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ABSTRACT 

Evolution of gene expression mediated by cis-regulatory changes is thought to be an 

important contributor to organismal adaptation, but identifying adaptive cis-regulatory changes is 

challenging due to the difficulty in knowing the expectation under no positive selection.  A new 

approach for detecting positive selection on transcription factor binding sites (TFBSs) was 

recently developed, thanks to the application of machine learning in predicting transcription 

factor (TF) binding affinities of DNA sequences.  Given a TFBS sequence from a focal species 

and the corresponding inferred ancestral sequence that differs from the former at n sites, one can 

predict the TF binding affinities of many n-step mutational neighbors of the ancestral sequence 

and obtain a null distribution of the derived binding affinity, which allows testing whether the 

binding affinity of the real derived sequence deviates significantly from the null distribution.  

Applying this test genomically to all experimentally identified binding sites of three TFs in 

humans, a recent study reported positive selection for elevated binding affinities of TFBSs.  Here 

we show that this genomic test suffers from an ascertainment bias because, even in the absence 

of positive selection for strengthened binding, the binding affinities of known human TFBSs are 

more likely to have increased than decreased in evolution.  We demonstrate by computer 

simulation that this bias inflates the false positive rate of the selection test.  We propose several 

methods to mitigate the ascertainment bias and show that almost all previously reported positive 

selection signals disappear when these methods are applied.  
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INTRODUCTION 

Organism-level phenotypic changes in adaptive evolution are believed to be often caused 

by gene expression alterations brought by changes in cis-regulatory sequences (King and Wilson 

1975; Wray 2007; Carroll 2008; Jones, et al. 2012; Signor and Nuzhdin 2018).  However, it is 

challenging to test positive selection on cis-regulatory sequences because the neutral expectation 

is difficult to know, unlike the test of positive selection on protein-coding sequences where the 

neutral expectation is usually assumed to be reflected by synonymous substitutions (Li, et al. 

1985; Nei and Gojobori 1986; McDonald and Kreitman 1991; Nei and Kumar 2000).  While one 

can test positive selection on the cis-regulatory sequence of a gene by comparing it with 

synonymous sites in the gene (Andolfatto 2005), the comparison would rely on the assumption 

that the regions being compared have equal mutation rates.  The non-neutrality of many 

synonymous mutations (Lind, et al. 2010; Lawrie, et al. 2013; Sharon, et al. 2018; She and Jarosz 

2018; Shen, et al. 2022) further complicates the test.  Comparing the cis-regulatory sequence of a 

gene with the intron sequences of the gene is another choice (Haygood, et al. 2007), but it 

similarly depends on the assumption that the regions being compared have equal mutation rates 

and that introns evolve neutrally.  Additionally, because the number of functional sites in a cis-

regulatory sequence is typically small, the above comparisons are generally statistically 

underpowered.    

Because functional changes of cis-regulatory sequences typically occur via altering their 

bindings to trans-regulatory factors such as transcription factors (TFs), selection on cis-

regulatory sequences is in a large part mediated by selection on binding affinities (Berg, et al. 

2004; Moses 2009).  In theory, one can compare an observed evolutionary change in binding 

affinity with a null distribution in the absence of selection to test whether the cis-regulatory 

sequence has been positively selected.  Such a test is possible only if the binding affinities of 

numerous potential mutant sequences, which would be labor-intensive to quantify 

experimentally, are known.  This problem was recently solved by using machine learning to 

predict TF binding affinities (Liu and Robinson-Rechavi 2020).  Specifically, based on 

previously established techniques (Ghandi, et al. 2014; Lee, et al. 2015; Ghandi, et al. 2016), Liu 

and Robinson-Rechavi trained a gapped k-mer support vector machine (gkm-SVM) using TF 

binding sites (TFBSs) experimentally identified through chromatin immunoprecipitation 

followed by sequencing (ChIP-seq).  This trained program is then used to calculate SVM weights 
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(i.e., contribution to the overall binding affinity) of all possible 10-mers, based on which a 

binding affinity score (SVM score) can be calculated for an arbitrary sequence by summing up 

SVM weights of all 10-mers that it contains.      

With the above tool, one can predict the affinity scores of many mutational neighbors of 

an ancestral regulatory sequence to obtain a null distribution of binding affinity changes and 

compare the observed evolutionary change (deltaSVM) with this null distribution.  If the 

observed deltaSVM is in the right 5% or 1% tail of the null distribution, one could conclude that 

positive selection for a higher binding affinity to the TF of interest acted in the evolution of the 

regulatory sequence (Prabhakar, et al. 2006; Gittelman, et al. 2015).  For example, based on this 

method, Liu and Robinson-Rechavi (2020) reported positive selection for elevated binding 

affinities in human evolution since the human-chimpanzee split for a few percent of the binding 

sites of each of three TFs examined: CEBPA, HNF4A, and CTCF.  

