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Abstract 11 

Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing 12 
environments, yet the concept of transcriptional plasticity (TP) remains largely unexplored. In this 13 
study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by 14 
analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data 15 
reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene 16 
essentiality. We also found that critical genetic features, such as gene length, GC content, and operon 17 
size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to 18 
include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a 19 
striking conservation of the TP landscape. This study provides a comprehensive understanding of the 20 
TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic 21 
feature encoded in bacterial genomes. 22 

Introduction 23 

Cells must swiftly modulate the expression of their genes to cope with abrupt changes in external 24 
environment. Transcriptional plasticity (TP)1 – the ability to alter the expression of a gene in response 25 
to different types of environmental stress – is pivotal to cellular adaptation and subject to natural 26 
selection2-4. In practice, TP can be estimated by quantifying the change in the level of expression 27 
across multiple conditions. For instance, Urchueguía et al. used a library of E. coli strains containing 28 
promoter-GFP (Green Fluorescence Protein) fusions to measure changes in fluorescence levels across 29 
different conditions, thereby quantifying expression plasticity4. Similarly, Lehner et al. used the 30 
normalized sum of squares of log2- expression changes to infer gene-level transcriptional plasticity 31 
from a Saccharomyces. cerevisiae microarray dataset5. These studies found that certain genetic traits, 32 
such as promoter architecture, nucleosome organization, and histone modification patterns may 33 
significantly influence eukaryotic gene transcriptional plasticity6-10

. While the transcriptional 34 
machinery and the nucleoid organization of prokaryotic organisms fundamentally differ from those of 35 
eukaryotes11,12, a recent investigation into E. coli promoter evolution showed that long-term natural 36 
selection favors the retention of high promoter TP despite the presence of segregating mutations2. The 37 
strong evolutionary constraint implies that, akin to eukaryotes, there may also be genetic traits in 38 
bacteria that determine TP, but the biological principles underlying TP in bacteria have not been 39 
adequately studied4,13.  40 

Exploring the genetic features contributing to TP in bacteria can enhance our understanding how of 41 
bacteria adapt to environmental pressures and guide the development of innovative strategies to 42 
combat bacterial pathogens. Tuberculosis (TB) remains the leading cause of death due to a single 43 
infectious agent14. Throughout the phases of infection, proliferation and transmission, Mycobacterium 44 
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tuberculosis (Mtb), the causative agent of TB, faces a wide array of environmental challenges. Some 45 
of the stresses, such as hypoxia, are characteristic of the microenvironments where the bacilli reside 46 
within host, whereas others arise from host immune defenses such as toxic metal ions, nutrient 47 
restriction, acidic pH, and reactive oxygen or nitrogen species, etc. Over the past 75 years, Mtb has 48 
also faced constant pressure from antibiotics. To try understand how Mtb modulates its gene 49 
expression in response to different external challenges, studies have leveraged RNA sequencing 50 
(RNA-Seq) to query Mtb’s transcriptomic profiles across a broad panel of environmental conditions. 51 
These studies have revealed a complex transcriptional regulation network underlying the ability of 52 
Mtb to adapt to stresses. For example, over 50 transcriptional factors (such as dosR and whiB3) 53 
respond to hypoxia, allowing Mtb, an obligate aerobe, to survive in settings with oxygen depletion15. 54 
As these studies have been conducted under a multitude of experimental conditions, the resultant 55 
RNA-Seq datasets provide a comprehensive view of gene expression in Mtb that can be analyzed for 56 
insights into its transcriptional plasticity. 57 

In this work, we systematically examine the TP profiles of Mtb genes by integrating publicly available 58 
RNA-Seq datasets. Our analysis uncovers significant variability in TP across genes and identifies 59 
overarching principles governing the amplitude of TP. We find a correlation between a gene’s 60 
biological function and its TP and note that essential genes exhibit significantly lower levels of TP 61 
than non-essential genes. We further demonstrate that in addition to transcriptional regulators, genetic 62 
features such as operon architecture, gene length, and GC content (GC%) also appear to play 63 
substantial and distinct roles in shaping the TP of Mtb genes. In addition, by extending our study to M. 64 
smegmatis and M. abscessus, we show that the same principles appear to govern TP in other 65 
Mycobacteria. The findings in this study enrich our understanding of TP regulation and underscore the 66 
shared regulatory mechanisms governing gene expression dynamics. 67 

Results 68 

Quantifying the transcriptional plasticity of Mtb genes 69 

To explore the transcriptome-wide pattern of gene expression in Mtb, we collected 894 previously 70 
published Mtb RNA-Seq datasets that were generated under a wide range of experimental conditions. 71 
All of the 894 datasets were obtained by studying the standard laboratory strain Mtb H37Rv, thus 72 
interrogating the physiological responses to various challenges in the same genetic background. These 73 
studies included antibiotic exposures, varied nutrient sources, host-mimicking conditions, and genetic 74 
manipulations such as gene knock-downs or deletions, as well as the corresponding untreated controls 75 
(Fig. 1a, see also Methods and Table S1). We reasoned that the wide diversity of these experimental 76 
conditions would provide a suitable resource for studying the transcriptional plasticity of Mtb genes 77 
(Fig. 1b).  78 

We first employed standardized preprocessing criteria to facilitate analysis of the 894 RNAseq 79 
datasets (Methods). In brief, we excluded genes shorter than 150 bp, non-coding transcripts, and genes 80 
whose expression was not detected in most samples. We then normalized the expression data for the 81 
remaining 3,891 genes using the Trimmed Mean of M-values (TMM) method, a technique designed to 82 
account for varying sequencing depth and suppress batch effects (Table S2). For subsequent TP 83 
analysis, the expression values were indicated using log2-transformed Reads Per Kilobase Million 84 
(RPKM+1).  85 

