

1 **Title: A patient-derived blood-brain barrier model for screening copper
2 bis(thiosemicarbazone) complexes as potential therapeutics in Alzheimer's disease**

3

4 **Authors:** Joanna M. Wasielewska^{1,2}, Kathryn Szostak^{3‡}, Lachlan E. McInnes^{3‡}, Hazel Quek^{1,4},
5 Juliana C. S. Chaves^{1,5}, Jeffrey R. Liddell⁶, Jari Koistinaho^{7,8}, Lotta E. Oikari¹, Paul S.
6 Donnelly^{3,*} and Anthony R. White^{1,4,*}

7

8 **Affiliations:**

9 ¹ Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute,
10 Brisbane, QLD, Australia

11 ² Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia

12 ³ School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University
13 of Melbourne, Parkville, VIC, Australia

14 ⁴ School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia

15 ⁵ School of Biomedical Sciences, Faculty of Health, Queensland University of Technology,
16 QLD, Australia

17 ⁶ Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC,
18 Australia

19 ⁷ Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of
20 Helsinki, Helsinki, Finland

21 ⁸ Neuroscience Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki,
22 Finland

23

24

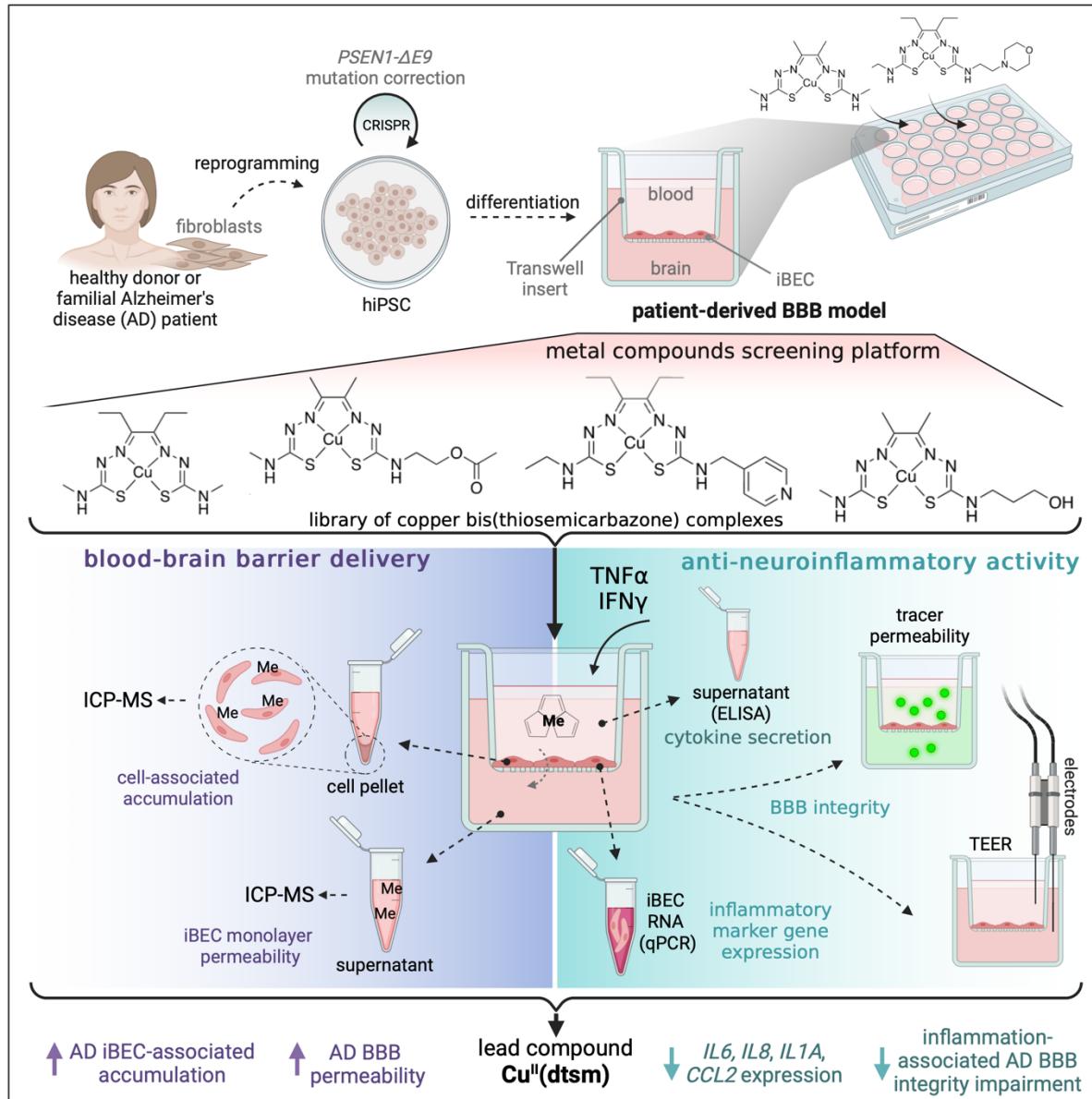
25 * Correspondence: tony.white@qimrberghofer.edu.au, pauld@unimelb.edu.au

26 [‡]These authors contributed equally

27 **Abstract:**

28 Alzheimer's disease (AD) is the most prevalent cause of dementia characterised by
29 progressive cognitive decline. Addressing neuroinflammation represents a promising
30 therapeutic avenue to treat AD, however, the development of effective anti-neuroinflammatory
31 compounds is often hindered by their limited blood-brain barrier (BBB) permeability.
32 Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB
33 models to facilitate the early identification of immunomodulatory drugs capable of efficiently
34 crossing human AD BBB.

35 This study presents a unique approach to BBB drug permeability screening as it utilises the
36 familial AD patient-derived induced brain endothelial-like cells (iBEC)-based model, which
37 exhibits increased disease relevance and serves as an improved BBB drug permeability
38 assessment tool when compared to traditionally employed *in vitro* models. To demonstrate its
39 utility as a small molecule drug candidate screening platform, we investigated the effects of
40 Cu^{II}(atsm) and a library of novel metal bis(thiosemicarbazone) complexes – a class of
41 compounds exhibiting anti-neuroinflammatory therapeutic potential in neurodegenerative
42 disorders. By evaluating the toxicity, cellular accumulation and permeability of those
43 compounds in the AD patient-derived iBEC, we have identified Cu^{II}(dtsm) as an emerging drug
44 candidate with enhanced transport across the AD BBB. Furthermore, we have developed a
45 multiplex approach where AD patient-derived iBEC were combined with immune modulators
46 TNF α and IFN γ to establish an *in vitro* model representing the characteristic
47 neuroinflammatory phenotype at the patient's BBB. Here we observed that treatment with
48 Cu^{II}(dtsm) not only reduced the expression of proinflammatory cytokine genes but also
49 reversed the detrimental effects of TNF α and IFN γ on the integrity and function of the AD iBEC
50 monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone)
51 complexes may exert neurotherapeutic effects in AD by mitigating BBB neuroinflammation
52 and related BBB integrity impairment.


53 Together, the presented model provides an effective and easily scalable *in vitro* BBB platform
54 for screening AD drug candidates. Its improved translational potential makes it a valuable tool
55 for advancing the development of metal-based compounds aimed at modulating
56 neuroinflammation in AD.

57

58 **Keywords:**

59 Alzheimer's disease, blood-brain barrier, copper bis(thiosemicarbazone), metal compound,
60 neuroinflammation, drug screening platform, neurotherapeutics

61 **Graphical abstract:**

63 **INTRODUCTION**

64

65 Alzheimer's disease (AD) is a progressive neurodegenerative disorder that predominantly
66 manifests as deficits in cognitive functions, such as memory and attention [1]. Recent evidence
67 has shown that neuroinflammation is an important driver of AD, propelling significant research
68 interest towards molecules capable of modulating the immune response within the brain [2],
69 [3]. Yet, despite these efforts, no anti-neuroinflammatory therapeutics have been approved for
70 clinical use in AD.

71

72 One of the major hurdles in AD drug development is the blood-brain barrier (BBB) formed by
73 brain endothelial cells (BEC), astrocytes, and pericytes at the blood-brain interface [4]. The
74 BBB is essential for physiological brain function, but restricts the transport of therapeutic
75 agents into the central nervous system (CNS), reducing their clinical effectiveness [5]. Given
76 the importance of improving drug penetration at the level of the BBB, numerous preclinical
77 BBB models have been established and utilised in the AD drug development pipeline [6]–[8].
78 Although proven useful in some aspects of preclinical drug assessment, those traditionally
79 employed BBB models offer low translational applicability to AD patients, contributing to the
80 modest success rates witnessed in AD clinical trials [9].

81

82 An important caveat of conventional cell-monolayer *in vitro* models used in drug permeability
83 screening is their reliance on cell sources that lack clinical relevance. These models frequently
84 utilise human immortalised BEC lines, such as hCMEC/D3, or cells originating from non-CNS,
85 non-endothelial, or non-human cell sources, exemplified by the Caco-2 and MDCK models
86 [10]–[12]. Consequently, those cells demonstrate considerable molecular, phenotypical, and
87 functional differences as compared to human *in vivo* BEC, which can impede the translation
88 of results [13]–[15]. Alternative synthetic systems, such as the parallel artificial membrane
89 permeability assay (PAMPA) model, although continuously modified to achieve higher
90 biomimicry to biological barriers, are deficient in active drug transportation systems and lack
91 the cellular composition of the BBB. Thus, they offer relatively low *in vitro* to *in vivo* drug
92 permeability prediction accuracy [16]–[18].

93

94 Concurrently, recent studies have reported on multifactorial BBB dysfunction in AD,
95 suggesting the involvement of BBB cells in disease development and progression [19]–[23].
96 In addition, neuroinflammation has been shown to drive some of the aspects of BBB
97 impairment in AD linking multiple pathways involved in vascular- and neuro-degeneration
98 [24]–[26]. Identified disease-associated changes at the BBB were also shown to contribute to
99 the development of a complex microenvironment in AD brain barriers with important

100 implications for drug delivery [27]–[30]. Together these observations highlight the key
101 limitation of traditionally used BBB models as they lack disease- and patient-specific
102 characteristics, simultaneously urging the development of accurate BBB *in vitro* screening
103 platforms to reliably model the response of AD patients to drug treatment.

104

105 Correspondingly, drug permeability assessed in the modern BBB models derived from healthy
106 donor human induced pluripotent stem cells (hiPSC) was recently shown to closely reflect *in*
107 *vivo* BBB permeability dynamics in the human brain, suggesting potential high translatability
108 of hiPSC-derived preclinical platforms [31], [32]. The hiPSC-derived induced brain endothelial-
109 like cells (iBEC) generated also a cell monolayer of increased, and hence more physiological,
110 integrity as compared to traditionally used MDCK [33] or Caco-2 [31] models and were
111 suggested to achieve better CNS permeability prediction than PAMPA platforms [34]. In
112 addition, hiPSC can be derived from patient cell sources, with the emerging collection of
113 patient-derived iBEC models now becoming available for various neurodegenerative disorders
114 [22], [35]–[39]. Despite a growing number of patient hiPSC-derived BBB models now being
115 developed and characterised, no reports describe their practical utility in novel anti-
116 neuroinflammatory drug candidate screening in AD.

117

118 Our previous studies successfully demonstrated *in vitro* modelling of the BBB from familial AD
119 patients using hiPSC-derived iBEC harbouring a *PSEN1* mutation [40], [41]. These cells
120 exhibited physiologically relevant barrier formation and expressed relevant drug transporters
121 such as P-glycoprotein (*ABCB1*), multidrug resistance protein 1 (*ABCC1*) and breast cancer
122 resistance protein (*ABCG2*) [40], [41]. Here, to enhance the practical application of hiPSC-
123 derived BBB models in the drug discovery pipeline for AD, we sought to validate our AD
124 patient-derived BBB model for testing the barrier-permeability and anti-inflammatory
125 properties of novel neuro-pharmaceuticals.

126 To that end, we designed a library of metal bis(thiosemicarbazone) (btsc) complexes,
127 incorporating copper or nickel (**Figure 1A**). This library of compounds consisted of structural
128 derivatives of diacetyl bis(N(4)-methylthiosemicarbazone) copper(II) (Cu^{II}(atsm)), which has
129 broad therapeutic potential in several preclinical models of neurodegeneration [42]–[48]. We
130 initially assessed the cytotoxicity of the novel metal compounds in human vascular endothelial
131 cells and subsequently, we investigated the toxicity, accumulation and permeability of these
132 compounds across the BBB using both control and familial AD patient-derived iBEC models.
133 Considering that anti-neuroinflammatory actions are now recognised as one of the primary
134 mechanisms underlying neurotherapeutic effects of Cu(btsc) complexes [42], [48], [49], we
135 aimed to investigate the immunomodulatory properties of the tested compounds in our model.
136 To facilitate that, we multiplexed AD patient-derived iBEC with neurologically relevant immune

137 modulators, namely tumour necrosis factor α (TNF α) and interferon γ (IFN γ)[2], resulting in the
138 development of neuroinflammatory phenotype at the patient-derived BBB *in vitro*. By adopting
139 this strategy, we were able to assess the dynamics of drug permeability across the BBB and
140 simultaneously pre-screen their potential anti-inflammatory activity within the same AD
141 patient-cell platform, efficiently identifying promising compounds for further assessment.
142 In summary, this study presents a novel approach to neuro-immunomodulatory drug candidate
143 BBB permeability screening in a familial AD context.

144 **RESULTS**

145

146 ***Cu^{II} and Ni^{II} form novel complexes with bis(thiosemicarbazone) ligands***

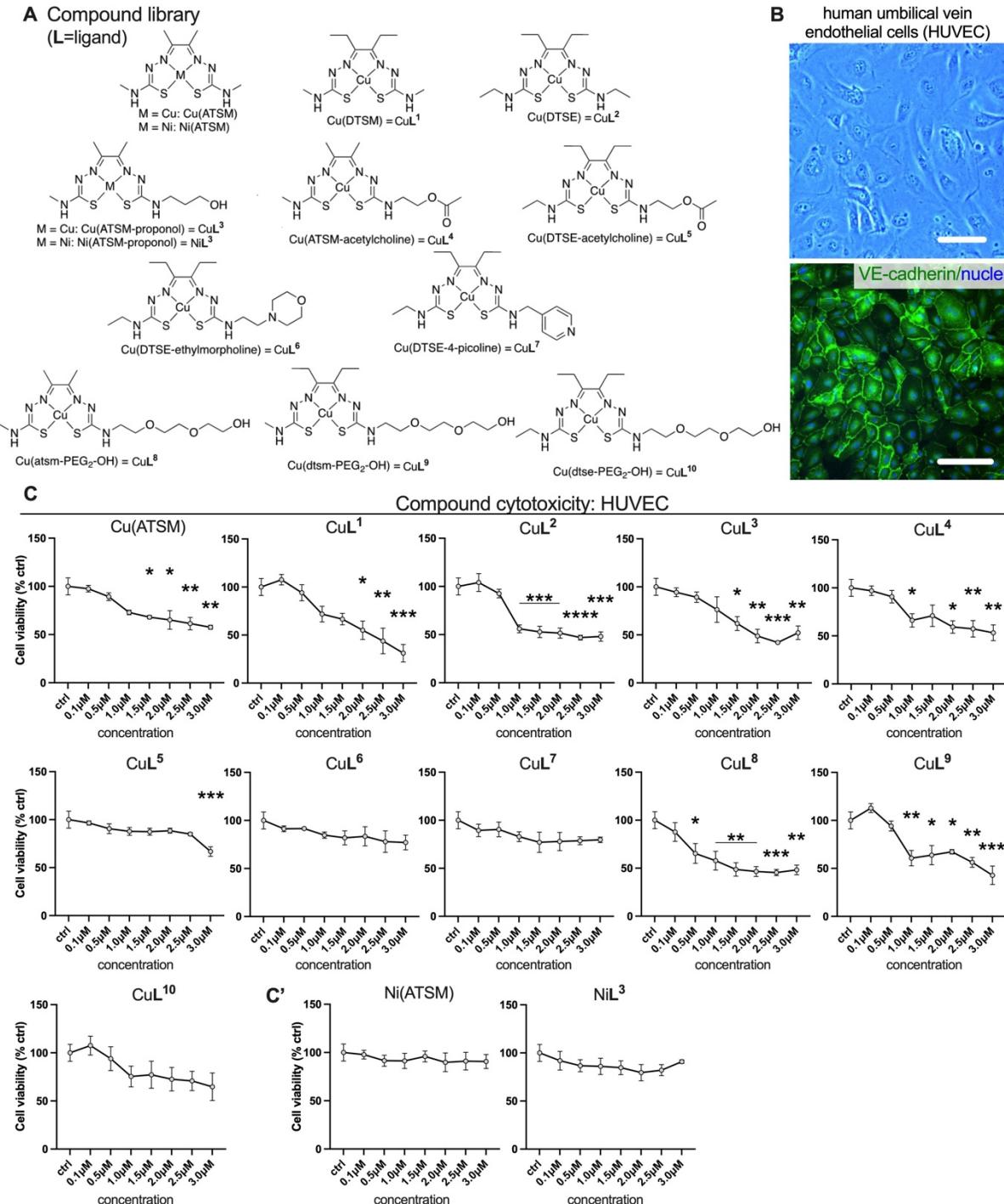
147

148 To validate the application of our familial AD patient-derived BBB platform as a novel
149 screening tool for small molecule drug candidates, we developed and investigated a library of
150 metal-(btsc) compounds with modifications to its (btsc) ligand (**L**) framework (**Figure 1A**).

151 Bis(thiosemicarbazone) ligands derived from 1,2-diones undergo double deprotonation and
152 act as dianionic tetradentate N₂S₂ ligands to form charge neutral, lipophilic complexes with
153 copper(II). Cu(btsc) complexes are stable with respect to dissociation of the metal ($K_a \sim 10^{18}$)
154 and are often membrane permeable. The biodistribution, cellular accumulation, and
155 metabolism of Cu(btsc) is dictated by the nature of the substituents on the ligand backbone.
156 These substituents alter lipophilicity, solvation, membrane permeability and the interaction
157 with serum proteins [50]. The substituents on the π-conjugated backbone of the ligand also
158 affect the Cu^{II/III} reduction potentials. Whilst Cu(btsc) complexes are stable when the metal is
159 in the +2 oxidation state, the reduction of the metal to copper(I) increases the susceptibility of
160 the metal to dissociate from the ligand and transfer to copper proteins with a high affinity for
161 copper(I) [51]. In general, modifying the aliphatic substituents on the N4 amine does not
162 significantly affect the redox potential (± 0.05 V), however it does have a pronounced effect on
163 biodistribution and cellular uptake [52].

164 Here, Cu^{II}(atsm) (**Figure 1A**) was selected as a reference compound due to its unique ability
165 to penetrate the human BBB, which is a relatively rare characteristic among the metal
166 complexes [53], [54]. Hence, the library of compounds primarily focused on the derivatives of
167 Cu^{II}(atsm) that retained electron-donating methyl or ethyl functional groups as to maintain
168 similar Cu^{II/I} reduction potentials as Cu^{II}(atsm). Additionally, compounds with methyl
169 substituents on the backbone of the ligand were derived from 1,2-butanedione and were given
170 an abbreviation starting with 'a' (in ex. Cu^{II}ATSM) while the compounds with ethyl backbone
171 were derived from 3,4-hexanedione and were given an abbreviation starting with 'd' (in ex.
172 Cu^{II}DTSM (Cu^{II}L¹), Cu^{II}DTSE (Cu^{II}L²)). The substituents added in the N⁴- position were selected
173 to add differing hydrogen bond donors and acceptors (alcohol (Cu^{II}L³), ester (Cu^{II}L⁴, Cu^{II}L⁵) and
174 ether/polyethylene glycol functional groups, Cu^{II}L⁸, Cu^{II}L⁹, Cu^{II}L¹⁰) as well as morpholino (Cu^{II}L⁶)
175 and pyridyl (Cu^{II}L⁷) functional groups. A general objective was to probe the different
176 compounds for improved solubility in aqueous mixtures without significantly compromising
177 their cell membrane permeability.

178


179

180 **Novel metal compounds exert various levels of cytotoxicity in human vascular**
181 **endothelial cells**

182

183 Since the majority of the tested here compounds have not been previously examined in human
184 cell models, we first utilised the human umbilical vein endothelial cells (HUVEC) to perform a
185 preliminary assessment of compound toxicity. The endothelial phenotype of utilised cells was
186 confirmed by the observation of characteristic cobblestone-like morphology and the
187 expression of the known endothelial cell marker vascular endothelial (VE)-cadherin (**Figure**
188 **1B**). To identify the range of non-toxic concentrations of designed Cu- and Ni-compounds, a
189 cytotoxicity screen was performed utilising the colourimetric MTT assay. HUVEC were treated
190 with increasing concentrations (0.1 μ M - 3.0 μ M) of each compound, corresponding to the
191 range of Cu(ATSM) concentrations used in various *in vitro* cell models [42], [48], [55], [56] and
192 cell viability was assessed after 24 h incubation with the compounds. Interestingly, we
193 observed an expected dose-dependent decrease in the viability of HUVEC when treated with
194 the majority of Cu compounds (**Figure 1C**). However, a similar effect was not observed in
195 analogous Ni compounds, suggesting that Cu overload rather than the (btsc) backbone itself
196 was driving the observed toxicity of high doses of tested compounds in this model (**Figure**
197 **1C**). In addition, we did not detect significant cytotoxic effects of compounds CuL⁶ and CuL⁷
198 at either of the tested concentration, indicating good biological tolerability of compounds with
199 morpholino and pyridyl functional groups. Vehicle-only controls that corresponded to the two
200 highest metal compound concentrations tested were also included, and these controls
201 demonstrated no effect of vehicle treatment on HUVEC viability (**Figure S1A**).

202 Since cytotoxic effects were observed at the lowest concentrations ranging from 0.5 μ M to 1.5
203 μ M for certain compounds (Cu(ATSM), CuL², CuL³, CuL⁴, CuL⁸, CuL⁹; **Figure 1C**), two lower
204 concentrations specifically 0.5 μ M and 1.0 μ M were selected for further testing of their effects
205 on iBEC viability. Notably, a concentration of 0.1 μ M was excluded from further analysis as it
206 is below the robust detection limit of the inductively coupled plasma mass spectrometry (ICP-
207 MS), which was used in subsequent experiments to measure Cu and Ni concentrations.