In such tests of positive selection, the TFBSs considered are typically acquired from 

ChIP-seq peaks (Park 2009) identified in a focal species such as the human in the above study.  

This means that only TFBSs with relatively high binding affinities are included in the analysis, 

which could cause an ascertainment bias because binding affinities are more likely to have 

increased for TFBSs with relatively high affinities than for TFBSs with relatively low affinities 

even in the absence of positive selection for higher affinities (Fig. 1).  As a result, one may 

miscall chance increases of binding affinities as signals of positive selection, raising the false 

positive rate in the test of positive selection.  An analogy of this problem is to test whether 

students generally perform better in the final exam than in the midterm exam while considering 

only those who perform well in the final exam.  

In this study, we use computer simulation of neutral evolution to demonstrate the 

influence of the ascertainment bias on the test of positive selection on TFBSs.  We propose three 

methods to mitigate this impact and show that almost all signals of positive selection previously 

reported for the binding sites of the three human TFs (Liu and Robinson-Rechavi 2020) 

disappear upon ascertainment bias mitigations. 

 

RESULTS  

Interpretation of P-values in the selection test 
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For each TFBS subject to Liu and Robinson-Rechavi’s one-tailed test of positive 

selection for elevated binding affinity, the P-value is the probability that deltaSVM under 

neutrality (denoted Δ for short) is greater than the observed value (Δ!"#), given the ancestral 

sequence and the number of nucleotide substitutions separating the ancestral and derived 

sequences.  That is, 𝑃 = 𝑃𝑟𝑜𝑏(Δ > Δ!"#).  However, for a TFBS from a real dataset, the 

probability that it shows Δ > Δ!"# under neutrality is the conditional probability 𝑃$ =

𝑃𝑟𝑜𝑏(Δ > Δ!"#|𝐼) =
%&'((*+*!"#∩-)

%&'((-)
, where 𝐼 denotes the event that the TFBS is included in the 

dataset.  Because TFBSs with higher Δ!"# should have higher Prob(I) but lower Prob(Δ > Δ!"#), 

events I and Δ > Δ!"# are not mutually independent but tend to avoid each other.  That 

is,	𝑃𝑟𝑜𝑏(Δ > Δ!"# ∩ 𝐼) < 𝑃𝑟𝑜𝑏(Δ > Δ!"#)𝑃𝑟𝑜𝑏(𝐼).  Thus, 𝑃$ = 𝑃𝑟𝑜𝑏(Δ > Δ!"#|𝐼) =
%&'((*+*!"#∩-)

%&'((-)
< %&'((*+*!"#)%&'((-)

%&'((-)
= 𝑃.  This inequation shows that P will be underestimated if 

P’ is interpreted as P.  Under neutrality, if the probability for P < 0.01 is 0.01, the probability for 

P’ < 0.01 must be greater than 0.01, inflating the false positive rate in the test of positive 

selection.  If the test is unbiased, the action of positive selection can be inferred when the 

proportion of TFBSs showing P < 0.01 is greater than 1%.  However, this inference is no longer 

valid if P’ instead of P is calculated because the fraction of TFBSs showing P’ < 0.01 under 

neutrality is expected to exceed 0.01.  Therefore, the ascertainment bias is a problem both in 

assessing positive selection on an individual TFBS and on a dataset containing many TFBSs. 

 

False positive rates under various levels of the ascertainment bias 

We performed a computer simulation to evaluate the quantitative impact of the 

ascertainment bias on the false positive rate.  We first generated 50,000 10-nucleotide random 

sequences as ancestral TFBS sequences.  In each sequence, we then introduced two random 

substitutions at two randomly picked sites to generate the corresponding derived sequence.  We 

treated these sequences as potential binding sites of human CEBPA studied by Liu and 

Robinson-Rechavi.  To mimic the ascertainment bias, we removed 10%, 20%, …, and 90% of 

the simulated TFBSs with the lowest derived SVM scores, obtaining nine datasets with 

increasing ascertainment biases.  We then performed a one-tailed test of positive selection for an 

elevated CEBPA binding affinity for each TFBS.  Following Liu and Robinson-Rechavi, we 

called a case statistically significant when the right-tail probability is below 0.01 (see Materials 
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and Methods).  Because all substitutions introduced are random, all cases of positive selection 

identified are false positives.  Indeed, each of the nine datasets with ascertainment biases showed 

a significantly higher false positive rate than that of the original dataset without the 

ascertainment bias (𝑃 < 0.05, two-sample Z-test for proportions), and the false positive rate 

increased with the severity of the ascertainment bias (Table 1).  For the most extreme level of 

ascertainment bias considered, the false positive rate is 11 times the expected level.  We repeated 

the above analysis by treating the sequences as potential binding sites of two other human TFs 

studied by Liu and Robinson-Rechavi (HNF4A and CTCF) and obtained highly similar results 

(Tables S1-S2).  