To estimate variations in gene expression, we initially calculated the range of expression values, or the 86 
MinMax, of the Mtb genes across the 894 samples. We noticed that the MinMax of Mtb genes varied 87 
from 2.8 to 18.1 (Fig. S1a), suggesting that the amplitude of the changes in the level of expression for 88 
certain Mtb genes could exceed the range of expression of other genes by a factor of more than 40,000. 89 
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We then examined gene expression at different percentiles of expression, including the most highly 90 
expressed 100th percentile (Max), the 75th (Q75), 50th (Median), 25th (Q25), and 1st (Min) 91 
percentiles - and observed significant differences in ranges of expression among Mtb genes (Fig. 1c). 92 
For instance, hspX - encoding a hypoxia-induced small heat shock protein16- displayed a markedly 93 

broader range of expression compared to rpoB, which encodes the β subunit of the RNA polymerase 94 
core enzyme. Conversely, the expression level of the lipoprotein peptidase gene, lpqM, remained 95 
relatively constant across all conditions (Fig. 1c).  96 

We further characterized variations in expression with two additional metrics: the 97 
Inter-Quantile-Range (IQR) and the mean-adjusted Standard Deviation (adj-SD) of the expression 98 
values (Fig. S1b, Methods). As expected, we found a high degree of correlation between MinMax, 99 
IQR, and adj-SD (Fig. S1c), indicating that these measures all represent variability of gene expression. 100 
To evaluate the robustness of these metrics, we performed a bootstrap analysis by comparing random 101 
subsamples with the complete dataset (Methods). This analysis indicated that while both IQR and 102 
adj-SD were more resilient to reductions in sample size than MinMax (Fig. 1d), adj-SD demonstrated 103 
a slight, but statistically significant advantage over IQR (Fig. 1d). Therefore, adj-SD was used to 104 
estimate TP in the subsequent analyses. 105 

TP varies with gene function and gene essentiality 106 

The calculated TPs for 3,891 Mtb genes displayed a predominantly normal distribution with a long 107 
tail representing genes with high TPs (Fig. 1e). Using a bootstrap approach similar to that described in 108 
Fig. 1d, we found that the 195 high-TP genes in the top 5% percentile demonstrated consistently high 109 
TP even when the sample size was reduced to just 10 genes (Fig. S1d, e). This pattern suggests that 110 
the skewed distribution wasn’t caused by “outlier” values, but instead reflects a subset of genes with a 111 
wider range of expression levels. We then investigated the biological functions of the high-TP genes 112 
and found that the 195 high-TP genes (Fig. S2) were significantly enriched for genes involved in 113 
responding to stress, including hypoxia, host immune mechanisms, copper ions, etc., as per the 114 
DAVID database17 (Fig. 2a). When we grouped Mtb genes based on previously established functional 115 
categories and compared their TP profiles18,19, we found that genes involved in biomass production, 116 
cell wall biosynthesis, cellular metabolism, and respiration were primarily associated with the lowest 117 
TPs (Fig. 2b). This association is underscored by our observation that core genes conserved across 118 
mycobacteria species exhibited significantly lower TPs compared to the other genes in the genome 119 
(Fig. 2c).  120 

The above findings suggested that those genes crucial for basic cellular activities exhibit more tightly 121 
regulated expression. To test this, we compared the TP distribution for genes previously annotated as 122 
essential with those annotated as not essential20, and found that essential genes displayed significantly 123 
lower TPs than non-essential genes (Fig. 2d). We also noticed that those genes whose disruption by 124 
transposon insertion conferred a growth advantage exhibited significantly higher TPs than both 125 
essential and other non-essential genes (Fig. 2d). Recent studies have proposed gene vulnerability – 126 
the organism’s susceptibility to perturbations in the transcription of the gene (e.g., by CRISPRi) – as a 127 
quantitative, orthogonal proxy to gene essentiality21. Consistent with the analysis by annotated 128 
essentiality, we found that genes identified as vulnerable also tended to exhibit lower TPs (Fig. 2e), 129 
and none of the highly vulnerable genes exhibited high TP (Fig. 2e). We hypothesized that high-TP 130 
genes may promote phenotypic diversification that confers a selective advantage in the ability of Mtb 131 
to survive in fluctuating environments, and therefore these genes might accumulate mutations more 132 
rapidly than the rest of the genome. To test this hypothesis, we utilized a recently established set of 133 
evolutionary metrics for Mtb genes, drawn from 10,209 Mtb genomes22. Consistent with our 134 
hypothesis, we found that high-TP genes exhibited higher base substitution rates than low-TP genes 135 
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(Fig. 2f). Overall, our analysis suggests that for those genes involved in essential cellular processes, 136 
stable levels of expression are advantageous to the bacteria. In contrast, for genes that provide a 137 
growth advantage in certain conditions, but are dispensable or even detrimental in others, a “plastic”, 138 
inducible transcriptional program appears to be beneficial.  139 

Genetic features underlying transcriptional plasticity 140 

To identify the genetic factors influencing TPs of Mtb genes, we compiled a comprehensive list of 78 141 
genetic features including sequence composition, transcriptional regulation and evolutionary 142 
parameters (Fig. 3a, Table S3, Methods). We then employed a decision-tree-based regression analysis 143 
to model the Mtb TP landscape with these 78 features (Fig. 3b). The regression model was trained on 144 
a randomly selected subset of 60% (2,335/3,891) of the total Mtb genes, and then used to predict the 145 
TPs of the remaining 40% (1,556/3,891) of Mtb genes. We iterated this process 100 times, with the 146 
derived models yielding an average R2 value of 0.16 (Fig. S3a). For each model, the features were 147 
ranked by importance based on the contribution of each feature to the predictive power of the model. 148 
We then aggregated these feature ranks across all iterations to provide an average measure of each 149 
feature’s contribution to TP prediction. 150 

Our analysis highlighted four features – operon length, gene length, number of activating regulators, 151 
and GC percentage (GC%) – that consistently demonstrated high predictive importance across 152 
iterations (Fig. 3c). A support vector machine (SVM) model trained solely with these four features 153 
was able to predict a gene’s TP (R2=0.17) with an accuracy similar to that of a model trained with all 154 
78 features (Fig. 3d). The feature contributing most to the predictive power of the SVM model was 155 
operon size, followed by gene length, number of activating regulators and GC% (Fig. S3b), consistent 156 
with the results of the decision-tree-based regression analysis (Fig. 3c). However, there was no 157 
correlation between the top features (r<0.21, Fig. S3c), indicating that these features play independent 158 
roles in shaping transcriptional plasticity.  159 

