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11  Abstract
12 Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing
13 environments, yet the concept of transcriptional plasticity (TP) remains largely unexplored. In this
14  sudy, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by
15 analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data
16 reved that Mtb genes exhibit significant TP variation that correlates with gene function and gene
17  essentiality. We also found that critical genetic features, such as gene length, GC content, and operon
18  size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to
19  include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demondrate a
20  driking conservation of the TP landscape. This study provides a comprehensive understanding of the
21 TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic
22  feature encoded in bacterial genomes.
23 Introduction
24 Cells must swiftly modulate the expression of their genes to cope with abrupt changes in external
25  environment. Transcriptional plasticity (TP)* —the ability to alter the expression of a gene in response
26  to different types of environmental stress — is pivotal to cellular adaptation and subject to natural
27  selection®®. In practice, TP can be estimated by quantifying the change in the level of expression
28  across multiple conditions. For instance, Urchueguia et al. used a library of E. coli strains containing
29  promoter-GFP (Green Fluorescence Protein) fusions to measure changes in fluorescence levels across
30 different conditions, thereby quantifying expression plasticity. Similarly, Lehner et al. used the
31 normalized sum of squares of log2- expression changes to infer gene-level transcriptional plagticity
32  from a Saccharomyces. cerevisiae microarray dataset®. These studies found that certain genetic traits,
33  such as promoter architecture, nucleosome organization, and histone modification patterns may
34  significantly influence eukaryotic gene transcriptional plasticity®™. While the transcriptional
35 machinery and the nucleoid organization of prokaryotic organisms fundamentally differ from those of
36  eukaryotes''?, a recent investigation into E. coli promoter evolution showed that long-term natural
37  selection favors the retention of high promoter TP despite the presence of segregating mutations?. The
38  strong evolutionary constraint implies that, akin to eukaryotes, there may also be genetic traits in
39 bacteria that determine TP, but the biological principles underlying TP in bacteria have not been
40  adequately studied*®.
41  Exploring the genetic features contributing to TP in bacteria can enhance our understanding how of
42  bacteria adapt to environmental pressures and guide the development of innovative strategies to
43  combat bacterial pathogens. Tuberculosis (TB) remains the leading cause of death due to a single
44 infectious agent™. Throughout the phases of infection, proliferation and transmission, Mycobacterium
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45  tuberculosis (Mth), the causative agent of TB, faces a wide array of environmental challenges. Some
46  of the stresses, such as hypoxia, are characteristic of the microenvironments where the bacilli reside
47  within host, whereas others arise from host immune defenses such as toxic metal ions, nutrient
48  redtriction, acidic pH, and reactive oxygen or nitrogen species, etc. Over the past 75 years, Mtb has
49 dso faced congant pressure from antibiotics. To try undersand how Mtb modulates its gene
50 expression in response to different externa challenges, studies have leveraged RNA sequencing
51 (RNA-Seq) to query Mtb's transcriptomic profiles across a broad panel of environmental conditions.
52  These studies have revealed a complex transcriptional regulation network underlying the ability of
53 Mtb to adapt to stresses. For example, over 50 transcriptional factors (such as dosR and whiB3)
54  respond to hypoxia, allowing Mtb, an obligate aerobe, to survive in settings with oxygen depletion™.
55  As these studies have been conducted under a multitude of experimental conditions, the resultant
56  RNA-Seq datasets provide a comprehensive view of gene expression in Mtb that can be analyzed for
57 insightsinto its transcriptional plasticity.

58  Inthiswork, we systematically examine the TP profiles of Mtb genes by integrating publicly available
59  RNA-Seq datasets. Our analysis uncovers significant variability in TP across genes and identifies
60 overarching principles governing the amplitude of TP. We find a correlation between a gene's
61 biological function and its TP and note that essential genes exhibit significantly lower levels of TP
62  than non-essential genes. We further demonstrate that in addition to transcriptional regulators, genetic
63 features such as operon architecture, gene length, and GC content (GC%) also appear to play
64  substantial and distinct rolesin shaping the TP of Mtb genes. In addition, by extending our study to M.
65 smegmatis and M. abscessus, we show that the same principles appear to govern TP in other
66  Mycobacteria. The findingsin this study enrich our understanding of TP regulation and underscore the
67  shared regulatory mechanisms governing gene expression dynamics.

68 Results
69  Quantifying thetranscriptional plasticity of Mtb genes

70  To explore the transcriptome-wide pattern of gene expression in Mtb, we collected 894 previously
71  published Mtb RNA-Seq datasets that were generated under a wide range of experimental conditions.
72  All of the 894 datasets were obtained by studying the standard laboratory strain Mtb H37Rv, thus
73  interrogating the physiological responses to various challenges in the same genetic background. These
74 studies included antibiotic exposures, varied nutrient sources, host-mimicking conditions, and genetic
75  manipulations such as gene knock-downs or deletions, as well as the corresponding untreated controls
76  (Fig. 1la, see also Methods and Table S1). We reasoned that the wide diversity of these experimental
77  conditions would provide a suitable resource for studying the transcriptional plasticity of Mtb genes
78  (Fig. 1b).

79  We fird employed standardized preprocessing criteria to facilitate analysis of the 894 RNAseq
80  datasets (Methods). In brief, we excluded genes shorter than 150 bp, non-coding transcripts, and genes
81  whose expression was not detected in most samples. We then normalized the expression data for the
82  remaining 3,891 genes using the Trimmed Mean of M-values (TMM) method, a technique designed to
83 account for varying sequencing depth and suppress batch effects (Table S2). For subsequent TP
84  analysis, the expression values were indicated using log2-transformed Reads Per Kilobase Million
85 (RPKM+1).