 

Methods for mitigating the ascertainment bias 

With the ascertainment bias, the expected false positive rate under neutrality is unknown 

for a given dataset.  Hence, one cannot directly use the proportion of TFBSs in a dataset that 

show significant positive selection signals to infer whether positive selection has occurred.  

Rather, one should also consider the TFBSs that are not included in the data due to the 

ascertainment bias.  Our simulation showed that it is virtually impossible for any of these 

missing TFBSs to show significant positive selection signals (Table 1, Tables S1-S2).  Hence, 

the missing TFBSs need only be added to the denominator when one computes the proportion of 

TFBSs with significant positive selection signals.  That is, the corrected proportion of TFBSs 

with significant positive selection signals equals the number of TFBSs with such signals divided 

by the sum of considered and missing TFBSs.  Alternatively, one can infer the occurrence of 

positive selection on an individual TFBS by using adjusted P-values after correcting for multiple 

testing, where the number of tests should be the sum of the considered and missing TFBSs.  

Below we present three different methods for estimating the number of missing TFBSs. 

The first method regards twice the number of TFBSs with positive deltaSVMs as the total 

number of tests, because the number of TFBSs with negative deltaSVMs should be similar to 

that with positive deltaSVMs in the absence of ascertainment bias.  Note that this method likely 

still undercounts the total number of tests, because it cannot recover TFBSs with low binding 

affinities in both the ancestral and focal taxa (i.e., 𝑛/ in Fig. 1).   

The second method first identifies the relationship between the fraction of TFBSs 

removed and the fraction of TFBSs with positive deltaSVMs in our simulated data (Table S3, 
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Fig. S1) and then uses this relationship to infer the fraction of missing TFBSs and the total 

number of tests for a real dataset.  Note that this method may not accurately recover the number 

of missing TFBSs for the following reason.  Biased subsets of our simulated dataset were 

obtained by removing TFBSs with the lowest derived SVM scores.  In reality, however, loss of 

TFBSs with low derived affinities likely follows a different yet unknown model, because TFBSs 

with low binding affinities can sometimes be detected, albeit with a relatively low probability.  

Consequently, this correction method likely underestimates missing TFBSs and therefore under-

corrects the ascertainment bias. 

The third method regards the number of potential binding sites of a given TF in the 

genome that have at least two nucleotide differences (between the ancestral and derived 

sequences) as the number of total tests.  If the binding sites for the TF is on average l nucleotides 

long, there are (L-l+1)𝑃(𝑛 ≥ 2) ≈ L𝑃(𝑛 ≥ 2) total tests, where L >> l is the total number of 

nucleotides in the genome and 𝑃(𝑛 ≥ 2) is the fraction of TFBSs that have at least two 

nucleotide differences between the ancestral and derived sequences (see Materials and Methods).  

In the above calculation, potential binding sites are overlapping.  However, to be more 

conservative in computing the total number of tests, we may require the potential binding sites to 

be nonoverlapping, which yields an estimate of L𝑃(𝑛 ≥ 2)/l potential binding sites in the 

genome.   

 

Most positive selection signals disappear upon ascertainment bias mitigations 

As mentioned, Liu and Robinson-Rechavi (2020) reported the detection of positive 

selection on the binding sites of each of three human TFs investigated, because >1% of the 

TFBSs fall in the right 1% tail of the null distribution of deltaSVM.  The TFBSs examined were 

all identified from the human ChIP-seq data, so the test suffered from ascertainment biases. 

Below we use the three methods proposed in the preceding section to mitigate the ascertainment 

bias and re-evaluate the evidence for positive selection.   