The role of genetic features in affecting transcriptional plasticity 160 

We then sought to understand how these feature influence TP. We first examined the role of gene 161 
length and found a negative correlation between gene length and TP, with longer genes tending to 162 
exhibit lower TPs than shorter genes (Fig. 4a). Contrary to gene length, however, the correlation 163 
between TP and GC content (GC%) was not monotonic. We found that genes with a GC% 164 
substantially different from the average for the Mtb genome (65.6%) generally had higher TPs (Fig. 165 
4b, Fig. S4a). To confirm this observation, we binned Mtb genes according to their TPs and calculated 166 
the standard deviation (SD) for the median GC% of the genes in each bin. We observed an apparent 167 
linear correlation between the SD of the median GC% and the ranks of TP bins, such that the bins 168 
with higher TPs had larger SDs for GC%. This corroborated the hypothesis that the TP increases with 169 
greater GC% deviation from the genome average (Fig. 4c). Notably, both essential and non-essential 170 
genes whose GC% approximated the genome-average GC% exhibited lower TPs (Fig. S4b-c), 171 
implying that the association between GC% and TP was not confounded by gene essentiality.  172 

Next, we evaluated the effect of operon size on TP. We found that genes located in polygenic operons, 173 
containing two or more genes, had significantly higher TPs than genes located in monogenic operons, 174 
consisting of only one gene (Fig. 4d). Furthermore, we also observed that the TPs of genes within the 175 
same operon were highly correlated (Fig. S4d). Despite the confounding TP differences between 176 
essential and non-essential genes, both exhibited higher TPs in polygenic operons (Fig. S4e-f). A 177 
recent study reported that Mtb undergoes frequent premature transcription termination23, and we 178 
observed a decreased mean expression for downstream genes in an operon (Fig. S4g), but there was 179 
no similar trend for TP (Fig. S4h). Together, these analyses suggested that it is the size of the operon, 180 
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rather than the position of the genes within the operon, that influences TP.  181 

While gene length, GC%, and operon size are features related to the primary sequence of the gene, the 182 
number of activating regulators is a feature that pertains to process of transcriptional regulation. We 183 
found that the TP of a gene tended to be higher when its expression was modulated by a higher 184 
number of predicted transcriptional activators (Fig. 4e). We also observed a similar trend for 185 
transcriptional repressors, whereby genes with more predicted repressors tended to have higher TPs, 186 
although the TP dropped slightly in genes predicted to have only one repressor (Fig. 4f). Taken 187 
together, our analysis shows that not only the basic genetic composition of genes but also the complex 188 
network of transcriptional regulation can significantly influence the TP landscape of the Mtb genome 189 
(Fig. 4g).  190 

Genetic features can explain TP variation in genes belonging to the same regulon 191 

Because the different genes within a regulon are co-regulated, we speculated that they could also have 192 
similar TPs. We investigated 36 well-annotated gene regulons (Methods, Table S4) and found that the 193 
TP varied greatly between different regulons (Fig. 5a). For instance, the regulons Mce3R, KstR2, 194 
BkaR and FasR, which are thought to be involved in lipid metabolism, had the lowest TPs (Fig. 195 
5a)24-27. By contrast, the hypoxia- and redox-sensing DosR regulon and metal related regulons such as 196 
Zur, RicR, M-box and IdeR, demonstrated high TPs (Fig. 5a). However, while the genes within the 197 
same regulon displayed similar expression patterns, coordinately regulated up or down, they differed 198 
significantly in the magnitude of their changes in expression, resulting in diverse TPs. For example, 199 
the TPs of the genes belonging to the DosR regulon varied substantially, with dosT exhibiting the 200 
lowest (0.74) and hspX exhibiting the greatest change in level of expression (3.98) (Fig. 5b-c), and 201 
similar TP variations were seen amongst the genes belonging to other regulons (Fig. 5a). Because the 202 
expression of genes within a regulon generally showed the same direction of change in response to 203 
stress, we speculated that the TP differences amongst the regulon’s genes might derive from 204 
differences in the genetic features of the individual genes. Indeed, we found the two primary genetic 205 
features - gene length and GC% - could explain the TP variations of co-regulated genes in most 206 
regulons (Fig. S5-6). To show this, we selected five regulons that comprised of more than 20 genes 207 
each (whiB1, whiB4, sigD, zur and Rv1828/sigH) and demonstrated that shorter genes with a GC% 208 
deviating from the genomic average generally displayed higher TP than other co-regulated genes (Fig. 209 
5d-e). These results highlight the ability of genetic features to affect the TP, independent of other 210 
transcriptional regulatory processes. 211 

The transcriptional plasticity landscape is conserved across Mycobacterium species 212 

The analyses above revealed that, in Mtb, a gene's TP is linked to its function, essentiality, and its 213 

evolutionary and genetic features, all of which are likely to be conserved in closely related 214 

homologous genes from other mycobacterial species. To demonstrate this, we curated published 215 

RNA-Seq datasets from 192 samples of M. smegmatis (Msm) and 106 samples of M. abscessus (Mab), 216 

and used adj-SD to estimate their genome-wide TP (Fig. S7a, Table S5). We found that all three 217 

species displayed long-tailed distributions at high TP values (Fig. 1e, Fig. S7b), and homologous 218 

genes in Mtb, Msm, and Mab showed similar amplitudes of TP (Fig. 6a-b, Fig. S7c). Moreover, as 219 

observed in Mtb, the essential/vulnerable genes in Msm exhibited lower TPs than non-essential or 220 

less-vulnerable genes (Fig. 6c-d). Also as seen in Mtb, the genes in Msm and Mab with higher TP 221 

values tended to be shorter in length and have GC% more deviated from the average (Fig. 6e-h). It is 222 

intriguing that the high-TP genes across all three species were enriched in iron-related functions (Fig. 223 