86  Toedimate variationsin gene expression, we initially calculated the range of expression values, or the
87  MinMax, of the Mtb genes across the 894 samples. We noticed that the MinMax of Mtb genes varied
88 from2.8to 18.1 (Fig. S1a), suggesting that the amplitude of the changes in the level of expression for
89  certain Mtb genes could exceed the range of expression of other genes by afactor of more than 40,000.
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90 We then examined gene expression at different percentiles of expression, including the most highly
91 expressed 100th percentile (Max), the 75th (Q75), 50th (Median), 25th (Q25), and 1st (Min)
92  percentiles - and observed significant differences in ranges of expression among Mtb genes (Fig. 1c).
93  For instance, hspX - encoding a hypoxiainduced small heat shock protein'®- displayed a markedly
94  broader range of expression compared to rpoB, which encodes the § subunit of the RNA polymerase
95 core enzyme. Conversely, the expression level of the lipoprotein peptidase gene, 1pgM, remained
96 relatively constant across all conditions (Fig. 1c).

97 We further characterized variations in expression with two additional metrics: the

98 Inter-Quantile-Range (IQR) and the mean-adjusted Standard Deviation (adj-SD) of the expression

99  values (Fig. S1b, Methods). As expected, we found a high degree of correlation between MinMax,
100 IQR, and adj-SD (Fig. Slc), indicating that these measures all represent variability of gene expression.
101  To evaluate the robustness of these metrics, we performed a bootstrap analysis by comparing random
102  subsamples with the complete dataset (Methods). This analysis indicated that while both IQR and
103  adj-SD were more resilient to reductions in sample size than MinMax (Fig. 1d), adj-SD demonstrated
104 adight, but statistically significant advantage over IQR (Fig. 1d). Therefore, adj-SD was used to
105 estimate TP in the subsequent analyses.

106 TP varieswith genefunction and gene essentiality

107  The calculated TPs for 3,891 Mtb genes displayed a predominantly normal distribution with a long
108 tail representing genes with high TPs (Fig. 1€). Using a bootstrap approach similar to that described in
109  Fig. 1d, we found that the 195 high-TP genes in the top 5% percentile demonstrated consistently high
110 TP even when the sample size was reduced to just 10 genes (Fig. S1d, €). This pattern suggests that
111  the skewed distribution wasn't caused by “outlier” values, but instead reflects a subset of genes with a
112 wider range of expression levels. We then investigated the biological functions of the high-TP genes
113  and found that the 195 high-TP genes (Fig. S2) were significantly enriched for genes involved in
114 responding to stress, including hypoxia, host immune mechanisms, copper ions, etc., as per the
115 DAVID database™ (Fig. 2a). When we grouped Mtb genes based on previously established functional
116  categories and compared their TP profiles'®™®, we found that genes involved in biomass production,
117  cell wall biosynthesis, cellular metabolism, and respiration were primarily associated with the lowest
118  TPs (Fig. 2b). This association is underscored by our observation that core genes conserved across
119  mycobacteria species exhibited significantly lower TPs compared to the other genes in the genome
120 (Fig. 2c).

121 The above findings suggested that those genes crucial for basic cellular activities exhibit more tightly
122  regulated expression. To test this, we compared the TP digtribution for genes previously annotated as
123 essential with those annotated as not essential®, and found that essential genes displayed significantly
124 lower TPs than non-essential genes (Fig. 2d). We also noticed that those genes whose disruption by
125  transposon insertion conferred a growth advantage exhibited significantly higher TPs than both
126  essential and other non-essential genes (Fig. 2d). Recent studies have proposed gene vulnerability —
127  the organism’s susceptibility to perturbations in the transcription of the gene (e.g., by CRISPRI) —asa
128  quantitative, orthogonal proxy to gene essentiality”. Consistent with the analysis by annotated
129  essentiality, we found that genes identified as vulnerable also tended to exhibit lower TPs (Fig. 2e),
130 and none of the highly vulnerable genes exhibited high TP (Fig. 2€). We hypothesized that high-TP
131  genes may promote phenotypic diversification that confers a selective advantage in the ability of Mtb
132  to survive in fluctuating environments, and therefore these genes might accumulate mutations more
133 rapidly than the rest of the genome. To test this hypothesis, we utilized a recently established set of
134  evolutionary metrics for Mtb genes, drawn from 10,209 Mtb genomes”. Consistent with our
135 hypothesis, we found that high-TP genes exhibited higher base substitution rates than low-TP genes
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136  (Fig. 2f). Overall, our analysis suggests that for those genes involved in essential cellular processes,
137  dable levels of expression are advantageous to the bacteria. In contrast, for genes that provide a
138  growth advantage in certain conditions, but are dispensable or even detrimental in others, a“plastic”,
139  inducible transcriptional program appears to be beneficial.

140  Genetic features underlying transcriptional plasticity

141  Toidentify the genetic factors influencing TPs of Mtb genes, we compiled a comprehensive list of 78
142  genetic features including sequence composition, transcriptional regulation and evolutionary
143  parameters (Fig. 3a, Table S3, Methods). We then employed a decision-tree-based regression analysis
144  to model the Mtb TP landscape with these 78 features (Fig. 3b). The regression model was trained on
145 arandomly selected subset of 60% (2,335/3,891) of the total Mtb genes, and then used to predict the
146  TPs of the remaining 40% (1,556/3,891) of Mtb genes. We iterated this process 100 times, with the
147  derived models yielding an average R? value of 0.16 (Fig. S3a). For each model, the features were
148  ranked by importance based on the contribution of each feature to the predictive power of the model.
149  We then aggregated these feature ranks across all iterations to provide an average measure of each
150 feature's contribution to TP prediction.

