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57 ABSTRACT
58
59  The selection of Arabidopsis as a model organism played a pivotal role in advancing genomic
60 science, firmly establishing the cornerstone of today’s plant molecular biology. Competing
61 frameworks to select an agricultural- or ecological-based model species, or to decentralize plant
62  science and study a multitude of diverse species, were selected against in favor of building core
63  knowledge in a species that would facilitate genome-enabled research that could assumedly be
64 transferred to other plants. Here, we examine the ability of models based on Arabidopsis gene
65  expression data to predict tissue identity in other flowering plant species. Comparing different
66  machine learning algorithms, models trained and tested on Arabidopsis data achieved near
67  perfect precision and recall values using the K-Nearest Neighbor method, whereas when tissue
68 identity is predicted across the flowering plants using models trained on Arabidopsis data,
69  precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64, depending on the
70  algorithm used. Below-ground tissue is more predictable than other tissue types, and the ability
71  to predict tissue identity is not correlated with phylogenetic distance from Arabidopsis. This
72 suggests that gene expression signatures rather than marker genes are more valuable to create
73  models for tissue and cell type prediction in plants. Our data-driven results highlight that, in
74  hindsight, the assertion that knowledge from Arabidopsis is translatable to other plants is not
75  always true. Considering the current landscape of abundant sequencing data and computational
76  resources, it may be prudent to reevaluate the scientific emphasis on Arabidopsis and to
77  prioritize the exploration of plant diversity.
78
79 INTRODUCTION
80
81  Historically, plant biology has focused on inferring genetic, molecular, physiological, and
82  ecological mechanisms. Conventionally, through quantifying phenomena and applying statistics,
83  hypotheses are tested and decisions of most likely scenarios are determined. New technologies
84  and computational approaches have caused a shift from hypothesis- to data-driven research
85  (Mazzocchi, 2015). Moreover, plant biology has embraced the inclusion of machine learning
86  methods in addition to traditional statistical approaches (lj, 2018). Both a deluge of data and
87  new computational methods have allowed for predictive, rather than inferential, methods. Both
88  statistics and machine learning can be used for inference and prediction, but machine learning
89 methods more often classify and predict on class labels rather than inferring statistical
90 parameters of a population. In plant biology, such predictive approaches underlie the
91 frameworks of phenotyping (Coppens et al., 2017), precision agriculture (Zhang et al., 2002),
92  genomic prediction (Crossa et al., 2014), linking transcriptomic profiles to phenotype (Azodi et
93 al., 2020), and protein structure determination (Jumper et al., 2021). Just as inferential statistics
94  has its limitations, the robustness and ability to extrapolate predictive models are also
95 constrained by the empirical context from which the data originates. Although data-driven
96 research is slowly becoming more theoretical and predictive (Hogeweg, 2011), the creation of
97 universal plant models is hindered by their overwhelming diversity. Not only is the phylogenetic
98 diversity among flowering plants immense (The Angiosperm Phylogeny Group et al., 2016), but
99 plants are exceptionally responsive to their environments (Sultan, 2000) and have evolved

100 symbiotic interactions with and defense mechanisms against innumerable microbes (Mitchell et
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101  al., 2006). Furthermore, technical variability in data acquisition makes it difficult to exploit the
102  huge amount of expression data archived in databases. The number of ways we sample

103  molecular profiles from plant tissues and the interaction effects that arise between

104  phylogenetically diverse species with environments, stresses, and biotic interactions is

105 countless and prevents extrapolating results between studies.