S7d, Fig. 3a). These findings suggest that despite the differences in natural lifestyles, the evolutionary 224 

principles underlying TP are likely conserved across mycobacterial species. 225 
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Discussion 226 

In this work, we assessed the TP of Mtb genes by utilizing 894 RNA-Seq datasets that were 227 
previously collected when the bacteria were exposed to various environmental conditions. Our 228 
analyses revealed that TP varies significantly among Mtb genes in a manner that is associated their 229 
biological functions and subjected to natural selection. We identified primary genetic features that 230 
contribute to TP values, including gene length, GC%, operon size and transcriptional regulatory 231 
factors. Finally, we extended these findings to Msm and Mab, demonstrating that TP, and the factors 232 
that influence it, are likely to be biological features that are conserved across mycobacterial species. 233 

Gene vulnerability reflects the quantitative association between changes in bacterial fitness and the 234 
degree of CRISPR-i mediated inhibition of a gene’s transcription21. Perturbing the expression of 235 
highly vulnerable genes can be deleterious, whereas the same level of expression inhibition of 236 
invulnerable genes can be tolerated21. Initially, we anticipated a linear-like relationship between TP 237 
and vulnerability, whereby more vulnerable genes would exhibit lower TPs. Although we observed a 238 
positive association between vulnerability and TP, this relationship could not be explained by a simple 239 
or log-linear model. Instead, we observed an intriguing pattern between vulnerability and TP that 240 
presented as a reversed "L"-shape, with the elbow point representing genes that were insensitive to 241 
transcription inhibition and invariant in expression. This observation could be due to several reasons. 242 
First, the effects on the bacteria caused by gene’s transcriptional activation or transcriptional 243 
repression are not necessarily symmetrical. For instance, for some house-keeping genes, 244 
overexpression is better tolerated by the bacteria than repressed expression, whereas for protein toxins 245 
the outcomes would be the opposite28. Because TP considers both up and down-regulation of gene 246 
expression, it reflects gene-specific constraints on both transcriptional activation and repression, 247 
whereas studies of gene vulnerability and essentiality only consider transcriptional repression. Second, 248 
vulnerability is not a constant gene feature but rather is expected to vary depending on the specific 249 
environmental conditions. Therefore, we speculate that vulnerability estimated from different 250 
conditions could have a stronger correlation with TP. Finally, although essential genes showed 251 
significantly lower TP than non-essential genes, the TP variation in essential genes is overall quite 252 
close to that of non-essential genes. This suggests that bacteria may have the flexibility to alter the 253 
level of expression of essential genes as required for survival in changing environments (Fig. 2e).  254 

It is noteworthy that genetic features play a more significant role than transcriptional regulation in 255 
determining TP, even though the mechanisms underlying this observation are not yet fully understood. 256 
For example, we found that shorter genes had higher TPs, a pattern that has been also observed in 257 
eukaryotes such as Drosophila and Arabidopsis thaliana29,30. The length of gene appears to be 258 
evolutionarily shaped to accommodate its functionality, with housekeeping genes tending to be longer 259 
while stress-responsive genes tend to be shorter30-32. We speculate that stress-responsive genes require 260 
efficient and diverse expression patterns to cope with fluctuating environments while conserving 261 
energy. A reduction in gene size may represent an adaptive strategy to achieve this efficiency, 262 
allowing for more efficient regulation of the expression of these genes in response to stress. However, 263 
further research is needed to test this hypothesis and fully understand the evolutionary relationship of 264 
gene size with stress response. 265 

There was a significant association between gene expression patterns and GC content, indicating that 266 
GC content could be an important regulatory factor33. It was previously observed that AU-rich and 267 
GC-rich transcripts follow distinct decay pathways, with a linear relationship between higher GC 268 
content and greater RNA stability34.  In our study, however, we found a "V" shaped relationship, 269 
whereby genes with low TP were clustered around a GC content of 65.6%, which is the average GC% 270 
of the Mtb genome. This finding contradicted our initial assumption that higher GC content would be 271 
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associated with lower TP.  The genes with extremely high-GC content (>75%) may result from 272 
recent horizontal gene transfer from other bacteria35-37, and therefore one possible explanation is that 273 
the TP of these recently acquired genes has not yet been optimized to align with the local 274 
transcriptional network, resulting in noisy expression of these genes. Moreover, high GC content may 275 
have a detrimental effect on expression stability if it leads to the formation of secondary structures or 276 
interferes with the binding of regulatory factors. The clustering of low TP genes at the Mtb average 277 
65.6% GC content, suggests that these genes have evolved to be both GC stable and expression stable, 278 
thereby representing an optimized state of gene regulation. 279 

Though we successfully identified four significant contributing features, the models incorporating 280 
these features could not completely predict TP values, suggesting that there are likely other 281 
determinants that were not identified (Fig. 3d, S3a), such as the promoter. Recent work in E. coli 282 
showed that, for most genes, the range of protein abundance across different environmental conditions 283 
is constrained by the the TFs that regulate promoter activity38. Another study revealed that promoter 284 
characteristics, such as the length of the transcriptional initiation region and the presence of 285 
TATA-boxes, play important roles in determining the range of expression variation in eukaryotic 286 
genes29. Similarly, the positive correlation we found between TP and the number of transcriptional 287 
activators demonstrates the influence of promoter characteristics and trans regulatory mechanisms on 288 
TP in mycobacteria (Fig. 4e).  289 

