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Abstract

The human brain is a complex system, whose activity exhibits flexible and continuous
reorganisation across space and time. The decomposition of whole-brain recordings into
harmonic modes has revealed a repertoire of gradient-like activity patterns associated with
distinct brain functions. However, the way these activity patterns are expressed over time with
their changes in various brain states remains unclear. In this study, we develop the Harmonic
Decomposition of Spacetime (HADES) framework that characterises how different harmonic
modes defined in space are expressed over time, and, as a proof-of-principle, demonstrate the
sensitivity and robustness of this approach to specific changes induced by the serotonergic
psychedelic N,N-Dimethyltryptamine (DMT) in healthy participants. HADES demonstrates
significant decreases in contributions across most low-frequency harmonic modes in the DMT-
induced brain state. When normalizing the contributions by condition (DMT and non-DMT),
we detect a decrease specifically in the second functional harmonic, which represents the uni-
to transmodal functional hierarchy of the brain, supporting the hypothesis that functional
hierarchy is changed in psychedelics. Moreover, HADES’ dynamic spacetime measures of
fractional occupancy, life time and latent space provide a precise description of the significant

changes of the spacetime hierarchical organization of brain activity in the psychedelic state.

Introduction

The brain is endowed with complex dynamics and can be perceived along spatial and temporal
dimensions [1]. Traditionally, neuroscience has focused on delineating and studying localised
cortical regions to map brain function in a temporarily static fashion [2]. However, recent
developments in neuroscience have started to indicate more spatially continuous
representations of functional topography [3], [4], and at the same time to stress the importance

of temporally varying brain dynamics [5]. Despite such progress, it remains unknown what
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underlying mechanisms drive, on one hand, the gradient-like organisation of cortical
topography, and on the other, the waning and waxing of the brain’s spatiotemporal patterns of

activity.

Here, we propose Harmonic Decomposition of Spacetime (HADES) as a new model of
hierarchical processing across both spatial and temporal dimensions. Historically, Brodmann’s
interactive atlas of cellular morphology and organisation has given rise to the view of
functional specialisation of individual brain areas [6], [7]. Spatially, this suggests a sharp
delineation between cortical areas in terms of their anatomy and function. However, supported
by evolutionary and developmental neuroscience [8], [9], cortical gradients have challenged
this view by suggesting gradually varying boundaries between and within brain regions, both
in terms of function and anatomy [3], [4], [10]. Functionally, gradient-like organisation
proposes an intrinsic coordinate system of human brain organisation continuously varying from
unimodal to transmodal cortical areas [3], [11]. Similarly, topographical maps of retinotopy,
somatotopy and tonotopy have shown smooth variation of anatomy and function within brain

areas [12]-[15].

Along the temporal dimension, studies of dynamic functional connectivity in fMRI have
revealed the importance of characterising the temporal features of brain activity as opposed to
the static picture described by known resting-state networks [5], [16]. Such approaches
describe temporal functional connectivity in terms of sliding-window analysis [17], by
considering the most salient events in the timeseries [18], [19] constrained by structural
connectivity [20], [21], as a temporal process of hidden states [22], [23] or as a temporal
trajectory in a landscape of attractors [24], [25]. Broadly, these approaches share the

description of complex brain dynamics in terms of spatial patterns expressed in time and
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therefore can be represented in terms of the patterns’ fractional occupancy, life times or

probability of transitions.