In the case of CEBPA, the original study reported that, of 5,807 TFBSs tested, there were 

436 (or 7.51%) that showed positive selection signals (referred to as positive binding sites, or 

PBSs for short following terminology used by Liu and Robinson-Rechavi) at the 1% significance 

level.  Based on the first method of correction, the total number of tests should be twice the 

number of TFBSs with positive deltaSVMs, or 2×3618 = 7236.  Hence, the proportion of PBSs 
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declines to 436/7236 = 6.03% (Table 2).  Under the second method of correction, the total 

number of tests is estimated to be 8200 (Table S3), leading to 436/8200 = 5.32% of PBSs (Table 

2).  Considering the third method of correction and nonoverlapping TFBSs, we estimated that 

that there are 1,088,177 potential TFBSs, meaning that 436/1088177 = 0.0401% of TFBSs are 

PBSs (Table 2).  In the case of HNF4A, the fraction of PBSs is 4.81% before correction for 

ascertainment bias and reduces to 4.11%, 3.83%, and 0.0324% when methods 1, 2, and 3 are 

used, respectively (Table 2).  In the case of CTCF, the fraction reduces from 3.52% before 

correction to 3.20%, 3.12%, and 0.0375% after the three correction methods are used (Table 2).  

After the third correction, the fraction of PBSs detected is below the neutral expectation of 1% 

for each of the three TFs, suggesting that positive selection is not needed to explain the evolution 

of the binding sites of the three TFs.   

 We similarly evaluated positive selection on individual TFBSs by estimating adjusted P-

values.  If we use the cutoff of adjusted P-value = 1%, there is no PBS when the ascertainment 

bias is uncorrected or corrected by any of the three methods (Table 3).  If we use the cutoff of 

adjusted P-value = 5%, 109 CEBPA binding sites show significant positive selection signals 

when the ascertainment bias is uncorrected.  This number reduces to 80, 58, and 0, respectively, 

under the three methods of correction (Table 3).  Considering both the results from the 

proportion of TFBSs with significant positive selection signals and the individual TFBSs with 

such signals, we conclude that few if any human CEBPA binding sites evolved under positive 

selection.  Binding sites of the other two human TFs show even weaker signals of positive 

selection.  No HNF4A binding sites have adjusted P < 0.05 regardless of the method used to 

correct the ascertainment bias (Table 3).  A total of 161 CTCF binding sites have adjusted P < 

0.05 when method 1 is used to correct the ascertainment bias, but this number reduces to 0 when 

method 2 or 3 is applied (Table 3). 

 

DISCUSSION 

We showed that a previously proposed genomic test for positive selection on TFBSs for 

increased binding affinity suffers from inflated false positive errors due to ascertainment biases.  

Because such biases in the test are inevitable in real data, without an appropriate correction, the 

selection test would be unable to identify positively selected TFBSs accurately.  After applying 

various corrections, we found no evidence for positive selection on the binding sites of human 
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HNF4A and CTCF and no to weak signals of positive selection on the binding sites of human 

CEBPA. 

We considered three different methods to recover the missing TFBSs caused by the 

ascertainment bias.  Methods 1 and 2 likely provide insufficient corrections for the following 

reasons.  While method 1 probably recovers TFBSs that have detectable binding affinities in the 

ancestral node but not in the focal species (i.e., n2 in Fig. 1), it does not recover TFBSs that lack 

detectable binding in both species (i.e., n4 in Fig. 1).  Method 2 utilizes the linear relationship 

observed in the simulated data between the fraction of TFBSs removed and the proportion of 

remaining TFBSs with positive deltaSVMs.  However, when introducing the ascertainment bias 

in the simulation, we simply removed TFBSs with the lowest binding affinities.  Given the target 

fraction of TFBSs with positive deltaSVMs, this approach minimizes the removed fraction of 

TFBSs.  Because experimental identifications of TFBSs are likely subject to some noise, the 

actual missing TFBSs may not have the lowest binding affinities.  Consequently, method 2 likely 

underestimates the number of missing TFBSs.  This said, if there are already no significant 

positive selection signals after one applies methods 1 and 2, more stringent corrections would not 

be needed.  If there are positive selection signals, however, they should be further tested by 

applying more rigorous corrections or be treated as candidates for further tests such as an 

experimental verification of fitness effects or population genetic test of selective sweeps. 

The third correction method (method 3) considers the number of potential TFBSs in the 

whole genome.  In theory, this method provides the most complete correction.  However, 

estimating the total number of potential TFBSs (i.e., number of sequence segments that can 

potentially become TFBSs in evolution) can be challenging.  In this study, we assumed that all 

genomic regions can potentially become a TFBS.  This assumption is reasonable at least 

qualitatively, because “leaky expression” caused by fortuitous TF binding is indeed widespread, 

as evidenced by the observation that over three quarters of the human genome is transcribed and 

that about one half of 120-nucleotide random sequences can drive gene expression in yeast (Xu, 

et al. 2023).  However, if different genomic regions have different potentials to evolve into a 

TFBS in the focal lineage, method 3 could overcorrect the ascertainment bias when regions with 

low potentials are counted.  This said, if such heterogeneities can be modeled, method 3 should 

provide an appropriate correction of the ascertainment bias. 
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It should be noted that, because the P-value of the selection test is calculated based on a 

finite number of (simulated) mutants, the test inevitably loses power when multiple testing is 

corrected.  For instance, Liu and Robinson-Rechavi (2020) considered 10/ mutants per test, so 

the smallest possible P-value was 100/, yet the number of TFBSs in the dataset can be very 

large (e.g., on the order of 10/ for HNF4A and CTCF; Table 2). 