The inherent differences in the transcriptional plasticity (TP) of genes can be used to normalize 290 
expression differences in microbial transcriptional studies. Traditionally, different thresholds have 291 
been employed to identify meaningful changes in gene expression. The threshold for identifying genes 292 
that respond to particular conditions is often a 2-fold change in the level of expression or occasionally 293 
thresholds of 1.5-fold or 4-fold are used, but the genes exhibiting the largest transcriptional changes 294 
frequently receive the most attention. However, these thresholds are arbitrary because they don’t 295 
adjust for the inherent TP of each gene. As a result, high-TP genes are more likely to display changes 296 
in expression that surpass the threshold, while relatively large changes in the expression in low-TP 297 
genes may be overlooked because they don’t meet the arbitrary threshold. An alternative method 298 
would determine the degree of expression change that should be considered meaningful for each 299 
specific gene. To this end, we propose utilizing the expression changes corresponding to the 5th and 300 
95th percentiles, based on the studies in our dataset, as a "soft-thresholding" benchmark for screening 301 
differentially expressed genes (Table S6). For instance, in the case of low-TP genes such as lpqM and 302 
ribF, the log2 fold-changes corresponding to the 95th quantile expression levels were 0.54 and 0.57, 303 
respectively, times the level of expression in the controls. An analysis using the arbitrary thresholds 304 
would miss changes in the expression of these genes that are equivalent to two standard deviations. 305 
Criteria based on the inherent TP for each gene could establish a more nuanced analysis for 306 
identifying differentially expressed genes. We believe that our integration of RNA-Seq data from 894 307 
Mtb samples provides a comprehensive estimation of the transcriptional variations in Mtb genes 308 
across various conditions, and therefore the calculated TPs can serve as a reference for evaluating 309 
changes in expression. The TMM method employed in our analysis can be used to evaluate of the 310 
transcriptional signatures of genes of interest (Table S2). This will foster a deeper understanding of 311 
the differential gene expression landscape in Mtb and facilitate the exploration of gene-specific 312 
transcriptional patterns. 313 

In summary, our study has characterized the landscape of TP in Mtb genes and established a 314 

framework for determining TP levels. This work thereby serves as a foundation for future 315 

investigation aimed at understanding the influences that determine a gene’s TP. Additionally, the 316 

proposed TP-based benchmark offers valuable guidance for the interpretation of differential 317 
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expression changes in transcriptional studies. Moving forward, further research can build upon these 318 

findings to uncover the intricacies of TP and its impact on gene expression in Mtb and other microbial 319 

systems.  320 
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Methods 321 

Collection and processing of RNA-Seq data  322 

We used the keyword “tuberculosis” to search for publicly available RNA-Seq data of Mtb released 323 
on NCBI Sequence Read Archive (SRA) before January 1, 2022, and obtained a total of 1,084 324 
datasets from 64 BioProjects with 47 associated research articles (Table S1). FASTQ files of all 1,084 325 
samples were downloaded using Fastq-dump (version 2.8.0). Adaptor trimming and the removal of 326 
low quality sequencing reads were conducted using Trimmomatic (version 0.39)39 with parameters of 327 
“ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 328 
MINLEN:36” for paired-end data and “ILLUMINACLIP:TruSeq3-SE:2:30:10 LEADING:3 329 
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36” for single-end data. The filtered profiles were 330 
then mapped against the H37Rv reference genome (ASM19595v2) using Bowtie2 (version 2.2.9)40, 331 
and duplicated reads were removed with SAMtools (version 1.9)41. 332 

To identify strand specificity of the RNA-Seq libraries, we measured the Pearson correlation 333 
coefficient of total read counts on two strands for each library using SAM files generated by Bowtie2. 334 
Libraries with a correlation coefficient lower than or equal to 0 would be considered as strand-specific 335 
while a coefficient higher than or equal to 0.6 would be considered as non-strand-specific. For 336 
libraries with coefficients between 0 and 0.6, we manually judged their strand specificities based on 337 
the description of the experimental design and strand specificities of other samples from the same 338 
experiment. Library read counts were then enumerated with htseq-count from the HTSeq framework 339 
(version 0.11.3)42 using non-strand-specific or strand-specific parameters based on strand specificities 340 
identified above. Samples with small library size (< 1,000,000 reads) and from Mtb strains other than 341 
H37Rv were excluded. 962 samples from 58 BioProjects were eventually included for further analysis. 342 
RNA-Seq data of Msm (mc2155) and Mab were collected and processed with the same pipeline used 343 
for Mtb. Msm data were mapped to the mc2155 reference genome (ASM1334914v1) and Mab data 344 
were mapped to ASM402801v1. Included were 293 Msm samples from 36 BioProjects and 146 Mab 345 
samples from 9 BioProjects. 346 

Quantification of transcriptional expression 347 

Before library normalization, we removed small genes (<=150bp), non-coding transcripts (tRNA, 348 
rRNA, and annotated non-coding RNAs in the Mtb genome) as well as non-expressing genes (read 349 
counts in all samples were zero). Read counts from each BioProject were subsequently normalized to 350 
account for variations in library size using Trimmed Mean of M-values (TMM) factor43, and the TMM 351 
normalized RPKMs were calculated using the edgeR package (version 3.30.3)44. Next, log2 (RPKM+1) 352 
were calculated and defined as transcriptional expression levels. The Shannon index (SI) was 353 
calculated for each gene using the diversity function from R package vegan (version 2.5-7). We then 354 
excluded samples from all three mycobacteria with a high proportion of zero-expressing genes (> 4% 355 
of total genes), and also excluded genes with low SI (SI < 6.5 in Mtb, < 4 in Msm and Mab) and genes 356 
that are not expressed in more than 1% of total samples. Downstream analyses thus included curated 357 
transcriptomic profiles of 894 samples and 3,891 genes from Mtb, 192 samples and 6,629 genes from 358 
Msm, 106 samples and 4,917 genes from Mab (Table S1).  359 

Stress conditions of RNA-Seq samples 360 

To investigate the diversity of selected samples, we generalized the conditions of 894 samples based 361 
on the description in each BioProject and the related research articles. We further divided these 362 
conditions into 6 groups to summarize the sample conditions (Fig. 1a, Table S1); group “Antibiotic” 363 
referred to samples treated with antibiotics and other antimicrobial compounds; group “Respiration” 364 
referred to hypoxia, reaeration, peroxide stress and nitric oxide stress; group “Genetic manipulation” 365 
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referred to knockdown, knockout, complementation and over-expression of a gene; group “Nutrient” 366 
referred to alterations in carbon sources or other nutrient conditions; group “Infection” referred to 367 
samples isolated from ex vivo or in vivo infection models; group “Control” referred to the untreated 368 
control samples of each study. tSNE is archived using R package 'Rtsne' with following parameters: 369 
dims = 2, PCA = True, max_iter = 100, theta = 0.4, perplexity = 20, verbose = False. 370 