208

209

210

211

212

213

214

215

216

217

218

Figure 1. Effects of metal compounds on the viability of the human umbilical vein endothelial cells (HUVEC). (A) Chemical structures of Cu(ATSM) and novel metal compounds investigated in the study. (B) Representative phase-contrast image (top panel) and immunofluorescence image of vascular endothelial cell marker VE-cadherin (green) with Hoechst nuclear counterstaining (bottom panel) in HUVEC. Scale bar, 100 μ m. (C-C') HUVEC viability after treatment with Cu compounds and Ni compounds as assessed with MTT assay. Cell viability is shown as % of viable cells compared to untreated control (ctrl). n=2 for Cu(ATSM) and n=3 independent replicates for other compounds. Data are presented as mean \pm SEM. Statistical analysis was performed using one-way ANOVA with Dunnett's test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. L=ligand.

219

220

221 **Familial AD patient-derived iBEC serve as a novel approach for disease-specific metal
222 compound screening**

223

224 We next utilised a familial AD patient-derived Transwell-based BBB model previously
225 established and characterised by our group [40], [41], which involved the differentiation of
226 iBEC from hiPSC lines of two AD patients carrying a disease-associated mutation (exon 9
227 deletion) in the presenilin-1 gene (*PSEN1-ΔE9*) [57] (Figure 2A, Table 1). Additional hiPSC
228 lines were included as controls: one from an unrelated healthy donor line and two isogenic
229 control lines where *PSEN1-ΔE9* mutation has been corrected with CRISPR-Cas9, as
230 previously established by us [40], [57].

231

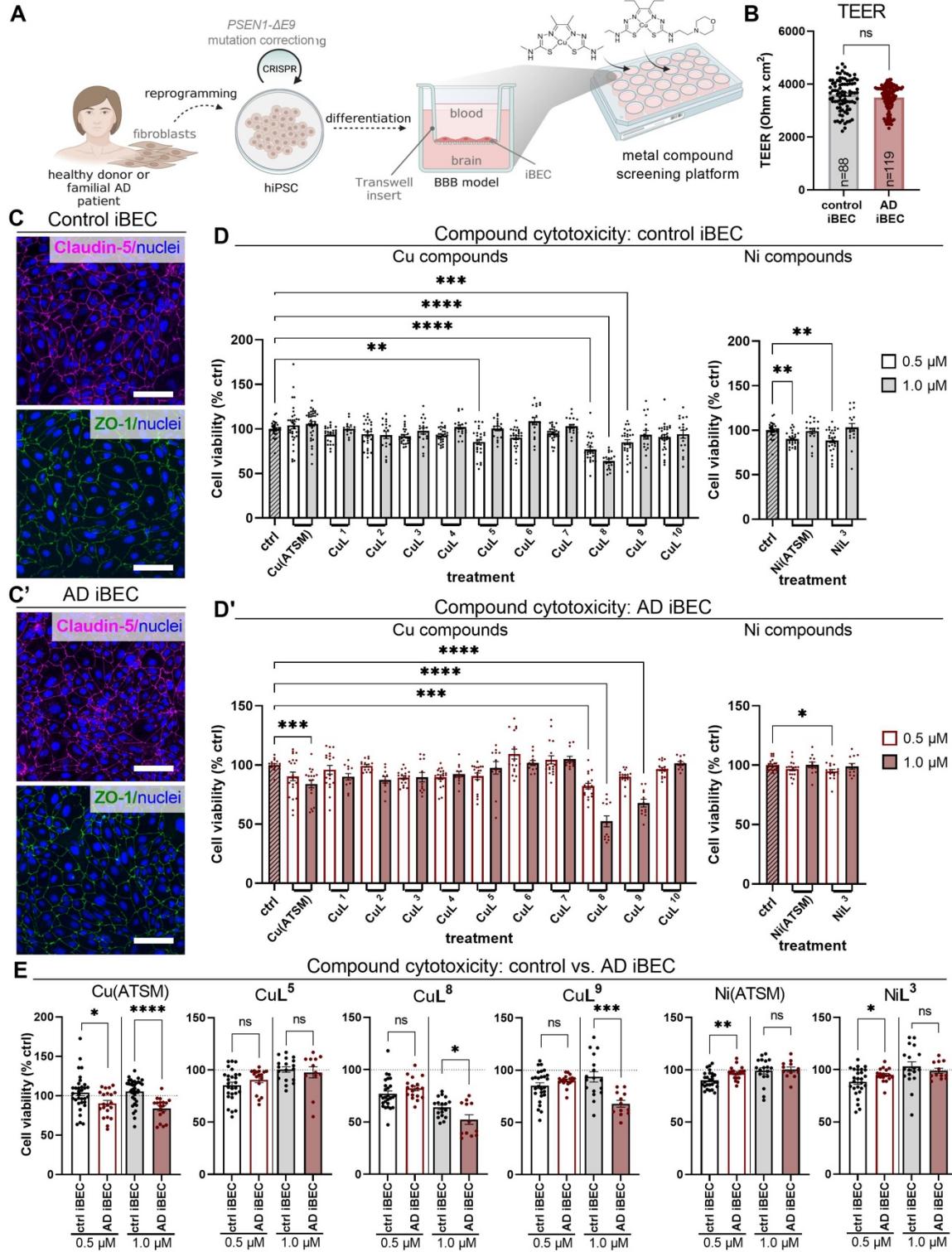
232 To confirm the pluripotency of hiPSC, cells from all studied lines were characterised for the
233 nuclear expression of stem cell-specific pluripotency markers including homeobox protein
234 Nanog and (sex determining region Y)-box 2, known as Sox2, by immunofluorescence
235 (Figure S2). Control and AD iBEC were generated from respective hiPSC lines using a
236 previously published protocol [40], [58], [59] (Figure S3A-D) and we confirmed the successful
237 differentiation of hiPSC towards brain endothelial-like cell phenotype in this study through the
238 expression of characteristic marker proteins: claudin-5, zonula occludens-1 (ZO-1), occludin,
239 glucose transporter type 1 (Glut-1), and the formation of cobblestone-like confluent monolayer
240 (Figure 2C-C', Figure S4).

241

242 To further validate correct differentiation of control and AD iBEC towards the brain endothelial-
243 like cell phenotype, we compared the expression of pluripotency genes *SOX2*, *NANOG* and
244 octamer-binding transcription factor 4 (*OCT4*), and junctional and endothelial cell marker
245 genes encoding for VE-cadherin (*CDH5*), claudin-5 (*CLDN5*), occludin (*OCLN*) and ZO-1
246 (*TJP1*) between undifferentiated hiPSC and iBEC generated from them. As anticipated, the
247 expression of stem cell markers *SOX2*, *NANOG* and *OCT4* [60], [61], [62], were significantly
248 higher in both control ($p<0.0001$) and AD ($p<0.001$) parental hiPSC when compared to iBEC
249 (Figure S3E). These results confirmed the pluripotent nature of undifferentiated hiPSC lines
250 and indicated that the expression of pluripotency genes becomes silenced upon lineage-
251 specific differentiation in iBEC. Consistently, compared with undifferentiated hiPSC, iBEC
252 generated from control and AD lines expressed increased levels of BBB and endothelial cell
253 marker genes *CDH5* (control and AD lines: $p<0.0001$), *CLDN5* (control: $p<0.001$, AD:
254 $p<0.0001$), *OCLN* (control and AD: $p<0.001$) and *TJP1* (control: $p<0.001$, AD: $p<0.01$),

255 indicating their effective lineage-commitment towards a brain-endothelial cell-like phenotype
256 ([Figure S3E'](#)).

257
258 Finally, to test for functional barrier formation in our model, control and AD iBEC were cultured
259 in a Transwell insert and transendothelial electrical resistance (TEER) of the cell monolayer
260 was measured with EVOM Volt/Ohmmeter. Both control and AD iBEC formed barriers with
261 high TEER values (control iBEC: 3602 ± 63 , AD iBEC: 3491 ± 44 Ohm x cm², mean \pm SEM)
262 corresponding to the previously reported TEER range *in vivo* (1000 - 5900 Ohm x cm², [63]–
263 [65])([Figure 2B](#)). No significant difference in barrier integrity was observed between control
264 and AD iBEC ([Figure 2B](#)).


265 This established and characterised model was subsequently utilised as a patient cell-derived
266 BBB platform for metal compound screening ([Figure 2A](#)).

267
268
269 ***AD patient-derived iBEC demonstrate differential sensitivity to metal compound***
270 ***toxicity compared to control iBEC***

271
272 With human BBB toxicity now emerging as an important concern in clinical trials [66], we first
273 examined the effects of metal compound treatment on iBEC viability (at two pre-selected
274 concentrations: 0.5 μ M and 1.0 μ M, for 24 h), and compared the responses between the
275 control and AD cells.

276 The viability of control iBEC was significantly decreased after treatment with compounds CuL⁵
277 ($p<0.01$), CuL⁸ ($p<0.0001$), CuL⁹ ($p<0.001$) at 0.5 μ M and compound CuL⁸ ($p<0.0001$) at 1.0
278 μ M, as compared to untreated control ([Figure 2D](#)), revealing interesting inverse correlation of
279 applied Cu compound concentration and control iBEC viability. A similar effect was observed
280 for Ni compounds where Ni(ATSM) and NiL³ exerted significant ($p<0.01$) cytotoxic effects at
281 0.5 μ M while not at 1.0 μ M. The remaining compounds, as well as vehicle-only treatment, had
282 no effect on control iBEC viability at two concentrations tested ([Figure 2D](#), [Figure S1B](#)). When
283 assessed in AD iBEC, compound NiL³ exhibited cytotoxicity at 0.5 μ M ($p<0.5$), while
284 Cu(ATSM) and CuL⁹ at 1.0 μ M ($p<0.001$ and $p<0.0001$, respectively) ([Figure 2D'](#)). Similarly
285 to control iBEC, treatment with compound CuL⁸ significantly decreased AD iBEC viability at
286 both tested concentrations (0.5 μ M: $p<0.001$, 1.0 μ M: $p<0.0001$), confirming its high toxicity in
287 human cell models. Intriguingly, classical dose-dependent toxicity was observed in AD iBEC
288 for Cu compounds while the opposite trend was observed for Ni compound NiL³ which
289 decreased cell viability only at the lower concentration tested ([Figure 2D'](#)). Other compounds
290 as well as vehicle-only treatment were well tolerated by AD iBEC ([Figure 2D'](#), [Figure S1B](#)).

291 We then focused on the group of compounds that significantly reduced cell viability in our BBB
292 model (Cu(ATSM), CuL⁵, CuL⁸, CuL⁹, Ni(ATSM) and NiL³), and compared their effects
293 between control and AD iBEC. When comparing within each tested concentration, AD iBEC
294 proved to be more sensitive to Cu compounds Cu(ATSM) ($p<0.0001$), CuL⁸ ($p<0.05$) and CuL⁹
295 ($p<0.001$) treatment at 1.0 μ M and Cu(ATSM) ($p<0.05$) at 0.5 μ M, compared to control iBEC
296 (Figure 2E). Interestingly, the opposite trend was observed for Ni compounds that had a
297 stronger negative effect on control iBEC viability as compared to AD iBEC when tested at 0.5
298 μ M (Ni(ATSM): $p<0.01$; NiL³: $p<0.05$, Figure 2E). Among compounds that had no detrimental
299 effect on cell viability, AD iBEC consistently presented a trend towards higher sensitivity to Cu
300 compounds applied at 1.0 μ M as compared to control iBEC for compounds CuL² and CuL³,
301 with the effect being statistically significant for CuL¹ ($p<0.01$) and CuL⁴ ($p<0.01$) (Figure S5A).
302 Consistent with the results observed in HUVEC (Figure 1C), compounds CuL⁶ and CuL⁷ were
303 not cytotoxic at either tested concentration, while at 0.5 μ M these compounds appeared to
304 improve the viability of AD iBEC when compared to control cells (CuL⁶: control iBEC: $90.24 \pm$
305 2.117 vs AD: 109.3 ± 4.22 ; CuL⁷: control iBEC: 95.09 ± 1.637 vs AD: 104.4 ± 3.416 % viability
306 of untreated control, mean \pm SEM, Figure S5A). This confirmed the lack of toxicity of these
307 compounds in human cell models at tested concentrations and suggested their potential
308 promising tolerability in AD patients. Finally, we observed differences in cell viability when
309 directly comparing the effects of structurally analogous Cu and Ni compounds, Cu(ATSM) and
310 Ni(ATSM), in control and AD iBEC, demonstrating opposite effect trends (Figure S5B).
311 Namely, when comparing CuL³ vs NiL³ compound pair, we did not detect differential effects
312 in control iBEC viability to those compounds, while AD iBEC were found to be more sensitive
313 to CuL³ compared to NiL³ at 0.5 μ M ($p<0.05$, Figure S5B).
314 Together these results provide a comprehensive characterisation of metal compound
315 cytotoxicity in the human iPSC-derived BBB *in vitro* model, and identified differential sensitivity
316 of AD iBEC to metal compound dose and chemical structure, compared to control cells.

317
318
319
320
321
322
323
324

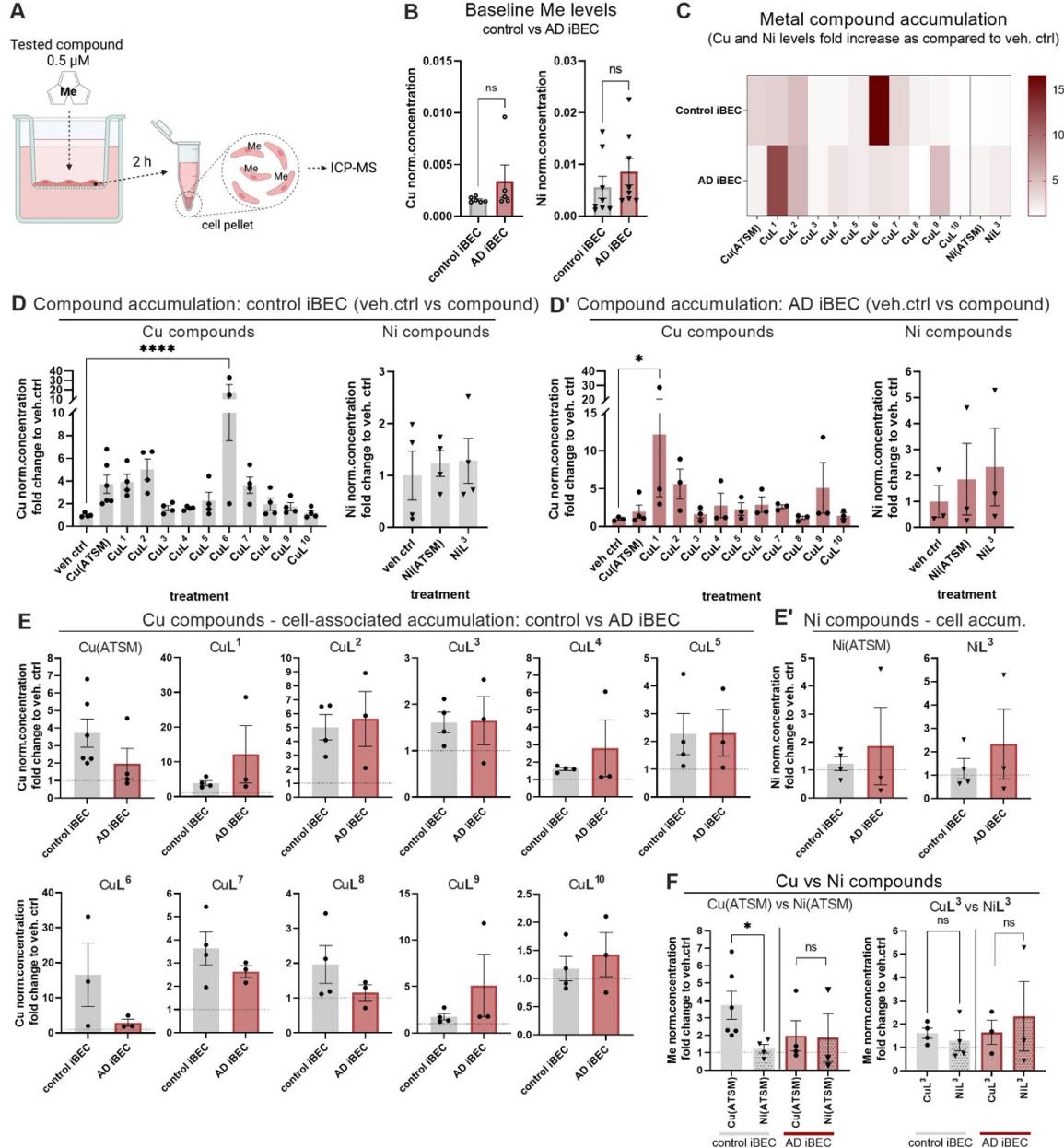
Figure 2. Effects of metal compounds on the viability of control and AD iBEC. (A) Schematic of established patient-derived metal compound screening platform. hiPSC carrying *PSEN1* mutation and respective control lines were differentiated towards brain endothelial-like cell phenotype and cultured in a Transwell insert to form a simple BBB *in vitro* model utilised in the metal compound screening assays. (B) Transendothelial electrical resistance (TEER) of monolayers formed by control and AD iBEC showed as Ohm x cm². Control iBEC: N=3 lines, AD iBEC: N=2 lines; the number of independent replicates per cell group is indicated in

325 the graph. **(C)** Representative immunofluorescence images of claudin-5 (magenta) and ZO-1
326 (green) with Hoechst nuclear counterstaining in control and AD iBEC. Scale bar, 100 μ m. **(D-**
327 **D')** Control and AD iBEC viability after treatment with 0.5 μ M and 1.0 μ M of Cu and Ni
328 compounds as assessed with MTT assay. Cell viability is shown as % of viable cells compared
329 to untreated control (ctrl). **(E)** Comparison of the cytotoxic effects of selected metal compounds
330 between control and AD iBEC. Cell viability is shown as % of viable cells as compared to
331 respective untreated control, and compared between control and AD iBEC. In (D-E): Control
332 iBEC: N=3 lines, AD iBEC: N=2 lines; n=8-9 independent replicates per line for 0.5 μ M and
333 n=5-6 independent replicates per line for 1.0 μ M. Data are presented as mean \pm SEM.
334 Statistical analysis was performed using unpaired Welch's t-test in (B,E) and one-way ANOVA
335 with Dunnett's test in (D-D'). * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$. The dashed line
336 represents untreated control.
337
338

339 **Compounds CuL⁶ and CuL¹ demonstrate increased cell-associated accumulation in**
340 **control and AD iBEC**

341
342 Next, to gain insight into the accumulation of compounds at the BBB, control and AD iBEC
343 cultured in the Transwell insert were treated with tested compounds and the levels of the
344 corresponding metal accumulated in the cell monolayer were measured by ICP-MS ([Figure](#)
345 [3A](#)). Since the different chemical structure of each compound was designed to potentially alter
346 its bioavailability and passive permeability through the brain endothelial cell membrane, we
347 sought to test all the compounds at the same concentration to enable comparison of the effects
348 of the (btsc) ligand backbone on the cellular uptake of the compound. Given that some of the
349 tested compounds demonstrated various effects on cell viability depending on the iBEC
350 genotype ([Figure 2D-D'](#)), we selected 0.5 μ M concentration for further investigation. This
351 concentration was better tolerated by AD iBEC ([Figure 2D'](#)), and aligns with our primary
352 interest in AD cells, offering higher clinical relevance. However, to minimise the confounding
353 effect of compound cytotoxicity in iBEC, we shortened the compound incubation time with
354 iBEC from 24 h to 2 h hypothesizing that this shorter exposure period would incur less
355 pronounced effects on cell viability.
356

357 Since AD was previously associated with the dysregulation of Cu homeostasis in the brain
358 [67], we first compared the baseline levels of cell-associated Cu between control and AD iBEC
359 ([Figure 3B](#)). In the absence of metal compound treatment, we observed a small trend toward
360 increased levels of Cu in AD iBEC as compared to control cells, suggesting that this phenotype
361 is not strongly present in the AD patient-derived iBEC.


362 In our metal compound treatment experiment, we observed trends indicating a higher level of
363 cell-associated metal in both control and AD iBEC as compared to vehicle-only controls

364 (Figure 3C-D'). This suggests that the tested metal-(btsc)s are cell membrane-permeable and
365 can accumulate intracellularly *in vitro*. Interestingly, when compared to vehicle controls, the
366 levels of Cu were significantly increased in control iBEC treated with compound CuL⁶ (16.61
367 \pm 9.05 fold increase in Cu vs. vehicle ctrl, mean \pm SEM, $p<0.0001$, Figure 3C-D), while CuL¹
368 demonstrated increased accumulation in AD iBEC (12.18 \pm 8.24 fold increase in Cu vs. vehicle
369 ctrl, mean \pm SEM, $p<0.05$, Figure 3C and D'), suggesting their potentially improved cellular
370 uptake by BBB cells. The limitation of this experiment however was substantial variability
371 among independent replicates, with compounds CuL² and CuL⁷ demonstrating more
372 consistent, although moderate elevation of Cu levels in iBEC (Figure 3D-D').

373

374 In order to identify a potential drug candidate with superior delivery specifically in the context
375 of AD, we compared the efficiency of compound accumulation between control and AD iBEC
376 treated with tested (btsc)s (Figure 3E-E'). We found variable effects where Cu(ATSM), CuL⁶,
377 CuL⁷ and CuL⁸, showed a trend towards lower uptake in AD iBEC compared to control cells
378 while CuL², CuL³, CuL⁵ and CuL¹⁰ demonstrated a similar level of cellular accumulation
379 between control and AD iBEC. While only trends were observed, we identified compounds
380 CuL¹, CuL⁴, and CuL⁹, as complexes with potentially better accumulation in AD cells
381 compared to control iBEC (Figure 3E).

382 Interestingly, when comparing the efficiency of cellular accumulation between Cu and Ni
383 structural analogues, we observed an increase in metal accumulation delivered by Cu(ATSM)
384 as compared to Ni(ATSM) in control cells ($p<0.05$) (Figure 3F). However, no differences were
385 observed in AD cells or between CuL³ and NiL³ compound pair (Figure 3F). These findings
386 highlight the complex relationship between the ligand backbone and the central metal of the
387 compound as well as the genetic background of the cells in terms of transport at the human
388 BBB level.

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

Figure 3. Cell-associated accumulation of tested compounds in control and AD iBEC.