Our re-analysis of the binding sites of three human TFs showed no signal of positive 

selection on the TFBSs of HNF4A and CTCF and no to weak signals of positive selection on the 

TFBSs of CEBPA (Table 3).  The latter finding appears consistent with the validation tests Liu 

and Robinson-Rechavi performed on CEBPA binding sites.  One of their validations, inspired by 

the McDonald-Kreitman test (McDonald and Kreitman 1991), compares the ratio of the number 

of substitutions to the number of polymorphisms between PBSs and non-PBSs.  This test alone, 

however, is not a sufficient means of validation, because many non-PBSs are likely subject to 

negative selection because of stabilizing selection on their binding affinities, and negative 

selection can reduce the divergence-to-polymorphism ratio (Eyre-Walker 2002).  Liu and 

Robinson-Rechavi further showed that the target genes of PBSs tend to have lowered expression 

variance across human populations, suggesting that the binding affinities of non-PBSs are not 

generally under stronger stabilizing selection than PBSs.  The two validation tests, together with 

our reanalysis, suggest the possibility of positive selection on some CEBPA binding sites in the 

human lineage. 

In addition to human TFBSs, Liu and Robinson-Rechavi also analyzed TFBSs in mice 

and fruit flies.  These two datasets do not suffer from the ascertainment bias as severely as the 

human datasets suffer, because TFBSs detected in focal and non-focal species (or lineages) are 

all included.  However, these datasets are not free of the ascertainment bias because only TFBSs 

with sufficiently strong binding in at least one species can be included, whereas proto-TFBSs 

that have low binding in all species considered (and presumably in their most recent common 

ancestor too) cannot.  That is, the low-to-low class (n4) in Fig. 1 are still missing, and the number 

of TFBSs in the dataset is still smaller than the size of the ideal “complete” dataset.  As a result, 

selection tests have inflated false positive errors.  For example, the fraction of TFBSs with 

increased binding should be 1$
1$21%21&21'

 but is instead computed by 1$
1$21%21&

 (see Fig. 1).  

Because n4 is presumably the largest among the four n values, the above two fractions are very 

different.  This problem can be mitigated to some extent by broader phylogenetic sampling, 
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though ancestral sequence reconstruction would be subject to more errors as more divergent 

species are included. 

We conclude that the previously proposed genomic test is unable to rigorously estimate 

the prevalence of positive selection on TFBSs due to an ascertainment bias.  There are multiple 

ways to mitigate the bias, but it remains challenging to adequately correct but not overcorrect the 

bias.  We suggest that it is necessary to combine multiple methods to verify the signal of positive 

selection on TFBSs, including broader phylogenetic sampling, correction for ascertainment bias, 

correction for multiple testing, and other means to test selection, to robustly estimate the 

prevalence of positive selection on TFBSs and identify individual TFBSs where nucleotide 

substitutions have been driven by positive selection. 

 Finally, it is worth pointing out that the type of ascertainment bias encountered here is not 

unique to the test of positive selection on TFBSs, especially at the post-genomic era.  

Evolutionary analyses of subsets of genomic data that satisfy certain criteria are potentially 

subject to ascertainment biases when the criteria are correlated with the factors being 

investigated.  A prime example is the test of Ohno’s hypothesis of X-chromosome dosage 

compensation in mammals (i.e., doubling of the expressions of X-linked genes to compensate the 

degeneration of their Y-linked counterparts) (Ohno 1967), where considering only genes with 

expression levels higher than a cutoff produced misleading results (He, et al. 2011; Lin, et al. 

2012).  Caution should be exerted in designing such tests.  

 

MATERIALS AND METHODS 

Analysis of simulated TFBSs 

To generate a dataset that represents potential TFBSs, we randomly generated 50,000 

distinct 10-nucleotide sequences with equal probabilities of the four nucleotides at each site.  In 

each sequence, we randomly picked two sites and make a random change at each site such that 

the derived sequence differs from the original, ancestral sequence by two substitutions (with no 

multiple hits and no mutational bias). 

Following Liu and Robinson-Rechavi (2020), for each pair of ancestral and derived 

TFBSs, we performed a one-tailed test of positive selection for an increased binding affinity of 

the derived TFBS.  We separately considered three human TFs—CEBPA, HNF4A, and CTCF.  