Estimation of transcriptional plasticity (TP) 371 

MinMax was calculated by subtracting the minimum log2 (RPKM+1) from the maximum log2 372 
(RPKM+1) for each gene. IQR was calculated by subtracting the 25th percentile of log2 (RPKM+1) 373 
from the 75th percentile of log2 (RPKM+1) for each gene. Considering the underlying association 374 
between the variance and the mean of a gene’s expressions29,45,46, the initial standard deviation (SD) 375 
measures were calibrated by an estimated global trend between the SD and the mean log2 (RPKM+1). 376 
This global trend was estimated using a local polynomial regression model (LOESS or Locally 377 
Estimated Scatterplot Smoothing) with a large sampling window with the R package stats (version 378 
4.0.2; span = 0.7, degree = 1). A gene’s adjusted SD is defined as the sum of this gene’s corresponding 379 
SD residual of the LOESS fit and the global average of the LOESS fitted SD measures.  380 

Evaluation of the robustness of expression variation metrics 381 

To evaluate the robustness of the three expression variation metrics, MinMax, IQR and adjusted SD, 382 
we performed a bootstrapping analysis. Specifically, a subset of N (N=10, 20, 30, 50, 100, 200, 300, 383 
500, or 800) samples were randomly drawn from dataset, and a Pearson’s correlation coefficient (r) 384 
was calculated for each metric (MinMax, IQR, or SD) by comparing the randomly sampled output and 385 
the corresponding metrics measured using the full dataset. This process was repeated for 100 times for 386 
each N and the means and the standard deviations of the coefficients (r) were depicted in Fig. 1d and 387 
Fig. S7a.   388 

Enrichment analysis of high-TP genes 389 

To identify high-TP genes, a density curve of adjusted SD was determined with a Gaussian kernel 390 
density function using the R package stats (version 4.0.2), and the high-TP subgroup consisted of 391 
genes whose TP measures were higher than the upper threshold defined by a probability cutoff of 0.05 392 
based on the probabilistic density estimation of adjusted SD. Gene essentiality and vulnerability 393 
indices were referenced from a recently established work that leveraged genome-wide CRISPR 394 
interference (CRISPRi) and deep sequencing to render a comprehensive quantification the effect of 395 
differential transcriptional repression on cellular fitness for nearly all Mtb and Msm genes21. 396 
Enrichment analysis of high-TP genes was performed using the DAVID (https://david.ncifcrf.gov) 397 
online server, and enrichment results with FDR (false discovery rate) < 0.1 were considered 398 
significant. 399 

Mycobacteria core genome  400 

Homologous genes of mycobacteria including Mtb, Msm and Mab were identified by J. A. Judd et al47. 401 
Homologous genes existed in all three mycobacteria were identified as core genes (Fig 2c). 402 

Collection of gene features 403 

Gene length. To identify significant gene features that potentially contribute to TP, we first collected 404 
genome annotations of Mtb genes from NCBI Genome Database (ASM19595v2). Gene length was 405 
identified by the difference between start position and end position for each gene, and then divided by 406 
average length of all genes to calculate normalized length for each gene.  407 

Codon usage. codon usage features, including codon adaptation index (CAI), codon bias index (CBI), 408 
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frequency of optimal codons (Fop), effective number of codons (Nc), A/T/C/G/GC of silent 3rd codon 409 
position (A3s/T3s/C3s/G3s/GC3s), hydrophobicity (Gravy) and aromaticity (Aromo) of a protein 410 
were calculated based on gene sequences of Mtb H37Rv (ASM19595v2) by using CodonW 411 
(http://codonw.sourceforge.net/).  412 

Base and amino acid composition. Based on the reference sequence of a gene, we further identified 413 
the percentage of each base type as well as percentages of GC content (GC%) and pyrimidine content 414 
(CT%) by calculating the number of each base in a gene divided by the gene length. Similarly, we 415 
calculated the percentage of each of the 20 amino acids found in the protein products of the 3,891 416 
genes.  417 

Start and stop codon. According to the reference genome sequence, we identified the first and the last 418 
three base of coding sequence (CDS) for each gene, referring to the start codon and the stop codon, 419 
respectively.  420 

Direction of replication and transcription. To study the impact of conflict between replication and 421 
transcription on TP, we identified whether DNA replication and RNA transcription were in the same 422 
or opposite directions for each gene based on the strand and genome location relative to the dif site 423 
(2,232,640 bp) of the gene. The site of chromosomal segregation (dif) was identified by Cascioferro et 424 
al48. To be more specific, genes located on the positive strand and before the dif site (clockwise), or 425 
genes on the negative strand and after the dif site would have the same direction of replication and 426 
transcription, and vice versa.  427 

Transcription factors. Considering the direct influences of transcription factors (TFs) on 428 
transcriptional expression, we collected the data of interactions between TFs and their targets from 429 
MTB Network Portal (http://networks.systemsbiology.net/Mtb). The data contained the interaction of 430 
4,635 TF-target pairs with evidence of ChIP-seq experiments49 and transcriptional profiling50, 431 
including 136 TFs and 2,111 target genes. TF-target pairs were marked with 1 or -1, representing the 432 
TF was an activator or a repressor, respectively. We then counted the number of activators and 433 
repressors for each target gene based on the TF-target pairs. The number of target genes for each TF 434 
was also counted. In addition, interactions between TFs and their targets identified by ChIP-seq were 435 
also selected, including the number of targets located at intergenic and intragenic regions for each TF. 436 

Selective pressure. Natural selective pressures (indicated as dN/dS ratio) on Mtb genes were estimated 437 
by GenomegaMap, a phylogeny-free statistical approach performed on 10,209 Mtb genomes to 438 
estimate substitution parameters22, including the mean values and 95% CIs (Q2.5 and Q97.5) of dN/dS 439 
ratio, transition:transversion ratio, and substitution rate. The mean probability of an dN/dS ratio higher 440 
than 1 (Pr(dN/dS > 1)) and number of sites with Pr(dN/dS) > 1 for each gene were also included. 441 