(A) Schematic of experimental workflow. To determine the cell-associated accumulation of tested compounds, iBEC derived from control and AD hiPSC were cultured on Transwell inserts and compounds were added at 0.5 μ M to the top chamber of the Transwell insert. Following 2 h treatment, cell pellet samples were collected and Cu and Ni concentrations [μ mol/L] were assessed with ICP-MS. (B) Comparison of normalised Cu and Ni levels in experimental control (untreated and vehicle-only treated) control and AD iBEC. Cu and Ni levels were normalised to Mg concentration in every individual sample and compared between control and AD iBEC. (Control iBEC: N=3 lines, AD iBEC: N=2 lines; n=1-3 independent replicates per line). (C) Heatmap summarising fold changes in the cell-associated metal accumulation in control and AD iBEC. (D-D') The accumulation of cell-associated Cu and Ni in control and AD iBEC as compared to vehicle-treated control. (E-E') Comparison of Cu and Ni accumulation in control vs AD iBEC. (F) Comparison of metal accumulation between Cu and Ni compounds in control and AD iBEC. In (C-F) Cu or Ni levels were normalised to Mg

404 concentration in every individual sample and presented as a fold change of Cu and Ni
405 normalised (norm.) levels as compared to the respective vehicle-treated control. (Control
406 iBEC: N=3 lines, AD iBEC: N=2 lines; n=1-2 independent replicates per line). Statistical
407 analysis was performed using unpaired Welch's t-test in (B, E-F) and one-way ANOVA with
408 Dunnett's test in (D-D'). * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$. Me-metal. The dashed
409 line represents vehicle-treated control.

410

411

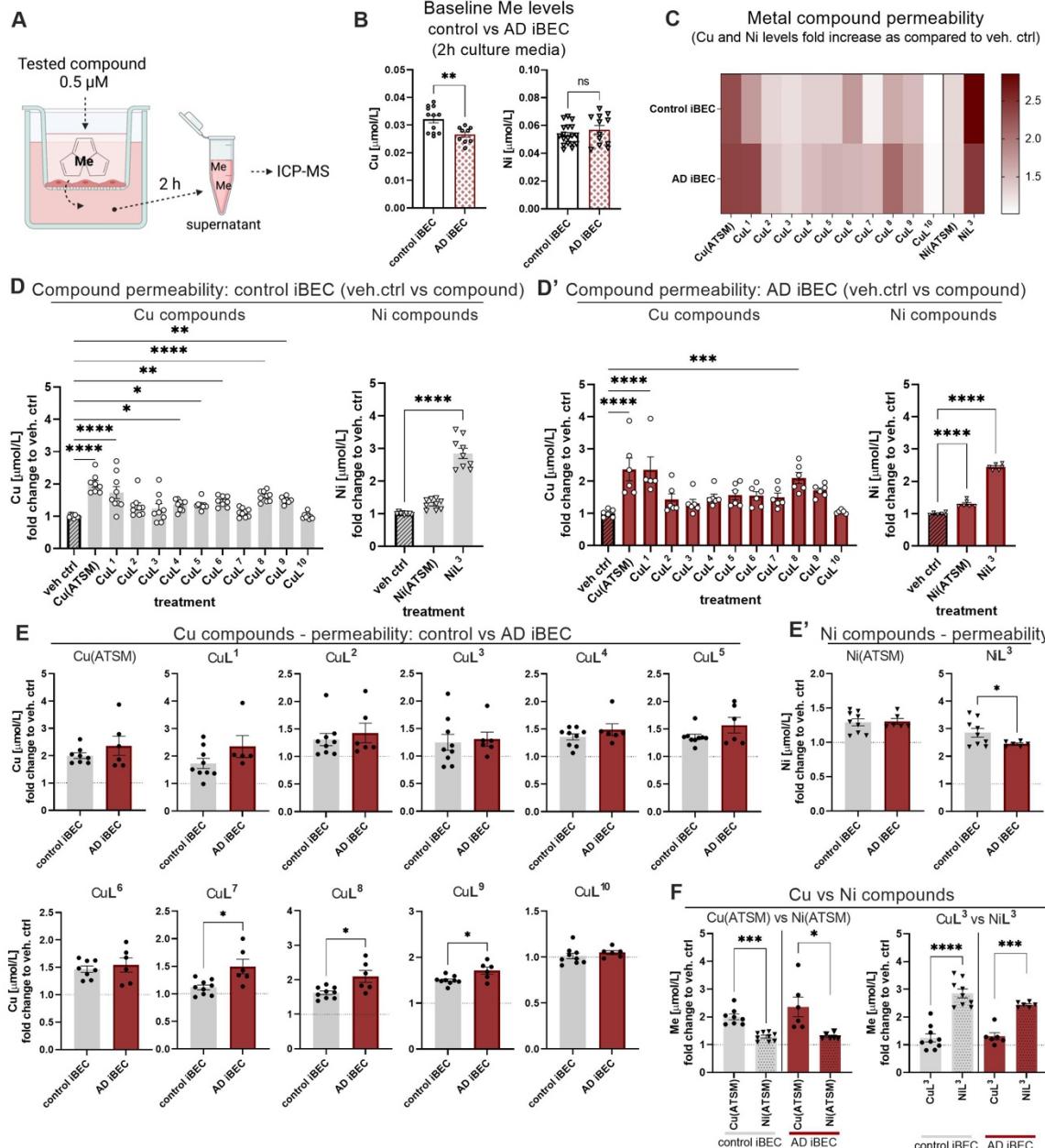
412 **Compound permeability screen identifies improved delivery of Cu(ATSM) and CuL¹ in**
413 **AD patient-derived BBB**

414

415 To further compare the penetration of metal compounds across the human BBB *in vitro*,
416 control and AD iBEC were cultured on Transwell inserts to form a tight cell monolayer and
417 metal compounds were added at a concentration of 0.5 μ M to the top chamber of the Transwell
418 insert. Following 2 h incubation, the cell culture media from the bottom chamber of the
419 Transwell insert was collected for assessment of Cu and Ni concentrations using ICP-MS
420 ([Figure 4A](#)).

421

422 To understand the baseline levels of Cu and Ni in our culture conditions, we first compared
423 the concentrations of these metals in cell culture media collected from experimental control
424 (untreated and vehicle-only treated) Transwells from control and AD iBEC after 2 h. Results
425 revealed a similar level of Ni in media collected from wells where control or AD iBEC were
426 cultured, however, we detected lower ($p<0.01$) concentrations of Cu in media collected from
427 wells corresponding to AD iBEC as opposed to those with control iBEC ([Figure 4B](#)).
428 Additionally, no differences in Cu or Ni levels were detected between untreated and vehicle-
429 only treated cells (data not shown). As we observed a small trend towards increased levels of
430 Cu in AD iBEC cell pellets collected from the corresponding Transwell inserts ([Figure 3B](#)),
431 this suggests that AD cells may regulate Cu differently compared to control iBEC. Importantly,
432 the baseline Cu levels detected in cell culture media were at least 15-fold lower than our
433 selected Cu compound treatment concentration (0.5 μ mol/L) (control iBEC: 0.0321 ± 0.001
434 μ mol/L Cu, AD iBEC: 0.0265 ± 0.001 μ mol/L Cu, mean \pm SEM, [Figure 4B](#)). Therefore, the
435 differences in baseline Cu levels were unlikely to confound our assessment of Cu
436 concentration in the Transwell flow-through media samples collected during the compound
437 permeability experiments.


438 Correspondingly, in our metal compound permeability screen, we observed trends toward
439 increased concentration of Cu and Ni in the media collected from compound-treated wells as
440 compared to vehicle-only controls, suggesting effective transport of metal-(btsc)s, or
441 associated metal, through iBEC monolayers ([Figure 4C-D'](#)). This transport may occur via

442 simple gradient-driven diffusion, although the involvement of active transport cannot be ruled
443 out [43], [68], [69]. Interestingly, treatment with several compounds, including CuL¹
444 ($p<0.0001$), CuL⁴ ($p<0.05$), CuL⁵ ($p<0.05$), CuL⁶ ($p<0.01$), CuL⁹ ($p<0.01$) as well as NiL³
445 ($p<0.0001$) resulted in higher Cu and Ni levels, respectively, in the media samples collected
446 from the compound-treated wells (as compared to vehicle-only controls) in control iBEC,
447 suggesting human *in vitro* BBB permeability (Figure 4C-D). Notably, Cu compound CuL¹
448 demonstrated increased permeability in AD iBEC (CuL¹: 2.35 ± 0.4 fold increase in Cu [$\mu\text{mol/L}$]
449 vs. vehicle ctrl, mean \pm SEM, $p<0.0001$; Figure 4C, D'), while most of the novel Cu
450 compounds achieved only moderate permeability in AD cells (Figure 4D'). Cu(ATSM), serving
451 here as a positive control, demonstrated increased permeability in both control ($p<0.0001$)
452 and AD ($p<0.0001$) iBEC monolayers (Figure 4D-D'), confirming the relevance of our model
453 to the human BBB [53], [54]. Both Ni compounds also showed increased ($p<0.0001$)
454 permeability in AD iBEC (Figure 4D').

455 Compound CuL¹⁰ consistently demonstrated poor permeability in control and AD iBEC
456 monolayer, presenting limited translational potential in the context of brain disorders.
457 Additionally, the permeability of CuL⁸ was significantly increased in control ($p<0.0001$) and AD
458 iBEC ($p<0.001$). However, this effect is likely attributed to its high cytotoxicity (Figure 1C,
459 Figure 2D-D') and therefore potential undesired disruption of the iBEC monolayer.

460

461 When compared between control and AD iBEC, the permeability efficiency of tested
462 compounds largely did not differ between the two cell groups, except for CuL⁷, CuL⁸ and CuL⁹
463 which showed higher ($p<0.5$) permeability in AD iBEC (Figure 4E-E'). Contrarily, the
464 permeability efficiency of NiL³ was significantly lower ($p<0.05$) in AD iBEC as compared to
465 control iBEC (Figure 4E'). Interestingly, we did not find significant differences in the iBEC
466 monolayer integrity between control and AD iBEC (Figure 2B) suggesting that the observed
467 differences in metal compound passage through the BBB *in vitro* can be primarily attributed to
468 differences in the chemical structure of tested Cu- and Ni-(btsc). Intriguingly, when comparing
469 structurally analogous Cu and Ni compounds, we observed higher permeability efficacy of
470 Cu(ATSM) as compared to Ni(ATSM), while the opposite was found for CuL³ and NiL³
471 compound pair where NiL³ showed significantly increased permeability compared to its Cu
472 structural analogue (Figure 4F). Together these results highlight that the differential effects of
473 compound permeability may be driven by both the conjugated central metal and the
474 modifications applied to (btsc) ligand.

475
476 **Figure 4. Permeability of metals through the iBEC monolayer after treatment with tested**
477 **compounds. (A)** Schematic of experimental workflow. To determine the permeability of metal
478 delivered by tested compounds in the BBB model, iBEC derived from control and AD hiPSC
479 were cultured on Transwell inserts and compounds were added at 0.5 μ M to the top chamber
480 of the Transwell insert. Following 2 h treatment, media samples were collected from the bottom
481 chamber of the Transwell insert and Cu and Ni concentrations were assessed with ICP-MS.
482 **(B)** Comparison of Cu and Ni concentration [μ mol/L] measured in cell culture media collected
483 from wells corresponding to 'pooled control' (untreated and vehicle-only treated) control and
484 AD iBEC, at 2 h post media change (Control iBEC: N=3 lines, AD iBEC: N=2 lines; a minimum
485 of n=3 independent replicates per line). **(C)** Heatmap summarising fold changes in the
486 permeability of metal compounds through iBEC monolayer formed by control and AD cells.
487 **(D-D')** The permeability of Cu and Ni delivered by tested compounds in control and AD iBEC
488 as compared to vehicle-treated control. **(E-E')** Comparison of metal permeability from
489 compound treatment in control vs AD iBEC. **(F)** Comparison of the efficacy of metal

490 permeability between Cu and Ni compounds in control and AD iBEC. Results in (C-F) are
491 presented as a fold change of Cu and Ni concentration [μ mol/L] in the cell media collected
492 from the bottom chamber of Transwell insert in metal compound-treated well, as compared to
493 the respective vehicle-treated control. (Control iBEC: N=3 lines, AD iBEC: N=2 lines; n=2-3
494 independent replicates per line). Statistical analysis was performed using unpaired Welch's t-
495 test in (B, E-F) and one-way ANOVA with Dunnett's test in (D-D'). * $p<0.05$, ** $p<0.01$,
496 *** $p<0.001$, **** $p<0.0001$. Me-metal. The dashed line represents vehicle-treated control.
497

498

499 ***AD patient-derived iBEC exhibit an inflammatory response to TNF α and IFN γ stimulation***
500

501

502 Since our previous studies demonstrated anti-neuroinflammatory effects of Cu(btsc)
503 complexes in various models of neurodegeneration [42], [48], [49], here we hypothesised that
504 novel metal (btsc) complexes can achieve similar effects in iBEC and aimed to evaluate the
505 immunomodulatory activity of selected compounds in the established AD-patient-derived
506 platform.

507

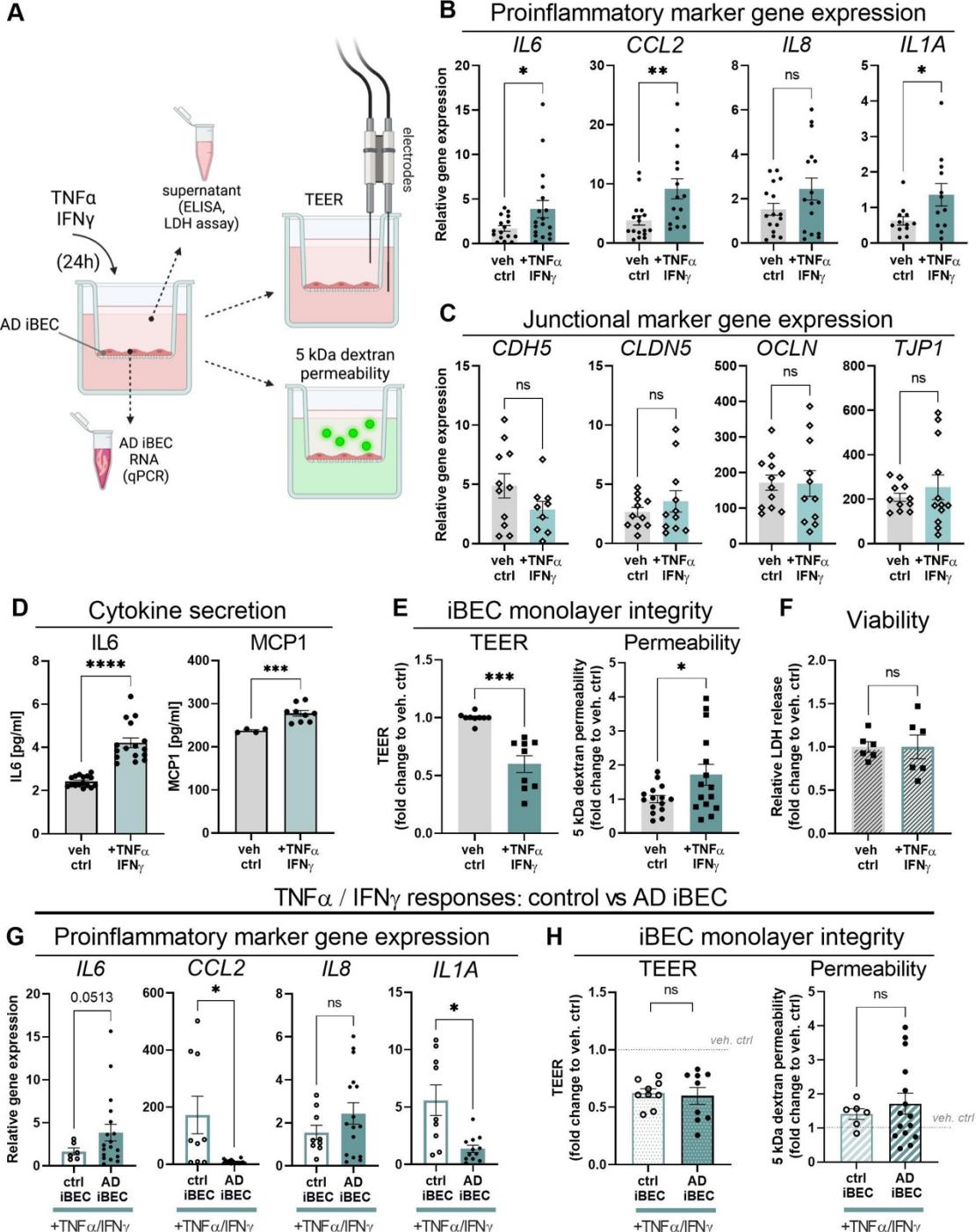
508 Although hiPSC-derived iBEC were previously shown to respond to proinflammatory
509 mediators such as TNF α [35], [70], [71], a comprehensive characterisation of their
510 immunophenotype in the context of familial AD has not yet been described.

511 We therefore first evaluated the baseline inflammatory profile of cells in our BBB models *via*
512 qPCR. Interestingly, there were no significant differences in the gene expression of classical
513 proinflammatory markers including interleukin-6 (*IL6*), monocyte chemoattractant protein-1
514 (*CCL2*), interleukin-8 (*IL8*), interleukin-1 α (*IL1A*) or tumour necrosis factor- α (*TNF*) between
515 control and AD iBEC (Figure S6A), while the interleukin-1 β (*IL1B*) was below detection levels.
516 Under baseline conditions, the expression of oxidative stress markers also was not altered in
517 AD iBEC compared to control cells (Figure S6B). Collectively, these results suggest a minimal
518 inflammatory response in AD patient-derived iBEC under normal conditions, which contrasts
519 with previous observations for BEC in the human AD brain [72]–[74]. This discrepancy may
520 be due to the specific platform and culture conditions employed for AD iBEC. To address this,
521 we aimed to mimic the disease-associated inflammatory microenvironment observed in the
522 AD brain by stimulating AD patient-derived iBEC with neurologically relevant proinflammatory
523 mediators TNF α and IFN γ [2], [75]–[77] for 24 h before conducting a range of assays (Figure
524 5A). Utilised concentrations of TNF α (20 ng/ml) and IFN γ (30 ng/ml) were selected based on
525 established literature [78]–[82].

526

527 In TNF α /IFN γ -treated AD iBEC, we observed an increased expression of *IL6* ($p<0.05$), *CCL2*
528 ($p<0.01$) and *IL1A* ($p<0.05$) compared to vehicle-treated control (**Figure 5B**). Additionally,
529 there was a trend towards increased *IL8* expression following TNF α /IFN γ exposure (veh ctrl:
530 1.53 ± 0.27 , TNF α /IFN γ : 2.44 ± 0.5 relative *IL8* gene expression, mean \pm SEM, $p=0.1204$;
531 **Figure 5B**). Furthermore, our gene expression results corroborate with the corresponding
532 protein secretion profiles where a significant increase in the secretion of IL6 ($p<0.0001$) and
533 MCP1 ($p<0.001$) was detected in TNF α /IFN γ -treated AD iBEC (**Figure 5D**). This confirms the
534 activation of pro-inflammatory pathways in AD iBEC in response to TNF α /IFN γ stimulation at
535 both the transcriptional and protein level.

536


537 TNF α and interferons were previously reported to decrease tight and adherent junction
538 expression and affect the functional characteristics of human BEC [35], [83]. Therefore, we
539 next assessed the impact of TNF α /IFN γ on the integrity of BBB in our AD model. While
540 TNF α /IFN γ treatment did not elicit significant changes in the expression of junctional markers
541 *CDH5*, *CLDN5*, *OCLN* and *TJP1* (**Figure 5C**), potentially due to already reduced baseline
542 expression of those genes in AD iBEC (**Figure S6C**), it resulted in decreased TEER ($p<0.001$)
543 and increased passive permeability to biologically inert fluorescent tracer (5 kDa FITC-
544 conjugated dextran, $p<0.05$) in AD iBEC monolayers following exposure to TNF α /IFN γ (**Figure**
545 **5E**). These findings are consistent with the functional impairment of BBB integrity reported
546 during AD-related neuroinflammation (**Figure 5E**) [25].

547

548 Interestingly, TNF α /IFN γ treatment induced a similar phenotype in control iBEC (**Figure S7A-**
549 **B**) but the expression profile of proinflammatory markers differed between control and AD
550 iBEC (**Figure 5G**). Specifically, *CCL2* and *IL1A* were expressed at higher ($p<0.05$) levels in
551 control iBEC as compared to AD iBEC following TNF α /IFN γ stimulation, while *IL6* and *IL8*
552 showed a trend towards higher expression in AD cells as compared to controls treated with
553 TNF α /IFN γ (**Figure 5G**). Moreover, no significant differences in TNF α /IFN γ -induced changes
554 in monolayer integrity were observed between the control and AD iBEC (**Figure 5H**). These
555 findings suggest that distinct immune pathways may contribute to similar functional
556 impairments in control and AD iBEC. Importantly, the observed effects were not induced by
557 adverse changes in cell viability of control or AD iBEC following TNF α /IFN γ exposure (**Figure**
558 **S7C**, **Figure 5F**).

559 Together these results illustrate that AD patient-derived iBEC are responsive to cytokine
560 activation by the development of a characteristic, AD-relevant [4], [25], [26] proinflammatory
561 phenotype including iBEC monolayer integrity impairment. This demonstrates the functional
562 capability of our patient-derived iBEC Transwell system to model BBB neuroinflammation in

563 AD and provides a useful tool for the further investigation of the immunomodulatory effects of
 564 metal compounds within a single experimental platform.