106

107 Due to the clear advantages of studying a single model species, the early days of the genomics
108 eratended to overlook the importance of prioritizing plant diversity. The candidates considered
109 for the first sequenced genome were either easily transformable (e.g., species within

110 Solanaceae; Knapp et al., 2004) or were already used for genetics (e.g., maize; Strable and
111 Scanlon, 2009), but never was biodiversity considered (Meyerowitz, 2001). Reasons for

112  choosing Arabidopsis as the first sequenced plant genome (Arabidopsis Genome Initiative,

113  2000) include ease of transformation (Clough and Bent, 1998), its small genome (Bennett et al.,
114  2003), and life history traits that allow for genetics through crossing, and short generation times
115 (Meyerowitz, 1987). The justification for initially sequencing the genome of a single model

116  species was that such focus would allow unprecedented molecular discoveries that could be
117 translated into other species and improve our understanding of all plants (Bevan and Walsh,
118 2005). The strategy to focus on a single model species was successful, and Arabidopsis is the
119 most cited plant in the last 20 years, even surpassing key crops and all other plant species

120  (Marks et al., 2023). Our molecular knowledge in plants was purposefully constructed to focus
121  on Arabidopsis over crops and plant genetic diversity. However, such a choice has little

122  relevance in a changing climate with dwindling natural resources and vanishing biodiversity that
123  have become the most pressing concerns of our time. The cultural dynamics that influenced the
124  choice of Arabidopsis as the first sequenced genome are reflected in subsequently sequenced
125 plant genomes. Plants intrinsic to Indigenous cultures and territories have been sequenced by
126  colonial powers (Marks et al., 2021; Dyer et al., 2022). While sequencing Arabidopsis has

127  certainly expanded our knowledge of molecular processes, due to such an intense focus, our
128 understanding in other species remains limited. This leaves us questioning the extent to which
129 the insights from Arabidopsis can be extrapolated to the rest of flowering plants.

130

131 Inthe 20 years since the release of the Arabidopsis genome sequence (Arabidopsis Genome
132 Initiative, 2000), the number of sequenced plant genomes has dramatically risen (Michael and
133  Jackson, 2013; Li and Harkess, 2018; Marks et al., 2021) leading to a greater understanding of
134  the evolutionary origin and genetic mechanisms underlying numerous traits across the green
135 lineage. Next-generation sequencing, for example, has enabled unprecedented surveys of

136 genome-scale features across species, tissue types, environments, and interactions between
137  plants with abiotic and biotic factors. There are currently over 300,000 public gene expression
138 datasets spanning thousands of diverse plant species (Lim et al., 2022). Cross-species

139 comparisons of gene expression across plants have usually been limited by the number of

140  species analyzed (Proost and Mutwil, 2018) or their sampling breadth. Most studies have

141  generated datasets from scratch (Julca et al., 2021) instead of leveraging public repositories.
142  Databases and datasets curating and making vast amounts of gene expression profiles and
143 their associated metadata have been created. For example, an Arabidopis RNA-seq database
144  (ARS) compiles 20,068 publicly available Arabidopsis RNA-Seq libraries (Zhang et al., 2020),
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145 and the Plant Public RNAJseq Database has ~45,000 maize, rice, wheat, soybean and cotton
146  samples (Yu et al. 2022). Previously we had curated a dataset of 2,671 publicly available gene
147  expression profiles from 54 flowering plant species across 7 developmental tissue types and
148 nine stresses (Palande et al., 2023). More than 20 years after the release of the Arabidopsis
149  genome, not only have we accumulated enough data across plants to ask unprecedented

150 questions but new computational tools are available that permit comparative approaches to
151 analyze such massive amounts of data.

152

153  Here, building upon large, curated databases of Arabidopsis (Zhang et al., 2020) and flowering
154  plant gene expression profiles (Palande et al., 2023), we examine how predictive Arabidopsis is
155 as a model species relative to the rest of the flowering plants and to what degree we can

156  extrapolate our knowledge from model organisms to diverse plant species. Dimension reduction
157  through principal component analysis (PCA) reveals that biotic stress response and tissue type
158 are primary, orthogonal sources of structure in gene expression data from Arabidopsis, and
159  while angiosperm data projected onto this space retains some structure, the regions occupied
160 between tissue types become less distinct. We next compare the performance of different

161  machine learning models. The k-nearest neighbor (KNN) method yields precision and recall
162  values of up to 0.99 with models trained and tested on Arabidopsis data. Model performance
163  drops significantly, with higher precision than recall values, when data from across flowering
164  plants is tested using models trained on Arabidopsis data. Below-ground tissue is more

