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ABSTRACT 57 
 58 
The selection of Arabidopsis as a model organism played a pivotal role in advancing genomic 59 
science, firmly establishing the cornerstone of today’s plant molecular biology. Competing 60 
frameworks to select an agricultural- or ecological-based model species, or to decentralize plant 61 
science and study a multitude of diverse species, were selected against in favor of building core 62 
knowledge in a species that would facilitate genome-enabled research that could assumedly be 63 
transferred to other plants. Here, we examine the ability of models based on Arabidopsis gene 64 
expression data to predict tissue identity in other flowering plant species. Comparing different 65 
machine learning algorithms, models trained and tested on Arabidopsis data achieved near 66 
perfect precision and recall values using the K-Nearest Neighbor method, whereas when tissue 67 
identity is predicted across the flowering plants using models trained on Arabidopsis data, 68 
precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64, depending on the 69 
algorithm used. Below-ground tissue is more predictable than other tissue types, and the ability 70 
to predict tissue identity is not correlated with phylogenetic distance from Arabidopsis. This 71 
suggests that gene expression signatures rather than marker genes are more valuable to create 72 
models for tissue and cell type prediction in plants. Our data-driven results highlight that, in 73 
hindsight, the assertion that knowledge from Arabidopsis is translatable to other plants is not 74 
always true. Considering the current landscape of abundant sequencing data and computational 75 
resources, it may be prudent to reevaluate the scientific emphasis on Arabidopsis and to 76 
prioritize the exploration of plant diversity. 77 
 78 
INTRODUCTION 79 
 80 
Historically, plant biology has focused on inferring genetic, molecular, physiological, and 81 
ecological mechanisms. Conventionally, through quantifying phenomena and applying statistics, 82 
hypotheses are tested and decisions of most likely scenarios are determined. New technologies 83 
and computational approaches have caused a shift from hypothesis- to data-driven research 84 
(Mazzocchi, 2015). Moreover, plant biology has embraced the inclusion of machine learning 85 
methods in addition to traditional statistical approaches (Ij, 2018). Both a deluge of data and 86 
new computational methods have allowed for predictive, rather than inferential, methods. Both 87 
statistics and machine learning can be used for inference and prediction, but machine learning 88 
methods more often classify and predict on class labels rather than inferring statistical 89 
parameters of a population. In plant biology, such predictive approaches underlie the 90 
frameworks of phenotyping (Coppens et al., 2017), precision agriculture (Zhang et al., 2002), 91 
genomic prediction (Crossa et al., 2014), linking transcriptomic profiles to phenotype (Azodi et 92 
al., 2020), and protein structure determination (Jumper et al., 2021). Just as inferential statistics 93 
has its limitations, the robustness and ability to extrapolate predictive models are also 94 
constrained by the empirical context from which the data originates. Although data-driven 95 
research is slowly becoming more theoretical and predictive (Hogeweg, 2011), the creation of 96 
universal plant models is hindered by their overwhelming diversity. Not only is the phylogenetic 97 
diversity among flowering plants immense (The Angiosperm Phylogeny Group et al., 2016), but 98 
plants are exceptionally responsive to their environments (Sultan, 2000) and have evolved 99 
symbiotic interactions with and defense mechanisms against innumerable microbes (Mitchell et 100 
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al., 2006). Furthermore, technical variability in data acquisition makes it difficult to exploit the 101 
huge amount of expression data archived in databases. The number of ways we sample 102 
molecular profiles from plant tissues and the interaction effects that arise between 103 
phylogenetically diverse species with environments, stresses, and biotic interactions is 104 
countless and prevents extrapolating results between studies. 105 
 106 
Due to the clear advantages of studying a single model species, the early days of the genomics 107 
era tended to overlook the importance of prioritizing plant diversity. The candidates considered 108 
for the first sequenced genome were either easily transformable (e.g., species within 109 
Solanaceae; Knapp et al., 2004) or were already used for genetics (e.g., maize; Strable and 110 
