

Harmonic decomposition of spacetime (HADES) framework characterises the spacetime hierarchy of the DMT brain state

Jakub Vohryzek^{1,2,3,4}, Joana Cabral^{1,5,6}, Christopher Timmermann⁷, Selen Atasoy^{1,2}, Leor Roseman⁷, David J Nutt⁷, Robin L Carhart-Harris^{7,8}, Gustavo Deco^{4,9,10,11}, Morten L Kringselbach^{1,2,3}

1. Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford
 2. Department of Psychiatry, University of Oxford, Oxford, United Kingdom
 3. Center for Music in the Brain, Aarhus University, Aarhus, Denmark
 4. Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
 5. Life and Health Sciences Research Institute, School of Medicine, University of Minho
 6. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
 7. Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, United Kingdom
 8. Departments of Neurology and Psychiatry, University of California San Francisco, US
 9. Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
 10. Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
 11. School of Psychological Sciences, Monash University, Melbourne, Australia

Corresponding author: Jakub Vohryzek (jakub.vohryzek@upf.edu)

Keywords: Spatio-temporal Brain Dynamics, DMT, Harmonic Modes

24 Abstract

25 The human brain is a complex system, whose activity exhibits flexible and continuous
26 reorganisation across space and time. The decomposition of whole-brain recordings into
27 harmonic modes has revealed a repertoire of gradient-like activity patterns associated with
28 distinct brain functions. However, the way these activity patterns are expressed over time with
29 their changes in various brain states remains unclear. In this study, we develop the Harmonic
30 Decomposition of Spacetime (HADES) framework that characterises how different harmonic
31 modes defined in *space* are expressed over *time*, and, as a proof-of-principle, demonstrate the
32 sensitivity and robustness of this approach to specific changes induced by the serotonergic
33 psychedelic N,N-Dimethyltryptamine (DMT) in healthy participants. HADES demonstrates
34 significant decreases in contributions across most low-frequency harmonic modes in the DMT-
35 induced brain state. When normalizing the contributions by condition (DMT and non-DMT),
36 we detect a decrease specifically in the second functional harmonic, which represents the uni-
37 to transmodal functional hierarchy of the brain, supporting the hypothesis that functional
38 hierarchy is changed in psychedelics. Moreover, HADES' dynamic spacetime measures of
39 fractional occupancy, life time and latent space provide a precise description of the significant
40 changes of the spacetime hierarchical organization of brain activity in the psychedelic state.

41

42 Introduction

43 The brain is endowed with complex dynamics and can be perceived along spatial and temporal
44 dimensions [1]. Traditionally, neuroscience has focused on delineating and studying localised
45 cortical regions to map brain function in a temporarily static fashion [2]. However, recent
46 developments in neuroscience have started to indicate more spatially continuous
47 representations of functional topography [3], [4], and at the same time to stress the importance
48 of temporally varying brain dynamics [5]. Despite such progress, it remains unknown what

49 underlying mechanisms drive, on one hand, the gradient-like organisation of cortical
50 topography, and on the other, the waning and waxing of the brain's spatiotemporal patterns of
51 activity.

52

53 Here, we propose Harmonic Decomposition of Spacetime (HADES) as a new model of
54 hierarchical processing across both spatial and temporal dimensions. Historically, Brodmann's
55 interactive atlas of cellular morphology and organisation has given rise to the view of
56 functional specialisation of individual brain areas [6], [7]. Spatially, this suggests a sharp
57 delineation between cortical areas in terms of their anatomy and function. However, supported
58 by evolutionary and developmental neuroscience [8], [9], cortical gradients have challenged
59 this view by suggesting gradually varying boundaries between and within brain regions, both
60 in terms of function and anatomy [3], [4], [10]. Functionally, gradient-like organisation
61 proposes an intrinsic coordinate system of human brain organisation continuously varying from
62 unimodal to transmodal cortical areas [3], [11]. Similarly, topographical maps of retinotopy,
63 somatotopy and tonotopy have shown smooth variation of anatomy and function within brain
64 areas [12]–[15].

65

66 Along the temporal dimension, studies of dynamic functional connectivity in fMRI have
67 revealed the importance of characterising the temporal features of brain activity as opposed to
68 the static picture described by known resting-state networks [5], [16]. Such approaches
69 describe temporal functional connectivity in terms of sliding-window analysis [17], by
70 considering the most salient events in the timeseries [18], [19] constrained by structural
71 connectivity [20], [21], as a temporal process of hidden states [22], [23] or as a temporal
72 trajectory in a landscape of attractors [24], [25]. Broadly, these approaches share the
73 description of complex brain dynamics in terms of spatial patterns expressed in time and

74 therefore can be represented in terms of the patterns' fractional occupancy, life times or
75 probability of transitions.

76

77 Here, HADES characterizes brain's spatio-temporal activity in terms of harmonic modes
78 defined in *space* and expressed over *time*. For that end, we derived the functional harmonics
79 (FHs) [4] and their temporal expression by decomposing fMRI data into functional harmonics
80 via harmonic decomposition [26]. The motivation for HADES is, on one hand, to account for
81 an increasing spatial scale from neuronal circuits to large-scale brain networks, and on the
82 other, for its temporal evolution. Furthermore, HADES attempts to improve on the earlier
83 methods limitations demonstrating spatial interpretability, modelling feasibility and analysis
84 flexibility [27], [28]

85

86 One of the most potent psychedelic (i.e. 'mind-manifesting') experiences is induced by the N,N
87 - Dimethyltryptamine (DMT) - a naturally occurring serotonergic psychedelic [29]. Unlike
88 psilocybin and LSD, its expression is marked by a short duration of the psychedelic experience.
89 It is often associated with alterations in visual and somatic effects. At high doses, a complete
90 dissociation from the external environment precedes an immersion into mental worlds or
91 dimensions described as "other" but not less "real" than the one inhabited in normal waking
92 consciousness. Such experiences correlate with subjective rating items such as "I experienced
93 a different reality or dimension", "I saw geometric patterns" and "I felt unusual bodily
94 sensations" [30], [31]. It is these qualities of one's conscious experience that motivate a
95 renewed interest in DMT drawing parallels with phenomena such as the near-death experience
96 (NDE) and dreaming [32].

97 Furthermore, like other psychedelics, DMT may have clinical relevance and is currently being
98 trialled for the treatment of depressive symptoms [33], [34]. Studies with Ayahuasca,

99 containing DMT itself as well as monoamine oxidase inhibitors (MAOIs), have shown
100 promising results in patients with depression [35]. However, further investigations exploring
101 the neural and plasticity dynamics of DMT experiences are necessary to provide mechanistic
102 accounts for the relevance of DMT and related psychedelics for the treatment of mental health
103 disorders [36]–[38].

104 In the brain, psychedelics enhance the richness of spatio-temporal dynamics along both the
105 temporal and spatial dimensions. This has been corroborated by repertoire broadening of
106 functional states and increases in temporal complexity as well as shifting of the brain to a more
107 integrated state with the subversion of functional systems [39]–[42]. Consistently,
108 neuroimaging with DMT has revealed an increase in global functional connectivity – featuring
109 a functional network disintegration and desegregation that is reliable feature of the psychedelic
110 state, and a collapse of the unimodal to transmodal functional gradient [31]. Taken all together,
111 the current findings and subjective reports are in line with the entropic [43], [44] and anarchic
112 brain [45] models, where an increase in entropy of spontaneous brain activity parallels the
113 undermining of hierarchically organised brain function [43]–[45].