Here, HADES characterizes brain’s spatio-temporal activity in terms of harmonic modes
defined in space and expressed over time. For that end, we derived the functional harmonics
(FHs) [4] and their temporal expression by decomposing fMRI data into functional harmonics
via harmonic decomposition [26]. The motivation for HADES is, on one hand, to account for
an increasing spatial scale from neuronal circuits to large-scale brain networks, and on the
other, for its temporal evolution. Furthermore, HADES attempts to improve on the earlier
methods limitations demonstrating spatial interpretability, modelling feasibility and analysis

flexibility [27], [28]

One of the most potent psychedelic (i.e. ‘mind-manifesting’) experiences is induced by the N,N
- Dimethyltryptamine (DMT) - a naturally occurring serotonergic psychedelic [29]. Unlike
psilocybin and LSD, its expression is marked by a short duration of the psychedelic experience.
It is often associated with alterations in visual and somatic effects. At high doses, a complete
dissociation from the external environment precedes an immersion into mental worlds or
dimensions described as "other" but not less "real" than the one inhabited in normal waking
consciousness. Such experiences correlate with subjective rating items such as "I experienced
a different reality or dimension", "I saw geometric patterns" and "I felt unusual bodily
sensations" [30], [31]. It is these qualities of one’s conscious experience that motivate a
renewed interest in DMT drawing parallels with phenomena such as the near-death experience

(NDE) and dreaming [32].

Furthermore, like other psychedelics, DMT may have clinical relevance and is currently being

trialled for the treatment of depressive symptoms [33], [34]. Studies with Ayahuasca,
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99  containing DMT itself as well as monoamine oxidase inhibitors (MAOIs), have shown
100  promising results in patients with depression [35]. However, further investigations exploring
101  the neural and plasticity dynamics of DMT experiences are necessary to provide mechanistic
102 accounts for the relevance of DMT and related psychedelics for the treatment of mental health

103 disorders [36]—[38].

104  In the brain, psychedelics enhance the richness of spatio-temporal dynamics along both the
105  temporal and spatial dimensions. This has been corroborated by repertoire broadening of
106  functional states and increases in temporal complexity as well as shifting of the brain to a more
107  integrated state with the subversion of functional systems [39]-[42]. Consistently,
108  neuroimaging with DMT has revealed an increase in global functional connectivity — featuring
109  a functional network disintegration and desegregation that is reliable feature of the psychedelic
110  state, and a collapse of the unimodal to transmodal functional gradient [31]. Taken all together,
111 the current findings and subjective reports are in line with the entropic [43], [44] and anarchic
112 brain [45] models, where an increase in entropy of spontaneous brain activity parallels the

113 undermining of hierarchically organised brain function [43]-[45].

114

115 Here we use fMRI data from the DMT-induced state to describe HADES’s multifaceted
116  applications. Empirically, based on anarchic brain or ‘Relaxed Beliefs Under Psychedelics’
117  (REBUS) model, as well as findings of enhanced signatures of criticality under these
118  compounds [26], [41], [46], we hypothesised that the DMT state is associated with a flatter
119  hierarchy of cortical functional organisation with enhanced integrative properties across the
120 cortex.

121
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122  Results

123 Harmonic Decomposition of Spacetime (HADES) describes the spatio-temporal dynamics in
124 terms of spatial bases (defined from the brain’s communication structure) and the spatial bases
125  functional contributions to the fMRI recording evolving in time. To do so, we first constructed
126  dense functional connectome from the Human Connectome Project (HCP) S1200 release of
127 812 subjects (Figure 1B). The dense functional connectome was represented as a sparse,
128  symmetric, and binary adjacency matrix (Figure 1C) and decomposed into the functional
129  harmonics (P (x)) using the eigen-decomposition of the graph Laplacian applied to the dense
130  functional connectome (Figure 1D). Consistent with [4], we focused our analysis on the first
131 11 lowest functional harmonics together with the global zeroth harmonic. We analysed
132 functional significance of the functional harmonics by comparing them to the Yeo seven and
133 seventeen functional networks (Figure SI1). To obtain the temporal signature, we further
134 projected the individual harmonics on the fMRI timeseries (in surface representation), using
135  functional harmonic decomposition, and thus calculated the FHs temporal weights (Figure
136  1E). We reconstructed the timeseries with a few harmonics to motivate the similarity to the
137  empirical data (Figure SI2). Then, using a collection of non-dynamic and dynamic measures
138  (Figure 1F and 1G) and latent space representation (Figure 1H), we applied HADES to show
139 its viability in researching rich and complex brain dynamics in different brain states and
140  illustrate this in the context of the DMT-induced state.