Scanlon, 2009), but never was biodiversity considered (Meyerowitz, 2001). Reasons for 111 
choosing Arabidopsis as the first sequenced plant genome (Arabidopsis Genome Initiative, 112 
2000) include ease of transformation (Clough and Bent, 1998), its small genome (Bennett et al., 113 
2003), and life history traits that allow for genetics through crossing, and short generation times 114 
(Meyerowitz, 1987). The justification for initially sequencing the genome of a single model 115 
species was that such focus would allow unprecedented molecular discoveries that could be 116 
translated into other species and improve our understanding of all plants (Bevan and Walsh, 117 
2005). The strategy to focus on a single model species was successful, and Arabidopsis is the 118 
most cited plant in the last 20 years, even surpassing key crops and all other plant species 119 
(Marks et al., 2023). Our molecular knowledge in plants was purposefully constructed to focus 120 
on Arabidopsis over crops and plant genetic diversity. However, such a choice has little 121 
relevance in a changing climate with dwindling natural resources and vanishing biodiversity that 122 
have become the most pressing concerns of our time. The cultural dynamics that influenced the 123 
choice of Arabidopsis as the first sequenced genome are reflected in subsequently sequenced 124 
plant genomes. Plants intrinsic to Indigenous cultures and territories have been sequenced by 125 
colonial powers (Marks et al., 2021; Dyer et al., 2022). While sequencing Arabidopsis has 126 
certainly expanded our knowledge of molecular processes, due to such an intense focus, our 127 
understanding in other species remains limited. This leaves us questioning the extent to which 128 
the insights from Arabidopsis can be extrapolated to the rest of flowering plants. 129 
 130 
In the 20 years since the release of the Arabidopsis genome sequence (Arabidopsis Genome 131 
Initiative, 2000), the number of sequenced plant genomes has dramatically risen (Michael and 132 
Jackson, 2013; Li and Harkess, 2018; Marks et al., 2021) leading to a greater understanding of 133 
the evolutionary origin and genetic mechanisms underlying numerous traits across the green 134 
lineage. Next-generation sequencing, for example, has enabled unprecedented surveys of 135 
genome-scale features across species, tissue types, environments, and interactions between 136 
plants with abiotic and biotic factors. There are currently over 300,000 public gene expression 137 
datasets spanning thousands of diverse plant species (Lim et al., 2022). Cross-species 138 
comparisons of gene expression across plants have usually been limited by the number of 139 
species analyzed (Proost and Mutwil, 2018) or their sampling breadth. Most studies have 140 
generated datasets from scratch (Julca et al., 2021) instead of leveraging public repositories. 141 
Databases and datasets curating and making vast amounts of gene expression profiles and 142 
their associated metadata have been created. For example, an Arabidopis RNA-seq database 143 
(ARS) compiles 20,068 publicly available Arabidopsis RNA-Seq libraries (Zhang et al., 2020), 144 
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and the Plant Public RNA�seq Database has ~45,000 maize, rice, wheat, soybean and cotton 145 
samples (Yu et al. 2022). Previously we had curated a dataset of 2,671 publicly available gene 146 
expression profiles from 54 flowering plant species across 7 developmental tissue types and 147 
nine stresses (Palande et al., 2023). More than 20 years after the release of the Arabidopsis 148 
genome, not only have we accumulated enough data across plants to ask unprecedented 149 
questions but new computational tools are available that permit comparative approaches to 150 
analyze such massive amounts of data. 151 
 152 
Here, building upon large, curated databases of Arabidopsis (Zhang et al., 2020) and flowering 153 
plant gene expression profiles (Palande et al., 2023), we examine how predictive Arabidopsis is 154 
as a model species relative to the rest of the flowering plants and to what degree we can 155 
extrapolate our knowledge from model organisms to diverse plant species. Dimension reduction 156 
through principal component analysis (PCA) reveals that biotic stress response and tissue type 157 
are primary, orthogonal sources of structure in gene expression data from Arabidopsis, and 158 
while angiosperm data projected onto this space retains some structure, the regions occupied 159 
between tissue types become less distinct. We next compare the performance of different 160 
machine learning models. The k-nearest neighbor (KNN) method yields precision and recall 161 