114
115 Here we use fMRI data from the DMT-induced state to describe HADES's multifaceted
116 applications. Empirically, based on anarchic brain or 'Relaxed Beliefs Under Psychedelics'
117 (REBUS) model, as well as findings of enhanced signatures of criticality under these
118 compounds [26], [41], [46], we hypothesised that the DMT state is associated with a flatter
119 hierarchy of cortical functional organisation with enhanced integrative properties across the
120 cortex.

121

122 **Results**

123 Harmonic Decomposition of Spacetime (HADES) describes the spatio-temporal dynamics in
124 terms of spatial bases (defined from the brain's communication structure) and the spatial bases
125 functional contributions to the fMRI recording evolving in time. To do so, we first constructed
126 dense functional connectome from the Human Connectome Project (HCP) S1200 release of
127 812 subjects (**Figure 1B**). The dense functional connectome was represented as a sparse,
128 symmetric, and binary adjacency matrix (**Figure 1C**) and decomposed into the functional
129 harmonics ($\Psi_k(x)$) using the eigen-decomposition of the graph Laplacian applied to the dense
130 functional connectome (**Figure 1D**). Consistent with [4], we focused our analysis on the first
131 11 lowest functional harmonics together with the global zeroth harmonic. We analysed
132 functional significance of the functional harmonics by comparing them to the Yeo seven and
133 seventeen functional networks (**Figure SI1**). To obtain the temporal signature, we further
134 projected the individual harmonics on the fMRI timeseries (in surface representation), using
135 functional harmonic decomposition, and thus calculated the FHs temporal weights (**Figure**
136 **1E**). We reconstructed the timeseries with a few harmonics to motivate the similarity to the
137 empirical data (**Figure SI2**). Then, using a collection of non-dynamic and dynamic measures
138 (**Figure 1F and 1G**) and latent space representation (**Figure 1H**), we applied HADES to show
139 its viability in researching rich and complex brain dynamics in different brain states and
140 illustrate this in the context of the DMT-induced state.

141

142 **Absolute Contribution across Functional Harmonics**

143 To quantify contributions of individual harmonics in the different conditions, we computed the
144 absolute and condition-normalised absolute contributions of each harmonic (**Figure 2A**). The
145 absolute contribution results show a decrease in the DMT-induced state (compared to DMT
146 before injection and placebo-induced states) across most of the 11 FHs except of the global FH

147 (green star: p-value < 0.05 Bonferroni-corrected paired t-test, red star: p-value < 0.05
148 uncorrected paired t-test). This is contrasted by the condition-normalised absolute contribution
149 results demonstrating an increase in the global FH and a decrease in FH 2 after DMT injection
150 versus before injection and the placebo data (green star: p value < 0.05 Bonferroni-corrected
151 paired t-test, red star: p-value < 0.05 uncorrected paired t-test, **Figure 2B**). Spider plots in
152 **Figure 2A** and **2B** represent a visual redistribution of FHs across different conditions for the
153 two measures.

154

155 **Dynamic Measures of HADES**

156 To assess the temporal evolution of FH weights, we apply a winner-takes-all approach whereby
157 we select the most prominent FH at every time point and compute Fractional Occupancy (FO)
158 and Life Times (LT) of each FH. In **Figure 3A** and **B**, we show results when choosing the 11
159 FHs. We excluded the zeroth FH in this analysis to focus on the dynamical properties of
160 functionally resolved FHs. As before, strongest statistical significance for FO and LT is
161 observed in ψ_2 (green star: p value < 0.05/(# of FH) paired t-test, red star: p-value < 0.05
162 uncorrected paired t-test, **Figure 3C**). Furthermore, we computed the first order Markov
163 process in terms of the Transition Probability Matrix (TPM) (**Figure SI 3A**). We report
164 statistics for the two DMT conditions (p-value < 0.05 uncorrected paired t-test).

165

166 **Latent Space**

167 Functional harmonics were used as the basis of a latent space representation in which the
168 temporal trajectory of the brain dynamics was embedde in the latent space representation of
169 the 12 FHs (**Figure 4A**, here visualised for the first three FHs with colour shading representing
170 the temporal trajectory). To further analyse how the temporal embedding in this latent space
171 changes, we defined the expansion/contraction of the trajectory in term of the latent dimension
172 spread. The DMT-induced state contracts the contribution of the FHs across the board. Latent

173 dimension spread was computed for all the 12 FHs i.e., 12th dimensional space for the four
174 conditions. We also report its statistics (green star p-value < 0.05 Bonferroni corrected paired
175 t-test). The temporal trajectory significantly contracts in the DMT-induced state.

176

177

178 **Discussion**

179 In this study, we describe our novel HArmonic DEcomposition of Spacetime (HADES)
180 framework. HADES is designed to be a sensitive and precise measure of the spacetime features
181 of neuroimaging data. The framework uses the first 12 functional harmonics associated with
182 the lowest spatial frequencies derived from the dense functional connectome of the brain from
183 a large group of 812 healthy participants. Any neuroimaging data can then be decomposed in
184 terms of the spacetime contributions of these functional harmonics. Here, as proof-of-principle,
185 we used HADES to analyse the DMT-induced brain state in healthy participants and found a
186 significant change of brain hierarchy in line with theoretical predictions of the anarchic brain
187 hypothesis, also known as ‘REBUS’ [45].

188

189 Consistent with previous literature, we have demonstrated the functional relevance of
190 functional harmonics [4]. Moreover, we have demonstrated that an empirical fMRI signal can
191 be accurately reconstructed with a subset of functional harmonics. Applying HADES to the
192 DMT-induced state has shown decreases in absolute contribution across most FHs, while the
193 global FH has remained unchanged. However, when looking at condition-normalised absolute
194 contribution in individual subjects, a decrease in FH ψ_2 was mirrored by an increase in the
195 global harmonic. These results motivate a non-trivial reconfiguration whereby the DMT-
196 induced state decreases in overall magnitude with a relative increase towards the global
197 substate and a decrease of FH ψ_2 representative of the functional hierarchies of the brain. This
198 was further reinforced by the analysis of functional harmonic dynamics with decreases both in

199 fractional occupancy and lifetimes of FH ψ_2 demonstrating further dynamic collapse of this
200 harmonic. Lastly, when the temporal trajectories were embedded in the latent space of the
201 functional harmonic, the DMT-induced state showed significant contraction of its temporal
202 trajectory spread.

203

204 Remarkably, FH ψ_2 resembles the so-called ‘principal gradient’ - i.e., a unimodal to
205 transmodal gradient previously found to explain the greatest proportion of variance in a
206 principal components analysis of cortical functional connectivity [3]. This gradient has been
207 proposed to reflect a hierarchy of brain function from low- to high-order cognitive networks
208 We have argued that psychedelic-induced states result in the undermining of functional
209 systems’ hierarchies in the brain as proposed and experimentally corroborated by the model
210 known as ‘REBUS and the anarchic brain’ [31], [45], [47]. Furthermore, the relative increase
211 in global FH speaks to a less functionally defined and more integrated global substate under
212 the influence of DMT. Indeed, on the RSN level, psychedelic-induced states have been shown
213 to subvert within functional network-connectivity, especially in higher-order fronto-parietal
214 and default mode networks [31], [42], [48], [49], while enhancing between-network
215 connectivity and overall global and integrative tendencies [31], [39].

216

217 Traditionally, neuroscience has focused on delineating and studying localised cortical regions
218 to map the brain’s function. Such approach has been of importance albeit with fragmented
219 insights as to how multiscale brain organisation gives rise to complex spatio-temporal
220 dynamics and ultimately behaviour. A recent development in system neuroscience has been
221 that of cortical gradients [3]. This proposes an intrinsic coordinate system of human brain
222 organisation continuously varying from unimodal to transmodal cortical areas [11]. Gradient-
223 type organisation has been demonstrated in terms of myelination [50], anatomical structure

224 [10], white matter tract length [51], evolutionary expansion [52], ontogenetic expansion [53],
225 temporal processing [54], semantic processing [55] and physiologically coupled travelling
226 waves [56]. The framework of multidimensional harmonic representation and decomposition
227 [4], [26], [57] adds to this list by decomposing brain activity maps into frequency-specific
228 communication channels that unveil contributions of connectivity gradients and cortical
229 parcellations to brain function. HADES extends these frameworks by considering the dynamic
230 aspects of these frequency-specific channels of functional communication.