165 separated from and predictable than other tissue types, and phylogenetic distance from

166  Arabidopsis does not appear to influence prediction rates. We end with a discussion of the

167  implications of our results for the current structure of the plant science community,

168 acknowledging that the past focus on Arabidopsis as a model organism based on decisions
169 decades ago was effective at that time; however, we now advocate for a shift in approach due
170 to changing circumstances, particularly in light of the pressing issue of biodiversity loss. We
171  argue for a more decentralized and inclusive research framework that better encompasses the
172  diversity of plants and the human cultures that represent them, adapting to current

173  environmental and scientific challenges.

174

175 MATERIALS AND METHODS
176

177 Datasets

178

179  We used two curated databases in this analysis. The first contained 28,165 Arabidopsis gene
180 expression profiles across 37,334 genes (Zhang et al. 2020). The second contained 2,671

181 flowering plant expression profiles across 6,327 orthogroups (Palande et al. 2023). Metadata
182 labels for each sample from both of the databases was assigned one of four tissue type labels
183 (above-ground, below-ground, whole plant, or other). The categories are purposefully

184 encompassing and chosen to facilitate accurate assignment across the broad categories of
185 experimental data we analyzed, focusing on above-ground and below-ground tissue identity as
186  one of the simplest cases to test tissue predictability. After removing samples with missing

187 metadata and samples with low unique mapped rate (<75%), the Arabidopsis database was left
188  with 19,415 samples. A conserved Arabidopsis database was also constructed by keeping only
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189 the genes mapped to the orthogroups from the flowering plant database. The conserved

190 Arabidopsis database contained the same number of samples, but with much smaller

191  expression profiles across only the 6,327 orthogroups shared with the angiosperm dataset.

192

193  Classification models

194

195 Classification is a common machine learning task where, given data points belonging to two or
196 more classes, the goal is to learn a function that best differentiates between points from different
197 classes. Then, given a new data point, the function can be used to decide which class the point
198 belongs to. The classifier function can be learned in many different ways, leading to various
199 types of machine learning models. For each classifier model in this study, we employed the

200 following modeling methods:

201

202 Linear support vector classifier (SVC): In linear classification, each point is viewed as a vector in
203  k-dimensional space (Cortes and Vapnik, 1995). The goal is to find (k-1)-dimensional

204  hyperplanes that separate the points belonging to different classes. There are many possible
205 choices for hyperplanes that can classify the points. A reasonable choice is to find the ones that
206 maximize the separation between points from different classes. These are known as maximum-
207  margin hyperplanes. Geometrically, the max-margin hyperplanes are defined by the points that
208 lie closest to them; therefore, such points are called support vectors.

209

210  Multi-layer perceptron (MLP): The SVC model assumes that the classes are linearly separable,
211  which may not be true. MLPs are a class of artificial neural networks (Haykin, 1998) with three
212  or more layers of “perceptrons” with non-linear activation. An MLP consists of an input and an
213  output layer, with one or more hidden layers of neurons. We experimented with one and two
214  hidden-layer MLPs and used rectified linear unit (ReLU) activation in all cases. In ReLU, a

215 neuron’s activation is the weighted sum of its inputs, if the sum is non-negative, and zero

216  otherwise. Even with this simple nonlinear activation function, MLPs are able to outperform the
217  linear SVC.

218

219 Random forest (RF): Random forests (Ho, 1995) perform classification by constructing an

220 ensemble of decision trees. Each decision tree outputs a class label for the given sample and
221  the output of the RF is the class label predicted by the majority of the trees. In a decision tree,
222  each internal node is labeled by an input feature and the leaf nodes are labeled by the class
223 labels. Starting from the root node, the input set is recursively partitioned into children nodes
224  using the input feature associated with the node. The recursion ends when all data points in the
225 node belong to the same class, or some pre-specified termination criteria, such as maximum
226  depth of the tree, are met. Which feature to split the data on at each level is determined using
227 information criteria such as gini impurity or entropy that measure how consistent the subsets are
228  with respect to the class labels after the split.