Transcription start sites. Features associated with a gene’s transcription start site (TSS) included 442 
upstream TSS subtype (leadered or leaderless), total number of proximal TSS associated with this 443 
gene, maximum/minimum TSS coverage, and the corresponding base at the +1 position of each TSS. 444 
TSS annotations were adopted from a previous work by Shell and others51.  445 

Operon. Operons in Mtb were predicted by Roback et al52. We calculated the total number of genes of 446 
each operon as well as the position in the operon which was defined as the order of a gene in its 447 
operon. Operon length was defined as the sum of the lengths of all genes in the operon. 448 

Regulon. Regulons of Mtb were identified by Yoo, R. et al.53. Regulons with less than three genes and 449 
annotated as "Unknown function", "KO", "Single gene" and "Uncharacterized" were removed in Fig 450 
5b. To identify whether the TPs of the genes in a regulon were significantly higher or lower than the 451 
total TPs of the genes in genome, we performed Gene Set Enrichment Analysis (GSEA) with the R 452 
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package clusterProfiler (version 3.16.1) to calculate normalized enrichment score (NES) and adjusted 453 
the p value for each regulon. NES represents the overall level of TP amplitude of a regulon, whereby 454 
higher positive NES values mean higher overall TP and lower negative NES values mean lower 455 
overall TP. 456 

Other mycobacteria. Gene length and GC% of Msm and Mab were collected from mc2155 and ATCC 457 
19977 genome annotation files derived from Mycobrowser (https://mycobrowser.epfl.ch).  458 

Machine learning model 459 

To assess the importance of different gene features in determining the TP, we leveraged the recently 460 
advanced LightGBM, a decision-tree ensemble model, to perform a multiparametric regression 461 
analysis of the 3,891 genes and the corresponding 78 features54. This was achieved using the 462 
Python-compiled lightgbm package (version 3.3.2) with the following parameters: 463 
objective='regression', num_leaves=31, learning_rate=0.05, n_estimators=100, with the remaining 464 
parameters set to default. 3,891 genes were randomly divided into test and training sets in a ratio of 465 
4:6 using “train_test_split” function from sklearn. Then, the LightGBM regression model was trained 466 
by training sets with the same parameters mentioned above. To evaluate the performance and 467 
robustness of the trained model, the genes were randomly split into test and training groups 100 times, 468 
and importance of each feature and performance (R2) accuracy of the predicted TP with the TP in the 469 
test sets were calculated for each time, as shown in Fig. 3c and Fig. S3a, respectively. 470 

LightGBM model predicted 4 robust features, which were operon size, gene length, activating 471 
regulator number and GC content, and we performed a support vector machines (SVM) model to 472 
assess the predictive power of these 4 features. This was archived using the R package 'e1071' with 473 
the following parameters: types = 'eps-regression', kernel = 'radial', degree = 3, cost = 1, gamma = 474 
0.25, coef0 = 0, epsilon = 0.1. Genes missing any feature value were removed so that a total of 2,016 475 
genes were included in the analysis. Performance of this SVM model is shown in Fig. 3d. The 476 
Shapley additive explanations (SHAP) method was then applied to calculate the contribution of each 477 
feature to TP values predicted by SVM model55. We performed SHAP analysis using R package 478 
'iBreakDown' (version 2.0.1), and the contribution value of each feature to the predicted TP of each 479 
gene was determined. As the contribution value can be positive or negative, representing the portion 480 
of the feature making the predicted TP value of a gene higher or lower than the average predicted TP 481 
value of all 2,016 genes, respectively, the absolute contribution value was taken (Fig. S3b). 482 

To test whether there were co-variants among the 4 features (Fig. 3c) found to affect TP, pairwise 483 
Spearman's correlation coefficients were calculated using the R package stats (Fig. S3c). 484 

Statistical analysis 485 

Pearson’s correlation coefficients and the corresponding p values (Fig. 3d, Fig. 6a-b, Fig. S1c, Fig. 486 
S4f, Fig. S7c) were calculated using the R package stats; Spearman's correlation coefficients (Fig. 2f, 487 
Fig. 4a, Fig. 4c, Fig. 5d-e, Fig. 6f, Fig. S4a, Fig. S5, Fig. S6) were calculated using the R package 488 
stats. The non-parametric Wilcoxon test was used to make un-paired comparisons and to render the p 489 
values depicted in Fig. 2c-d, Fig. 4d-f, Fig. 5a, Fig. 6c, Fig. S4d-e. 490 

Data availability 491 

No primary data has been generated in this study. RNA-Seq data sources are listed in Supplementary 492 
Table 1. The conditions of 894 samples are annotated in Supplementary Table 1. The integrated 493 
transcriptional profile containing 3,891 genes and 894 samples is available in Supplementary Table 2. 494 
Collected genetic features are listed in Supplementary Table 3. TP data of Msm and Mab are available 495 
in Supplementary Table 5. Benchmark of DEGs based on TP data of Mtb are shown in Supplementary 496 
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Table 6. 497 