231

232 The brain as a complex system is hypothesised to manifest hierarchies across time and space.
233 Indeed, such a nested organisation was suggested both in terms of the structural architecture of
234 the brain as well as its temporal frequencies [58], [59]. Functional harmonics are by
235 construction intrinsically ordered according to their spatial frequencies and as such provide a
236 multiscale representation of brain activity across cortical space. Intuitively, spatial frequencies
237 relate to temporal frequencies of oscillations and therefore further research with modalities
238 such as EEG or MEG will be interesting for drawing a closer relationship between the two
239 [40].

240

241 Previously, connectome harmonics have been used to decompose the brain's spatio-temporal
242 activity into a combination of time-varying contributions [26]. Using long-range and local
243 connectivity as an underlying structure has been relevant in exploring the structure-function
244 relationship of large-scale brain organisation [57]. However, it seems that structural
245 connectivity alone cannot explain the emergence of rich and spontaneous activity of the human
246 brain [60], [61]. Firstly, neocortex is endowed with remarkable heterogeneity in
247 cytoarchitecture. This will result in various computational differentiation across the cortex, for
248 example in terms of temporal processing [54]. Secondly, the neuromodulatory system is known

249 to alter the electrical composition of neurons and thus exercise non-linear effects on the
250 emergent activity of various microcircuits across the brain [62], [63]. The hypothesis here is
251 that the communication structure of dense FC has implicitly embedded within it information
252 on anatomical structure, cortical computational heterogeneity as well as neuromodulatory
253 expression and as such serves as a prominent candidate to be used for the derivation of
254 fundamental functional building blocks of spatiotemporal activity [4]. This in turn is expanded
255 upon in the HADES framework with dynamic measures and latent space embeddings, whereby
256 the emphasis is on the importance of the temporal dimension along which these spatio-temporal
257 blocks building unfold.

258

259 Latent space representation has become an important research topic in neuroscience due to its
260 ability to retrieve meaningful features contained in large and complex datasets [64]. It is
261 possible to identify patterns and relationships in a lower-dimensional space between regions
262 and between cognitive processes as the underlying computations giving rise to cognitive
263 functions are likely to be integrated [1]. There are many techniques that serve this purpose from
264 more traditional linear approaches such as singular value decomposition or principal
265 component analysis [65], to popular techniques based on independent component analysis [66].
266 More recent works use autoencoders as an elegant way in compressing fMRI signal while
267 accounting for non-linearity in the data [67]. Here, we chose functional harmonics as they
268 preserve nonlinear relationship between regions, and have multiscale and interpretable
269 representation of its latent dimensions [4], [68]. However, it is to be noted that the idea of
270 HADES as a framework span beyond the actual representation of the dimension of the latent
271 space (here in terms of functional harmonics) as it attempts to combine the spatial and temporal
272 representation of the complex brain dynamics. Moreover, in theory, other techniques could be

273 applied in a similar way as to account for the complex spatio-temporal activity of the human
274 brain.

275
276 A limitation of the current approach for describing functional harmonics propagating in time
277 is that it might be too reductionist. 'Winner-takes-all' is a powerful technique summarising the
278 brain's dynamics in terms of fractional occupancy and lifetimes of the functional harmonics.
279 However, it considers only one FH to be active at a given timepoint and as such might neglect
280 other potential important information included in other FHs. Future work should implement
281 weighted contributions of individual FHs at given timepoints and as such more completely
282 describe the multidimensional representation of spatio-temporal dynamics.

283

284 Conclusion

285 Taken all together, in this study we have introduced a new method called Harmonic
286 Decomposition of Spacetime (HADES) to describe spatio-temporal dynamics of the brain.
287 Using Functional Harmonics (FHs) derived from the brain's communication structure, HADES
288 models dynamics as weighted contributions of FHs evolving in time. Firstly, we verified the
289 functional relevance of FHs with known resting-state networks showing both gradient-like and
290 network-based organisation. Then, we reconstructed aspects of the original timeseries with
291 only 100 FHs and their contributions. Furthermore, we applied HADES to the DMT-induced
292 state. We showed how condition-normalised and absolute contributions can be used to
293 demonstrate suppression of functional hierarchy and enhancement of whole brain integration.
294 Lastly, we demonstrated similar findings of impaired hierarchical organisation in dynamic
295 terms as shown by fractional occupancy and life times of FH ψ_2 . These findings corroborate
296 the REBUS and anarchic brain model of psychedelic action by demonstrating dynamic changes
297 to brain functional hierarchies.

298

299

300 **Acknowledgements and Fundings**

301 Jakub Vohryzek is supported by EU H2020 FET Proactive project Neurotwin grant agreement
302 no. 101017716, Morten L. Kringelbach is supported by the European Research Council
303 Consolidator Grant: CAREGIVING (615539), Pettit Foundation, Carlsberg Foundation and
304 Center for Music in the Brain, funded by the Danish National Research Foundation
305 (DNRF117). Joana Cabral is supported by "la Caixa" Foundation LCF/BQ/PR22/11920014,
306 Spain and by the Portuguese Foundation for Science and Technology UIDB/50026/2020 and
307 UIDP/50026/2020, Portugal. Gustavo Deco is supported by the Spanish Research Project
308 PSI2016-75688-P (Agencia Estatal de Investigación/Fondo Europeo de Desarrollo Regional,
309 European Union); by the European Union's Horizon 2020 Research and Innovation
310 Programme under Grant Agreements 720270 (Human Brain Project [HBP] SGA1) and 785907
311 (HBP SGA2); and by the Catalan Agency for Management of University and Research Grants
312 Programme 2017 SGR 1545.

313

314 **Conflict of Interests**

315 Robin Carhart-Harris reports receiving consulting fees from Beckley Psytech.

316

317

318 References

- 319 [1] J. Vohryzek, J. Cabral, P. Vuust, G. Deco, and M. Kringelbach, “Understanding brain
320 states across spacetime informed by whole-brain modelling,” *Philos. Trans. R. Soc. A
321 Math. Phys. Eng. Sci.*, vol. 380, no. 2227, Jul. 2022.
- 322 [2] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical processing in the primate
323 cerebral cortex,” *Cereb. Cortex*, vol. 1, no. 1, pp. 1–47, 1991.
- 324 [3] D. S. Margulies *et al.*, “Situating the default-mode network along a principal gradient of
325 macroscale cortical organization,” *Proc. Natl. Acad. Sci. U. S. A.*, vol. 113, no. 44, pp.
326 12574–12579, Nov. 2016.
- 327 [4] K. Glomb, M. L. Kringelbach, G. Deco, P. Hagmann, J. Pearson, and S. Atasoy,
328 “Functional harmonics reveal multi-dimensional basis functions underlying cortical
329 organization,” *Cell Rep.*, vol. 36, no. 8, 2021.
- 330 [5] M. G. Preti, T. A. Bolton, and D. Van De Ville, “The dynamic functional connectome:
331 State-of-the-art and perspectives,” *Neuroimage*, 2016.
- 332 [6] S. B. Eickhoff, B. T. T. Yeo, and S. Genon, “Imaging-based parcellations of the human
333 brain,” *Nature Reviews Neuroscience*, vol. 19, no. 11. Nature Publishing Group, pp.
334 672–686, 09-Oct-2018.
- 335 [7] S. B. Eickhoff, R. T. Constable, and B. T. T. Yeo, “Topographic organization of the
336 cerebral cortex and brain cartography,” *Neuroimage*, vol. 170, pp. 332–347, Apr. 2018.
- 337 [8] D. J. Cahalane, C. J. Charvet, and B. L. Finlay, “Modeling local and cross-species
338 neuron number variations in the cerebral cortex as arising from a common mechanism,”
339 *Proc. Natl. Acad. Sci. U. S. A.*, vol. 111, no. 49, pp. 17642–17647, Dec. 2014.
- 340 [9] C. J. Charvet, D. J. Cahalane, and B. L. Finlay, “Systematic, cross-cortex variation in
341 neuron numbers in rodents and primates,” *Cereb. Cortex*, vol. 25, no. 1, pp. 147–160,
342 Jan. 2015.