229

230 Histogram-based gradient boosting (HGB): Gradient boosting (Mason et al., 1999) is another
231 class of methods that uses a large ensemble of decision trees. In histogram-based boosting, the
232  real-valued input features are first discretized into a few (typically 256) bins using histograms.
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233  This allows the training algorithm to run much more efficiently and construct a much larger

234  ensemble of decision trees to support the classification.

235

236  K-nearest neighbor (KNN) classifier: In KNN classifiers (Cover and Hart, 1967) class labels are
237  assigned based on a majority vote of the K nearest training points. The distance metric and the
238 number of neighbors are specified by the user. In our experiments, correlation distance between
239 the expression profiles was used to train the KNN classifier.

240

241  Experimental design

242

243  To establish the utility of gene expression profiles in predicting tissue type, we trained the

244 supervised machine learning models to classify the Arabidopsis data by tissue types (Table 1).
245  The database was split into training and test sets (70%-30% split). To ensure comparability, all
246  five models were trained and tested on the same training and test sets. Next, we wanted to
247  examine how predictive Arabidopsis is to the rest of the flowering plants (Table 2). To test this,
248  we used a set of conserved Arabidopsis transcripts with orthogroups across angiosperms, split
249  into training and test sets (70%-30% split) as before. The same five machine learning models
250 were trained on the conserved Arabidopsis training set. The performance of these models was
251 first tested on the conserved gene Arabidopsis test set to make sure that the models were still
252  able to predict the tissue types with a significantly smaller number of features. We then used the
253 same models to classify the angiosperm data to test how well they extrapolate to species other
254  than Arabidopsis. Each machine learning model employed in our experiments requires

255  additional hyperparameters that need to be tuned to optimize model performance. We used the
256  Bayesian optimization procedure implemented in the hyperopt package in Python (Bergstra et
257  al., 2013). To gain insights into the functional annotation and enrichment of our gene list, we
258 performed a Gene Ontology term analysis using the DAVID Functional Annotation Clustering
259  tool (version 2021) from the web interface http://david.ncifcrf.gov (Huang et al., 2009). We

260 filtered the 200 genes with the most positive and negative PC1 loading values. The annotation
261  was performed using TAIR IDs and selecting Gene Ontology terms from levels 3 and 4 of

262  Molecular Function and Biological Process categories. All data and code to reproduce the

263  results in this manuscript are available at https://github.com/PlantsAndPython/arabidopsis-gene-
264  expression.

265

266 RESULTS

267

268 Dimension reduction and alignment between Arabidopsis and angiosperm gene expression
269 datasets

270

271 A principal component analysis (PCA) performed on the full dataset of 19,415 Arabidopsis

272  RNAseq samples shows a clear separation by tissue type (Fig. 1a). For simplicity, we

273  categorized samples into bins of above-ground, below-ground, whole plant, and other. The

274  above-ground, below-ground, and other tissue types are well-separated from each other, but the
275  below-ground tissue has the least overlap with other tissues. The whole plant tissue type,

276  composed of different combinations of the other tissues, is not well separated, as we would
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277  expect. The separation of tissues occurs along a gradient defined by PC2, demonstrating that
278  tissue type is not the primary source of variance in the data. Rather, a small proportion of
279  samples are strewn across PCL1 in an additive, orthogonal manner, preserving the separation of
280 tissue types defined by PC2. To investigate the underlying cause responsible for the primary
281  source of variation in the data, we performed GO enrichment on genes with the most extreme
282  PC1 loading values that are most responsible for defining PCL1. In the full Arabidopsis dataset
283  (Fig. 1a), high PC1 values, which include a small number of samples that contribute to a
284  disproportionate amount of variance in the data, are defined by high expression of genes
285  associated with response to biotic stress and oxidative damage GO terms (Table S1). Low PC1
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Figure 1: Principal Component Analysis (PCA) of gene expression profiles. PCAs with gene expres-
sion profiles colored by above-ground (blue), below-ground (orange), whole plant (red), and other
(green) tissue types for a) the full Arabidopsis dataset, b) the conserved Arabidopsis data set, c) the
angiosperm dataset projected onto the conserved Arabidopsis PCA from b), and d) the same as ¢), but
with conserved Arabidopsis gene expression profiles in the background (transparent gray).
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286  values, which include a majority of samples across tissues and which we assume arise from
287  plants grown under regular conditions associated with the less stress, are defined by high