Binding affinities (SVM weights) of 10-mers were acquired from 
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https://github.com/ljljolinq1010/A-robust-method-for-detecting-positive-selection-on-regulatory-

sequences/blob/master/data/human_SVM_model/CEBPA/kmer_10_library_weigths.txt, 

https://github.com/ljljolinq1010/A-robust-method-for-detecting-positive-selection-on-regulatory-

sequences/blob/master/data/human_SVM_model/HNF4A/kmer_10_library_weigths.txt, and 

https://github.com/ljljolinq1010/A-robust-method-for-detecting-positive-selection-on-regulatory-

sequences/blob/master/data/human_CTCF_adaptation/human_SVM_model/all_merged_ctcf_km

er_10_library_weigths.txt for CEBPA, HNF4A, and CTCF, respectively.  CEBPA and HNF4A 

are both liver-specific TFs; CTCF is expressed in multiple tissues and the binding sites studied 

are the union of the binding sites identified from multiple individual tissues (Liu and Robinson-

Rechavi 2020).  For each ancestral TFBS, we generated 1,000 random mutants as the control set.  

Each mutant was a two-step neighbor of the ancestral sequence and was generated as in the 

generation of the derived sequences.  We simulated only 1,000 random mutants as the control set 

for each TFBS because the total number of two-step neighbors of a 10-mer is only 

6345 7 × 3 × 3 = 405.  Positive selection is inferred for a TFBS if fewer than 10 sequences in the 

control set has higher SVM scores than that of the derived sequence (i.e., 𝑃 < 0.01).  Because 

the simulated TFBSs were subject to no selection, all positive cases identified in this analysis 

were false positives. 

To mimic the ascertainment bias, we ranked the simulated TFBSs based on the SVM 

score of the derived sequence and removed the bottom 10%, 20%, … and 90% of TFBSs, 

respectively, obtaining nine subsets subject to increasing ascertainment biases.  We then counted 

the number of TFBSs that showed 𝑃 < 0.01 in the selection test in each subset to investigate the 

relationship between the ascertainment bias and the false positive rate. 

 

Reanalysis of human TFBSs 

We examined the binding sites of human CEBPA, HNF4A, and CTCF, respectively.  

These TFBSs were previously studied by Liu and Robinson-Rechavi (2020), who used human 

(Homo sapiens) as the focal species and used human, chimpanzee (Pan troglodytes), and gorilla 

(Gorilla gorilla) to infer the sequence of the human-chimpanzee common ancestor.  Data files 

analyzed here were made available by Liu and Robinson-Rechavi at 

https://github.com/ljljolinq1010/A-robust-method-for-detecting-positive-selection-on-regulatory-

sequences/tree/master/data/human_deltaSVM (CEBPA and HNF4A binding sites) and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.554030doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.554030
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

https://github.com/ljljolinq1010/A-robust-method-for-detecting-positive-selection-on-regulatory-

sequences/blob/master/data/human_CTCF_adaptation/human_deltaSVM/ctcf_deltaSVM_highert

ailTest.txt (CTCF binding sites). 

We performed multiple testing corrections following the Benjamini-Hochberg procedure 

(Benjamini and Hochberg 1995) and computed adjusted P-values from P-values of the right-tail 

test in Liu and Robinson-Rechavi (2020).  For the TFBS with the ith smallest P-value in a given 

dataset, the adjusted P-value is 𝑃6789:; =
<%(
=

, where 𝑃= is the P-value reported by Liu and 

Robinson-Rechavi (2020) and 𝑀 is the total number of tests to correct for. 

We applied four methods to calculate the adjusted P-value, which we refer to as method 

0, 1, 2, and 3, respectively.  In method 0, 𝑀 is simply the number of TFBSs in the dataset.  In 

method 1, 𝑀 equals twice the number of TFBSs with positive deltaSVMs in the dataset.  Method 

2 makes use of the relationship between the fraction of TFBSs removed (Fremoved) and the 

fraction of TFBSs with positive deltaSVMs (F+) in the remaining data, inferred from our 

simulated dataset by the regression 𝐹>?@!A?B = 𝑘𝐹2 + 𝑏.  M is then calculated by 𝑀 =
C

30D)*+!,*-
, where N is the total number of TFBSs in the dataset.  Values of k and b, along with 

inferred values of Fremoved and M for the binding sites of the three human TFs are summarized in 

Table S3.  In method 3, 𝑀 = %(1E5)F
G

, where L is the genome size, l is the mean length of TFBS 

sequences in the dataset, and 𝑃(𝑛 ≥ 2) is the probability that there are at least two substitutions 

between the ancestral TFBS and its derived version.  L was set to be 6 × 10H, which is a rough 

estimate of human’s haploid genome size multiplied by 2 because a TFBS can be on either the 

Watson or Crick strand and l was computed from the empirical data to equal 269, 340, and 537 

for CEBPA, HNF4A, and CTCF, respectively.  𝑃(𝑛 ≥ 2) was calculated as the ratio of the 

number of TFBSs used in the selection test (first row of Table 2) and the total number of TFBSs 

identified by ChIP-seq (16,212 for CEBPA, 27,782 for HNF4A, and 118,970 for CTCF). 