- 343 [10] J. B. Burt *et al.*, “Hierarchy of transcriptomic specialization across human cortex
344 captured by structural neuroimaging topography,” *Nat. Neurosci.*, vol. 21, no. 9, pp.
345 1251–1259, 2018.
- 346 [11] J. M. Huntenburg, P. L. Bazin, and D. S. Margulies, “Large-Scale Gradients in Human
347 Cortical Organization,” *Trends in Cognitive Sciences*, vol. 22, no. 1, pp. 21–31, Jan-
348 2018.
- 349 [12] M. I. Sereno, S. Pitzalis, and A. Martinez, “Mapping of contralateral space in retinotopic
350 coordinates by a parietal cortical area in humans,” *Science (80-)*, vol. 294, no. 5545,
351 pp. 1350–1354, 2001.
- 352 [13] C. Perrone-Capano, F. Volpicelli, and U. Di Porzio, “Biological bases of human
353 musicality,” *Rev. Neurosci.*, vol. 28, no. 3, pp. 235–245, Apr. 2017.
- 354 [14] I. C. Kaufman, “The Cerebral Cortex of Man: A Clinical Study of Localization of
355 Function,” *Am. J. Psychiatry*, vol. 108, no. 2, pp. 153–153, 1951.
- 356 [15] K. V. Haak, A. F. Marquand, and C. F. Beckmann, “Connectopic mapping with resting-
357 state fMRI,” *Neuroimage*, vol. 170, pp. 83–94, 2018.
- 358 [16] M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle,
359 “The human brain is intrinsically organized into dynamic, anticorrelated functional
360 networks,” *Proc. Natl. Acad. Sci. U. S. A.*, vol. 102, no. 27, pp. 9673–8, 2005.
- 361 [17] E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, and V. D. Calhoun,
362 “Tracking whole-brain connectivity dynamics in the resting state,” *Cereb. Cortex*, vol.
363 24, no. 3, pp. 663–676, 2014.
- 364 [18] E. Tagliazucchi, P. Balenzuela, D. Fraiman, and D. R. Chialvo, “Criticality in large-
365 scale brain fmri dynamics unveiled by a novel point process analysis,” *Front. Physiol.*,
366 vol. 3 FEB, p. 15, 2012.
- 367 [19] F. I. Karahanoğlu and D. Van De Ville, “Transient brain activity disentangles fMRI

- 368 resting-state dynamics in terms of spatially and temporally overlapping networks,” *Nat.*
369 *Commun.*, vol. 6, p. 7751, Jul. 2015.
- 370 [20] A. Griffa *et al.*, “Transient networks of spatio-temporal connectivity map
371 communication pathways in brain functional systems,” *Neuroimage*, vol. 155, no. April,
372 pp. 490–502, 2017.
- 373 [21] J. Vohryzek *et al.*, “Dynamic spatio-temporal patterns of brain connectivity reorganize
374 across development,” *Netw. Neurosci.*, pp. 1–39, 2019.
- 375 [22] A. P. Baker *et al.*, “Fast transient networks in spontaneous human brain activity,” *Elife*,
376 vol. 2014, no. 3, pp. 1–18, 2014.
- 377 [23] D. Vidaurre, S. M. Smith, and M. W. Woolrich, “Brain network dynamics are
378 hierarchically organized in time,” *Proc. Natl. Acad. Sci.*, vol. 114, no. 48, p. 201705120,
379 2017.
- 380 [24] J. Cabral *et al.*, “Cognitive performance in healthy older adults relates to spontaneous
381 switching between states of functional connectivity during rest,” *Sci. Rep.*, vol. 7, no. 1,
382 p. 5135, 2017.
- 383 [25] J. Vohryzek, G. Deco, B. Cessac, M. L. Kringelbach, and J. Cabral, “Ghost Attractors
384 in Spontaneous Brain Activity: Recurrent Excursions Into Functionally-Relevant BOLD
385 Phase-Locking States,” *Front. Syst. Neurosci.*, vol. 14, no. April, pp. 1–15, 2020.
- 386 [26] S. Atasoy, L. Roseman, M. Kaelen, M. L. Kringelbach, G. Deco, and R. L. Carhart-
387 Harris, “Connectome-harmonic decomposition of human brain activity reveals
388 dynamical repertoire re-organization under LSD,” *Sci. Rep.*, vol. 7, no. 1, p. 17661, Dec.
389 2017.
- 390 [27] J. Cabral, M. L. Kringelbach, and G. Deco, “Functional connectivity dynamically
391 evolves on multiple time-scales over a static structural connectome: Models and
392 mechanisms,” *Neuroimage*, vol. 160, no. March, pp. 84–96, 2017.

- 393 [28] M. L. Kringelbach and G. Deco, “Brain States and Transitions: Insights from
394 Computational Neuroscience,” *Cell Rep.*, vol. 32, no. 10, p. 108128, 2020.
- 395 [29] D. E. Nichols, “Psychedelics,” *Pharmacol. Rev.*, vol. 68, no. April, pp. 264–355, 2016.
- 396 [30] C. Timmermann *et al.*, “Neural correlates of the DMT experience assessed with
397 multivariate EEG,” *Sci. Rep.*, vol. 9, no. 1, pp. 1–13, 2019.
- 398 [31] C. Timmermann *et al.*, “Human brain effects of DMT assessed via EEG-fMRI,” *Proc.
399 Natl. Acad. Sci.*, vol. 120, no. 13, p. 2017, Mar. 2023.
- 400 [32] C. Timmermann *et al.*, “DMT models the near-death experience,” *Front. Psychol.*, vol.
401 9, no. AUG, p. 1424, Aug. 2018.
- 402 [33] Z. Davis, L. Muller, J.-M. Trujillo, T. Sejnowski, and J. Reynolds, “Spontaneous
403 Traveling Cortical Waves Gate Perception in Awake Behaving Primates,” *Nature*, vol.
404 20, no. February 2019, 2019.
- 405 [34] J. Steiner, D. Erritzoe, and M. Boyce, “SPL026 (DMT Fumarate) in Healthy Subjects
406 and MDD Patients,” *Clin. gov*, 2020.
- 407 [35] F. Palhano-Fontes *et al.*, “Rapid antidepressant effects of the psychedelic ayahuasca in
408 treatment-resistant depression: a randomized placebo-controlled trial,” *Psychol. Med.*,
409 vol. 49, no. 4, pp. 655–663, Mar. 2019.
- 410 [36] R. L. Carhart-Harris *et al.*, “Canalization and plasticity in psychopathology,”
411 *Neuropharmacology*, vol. 226, no. December 2022, p. 109398, 2023.
- 412 [37] J. Vohryzek *et al.*, “Brain dynamics predictive of response to psilocybin for treatment-
413 resistant depression,” *bioRxiv*, p. 2022.06.30.497950, 2022.
- 414 [38] G. Ruffini, E. Lopez-Sola, J. Vohryzek, and R. Sanchez-Todo, “Neural
415 geometrodynamics : a psychedelic perspective,” *bioRxiv*, pp. 1–28, 2023.
- 416 [39] E. Tagliazucchi, R. Carhart-Harris, R. Leech, D. Nutt, and D. R. Chialvo, “Enhanced
417 repertoire of brain dynamical states during the psychedelic experience,” *Hum. Brain*