288  expression of genes with GO terms associated with biosynthesis, biogenesis, and cell growth.
289  Remarkably, in the full Arabidopsis dataset, negative PC1 loading values are enriched for

290 glucosinolate biosynthetic and other metabolic processes (FDR <0.05) .

291

292  From these large-scale datasets, we developed a predictive model to test if tissue type could be
293 inferred from expression patterns alone and if this Arabidopsis-trained model could be

294  transferred to other flowering plants. We previously created a set of 6,328 low copy orthogroups
295 that are deeply conserved across flowering plants (Palande et al., 2023) and used a set of 6,327
296  Arabidopsis genes corresponding to these orthogroups for all downstream analyses. A PCA
297  performed on this subset of 6,327 conserved flowering plant genes shows mostly the same

298  structure as the analysis with all Arabidopsis genes included (Fig. 1b). However, while the

299  below-ground tissue type remains distinct from the rest of the data, the above-ground tissue
300 type overlaps more with whole plant and other tissue types. Note that the sign of principal

301 components is arbitrary, which explains the “flip” of PC2 values relative to the full set of

302  Arabidopsis genes. An analysis of the enriched GO terms for PC1 loading values from the

303 conserved gene PCA reveals that high PC1 values are associated with biotic responses, but
304  also with anther- and pollen-related GO terms (Table S1). Low PC1 values are associated

305 overwhelmingly with photosynthesis. Because the two datasets have corresponding orthogroup
306 features, we are able to project the angiosperm dataset onto the PCA defined by the conserved
307 gene Arabidopsis dataset (Fig. 1c-d). While the overall structure defining the distributions of
308 tissue types is maintained in the projected angiosperm data, there is substantial overlap

309 between above-ground and below-ground tissue types. We conclude that indeed there is

310 conservation of tissue-specific expression between Arabidopsis and the rest of the flowering
311  plants, but that as expected, the alignment of the underlying structures of gene expression

312  patterns defining tissue type identity are not identical.

313

314  Predictive modeling of plant tissue from gene expression

315

316  We used supervised learning classifiers to test if gene expression profiles could predict tissue
317  type in Arabidopsis and if these Arabidopsis trained models could be applied more broadly to
318 flowering plants. We first split the Arabidopsis data into testing and training sets with samples
319  splitinto four classes of above-ground, below-ground, whole-plant, or other as described above.
320 Models trained on Arabidopsis expression data and used to predict tissue type in Arabidopsis,
321  whether the full or conserved gene datasets, achieved high precision and recall scores. The
322  highest f1-scores (the harmonic mean of precision and recall) for the full and conserved

323  datasets were achieved using a K-Nearest Neighbors algorithm (KNN) (0.99 and 0.99,

324  respectively; Tables 1 and 2) and the lowest using Linear Support Vector Classification (SVC)
325 (0.78 and 0.75). Histogram-Based Gradient Boosting (HGB) also achieved high f1-scores (0.98
326 and 0.97) while the results for Random Forest (RF) (0.83 and 0.86) and Multilayer Perceptron
327  (MLP) (0.83 and 0.82) were intermediate. When used to predict Arabidopsis data, the precision
328 and recall values for each model were similar to each other, indicating similar positive prediction
329  value (precision, true positives divided by true positives and false positives) and sensitivity
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330 (recall, true positives divided by true positives and false negatives). The relative prediction rates
331  of different tissue types to each other were equivalent for the full Arabidopsis dataset (Fig. 2a).
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Figure 2: Confusion matrices using the KNN-classifier. Confusion matrices showing true label identity
(vertical axis) and the proportion of samples assigned to predicted label identities (horizontal axis) for a)
the full Arabidopsis dataset and b) the angiosperm dataset. Proportion indicated by viridis color scale.