values of up to 0.99 with models trained and tested on Arabidopsis data. Model performance 162 
drops significantly, with higher precision than recall values, when data from across flowering 163 
plants is tested using models trained on Arabidopsis data. Below-ground tissue is more 164 
separated from and predictable than other tissue types, and phylogenetic distance from 165 
Arabidopsis does not appear to influence prediction rates. We end with a discussion of the 166 
implications of our results for the current structure of the plant science community,  167 
acknowledging that the past focus on Arabidopsis as a model organism based on decisions 168 
decades ago was effective at that time; however, we now advocate for a shift in approach due 169 
to changing circumstances, particularly in light of the pressing issue of biodiversity loss. We 170 
argue for a more decentralized and inclusive research framework that better encompasses the 171 
diversity of plants and the human cultures that represent them, adapting to current 172 
environmental and scientific challenges. 173 
 174 
MATERIALS AND METHODS 175 
 176 
Datasets 177 
 178 
We used two curated databases in this analysis. The first contained 28,165 Arabidopsis gene 179 
expression profiles across 37,334 genes (Zhang et al. 2020). The second contained 2,671 180 
flowering plant expression profiles across 6,327 orthogroups (Palande et al. 2023). Metadata 181 
labels for each sample from both of the databases was assigned one of four tissue type labels 182 
(above-ground, below-ground, whole plant, or other). The categories are purposefully 183 
encompassing and chosen to facilitate accurate assignment across the broad categories of 184 
experimental data we analyzed, focusing on above-ground and below-ground tissue identity as 185 
one of the simplest cases to test tissue predictability. After removing samples with missing 186 
metadata and samples with low unique mapped rate (<75%), the Arabidopsis database was left 187 
with 19,415 samples. A conserved Arabidopsis database was also constructed by keeping only 188 
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the genes mapped to the orthogroups from the flowering plant database. The conserved 189 
Arabidopsis database contained the same number of samples, but with much smaller 190 
expression profiles across only the 6,327 orthogroups shared with the angiosperm dataset. 191 
 192 
Classification models 193 
 194 
Classification is a common machine learning task where, given data points belonging to two or 195 
more classes, the goal is to learn a function that best differentiates between points from different 196 
classes. Then, given a new data point, the function can be used to decide which class the point 197 
belongs to. The classifier function can be learned in many different ways, leading to various 198 
types of machine learning models. For each classifier model in this study, we employed the 199 
following modeling methods: 200 
 201 
Linear support vector classifier (SVC): In linear classification, each point is viewed as a vector in 202 
k-dimensional space (Cortes and Vapnik, 1995). The goal is to find (k-1)-dimensional 203 
hyperplanes that separate the points belonging to different classes. There are many possible 204 
choices for hyperplanes that can classify the points. A reasonable choice is to find the ones that 205 
maximize the separation between points from different classes. These are known as maximum-206 
margin hyperplanes. Geometrically, the max-margin hyperplanes are defined by the points that 207 
lie closest to them; therefore, such points are called support vectors. 208 
 209 
Multi-layer perceptron (MLP): The SVC model assumes that the classes are linearly separable, 210 
which may not be true. MLPs are a class of artificial neural networks (Haykin, 1998) with three 211 
or more layers of “perceptrons” with non-linear activation. An MLP consists of an input and an 212 
output layer, with one or more hidden layers of neurons. We experimented with one and two 213 
hidden-layer MLPs and used rectified linear unit (ReLU) activation in all cases. In ReLU, a 214 
neuron’s activation is the weighted sum of its inputs, if the sum is non-negative, and zero 215 
otherwise. Even with this simple nonlinear activation function, MLPs are able to outperform the 216 
linear SVC. 217 
 218 
Random forest (RF): Random forests (Ho, 1995) perform classification by constructing an 219 
ensemble of decision trees. Each decision tree outputs a class label for the given sample and 220 
the output of the RF is the class label predicted by the majority of the trees. In a decision tree, 221 
each internal node is labeled by an input feature and the leaf nodes are labeled by the class 222 