141

142  Absolute Contribution across Functional Harmonics

143 To quantify contributions of individual harmonics in the different conditions, we computed the
144  absolute and condition-normalised absolute contributions of each harmonic (Figure 2A). The
145  absolute contribution results show a decrease in the DMT-induced state (compared to DMT

146  before injection and placebo-induced states) across most of the 11 FHs except of the global FH
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147  (green star: p-value < 0.05 Bonferroni-corrected paired t-test, red star: p-value < 0.05
148  uncorrected paired t-test). This is contrasted by the condition-normalised absolute contribution
149  results demonstrating an increase in the global FH and a decrease in FH 2 after DMT injection
150  versus before injection and the placebo data (green star: p value < 0.05 Bonferroni-corrected
151  paired t-test, red star: p-value < 0.05 uncorrected paired t-test, Figure 2B). Spider plots in
152  Figure 2A and 2B represent a visual redistribution of FHs across different conditions for the
153  two measures.

154

155 Dynamic Measures of HADES

156  To assess the temporal evolution of FH weights, we apply a winner-takes-all approach whereby
157  we select the most prominent FH at every time point and compute Fractional Occupancy (FO)
158  and Life Times (LT) of each FH. In Figure 3A and B, we show results when choosing the 11
159  FHs. We excluded the zeroth FH in this analysis to focus on the dynamical properties of
160  functionally resolved FHs. As before, strongest statistical significance for FO and LT is
161  observed in Y, (green star: p value < 0.05/(# of FH) paired t-test, red star: p-value < 0.05
162  uncorrected paired t-test, Figure 3C). Furthermore, we computed the first order Markov
163 process in terms of the Transition Probability Matrix (TPM) (Figure SI 3A). We report
164  statistics for the two DMT conditions (p-value < 0.05 uncorrected paired t-test).

165

166  Latent Space

167  Functional harmonics were used as the basis of a latent space representation in which the
168  temporal trajectory of the brain dynamics was embedde in the latent space representation of
169  the 12 FHs (Figure 4A, here visualised for the first three FHs with colour shading representing
170  the temporal trajectory). To further analyse how the temporal embedding in this latent space
171  changes, we defined the expansion/contraction of the trajectory in term of the latent dimension

172 spread. The DMT-induced state contracts the contribution of the FHs across the board. Latent

7
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173 dimension spread was computed for all the 12 FHs i.e., 12" dimensional space for the four
174  conditions. We also report its statistics (green star p-value < 0.05 Bonferroni corrected paired

175  t-test). The temporal trajectory significantly contracts in the DMT-induced state.
176

177
178 Discussion

179  In this study, we describe our novel HArmonic DEcomposition of Spacetime (HADES)
180  framework. HADES is designed to be a sensitive and precise measure of the spacetime features
181  of neuroimaging data. The framework uses the first 12 functional harmonics associated with
182  the lowest spatial frequencies derived from the dense functional connectome of the brain from
183  alarge group of 812 healthy participants. Any neuroimaging data can then be decomposed in
184  terms of the spacetime contributions of these functional harmonics. Here, as proof-of-principle,
185  we used HADES to analyse the DMT-induced brain state in healthy participants and found a
186  significant change of brain hierarchy in line with theoretical predictions of the anarchic brain
187  hypothesis, also known as ‘REBUS’ [45].