151  Our analysis highlighted four features — operon length, gene length, number of activating regulators,
152 and GC percentage (GC%) — that consistently demonstrated high predictive importance across
153 iterations (Fig. 3c). A support vector machine (SVM) mode trained solely with these four features
154  was able to predict a gene’s TP (R°=0.17) with an accuracy similar to that of a model trained with all
155 78 features (Fig. 3d). The feature contributing most to the predictive power of the SYM model was
156  operon size, followed by gene length, number of activating regulators and GC% (Fig. S3b), consistent
157  with the results of the decision-tree-based regression analysis (Fig. 3c). However, there was no
158  correlation between the top features (r<0.21, Fig. S3c), indicating that these features play independent
159 rolesin shaping transcriptional plasticity.

160 Theroleof genetic featuresin affecting transcriptional plasticity

161  We then sought to understand how these feature influence TP. We first examined the role of gene
162 length and found a negative correlation between gene length and TP, with longer genes tending to
163  exhibit lower TPs than shorter genes (Fig. 4a). Contrary to gene length, however, the correlation
164  between TP and GC content (GC%) was not monotonic. We found that genes with a GC%
165 substantialy different from the average for the Mtb genome (65.6%) generally had higher TPs (Fig.
166  4b, Fig. S4a). To confirm this observation, we binned Mtb genes according to their TPs and calculated
167  the standard deviation (SD) for the median GC% of the genes in each bin. We observed an apparent
168 linear correlation between the SD of the median GC% and the ranks of TP bins, such that the bins
169  with higher TPs had larger SDsfor GC%. This corroborated the hypothesis that the TP increases with
170  greater GC% deviation from the genome average (Fig. 4c). Notably, both essential and non-essential
171  genes whose GC% approximated the genome-average GC% exhibited lower TPs (Fig. $4b-c),
172  implying that the association between GC% and TP was not confounded by gene essentiality.

173  Next, we evaluated the effect of operon size on TP. We found that genes located in polygenic operons,
174  containing two or more genes, had significantly higher TPs than genes located in monogenic operons,
175  consisting of only one gene (Fig. 4d). Furthermore, we also observed that the TPs of genes within the
176  same operon were highly correlated (Fig. SAd). Despite the confounding TP differences between
177  essential and non-essential genes, both exhibited higher TPs in polygenic operons (Fig. S4e-f). A
178  recent study reported that Mtb undergoes frequent premature transcription termination®®, and we
179  observed a decreased mean expression for downstream genes in an operon (Fig. $4g), but there was
180 no similar trend for TP (Fig. $4h). Together, these analyses suggested that it is the size of the operon,
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181 rather than the position of the genes within the operon, that influences TR,

182  While gene length, GC%, and operon size are features related to the primary sequence of the gene, the
183  number of activating regulators is a feature that pertains to process of transcriptional regulation. We
184  found that the TP of a gene tended to be higher when its expression was modulated by a higher
185 number of predicted transcriptional activators (Fig. 4€). We also observed a similar trend for
186  transcriptional repressors, whereby genes with more predicted repressors tended to have higher TPs,
187  dthough the TP dropped slightly in genes predicted to have only one repressor (Fig. 4f). Taken
188  together, our analysis shows that not only the basic genetic composition of genes but also the complex
189  network of transcriptional regulation can significantly influence the TP landscape of the Mtb genome
190 (Fig. 4q9).

191  Genetic features can explain TP variation in genes belonging to the sameregulon

192  Because the different genes within a regulon are co-regulated, we speculated that they could also have
193  similar TPs. We investigated 36 well-annotated gene regulons (Methods, Table S4) and found that the
194 TP varied greatly between different regulons (Fig. 538). For instance, the regulons Mce3R, KstR2,
195 BkaR and FasR, which are thought to be involved in lipid metabolism, had the lowest TPs (Fig.
196  5a)**%'. By contragt, the hypoxia- and redox-sensing DosR regulon and metal related regulons such as
197  Zur, RicR, M-box and IdeR, demonstrated high TPs (Fig. 5a). However, while the genes within the
198  same regulon displayed similar expression patterns, coordinately regulated up or down, they differed
199  significantly in the magnitude of their changes in expression, resulting in diverse TPs. For example,
200 the TPs of the genes belonging to the DosR regulon varied substantially, with dosT exhibiting the
201 lowest (0.74) and hspX exhibiting the greatest change in level of expression (3.98) (Fig. 5b-c), and
202  similar TP variations were seen amongst the genes belonging to other regulons (Fig. 5a). Because the
203  expression of genes within a regulon generally showed the same direction of change in response to
204  stress, we speculated that the TP differences amongst the regulon’s genes might derive from
205  differences in the genetic features of the individual genes. Indeed, we found the two primary genetic
206  features - gene length and GC% - could explain the TP variations of co-regulated genes in most
207  regulons (Fig. S5-6). To show this, we selected five regulons that comprised of more than 20 genes
208  each (whiB1, whiB4, sigD, zur and Rv1828/sgH) and demongtrated that shorter genes with a GC%
209  deviating from the genomic average generaly displayed higher TP than other co-regulated genes (Fig.
210  5d-€). These results highlight the ability of genetic features to affect the TP, independent of other
211  transcriptional regulatory processes.