labels. Starting from the root node, the input set is recursively partitioned into children nodes 223 
using the input feature associated with the node. The recursion ends when all data points in the 224 
node belong to the same class, or some pre-specified termination criteria, such as maximum 225 
depth of the tree, are met. Which feature to split the data on at each level is determined using 226 
information criteria such as gini impurity or entropy that measure how consistent the subsets are 227 
with respect to the class labels after the split. 228 
 229 
Histogram-based gradient boosting (HGB): Gradient boosting (Mason et al., 1999) is another 230 
class of methods that uses a large ensemble of decision trees. In histogram-based boosting, the 231 
real-valued input features are first discretized into a few (typically 256) bins using histograms. 232 
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This allows the training algorithm to run much more efficiently and construct a much larger 233 
ensemble of decision trees to support the classification. 234 
 235 
K-nearest neighbor (KNN) classifier: In KNN classifiers (Cover and Hart, 1967) class labels are 236 
assigned based on a majority vote of the K nearest training points. The distance metric and the 237 
number of neighbors are specified by the user. In our experiments, correlation distance between 238 
the expression profiles was used to train the KNN classifier. 239 
 240 
Experimental design 241 
 242 
To establish the utility of gene expression profiles in predicting tissue type, we trained the 243 
supervised machine learning models to classify the Arabidopsis data by tissue types (Table 1). 244 
The database was split into training and test sets (70%-30% split). To ensure comparability, all 245 
five models were trained and tested on the same training and test sets. Next, we wanted to 246 
examine how predictive Arabidopsis is to the rest of the flowering plants (Table 2). To test this, 247 
we used a set of conserved Arabidopsis transcripts with orthogroups across angiosperms, split 248 
into training and test sets (70%-30% split) as before. The same five machine learning models 249 
were trained on the conserved Arabidopsis training set. The performance of these models was 250 
first tested on the conserved gene Arabidopsis test set to make sure that the models were still 251 
able to predict the tissue types with a significantly smaller number of features. We then used the 252 
same models to classify the angiosperm data to test how well they extrapolate to species other 253 
than Arabidopsis. Each machine learning model employed in our experiments requires 254 
additional hyperparameters that need to be tuned to optimize model performance. We used the 255 
Bayesian optimization procedure implemented in the hyperopt package in Python (Bergstra et 256 
al., 2013). To gain insights into the functional annotation and enrichment of our gene list, we 257 
performed a Gene Ontology term analysis using the DAVID Functional Annotation Clustering 258 
tool (version 2021) from the web interface http://david.ncifcrf.gov (Huang et al., 2009). We 259 
filtered the 200 genes with the most positive and negative PC1 loading values. The annotation 260 
was performed using TAIR IDs and selecting Gene Ontology terms from levels 3 and 4 of 261 
Molecular Function and Biological Process categories. All data and code to reproduce the 262 
results in this manuscript are available at https://github.com/PlantsAndPython/arabidopsis-gene-263 
expression. 264 
 265 
RESULTS 266 
 267 
Dimension reduction and alignment between Arabidopsis and angiosperm gene expression 268 
datasets 269 
 270 
A principal component analysis (PCA) performed on the full dataset of 19,415 Arabidopsis 271 
RNAseq samples shows a clear separation by tissue type (Fig. 1a). For simplicity, we 272 
categorized samples into bins of above-ground, below-ground, whole plant, and other. The 273 
above-ground, below-ground, and other tissue types are well-separated from each other, but the  274 
below-ground tissue has the least overlap with other tissues. The whole plant tissue type, 275 
composed of different combinations of the other tissues, is not well separated, as we would 276 
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expect. The separation of tissues occurs along a gradient defined by PC2, demonstrating that 277 
tissue type is not the primary source of variance in the data. Rather, a small proportion of 278 
samples are strewn across PC1 in an additive, orthogonal manner, preserving the separation of 279 
tissue types defined by PC2. To investigate the underlying cause responsible for the primary 280 