565
 566 **Figure 5. Effects of TNF α /IFN γ - stimulation on AD iBEC phenotype. (A)** Schematic of
 567 experimental workflow. To determine the effects of TNF α /IFN γ - stimulation on the AD patient-
 568 derived BBB model, AD iBEC were cultured on Transwell inserts and TNF α /IFN γ were added
 569 to the top chamber of the Transwell insert. Following 24 h treatment, TEER measurement and
 570 5 kDa dextran permeability assays were performed. Cell pellet and supernatant samples were

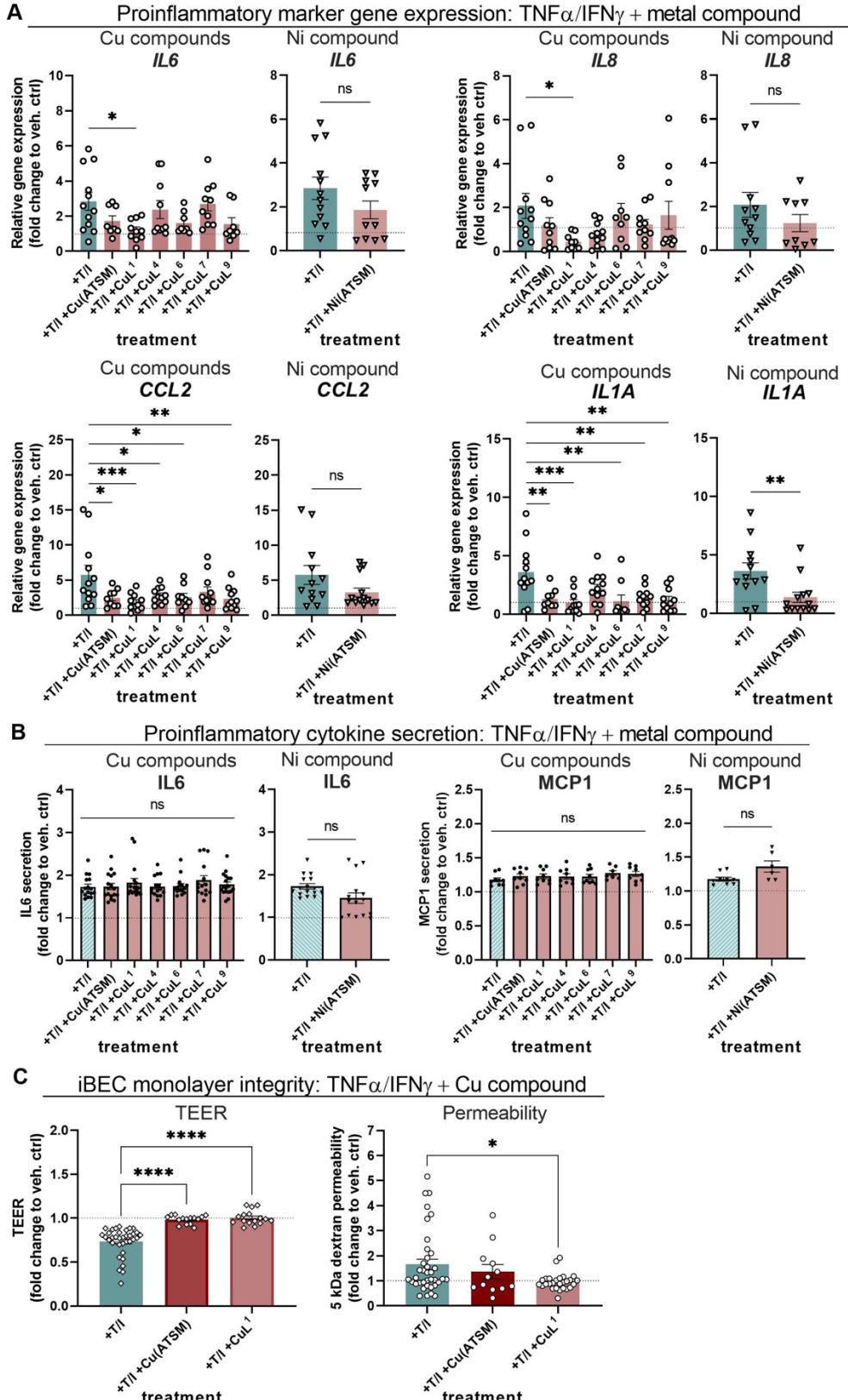
571 collected for subsequent analysis with qPCR, ELISA and LDH assays. **(B)** Relative expression
572 of mRNA for proinflammatory marker genes *IL6*, *CCL2*, *IL8* and *IL1A* in vehicle- and
573 TNF α /IFN γ - treated AD iBEC. Results presented as $\Delta\Delta CT \times 10^6$. (AD iBEC: N=2 lines,
574 minimum n=5 independent replicates per line). **(C)** Relative expression of mRNA for tight and
575 adherens junctional marker genes *CDH5*, *CLDN5*, *OCLN* and *TJP1* in vehicle- and
576 TNF α /IFN γ - treated AD iBEC. Results presented as $\Delta\Delta CT \times 10^6$. (AD iBEC: N=2 lines,
577 minimum n=3 independent replicates per line). **(D)** Secretion of proinflammatory cytokines IL6
578 and MCP1 in vehicle-treated and TNF α /IFN-treated AD iBEC. Data showed as [pg/ml]
579 concentration of each cytokine in cell supernatant at 24 h post-treatment (AD iBEC: N=2 lines,
580 IL6: minimum n=4 independent replicates per line; MCP1: minimum n=2 independent
581 replicates per line. Additional n=5 vehicle-treated control samples were analysed for MCP1
582 levels. The resulting normalised absorbance values were 0, -0.001 or -0.0005 following
583 background and blank subtraction suggesting MCP1 levels being below the detection limit of
584 the assay, and therefore excluded from analysis.) **(E)** Changes in AD iBEC monolayer TEER
585 and passive permeability to 5 kDa dextran following treatment with TNF α /IFN γ . Left panel:
586 data showed as fold change in TEER as compared to vehicle-treated control at 24 h (AD iBEC:
587 N=2 lines, minimum n=3 independent replicates per line). Right panel: data showed as fold
588 change in 5 kDa dextran clearance volume to vehicle-treated control at 24 h (AD iBEC: N=2
589 lines, minimum n=5 independent replicates per line). **(F)** Relative lactate dehydrogenase
590 (LDH) release in AD iBEC after stimulation with TNF α /IFN γ . LDH release showed as fold
591 changes to vehicle-treated control (AD iBEC: N=2 lines, n=3 independent replicates per line).
592 **(G)** Comparison of relative expression of mRNA for proinflammatory marker genes *IL6*, *CCL2*,
593 *IL8* and *IL1A* in vehicle- and TNF α /IFN γ - treated control and AD iBEC. Results presented as
594 $\Delta\Delta CT \times 10^6$. (Control iBEC: N=3 lines, AD iBEC: N=2 lines, n=1-3 independent replicates per
595 line). **(H)** Comparison of changes in control iBEC and AD iBEC monolayer integrity following
596 treatment with TNF α /IFN γ . Left panel: monolayer TEER. Data showed as fold change in TEER
597 as compared to the respective vehicle-treated control at 24 h. Right panel: monolayer passive
598 permeability. Data showed as fold change in 5 kDa dextran clearance volume to respective
599 vehicle-treated control at 24 h (Control iBEC: N=2 lines, AD iBEC: N=2 lines, minimum n=3
600 independent replicates per line). Statistical analysis was performed using unpaired Welch's t-
601 test in (B-H). * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$. veh ctrl- vehicle-treated control;
602
603

604 ***CuL¹ reverses TNF α /IFN γ -induced neuroinflammatory phenotype in AD iBEC***

605
606 Given that Cu(btsc) have previously demonstrated robust anti-neuroinflammatory actions in
607 preclinical models of neurodegeneration (microglia, astrocytes and neuronal *in vitro* cultures,
608 and animal models [42], [48], [49]), we anticipated compounds in our library could exert similar,
609 potentially therapeutic effects. Based on compound chemistry, toxicity, cellular accumulation
610 and iBEC monolayer permeability, we selected Cu(ATSM), its control Ni(ATSM), and a group
611 of five promising Cu compounds (CuL¹, CuL⁴, CuL⁶, CuL⁷ and CuL⁹) for their further
612 assessment in our model. Considering the clinical relevance, we focused on AD patient-
613 derived iBEC to identify potential therapeutic effects of these metal-(btsc)s.

614 To assess the immunomodulatory properties of metal compounds, AD iBEC were treated with
615 TNF α /IFN γ alone or in co-treatment with selected compound at 0.5 μ M for 24 h. The responses
616 of cells were examined across a panel of various established assays ([Figure 5A](#)). Importantly,
617 none of the selected compounds showed cytotoxicity at this concentration and treatment
618 duration in AD iBEC ([Figure 2D'](#)).

619 Interestingly, at the gene expression level, TNF α /IFN γ co-treatment with selected Cu
620 compounds led to a significant decrease of at least one of the tested (*IL6*, *IL8*, *IL1A*, *CCL2*)
621 proinflammatory marker genes as compared to TNF α /IFN γ alone ([Figure 6A](#)), supporting
622 previously reported anti-inflammatory properties of Cu(btsc) [42], [48], [49]. Compound CuL¹
623 emerged as the most promising candidate that, in co-treatment with TNF α /IFN γ , reduced
624 expression of all four marker genes tested (*IL6*: $p<0.05$, *CCL2*: $p<0.001$, *IL8*: $p<0.05$, *IL1A*:
625 $p<0.001$), as compared to TNF α /IFN γ alone ([Figure 6A](#)). Intriguingly, a decrease in gene
626 expression of proinflammatory markers did not result in changes in cytokine secretion as the
627 levels of IL6 and MCP1 were similar between TNF α /IFN γ and TNF α /IFN γ +metal compound
628 treated cells at tested 24 h timepoint ([Figure 6B](#)). It has been shown however that BEC
629 generate a temporarily dynamic cytokine secretion profile following activation with
630 proinflammatory mediators [82], and therefore it is possible we did not capture those changes
631 at a single time point tested. Similarly, others have found cytokine mRNA and protein
632 production to peak at defined time points following cell activation [84]–[86], further suggesting
633 that cytokine gene expression changes and resulting protein synthesis follow distinct kinetics
634 in our model and applied treatment, and may not be detectable when assessed at single
635 timepoint.


636

637 In contrast, Ni(ATSM), exhibited minimal anti-inflammatory effects in AD iBEC with a
638 significant decrease observed only in the expression of *IL1A* ($p<0.01$) ([Figure 6A](#)). However,
639 when compared to Cu(ATSM), the immunomodulatory responses elicited by Ni(ATSM) did not
640 differ from its Cu analogue when co-treated with TNF α /IFN γ ([Figure S8A-B](#)). Similar
641 observations have been previously reported for Cu(ATSM) and Ni(ATSM) effects on
642 ferroptosis and lipid peroxidation in N2 cells and cell-free systems respectively [56], together
643 highlighting the importance of the conjugated ligand backbone for metal-(btsc) biological
644 activity.

645

646 Finally, to assess the functional changes induced by TNF α /IFN γ in the AD BBB, we focused
647 on the compound CuL¹, the most promising candidate identified in our qPCR screen ([Figure
6A](#)). The anti-inflammatory properties of Cu(ATSM) have been validated by others and in our
648 studies [42], [48], making it a relevant reference compound in this case.

650 Interestingly, CuL¹ treatment effectively prevented the detrimental effects of TNF α /IFN γ on AD
651 iBEC barrier integrity as evidenced by the significant improvement in TEER ($p<0.0001$) and
652 normalised passive permeability to 5 kDa FITC-conjugated dextran ($p<0.05$) (**Figure 6C**).
653 These findings provide the first evidence that Cu(btsc) can ameliorate AD-related
654 neuroinflammatory changes in BEC phenotype and function. Additionally, co-treatment with
655 Cu(ATSM) rescued changes in TEER induced by TNF α /IFN γ ($p<0.0001$), although it did not
656 significantly affect monolayer permeability to 5 kDa dextran suggesting the selective beneficial
657 effect of this compound in AD iBEC (**Figure 6C**). Importantly, treatment with CuL¹ or
658 Cu(ATSM) alone had no effect on AD iBEC TEER or passive permeability to 5 kDa dextran
659 confirming the lack of intrinsic effects of these compounds on iBEC monolayer integrity and
660 function (**Figure S8C-D**).
661 Together, the results outline the practical application of our neuroinflammation-like AD iBEC
662 model and validate the use of an array of assays to evaluate the immunomodulatory effects
663 of novel metal compounds *in vitro*. Importantly, our study and compound screen is the first to
664 identify the beneficial anti-neuroinflammatory effects of Cu(btsc) specifically in BEC, offering
665 a novel mechanistic insight into their therapeutic potential in AD neurodegeneration.

666
667
668
669
670

Figure 6. Anti-inflammatory effects of metal compounds in AD iBEC. (A) Relative expression of mRNA for *IL6*, *CCL2*, *IL8*, and *IL1A* in AD iBEC after stimulation with TNF α /IFN γ alone or together with 0.5 μ M of tested compounds for 24 h. Results presented as fold change in $\Delta\Delta CT \times 10^6$ as compared to vehicle-treated control (AD iBEC: N=2 lines, minimum n=3

671 independent replicates per line). **(B)** Secretion of proinflammatory cytokines IL6 and MCP1 in
672 AD iBEC after stimulation with TNF α /IFN γ alone or together with 0.5 μ M of tested compounds
673 for 24 h. Data showed as [pg/ml] concentration of each cytokine in cell supernatant at 24 h
674 post treatment. (AD iBEC: N=2 lines, minimum n=3 independent replicates per line). **(C)**
675 Changes in AD iBEC monolayer TEER and passive permeability to 5 kDa dextran following
676 24 h treatment with TNF α /IFN γ alone or in combination with 0.5 μ M Cu(ATSM) or CuL¹. Left
677 panel: data showed as fold change in TEER as compared to vehicle-treated control at 24 h
678 (AD iBEC: N=2 lines, minimum n=6 independent replicates per line). Right panel: data showed
679 as fold change in 5 kDa dextran clearance volume to vehicle-treated control at 24 h (AD iBEC:
680 N=2 lines, minimum n=5 independent replicates per line). Statistical analysis in (A-C) was
681 performed using one-way ANOVA with Dunnett's test for Cu compounds and unpaired Welch's
682 t-test for Ni compounds. * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001. veh. ctrl- vehicle-treated
683 control; T/I- TNF α and IFN γ . The dashed line represents vehicle-treated control.

684 **DISCUSSION**

685

686 Despite a large number of clinical trials performed, therapeutics tested so far have largely
687 failed to demonstrate robust symptom improvement in AD patients and AD has no cure [87]–
688 [90]. This calls for a paradigm shift in AD drug discovery that may originate from the
689 development of AD patient-specific preclinical drug screening platforms and early identification
690 of therapeutics that can be successfully delivered across the BBB.

691 Respectively, hiPSC-derived *in vitro* BBB models incorporating human iBEC have recently
692 emerged as a promising drug candidate screening tool offering the highest human *in vivo* BBB
693 permeability prediction accuracy [31], [32]. Although transcriptomic meta-analysis suggests
694 that hiPSC-derived iBEC demonstrate a partial component of epithelial identity [91], [92], iBEC
695 currently serve as a state-of-the-art cell source for human BBB modelling, specifically in a
696 diseases-context, and offer a high predictive capacity of human BBB function in health and
697 disease [93]. However, despite providing an attractive alternative to traditionally used Caco-2,
698 MDCK, or PAMPA drug permeability assays, the practical utility of hiPSC-derived BBB models
699 is yet to be tested in large-scale AD drug screening studies.

700

701 Here we propose a unique patient cell-derived human BBB model as a validated platform for
702 screening of new metal-(btsc) compound delivery and anti-neuroinflammatory activity in a
703 familial AD context. hiPSC-derived iBEC utilised in this model demonstrated physiologically
704 relevant, *in vivo* BBB-like characteristics such as high barrier integrity and expression of
705 relevant markers. Simultaneously, AD patient-specific cells were shown to be compatible with
706 a panel of medium- to high-throughput drug candidate testing BBB assays, including an
707 assessment of their anti-inflammatory effects. With hiPSC offering in theory an infinite source
708 of patient-derived cells, this BBB model offers a highly scalable platform that can be routinely
709 used in anti-neuroinflammatory drug screening. Since in the current clinical trials, compounds
710 targeting inflammatory pathways compose the largest percentage of disease-modifying
711 therapies being tested [94], we believe this model and compound library being highly relevant
712 for ongoing anti-neuroinflammatory drug discovery efforts in AD.

713

714

715 ***hiPSC-derived AD models may aid in predicting metal compound toxicity at patient's
716 BBB***

717

718 Cu(btsc) are small molecule compounds with proven immunomodulatory effects in preclinical
719 models of neurodegeneration [42], [48], [49]. Extensive evidence demonstrates that the
720 chemical properties and biological activity of metal (btsc) complexes are remarkably sensitive

721 to the substituents attached to the backbone of the ligand and even small modifications of the
722 ligand framework results in dramatic changes to complex stability, membrane permeability,
723 redox activity, lipophilicity, interactions with serum albumin, cellular metal ion bioavailability
724 and finally, therapeutic activity [44], [51], [69], [95], [96]. Here, we designed a library of novel
725 metal-(btsc) compounds incorporating various modifications to its ligand and trialled their
726 resulting cytotoxicity, cellular accumulation and BBB permeability in an established AD
727 patient-derived model.

728

729 When assessing the cytotoxicity of novel metal compounds in HUVEC and iBEC, we identified
730 relatively high toxicity of compounds CuL⁸ and CuL⁹ as compared to other tested metal-(btsc)s
731 indicating low tolerance of Cu(btsc) containing polyethylene glycol (PEG) chains in their ligand
732 structure. Conversely, treatment with compounds CuL⁶ and CuL⁷ had no cytotoxic effects at
733 either concentration tested in both HUVEC and iBEC models, but seemingly improved the
734 viability of AD iBEC when applied at the lower dose, suggesting potential protective effects of
735 Cu complexes harbouring morpholino (CuL⁶) and pyridyl (CuL⁷) functional groups in AD cells.
736 We observed also differences in compound cytotoxicity when compared between different
737 tested complexes, collectively demonstrating that slight modifications to both central metal
738 and (btsc) ligand backbone modulate the compound's effect on human endothelial cell
739 viability. In line with our observation, similar results were reported for human immortalised
740 endothelial cells that demonstrated differential sensitivity to Cu^{II}(atsm) and Cu^{II}(gtsm) *in vitro*
741 [55].

742 Our experiments also revealed the differences in viability of HUVEC and iBEC treated with the
743 same library of compounds applied at the matching concentration and treatment duration. In
744 detail, except for CuL⁸, none of the compounds that decreased viability in iBEC at 0.5 µM were
745 cytotoxic in HUVEC at this concentration, while simultaneously, compounds CuL² and CuL⁴,
746 which demonstrated significant negative effects on the viability of HUVEC at 1.0 µM, were well
747 tolerated by control and AD iBEC at the same dose. This suggests important differences in
748 the sensitivity of hiPSC-derived iBEC as opposed to primary and non-CNS endothelial cell
749 lines, further highlighting the challenging results discrepancy between traditional and hiPSC-
750 derived BBB models. With iBEC demonstrating more *in vivo* BBB-like phenotype and function
751 as compared to HUVEC [22], one could speculate the metal compound toxicity observed here
752 in the iBEC model is more predictive of the clinically relevant toxic dose for human patients,
753 however, this remains yet to be elucidated.

754 We further discovered an interesting correlation between cell genotype and metal delivered
755 by (btsc) complexes in regard to cytotoxicity, where AD iBEC demonstrated generally higher
756 vulnerability to Cu compounds while control iBEC were more sensitive to tested Ni complexes.

757 That differential sensitivity of control and AD patient-derived cells to metal (btsc) highlights the
758 importance of drug candidate toxicity testing in patient-specific models to more reliably predict
759 compound effects in the patient brain *in vivo*. Consequently, with BBB cells being altered in
760 AD [4], [19], patient cells may prove to be more vulnerable to particular drug cytotoxicity and
761 therefore drug doses and formulations tested in clinical trials should be precisely adjusted to
762 match patient-specific BEC molecular and functional profiles. With hiPSC depositories now
763 offering a variety of patient-derived lines with clearly defined genetic profiles, *in vitro* models
764 as presented in this study may serve as a valuable drug candidate response prediction tool to
765 test for potential BBB toxicity in sub-cohorts of AD patients.

766

767

768 ***Cellular accumulation and permeability assays identify compounds with improved
769 delivery in patient-derived BBB model***

770

771 With BBB serving as a key hurdle in successful CNS drug delivery in AD [5], [12], we next
772 aimed to validate our Transwell-based patient-cell derived iBEC model for compound cellular
773 accumulation and permeability assays.

774 Here were able to identify compound CuL¹ as a complex of specifically high cellular uptake in
775 AD iBEC, suggesting that certain chemical modifications to (btsc) framework, such as the ethyl
776 backbone (as in CuL¹), may counteract disease-associated molecular changes in BEC that
777 otherwise prevent effective uptake of delivered Cu(btsc). Additionally, while other Cu
778 compounds showed only modest transport through the AD iBEC monolayer, both Cu(ATSM)
779 and CuL¹ demonstrated increased permeability in AD iBEC indicating high potential for their
780 translational application in AD patients. Simultaneously, control iBEC were more permissive
781 to effective compound transport with the majority of tested metal compounds demonstrating
782 increased permeability in monolayers formed by those cells.

783 It is important to note however that since no simple method can precisely distinguish the free
784 metal (Cu or Ni) concentration and concentration of Cu/Ni bound to the (btsc) backbone, or
785 freed (btsc) ligand itself within the cellular system *in vitro*, metal level measurement with ICP-
786 MS was used here as an indirect measure of metal-(btsc)s transport. Therefore, it is not
787 possible to unequivocally determine whether it was indeed an intact metal-(btsc) complex
788 translocating through the monolayer of cells or only free metal that dissociated from the
789 complex. Additionally, although various Cu(btsc) complexes were shown to be cell-permeable
790 [69], performed ICP-MS analysis does not allow definition of whether cell-associated metal-
791 (btsc) complex was indeed uptaken by the cells (reaching the cytosol) or remained only bound
792 to the cell surface, therefore the transcellular transport of the compounds cannot be
793 unequivocally confirmed. Despite this technical limitation, collectively those results provide

794 clear evidence that modifications to metal–(btsc) structure modulate compound (or metal)
795 transport at the brain barrier, with important disease-associated differences being observed
796 between control and AD cells.