212  Thetranscriptional plasticity landscape is conserved across Mycobacterium species

213  The analyses above revealed that, in Mtb, a gene's TP is linked to its function, essentiality, and its
214  evolutionary and genetic features, all of which are likely to be conserved in closely related
215 homologous genes from other mycobacterial species. To demonstrate this, we curated published
216  RNA-Seq datasets from 192 samples of M. smegmatis (Msm) and 106 samples of M. abscessus (Mab),
217  and used adj-SD to estimate their genome-wide TP (Fig. S7a, Table S5). We found that all three
218  species displayed long-tailed distributions a high TP values (Fig. 1e, Fig. S7b), and homologous
219  genes in Mtb, Msm, and Mab showed similar amplitudes of TP (Fig. 6a-b, Fig. S7c). Moreover, as
220 observed in Mtb, the essential/vulnerable genes in Msm exhibited lower TPs than non-essential or
221  less-vulnerable genes (Fig. 6¢-d). Also as seen in Mtb, the genes in Msm and Mab with higher TP
222  values tended to be shorter in length and have GC% more deviated from the average (Fig. 6e-h). It is
223 intriguing that the high-TP genes across al three species were enriched in iron-related functions (Fig.
224 S7d, Fig. 33). These findings suggest that despite the differences in natural lifestyles, the evolutionary
225  principles underlying TP are likely conserved across mycobacterial species.
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226  Discussion

227  In this work, we assessed the TP of Mtb genes by utilizing 894 RNA-Seq datasets that were
228  previoudy collected when the bacteria were exposed to various environmental conditions. Our
229  analyses reveded that TP varies significantly among Mtb genes in a manner that is associated their
230  biological functions and subjected to natural selection. We identified primary genetic features that
231  contribute to TP values, including gene length, GC%, operon size and transcriptional regulatory
232  factors. Finaly, we extended these findings to Msm and Mab, demonstrating that TP, and the factors
233  that influenceit, are likely to be biological featuresthat are conserved across mycobacterial species.

234  Gene vulnerability reflects the quantitative association between changes in bacterial fithess and the
235  degree of CRISPR-i mediated inhibition of a gene’s transcription®. Perturbing the expression of
236  highly vulnerable genes can be deleterious, whereas the same level of expression inhibition of
237  invulnerable genes can be tolerated®. Initially, we anticipated a linear-like relationship between TP
238  and vulnerability, whereby more vulnerable genes would exhibit lower TPs. Although we observed a
239  positive association between vulnerability and TP, this relationship could not be explained by a simple
240  or log-linear model. Instead, we observed an intriguing pattern between vulnerability and TP that
241  presented as a reversed "L"-shape, with the elbow point representing genes that were insensitive to
242  transcription inhibition and invariant in expression. This observation could be due to several reasons.
243  Fird, the effects on the bacteria caused by gene's transcriptional activation or transcriptional
244  repression are not necessarily symmetrical. For instance, for some house-keeping genes,
245  overexpression is better tolerated by the bacteria than repressed expression, whereas for protein toxins
246  the outcomes would be the opposite”®. Because TP considers both up and down-regulation of gene
247  expression, it reflects gene-specific constraints on both transcriptional activation and repression,
248  whereas studies of gene vulnerability and essentiality only consider transcriptional repression. Second,
249  vulnerability is not a constant gene feature but rather is expected to vary depending on the specific
250 environmental conditions. Therefore, we speculate that vulnerability estimated from different
251  conditions could have a stronger correlation with TR Finaly, although essential genes showed
252  significantly lower TP than non-essential genes, the TP variation in essential genes is overall quite
253 close to that of non-essential genes. This suggests that bacteria may have the flexibility to alter the
254 level of expression of essential genes as required for survival in changing environments (Fig. 2€).

255 It is noteworthy that genetic features play a more significant role than transcriptional regulation in
256  determining TP, even though the mechanisms underlying this observation are not yet fully understood.
257  For example, we found that shorter genes had higher TPs, a pattern that has been also observed in
258  eukaryotes such as Drosophila and Arabidopsis thaliana®*°. The length of gene appears to be
259  evolutionarily shaped to accommodate its functionality, with housekeeping genes tending to be longer
260  while stress-responsive genes tend to be shorter®*, We speculate that stress-responsive genes require
261  efficient and diverse expression patterns to cope with fluctuating environments while conserving
262 energy. A reduction in gene size may represent an adaptive strategy to achieve this efficiency,
263  alowing for more efficient regulation of the expression of these genes in response to stress. However,
264  further research is needed to test this hypothesis and fully understand the evolutionary relationship of
265  genesize with stressresponse.

266  There was a significant association between gene expression patterns and GC content, indicating that
267  GC content could be an important regulatory factor®. It was previously observed that AU-rich and
268  GC-rich transcripts follow distinct decay pathways, with a linear relationship between higher GC
269  content and greater RNA stability®. In our study, however, we found a "V" shaped relationship,
270  whereby genes with low TP were clustered around a GC content of 65.6%, which isthe average GC%
271  of the Mtb genome. This finding contradicted our initial assumption that higher GC content would be
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272  associated with lower TP The genes with extremely high-GC content (>75%) may result from
273 recent horizontal gene transfer from other bacteria®®’, and therefore one possible explanation is that
274  the TP of these recently acquired genes has not yet been optimized to align with the local
275  transcriptional network, resulting in noisy expression of these genes. Moreover, high GC content may
276  have adetrimental effect on expression stability if it leads to the formation of secondary structures or
277  interferes with the binding of regulatory factors. The clustering of low TP genes at the Mtb average
278  65.6% GC content, suggests that these genes have evolved to be both GC stable and expression stable,
279  thereby representing an optimized state of gene regulation.

280 Though we successfully identified four significant contributing features, the models incorporating
281  these features could not completely predict TP values, suggesting that there are likely other
282  determinants that were not identified (Fig. 3d, S3a), such as the promoter. Recent work in E. coli
283  showed that, for most genes, the range of protein abundance across different environmental conditions
284  isconstrained by the the TFs that regulate promoter activity®®. Another study revealed that promoter
285  characterigtics, such as the length of the transcriptional initiation region and the presence of
286  TATA-boxes, play important roles in determining the range of expression variation in eukaryotic
287  genes”™. Similarly, the positive correlation we found between TP and the number of transcriptional
288  activators demondtrates the influence of promoter characteristics and trans regulatory mechanisms on
289  TPin mycobacteria (Fig. 4€).