source of variation in the data, we performed GO enrichment on genes with the most extreme 281 
PC1 loading values that are most responsible for defining PC1. In the full Arabidopsis dataset 282 
(Fig. 1a), high PC1 values, which include a small number of samples that contribute to a 283 
disproportionate amount of variance in the data, are defined by high expression of genes 284 
associated with response to biotic stress and oxidative damage GO terms (Table S1). Low PC1 285 
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values, which include a majority of samples across tissues and which we assume arise from 286 
plants grown under regular conditions associated with the less stress, are defined by high 287 
expression of genes with GO terms associated with biosynthesis, biogenesis, and cell growth. 288 
Remarkably, in the full Arabidopsis dataset, negative PC1 loading values are enriched for 289 
glucosinolate biosynthetic and other metabolic processes (FDR <0.05) .   290 
 291 
From these large-scale datasets, we developed a predictive model to test if tissue type could be 292 
inferred from expression patterns alone and if this Arabidopsis-trained model could be 293 
transferred to other flowering plants. We previously created a set of 6,328 low copy orthogroups 294 
that are deeply conserved across flowering plants (Palande et al., 2023) and used a set of 6,327 295 
Arabidopsis genes corresponding to these orthogroups for all downstream analyses. A PCA 296 
performed on this subset of 6,327 conserved flowering plant genes shows mostly the same 297 
structure as the analysis with all Arabidopsis genes included (Fig. 1b). However, while the 298 
below-ground tissue type remains distinct from the rest of the data, the above-ground tissue 299 
type overlaps more with whole plant and other tissue types. Note that the sign of principal 300 
components is arbitrary, which explains the “flip” of PC2 values relative to the full set of 301 
Arabidopsis genes. An analysis of the enriched GO terms for PC1 loading values from the 302 
conserved gene PCA reveals that high PC1 values are associated with biotic responses, but 303 
also with anther- and pollen-related GO terms (Table S1). Low PC1 values are associated 304 
overwhelmingly with photosynthesis. Because the two datasets have corresponding orthogroup 305 
features, we are able to project the angiosperm dataset onto the PCA defined by the conserved 306 
gene Arabidopsis dataset (Fig. 1c-d). While the overall structure defining the distributions of 307 
tissue types is maintained in the projected angiosperm data, there is substantial overlap 308 
between above-ground and below-ground tissue types. We conclude that indeed there is 309 
conservation of tissue-specific expression between Arabidopsis and the rest of the flowering 310 
plants, but that as expected, the alignment of the underlying structures of gene expression 311 
patterns defining tissue type identity are not identical. 312 
 313 
Predictive modeling of plant tissue from gene expression 314 
 315 
We used supervised learning classifiers to test if gene expression profiles could predict tissue 316 
type in Arabidopsis and if these Arabidopsis trained models could be applied more broadly to 317 
flowering plants. We first split the Arabidopsis data into testing and training sets with samples 318 
split into four classes of above-ground, below-ground, whole-plant, or other as described above. 319 
Models trained on Arabidopsis expression data and used to predict tissue type in Arabidopsis, 320 
whether the full or conserved gene datasets, achieved high precision and recall scores. The 321 
highest f1-scores (the harmonic mean of precision and recall) for the full and conserved 322 
datasets were achieved using a K-Nearest Neighbors algorithm (KNN) (0.99 and 0.99, 323 
respectively; Tables 1 and 2) and the lowest using Linear Support Vector Classification (SVC) 324 
(0.78 and 0.75). Histogram-Based Gradient Boosting (HGB) also achieved high f1-scores (0.98 325 
and 0.97) while the results for Random Forest (RF) (0.83 and 0.86) and Multilayer Perceptron 326 
(MLP) (0.83 and 0.82) were intermediate. When used to predict Arabidopsis data, the precision 327 
and recall values for each model were similar to each other, indicating similar positive prediction 328 
value (precision, true positives divided by true positives and false positives) and sensitivity 329 
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(recall, true positives divided by true positives and false negatives). The relative prediction rates 330 
of different tissue types to each other were equivalent for the full Arabidopsis dataset (Fig. 2a). 331 