797
798 Although the exact molecular mechanisms responsible for the differential cellular
799 accumulation and transport of distinct Cu(btsc) were not investigated in this study, a previous
800 report identified opposite effects of Cu^{II}(atsm) and Cu^{II}(gtsm) on P-gp expression and function
801 in the immortalised human brain endothelial cells *in vitro* [55] and demonstrated the regulatory
802 effect of Cu^{II}(atsm) on P-gp expression and function in murine BEC and mouse brain
803 capillaries *in vivo* [97]. With P-gp being the primary drug efflux transporter at the BBB, it is
804 possible that selected metal-(btsc) complexes exert a modulatory effect on P-gp expression
805 and/or function and therefore escape P-gp-regulated efflux to reach higher intracellular
806 concentrations in iBEC. Simultaneously, our previous analysis revealed differential expression
807 and function of several drug transporters in the familial AD iBEC [40], [41], suggesting
808 differences observed here in cell-associated accumulation of tested compounds can reflect
809 disease-specific molecular alterations at the level of BBB transporters. However, both those
810 hypotheses assume primarily the transcellular (as opposed to paracellular) transport of Cu
811 compounds in this model which has not been experimentally validated.

812 Additionally, the differences observed in compound transport between control and AD cells in
813 our model may suggest the role of presenilin-1 in Cu compound accumulation at the level of
814 BBB. Since presenilins are known to promote cellular uptake of Cu [98], [99], *PSEN1-ΔE9*
815 mutation present in our AD cells may drive aberrant Cu transport and therefore underlie
816 decreased Cu compound permeability in AD iBEC. Interestingly, a similar observation was
817 reported previously in the APP/PS1 mouse model, also harbouring mutant human presenilin
818 1, where structurally related Cu(btsc) compounds showed differential BBB permeability [68],
819 suggesting the precise chemical design of small molecule drugs is crucial for their successful
820 BBB transport in familial AD.

821
822 Although further mechanistic studies are required, our observations contribute to a further
823 understanding of metal (btsc) effects at the BEC and demonstrate how small molecule
824 compound physicochemical and structural characteristics correlate with its effective
825 penetrability at the familial AD patient-specific BBB.

826 While Cu(btsc) complexes used as radiotracers were previously shown to successfully pass
827 through the BBB, currently their brain uptake corresponds to ~1 % of injected dose, which
828 although correlating with sufficient uptake for brain imaging, is unlikely to achieve robust
829 therapeutic effects in AD patients [53], [100]–[102]. It is therefore vital to continue efforts in
830 designing and screening novel Cu(btsc) that may reach therapeutically relevant

831 concentrations in the human brain to translate their neuroprotective effects from preclinical
832 models to AD patients. Additionally, a recent study demonstrated that increased levels of brain
833 Cu protect from cognitive decline in AD [103], further motivating the development of Cu-
834 delivering agents such as Cu(btsc) as AD therapeutics. With hiPSC-derived platforms offering
835 improved *in vitro* to *in vivo* correlation as compared to classically employed BBB models [31],
836 compound delivery assays performed in our patient-specific model may prove to be highly
837 predictive of Cu(btsc) transport in the patient brain and effectively inform metal drug candidate
838 selection for future clinical trials.

839

840

841 ***Neuroinflammation-like patient-derived BBB platform offers dual application in anti-***
842 ***inflammatory drug candidate screening***

843

844 With numerous neuroinflammatory factors being involved in both the onset and the
845 progression of AD [2], [3], [25], [30], our final goal was to evaluate the utility of our patient-
846 derived platform to screen for the anti-inflammatory properties of novel metal compounds.

847

848 Importantly, although brain endothelial cells are not the primary immune cells in the brain, they
849 are known to participate in inflammatory responses at the brain barriers both in health and
850 disease [29], [104]–[106]. Respectively, a recent transcriptomic analysis revealed that many
851 of the top AD-risk genes identified in genome-wide association studies (GWAS) which are
852 microglia-specific in mice are in fact expressed at higher levels in human BEC and other
853 vascular cell types, suggesting that in mice and humans, there is a partial transfer of risk genes
854 and pathways associated with AD from microglia to the vasculature during the process of
855 evolution [73]. This provides important evidence for the evolutionary-unique, human-specific
856 role of BEC and cerebrovasculature in brain neuroimmunity in AD [73] and justifies efforts of
857 anti-neuroinflammatory drug candidate screening in BEC. Simultaneously, disease-
858 associated neuroinflammation has been shown to contribute to BBB dysfunction in AD [25],
859 [30], [107]–[109], and a single nucleus transcriptomic analysis of AD patients' brain revealed
860 the upregulation of genes related to immune responses and cytokine secretion in BEC [72]–
861 [74]; all suggesting that reducing inflammation in BEC could prove therapeutically useful in
862 AD.

863

864 Interestingly, as opposed to BEC isolated from the AD patient's brain [72]–[74], in our model
865 we did not observe vast differences in the expression of inflammatory marker genes in AD
866 iBEC as compared to control iBEC suggesting a lack of a strong disease-associated
867 inflammatory phenotype in those AD cells *in vitro*. Intriguingly, recently reported transcriptomic

868 analysis demonstrated striking molecular heterogeneity of human BEC found in different brain
869 regions, distinct segments of the arteriovenous axis and disease stages, also in relation to
870 immune responses [15], [73], [74]. Therefore it is possible our AD hiPSC-derived iBEC could
871 represent the BEC subpopulation with only a moderately altered immune profile in AD,
872 highlighting the complexity of BBB neuroinflammation in AD. Correspondingly, as it is not yet
873 known which fraction of human *in vivo* BEC hiPSC-derived iBEC most closely represent, future
874 comparative transcriptomic studies would be necessary to precisely map the position of iBEC
875 within the human vasculature atlas and define their region-specific expression profile of genes
876 related to cytokine production/immune response at various stages of AD.

877

878 Consequently, as AD iBEC did not present an intrinsic inflammatory profile in our model, we
879 cultured those cells under proinflammatory conditions and validated the induction of their
880 neuroinflammation-like phenotype *via* the panel of assays. Following treatment with TNF α and
881 IFN γ , AD iBEC presented a characteristic increase in gene expression and cytokine secretion
882 of several proinflammatory mediators, a decrease in barrier integrity and increased passive
883 permeability to small molecule tracer, hence allowing us to test for anti-inflammatory properties
884 of selected metal compounds in this model. As a result, our screen identified CuL¹ as a
885 strongly anti-neuroinflammatory compound which prevented the development of
886 proinflammatory phenotype in AD iBEC in various assays tested. This presented also the first
887 application of such a model for medium- to high-throughput screening of novel anti-
888 neuroinflammatory drug candidates in familial AD iBEC.

889

890 Importantly, performing an anti-inflammatory drug candidate screen in such an established
891 and validated platform offers dual benefits. Firstly, it presents a unique possibility to evaluate
892 the anti-neuroinflammatory properties of novel compounds on the level of AD patient brain
893 endothelial cells, previously not easily accessible to drug candidate screening efforts. With
894 BBB neuroinflammation and neurodegeneration being closely linked in AD development and
895 progression [25], [29], the discovery of such compounds may prove therapeutically useful in
896 AD patients and lead to the identification of novel treatment avenues for AD.

897 Correspondingly, Cu(btsc) were previously shown to act through multiple pathways involving
898 anti-neuroinflammatory effects, the restoration of Cu homeostasis, inhibition of amyloid β and
899 tau accumulation as well as the reduction in lipid peroxidation and ferroptosis [42], [43], [49],
900 [56], with microglia, astrocytes and neurons being suggested as the major effector cells of
901 their therapeutic action in the brain. Here, we detected potentially therapeutic
902 immunomodulatory effects of selected Cu(btsc) in AD iBEC, implicating additional
903 neuroprotective mechanisms that may be involved at the level of BBB. Intriguingly, Cu(btsc)

904 were previously shown to exert therapeutic effects in preclinical models of AD, amyotrophic
905 lateral sclerosis (ALS), and Parkinson's disease (PD), as well as in first-in-human clinical trials
906 targeting ALS and PD, all being neurodegenerative diseases with established roles for BBB
907 neuroinflammation [110]–[114]. Correspondingly with BBB disruption becoming in itself an
908 emerging drug target in neurodegeneration [115]–[118], further studies performed in our
909 patient-derived model may support the ongoing efforts in identifying compounds that can
910 improve cerebrovascular integrity in AD *via* active regulation of BEC, and accelerate the
911 translation of those therapies to patients.

912

913 Secondly, our model allows to effectively test for drug candidate permeability at AD patient-
914 derived BBB and pre-screen for its immunomodulatory effects within a single human-specific
915 experimental set-up, rapidly identifying the most promising compounds for further
916 assessment. Consequently, even for compounds whose therapeutic effects at the BBB are
917 not of interest, our model can be effectively used for a first pre-evaluation of compound anti-
918 inflammatory potential in human cells, supporting a more careful selection of BBB-permeable
919 drug candidates to be then tested in e.g. microglia or astrocytes. With regards to that,
920 implementing hiPSC-derived cells in anti-neuroinflammatory drug candidate screening
921 platforms may be another important advantage as it allows for the differentiation of iBEC and
922 classical immune cells such as microglia [119], [120] and astrocytes [57] from the same patient
923 hiPSC. This may facilitate direct comparison of drug candidate responses in different cell types
924 generated from hiPSC of the same patient, or lead to the development of multicellular isogenic
925 models where iBEC can be co-cultured with other cells, such as induced-Astrocytes as
926 previously demonstrated by us and others [22], [38], and compound BBB permeability and
927 anti-inflammatory effects on brain parenchyma cells assessed within a single cell-culture well.

928

929 With this dual applicability, our iBEC model contributes to the advancement of metal-based
930 therapies for AD *via* the effective identification of metal (btsc) with improved permeability and
931 potential therapeutic anti-inflammatory activity in patient-derived cells. When validated against
932 the library of novel compounds, experiments performed in this model identified CuL¹
933 (Cu^{II}(dtsm)) as a compound demonstrating high cellular uptake, permeability and anti-
934 inflammatory effect in human AD BBB *in vitro*, which warrants its further testing in the context
935 of AD-associated neuroinflammation in other brain cell models and *in vivo*.

936

937

938 ***Limitations of the study***

939

940 Overall our study demonstrates hiPSC-derived iBEC as an effective tool for modelling AD
941 patient BBB *in vitro* and provides an alternative, validated platform for drug candidate
942 permeability and efficacy screening. Although holding unprecedented potential, one limitation
943 of disease modelling with hiPSC derived from independent human donors is their known inter-
944 cell line variability [93], [121]. This allows for a more adequate representation of a
945 heterogeneous patient population and therefore more translationally relevant preclinical drug
946 candidate assessment (as opposed to i.e. immortalised cells lines or animal models).
947 However, future studies utilising an increased number of patient cell-derived hiPSC lines may
948 be required to confirm whether the observed here effects would be representative of a larger
949 patient population. Similarly, with familial AD accounting for an estimated 5 % of all AD cases,
950 expanding the presented here platform to our previously published sporadic AD iBEC model
951 [38] may prove beneficial and increase model applicability to a wider AD patient cohort. It is
952 also important to note that our study evaluated the cellular association and permeability of
953 metal compounds at a single time point (2 h) which may not prove optimal for each compound
954 given the known complexity of cellular [69] or brain [100], [101] accumulation profiles of
955 structurally related Cu(btsc). Therefore, future studies incorporating multiple time points would
956 be an important step towards understanding the temporal modes of action of Cu(btsc) at the
957 AD BBB. Finally, to create a more physiologically relevant model, other BBB and parenchymal
958 cells such as astrocytes or pericytes could be included. Incorporating elements of blood flow
959 in the described here AD BBB model would also aid in achieving improved human BBB
960 biomimicry *in vitro*.
961 With this potential for future assay-specific and disease subtype-specific modifications, our
962 patient-derived model provides a versatile and flexible tool for routine BBB permeability testing
963 offering unique advantages in the high-throughput drug candidate screening in AD.

964

965

966 CONCLUSIONS

967

968 Early detection of BBB-permeable therapeutics may vastly accelerate successful drug
969 development in AD. Our study exemplifies how hiPSC technology can be harnessed to assess
970 BBB transport and anti-inflammatory effects of novel metal compounds in the familial AD
971 context, offering a promising alternative to classically used preclinical BBB models.
972 Through practical validation of the established AD patient-derived iBEC model, our study
973 identifies compound Cu^{II}(dtsm) as a potential drug candidate with improved cell-associated
974 accumulation and permeability in AD iBEC, and potentially therapeutic anti-neuroinflammatory
975 activity at the AD BBB *in vitro*. Additionally, presented results suggest that Cu(btsc) complexes
976 could be utilised as a new treatment approach to modulate neuroinflammation-associated

977 BBB dysfunction in AD. Finally, by developing and testing a library of novel metal-(btsc)
978 complexes we identify particular chemical structure modifications that facilitate low toxicity and
979 improved compound transport at the AD BBB, supporting future design of small molecule
980 therapeutics in AD.

981 Together, this disease- and patient-relevant model may serve as an innovative drug candidate
982 screening platform with higher translational significance and improved *in vivo* predictivity as
983 compared to traditionally employed BBB permeability assays. When applied together with
984 other pharmacokinetic and pharmacodynamics methods, it can aid in the early identification
985 of CNS-active, -permeable and non-cytotoxic compounds, significantly contributing to the
986 therapeutic success of drugs targeting AD.

987 **MATERIALS AND METHODS**

988

989 **CELL MODELS**

990

991 **Human Umbilical Vein Endothelial Cells (HUVEC) culture and immunofluorescence**
992 **characterisation**

993

994 Primary human umbilical vein endothelial cells (HUVEC) (Life Technologies) were cultured in
995 75 cm² flasks in Endothelial Cell Growth Media (Sigma) under normoxia conditions (37 °C, 5
996 % CO₂).

997 For immunofluorescence (IF) characterisation HUVEC were cultured on coverslips coated with
998 10 µg/ml human fibronectin until reaching 100 % confluence and forming a cobblestone-like
999 monolayer. Cells were then fixed with 4 % paraformaldehyde (PFA; Sigma) for 15 min at room
1000 temperature (RT) and washed with phosphate-buffered saline (PBS) and IF was performed
1001 as follows: cells were permeabilised for 10 min with 0.3 % Triton-X (Sigma) and then blocked
1002 for 1 h at RT with 2 % bovine serum albumin (BSA)/2 % normal goat serum (GS) in PBS. The
1003 primary antibody for vascular endothelial (VE)-cadherin (**Table S1**) was diluted at 1:100 in a
1004 blocking solution and incubated overnight at 4 °C. After 24 h, cells were washed with PBS and
1005 secondary antibodies (Alexa Fluor-488; **Table S1**) diluted in blocking solution (1:250) were
1006 incubated on the cells for 1 h at RT in the dark. Cells were then washed with PBS, Hoechst
1007 (1:5000 in PBS) counterstain was performed to visualise cell nuclei and cells mounted with
1008 ProLong Gold Antifade (ThermoFisher Scientific). Images were obtained at 20X magnification
1009 using a Zeiss AxioScop2 microscope.

1010

1011 **Human induced pluripotent stem cells (hiPSC) culture and immunofluorescence**
1012 **characterisation**

1013

1014 Previously published and characterised human induced pluripotent stem cell (hiPSC) were
1015 obtained from the University of Eastern Finland [57] and the University of Melbourne [40].
1016 hiPSC lines: 1 x healthy control line (referred to as HDFa), 2 x *PSEN1-ΔE9* mutant AD line, 2
1017 x isogenic control to *PSEN1-ΔE9* were used in this study (**Table 1**). All hiPSC were expanded
1018 on human recombinant vitronectin in StemFlex™ media (ThermoFisher Scientific) under
1019 hypoxia conditions (37 °C, 5 % CO₂, 3 % O₂). During initial expansion, hiPSC were passaged
1020 with 0.5 mM ethylenediaminetetraacetic acid (EDTA, Life Technologies) in PBS and
1021 cryopreserved in 10 % dimethyl sulfoxide (DMSO, Sigma) in StemFlex™ media. Karyotype
1022 analysis was performed for HDFa, 1 x *PSEN1-ΔE9* mutant AD line and 1 x isogenic control to

1023 *PSEN1-ΔE9*. All hiPSC lines tested showed a normal karyotype, containing 22 pairs of
1024 autosomal chromosomes and one pair of sex chromosomes (46, XX) (data not shown).

1025

1026 **Table 1.** Summary of the controls and AD hiPSC lines included in the current study.

Line ID	Age at biopsy	<i>PSEN1</i> genotype	<i>APOE</i> genotype
HDFa (unrelated healthy donor)	Not known	Not known	Not known
AD4 1.6.12.9	48	<i>PSEN1-ΔE9</i> isogenic corrected	E3/E3
AD5 1.5.6.1	47	<i>PSEN1-ΔE9</i> isogenic corrected	E3/E3
AD4 1.6	48	<i>PSEN1-ΔE9</i>	E3/E3
AD5 1.5	47	<i>PSEN1-ΔE9</i>	E3/E3

1027

1028 For IF characterisation, cells were fixed with 4 % PFA for 15 min, rinsed with PBS and
1029 permeabilised with 0.3 % Triton-X for 10 min. Cells were then blocked for 1 h at RT with 2 %
1030 BSA/2 % GS in PBS. Primary antibodies for Nanog and SOX2 (**Table S1**) were diluted at
1031 1:100 in blocking solution and incubated overnight at 4 °C. The next day, PBS washes were
1032 performed and secondary antibodies (Alexa Fluor-488, or Alexa Fluor-647; **Table S1**) were
1033 diluted in blocking solution (1:250) and incubated on the cells for 1h at RT in the dark. Cells
1034 were then washed with PBS and Hoechst (1:5000) counterstain was performed. Coverslips
1035 with cells were mounted with ProLong Gold Antifade. Images were obtained at 20X
1036 magnification using a Zeiss 780 confocal microscope.

1037

1038 **Induced brain endothelial-like cell (iBEC) differentiation**

1039

1040 To establish a patient-derived BBB model, hiPSC were differentiated towards brain
1041 endothelial-like cell phenotype following previously published protocols [38], [40], [58]. At all
1042 stages of iBEC differentiation cells were cultured under normoxia conditions (37 °C, 5 % CO₂).
1043 To initiate iBEC differentiation, hiPSC were detached and singularised with Accutase (Life
1044 Technologies) and plated on human embryonic stem cells (hESC)-qualified Matrigel (Corning)
1045 coated 6-well culture plates in StemFlex™ media supplemented with 10 µM Rho-associated
1046 kinase inhibitor (iROCK) at previously optimised [40] plating density of 2.0 x 10⁴ cell/well
1047 (HDFa line) or 2.5 x 10⁴ cell/well (isogenic corrected and AD lines). After 3 days, culture
1048 medium was changed to unconditioned media (UM) consisting of DMEM/F12+GlutaMAX (Life
1049 Technologies), 20 % KnockOUT serum replacement (Life Technologies), 1 x non-essential
1050 amino acids (Life Technologies) and 0.1 mM β-mercaptoethanol (Sigma) to induce neural and

1051 endothelial progenitor co-differentiation. Following 6 days in UM, culture media was replaced
1052 with endothelial cell media (EC; Life Technologies) supplemented with 2 % B27 (Life
1053 Technologies), 20 ng/ml basic fibroblast growth factor (FGFb; Peprotech) and 10 μ M retinoic
1054 acid (RA). Cells were maintained in supplemented EC+B27 for 2 days, after which cells were
1055 detached and singularised with Accutase, and replated on collagen IV from human placenta
1056 (Sigma) and human plasma fibronectin (Life Technologies) coated plastic culture plates or Ø
1057 0.4 μ m pore polyester Transwell inserts (Corning) at plating density specific for culture vessel
1058 (**Table S3**). The day after subculturing cells to collagen IV/fibronectin plates, cell media was
1059 changed to EC+B27 (without FGFb and RA) and cultured for one more day. All experiments
1060 described in this study were performed 48 h following subculturing on collagen IV/fibronectin.
1061

1062 **iBEC immunofluorescence characterisation**

1063

1064 For IF characterisation, iBEC were grown on plastic coverslips coated with 80 μ g/ml collagen
1065 IV and 20 μ g/ml fibronectin. 48 h after subculturing, cells were rinsed with PBS and fixed with
1066 ice-cold 100 % methanol (MeOH) for 5 min at -20 °C or 4 % PFA for 15 min at RT. Next cells
1067 were permeabilised with 0.3 % Triton-X for 10 min and blocked for 1 h at RT with 2 % BSA/2
1068 % GS in PBS. Primary antibodies for occludin, claudin-5, ZO-1 and Glut-1 (**Table S1**) were
1069 diluted 1:100 in a blocking solution and incubated overnight at 4°C. The next day, PBS washes
1070 were performed and secondary antibodies (Alexa Fluor-488 or Alexa Fluor-647; **Table S1**)
1071 were diluted 1:250 in a blocking solution and incubated on the cells for 1 h at RT in the dark.
1072 Afterwards, cells were washed with PBS and Hoechst (1:5000) counterstain was performed.
1073 The coverslips with cells were mounted with ProLong Gold Antifade. Images were obtained at
1074 20X magnification using a Zeiss 780 confocal microscope.
1075

1076

1076 Transendothelial electrical resistance (TEER) measurement

1077

1078 Barrier integrity of generated iBEC was characterised by measuring transendothelial electrical
1079 resistance (TEER) across iBEC monolayer using the EVOM2 or EVOM3 Volt/Ohmmeter
1080 (World Precision Instruments) in 24-well, 6.5 mm Transwell with 0.4 μ m pore polyester
1081 membrane insert (Corning). Before the measurement, TEER electrodes were sterilised and
1082 immersed in warm EC+B27 media for temperature equilibration. TEER was then measured in
1083 3 areas per Transwell and averaged. Resistance of the blank (no-cells) Transwell was
1084 subtracted and then multiplied by the surface area of the Transwell membrane (0.33 cm^2) for
1085 calculation of the final TEER values (Ohm \times cm^2).
1086

1087 **METAL BIS(THIOSEMICARBAZONE) COMPOUNDS SYNTHESIS**

1088

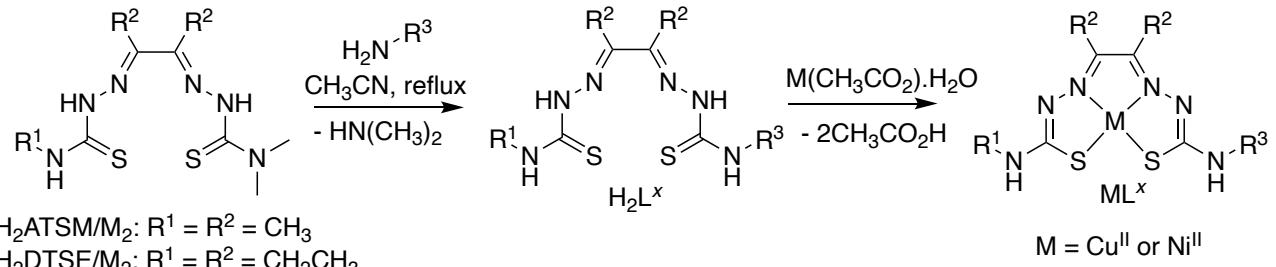
1089 **General**

1090

1091 ^1H and $^{13}\text{C}\{^1\text{H}\}$ spectra were recorded using a Varian FT-NMR 400 spectrometer (Varian). All
1092 ^1H NMR spectra were acquired at 400 MHz and $^{13}\text{C}\{^1\text{H}\}$ spectra were acquired at 101 MHz.
1093 The reported peaks were all referenced to solvent peaks in the order of parts per million at 25
1094 °C. Microanalysis measurements were carried out by The Campbell Microanalytical
1095 Laboratory in the Department of Chemistry, University of Otago, Union Place, Dunedin, New
1096 Zealand. Analytical HPLC were performed on Agilent 1200 series HPLC system fitted with an
1097 Alltech Hypersil BDS – C18 column (4.6 × 150 nm, 5 μm). The mobile phase was a gradient
1098 consisting of Solvent A (0.1 % TFA in H_2O) and Solvent B (0.1 % TFA in CH_3CN) from 0 to
1099 100 % B over 25 min and UV detection at λ 220, 254, 275 and 350 nm. ESI-QTOF MS was
1100 collected on an Exactive Plus Orbitrap Infusion mass spectrometer (Exactive Series, 2.8 Build
1101 268801, ThermoFisher Scientific). Analysis was performed using Xcalibur 4.0.27.10
1102 (ThermoFisher Scientific).