188

189  Consistent with previous literature, we have demonstrated the functional relevance of
190  functional harmonics [4]. Moreover, we have demonstrated that an empirical fMRI signal can
191  be accurately reconstructed with a subset of functional harmonics. Applying HADES to the
192  DMT-induced state has shown decreases in absolute contribution across most FHs, while the
193  global FH has remained unchanged. However, when looking at condition-normalised absolute
194  contribution in individual subjects, a decrease in FH 1, was mirrored by an increase in the
195  global harmonic. These results motivate a non-trivial reconfiguration whereby the DMT-
196  induced state decreases in overall magnitude with a relative increase towards the global
197  substate and a decrease of FH 1, representative of the functional hierarchies of the brain. This

198  was further reinforced by the analysis of functional harmonic dynamics with decreases both in
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199  fractional occupancy and lifetimes of FH 1, demonstrating further dynamic collapse of this
200  harmonic. Lastly, when the temporal trajectories were embedded in the latent space of the
201  functional harmonic, the DMT-induced state showed significant contraction of its temporal
202 trajectory spread.

203

204  Remarkably, FH 1, rresembles the so-called ‘principal gradient’ - i.e., a unimodal to
205  transmodal gradient previously found to explain the greatest proportion of variance in a
206  principal components analysis of cortical functional connectivity [3]. This gradient has been
207  proposed to reflect a hierarchy of brain function from low- to high-order cognitive networks
208  We have argued that psychedelic-induced states result in the undermining of functional
209  systems’ hierarchies in the brain as proposed and experimentally corroborated by the model
210  known as ‘REBUS and the anarchic brain’ [31], [45], [47]. Furthermore, the relative increase
211  1in global FH speaks to a less functionally defined and more integrated global substate under
212 the influence of DMT. Indeed, on the RSN level, psychedelic-induced states have been shown
213 to subvert within functional network-connectivity, especially in higher-order fronto-parietal
214  and default mode networks [31], [42], [48], [49], while enhancing between-network
215  connectivity and overall global and integrative tendencies [31], [39].

216

217  Traditionally, neuroscience has focused on delineating and studying localised cortical regions
218  to map the brain’s function. Such approach has been of importance albeit with fragmented
219  insights as to how multiscale brain organisation gives rise to complex spatio-temporal
220  dynamics and ultimately behaviour. A recent development in system neuroscience has been
221  that of cortical gradients [3]. This proposes an intrinsic coordinate system of human brain
222 organisation continuously varying from unimodal to transmodal cortical areas [11]. Gradient-

223 type organisation has been demonstrated in terms of myelination [50], anatomical structure
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224 [10], white matter tract length [51], evolutionary expansion [52], ontogenetic expansion [53],
225  temporal processing [54], semantic processing [55] and physiologically coupled travelling
226  waves [56]. The framework of multidimensional harmonic representation and decomposition
227  [4], [26], [57] adds to this list by decomposing brain activity maps into frequency-specific
228  communication channels that unveil contributions of connectivity gradients and cortical
229  parcellations to brain function. HADES extends these frameworks by considering the dynamic
230  aspects of these frequency-specific channels of functional communication.

231

232 The brain as a complex system is hypothesised to manifest hierarchies across time and space.
233 Indeed, such a nested organisation was suggested both in terms of the structural architecture of
234  the brain as well as its temporal frequencies [58], [59]. Functional harmonics are by
235  construction intrinsically ordered according to their spatial frequencies and as such provide a
236  multiscale representation of brain activity across cortical space. Intuitively, spatial frequencies
237  relate to temporal frequencies of oscillations and therefore further research with modalities
238  such as EEG or MEG will be interesting for drawing a closer relationship between the two
239  [40].

240

241  Previously, connectome harmonics have been used to decompose the brain’s spatio-temporal
242 activity into a combination of time-varying contributions [26]. Using long-range and local
243 connectivity as an underlying structure has been relevant in exploring the structure-function
244  relationship of large-scale brain organisation [57]. However, it seems that structural
245  connectivity alone cannot explain the emergence of rich and spontaneous activity of the human
246  brain [60], [61]. Firstly, neocortex is endowed with remarkable heterogeneity in
247  cytoarchitecture. This will result in various computational differentiation across the cortex, for

248  example in terms of temporal processing [54]. Secondly, the neuromodulatory system is known