- 418 *Mapp.*, vol. 35, no. 11, pp. 5442–5456, 2014.
- 419 [40] S. Atasoy, G. Deco, M. L. Kringelbach, and J. Pearson, “Harmonic brain modes: a
420 unifying framework for linking space and time in brain dynamics,” *Neurosci.*, pp. 25–
421 27, 2017.
- 422 [41] S. Atasoy, J. Vohryzek, G. Deco, R. L. Carhart-Harris, and M. L. Kringelbach,
423 “Common neural signatures of psychedelics: Frequency-specific energy changes and
424 repertoire expansion revealed using connectome-harmonic decomposition,” in *Progress*
425 in *Brain Research*, vol. 242, Elsevier B.V., 2018, pp. 97–120.
- 426 [42] L.-D. Lord *et al.*, “Dynamical exploration of the repertoire of brain networks at rest is
427 modulated by psilocybin,” *Neuroimage*, vol. 199, pp. 127–142, Oct. 2019.
- 428 [43] R. L. Carhart-Harris *et al.*, “The entropic brain: a theory of conscious states informed
429 by neuroimaging research with psychedelic drugs.,” *Front. Hum. Neurosci.*, vol. 8, no.
430 February, p. 20, 2014.
- 431 [44] R. L. Carhart-Harris, “The entropic brain - revisited,” *Neuropharmacology*, vol. 142,
432 pp. 167–178, Nov. 2018.
- 433 [45] R. L. Carhart-Harris and K. J. Friston, “REBUS and the Anarchic Brain: Toward a
434 Unified Model of the Brain Action of Psychedelics,” *Pharmacol. Rev.*, vol. 71, no. 3,
435 pp. 316–344, 2019.
- 436 [46] D. Toker *et al.*, “Consciousness is supported by near-critical slow cortical
437 electrodynamics,” *Proc. Natl. Acad. Sci. U. S. A.*, vol. 119, no. 7, pp. 1–12, 2022.
- 438 [47] M. Girn, L. Roseman, B. Bernhardt, J. Smallwood, R. Carhart-Harris, and R. N. Spreng,
439 “Serotonergic psychedelic drugs LSD and psilocybin reduce the hierarchical
440 differentiation of unimodal and transmodal cortex,” *bioRxiv*, vol. 256, no. January, p.
441 2020.05.01.072314, 2020.
- 442 [48] R. L. Carhart-Harris *et al.*, “Neural correlates of the LSD experience revealed by

- 443 multimodal neuroimaging,” *Proc. Natl. Acad. Sci.*, vol. 113, no. 17, pp. 4853–4858,
444 2016.
- 445 [49] F. Palhano-Fontes *et al.*, “The psychedelic state induced by ayahuasca modulates the
446 activity and connectivity of the default mode network.,” *PLoS One*, vol. 10, no. 2, p.
447 e0118143, 2015.
- 448 [50] J. M. Huntenburg, P. L. Bazin, A. Goulas, C. L. Tardif, A. Villringer, and D. S.
449 Margulies, “A Systematic Relationship Between Functional Connectivity and
450 Intracortical Myelin in the Human Cerebral Cortex,” *Cereb. Cortex*, vol. 27, no. 2, pp.
451 981–997, Feb. 2017.
- 452 [51] R. L. Buckner and F. M. Krienen, “The evolution of distributed association networks in
453 the human brain,” *Trends Cogn. Sci.*, vol. 17, no. 12, pp. 648–665, 2013.
- 454 [52] J. K. Rilling, “Comparative primate neuroimaging: Insights into human brain
455 evolution,” *Trends Cogn. Sci.*, vol. 18, no. 1, pp. 46–55, 2014.
- 456 [53] J. Hill, T. Inder, J. Neil, D. Dierker, J. Harwell, and D. Van Essen, “Similar patterns of
457 cortical expansion during human development and evolution,” *Proc. Natl. Acad. Sci. U.*
458 *S. A.*, vol. 107, no. 29, pp. 13135–13140, 2010.
- 459 [54] C. Baldassano, J. Chen, A. Zadbood, J. W. Pillow, U. Hasson, and K. A. Norman,
460 “Discovering Event Structure in Continuous Narrative Perception and Memory,”
461 *Neuron*, vol. 95, no. 3, pp. 709-721.e5, Aug. 2017.
- 462 [55] A. G. Huth, T. Lee, S. Nishimoto, N. Y. Bilenko, A. T. Vu, and J. L. Gallant, “Decoding
463 the semantic content of natural movies from human brain activity,” *Front. Syst.*
464 *Neurosci.*, vol. 10, no. OCT, pp. 1–16, 2016.
- 465 [56] R. V. Raut *et al.*, “Global waves synchronize the brain’s functional systems with
466 fluctuating arousal,” *Sci. Adv.*, vol. 7, no. 30, p. eabf2709, Jul. 2021.
- 467 [57] S. Atasoy, I. Donnelly, and J. Pearson, “Human brain networks function in connectome-

- 468 specific harmonic waves,” *Nat. Commun.*, vol. 7, pp. 1–10, 2016.
- 469 [58] R. F. Betzel and D. S. Bassett, “Multi-scale brain networks,” *Neuroimage*, 2016.
- 470 [59] B. J. He, “Scale-free brain activity: Past, present, and future,” *Trends Cogn. Sci.*, vol.
- 471 18, no. 9, pp. 480–487, 2014.
- 472 [60] P. Hagmann *et al.*, “Mapping the structural core of human cerebral cortex,” *PLoS Biol.*,
- 473 vol. 6, no. 7, pp. 1479–1493, 2008.
- 474 [61] G. Deco and V. K. Jirsa, “Ongoing cortical activity at rest: Criticality, multistability,
- 475 and ghost attractors.,” *J Neurosci*, vol. 32, no. 10, pp. 3366–3375, 2012.
- 476 [62] J. M. Shine, “Neuromodulatory Influences on Integration and Segregation in the Brain,”
- 477 *Trends Cogn. Sci.*, vol. 23, no. 7, pp. 572–583, 2019.
- 478 [63] M. L. Kringelbach *et al.*, “Dynamic coupling of whole-brain neuronal and
- 479 neurotransmitter systems,” *Proc. Natl. Acad. Sci. U. S. A.*, vol. 117, no. 17, pp. 9566–
- 480 9576, 2020.
- 481 [64] J. P. Cunningham and B. M. Yu, “Dimensionality reduction for large-scale neural
- 482 recordings,” *Nat. Neurosci.* 2014 1711, vol. 17, no. 11, pp. 1500–1509, Aug. 2014.
- 483 [65] R. Viviani, G. Grön, and M. Spitzer, “Functional principal component analysis of fMRI
- 484 data,” *Hum. Brain Mapp.*, vol. 24, no. 2, pp. 109–129, 2005.
- 485 [66] S. M. Smith *et al.*, “Temporally-independent functional modes of spontaneous brain
- 486 activity,” *Proc. Natl. Acad. Sci. U. S. A.*, vol. 109, no. 8, pp. 3131–3136, 2012.
- 487 [67] Y. S. Perl *et al.*, “Generative embeddings of brain collective dynamics using variational
- 488 autoencoders,” pp. 1–5, 2020.
- 489 [68] R. Vos de Wael *et al.*, “BrainSpace: a toolbox for the analysis of macroscale gradients
- 490 in neuroimaging and connectomics datasets,” *Commun. Biol.*, vol. 3, no. 1, 2020.
- 491

492 **Material and methods**

493 **Experimental Data**

494 **HCP Functional MRI**

495 The dataset used for the analysis was made publicly available by the Human Connectome
496 Project (HCP), WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil
497 Ugurbil: 1U54MH091657). This project was made possible by funding from the sixteen NIH
498 Institutes and Centres supporting the NIH Blueprint for Neuroscience Research; and by the
499 McDonell Centre for Systems Neuroscience at Washington University.