1103

1104 **Chemical Synthesis**


1105

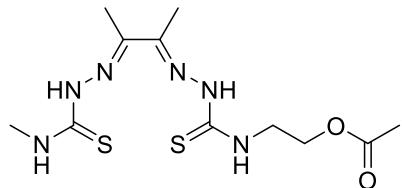
1106 $\text{Cu}(\text{ATSM})$, $\text{Ni}(\text{ATSM})$, $\text{Cu}(\text{DTSM})$ (CuL^1), $\text{Cu}(\text{DTSE})$ (CuL^2) [95], [122] and $\text{H}_2\text{ATSM}/\text{M}_2$ [123],
1107 [124] were synthesized as reported previously. $\text{H}_2\text{DTSM}/\text{M}_2$ and $\text{H}_2\text{DTSE}/\text{M}_2$ were prepared
1108 by modification of previously reported procedure [123] where dipropionyl-mono-4-methyl-3-
1109 thiosemicarbazone or dipropionyl-mono-4-ethyl-3-thiosemicarbazone [68] were reacted with
1110 one equivalent of 4,4-dimethyl-3-thiosemicbazide in dimethyl formamide in the presence of
1111 acetic acid.

1112 Ligands $\text{H}_2\text{L}^{3-10}$ were prepared by modification of a reported procedure [123] where either
1113 ATSM/M_2 , $\text{H}_2\text{DTSM}/\text{M}_2$ or $\text{H}_2\text{DTSE}/\text{M}_2$ are reacted with the requisite primary amine (see
1114 **Scheme 1**). All the ligands were isolated in yields of 30 – 80 % (depending on the solubility of
1115 the ligand in acetonitrile), and were characterised by ^1H and $^{13}\text{C}\{^1\text{H}\}$ spectroscopy and
1116 electrospray ionisation mass spectrometry. The metal complexes were prepared by the
1117 reaction of the ligand, H_2L^x , with one equivalent of copper acetate monohydrate to give CuL^{1-7}
1118 (or nickel acetate monohydrate to give NiL^3) and heating the mixtures in ethanol at reflux for
1119 4 hours (**Scheme 1**). For the synthesis of CuL^{1-7} : Allowing the reaction mixture to cool to room
1120 temperature resulted in precipitation of brown-red solids that were collected by filtration,
1121 washed with cold ethanol and diethyl ether to allow isolation of CuL^{1-7} in ~70 % yield. For the
1122 synthesis of CuL^{8-10} : The reaction mixture was evaporated to dryness under reduced pressure,
1123 the solid was then dissolved in dichloromethane and addition of *n*-pentane resulted in the

1124 precipitation of dark red solids that were collected by filtration, washed with *n*-pentane and
1125 dried in vacuo to allow isolation of CuL⁸⁻¹⁰ in ~ 60 % yield. All the copper(II) complexes were
1126 characterised by electrospray ionisation mass spectrometry, reversed phase HPLC (>98%
1127 purity) and microanalysis.

1128

1129

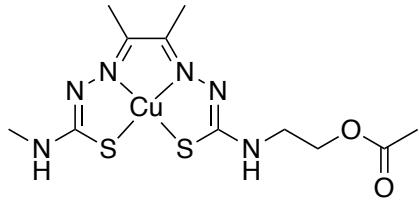

1130 **Scheme 1.** General synthetic scheme for the synthesis of ligands, H₂L¹-H₂L¹⁰, and metal
1131 complexes ML¹⁻¹⁰ (where M = Cu^{II} or Ni^{II}).

1132

1133 A representative procedure for the synthesis of H₂L⁴ and CuL⁴ is given below:

1134

1135 **Synthesis of H₂L⁴**



1136

1137 To a suspension of H₂ATSM/M₂ (0.5 g, 1.8 mmol) in acetonitrile (50 mL) was added aminoethyl
1138 acetate (0.23 g, 2.2 mmol). The mixture was heated at reflux for 24 h and then allowed to cool
1139 to ambient temperature. The precipitate that formed was collected by filtration, washed with
1140 acetonitrile, water and diethyl ether to give product as a pale pink solid (0.51 g, 1.5 mmol, 83
1141 %). ¹H NMR (400 MHz, DMSO-d₆, δ) 10.35 (s, 1H), 10.23 (s, 1H), 8.46 (t, J = 5.7 Hz, 1H), 8.38
1142 (d, J = 4.5 Hz, 1H), 4.20 (t, J = 5.7 Hz, 2H), 3.81 (q, J = 5.7 Hz, 2H), 3.02 (d, J = 4.5 Hz, 4H),
1143 2.21 (d, J = 3.3 Hz, 6H), 2.01 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆, δ) 178.48, 178.28,
1144 170.43, 148.57, 147.78, 62.05, 42.65, 31.22, 20.79, 11.81, 11.65. MS(ESI/O-TOF) (m/z): Cald
1145 for [C₁₁H₂₀N₆O₂S₂+H]⁺, 333.1162; found, 333.1163. HPLC R_t = 8.4 min. Anal Calcd C, 39.74;
1146 H, 6.06; N, 25.28. Found C, 39.12; H, 5.77; N, 24.91

1147

1148 **Synthesis of CuL⁴**

1149

1150 To a suspension of H_2L^4 (0.2, 0.6 mmol) in ethanol (10 mL) was added copper acetate mono
1151 hydrate (0.12, 0.60 mmol). The mixture was heated at reflux for 20 h and was then allowed to
1152 cool to ambient temperature. The precipitate that formed was collected by filtration, washed
1153 with ethanol, water and diethyl ether to give CuL^4 as a brown powder (0.17 g, 0.43 mmol,
1154 72%). MS(ESI/O-TOF) (m/z): Cald for $[\text{C}_{11}\text{H}_{18}\text{CuN}_6\text{O}_2\text{S}_2+\text{H}]^+$, 394.0301; found, 394.0301.
1155 HPLC: R_t = 6.1 min. Anal. Calcd for $\text{C}_{11}\text{H}_{18}\text{CuN}_6\text{O}_2\text{S}_2$: C, 33.54; H, 4.61; N, 21.33. Found: C,
1156 33.11; H, 4.67; N, 21.08.

1157

1158 **CELL STIMULATION AND/OR TREATMENT**

1159

1160 **MTT cytotoxicity assay**

1161

1162 Cu and Ni based compounds were diluted in 100 % DMSO (Sigma). Cells in a 96-well plate
1163 (HUVEC: 3×10^3 cells/well; iBEC: 1×10^5 cells/well) were treated with increasing
1164 concentrations of Cu- and Ni-based compounds (HUVEC: 0, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, and
1165 3.0 μM ; iBEC: 0, 0.5 and 1.0 μM) for 24 h. (3-(4,5-dimethylthiazol-2-yl)-2,5-
1166 diphenyltetrazolium bromide (MTT, Sigma) reagent was added to each well, and the cells were
1167 incubated in humidified incubator for 4 h at 37 °C. Subsequently, solubilisation solution (10 %
1168 Triton-X 100 in acidic isopropanol (0.1 M HCl)) was added to wells and incubated overnight at
1169 RT on orbital shaker. The next day, absorbance was measured at 570 nm with a microplate
1170 reader (Biotek Synergy H4) and % of viable cells was calculated as compared to the untreated
1171 control. Vehicle (DMSO)-only controls were included for the two highest drug concentrations
1172 tested (corresponding to DMSO content equivalent to 2.5 and 3.0 μM of a drug treatment for
1173 HUVEC and 0.5 and 1.0 μM of a drug treatment for iBEC, respectively).

1174

1175 **Metal cell-associated accumulation and permeability analysis**

1176

1177 To analyse Cu and Ni cell-associated accumulation and permeability, iBEC were cultured on
1178 Transwell inserts with polyester membranes containing $\varnothing 0.4 \mu\text{m}$ pores. 48 h after subculture
1179 TEER was measured and only cells exhibiting adequate TEER indicating complete monolayer
1180 formation were included in the following experiment. Following TEER assessment, cells were
1181 allowed to recover for 1 h in the incubator. Tested compounds were then added to the top

1182 chamber of Transwells at 0.5 μ M and incubated for 2 h. Both untreated and vehicle-only
1183 treated controls were included. Next, cell pellets and cell culture media from the top and
1184 bottom chambers of a Transwell system were collected for inductively coupled plasma mass
1185 spectrometry (ICP-MS) analysis of metal levels, performed at Biometals Facility at
1186 Florey Institute of Neuroscience and Mental Health. For media sample analysis, media
1187 collected from a single Transwell was considered an independent replicate. Due to the low
1188 number of cells grown on a single Transwell membrane, for cell pellet analysis, cells grown
1189 on three Transwells were combined into one tube prior to the pelleting and considered as an
1190 independent replicate. For analysis of metal levels in media sample, a 900 μ l of diluent (1 %
1191 nitric acid) was added to each media sample (100 μ l), to equal 1 ml of final volume. For the
1192 analysis of metal levels in collected cell pellet samples, cell pellets were lyophilized, 30 μ l of
1193 concentrated 65 % nitric acid (Suprapur, Merck) was added and allowed them to digest
1194 overnight at RT. The samples were then heated at 90 °C for 20 min using a heating block to
1195 complete the digestion. The reduced volume after digestion was ~20 μ l. Next, 580 μ l of 1 %
1196 (v/v) of nitric acid diluent was added to equal 0.6 ml of final volume. Measurements were made
1197 using an Agilent 7700 series ICP-MS instrument under routine multi-element operating
1198 conditions using a Helium Reaction Gas Cell. The instrument was calibrated using 0, 5, 10,
1199 50, 100 and 500 parts per billion (ppb) of certified multi-element ICP-MS standard calibration
1200 solutions (ICP-MS-CAL2-1, ICP-MS-CAL-3 and ICP-MS-CAL-4, Accustandard) for a range of
1201 elements. A certified internal standard solution containing 200 ppb of Yttrium (Y89) was used
1202 as an internal control (ICP-MS-IS-MIX1-1, Accustandard). The concentration of Cu and Ni
1203 samples in cell pellet and media samples were calculated as follows:

1204 cell pellets: [μ mol/L] = (raw ppb value x final sample volume/molecular weight of the element)
1205 media samples: [μ mol/L] = (raw ppb value x dilution factor/molecular weight of the element).
1206 Cu and Ni levels in media samples were expressed as concentration [μ mol/L] and cell pellet
1207 Cu and Ni levels were normalised to concentration of Mg per each sample for the uptake
1208 analysis. Mg was used as an internal divalent control metal to standardise Cu and Ni values,
1209 and the levels of Mg between analysed samples were not statistically different.

1210

1211 **TNF α / IFN γ treatment and metal compound treatment**

1212

1213 To study iBEC response to inflammatory stimuli, iBEC were treated with tumour necrosis factor
1214 alfa (TNF α , ThermoFisher Scientific; 20 ng/ml) with interferon gamma (IFN γ , ThermoFisher
1215 Scientific; 30 ng/ml) for 24 h. For co-treatment experiments, metal compounds were diluted in
1216 cell culture media and added to cells at 0.5 μ M for 24 h with or without 20 ng/ml TNF α / 30

1217 ng/ml IFN γ . Respective vehicle-only controls (DMSO for metal compound treatment and 40
1218 mM Tris buffer (Sigma-Aldrich) for TNF α and IFN γ treatment) were included.

1219

1220 **Lactate dehydrogenase (LDH) cytotoxicity assay**

1221

1222 LDH cytotoxicity assay was performed to assess TNF α /IFN γ effect on cell viability. iBEC were
1223 cultured in 48 well plates and exposed to TNF α /IFN γ for 24 h and the levels of LDH enzyme
1224 in the collected media were determined using CyQUANT LDH Cytotoxicity Assay
1225 (ThermoFisher Scientific) following manufacturer instructions. To determine maximum lactate
1226 dehydrogenase (LDH) release (LDH_{Max}) cells from selected wells were treated with the Lysis
1227 Buffer (10 % TritonX in PBS) for 30 min. The absorbance was measured at 490 nm and 680
1228 nm using a plate reader (Biotek Synergy H4). To determine LDH activity, the 680 nm
1229 absorbance value (background) was subtracted from the 490 nm absorbance and the % of
1230 LDH_{Max} was calculated in the analysed samples. Data are presented as fold change in relative
1231 LDH release corresponding to vehicle-treated control.

1232

1233 **IL6 and MCP1 enzyme-linked immunosorbent assay (ELISA)**

1234

1235 To detect interleukin-6 (IL6) and monocyte chemoattractant protein-1 (MCP1, CCL2) cytokine
1236 secretion by iBEC following TNF α /IFN γ and drug stimulation, iBEC were cultured in 48 well
1237 plates, treated with TNF α /IFN γ with or without the tested drug for 24 h and cell culture media
1238 collected for ELISA. Respective vehicle-only controls were included. Immediately post-
1239 collection, samples were centrifuged at 300 x g for 3 min to remove cell debris and supernatant
1240 stored at -80 °C prior to analysis. Human IL-6 uncoated ELISA (Invitrogen) and human CCL2
1241 (MCP1) uncoated ELISA (Invitrogen) were used as per manufacturer instruction. All incubation
1242 steps were performed using a microplate shaker.

1243 In brief, 96 well Coat Corning™ Costar™ 9018 ELISA plates were coated with capture
1244 antibody (pre-titrated, purified anti-human IL6 and purified anti-human CCL2 antibody for IL6
1245 and MCP1 ELISA respectively) in coating buffer overnight at 4 °C. Plates were then washed
1246 with Wash Buffer (0.05 % Tween®20 (Sigma-Aldrich) in PBS) and blocked with
1247 ELISA/ELISPOT Diluent for 1 h at RT. Next, human IL6 and CCL2 standards were freshly
1248 prepared, plates were washed with Wash Buffer and samples and Standards serial dilutions
1249 added to appropriate wells. ELISA/ELISPOT Diluent was added to the blank well and plates
1250 incubated for 2 h in RT. Plates were then washed with Wash Buffer and Detection Antibody
1251 (pre-titrated, biotin-conjugated anti human IL6 antibody and biotin-conjugated anti-human
1252 CCL2 antibody for IL6 and MCP1 ELISA respectively) added to the wells. Following 1 h

1253 incubation, plates were washed with Wash Buffer and incubated with Streptavidin-horseradish
1254 peroxidase (HRP) enzyme for 30 min. Plates were subsequently washed with Wash Buffer
1255 and incubated with tetramethylbenzidine (TMB) substrate solution for 15 min at RT. Reaction
1256 was then stopped by adding 2 N H₂SO₄ Stop Solution (Sigma) and absorbance was measured
1257 at 450 nm and 570 nm using a plate reader (Biotek Synergy H4). Obtained IL6 and CCL2
1258 standard curves were used to determine the concentration of IL6 and MCP1 in analysed
1259 samples.

1260

1261 **iBEC barrier properties assessment following TNF α / IFN γ treatment and metal
1262 compound treatment**

1263

1264 To analyse effects of TNF α / IFN γ and metal compound treatment on iBEC barrier properties,
1265 iBEC were cultured on Transwell inserts with polyester membranes containing \varnothing 0.4 μ m
1266 pores. 48 h after subculture TEER was measured and only cells exhibiting adequate TEER
1267 indicating complete monolayer formation were included in the following experiment.

1268 To assess the integrity of iBEC monolayer, cells were treated with vehicle or TNF α /IFN γ and
1269 CuL¹ (0.5 μ M) and Cu(ATSM) (0.5 μ M) alone or in combination, and TEER was measured at
1270 24 h after the start of the treatment as described above. Fold changes in TEER were calculated
1271 as compared to vehicle-treated control.

1272 To assess the passive permeability of iBEC monolayer following TNF α /IFN γ and CuL¹ (0.5
1273 μ M) and Cu(ATSM) (0.5 μ M) treatments, fluorescein isothiocyanate (FITC)-conjugated
1274 dextran molecule of 3–5 kDa (Sigma) was added at 0.5 mg/ml to the top chamber of the
1275 Transwell insert at 24 h after the start of the treatment. Following 1 h incubation with 5 kDa
1276 dextran, the top and bottom chamber media were collected for spectrofluorometric analysis at
1277 490 nm excitation/520 nm emission using a fluorescent plate reader (Biotek Synergy H4).
1278 Clearance volume describing dextran permeability was calculated as described previously
1279 [38], [58] following formula:

$$1280 \text{Clearance volume} = \frac{VB \times (SB, t)}{ST, 24h}$$

1281 where VB is the volume of the bottom chamber (800 μ l); SB,t is the corrected signal of the
1282 bottom chamber at the time, t; ST,24h is the signal of the top chamber at 24 h. Permeability
1283 results were presented as fold changes in clearance volume and compared to vehicle-treated
1284 control.

1285

1286 **GENE EXPRESSION STUDIES**

1287

1288 **RNA extraction**

1289

1290 For cell phenotype characterisation, hiPSC and iBEC were cultured under normal conditions
1291 prior to RNA collection. For the study of the inflammatory response, iBEC were cultured on
1292 48-well plates and exposed to TNF α /IFN γ alone or in combination with metal compound (0.5
1293 μ M) treatments for 24 h prior to RNA collection. Respective vehicle-only controls were
1294 included.

1295 For RNA collection, cells were rinsed with PBS, lysed with TRIzolTM reagent (ThermoFisher
1296 Scientific) and were stored in -80 °C prior to RNA extraction. Total RNA was extracted using
1297 the Direct-zol RNA Miniprep Kit (Zymo Research) according to the manufacturer's instructions
1298 and treated in-column with DNase I. In brief, sample lysed in TRIzol was thawed on ice and
1299 equal volume of analytical grade 100 % ethanol (EtOH, Chem-Supply) was added and mixed.
1300 The mixture was then transferred on Zymo-SpinTM IICR Column and centrifuged at 10,000 x g
1301 for 1 min. The column was washed with RNA Wash Buffer and sample incubated with 0.375
1302 U/ μ l of DNase I for 15 min. Next, the column was washed two times with Direct-zolTM RNA
1303 PreWash Buffer and RNA Wash Buffer before final elution in DNAse/RNAse free water.
1304 Isolated RNA quality and quantity was measured using NanoDropTM Spectrophotometer.

1305

1306 **cDNA synthesis and quantitative PCR (qPCR)**

1307

1308 For quantitative polymerase chain reaction (qPCR) studies, 50 ng (for assays where cells
1309 cultured in 48-well plates) or 150 ng (for cells cultured in 24-well plates) of total RNA was
1310 converted to complementary DNA (cDNA) using SensiFASTTM cDNA synthesis kit following
1311 manufacturer instructions (Bioline). For cDNA synthesis reaction mix containing adequate
1312 volumes of RNA, 2 μ l of 5 x TransAmp Buffer, 0.5 μ l of Reverse Transcriptase (RT) enzyme
1313 and DNAse/RNAse free water was prepared. Appropriate no-RNA template and no-RT control
1314 reactions were included. 384 well plate containing reaction mixture was centrifuged at 300 x
1315 g for 1 min and cDNA synthesis performed in a thermal cycler (T100, Bio-Rad Laboratories)
1316 using following program: 25 °C for 10 min (primer annealing), 42 °C for 15 min (reverse
1317 transcription), 85 °C for 5 min (inactivation), 4 °C hold.

1318 Subsequently, cDNA was diluted 1:10 in DNAse/RNAse free water to generate working
1319 solution and qPCR performed using SensiFASTTM SYBR[®] Lo-ROX Kit following manufacturer
1320 instructions (Bioline). For qPCR, a reaction mix of 2 μ l cDNA template, 2.2 μ l H₂O, 400 nM of
1321 gene-specific primers ([Table S2](#)) and 5 μ l of SensiFASTTM SYBR[®] Lo-ROX reagent was
1322 prepared. The qPCR run was performed as triplicate for each sample on QuantStudioTM 5
1323 Real-Time PCR system with following run conditions: 2 min at 95 °C followed by 40 cycles of

1324 5 s at 95°C and 30 s at 60°C. Ct values were normalised to Ct values of 18S endogenous
1325 control (ΔCt values). 18S housekeeping gene expression was found to be consistent across
1326 cell lines, conditions and time points. Standard deviation (SD) was calculated for each
1327 technical triplicate and samples with SD > 0.5 excluded from analysis. $\Delta\Delta Ct$ values were
1328 calculated as $2^{(-\Delta Ct)}$ and presented as $\Delta\Delta Ct$ multiplied by 10^6 or fold changes in $\Delta\Delta Ct \times 10^6$.
1329 Technical replicates were averaged per sample for statistical analysis.