290 The inherent differences in the transcriptional plasticity (TP) of genes can be used to normalize
291  expression differences in microbial transcriptional studies. Traditionally, different thresholds have
292  been employed to identify meaningful changesin gene expression. The threshold for identifying genes
293  that respond to particular conditions is often a 2-fold change in the level of expression or occasionally
294  thresholds of 1.5-fold or 4-fold are used, but the genes exhibiting the largest transcriptional changes
295  frequently receive the most attention. However, these thresholds are arbitrary because they don't
296  adjud for the inherent TP of each gene. Asaresult, high-TP genes are more likely to display changes
297  in expression that surpass the threshold, while relatively large changes in the expression in low-TP
298  genes may be overlooked because they don't meet the arbitrary threshold. An dternative method
299  would determine the degree of expression change that should be considered meaningful for each
300 specific gene. To this end, we propose utilizing the expression changes corresponding to the 5th and
301  95th percentiles, based on the studies in our dataset, as a " soft-thresholding” benchmark for screening
302 differentially expressed genes (Table S6). For ingtance, in the case of low-TP genes such as IpgM and
303  ribF, the log2 fold-changes corresponding to the 95th quantile expression levels were 0.54 and 0.57,
304  respectively, times the level of expression in the controls. An analysis using the arbitrary thresholds
305  would miss changes in the expression of these genes that are equivalent to two standard deviations.
306 Criteria based on the inherent TP for each gene could establish a more nuanced analysis for
307 identifying differentially expressed genes. We believe that our integration of RNA-Seq data from 894
308 Mtb samples provides a comprehensive egimation of the transcriptional variations in Mtb genes
309  across various conditions, and therefore the calculated TPs can serve as a reference for evaluating
310 changes in expression. The TMM method employed in our analysis can be used to evaluate of the
311 transcriptional signatures of genes of interest (Table S2). This will foster a deeper understanding of
312  the differential gene expression landscape in Mtb and facilitate the exploration of gene-specific
313  transcriptional patterns.

314  In summary, our study has characterized the landscape of TP in Mtb genes and established a
315 framework for determining TP levels. This work thereby serves as a foundation for future
316 invedigation aimed at understanding the influences that determine a gene’s TP. Additionally, the
317  proposed TP-based benchmark offers valuable guidance for the interpretation of differential


https://doi.org/10.1101/2023.08.20.553992
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.20.553992; this version posted August 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

318  expression changes in transcriptional studies. Moving forward, further research can build upon these
319 findingsto uncover the intricacies of TP and itsimpact on gene expression in Mtb and other microbial
320 systems.
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321 Methods
322  Collection and processing of RNA-Seq data

323  We used the keyword “tuberculosis’ to search for publicly available RNA-Seq data of Mtb released
324  on NCBI Sequence Read Archive (SRA) before January 1, 2022, and obtained a total of 1,084
325  datasets from 64 BioProjects with 47 associated research articles (Table S1). FASTQ files of all 1,084
326  samples were downloaded using Fastg-dump (version 2.8.0). Adaptor trimming and the removal of
327  low quality sequencing reads were conducted using Trimmomatic (version 0.39)* with parameters of
328  “ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
329 MINLEN:36" for paired-end data and “ILLUMINACLIP:TruSeq3-SE:2:30:10 LEADING:3
330 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36" for single-end data. The filtered profiles were
331  then mapped against the H37Rv reference genome (ASM19595v2) using Bowtie2 (version 2.2.9)%,
332  and duplicated reads were removed with SAMtools (version 1.9)*.

333 To identify strand specificity of the RNA-Seq libraries, we measured the Pearson correlation
334  coefficient of total read counts on two strands for each library using SAM files generated by Bowtie2.
335  Libraries with a correlation coefficient lower than or equal to 0 would be considered as strand-specific
336  while a coefficient higher than or equal to 0.6 would be considered as non-strand-specific. For
337 libraries with coefficients between 0 and 0.6, we manually judged their strand specificities based on
338  the description of the experimental design and strand specificities of other samples from the same
339  experiment. Library read counts were then enumerated with htseg-count from the HTSeq framework
340  (version 0.11.3)* using non-strand-specific or strand-specific parameters based on strand specificities
341  identified above. Samples with small library size (< 1,000,000 reads) and from Mtb strains other than
342  H37Rv were excluded. 962 samples from 58 BioProjects were eventually included for further analysis.
343  RNA-Seq data of Msm (mc?155) and Mab were collected and processed with the same pipeline used
344  for Mth. Msm data were mapped to the mc?155 reference genome (ASM1334914v1) and Mab data
345  were mapped to ASM402801v1. Included were 293 Msm samples from 36 BioProjects and 146 Mab
346  samplesfrom 9 BioProjects.