500

501 **Dense Functional Connectome**

502 To define the appropriate functional basis, we used the dense functional connectome as part of
503 the HCP 1200 Subject Release. The data is freely downloadable (with a connectomeDB
504 account) at <https://db.humanconnectome.org> under the zip-file called 812 Subjects, recon r227,
505 Dense Connectome. Details about the dense functional connectome pipeline can be found on
506 the same website under the following pdf ‘HCP1200- DenseConnectome +PTN+Appendix-
507 July2017.pdf’. In brief, out of the 1200 HCP subjects, 1003 have undergone four rsfMRI runs
508 (total of 4800 timepoints). An improved reconstruction software (‘recon2’) was used on a
509 further subset of 812 participants. Timeseries were minimally processed, had artefacts removed
510 with ICA+FIX and were inter-subject registered. Further group-PCA was performed on the
511 temporally demeaned and variance normalised timeseries. The outputs of the group-PCA are
512 used to create the dense connectome. This can be thought of as a low-noise regularised
513 equivalent of concatenating individual subject’s gray-ordinate timeseries and calculating the
514 correlation between all the individual grey-ordinate timeseries, to create a dense functional
515 connectome (**Figure 1A**).

516

517

518 **DMT dataset**

519 The complete description of the participants, experimental design and acquisitions parameters
520 can be found in [30], [31]. A group of 25 participants was recruited in a single-blind, placebo-
521 controlled, and counter-balanced design. Subjects were considered for the study unless they
522 were younger than 18 years of age, lacked experience with a psychedelic, had a previous
523 negative response to a psychedelic and/or currently suffered from or had a history of psychiatric
524 or physical illness. Out of the 25 participants, 20 completed the whole study (7 female, mean
525 age = 33.5 years, SD = 7.9). A further 3 subjects were excluded due to excessive motion during
526 the 8 minutes DMT recording (more than 15% of volumes scrubbed with framewise
527 displacement (FD) of 0.4 mm).

528

529 **Experimental Paradigm**

530 In total, all subjects were scanned on two days, two weeks apart, each consisting of two
531 scanning sessions. The initial scan lasted 28 minutes with the 8th minute marking the
532 intravenous administration of either DMT or placebo (saline) (50/50 DMT/placebo). Subjects
533 were asked to lay in the scanner with their eyes closed (wearing an eye-mask). After the
534 recording, assessment of subjective effects was carried out. The second session was identical
535 to the first except for the assessment of subjective intensity scores at every minute of the
536 recording. The experimental design also included simultaneous EEG recording during the
537 sessions (**Figure 1A**).

538

539 **Acquisition Parameters**

540 The experiment was performed on a 3T scanner (Siemens Magnetom Verio syngo MR 12) with
541 compatibility for EEG recording. A T2 -weighted echo planar sequence was used. In brief, the
542 parameters were as follows: TR/TE = 2000ms/30ms, acquisition time = 28.06 minutes, flip

543 angle = 80°, voxel size = 3x3x3 mm³ and 35 slices with 0 mm interslice distance. T1-weighted
544 structural scans of the brain were also acquired.

545

546 **fMRI Pre-processing**

547 For fMRI pre-processing, a pipeline previously developed for an LSD experiment was used,
548 which can be accessed in the supplementary information of [48]. Briefly, the following steps
549 were applied 1) despiking, 2) slice-timing correction, 3) motion correction, 4) brain extraction,
550 5) rigid body registration to structural scans, 6) non-linear registration to 2mm MNI brain, 7)
551 motion-correction scrubbing, 8) spatial-smoothing (FWHM) of 6 mm, 9) bandpass filtering
552 into the frequency range 0.01-0.08 Hz, 10) linear and quadratic detrending, 11) regression of 9
553 nuisance regressors (3 translations, 3 rotations and 3 anatomical signals). Lastly, the timeseries
554 were projected from MNI voxel-space to the HCP surface vertex-space using the HCP
555 command -volume-to-surface-mapping.

556

557 **Functional Harmonics**

558 Functional harmonics are described by the eigenvectors of the Laplacian applied to a graph
559 representation of the human brain's communication structure [4]. This graph is constructed as
560 a binarization of the dense functional connectome $\mathfrak{R} = (\nu, \varepsilon)$, where each node, $\nu = \{x_i\} \in$
561 $1, \dots, n\}$, corresponds to one of the $n = 59\ 412$ brain vertices and, for each node/vertex n , an
562 edge, $\varepsilon = \{e_{ij} | \in \nu \times \nu\}$, is defined to the 300 most correlated vertices, according to the
563 correlation values from the original dense functional connectome (**Figure 1B**). Then, the
564 resulting graph is thus a sparse, symmetric, and binary adjacency matrix (**Figure 1C**) as
565 follows,

566

567
$$A(i,j) = \begin{cases} 1, & \text{if } (i,j) \in \varepsilon \\ 0, & \text{otherwise} \end{cases}$$

568

569

570 Then, the discrete counterpart of the Laplace operator, Δ , is applied to the adjacency matrix A
571 in the following manner,

572
$$\Delta_A = D^{-1/2} L D^{-1/2}, \text{with } L = D - A$$

573

574 where D is the diagonal degree matrix, $D = \sum_{i=1}^n A(i,j)$. Lastly, Functional Harmonics,
575 $\psi_k(x_i), k \in 1, \dots, n$ were computed as eigenvectors of the following eigenvalue problem,

576
$$\Delta_A \psi_k(x_i) = \lambda \psi_k(x_i), \forall x_i \in \nu$$

577

578
579 where $\lambda_k, k \in 1, \dots, n$ are the associated eigenvalues of Δ_A (**Figure 1D**).

580

581 **Functional Harmonic Decomposition**

582 To describe how Functional Harmonics evolve in time, we weighted their contribution, τ , for
583 each participant at every timepoint, t , of the recording $\mathcal{F}^s(x, t)$, and thus, retrieved timecourses
584 of individual harmonic contributions (**Figure 1D**) in the following format,

585
$$\mathcal{F}^s(x, t_i) = \sum_{k=1}^n \tau_k(t_i) \psi_k(x) = \tau_1(t_i) \psi_1(x) + \tau_2(t_i) \psi_2(x) + \dots + \tau_n(t_i) \psi_n(x)$$

586

587 where τ_k is the contribution of the k^{th} Functional Harmonic $\psi_k(x)$ to the fMRI recording
588 $\mathcal{F}^s(x, t_i)$ at time t_i . Formally, the Functional Harmonic contributions are described as $\tau_k(t) =$
589 $\langle \mathcal{F}^s(x, t), \psi_k \rangle$ (**Figure 1E**).

