCR_001905) function hclust and plotted in heatmaps using the R package pheatmap 

(RRID: SCR_016418). Significantly enriched Gene Ontology terms52,53 in each set of genes 

significantly up- or down-regulated in each cell type were identified using gprofiler2 (RRID: 

SCR_018190)102,103. 

 

Single-nucleus ATAC-seq differential accessibility analyses 

 To find differentially accessible regions due to rs7132908 genotype, we performed 

differential accessibility tests between cells homozygous for either rs7132908 allele. We 
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implemented logistic regression using the FindMarkers function from Signac (RRID: 

SCR_021158)122, with the total number of fragments in peaks as a latent variable to mitigate the 

effect of differential sequencing depth and using a min.pct threshold of 0.01 due to sparse 

single-nucleus ATAC-seq data. To ensure data correspondence, we used only the 38,044 

annotated cells that had a classification score ≥ 0.8 by the RNA-seq analysis for this differential 

accessibility analysis. P-value adjustment was performed internally using Bonferroni correction 

based on the total number of peaks in the dataset. We repeated this analysis for each 

annotated cell type: neurons, OPCs, and fibroblasts. 

We performed DNA motif analysis to identify potentially important genotype-specific 

regulatory sequences in different groups of differentially accessible peaks. We used motif 

position frequency matrices from the JASPAR 2022 CORE collection database131. The 

FindMotifs function from Signac122 performed hypergeometric test on these differentially 

accessible peaks to test the probability of observing the motif at the given frequency by chance, 

compared to a background set of peaks matched for GC content. 

 

Quantitative real-time polymerase chain reaction (RT-qPCR) analysis 

Cq values for each sample were determined with the Agilent Aria software. To validate 

each TaqMan Gene Expression Assay using a standard curve, Cq values from each triplicate of 

samples were averaged and then plotted against the log of their corresponding mass of cDNA 

input (ng) using Microsoft Excel (RRID: SCR_016137). A linear trendline was then added to 

each graph and the R2 values and linear equations were displayed. Primer efficiency was 

calculated with 10(-1/slope). Percent primer efficiency was calculated by dividing the primer 

efficiency by 2. TaqMan Gene Expression Assays passed standard curve validation if the R2 

value was greater than 0.99 and the percent primer efficiency was between 90-110%. Assays 

were used to calculate normalized relative expression if the no reverse transcriptase and no 

template control samples did not generate a Cq value. Normalized relative expression was 
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calculated using (EFAIM2
((mean FAIM2 Cq in non-risk cells on day 0) – (mean FAIM2 Cq in experimental sample)))/(E18S

((mean 18S Cq 

in non-risk cells on day 0) – (mean 18S Cq in experimental sample))), where E is primer efficiency. Results were 

visualized using GraphPad Prism (RRID: SCR_002798). Independent differentiations were 

performed and are represented by individual points on each graph. All data are represented as 

mean ± standard deviation. 
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SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 

 

Supplemental Table 1. rs7132908 variant-to-gene mapping in neural cell types. 

 

Supplemental Table 2. rs7132908 obesity risk vs. non-risk allele differential accessibility 

analysis in ESCs. 

 

Supplemental Table 3. rs7132908 obesity risk vs. non-risk allele differential expression 

analysis in ESCs. 

 

Supplemental Table 4. rs7132908 obesity risk vs. non-risk allele differential expression 

analysis in hypothalamic neural progenitors. 

 

Supplemental Table 5. GO terms significantly enriched in hypothalamic neural progenitor 

modules 4 and 5. 

 

Supplemental Table 6. rs7132908 obesity risk vs. non-risk allele significantly differentially 

accessible peaks in hypothalamic cell types. 

 

Supplemental Table 7. Transcription factor motifs significantly enriched in differentially 

accessible peaks in hypothalamic cell types. 

 

Supplemental Table 8. rs7132908 obesity risk vs. non-risk allele significantly differentially 

expressed genes in hypothalamic cell types. 

 

Supplemental Table 9. GO terms significantly enriched in hypothalamic cell types. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.553157doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.553157
http://creativecommons.org/licenses/by-nc-nd/4.0/


72 
 

 

Supplemental Table 10. Gene expression in pediatric hypothalamus tissue. 

 

Supplemental Table 11. ESC de novo CNV analysis. 

 

Supplemental Table 12. ESC CRISPR off-target site validation. 
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