332

333  The projection of gene expression patterns from across flowering plants onto a PCA using a
334  conserved set of genes from Arabidopsis shows considerable variability (Fig. 1c-d). Using

335 models trained on Arabidopsis data and tested on flowering plants, prediction rates are more
336  similar to each other using different algorithms than Arabidopsis alone but perform much worse,
337 and with higher precision than recall rates (Table 2). For KNN, HGB, RF, MLP, and SVC

338 methods, precision values were 0.73, 0.74, 0.75, 0.73, and 0.70, respectively, whereas the rates
339  of recall were 0.64, 0.57, 0.57, 0.55, and 0.58. Although these rates are moderately high, they
340 must be interpreted in the context of using only four tissue type labels. The relatively higher

341  precision rates compared to recall indicate that when a sample is retrieved, there is a higher
342 rate of the models calling a true positive (positive prediction value) compared to the fraction of
343  relevant samples retrieved (sensitivity). The prediction rates across tissue types were not evenly
344  distributed (Fig. 2b). Below-ground tissue was accurately classified, at a rate of 0.96, while

345  above-ground tissue was only correctly predicted at a rate of 0.64. Other and whole plant tissue
346  types were classified poorly (0.074 and 0.32, respectively), and almost no samples were

347  predicted as other tissue type, including other samples themselves. Although the prediction

348  accuracy varies considerably across plant families (Fig. 3), from around 0.4 to 0.8, we could not
349 identify any phylogenetic signal or find any support that prediction of tissue identity is inversely
350 correlated with distance of a plant family from Arabidopsis in the Brassicaceae.
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351
352 DISCUSSION . _

Prediction accuracy by family
353 ‘|0 R TE R S ST B el [ = s EEE Correct
354  Arabidopsis-only models are highly accurate == Wrong
355 081 ‘ l
356  Although we focus on tissue identity in this o ‘
357  study, we note that the strongest source of 206
358 variance (PC1) in publicly available Arabidopsis g_
359 gene expression profiles is a signature &C.’ 0.4+
360 associated with biotic defense (Table S1) and
361 thatit acts in an additive, orthogonal manner 0.2
362  with respect to tissue type which is the next

363  strongest source of variance (PC2). Not only
364  are higher prediction rates expected for the
365  Arabidopsis-only models because the same
366  dataset is being used for training and testing, o

367  but because of the data structure itself that Figure 3: Prediction accuracy by plant family.
368  separates the main factors we are testing— Using KNN-classifier on the angiosperm dataset,
369 above and below ground tissues—as visualized the proportion of samples correctly (blue) and
370 inaPCA (Fig. 1a-b). From this perspective, it is wrongly (orange) predicted is shown as a

371  perhaps not surprising that KNN is the best stacked bar plot.

372  performing algorithm, based on the overall

373  distance-based proximity of gene expression profiles for each label to each other (Table 1). The
374  other methods, based on decision trees or neural networks, by focusing on individual gene

375  expression values as parameters, fail to account for overall distance. The focus on individual
376  gene expression values instead of the overall signature or profile is reminiscent of the molecular
377  biology concept of “biomarkers" to indicate the tissue or stress from which a sample arises. The
378 outperformance of KNN over other algorithms we tested may suggest that gene expression

379  signatures (rather than focusing on individual gene expression values) are more valuable to
380 create models for tissue and cell type prediction.

381

382  Arabidopsis gene expression as a model for other flowering plants may not be the most suitable
383  approach

384

385  Lower prediction rates are expected when testing a model on different data than its training set
386 (Table 2). However, the lower precision and recall scores when a model trained on Arabidopsis
387 istested on gene expression samples across the flowering plants undermines the foundational
388 argument for using model species: that data from Arabidopsis would be predictive for plants in
389 general. This is not to say that there is not substantial conservation of tissue-specific gene

390 expression patterns. Our own work (Palande et al., 2023) and that of others (Julca et al., 2021)
391  strongly supports conserved tissue-specific gene expression patterns across flowering plants,
392 as s true of animals as well (Fukushima and Pollock, 2020). Rather, the ability to leverage and
393  predict tissue identity from conserved gene expression profiles is diminished when building a
394  model from a single, arbitrary species.