590

591 **Non-dynamic Measures**

592 Functional Harmonic contribution $\tau_k(t)$ at each timepoint t represents the weight of a given
593 Functional Harmonic $\psi_k(x)$ at that particular fMRI timepoint, $\mathcal{F}^R(x, t_i)$. Its absolute value can
594 be defined as the absolute contribution as follows: $P(\psi(x), t) = |\tau_k(t)|$. Here, we further

595 define the mean absolute and condition-normalised absolute contribution as the time-averaged
596 overall absolute contribution of each harmonic, and as the time-averaged condition-normalised
597 absolute contribution by the sum of all the Functional Harmonic magnitudes of each participant
598 and condition, respectively. In other words, absolute contribution describes the overall state of
599 each Functional Harmonic for every participant and condition, and condition-normalised
600 absolute contribution depicts the relative redistribution for a given Functional Harmonic in
601 relationship to the rest of the Functional Harmonics (**Figure 1F**).

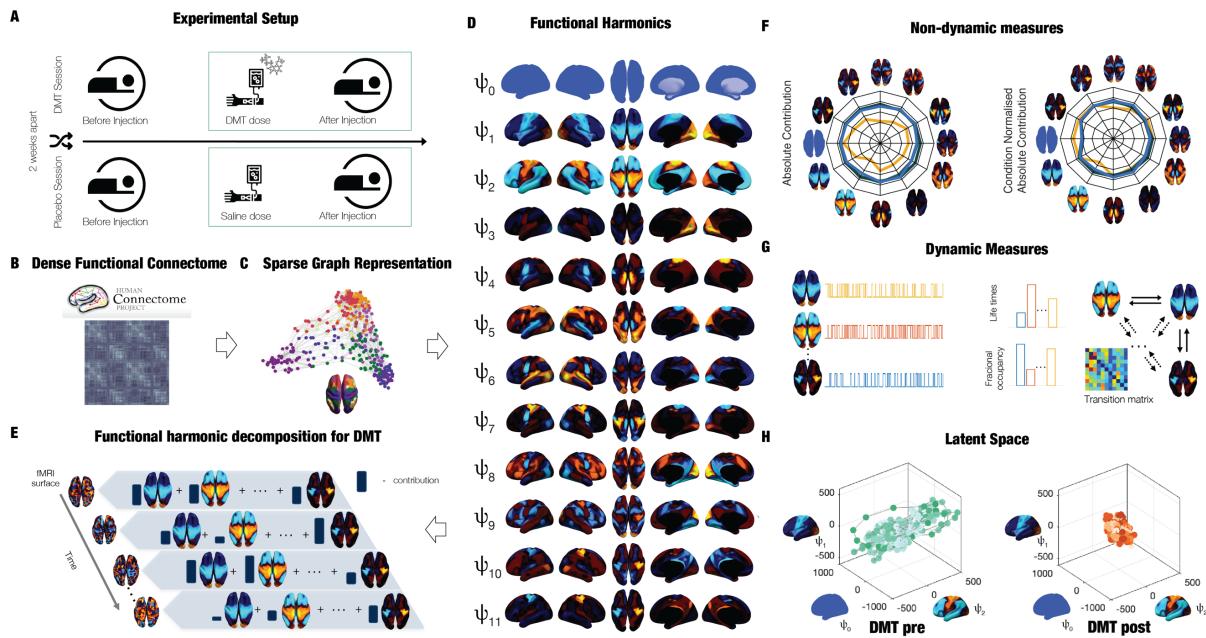
602

603 **Dynamic Measures**

604 To summarise dynamics of Functional Harmonics, we chose to describe each timepoint by its
605 dominant Functional Harmonics, i.e., a Functional Harmonic with the largest contribution at a
606 given timepoint. As such, we were able to depict the individual timeseries as a sequence of
607 dominant Functional Harmonic contributions. we further defined Fractional Occupancy, Life
608 Times and Transition matrix as the probability of a given Functional Harmonic being active
609 during the duration of the recording, the averaged consecutive period a given Functional
610 Harmonic was on, and first order Markov-chain for the Functional Harmonics respectively
611 (**Figure 1G**).

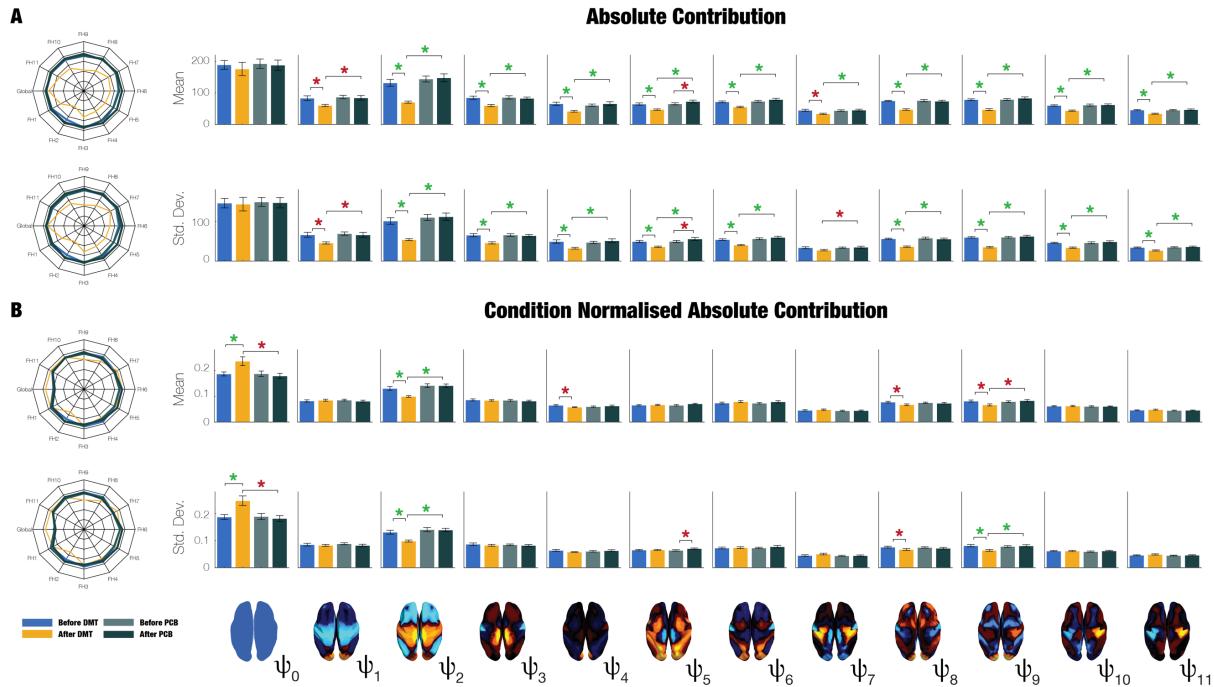
612

613 **Latent Space**


614 Latent space serves as a lower-dimensional representation of high-dimensional data. Here, we
615 have used the spatial patterns, described by Functional Harmonics, to embed the temporal
616 activity in N-dimensional space where N is the number of FHs. As such it is possible to quantify
617 the changes in temporal dynamics of FHs. Here, we define measure of Latent Dimension
618 Spread that quantifies the amount of temporal trajectory expansion or contraction. It is defined
619 as the average of the 11 FHs of the standard deviation of the Functional Harmonic contribution
620 $\tau_k(t)$ over time (**Figure 1H**).