10
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249  to alter the electrical composition of neurons and thus exercise non-linear effects on the
250  emergent activity of various microcircuits across the brain [62], [63]. The hypothesis here is
251  that the communication structure of dense FC has implicitly embedded within it information
252 on anatomical structure, cortical computational heterogeneity as well as neuromodulatory
253  expression and as such serves as a prominent candidate to be used for the derivation of
254  fundamental functional building blocks of spatiotemporal activity [4]. This in turn is expanded
255  upon in the HADES framework with dynamic measures and latent space embeddings, whereby
256  the emphasis is on the importance of the temporal dimension along which these spatio-temporal
257  blocks building unfold.

258

259  Latent space representation has become an important research topic in neuroscience due to its
260  ability to retrieve meaningful features contained in large and complex datasets [64]. It is
261  possible to identify patterns and relationships in a lower-dimensional space between regions
262  and between cognitive processes as the underlying computations giving rise to cognitive
263  functions are likely to be integrated [ 1]. There are many techniques that serve this purpose from
264 more traditional linear approaches such as singular value decomposition or principal
265  component analysis [65], to popular techniques based on independent component analysis [66].
266  More recent works use autoencoders as an elegant way in compressing fMRI signal while
267  accounting for non-linearity in the data [67]. Here, we chose functional harmonics as they
268  preserve nonlinear relationship between regions, and have multiscale and interpretable
269  representation of its latent dimensions [4], [68]. However, it is to be noted that the idea of
270  HADES as a framework span beyond the actual representation of the dimension of the latent
271  space (here in terms of functional harmonics) as it attempts to combine the spatial and temporal

272 representation of the complex brain dynamics. Moreover, in theory, other techniques could be

11
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273  applied in a similar way as to account for the complex spatio-temporal activity of the human
274  brain.

275

276 A limitation of the current approach for describing functional harmonics propagating in time
277  1s that it might be too reductionist. *"Winner-takes-all’ is a powerful technique summarising the
278  brain’s dynamics in terms of fractional occupancy and lifetimes of the functional harmonics.
279  However, it considers only one FH to be active at a given timepoint and as such might neglect
280  other potential important information included in other FHs. Future work should implement
281  weighted contributions of individual FHs at given timepoints and as such more completely
282  describe the multidimensional representation of spatio-temporal dynamics.

283

284  Conclusion

285 Taken all together, in this study we have introduced a new method called Harmonic
286  Decomposition of Spacetime (HADES) to describe spatio-temporal dynamics of the brain.
287  Using Functional Harmonics (FHs) derived from the brain’s communication structure, HADES
288  models dynamics as weighted contributions of FHs evolving in time. Firstly, we verified the
289  functional relevance of FHs with known resting-state networks showing both gradient-like and
290  network-based organisation. Then, we reconstructed aspects of the original timeseries with
291  only 100 FHs and their contributions. Furthermore, we applied HADES to the DMT-induced
292  state. We showed how condition-normalised and absolute contributions can be used to
293  demonstrate suppression of functional hierarchy and enhancement of whole brain integration.
294  Lastly, we demonstrated similar findings of impaired hierarchical organisation in dynamic
295  terms as shown by fractional occupancy and life times of FH 1),. These findings corroborate
296  the REBUS and anarchic brain model of psychedelic action by demonstrating dynamic changes

297  to brain functional hierarchies.

12
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492  Material and methods

493  Experimental Data
494  HCP Functional MRI

495  The dataset used for the analysis was made publicly available by the Human Connectome
496  Project (HCP), WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil
497  Ugurbil: 1U54MH091657). This project was made possible by funding from the sixteen NIH
498  Institutes and Centres supporting the NIH Blueprint for Neuroscience Research; and by the
499  McDonell Centre for Systems Neuroscience at Washington University.