347  Quantification of transcriptional expression

348  Before library normalization, we removed small genes (<=150bp), non-coding transcripts (tRNA,

349  rRNA, and annotated non-coding RNAS in the Mtb genome) as well as non-expressing genes (read

350 countsin all samples were zero). Read counts from each BioProject were subsequently normalized to
351  account for variationsin library size using Trimmed Mean of M-values (TMM) factor*®, and the TMM

352  normalized RPKMs were calculated using the edgeR package (version 3.30.3)*. Next, log, (RPKM+1)
353 were calculated and defined as transcriptional expression levels. The Shannon index (SI) was
354  calculated for each gene using the diversity function from R package vegan (version 2.5-7). We then

355  excluded samples from al three mycobacteria with a high proportion of zero-expressing genes (> 4%
356  of total genes), and also excluded genes with low SI (Sl < 6.5 in Mtb, <4 in Msm and Mab) and genes
357  that are not expressed in more than 1% of total samples. Downstream analyses thus included curated

358  transcriptomic profiles of 894 samples and 3,891 genes from Mtb, 192 samples and 6,629 genes from

359  Msm, 106 samples and 4,917 genesfrom Mab (Table S1).

360  Stressconditions of RNA-Seq samples

361 To invedigate the diversity of selected samples, we generalized the conditions of 894 samples based
362  on the description in each BioProject and the related research articles. We further divided these
363  conditions into 6 groups to summarize the sample conditions (Fig. 1a, Table S1); group “Antibiotic”
364  referred to samples treated with antibiotics and other antimicrobial compounds; group “Respiration”
365 referred to hypoxia, reaeration, peroxide stress and nitric oxide stress; group “ Genetic manipulation”
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366 referred to knockdown, knockout, complementation and over-expression of a gene; group “Nutrient”
367 referred to aterations in carbon sources or other nutrient conditions; group “Infection” referred to
368 samplesisolated from ex vivo or in vivo infection models; group “Control” referred to the untreated
369  control samples of each study. tSNE is archived using R package 'Rtsne’ with following parameters:
370 dims=2, PCA = True, max_iter = 100, theta = 0.4, perplexity = 20, verbose = False.

371  Edimation of transcriptional plagticity (TP)

372  MinMax was calculated by subtracting the minimum log, (RPKM+1) from the maximum log,
373  (RPKM+1) for each gene. IQR was calculated by subtracting the 25" percentile of log, (RPKM+1)
374  from the 75" percentile of log, (RPKM+1) for each gene. Considering the underlying association
375  between the variance and the mean of a gene’s expressions™>*“, the initial standard deviation (SD)
376  measures were calibrated by an estimated global trend between the SD and the mean log, (RPKM+1).
377  This global trend was estimated using a local polynomia regression model (LOESS or Locally
378  Edimated Scatterplot Smoothing) with a large sampling window with the R package stats (version
379  4.0.2; span=0.7, degree = 1). A gene's adjusted SD isdefined as the sum of this gene’s corresponding
380  SDresidual of the LOESS fit and the global average of the LOESS fitted SD measures.

381  Evaluation of the robustness of expression variation metrics

382  To evaluate the robustness of the three expression variation metrics, MinMax, QR and adjusted SD,
383  we performed a bootstrapping analysis. Specifically, a subset of N (N=10, 20, 30, 50, 100, 200, 300,
384 500, or 800) samples were randomly drawn from dataset, and a Pearson’s correlation coefficient (r)
385  was calculated for each metric (MinMax, IQR, or SD) by comparing the randomly sampled output and
386  the corresponding metrics measured using the full dataset. This process was repeated for 100 times for
387 each N and the means and the standard deviations of the coefficients (r) were depicted in Fig. 1d and
388 Fig. S7a

389  Enrichment analysis of high-TP genes

390 To identify high-TP genes, a density curve of adjusted SD was determined with a Gaussian kernel
391  density function using the R package stats (version 4.0.2), and the high-TP subgroup consisted of
392  genes whose TP measures were higher than the upper threshold defined by a probability cutoff of 0.05
393  based on the probabilistic density estimation of adjusted SD. Gene essentiality and vulnerability
394  indices were referenced from a recently established work that leveraged genome-wide CRISPR
395 interference (CRISPRI) and degp sequencing to render a comprehensive quantification the effect of
396 differential transcriptional repression on cellular fitness for nearly all Mtb and Msm genes®.
397  Enrichment analysis of high-TP genes was performed using the DAVID (https.//david.ncifcrf.gov)
398 online server, and enrichment results with FDR (false discovery rate) < 0.1 were considered
399  significant.

400  Mycobacteria core genome

401  Homologous genes of mycobacteria including Mtb, Msm and Mab were identified by J. A. Judd et al*’.
402  Homologous genes existed in all three mycobacteria were identified as core genes (Fig 2c¢).

403  Collection of gene features

404  Gene length. To identify significant gene features that potentially contribute to TP, we first collected
405 genome annotations of Mtb genes from NCBI Genome Database (ASM19595v2). Gene length was
406 identified by the difference between start position and end position for each gene, and then divided by
407  average length of al genesto calculate normalized length for each gene.

408  Codon usage. codon usage features, including codon adaptation index (CAl), codon bias index (CBIl),
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409  frequency of optimal codons (Fop), effective number of codons (Nc), A/T/C/G/GC of silent 3 codon
410 position (A39T35/C39G39GC3s), hydrophobicity (Gravy) and aromaticity (Aromo) of a protein
411  were calculated based on gene sequences of Mtb H37Rv (ASM19595v2) by using CodonW
412  (http://codonw.sourceforge.net/).

413  Base and amino acid composition. Based on the reference sequence of a gene, we further identified
414  the percentage of each base type as well as percentages of GC content (GC%) and pyrimidine content
415  (CT%) by calculating the number of each base in a gene divided by the gene length. Similarly, we
416  calculated the percentage of each of the 20 amino acids found in the protein products of the 3,891
417  genes.

418  Sart and stop codon. According to the reference genome sequence, we identified the first and the last
419  three base of coding sequence (CDS) for each gene, referring to the start codon and the stop codon,
420  respectively.