 332 
The projection of gene expression patterns from across flowering plants onto a PCA using a 333 
conserved set of genes from Arabidopsis shows considerable variability (Fig. 1c-d). Using 334 
models trained on Arabidopsis data and tested on flowering plants, prediction rates are more 335 
similar to each other using different algorithms than Arabidopsis alone but perform much worse, 336 
and with higher precision than recall rates (Table 2). For KNN, HGB, RF, MLP, and SVC 337 
methods, precision values were 0.73, 0.74, 0.75, 0.73, and 0.70, respectively, whereas the rates 338 
of recall were 0.64, 0.57, 0.57, 0.55, and 0.58. Although these rates are moderately high, they 339 
must be interpreted in the context of using only four tissue type labels. The relatively higher 340 
precision rates compared to recall indicate that when a sample is retrieved, there is a higher 341 
rate of the models calling a true positive (positive prediction value) compared to the fraction of 342 
relevant samples retrieved (sensitivity). The prediction rates across tissue types were not evenly 343 
distributed (Fig. 2b). Below-ground tissue was accurately classified, at a rate of 0.96, while 344 
above-ground tissue was only correctly predicted at a rate of 0.64. Other and whole plant tissue 345 
types were classified poorly (0.074 and 0.32, respectively), and almost no samples were 346 
predicted as other tissue type, including other samples themselves. Although the prediction 347 
accuracy varies considerably across plant families (Fig. 3), from around 0.4 to 0.8, we could not 348 
identify any phylogenetic signal or find any support that prediction of tissue identity is inversely 349 
correlated with distance of a plant family from Arabidopsis in the Brassicaceae. 350 
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 351 
DISCUSSION 352 
 353 
Arabidopsis-only models are highly accurate 354 
 355 
Although we focus on tissue identity in this 356 
study, we note that the strongest source of 357 
variance (PC1) in publicly available Arabidopsis 358 
gene expression profiles is a signature 359 
associated with biotic defense (Table S1) and 360 
that it acts in an additive, orthogonal manner 361 
with respect to tissue type which is the next 362 
strongest source of variance (PC2). Not only 363 
are higher prediction rates expected for the 364 
Arabidopsis-only models because the same 365 
dataset is being used for training and testing, 366 
but because of the data structure itself that 367 
separates the main factors we are testing—368 
above and below ground tissues—as visualized 369 
in a PCA (Fig. 1a-b). From this perspective, it is 370 
perhaps not surprising that KNN is the best 371 
performing algorithm, based on the overall 372 
distance-based proximity of gene expression profiles for each label to each other (Table 1). The 373 
other methods, based on decision trees or neural networks, by focusing on individual gene 374 
expression values as parameters, fail to account for overall distance. The focus on individual 375 
gene expression values instead of the overall signature or profile is reminiscent of the molecular 376 
biology concept of “biomarkers'' to indicate the tissue or stress from which a sample arises. The 377 
outperformance of KNN over other algorithms we tested may suggest that gene expression 378 
signatures (rather than focusing on individual gene expression values) are more valuable to 379 
create models for tissue and cell type prediction. 380 
  381 
Arabidopsis gene expression as a model for other flowering plants may not be the most suitable 382 
approach 383 
 384 
Lower prediction rates are expected when testing a model on different data than its training set 385 
(Table 2). However, the lower precision and recall scores when a model trained on Arabidopsis 386 
is tested on gene expression samples across the flowering plants undermines the foundational 387 
argument for using model species: that data from Arabidopsis would be predictive for plants in 388 
general. This is not to say that there is not substantial conservation of tissue-specific gene 389 
expression patterns. Our own work (Palande et al., 2023) and that of others (Julca et al., 2021) 390 
strongly supports conserved tissue-specific gene expression patterns across flowering plants, 391 