Presumably, the missing TFBSs are unlikely to have small P-values.  Thus, we assume 

that the ranks of P-values of TFBSs with P < 0.01 or P < 0.05 do not change upon the inclusion 

of missing TFBSs. 

All simulations and analyses were conducted in an R environment (R Core Development 

Team 2010). 
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Figure 1. Schematic illustration of the ascertainment bias in the selection test of Liu and 
Robinson-Rechavi (2020). The left panel represents the scenario where all potential TFBSs in an 
ancestor are included in the tests so there is no ascertainment bias, whereas the right panel 
represents the scenario in the actual test of Liu and Robinson-Rechavi where there is an 
ascertainment bias. Here, 𝑛3, 𝑛5, 𝑛I, and 𝑛/ denote the number of potential TFBSs that 
underwent each type of binding affinity change, respectively. 𝑃JKL>?M#? denotes the observed 
proportion of TFBSs with increased binding affinities and is unbiasedly estimated in the left 
panel. In the right panel, however, 𝑃JKL>?M#? is overestimated because TFBSs with low derived 
affinities (in the focal species) are not included.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.554030doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.554030
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Table 1. All simulated TFBSs and subsets with various fractions of the TFBSs with the highest 
derived SVM scores for human CEBPA. P-value in the last column is from a test of the null 
hypothesis that the false positive rate in a subset equals that in the complete dataset (two-sample 
Z-test for proportions).   

Subset No. of TFBSs No. of TFBSs with 
positive deltaSVMs 

No. of false 
positives  

P-value 

Complete dataset 50,000 24,908 (49.82%) 553 (1.106%) N.A. 
Top 90%  45,000 24,380 (54.18%) 553 (1.230%) 4.2 × 10./ 
Top 80%  40,000 23,281 (58.20%) 553 (1.383%) 1.0 × 10.0 
Top 70%  35,000 21,810 (62.31%) 553 (1.580%) 1.2 × 10.1 
Top 60%  30,000 20,003 (66.68%) 553 (1.843%) 3.5 × 10.23 
Top 50%  25,000 17,748 (70.99%) 553 (2.212%) 1.7 × 10.4/ 
Top 40%  20,000 15,085 (75.43%) 553 (2.765%) 5.3 × 10.56 
Top 30%  15,000 12,012 (80.08%) 553 (3.687%) 6.9 × 10.27/ 
Top 20%  10,000 8,464 (84.64%) 553 (5.530%) 8.2 × 10.213 
Top 10%  5,000 4,448 (88.96%) 552 (11.040%) < 10.477 
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Table 2. Number and fraction of TFBSs with signals of positive selection (i.e., positive binding 
sites or PBSs) before correction for multiple testing. Denominator used to calculate the fraction 
is either the observed number of TFBSs or the inferred number of TFBSs including those that are 
missing due to ascertainment biases. 
 CEBPA binding sites HNF4A binding sites CTCF binding sites 
Observed number 5,807 12,734 80,074 
Number with positive deltaSVMs 3,618 7,438 44,117 
Fraction with positive deltaSVMs 62.15% 58.41% 55.10% 
Number of PBSs 436 612 2821 
Fraction of PBSs (no correction*) 7.51% 4.81% 3.52% 
Fraction of PBSs (method 1*) 6.03% 4.11% 3.20% 
Fraction of PBSs (method 2*) 5.32% 3.83% 3.12% 
Fraction of PBSs (method 3*) 0.0401% 0.0324% 0.0375% 

*The total number of TFBSs considered is the observed number of TFBSs in the dataset (no 
correction), twice the number of observed TFBSs with positive deltaSVMs (method 1), inferred 
from a linear regression model (method 2), or an estimate of the number of potential binding 
sites in the genome (method 3), respectively. 
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Table 3. Number and fraction of positively selected TFBSs (PBSs) after correction for multiple 
testing. When the number of tests is corrected for, the fraction is calculated using the inferred 
number of TFBSs including those missing due to ascertainment biases. 
 Multiple testing correction*  CEBPA 

binding sites 
HNF4A 
binding sites 

CTCF 
binding sites 

Adjusted P < 0.01 Method 0 0 (0%) 0 (0%) 0 (0%) 
Method 1 0 (0%) 0 (0%) 0 (0%) 
Method 2 0 (0%) 0 (0%) 0 (0%) 
Method 3 0 (0%) 0 (0%) 0 (0%) 