10
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395

396 Details of the performance of our model hint at underlying biological considerations when using
397 model species data. Not all tissue types are equally predictable, and the prediction of below-
398  ground tissue outperforms other tissue types (Fig. 2). We hypothesized that the ability to predict
399 tissue identity from Arabidopsis may be inversely correlated with phylogenetic distance of a
400 sample from Brassicaceae, but we found no evidence to support this idea (Fig. 3). Additionally,
401 the precision values for predicting tissue type of flowering plant data from Arabidopsis are much
402  higher than recall values (Table 2). This may indicate that models are relatively better at calling
403  samples with conserved tissue-specificity with Arabidopsis (a true positive) over those without (a
404  false negative). These results may also be a product of our classification scheme. For example,
405 above and whole plant tissues are often more similar to each other than below ground tissue
406  because they are missing roots, and might more easily be misclassified with each other. The
407  other category is composed of diverse tissues which may not have clear predictive features.
408 These factors should be considered when evaluating the classification results (Fig. 2).

409

410  Our results potentially arise not only from genes with evolutionary differences in tissue-specific
411  expression compared to Arabidopsis, but ones that may indeed have conserved expression but
412  differ in the ways we have culturally constructed our developmental descriptions of plant

413  species. Such a circumstance might arise when the cell type-specific expression of a gene is
414  truly conserved, but that evolved differences in functional morphology between species lead us
415  to apply different tissue descriptors (for example, between an herbaceous annual and a woody
416  perennial, or a CAM succulent compared to a weedy C3 plant). The misalignment of tissue

417  labels extends to more quantitative descriptors and to the molecular level, including Gene

418 Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms that ultimately
419  become biased to plants with sequenced genomes (Provart et al., 2016). For example, in our
420  analysis of genes corresponding to the most positive and most negative PC1 loading values,
421 there was a noticeable enrichment of genes associated with the glucosinolate biosynthetic and
422  metabolic pathways in Arabidopsis samples (Table S1). However, this enrichment was absent
423  in broader angiosperm samples, as these compounds are found almost exclusively in

424  Brassicaceae. Glucosinolates are a diverse group of secondary metabolites that play a critical
425  role in plant defense against herbivores and pathogens. Beyond their defensive role, they seem
426  to be involved in growth, development, microbiota interactions, and phosphate nutrition

427  (Kopriva, 2021). Focusing on a single organism, or small group of model species to predict

428  attributes of all plants is flawed from both biological (arising from evolutionary novelty) as well as
429  philosophical (due to semantic, ontological, and cultural differences in how we socially construct
430 plants) perspectives.

431

432  Moving forward and embracing plant and cultural diversity

433

434  Arabidopsis was selected as a model species unilaterally, over raised objections, decades ago
435  arising from mostly genetic and molecular biology considerations (Meyerowitz, 1987; Clough
436 and Bent, 1998; Arabidopsis Genome Initiative, 2000; Bennett et al., 2003; Bevan and Walsh,
437  2005). Arguments in favor of plant diversity or selecting agricultural or ecological models were
438 ignored. These past decisions have led to continued focus on Arabidopsis and there is

11
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439  continuing advocacy for a plant model species and to fund Arabidopsis research at the expense
440  of plant diversity to this current day (Provart et al., 2016; Parry et al., 2020). Since then, data
441  science and computational approaches have begun to grow. Retrospectively, after which

442  decades of sequencing data across flowering plants has allowed us to objectively ask if the
443  focus on a single, arbitrary plant allows us to predict the biology of other flowering plants better
444  than if we had studied all plants equally from the start, the answer is no (Table 2). Using a data
445  science approach and building machine learning models on Arabidopsis gene expression data
446  to predict the tissue identity of gene expression samples from across flowering plants as we
447  have done here, does not preclude the consideration of other, more important qualitative