as is true of animals as well (Fukushima and Pollock, 2020). Rather, the ability to leverage and 392 
predict tissue identity from conserved gene expression profiles is diminished when building a 393 
model from a single, arbitrary species.  394 
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 395 
Details of the performance of our model hint at underlying biological considerations when using 396 
model species data. Not all tissue types are equally predictable, and the prediction of below-397 
ground tissue outperforms other tissue types (Fig. 2). We hypothesized that the ability to predict 398 
tissue identity from Arabidopsis may be inversely correlated with phylogenetic distance of a 399 
sample from Brassicaceae, but we found no evidence to support this idea (Fig. 3). Additionally, 400 
the precision values for predicting tissue type of flowering plant data from Arabidopsis are much 401 
higher than recall values (Table 2). This may indicate that models are relatively better at calling 402 
samples with conserved tissue-specificity with Arabidopsis (a true positive) over those without (a 403 
false negative). These results may also be a product of our classification scheme. For example, 404 
above and whole plant tissues are often more similar to each other than below ground tissue 405 
because they are missing roots, and might more easily be misclassified with each other. The 406 
other category is composed of diverse tissues which may not have clear predictive features. 407 
These factors should be considered when evaluating the classification results (Fig. 2). 408 
 409 
Our results potentially arise not only from genes with evolutionary differences in tissue-specific 410 
expression compared to Arabidopsis, but ones that may indeed have conserved expression but 411 
differ in the ways we have culturally constructed our developmental descriptions of plant 412 
species. Such a circumstance might arise when the cell type-specific expression of a gene is 413 
truly conserved, but that evolved differences in functional morphology between species lead us 414 
to apply different tissue descriptors (for example, between an herbaceous annual and a woody 415 
perennial, or a CAM succulent compared to a weedy C3 plant). The misalignment of tissue 416 
labels extends to more quantitative descriptors and to the molecular level, including Gene 417 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms that ultimately 418 
become biased to plants with sequenced genomes (Provart et al., 2016). For example, in our 419 
analysis of genes corresponding to the most positive and most negative PC1 loading values, 420 
there was a noticeable enrichment of genes associated with the glucosinolate biosynthetic and 421 
metabolic pathways in Arabidopsis samples (Table S1). However, this enrichment was absent 422 
in broader angiosperm samples, as these compounds are found almost exclusively in 423 
Brassicaceae. Glucosinolates are a diverse group of secondary metabolites that play a critical 424 
role in plant defense against herbivores and pathogens. Beyond their defensive role, they seem 425 
to be involved in growth, development, microbiota interactions, and phosphate nutrition 426 
(Kopriva, 2021). Focusing on a single organism, or small group of model species to predict 427 
attributes of all plants is flawed from both biological (arising from evolutionary novelty) as well as 428 
philosophical (due to semantic, ontological, and cultural differences in how we socially construct 429 
plants) perspectives. 430 
 431 
Moving forward and embracing plant and cultural diversity 432 
 433 
Arabidopsis was selected as a model species unilaterally, over raised objections, decades ago 434 
arising from mostly genetic and molecular biology considerations (Meyerowitz, 1987; Clough 435 
and Bent, 1998; Arabidopsis Genome Initiative, 2000; Bennett et al., 2003; Bevan and Walsh, 436 
2005). Arguments in favor of plant diversity or selecting agricultural or ecological models were 437 
ignored. These past decisions have led to continued focus on Arabidopsis and there is 438 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2023.08.20.554029doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.554029
http://creativecommons.org/licenses/by-nc/4.0/