Adjusted P < 0.05 Method 0 109 (1.88%) 0 (0%) 161 (0.20%) 
Method 1 80 (1.11%) 0 (0%) 0 (0%) 
Method 2 58 (0.71%) 0 (0%) 0 (0%) 
Method 3 0 (0%) 0 (0%) 0 (0%) 

*The total number of TFBSs considered is the observed number of TFBSs in the dataset (method 
0), twice the number of observed TFBSs with positive deltaSVMs (method 1), inferred from a 
linear regression model (method 2), or an estimate of the number of potential binding sites in the 
genome (method 3), respectively. 
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Figure S1. Linear relationship between the fraction of TFBSs with positive deltaSVMs (F+) and 
the fraction of TFBSs removed (Fremoved) in simulated data, based on binding affinity to human 
CEBPA (A), human HNF4A (B), and human CTCF (C), respectively. 
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Table S1. All simulated TFBSs and subsets with various fractions of the TFBSs with the highest 
derived SVM scores for human HNF4A. P-value in the last column is from a test of the null 
hypothesis that the false positive rate in a subset equals that in the complete dataset (two-sample 
Z-test for proportions).   

Subset No. of TFBSs No. of TFBSs with 
positive deltaSVMs 

No. of false 
positives  

P-value 

Complete dataset 50,000 24,901 (49.80%) 535 (1.107%) N.A. 
Top 90%  45,000 24,378 (54.17%) 535 (1.189%) 4.4 × 10./ 
Top 80%  40,000 23,300 (58.25%) 535 (1.338%) 1.3 × 10.0 
Top 70%  35,000 21,909 (62.31%) 535 (1.529%) 2.2 × 10.1 
Top 60%  30,000 20,120 (67.07%) 535 (1.783%) 1.2 × 10.26 
Top 50%  25,000 17,881 (71.52%) 535 (2.140%) 1.7 × 10.42 
Top 40%  20,000 15,229 (76.15%) 535 (2.675%) 3.5 × 10.55 
Top 30%  15,000 12,063 (80.42%) 535 (3.567%) 1.4 × 10.13 
Top 20%  10,000 8,524 (85.24%) 535 (5.350%) 2.6 × 10.212 
Top 10%  5,000 4,484 (89.68%) 535 (10.700%) < 10.477 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.554030doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.554030
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Table S2. All simulated TFBSs and subsets with various fractions of the TFBSs with the highest 
derived SVM scores for human CTCF. P-value in the last column is from a test of the null 
hypothesis that the false positive rate in a subset equals that in the complete dataset (two-sample 
Z-test for proportions).   

Subset No. of TFBSs No. of TFBSs with 
positive deltaSVMs 

No. of false 
positives  

P-value 

Complete dataset 50,000 25,024 (50.05%) 548 (1.096%) N.A. 
Top 90%  45,000 24,613 (54.70%) 548 (1.218%) 4.2 × 10./ 
Top 80%  40,000 23,663 (59.15%) 548 (1.370%) 1.1 × 10.0 
Top 70%  35,000 22,299 (63.71%) 548 (1.566%) 1.4 × 10.1 
Top 60%  30,000 20,504 (68.35%) 548 (1.827%) 4.9 × 10.23 
Top 50%  25,000 18,159 (72.64%) 548 (2.192%) 3.2 × 10.4/ 
Top 40%  20,000 15,499 (77.50%) 548 (2.740%) 1.7 × 10.58 
Top 30%  15,000 12,333 (82.22%) 548 (3.653%) 5.7 × 10.272 
Top 20%  10,000 8,730 (87.30%) 548 (5.480%) 5.2 × 10.218 
Top 10%  5,000 4,598 (91.96%) 548 (10.960%) < 10.477 
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Table S3. Linear regression of the fraction of TFBSs removed (Fremoved) on the fraction of 
TFBSs with positive deltaSVMs in the dataset (F+). 
TF Regression slope (k) Intercept (b) Inferred 

Fremoved 

Inferred total 

number of TFBSs 

CEBPA 2.283 -1.127 29.19% 8,200 

HNF4A 2.241 -1.106 20.30% 15,977 

CTCF 2.145 -1.067 11.47% 90,458 
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