448  arguments against the model species concept that continue to limit the potential of the plant
449  science community. Beyond just Arabidopsis, there is still a focus on agriculturally important
450 species at the expense of all plants (Marks et al., 2023). More insidiously, the social construct of
451  plants and their diversity arises from colonialism, evidenced not only by the gaze of the Global
452  North and the plants we have chosen to research and document and how we do so, but in ways
453  that can be quantified related to the specific discussion of Arabidopsis here, specifically which
454  plant genomes have been sequenced and by whom (Marks et al., 2021), usually through

455  extinguishing and stealing the cultural knowledge of Indigenous people (Dwer et al., 2022).
456

457  Useful discoveries and insights have arisen from Arabidopsis (Arabidopsis Genome Initiative,
458  2000). Rather than advocating for continued focus and funding for a single model species

459  (Provart et al., 2016; Parry et al., 2020), it is long past due that we address the historical

460 inequities that have led to our current construction of the plant sciences and that we avoid a
461  biased focus and embrace the biological and cultural diversity of the plant world.

462

463  Data availability: The code, metadata, and raw datasets from this project are available on a
464  dedicated GitHub page: https://github.com/PlantsAndPython/arabidopsis-gene-expression
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613 Tables

614

615 Table 1: Classification performance of models trained on the full Arabidopsis dataset.
616

Model Precision Recall fl-score
SVC 0.765131 0.80103 0.777531
MLP 0.843599 0.844979 0.832854

RF 0.845664 0.826609 0.833746
HGB 0.976665 0.976481 0.976319
KNN 0.98921 0.989185 0.989193

617

618 Table 2: Classification performance of models trained on the conserved Arabidopsis
619 dataset and tested on conserved Arabidopsis or Angiosperm datasets.

620

Model Test Set Precision Recall fl-score
SvC Arabidopsis  0.740855 0.778026 0.754276
Angiosperm  0.695691  0.576189  0.591683

MLP Arabidopsis  0.822682 0.828155 0.824351
Angiosperm  0.734603 0.547361 0.611767

RF Arabidopsis  0.862941 0.864721 0.861927
Angiosperm  0.747272 0.569075 0.622122

HGB Arabidopsis  0.971034 0.970987 0.970574
Angiosperm  0.741902  0.567952  0.640741

KNN Arabidopsis  0.987804 0.987811 0.987803

Angiosperm  0.733478  0.643205  0.663313

621

622  Figure Legends

623

624  Figure 1: Principal Component Analysis (PCA) of gene expression profiles. PCAs with
625 gene expression profiles colored by above-ground (blue), below-ground (orange), whole plant
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626 (red), and other (green) tissue types for a) the full Arabidopsis dataset, b) the conserved

627  Arabidopsis data set, c) the angiosperm dataset projected onto the conserved Arabidopsis PCA
628 from b), and d) the same as c), but with conserved Arabidopsis gene expression profiles in the
629  background (transparent gray).

630

631 Figure 2: Confusion matrices using the KNN-classifier. Confusion matrices showing true
632 label identity (vertical axis) and the proportion of samples assigned to predicted label identities
633  (horizontal axis) for a) the full Arabidopsis dataset and b) the angiosperm dataset. Proportion
634 indicated by viridis color scale.

635

636  Figure 3: Prediction accuracy by plant family. Using KNN-classifier on the angiosperm

637 dataset, the proportion of samples correctly (blue) and wrongly (orange) predicted from

638  Arabidopsis data is shown as a stacked bar plot.
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Figure 2: Confusion matrices using the KNN-classifier. Confusion matrices showing true label identity
(vertical axis) and the proportion of samples assigned to predicted label identities (horizontal axis) for a)
the full Arabidopsis dataset and b) the angiosperm dataset. Proportion indicated by viridis color scale.
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Figure 3: Prediction accuracy by plant family.
Using KNN-classifier on the angiosperm dataset,
the proportion of samples correctly (blue) and
wrongly (orange) predicted is shown as a
stacked bar plot.
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