500
501 Dense Functional Connectome

502  To define the appropriate functional basis, we used the dense functional connectome as part of
503  the HCP 1200 Subject Release. The data is freely downloadable (with a connectomeDB

504  account) at https://db.humanconnectome.org under the zip-file called 812 Subjects, recon 1227,

505 Dense Connectome. Details about the dense functional connectome pipeline can be found on
506  the same website under the following pdf ‘HCP1200- DenseConnectome +PTN+Appendix-
507  July2017.pdf’. In brief, out of the 1200 HCP subjects, 1003 have undergone four rstMRI runs
508  (total of 4800 timepoints). An improved reconstruction software (‘recon2’) was used on a
509  further subset of 812 participants. Timeseries were minimally processed, had artefacts removed
510  with ICA+FIX and were inter-subject registered. Further group-PCA was performed on the
511  temporally demeaned and variance normalised timeseries. The outputs of the group-PCA are
512 used to create the dense connectome. This can be thought of as a low-noise regularised
513  equivalent of concatenating individual subject’s gray-ordinate timeseries and calculating the
514  correlation between all the individual grey-ordinate timeseries, to create a dense functional
515  connectome (Figure 1A).

516

517
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518 DMT dataset

519  The complete description of the participants, experimental design and acquisitions parameters
520  canbe found in [30], [31]. A group of 25 participants was recruited in a single-blind, placebo-
521  controlled, and counter-balanced design. Subjects were considered for the study unless they
522 were younger than 18 years of age, lacked experience with a psychedelic, had a previous
523  negative response to a psychedelic and/or currently suffered from or had a history of psychiatric
524  or physical illness. Out of the 25 participants, 20 completed the whole study (7 female, mean
525 age=33.5years, SD=7.9). A further 3 subjects were excluded due to excessive motion during
526  the 8 minutes DMT recording (more than 15% of volumes scrubbed with framewise
527  displacement (FD) of 0.4 mm).

528

529  Experimental Paradigm

530 In total, all subjects were scanned on two days, two weeks apart, each consisting of two
531 scanning sessions. The initial scan lasted 28 minutes with the 8th minute marking the
532  intravenous administration of either DMT or placebo (saline) (50/50 DMT/placebo). Subjects
533  were asked to lay in the scanner with their eyes closed (wearing an eye-mask). After the
534  recording, assessment of subjective effects was carried out. The second session was identical
535  to the first except for the assessment of subjective intensity scores at every minute of the
536  recording. The experimental design also included simultaneous EEG recording during the
537  sessions (Figure 1A).

538

539  Acquisition Parameters

540  The experiment was performed on a 3T scanner (Siemens Magnetom Verio syngo MR 12) with
541  compatibility for EEG recording. A T2 -weighted echo planar sequence was used. In brief, the

542 parameters were as follows: TR/TE = 2000ms/30ms, acquisition time = 28.06 minutes, flip
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543 angle = 800, voxel size = 3x3x3 mm? and 35 slices with 0 mm interslice distance. T1-weighted
544  structural scans of the brain were also acquired.
545

546  fMRI Pre-processing

547  For fMRI pre-processing, a pipeline previously developed for an LSD experiment was used,
548  which can be accessed in the supplementary information of [48]. Briefly, the following steps
549  were applied 1) despiking, 2) slice-timing correction, 3) motion correction, 4) brain extraction,
550  5) rigid body registration to structural scans, 6) non-linear registration to 2mm MNI brain, 7)
551  motion-correction scrubbing, 8) spatial-smoothing (FWHM) of 6 mm, 9) bandpass filtering
552 into the frequency range 0.01-0.08 Hz, 10) linear and quadratic detrending, 11) regression of 9
553  nuisance regressors (3 translations, 3 rotations and 3 anatomical signals). Lastly, the timeseries
554  were projected from MNI voxel-space to the HCP surface vertex-space using the HCP
555  command -volume-to-surface-mapping.