Code availability 498 

Code for data analysis in this study is available from the following GitHub repository, 499 
https://github.com/ChengBEI-FDU/Transcriptional_Plasticity 500 
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Fig. 1 Genome-wide estimation of Mtb transcriptional plasticity (TP). (a) A diagram illustrating the composition of the 894 samples from 73
different conditions. Detailed information about the samples can be found in Table S1. (b) Visualization of the 894 samples using t-distributed
stochastic neighbor embedding (tSNE) grouped according to different experimental condition categories. (c) Primary expression statistics of Mtb
genes across the 894 samples. Genes are horizontally ranked by the MinMax metric. The five line-plots represent the maximum (Max), 75
percentile (Q75), median, 25 percentile (Q25) and minimum (Min) expression levels which are centered by subtracting the median expression level
of each gene. Expression statistics for three representative genes, hspX, rpoB and lpqM, are highlighted. (d) Comparing adj-SD, IQR, and MinMax
metrics in describing TP of Mtb genes using a subsampling and bootstrap analysis (see Materials and Methods). Statistical significance between
correlation coefficients of adj-SD and IQR was estimated by Wilcoxon tests. ns represents nonsignificant, * p value 0.01 ~ 0.05, ** p value 0.001 ~
0.01, *** p value 0.0001 ~ 0.001, and **** p value < 0.0001. (e) Genome-wide TP profiles (adj-SD) of the 3,891 Mtb genes. The positively skewed
genome-wide TP distribution is illustrated in the right panel.
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exhibit lower TPs than other genes of the variable genome. Error bars represent mean ± SD of TPs. Statistical significance was
assessed by the Wilcoxon test, **** p value < 0.0001. (d) TP comparison between essential genes, non-essential genes and genes
whose disruption confer growth advantage under axenic culture conditions. Statistical significance was assessed by the Wilcoxon test,
error bars represent mean ± SD of TPs, ** p value 0.0001 ~ 0.01, **** p value < 0.0001. (e) Mtb Genes vulnerable to transcriptional
perturbation exhibit low TPs. The horizonal black dashed line represents the maximum TP value of essential genes, and the vertical
line shows the 5th vulnerability index of non-essential genes. The counts of essential and non-essential genes in each quadrant are
displayed in green and yellow, respectively. (f) TP positively correlates with genes’ substitution rate, as simulated by genomegaMap
(Wilson, 2020). Mean value and 95% credibility intervals of substitution rates are presented in colored points. Colored Lines depict the
linear fit between TP and substitution rate. R and p represent Spearman’s correlation coefficient and the associated p values,
respectively.
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a

Fig. 3 Identification of genetic features underlying TP. (a) A table summary of the 78 candidate genetic features. N
denotes the number of features in each category. (b) Schematic diagram illustrating our machine-learning workflow. (c)
The top 15 genetic features ranked by their average feature importance in predicting TP. Lower ranks signify higher
feature importance for TP prediction, whereas a tight rank distribution indicates higher consistency in predictions across
randomized sample splits and modeling iterations. The four genetic features consistently rank low across random repeats
are highlighted in green. Error bars represent the median ± 1.5*IQR of feature importance ranks across experiments. (d)
An SVM model constructed using only the top 4 features effectively predicts TP. The green line represents the linear fit
between SVM-modeled and observed TPs.
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Evolution 11 Ratio of non-synonymous to synonymous substitutions (dN/dS, ω); Ratio of transition to transversion (Ts/Tv, κ); Substitution rate (θ)
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Fig. 4 Impact of key genetic features on TP. (a) A negative correlation exists between gene length and TP,
illustrated by the 2D density contour plot of genes by TP and gene length. The red line depicts the linear fit. (b)
Deviation in GC% from the genome-wide average GC% (65.6%, black dashed line) is positively linked with TP,
depicted by the LOESS trendline and the 2D density contours. This trend is signified by the strong positive
association between average TP and standard deviation (SD) of GC% of genes belonging to the 50 TP quantiles, as
illustrated in (c). (d) Genes in polygenic operons exhibit significantly higher TPs than those in monogenic operons.
Wilcoxon tests, **** indicates p value < 0.0001. (e-f) TP increases as genes are regulated by more regulators.
Boxplots demonstrate a monotonic relationship between TP and the number of activators. (e). Genes targeted by
only one repressor display the lowest TPs. Error bars represent mean ± SD of TPs. Statistical significance was
assessed by Wilcoxon tests, * p value 0.0001 ~ 0.05, **** p value < 0.0001. (g) A schematic illustrating the
relationships between the four genetic features and TP.
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Fig. 5 The impact of primary sequence features on TP is partially independent of transcription regulation. (a) Mtb regulons
display varying degrees of transcriptional plasticity. Error bars denote median ± 1.5*IQR of TPs, and the red dashed line represents
the median TP of all 3,891 genes. The bubble plot to the right summarizes the statistical significance (adjusted p-value) and
normalized enrichment score (NES) of each regulon by single-sample Gene Set Enrichment Analysis (ssGSEA). A higher NES
indicates that the operon is enriched for genes with higher TPs. Bubble size corresponds to the number of genes in each regulon. (b)
Expression profiles of DosR regulon genes ranked by TP. The color gradient represents the Z-score normalized log-RPKM. (c)
Variations in TP within the DosR regulon, exemplified by comparing expression profiles of two high-TP genes (hspX and Rv1738) with
two low-TP genes (dosT and pncB2). (d) Deviation in GC% from the genome average partially explains TP variations of genes of the
same regulon. Linear fits and Spearman’s correlation coefficients are shown for two representative regulons, WhiB4 and Rv1828/SigH.
(e) TPs of co-regulated genes negatively correlate with their gene lengths. Spearman’s correction coefficient and the corresponding p
values are provided. The associations between primary genetic features and TP for genes in additional regulons are illustrated in Fig.
S5.
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fig. 6

Fig. 6 TP and its underlying genetic determinants are conserved in other Mycobacterium species. (a-b).
The TP profiles of M. smegmatis (Msm) and M. abscessus (Mab) genes resemble those of the Mtb homologs.
The 2D density contour plots illustrate the distribution of gene orthologs according to their TPs in
corresponding Mycobacterium species. Red lines denote the linear fits. © Non-essential Msm genes have
higher TPs than their essential Msm counterparts. Error bars represent mean ± SD of TPs. Statistical
significance was measured by Wilcoxon tests, **** p value < 0.0001. (d) Msm genes vulnerable to
transcriptional perturbation exhibit low TPs. The grey circle highlights the lack of genes with both high TP and
high vulnerabilit©(e) Gene length is negatively associated with TP in Msm (orange) and Mab (blue). The 2D
density contour plots illustrate the distribution of genes based on TP and gene length. (f). A linear correlation is
observed between TPs and gene lengths for genes shorter than 600 bp. (g-h) Genes with GC% close to the
genome-wide average (67.4% in Msm and 64.1% in Mab, annotated by black dashed lines) display lower TP in
both Msm (g) and Mab (h). The 2D density contour plots depict the distribution of genes by their TPs and GC%.
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