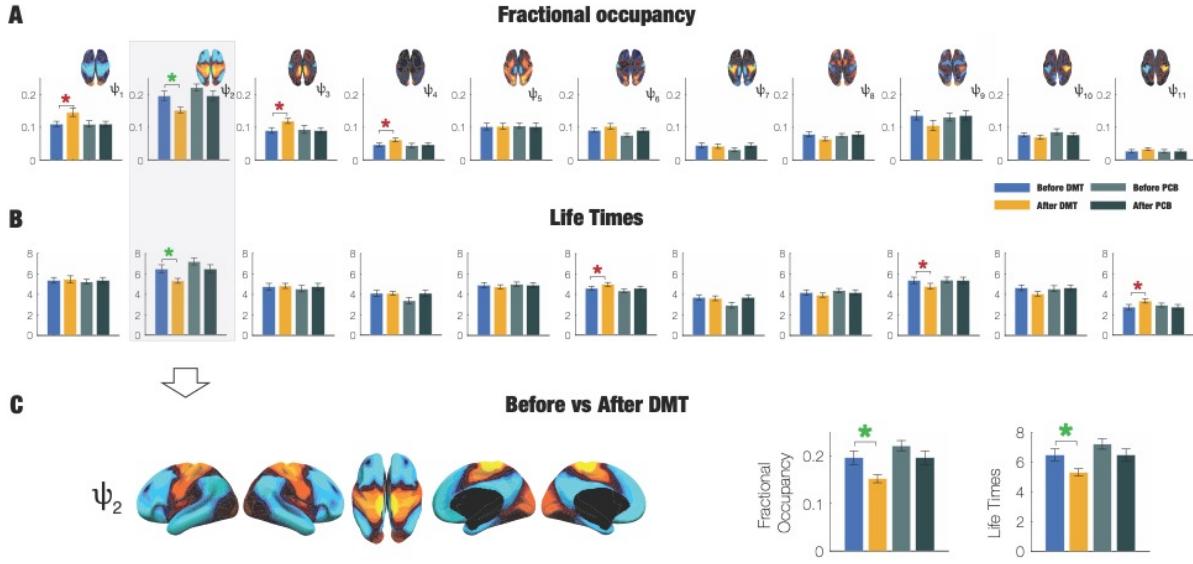
621

622

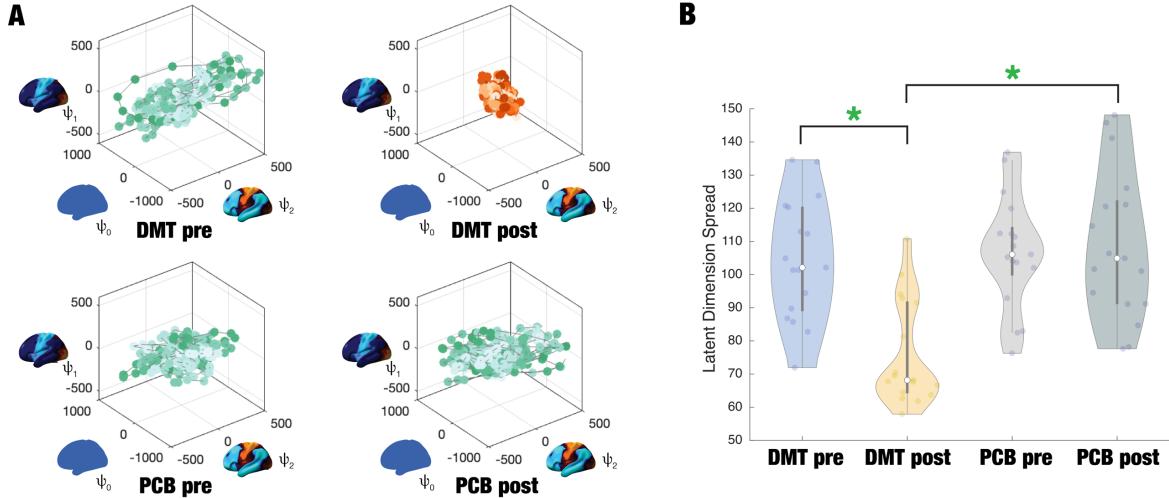

623

624 **Figures**

626 **Figure 1. Overview of HArmonic DEcomposition of Spacetime (HADES) framework. A)** Here we
627 used HADES to analyse data from DMT-induced resting-state fMRI in healthy participants and show
628 the design for this experiment. **B)** HADES uses the dense functional connectome constructed from the
629 HCP S1200 release of 812 subjects to **C)** construct a graph representation as a sparse, symmetric, and
630 binary adjacency matrix of the dense functional connectome. **D)** First, Functional Harmonics ($\psi_k(x)$)
631 are obtained from the Laplacian decomposition of the sparse adjacency matrix. **E)** Functional
632 harmonic decomposition is computed by projecting individual harmonics on the fMRI timeseries
633 (surface representation) and calculating their contributions. **F)** From this decomposition, HADES can
634 be used to compute non-dynamic measures for the first 12 Functional Harmonics – Absolute
635 Contribution and Condition Normalised Absolute Contribution on any neuroimaging dataset. **G)**
636 Importantly, HADES can also be used to construct dynamic measures for the first 12 Functional
637 Harmonics – Fractional Occupancy, Life Times and Transition Matrix. **H)** These can be measures can
638 be used as latent space representation as the temporal trajectory embedded in the Functional
639 Harmonics space.


640

641
642


643 **Figure 2: Harmonic Spatial Analysis of DMT and placebo neuroimaging data.** The harmonic spatial
644 analysis of the neuroimaging data shows that the contribution of Functional Harmonic ψ_2 ($FH\psi_2$) is
645 very significantly reduced ($p < 0.05$, Bonferroni corrected) when participants were given DMT, both in
646 terms of absolute and normalised contribution. **A)** Specifically, the absolute contribution across the
647 first 12 FHs is shown both visually, on a spider plot, and statistically for individual FH across the four
648 DMT-based conditions. The results show a decrease in the DMT-induced state (compared to DMT
649 before injection and the placebo state) across many of the 12 FHs except the global FH ψ_0 (green star
650 p -value < 0.05 Bonferroni corrected paired t -test, red star p -value < 0.05 not Bonferroni corrected
651 paired t -test). **B)** Equally, we show the Normalised Absolute Contribution across the first 12 FHs
652 represented both visually, on a spider plot, and statistically for individual FHs across the four DMT-
653 based conditions. Again, the results demonstrate an increase in the global FH ψ_0 but specifically a
654 decrease in FH ψ_2 compared to DMT before injection and the placebo state (green star p -value < 0.05
655 Bonferroni corrected paired t -test, red star p -value < 0.05 not Bonferroni corrected paired t -test).

656

658 **Figure 3. Spatiotemporal HADES analysis for the 11 Functional Harmonics (FH). Extending the**
659 **spatial analysis into the spatiotemporal domain again shows that Functional Harmonic ψ_2 (FH ψ_2) is**
660 **significantly reduced in the DMT condition. A) Specifically, Fractional Occupancy was found to be**
661 **statistically different in the ψ_2 . B) Life Times were found statistically different in the ψ_2 (green star: p**
662 **value < 0.05 ($\#$ of ψ_n) where $n=11$ paired t -test, red star: p -value < 0.05 uncorrected paired t -test). C)**
663 **The full spatial extent of FH ψ_2 is shown along with the significant results for Fractional Occupancy**
664 **and Life Times.**

665

666

667

668 **Figure 4. Latent Space Representation of neuroimaging data using the 12 Functional Harmonics (FHS).** Importantly, HADES can be used to create a latent space representation of the DMT neuroimaging data that immediately brings out important spacetime differences. **A)** Here we show the figures with Latent Space Representation using the first three FHs for visualisation of the neuroimaging data. The green colour shading represents the temporal trajectory embedded in the three latent spatial dimensions of the FHs of DMT_pre, PCB_pre and PCB_post. As can be immediately seen for the DMT-induced state (DMT_post) there is a clear contraction of the contribution of the FHs across board (shown in red colour shading). **B)** This can be directly quantified in terms of the Latent Dimension Spread computed for all the 12 FHs i.e. 12th dimensional space for the four conditions. As can be seen DMT_post is significantly different from DMT_pre and PCB_post (green star p -value < 0.05 Bonferroni corrected paired t-test).

679