556

557  Functional Harmonics

558  Functional harmonics are described by the eigenvectors of the Laplacian applied to a graph
559  representation of the human brain’s communication structure [4]. This graph is constructed as
560  a binarization of the dense functional connectome R = (v, €), where each node, v = {x;| €
561 1, ...,n}, corresponds to one of the n = 59 412 brain vertices and, for each node/vertex n, an
562 edge, € = {e;;| €v X v}, is defined to the 300 most correlated vertices, according to the
563  correlation values from the original dense functional connectome (Figure 1B). Then, the
564  resulting graph is thus a sparse, symmetric, and binary adjacency matrix (Figure 1C) as

565  follows,

566

(L, ifGE e
>67 AGj) = {0, otherwise
568
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Then, the discrete counterpart of the Laplace operator, A, is applied to the adjacency matrix A
in the following manner,

A,=D7Y2L D2 withL=D—A

where D is the diagonal degree matrix, D = )i, A(i,j). Lastly, Functional Harmonics,

Y (x;),k €1,..,n were computed as eigenvectors of the following eigenvalue problem,

A (x;) = W (x;),Vx; € v

where Ay, k € 1, ...,n are the associated eigenvalues of A, (Figure 1D).

Functional Harmonic Decomposition

To describe how Functional Harmonics evolve in time, we weighted their contribution, t, for
each participant at every timepoint, t, of the recording F*(x, t), and thus, retrieved timecourses

of individual harmonic contributions (Figure 1D) in the following format,

n

Fé(x, t;) = Z T ()Y (x) = 1) Y1 (x) + 12D PY2(x) + -+ + 1, (E)Pr ()

k=1

where T is the contribution of the k" Functional Harmonic 1, (x) to the fMRI recording
FS(x,t;) at time t;. Formally, the Functional Harmonic contributions are described as 7, (t) =

(F5(x,t),Yy) (Figure 1E).

Non-dynamic Measures

Functional Harmonic contribution 7, (t) at each timepoint t represents the weight of a given
Functional Harmonic 1, (x) at that particular fMRI timepoint, F % (x, t;). Its absolute value can

be defined as the absolute contribution as follows: P(y(x),t) = |1, (t)|. Here, we further
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595  define the mean absolute and condition-normalised absolute contribution as the time-averaged
596  overall absolute contribution of each harmonic, and as the time-averaged condition-normalised
597  absolute contribution by the sum of all the Functional Harmonic magnitudes of each participant
598  and condition, respectively. In other words, absolute contribution describes the overall state of
599  each Functional Harmonic for every participant and condition, and condition-normalised
600 absolute contribution depicts the relative redistribution for a given Functional Harmonic in
601  relationship to the rest of the Functional Harmonics (Figure 1F).

602

603  Dynamic Measures

604  To summarise dynamics of Functional Harmonics, we chose to describe each timepoint by its
605  dominant Functional Harmonics, i.e., a Functional Harmonic with the largest contribution at a
606  given timepoint. As such, we were able to depict the individual timeseries as a sequence of
607  dominant Functional Harmonic contributions. we further defined Fractional Occupancy, Life
608  Times and Transition matrix as the probability of a given Functional Harmonic being active
609  during the duration of the recording, the averaged consecutive period a given Functional
610  Harmonic was on, and first order Markov-chain for the Functional Harmonics respectively
611  (Figure 1G).

612

613  Latent Space

614  Latent space serves as a lower-dimensional representation of high-dimensional data. Here, we
615  have used the spatial patterns, described by Functional Harmonics, to embed the temporal
616  activity in N-dimensional space where N is the number of FHs. As such it is possible to quantify
617  the changes in temporal dynamics of FHs. Here, we define measure of Latent Dimension
618  Spread that quantifies the amount of temporal trajectory expansion or contraction. It is defined
619  asthe average of the 11 FHs of the standard deviation of the Functional Harmonic contribution