 12

continuing advocacy for a plant model species and to fund Arabidopsis research at the expense 439 
of plant diversity to this current day (Provart et al., 2016; Parry et al., 2020). Since then, data 440 
science and computational approaches have begun to grow. Retrospectively, after which 441 
decades of sequencing data across flowering plants has allowed us to objectively ask if the 442 
focus on a single, arbitrary plant allows us to predict the biology of other flowering plants better 443 
than if we had studied all plants equally from the start, the answer is no (Table 2). Using a data 444 
science approach and building machine learning models on Arabidopsis gene expression data 445 
to predict the tissue identity of gene expression samples from across flowering plants as we 446 
have done here, does not preclude the consideration of other, more important qualitative 447 
arguments against the model species concept that continue to limit the potential of the plant 448 
science community. Beyond just Arabidopsis, there is still a focus on agriculturally important 449 
species at the expense of all plants (Marks et al., 2023). More insidiously, the social construct of 450 
plants and their diversity arises from colonialism, evidenced not only by the gaze of the Global 451 
North and the plants we have chosen to research and document and how we do so, but in ways 452 
that can be quantified related to the specific discussion of Arabidopsis here, specifically which 453 
plant genomes have been sequenced and by whom (Marks et al., 2021), usually through 454 
extinguishing and stealing the cultural knowledge of Indigenous people (Dwer et al., 2022).  455 
 456 
Useful discoveries and insights have arisen from Arabidopsis (Arabidopsis Genome Initiative, 457 
2000). Rather than advocating for continued focus and funding for a single model species 458 
(Provart et al., 2016; Parry et al., 2020), it is long past due that we address the historical 459 
inequities that have led to our current construction of the plant sciences and that we avoid a 460 
biased focus and embrace the biological and cultural diversity of the plant world. 461 
 462 
Data availability: The code, metadata, and raw datasets from this project are available on a 463 
dedicated GitHub page: https://github.com/PlantsAndPython/arabidopsis-gene-expression 464 
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Tables 613 
 614 
Table 1: Classification performance of models trained on the full Arabidopsis dataset. 615 
 616 

Model Precision Recall f1-score 

SVC 0.765131 0.80103 0.777531 

MLP 0.843599 0.844979 0.832854 

RF 0.845664 0.826609 0.833746 

HGB 0.976665 0.976481 0.976319 

KNN 0.98921 0.989185 0.989193 

 617 
Table 2: Classification performance of models trained on the conserved Arabidopsis 618 
dataset and tested on conserved Arabidopsis or Angiosperm datasets. 619 
 620 

Model Test Set Precision Recall f1-score 

SVC Arabidopsis 0.740855 0.778026 0.754276 

 Angiosperm 0.695691 0.576189 0.591683 

MLP Arabidopsis 0.822682 0.828155 0.824351 

 Angiosperm 0.734603 0.547361 0.611767 

RF Arabidopsis 0.862941 0.864721 0.861927 

 Angiosperm 0.747272 0.569075 0.622122 

HGB Arabidopsis 0.971034 0.970987 0.970574 

 Angiosperm 0.741902 0.567952 0.640741 

KNN Arabidopsis 0.987804 0.987811 0.987803 

 Angiosperm 0.733478 0.643205 0.663313 

 621 
Figure Legends 622 
 623 
Figure 1: Principal Component Analysis (PCA) of gene expression profiles. PCAs with 624 
gene expression profiles colored by above-ground (blue), below-ground (orange), whole plant 625 
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(red), and other (green) tissue types for a) the full Arabidopsis dataset, b) the conserved 626 
Arabidopsis data set, c) the angiosperm dataset projected onto the conserved Arabidopsis PCA 627 
from b), and d) the same as c), but with conserved Arabidopsis gene expression profiles in the 628 
background (transparent gray). 629 
  630 
Figure 2: Confusion matrices using the KNN-classifier. Confusion matrices showing true 631 
label identity (vertical axis) and the proportion of samples assigned to predicted label identities 632 
(horizontal axis) for a) the full Arabidopsis dataset and b) the angiosperm dataset. Proportion 633 
indicated by viridis color scale. 634 
  635 
Figure 3: Prediction accuracy by plant family. Using KNN-classifier on the angiosperm 636 
dataset, the proportion of samples correctly (blue) and wrongly (orange) predicted from 637 
Arabidopsis data is shown as a stacked bar plot. 638 
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