1330

1331 **STATISTICAL ANALYSIS**

1332

1333 Statistical analysis was performed using GraphPad Prism version 9.4.0. Data were analysed
1334 using an unpaired t-test with Welch's correction when a comparison between two groups was
1335 being investigated or one-way ANOVA followed by post-hoc tests when comparisons between
1336 three or more groups were analysed, with p value of less than < 0.05 considered statistically
1337 significant. For data identifying as potential outliers, Z-score was calculated for each value and
1338 values with Z-score exceeding 2 or -2 (indicating 2 standard deviations (SD) above or below
1339 the mean) were identified as outliers and excluded from analysis. Results are shown as mean
1340 \pm SEM unless specified differently in the figure legends. The number of biological (N, hiPSC
1341 or iBEC lines) and independent (n) replicates used for each experiment are specified in figure
1342 legends.

1343

1344 **SUPPLEMENTARY MATERIALS**

1345

1346 **Supplementary figures:**

1347 **Figure. S1.** Effects of DMSO-only (vehicle) on the viability of the human umbilical vein
1348 endothelial cells (HUVEC) and control, and AD, induced brain endothelial-like cells (iBEC).

1349 **Figure. S2.** Characterisation of the healthy donor, isogenic-corrected control and *PSEN1-*
1350 $\Delta E9$ familial AD hiPSC lines.

1351 **Figure. S3.** Schematic flow of hiPSC-derived iBEC differentiation.

1352 **Figure. S4.** Characterisation of the healthy donor, isogenic-corrected control and *PSEN1- $\Delta E9$*
1353 familial AD iBEC.

1354 **Figure. S5.** Comparison of the cytotoxic effects of selected metal compounds between control
1355 and AD iBEC.

1356 **Figure. S6.** Baseline expression of proinflammatory, oxidative stress and endothelial cell
1357 junctional marker genes in control and AD iBEC.

1358 **Figure. S7.** Effects of TNF α /IFN γ - stimulation on control iBEC phenotype.

1359 **Figure. S8.** Comparison of AD iBEC responses to CuL¹, Cu(ATSM) and Ni(ATSM) treatments.

1360

1361 **Supplementary tables:**

1362 **Table S1.** Antibodies used in the study.

1363 **Table S2.** Primer sequences used in the study.

1364 **Table S3.** Coating solution concentration and cell plating density defined per specific culture
1365 plate type utilised during iBEC purification step.

1366

1367

1368 **ABBREVIATIONS:** AD: Alzheimer's disease; ALS: amyotrophic lateral sclerosis; BBB: blood-
1369 brain barrier; BEC: brain endothelial cell; (btsc): bis(thiosemicarbazone); *CDH5*: VE-cadherin;
1370 *CLDN5*: claudin-5; CNS: central nervous system; Cu: copper; ELISA: enzyme-linked
1371 immunosorbent assay; hiPSC: human induced pluripotent stem cell; human umbilical vein
1372 endothelial cells (HUVEC); iBEC: induced brain endothelial-like cell; ICP-MS: inductively
1373 coupled plasma mass spectrometry; IL-interleukin; IFN γ : interferon γ ; L: ligand; LDH: lactate
1374 dehydrogenase; MCP1: monocyte chemoattractant protein-1; MTT: 3-(4, 5-dimethyl thiazol-
1375 2)-2, 5-diphenyltetrazolium bromide; *OCLN*: occludin; PAMPA: parallel artificial membrane
1376 permeability assay; PD: Parkinson's disease; P-gp: P-glycoprotein; *PSEN1*: presenilin-1;
1377 qPCR: quantitative polymerase chain reaction; TEER: trans-endothelial electrical resistance;
1378 *TJP1* – zonula occludens 1; TNF α : tumour necrosis factor α ; veh. ctrl: vehicle control;
1379

1380 **Acknowledgements:** We acknowledge the QIMR Berghofer Medical Research Institute
1381 Microscopy Facility team for their assistance and the Florey Institute Biometals Facility for
1382 sample processing. We thank Dr Carolin Offenhauser for the provision of HUVEC, prof. Jose
1383 M. Polo for the provision of HDFa hiPSC line and Dr Romal Stewart for the critical reading of
1384 the manuscript. Graphical elements of figures were created with Biorender.com.

1385

1386 **Funding:** This work was supported by: NHMRC Project grant APP1125796 (ARW), National
1387 Health and Medical Research Council (NHMRC) Senior Research Fellowship (1118452)
1388 (ARW) and through the Academy of Finland under the aegis of JPND—www.jpnd.eu—and
1389 European Union's Horizon 2020 research and innovation program under grant agreement no.
1390 643417 (to JK). JMW was a recipient of The University of Queensland PhD scholarship and
1391 QIMR Berghofer Medical Research Institute Top-Up Scholarship.

1392

1393 **CRedit authorship contribution statement:** **Joanna M. Wasielewska:** conceptualisation,
1394 methodology, investigation, formal analysis, visualisation, writing - original draft, writing -
1395 review & editing; **Kathryn Szostak:** methodology, resources; **Lachlan E. McInnes:**
1396 methodology, resources; **Hazel Quek:** methodology, resources, formal analysis, writing -

1397 review & editing; **Juliana C. S. Chaves**: methodology; **Jeffrey R. Liddell**: methodology; **Jari**

1398 **Koistinaho**: resources (provision of hiPSC lines); **Lotta E. Oikari**: conceptualisation,

1399 methodology, supervision; **Paul S. Donnelly**: conceptualisation, methodology, resources,

1400 supervision, writing - review & editing; **Anthony R. White**: conceptualisation, writing - review

1401 & editing, supervision, project administration, funding acquisition. All authors reviewed and

1402 approved final version of the manuscript.

1403

1404 **Competing interests:** The authors have declared that no competing interest exists.

1405

1406 **References:**

- 1407 [1] D. S. Knopman *et al.*, "Alzheimer disease," *Nat Rev Dis Primers*, vol. 7, no. 1, Art. no. 1, May 2021,
1408 doi: 10.1038/s41572-021-00269-y.
- 1409 [2] Z.-Z. Si *et al.*, "Targeting neuroinflammation in Alzheimer's disease: from mechanisms to clinical
1410 applications," *Neural Regen Res*, vol. 18, no. 4, pp. 708–715, Sep. 2022, doi: 10.4103/1673-
1411 5374.353484.
- 1412 [3] F. Leng and P. Edison, "Neuroinflammation and microglial activation in Alzheimer disease: where
1413 do we go from here?," *Nat Rev Neurol*, vol. 17, no. 3, pp. 157–172, Mar. 2021, doi:
1414 10.1038/s41582-020-00435-y.
- 1415 [4] M. D. Sweeney, A. P. Sagare, and B. V. Zlokovic, "Blood–brain barrier breakdown in Alzheimer's
1416 disease and other neurodegenerative disorders," *Nat Rev Neurol*, vol. 14, no. 3, pp. 133–150,
1417 Mar. 2018, doi: 10.1038/nrneurol.2017.188.
- 1418 [5] R. I. Teleanu *et al.*, "Current Strategies to Enhance Delivery of Drugs across the Blood–Brain
1419 Barrier," *Pharmaceutics*, vol. 14, no. 5, Art. no. 5, May 2022, doi:
1420 10.3390/pharmaceutics14050987.
- 1421 [6] É. Hellinger *et al.*, "Comparison of brain capillary endothelial cell-based and epithelial (MDCK-
1422 MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood–brain barrier penetration models,"
1423 *Eur J Pharm Biopharm*, vol. 82, no. 2, pp. 340–351, Oct. 2012, doi: 10.1016/j.ejpb.2012.07.020.
- 1424 [7] K. Bittermann and K.-U. Goss, "Predicting apparent passive permeability of Caco-2 and MDCK cell-
1425 monolayers: A mechanistic model," *PLoS ONE*, vol. 12, no. 12, 2017, doi:
1426 10.1371/journal.pone.0190319.
- 1427 [8] I. Hubatsch, E. G. E. Ragnarsson, and P. Artursson, "Determination of drug permeability and
1428 prediction of drug absorption in Caco-2 monolayers," *Nat Protoc*, vol. 2, no. 9, pp. 2111–2119,
1429 2007, doi: 10.1038/nprot.2007.303.
- 1430 [9] J. Cummings, "Lessons Learned from Alzheimer Disease: Clinical Trials with Negative Outcomes,"
1431 *Clin Transl Sci*, vol. 11, no. 2, pp. 147–152, Mar. 2018, doi: 10.1111/cts.12491.
- 1432 [10] S. Veszelka *et al.*, "Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With
1433 Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport," *Front Mol
1434 Neurosci*, vol. 11, p. 166, 2018, doi: 10.3389/fnmol.2018.00166.
- 1435 [11] J. G. DeStefano, J. J. Jamieson, R. M. Linville, and P. C. Searson, "Benchmarking in vitro tissue-
1436 engineered blood–brain barrier models," *Fluids Barriers CNS*, vol. 15, no. 1, p. 32, Dec. 2018,
1437 doi: 10.1186/s12987-018-0117-2.
- 1438 [12] J. M. Wasielewska, J. C. Da Silva Chaves, A. R. White, and L. E. Oikari, "Modeling the Blood–
1439 Brain Barrier to Understand Drug Delivery in Alzheimer's Disease," in *Alzheimer's Disease: Drug
1440 Discovery*, X. Huang, Ed., Brisbane (AU): Exon Publications, 2020,
1441 doi:10.36255/exonpublications.alzheimersdisease.2020.ch7.
- 1442 [13] M. S. Thomsen, N. Humle, E. Hede, T. Moos, A. Burkhardt, and L. B. Thomsen, "The blood-brain
1443 barrier studied in vitro across species," *PLOS ONE*, vol. 16, no. 3, p. e0236770, Mar. 2021, doi:
1444 10.1371/journal.pone.0236770.
- 1445 [14] H. W. Song, K. L. Foreman, B. D. Gastfriend, J. S. Kuo, S. P. Palecek, and E. V. Shusta,
1446 "Transcriptomic comparison of human and mouse brain microvessels," *Sci Rep*, vol. 10, no. 1,
1447 Art. no. 1, Jul. 2020, doi: 10.1038/s41598-020-69096-7.
- 1448 [15] F. J. Garcia *et al.*, "Single-cell dissection of the human cerebrovasculature in health and disease,"
1449 *Nature*, vol. 603, no. 7903, pp. 893–899, Mar. 2022, doi: 10.1038/s41586-022-04521-7.

1450 [16] S. D. Campbell, K. J. Regina, and E. D. Kharasch, "Significance of Lipid Composition in a Blood
1451 Brain Barrier-Mimetic PAMPA Assay," *J Biomol Screen*, vol. 19, no. 3, pp. 437–444, Mar. 2014,
1452 doi: 10.1177/1087057113497981.

1453 [17] J. Bicker, G. Alves, A. Fortuna, P. Soares-da-Silva, and A. Falcão, "A new PAMPA model using an
1454 in-house brain lipid extract for screening the blood-brain barrier permeability of drug candidates,"
1455 *Int J Pharm*, vol. 501, no. 1–2, pp. 102–111, Mar. 2016, doi: 10.1016/j.ijpharm.2016.01.074.

1456 [18] I. Puscas *et al.*, "IVIVC Assessment of Two Mouse Brain Endothelial Cell Models for Drug
1457 Screening," *Pharmaceutics*, vol. 11, no. 11, Art. no. 11, Nov. 2019, doi:
1458 10.3390/pharmaceutics11110587.

1459 [19] A. Montagne *et al.*, "APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline,"
1460 *Nature*, vol. 581, no. 7806, pp. 71–76, 2020, doi: 10.1038/s41586-020-2247-3.

1461 [20] G. Barisano, A. Montagne, K. Kisler, J. A. Schneider, J. M. Wardlaw, and B. V. Zlokovic, "Blood–
1462 brain barrier link to human cognitive impairment and Alzheimer's disease," *Nat Cardiovasc Res*,
1463 vol. 1, no. 2, Art. no. 2, Feb. 2022, doi: 10.1038/s44161-021-00014-4.

1464 [21] A. Montagne *et al.*, "APOE4 accelerates advanced-stage vascular and neurodegenerative disorder
1465 in old Alzheimer's mice via cyclophilin A independently of amyloid-β," *Nat Aging*, vol. 1, no. 6,
1466 Art. no. 6, Jun. 2021, doi: 10.1038/s43587-021-00073-z.

1467 [22] J. W. Blanchard *et al.*, "Reconstruction of the human blood-brain barrier *in vitro* reveals a
1468 pathogenic mechanism of APOE4 in pericytes.(Report)," *Nat Med*, vol. 26, no. 6, pp. 952–963,
1469 2020, doi: 10.1038/s41591-020-0886-4.

1470 [23] L. J. Trigiani *et al.*, "A functional cerebral endothelium is necessary to protect against cognitive
1471 decline," *J Cereb Blood Flow Metab*, vol. 42, no. 1, pp. 74–89, Jan. 2022, doi:
1472 10.1177/0271678X211045438.

1473 [24] K. Sharma, P. Kalakoti, A. Nanda, and H. Sun, "Chapter 26 - Blood-Brain Barrier Disruption During
1474 Neuroinflammation," in *Neuroinflammation (Second Edition)*, A. Minagar, Ed., Academic Press,
1475 2018, pp. 529–539. doi: 10.1016/B978-0-12-811709-5.00030-2.

1476 [25] F. Takata, S. Nakagawa, J. Matsumoto, and S. Dohgu, "Blood-Brain Barrier Dysfunction
1477 Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain
1478 Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction," *Front Cell
1479 Neurosci*, vol. 15:661838, Sep. 2021, doi:10.3389/fncel.2021.661838

1480 [26] B. W. Festoff, R. K. Sajja, P. van Dreden, and L. Cucullo, "HMGB1 and thrombin mediate the blood–
1481 brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to
1482 neurodegeneration in Alzheimer's disease," *J Neuroinflammation*, vol. 13, no. 1, p. 194, Aug.
1483 2016, doi: 10.1186/s12974-016-0670-z.

1484 [27] Y. Pan and J. A. Nicolazzo, "Impact of aging, Alzheimer's disease and Parkinson's disease on the
1485 blood-brain barrier transport of therapeutics," *Adv Drug Deliv Rev*, vol. 135, pp. 62–74, Oct.
1486 2018, doi: 10.1016/j.addr.2018.04.009.

1487 [28] H. Wei, H. Jiang, Y. Zhou, X. Xiao, C. Zhou, and X. Ji, "Vascular endothelial cells: a fundamental
1488 approach for brain waste clearance," *Brain*, vol. 146, no. 4, pp. 1299–1315, Apr. 2023, doi:
1489 10.1093/brain/awac495.

1490 [29] Y. Yuan, J. Sun, Q. Dong, and M. Cui, "Blood–brain barrier endothelial cells in
1491 neurodegenerative diseases: Signals from the 'barrier,'" *Front Neurosci*, vol. 17:1047778, Feb.
1492 2023, doi: 10.3389/fnins.2023.1047778

1493 [30] A. Carrano, J. J. M. Hoozemans, S. M. van der Vies, J. van Horssen, H. E. de Vries, and A. J. M.
1494 Rozemuller, "Neuroinflammation and blood-brain barrier changes in capillary amyloid
1495 angiopathy," *Neurodegener Dis*, vol. 10, no. 1–4, pp. 329–331, 2012, doi: 10.1159/000334916.

1496 [31] M. Ohshima, S. Kamei, H. Fushimi, S. Mima, T. Yamada, and T. Yamamoto, "Prediction of Drug
1497 Permeability Using In Vitro Blood–Brain Barrier Models with Human Induced Pluripotent Stem
1498 Cell-Derived Brain Microvascular Endothelial Cells," *BioResearch open access*, vol. 8, no. 1, pp.
1499 2–209, 2019, doi: 10.1089/biores.2019.0026.

1500 [32] G. L. Roux *et al.*, "Proof-of-Concept Study of Drug Brain Permeability Between in Vivo Human Brain
1501 and an in Vitro iPSCs-Human Blood-Brain Barrier Model," *Sci Rep*, vol. 9, p. 16310, Nov. 2019,
1502 doi: 10.1038/s41598-019-52213-6.

1503 [33] L. Chen *et al.*, "Claudin-5 binder enhances focused ultrasound-mediated opening in an *in vitro*
1504 blood-brain barrier model," *Theranostics*, vol. 12, no. 5, pp. 1952–1970, 2022, doi:
1505 10.7150/thno.65539.

1506 [34] A. Appelt-Menzel *et al.*, "Human iPSC-Derived Blood-Brain Barrier Models: Valuable Tools for
1507 Preclinical Drug Discovery and Development?," *Curr Protoc Stem Cell Biol*, vol. 55, no. 1, p.
1508 e122, 2020, doi: 10.1002/cpsc.122.

1509 [35] G. D. Vatine *et al.*, "Human iPSC-Derived Blood-Brain Barrier Chips Enable Disease Modeling and
1510 Personalized Medicine Applications," *Cell Stem Cell*, vol. 24, no. 6, pp. 995–1005.e6, Jun. 2019,
1511 doi: 10.1016/j.stem.2019.05.011.

1512 [36] M. E. Katt *et al.*, "The role of mutations associated with familial neurodegenerative disorders on
1513 blood–brain barrier function in an iPSC model," *Fluids Barriers CNS*, vol. 16, no. 1, p. 20, Jul.
1514 2019, doi: 10.1186/s12987-019-0139-4.

1515 [37] R. G. Lim *et al.*, "Huntington's Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal
1516 WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits," *Cell Rep*, vol. 19, no. 7, pp. 1365–
1517 1377, May 2017, doi: 10.1016/j.celrep.2017.04.021.

1518 [38] J. M. Wasielewska *et al.*, "A sporadic Alzheimer's blood-brain barrier model for developing
1519 ultrasound-mediated delivery of Aducanumab and anti-Tau antibodies," *Theranostics*, vol. 12,
1520 no. 16, pp. 6826–6847, 2022, doi: 10.7150/thno.72685.

1521 [39] S. Raut, R. Patel, and A. J. Al-Ahmad, "Presence of a mutation in PSEN1 or PSEN2 gene is
1522 associated with an impaired brain endothelial cell phenotype in vitro," *Fluids Barriers CNS*, vol.
1523 18, no. 1, p. 3, Jan. 2021, doi: 10.1186/s12987-020-00235-y.

1524 [40] L. E. Oikari *et al.*, "Altered Brain Endothelial Cell Phenotype from a Familial Alzheimer Mutation
1525 and Its Potential Implications for Amyloid Clearance and Drug Delivery," *Stem Cell Reports*, vol.
1526 14, no. 5, pp. 924–939, 2020, doi: 10.1016/j.stemcr.2020.03.011.

1527 [41] J. C. S. Chaves *et al.*, "Alzheimer's disease brain endothelial-like cells reveal differential drug
1528 transporter expression and modulation by potentially therapeutic focused ultrasound," Preprint,
1529 Mar. 2023. doi: 10.21203/rs.3.rs-2605800/v1.

1530 [42] X. Y. Choo *et al.*, "Cull(atsm) Attenuates Neuroinflammation," *Front. Neurosci.*, vol. 12, 2018, doi:
1531 10.3389/fnins.2018.00668.

1532 [43] Peter J. Crouch *et al.*, "Increasing Cu bioavailability inhibits A β oligomers and tau phosphorylation,"
1533 *Proc Natl Acad Sci U S A*, vol. 106, no. 2, pp. 381–386, 2009, doi: 10.1073/pnas.0809057106.

1534 [44] P. S. Donnelly *et al.*, "Selective intracellular release of copper and zinc ions from bis(
1535 thiosemicarbazone) complexes reduces levels of Alzheimer disease amyloid-beta peptide,"
1536 *Journal Of Biological Chemistry*, vol. 283, no. 8, pp. 4568–4577, 2008, doi:
1537 10.1074/jbc.M705957200.

1538 [45] B. R. Roberts *et al.*, "Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects
1539 motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral
1540 sclerosis," *J Neurosci*, vol. 34, no. 23, pp. 8021–8031, 2014, doi: 10.1523/JNEUROSCI.4196-
1541 13.2014.

1542 [46] L. W. Hung *et al.*, "The hypoxia imaging agent Cu II (atsm) is neuroprotective and improves motor
1543 and cognitive functions in multiple animal models of Parkinson's disease," *J Exp Med*, vol. 209,
1544 no. 4, pp. 837–854, 2012, doi: 10.1084/jem.20112285.

1545 [47] J. R. Williams *et al.*, "Copper delivery to the CNS by CuATSM effectively treats motor neuron
1546 disease in SODG93A mice co-expressing the Copper-Chaperone-for-SOD," *Neurobiol Dis*, vol.
1547 89, pp. 1–9, May 2016, doi: 10.1016/j.nbd.2016.01.020.

1548 [48] M. T. Huuskonen *et al.*, "The Copper bis(thiosemicarbazone) Complex Cull(atsm) Is Protective
1549 Against Cerebral Ischemia Through Modulation of the Inflammatory Milieu," *Neurotherapeutics*,
1550 vol. 14, no. 2, pp. 519–532, Apr. 2017, doi: 10.1007/s13311-016-0504-9.

1551 [49] X. Y. Choo *et al.*, "Novel Anti-Neuroinflammatory Properties of a Thiosemicarbazone–
1552 Pyridylhydrazone Copper(II) Complex," *Int J Mol Sci*, vol. 23, no. 18, Art. no. 18, Jan. 2022, doi:
1553 10.3390/ijms231810722.

1554 [50] E. K. John and M. A. Green, "Structure-activity relationships for metal-labeled blood flow tracers:
1555 comparison of keto aldehyde bis(thiosemicarbazone)copper(II) derivatives," *J Med Chem*, vol.
1556 33, no. 6, pp. 1764–1770, Jun. 1990, doi: 10.1021/jm00168a035.

1557 [51] Z. Xiao, P. S. Donnelly, M. Zimmermann, and A. G. Wedd, "Transfer of copper between
1558 bis(thiosemicarbazone) ligands and intracellular copper-binding proteins. insights into
1559 mechanisms of copper uptake and hypoxia selectivity," *Inorg Chem*, vol. 47, no. 10, pp. 4338–
1560 4347, May 2008, doi: 10.1021/ic702440e.

1561 [52] B. M. Paterson *et al.*, "Modification of Biodistribution and Brain Uptake of Copper
1562 Bis(thiosemicarbazone) Complexes by the Incorporation of Amine and Polyamine Functional
1563 Groups," *Inorg Chem*, vol. 58, no. 7, pp. 4540–4552, Apr. 2019, doi:
1564 10.1021/acs.inorgchem.9b00117.

1565 [53] M. Ikawa *et al.*, "Increased oxidative stress is related to disease severity in the ALS motor cortex:
1566 A PET study," *Neurology*, vol. 84, no. 20, pp. 2033–2039, May 2015, doi:
1567 10.1212/WNL.0000000000001588.