620 T4 (t) over time (Figure 1H).
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626  Figure 1. Overview of HArmonic DEcomposition of Spacetime (HADES) framework. A) Here we
627  used HADES to analyse data from DMT-induced resting-state fMRI in healthy participants and show
628  the design for this experiment. B) HADES uses the dense functional connectome constructed from the
629  HCP S1200 release of 812 subjects to C) construct a graph representation as a sparse, symmetric, and
630  binary adjacency matrix of the dense functional connectome. D) First, Functional Harmonics (Y (x))
631  are obtained from the Laplacian decomposition of the sparse adjacency matrix. E) Functional
632  harmonic decomposition is computed by projecting individual harmonics on the fMRI timeseries
633 (surface representation) and calculating their contributions. F) From this decomposition, HADES can
634  be used to compute non-dynamic measures for the first 12 Functional Harmonics — Absolute
635  Contribution and Condition Normalised Absolute Contribution on any neuroimaging dataset. G)
636  Importantly, HADES can also be used to construct dynamic measures for the first 12 Functional
637  Harmonics — Fractional Occupancy, Life Times and Transition Matrix. H) These can be measures can
638  be used as latent space representation as the temporal trajectory embedded in the Functional
639  Harmonics space.

640
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641
642

643  Figure 2: Harmonic Spatial Analysis of DMT and placebo neuroimaging data. The harmonic spatial
644 analysis of the neuroimaging data shows that the contribution of Functional Harmonic , (FH,) is
645  very significantly reduced (p<0.05, Bonferroni corrected) when participants were given DMT, both in
646  terms of absolute and normalised contribution. A) Specifically, the absolute contribution across the
647  first 12 FHs is shown both visually, on a spider plot, and statistically for individual FH across the four
648  DMT-based conditions. The results show a decrease in the DMT-induced state (compared to DMT
649  before injection and the placebo state) across many of the 12 FHs except the global FH ), (green star
650  p-value < 0.05 Bonferroni corrected paired t-test, red star p-value < 0.05 not Bonferroni corrected
651  paired t-test). B) Equally, we show the Normalised Absolute Contribution across the first 12 FHs
652  represented both visually, on a spider plot, and statistically for individual FHs across the four DMT-
653  based conditions. Again, the results demonstrate an increase in the global FH Y but specifically a
654  decrease in FH Y, compared to DMT before injection and the placebo state (green star p-value < 0.05
655  Bonferroni corrected paired t-test, red star p-value < 0.05 not Bonferroni corrected paired t-test).

656
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Figure 3. Spatiotemporal HADES analysis for the 11 Functional Harmonics (FH). Extending the
spatial analysis into the spatiotemporal domain again shows that Functional Harmonic Y, (FHY) is
significantly reduced in the DMT condition. A) Specifically, Fractional Occupancy was found to be
statistically different in the \,. B) Life Times were found statistically different in the \, (green star: p
value < 0.05 (# of Yy,) where n=11 paired t-test, red star: p-value < 0.05 uncorrected paired t-test). C)
The full spatial extent of FH 1, is shown along with the significant results for Fractional Occupancy

and Life Times.
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667

668  Figure 4. Latent Space Representation of neuroimaging data using the 12 Functional Harmonics
669  (FHs). Importantly, HADES can be used to create a latent space representation of the DMT
670  neuroimaging data that immediately brings out important spacetime differences. A) Here we show the
671  figures with Latent Space Representation using the first three FHs for visualisation of the neuroimaging
672  data. The green colour shading represents the temporal trajectory embedded in the three latent spatial
673  dimensions of the FHs of DMT pre, PCB_pre and PCB_post. As can be immediately seen for the DMT-
674  induced state (DMT post) there is a clear contraction of the contribution of the FHs across board
675  (shown in red colour shading). B) This can be directly quantified in terms of the Latent Dimension
676  Spread computed for all the 12 FHs i.e. 12" dimensional space for the four conditions. As can be see
677  DMT post is significantly different from DMT pre and PCB post (green star p-value < 0.05
678  Bonferroni corrected paired t-test).

679
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