421 Direction of replication and transcription. To study the impact of conflict between replication and
422 transcription on TR, we identified whether DNA replication and RNA transcription were in the same
423  or opposite directions for each gene based on the strand and genome location relative to the dif site
424 (2,232,640 bp) of the gene. The site of chromosomal segregation (dif) was identified by Cascioferro et
425  d™®. To be more specific, genes located on the positive strand and before the dif site (clockwise), or
426  genes on the negative strand and after the dif site would have the same direction of replication and
427  transcription, and vice versa.

428  Transcription factors. Considering the direct influences of transcription factors (TFs) on
429  transcriptional expression, we collected the data of interactions between TFs and their targets from
430 MTB Network Portal (http://networks.systemsbiology.net/Mtb). The data contained the interaction of
431 4,635 TF-target pairs with evidence of ChIP-seq experiments®® and transcriptiona profiling™,
432  including 136 TFs and 2,111 target genes. TF-target pairs were marked with 1 or -1, representing the
433 TF was an activator or a repressor, respectively. We then counted the number of activators and
434  repressors for each target gene based on the TF-target pairs. The number of target genes for each TF
435  was also counted. In addition, interactions between TFs and their targets identified by ChlP-seq were
436  aso selected, including the number of targets located at intergenic and intragenic regions for each TF.

437  Selective pressure. Natural selective pressures (indicated as dN/dSratio) on Mtb genes were estimated
438 by GenomegaMap, a phylogeny-free statistical approach performed on 10,209 Mtb genomes to
439  estimate substitution parameters?, including the mean values and 95% Cl's (Q2.5 and Q97.5) of d\N/dS
440  rdtio, trangition:transversion ratio, and substitution rate. The mean probability of an dN/dSratio higher
441 than 1 (Pr(dN/dS> 1)) and number of sites with Pr(dN/dS) > 1 for each gene were aso included.

442  Transcription start sites. Features associated with a gene's transcription start site (TSS) included
443  upstream TSS subtype (leadered or leaderless), total number of proximal TSS associated with this
444 gene, maximum/minimum TSS coverage, and the corresponding base at the +1 position of each TSS.
445  TSSannotations were adopted from a previous work by Shell and others™.

446  Operon. Operons in Mtb were predicted by Roback et al®’. We calculated the total number of genes of
447  each operon as well as the position in the operon which was defined as the order of a gene in its
448  operon. Operon length was defined as the sum of the lengths of all genesin the operon.

449  Regulon. Regulons of Mtb were identified by Yoo, R. et al.>. Regulons with less than three genes and
450  annotated as "Unknown function”, "KO", "Single gene" and "Uncharacterized" were removed in Fig
451  5b. To identify whether the TPs of the genes in a regulon were significantly higher or lower than the
452  total TPs of the genes in genome, we performed Gene Set Enrichment Analysis (GSEA) with the R
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453  package clusterProfiler (version 3.16.1) to calculate normalized enrichment score (NES) and adjusted
454  the p value for each regulon. NES represents the overall level of TP amplitude of a regulon, whereby
455  higher positive NES values mean higher overall TP and lower negative NES values mean lower
456  overal TP,

457  Other mycobacteria. Gene length and GC% of Msm and Mab were collected from mc*155 and ATCC
458 19977 genome annotation files derived from Mycobrowser (https.//mycobrowser.epfl.ch).

459  Machine learning model

460  To assess the importance of different gene features in determining the TP, we leveraged the recently
461  advanced LightGBM, a decision-tree ensemble model, to perform a multiparametric regression
462  analysis of the 3,891 genes and the corresponding 78 features™. This was achieved using the
463  Python-compiled lightgbm package (verson 3.3.2) with the following parameters:
464  objective="regression’, num_leaves=31, learning_rate=0.05, n_estimators=100, with the remaining
465  parameters set to default. 3,891 genes were randomly divided into test and training sets in a ratio of
466  4:6 using “train_test_split” function from sklearn. Then, the Light GBM regression model was trained
467 by training sets with the same parameters mentioned above. To evaluate the performance and
468  robustness of the trained model, the genes were randomly split into test and training groups 100 times,
469  and importance of each feature and performance (R?) accuracy of the predicted TP with the TP in the
470  test setswere calculated for each time, as shown in Fig. 3c and Fig. S3a, respectively.

471  LightGBM model predicted 4 robust features, which were operon size, gene length, activating
472  regulator number and GC content, and we performed a support vector machines (SVM) model to
473  assess the predictive power of these 4 features. This was archived using the R package 'e1071' with
474  the following parameters. types = 'eps-regression’, kernel = 'radial’, degree = 3, cost = 1, gamma =
475  0.25, coef0 = 0, epsilon = 0.1. Genes missing any feature value were removed so that a total of 2,016
476  genes were included in the analysis. Performance of this SYM model is shown in Fig. 3d. The
477  Shapley additive explanations (SHAP) method was then applied to calculate the contribution of each
478  feature to TP values predicted by SVM model®™. We performed SHAP analysis using R package
479  'iBreakDown' (version 2.0.1), and the contribution value of each feature to the predicted TP of each
480  gene was determined. As the contribution value can be positive or negative, representing the portion
481  of the feature making the predicted TP value of a gene higher or lower than the average predicted TP
482  valueof all 2,016 genes, respectively, the absolute contribution value was taken (Fig. S3b).

483  To test whether there were co-variants among the 4 features (Fig. 3c) found to affect TP, pairwise
484  Spearman's correlation coefficients were calculated using the R package stats (Fig. S3c).

485  Statistical analysis

486  Pearson’s correlation coefficients and the corresponding p values (Fig. 3d, Fig. 6a-b, Fig. Slc, Fig.
487  SAf, Fig. S7c¢) were calculated using the R package stats; Spearman's correlation coefficients (Fig. 2f,
488  Fig. 4a, Fig. 4c, Fig. 5d-e, Fig. 6f, Fig. $4a, Fig. S5, Fig. S6) were calculated using the R package
489  dats. The non-parametric Wilcoxon test was used to make un-paired comparisons and to render the p
490  valuesdepicted in Fig. 2c-d, Fig. 4d-f, Fig. 5a, Fig. 6¢, Fig. S4d-e.