1568 [54] M. Ikawa, H. Okazawa, T. Kudo, M. Kuriyama, Y. Fujibayashi, and M. Yoneda, "Evaluation of
1569 striatal oxidative stress in patients with Parkinson's disease using [62Cu]ATSM PET," *Nucl Med
1570 Biol*, vol. 38, no. 7, pp. 945–951, Oct. 2011, doi: 10.1016/j.nucmedbio.2011.02.016.

1571 [55] J. Pyun *et al.*, "Copper bis(thiosemicarbazone) complexes modulate P-glycoprotein expression and
1572 function in human brain microvascular endothelial cells," *J Neurochem*, Mar. 2022, doi:
1573 10.1111/jnc.15609.

1574 [56] A. Southon *et al.*, "Cull(atsm) inhibits ferroptosis: Implications for treatment of neurodegenerative
1575 disease," *Br J Pharmacol*, vol. 177, no. 3, pp. 656–667, Feb. 2020, doi: 10.1111/bph.14881.

1576 [57] M. Oksanen *et al.*, "PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in
1577 Alzheimer's Disease," *Stem Cell Reports*, vol. 9, no. 6, pp. 1885–1897, Dec. 2017, doi:
1578 10.1016/j.stemcr.2017.10.016.

1579 [58] M. J. Stebbins, H. K. Wilson, S. G. Canfield, T. Qian, S. P. Palecek, and E. V. Shusta,
1580 "Differentiation and characterization of human pluripotent stem cell-derived brain microvascular
1581 endothelial cells," *Methods*, vol. 101, pp. 93–102, May 2016, doi: 10.1016/j.ymeth.2015.10.016.

1582 [59] E. S. Lippmann *et al.*, "Human Blood-Brain Barrier Endothelial Cells Derived from Pluripotent Stem
1583 Cells," *Nat Biotechnol*, vol. 30, no. 8, pp. 783–791, Aug. 2012, doi: 10.1038/nbt.2247.

1584 [60] P. Verner, C. Vazquez Echegaray, C. Oses, M. Stortz, A. Guberman, and V. Levi, "Dynamical
1585 reorganization of the pluripotency transcription factors Oct4 and Sox2 during early differentiation
1586 of embryonic stem cells," *Sci Rep*, vol. 10, no. 1, p. 5195, Mar. 2020, doi: 10.1038/s41598-020-
1587 62235-0.

1588 [61] G. Pan and J. A. Thomson, "Nanog and transcriptional networks in embryonic stem cell
1589 pluripotency," *Cell Res*, vol. 17, no. 1, pp. 42–49, Jan. 2007, doi: 10.1038/sj.cr.7310125.

1590 [62] G. Shi and Y. Jin, "Role of Oct4 in maintaining and regaining stem cell pluripotency," *Stem Cell Res
1591 Ther*, vol. 1, no. 5, p. 39, Dec. 2010, doi: 10.1186/scrt39.

1592 [63] A. M. Butt, H. C. Jones, and N. J. Abbott, "Electrical resistance across the blood-brain barrier in
1593 anaesthetized rats: a developmental study.,," *J Physiol*, vol. 429, pp. 47–62, Oct. 1990.

1594 [64] C. Crone and S. P. Olesen, "Electrical resistance of brain microvascular endothelium," *Brain Res*,
1595 vol. 241, no. 1, pp. 49–55, Jun. 1982, doi: 10.1016/0006-8993(82)91227-6.

1596 [65] B. Srinivasan, A. R. Kolli, M. B. Esch, H. E. Abaci, M. L. Shuler, and J. J. Hickman, "TEER
1597 measurement techniques for in vitro barrier model systems," *J Lab Autom*, vol. 20, no. 2, pp.
1598 107–126, Apr. 2015, doi: 10.1177/2211068214561025.

1599 [66] K. R. Parker *et al.*, "Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential
1600 Off-Tumor Targets for CAR-T Immunotherapies," *Cell*, vol. 183, no. 1, pp. 126–142.e17, Oct.
1601 2020, doi: 10.1016/j.cell.2020.08.022.

1602 [67] R. Squitti *et al.*, "Copper Imbalance in Alzheimer's Disease: Meta-Analysis of Serum, Plasma, and
1603 Brain Specimens, and Replication Study Evaluating ATP7B Gene Variants," *Biomolecules*, vol.
1604 11, no. 7, p. 960, Jun. 2021, doi: 10.3390/biom11070960.

1605 [68] L. E. McInnes *et al.*, "Potential Diagnostic Imaging of Alzheimer's Disease with Copper-64
1606 Complexes That Bind to Amyloid- β Plaques," *Inorg Chem*, vol. 58, no. 5, pp. 3382–3395, Mar.
1607 2019, doi: 10.1021/acs.inorgchem.8b03466.

1608 [69] K. A. Price *et al.*, "Mechanisms Controlling the Cellular Accumulation of Copper
1609 Bis(thiosemicarbazone) Complexes," *Inorg. Chem.*, vol. 50, no. 19, pp. 9594–9605, Oct. 2011,
1610 doi: 10.1021/ic201334q.

1611 [70] R. M. Linville *et al.*, "Human iPSC-derived blood-brain barrier microvessels: validation of barrier
1612 function and endothelial cell behavior," *Biomaterials*, vol. 190–191, pp. 24–37, Jan. 2019, doi:
1613 10.1016/j.biomaterials.2018.10.023.

1614 [71] T. C. Qian *et al.*, "Directed differentiation of human pluripotent stem cells to blood-brain barrier
1615 endothelial cells," *Sci Adv*, vol. 3, no. 11, 2017, doi: 10.1126/sciadv.1701679.

1616 [72] A. Grubman *et al.*, "A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease
1617 reveals cell-type-specific gene expression regulation," *Nat Neurosci*, vol. 22, no. 12, pp. 2087–
1618 2097, Dec. 2019, doi: 10.1038/s41593-019-0539-4.

1619 [73] A. C. Yang *et al.*, "A human brain vascular atlas reveals diverse mediators of Alzheimer's risk,"
1620 *Nature*, vol. 603, no. 7903, pp. 885–892, Mar. 2022, doi: 10.1038/s41586-021-04369-3.

1621 [74] A. Bryant *et al.*, "Endothelial Cells are Heterogeneous in Different Brain Regions and are
1622 Dramatically Altered in Alzheimer's Disease." *J Neurosci*, 43(24):4541–4557, Jun. 2023. doi:
1623 10.1523/JNEUROSCI.0237-23.2023.

1624 [75] W. Ou *et al.*, "Biologic TNF- α inhibitors reduce microgliosis, neuronal loss, and tau phosphorylation
1625 in a transgenic mouse model of tauopathy," *J Neuroinflammation*, vol. 18, no. 1, p. 312, Dec.
1626 2021, doi: 10.1186/s12974-021-02332-7.

1627 [76] M. Belkheffa *et al.*, “IFN- γ and TNF- α are involved during Alzheimer disease progression and
1628 correlate with nitric oxide production: a study in Algerian patients,” *J Interferon Cytokine Res*,
1629 vol. 34, no. 11, pp. 839–847, Nov. 2014, doi: 10.1089/jir.2013.0085.

1630 [77] H.-S. Yang *et al.*, “Plasma IL-12/IFN- γ axis predicts cognitive trajectories in cognitively unimpaired
1631 older adults,” *Alzheimers Dement*, vol. 18, no. 4, pp. 645–653, 2022, doi: 10.1002/alz.12399.

1632 [78] Q. Shu, M. A. Amin, J. H. Ruth, P. L. Campbell, and A. E. Koch, “Suppression of endothelial cell
1633 activity by inhibition of TNF α ,” *Arthritis Res Ther*, vol. 14, no. 2, p. R88, Apr. 2012, doi:
1634 10.1186/ar3812.

1635 [79] P. Zhou *et al.*, “Attenuation of TNF- α -Induced Inflammatory Injury in Endothelial Cells by
1636 Ginsenoside Rb1 via Inhibiting NF- κ B, JNK and p38 Signaling Pathways,” *Front Pharmacol*, vol.
1637 8:464, Aug. 2017, doi: 10.3389/fphar.2017.00464.

1638 [80] S. Indraccolo *et al.*, “Identification of Genes Selectively Regulated by IFNs in Endothelial Cells1,”
1639 *The Journal of Immunology*, vol. 178, no. 2, pp. 1122–1135, Jan. 2007, doi:
1640 10.4049/jimmunol.178.2.1122.

1641 [81] S. Lechleitner, J. Gille, D. R. Johnson, and P. Petzelbauer, “Interferon Enhances Tumor Necrosis
1642 Factor–induced Vascular Cell Adhesion Molecule 1 (CD106) Expression in Human Endothelial
1643 Cells by an Interferon-related Factor 1–dependent Pathway,” *J Exp Med*, vol. 187, no. 12, pp.
1644 2023–2030, Jun. 1998, doi: 10.1084/jem.187.12.2023.

1645 [82] S. J. O’Carroll *et al.*, “Pro-inflammatory TNF α and IL-1 β differentially regulate the inflammatory
1646 phenotype of brain microvascular endothelial cells,” *J Neuroinflammation*, vol. 12, p. 131, Jul.
1647 2015, doi: 10.1186/s12974-015-0346-0.

1648 [83] A. Jana *et al.*, “Increased Type I interferon signaling and brain endothelial barrier dysfunction in an
1649 experimental model of Alzheimer’s disease,” *Sci Rep*, vol. 12, no. 1, Art. no. 1, Oct. 2022, doi:
1650 10.1038/s41598-022-20889-y.

1651 [84] L. O’Mahony, J. Holland, J. Jackson, C. Feighery, T. P. Hennessy, and K. Mealy, “Quantitative
1652 intracellular cytokine measurement: age-related changes in proinflammatory cytokine
1653 production,” *Clin Exp Immunol*, vol. 113, no. 2, pp. 213–219, Aug. 1998, doi: 10.1046/j.1365-
1654 2249.1998.00641.x.

1655 [85] K. E. Sullivan *et al.*, “Measurement of Cytokine Secretion, Intracellular Protein Expression, and
1656 mRNA in Resting and Stimulated Peripheral Blood Mononuclear Cells,” *Clin Diagn Lab Immunol*,
1657 vol. 7, no. 6, pp. 920–924, Nov. 2000.

1658 [86] R. Heijligenberg, J. A. Romijn, M. H. Godfried, E. Endert, and H. P. Sauerwein, “In vitro production
1659 of cytokines in whole blood versus plasma concentrations of cytokines in AIDS,” *AIDS Res Hum
1660 Retroviruses*, vol. 14, no. 2, pp. 123–127, Jan. 1998, doi: 10.1089/aid.1998.14.123.

1661 [87] J. M. Long and D. M. Holtzman, “Alzheimer Disease: An Update on Pathobiology and Treatment
1662 Strategies,” *Cell*, vol. 179, no. 2, pp. 312–339, Oct. 2019, doi: 10.1016/j.cell.2019.09.001.

1663 [88] E. Karan and J. Hardy, “A critique of the drug discovery and phase 3 clinical programs targeting
1664 the amyloid hypothesis for Alzheimer disease,” *Ann Neurol*, vol. 76, no. 2, pp. 185–205, Aug.
1665 2014, doi: 10.1002/ana.24188.

1666 [89] K. P. Kepp *et al.*, “The anti-amyloid monoclonal antibody Lecanemab: 16 cautionary notes,”
1667 Zenodo, Jan. 2023, doi: 10.5281/zenodo.7500723.

1668 [90] C. H. van Dyck *et al.*, “Lecanemab in Early Alzheimer’s Disease,” *N Engl J Med*, vol. 388, no. 1,
1669 pp. 9–21, Jan. 2023, doi: 10.1056/NEJMoa2212948.

1670 [91] T. M. Lu *et al.*, “Pluripotent stem cell-derived epithelium misidentified as brain microvascular
1671 endothelium requires ETS factors to acquire vascular fate,” *Proc Natl Acad Sci U S A*, vol. 118,
1672 no. 8, Feb. 2021, doi: 10.1073/pnas.2016950118.

1673 [92] S. D. Girard *et al.*, “High and low permeability of human pluripotent stem cell–derived blood–brain
1674 barrier models depend on epithelial or endothelial features,” *The FASEB Journal*, vol. 37, no. 2,
1675 p. e22770, 2023, doi: 10.1096/fj.202201422R.

1676 [93] E. S. Lippmann, S. M. Azarin, S. P. Palecek, and E. V. Shusta, “Commentary on human pluripotent
1677 stem cell-based blood–brain barrier models,” *Fluids Barriers CNS*, vol. 17, no. 1, p. 64, Oct.
1678 2020, doi: 10.1186/s12987-020-00222-3.

1679 [94] J. Cummings *et al.*, “Alzheimer’s disease drug development pipeline: 2022,” *Alzheimers Dement*,
1680 vol. 8, no. 1, p. e12295, May 2022, doi: 10.1002/trc2.12295.

1681 [95] J. L. J. Dearling, J. S. Lewis, G. E. D. Mullen, M. J. Welch, and P. J. Blower, “Copper
1682 bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships,”
1683 *J Biol Inorg Chem*, vol. 7, no. 3, pp. 249–259, Mar. 2002, doi: 10.1007/s007750100291.

1684 [96] C. J. Mathias, S. R. Bergmann, and M. A. Green, “Species-dependent binding of copper(II)
1685 bis(thiosemicarbazone) radiopharmaceuticals to serum albumin,” *J Nucl Med*, vol. 36, no. 8, pp.
1686 1451–1455, Aug. 1995.

1687 [97] J. Pyun *et al.*, "Cu(ATSM) Increases P-Glycoprotein Expression and Function at the Blood-Brain
1688 Barrier in C57BL6/J Mice," *Pharmaceutics*, vol. 15, no. 8, Art. no. 8, Aug. 2023, doi:
1689 10.3390/pharmaceutics15082084.

1690 [98] M. A. Greenough *et al.*, "Presenilins promote the cellular uptake of copper and zinc and maintain
1691 copper chaperone of SOD1-dependent copper/zinc superoxide dismutase activity," *J. Biol.
1692 Chem.*, vol. 286, no. 11, pp. 9776–9786, Mar. 2011, doi: 10.1074/jbc.M110.163964.

1693 [99] A. Southon, M. A. Greenough, G. Ganio, A. I. Bush, R. Burke, and J. Camakaris, "Presenilin
1694 Promotes Dietary Copper Uptake," *PLoS One*, vol. 8, no. 5, May 2013, doi:
1695 10.1371/journal.pone.0062811.

1696 [100] A. Noor *et al.*, "Copper Bis(thiosemicarbazone)-stilbonyl Complexes That Bind to Amyloid- β
1697 Plaques," *Inorg. Chem.*, vol. 59, no. 16, pp. 11658–11669, Aug. 2020, doi:
1698 10.1021/acs.inorgchem.0c01520.

1699 [101] M. T. Fodero-Tavoletti *et al.*, "Bis(thiosemicarbazone) Cu-64 complexes for positron emission
1700 tomography imaging of Alzheimer's disease," *J Alzheimers Dis*, vol. 20, no. 1, pp. 49–55, 2010,
1701 doi: 10.3233/JAD-2010-1359.

1702 [102] J. B. Torres *et al.*, "PET Imaging of Copper Trafficking in a Mouse Model of Alzheimer Disease,"
1703 *J Nucl Med*, vol. 57, no. 1, pp. 109–114, Jan. 2016, doi: 10.2967/jnumed.115.162370.

1704 [103] P. Agarwal *et al.*, "Brain copper may protect from cognitive decline and Alzheimer's disease
1705 pathology: a community-based study," *Mol Psychiatry*, pp. 1–7, Oct. 2022, doi: 10.1038/s41380-
1706 022-01802-5.

1707 [104] A. Al-Soudi, M. H. Kaaij, and S. W. Tas, "Endothelial cells: From innocent bystanders to active
1708 participants in immune responses," *Autoimmunity Reviews*, vol. 16, no. 9, pp. 951–962, 2017,
1709 doi: 10.1016/j.autrev.2017.07.008.

1710 [105] H.-W. Jeong *et al.*, "Single-cell transcriptomics reveals functionally specialized vascular
1711 endothelium in brain," *eLife*, vol. 11, p. e57520, Oct. 2022, doi: 10.7554/eLife.57520.

1712 [106] A. P. Fournier *et al.*, "Single-Cell Transcriptomics Identifies Brain Endothelium Inflammatory
1713 Networks in Experimental Autoimmune Encephalomyelitis," *Neuro Immunol Neuroinflamm*,
1714 vol. 10, no. 1, Jan. 2023, doi: 10.1212/NXI.00000000000200046.

1715 [107] H. E. de Vries, G. Kooij, D. Frenkel, S. Georgopoulos, A. Monsonego, and D. Janigro,
1716 "Inflammatory events at blood–brain barrier in neuroinflammatory and neurodegenerative
1717 disorders: Implications for clinical disease," *Epilepsia*, vol. 53, no. Suppl 6, pp. 45–52, Nov. 2012,
1718 doi: 10.1111/j.1528-1167.2012.03702.x.

1719 [108] M. A. Erickson, K. Dohi, and W. A. Banks, "Neuroinflammation: A Common Pathway in CNS
1720 Diseases as Mediated at the Blood-Brain Barrier," *Neuroimmunomodulation*, vol. 19, no. 2, pp.
1721 121–130, Jan. 2012, doi: 10.1159/000330247.

1722 [109] C. R. Noe, M. Noe-Letschnig, P. Handschuh, C. A. Noe, and R. Lanzenberger, "Dysfunction of
1723 the Blood-Brain Barrier—A Key Step in Neurodegeneration and Dementia," *Front. Aging
1724 Neurosci.*, vol. 0, 2020, doi: 10.3389/fnagi.2020.00185.

1725 [110] B. Araújo *et al.*, "Neuroinflammation and Parkinson's Disease—From Neurodegeneration to
1726 Therapeutic Opportunities," *Cells*, vol. 11, no. 18, Sep. 2022, doi: 10.3390/cells11182908.

1727 [111] I. Pediaditakis *et al.*, "Modeling alpha-synuclein pathology in a human brain-chip to assess blood-
1728 brain barrier disruption," *Nat Commun*, vol. 12, no. 1, p. 5907, Oct. 2021, doi: 10.1038/s41467-
1729 021-26066-5.

1730 [112] M. C. Cao *et al.*, "Serum biomarkers of neuroinflammation and blood-brain barrier leakage in
1731 amyotrophic lateral sclerosis," *BMC Neurology*, vol. 22, no. 1, p. 216, Jun. 2022, doi:
1732 10.1186/s12883-022-02730-1.

1733 [113] D. Rowe, S. Mathers, K. Noel, and C. Rosenfeld, "CuATSM Phase 2a Study Confirms Disease-
1734 Modifying Effects in Patients with Sporadic ALS Observed in the Phase 1 Study (1338),"
1735 *Neurology*, vol. 94, no. 15 Supplement, Apr. 2020.

1736 [114] Evans, A., Rowe, D., Lee, W., Noel, K. & Rosenfeld, C, "Preliminary evidence of CuATSM
1737 treatment benefit in Parkinson's disease.", *International Association of Parkinsonism and
1738 Related Disorders.*, 19 Montreal, Canada 2019.

1739 [115] D. Lazic, A. P. Sagare, A. M. Nikolakopoulou, J. H. Griffin, R. Vassar, and B. V. Zlokovic, "3K3A-
1740 activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in
1741 mice," *J Exp Med*, vol. 216, no. 2, pp. 279–293, Feb. 2019, doi: 10.1084/jem.20181035.

1742 [116] C. S. B. Singh, K. B. Choi, L. Munro, H. Y. Wang, C. G. Pfeifer, and W. A. Jefferies, "Reversing
1743 pathology in a preclinical model of Alzheimer's disease by hacking cerebrovascular
1744 neoangiogenesis with advanced cancer therapeutics," *eBioMedicine*, vol. 71, Sep. 2021, doi:
1745 10.1016/j.ebiom.2021.103503.

1746 [117] J. A. Sousa *et al.*, "Reconsidering the role of blood-brain barrier in Alzheimer's disease: From
1747 delivery to target," *Front Aging Neurosci*, vol. 15:1102809, Feb. 2023, doi:
1748 10.3389/fnagi.2023.1102809.

1749 [118] L. Zhao *et al.*, "Pharmacologically reversible zonation-dependent endothelial cell transcriptomic
1750 changes with neurodegenerative disease associations in the aged brain," *Nat Commun*, vol. 11,
1751 no. 1, Art. no. 1, Sep. 2020, doi: 10.1038/s41467-020-18249-3.

1752 [119] N. M. Dräger *et al.*, "A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators
1753 of disease states," *Nat Neurosci*, vol. 25, no. 9, Art. no. 9, Sep. 2022, doi: 10.1038/s41593-022-
1754 01131-4.

1755 [120] M. Reich *et al.*, "Alzheimer's Risk Gene TREM2 Determines Functional Properties of New Type
1756 of Human iPSC-Derived Microglia," *Front Immunol*, vol. 11, p. 617860, 2020, doi:
1757 10.3389/fimmu.2020.617860.

1758 [121] V. Volpato and C. Webber, "Addressing variability in iPSC-derived models of human disease:
1759 guidelines to promote reproducibility," *Dis Model Mech*, vol. 13, no. 1, p. dmm042317, Jan. 2020,
1760 doi: 10.1242/dmm.042317.

1761 [122] B. A. Gingras, T. Suprunchuk, and C. H. Bayley, "The preparation of some thiosemicarbazones
1762 and their copper complexes: part iii," *Can. J. Chem.*, vol. 40, no. 6, pp. 1053–1059, Jun. 1962,
1763 doi: 10.1139/v62-161.

1764 [123] B. M. Paterson, J. A. Karas, D. B. Scanlon, J. M. White, and P. S. Donnelly, "Versatile new
1765 bis(thiosemicarbazone) bifunctional chelators: synthesis, conjugation to bombesin(7-14)-NH(2),
1766 and copper-64 radiolabeling," *Inorg Chem*, vol. 49, no. 4, pp. 1884–1893, Feb. 2010, doi:
1767 10.1021/ic902204e.

1768 [124] G. Buncic *et al.*, "A water-soluble bis(thiosemicarbazone) ligand. a sensitive probe and metal
1769 buffer for zinc," *Inorg Chem*, vol. 49, no. 7, pp. 3071–3073, Apr. 2010, doi: 10.1021/ic902370a.

1770