491  Data availability

492  No primary data has been generated in this study. RNA-Seq data sources are listed in Supplementary
493  Table 1. The conditions of 894 samples are annotated in Supplementary Table 1. The integrated
494  transcriptional profile containing 3,891 genes and 894 samplesis available in Supplementary Table 2.
495  Collected genetic features are listed in Supplementary Table 3. TP data of Msm and Mab are available
496  in Supplementary Table 5. Benchmark of DEGs based on TP data of Mtb are shown in Supplementary
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497  Table6.
498  Codeavailability

499 Code for data analysis in this study is available from the following GitHub repository,
500  https://github.com/ChengBEI-FDU/Transcriptional Plasticity
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Fig. 1 Genome-wide estimation of Mtb transcriptional plasticity (TP). (a) A diagram illustrating the composition of the 894 samples from 73
different conditions. Detailed information about the samples can be found in Table S1. (b) Visualization of the 894 samples using t-distributed
stochastic neighbor embedding (tSNE) grouped according to different experimental condition categories. (¢) Primary expression statistics of Mib
genes across the 894 samples. Genes are horizontally ranked by the MinMax metric. The five line-plots represent the maximum (Max), 75
percentile (Q75), median, 25 percentile (Q25) and minimum (Min) expression levels which are centered by subtracting the median expression level
of each gene. Expression statistics for three representative genes, hspX, rpoB and IpgM, are highlighted. (d) Comparing adj-SD, IQR, and MinMax
metrics in describing TP of Mtb genes using a subsampling and bootstrap analysis (see Materials and Methods). Statistical significance between
correlation coefficients of adj-SD and IQR was estimated by Wilcoxon tests. ns represents nonsignificant, * p value 0.01 ~ 0.05, ** p value 0.001 ~
0.01, *** p value 0.0001 ~ 0.001, and **** p value < 0.0001. (e) Genome-wide TP profiles (adj-SD) of the 3,891 Mtb genes. The positively skewed
genome-wide TP distribution is illustrated in the right panel.
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Fig. 2 TP is associated with gene function and gene essentiality. (a) Functional enrichment analysis of the 195 high-TP genes.
Circle size corresponds to the number of genes in each category (b) Violin plots showing the TP profiles of genes in different functional
categories. Error bars denote mean + SD of TPs. The X-axis is presented on a log scale. (c) Genes of mycobacterial core-genome
exhibit lower TPs than other genes of the variable genome. Error bars represent mean + SD of TPs. Statistical significance was
assessed by the Wilcoxon test, **** p value < 0.0001. (d) TP comparison between essential genes, non-essential genes and genes
whose disruption confer growth advantage under axenic culture conditions. Statistical significance was assessed by the Wilcoxon test,
error bars represent mean + SD of TPs, ** p value 0.0001 ~ 0.01, **** p value < 0.0001. (e) Mib Genes vulnerable to transcriptional
perturbation exhibit low TPs. The horizonal black dashed line represents the maximum TP value of essential genes, and the vertical
line shows the 5th vulnerability index of non-essential genes. The counts of essential and non-essential genes in each quadrant are
displayed in green and yellow, respectively. (f) TP positively correlates with genes’ substitution rate, as simulated by genomegaMap
(Wilson, 2020). Mean value and 95% credibility intervals of substitution rates are presented in colored points. Colored Lines depict the
linear fit between TP and substitution rate. R and p represent Spearman’s correlation coefficient and the associated p values,
respectively.
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d Category N Features

Sequence 50 Gene length; Strand and replication orientation; % of amino acid; % of base; Codon usage (CAl, CBI, Fop, Nc, Gravy, Aromo, start
and stop codon)

Transcription 17 Operon (operon size and operonic location); Relative orientation between replication and transcription; Transcriptional regulation
(activator/repressor number, and activated/repressed targets number of regulators); Transcription start sites (coverage, number,
distance to downstream genes, and base type at +1 position)

Evolution 11 Ratio of non-synonymous to synonymous substitutions (dN/dS, w); Ratio of transition to transversion (Ts/Tv, k); Substitution rate (6)
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Fig. 3 Identification of genetic features underlying TP. (a) A table summary of the 78 candidate genetic features. N
denotes the number of features in each category. (b) Schematic diagram illustrating our machine-learning workflow. (c)
The top 15 genetic features ranked by their average feature importance in predicting TP. Lower ranks signify higher
feature importance for TP prediction, whereas a tight rank distribution indicates higher consistency in predictions across
randomized sample splits and modeling iterations. The four genetic features consistently rank low across random repeats
are highlighted in green. Error bars represent the median + 1.5*IQR of feature importance ranks across experiments. (d)
An SVM model constructed using only the top 4 features effectively predicts TP. The green line represents the linear fit
between SVM-modeled and observed TPs.
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Fig. 4 Impact of key genetic features on TP. (a) A negative correlation exists between gene length and TP,
illustrated by the 2D density contour plot of genes by TP and gene length. The red line depicts the linear fit. (b)
Deviation in GC% from the genome-wide average GC% (65.6%, black dashed line) is positively linked with TP,
depicted by the LOESS trendline and the 2D density contours. This trend is signified by the strong positive
association between average TP and standard deviation (SD) of GC% of genes belonging to the 50 TP quantiles, as
illustrated in (c). (d) Genes in polygenic operons exhibit significantly higher TPs than those in monogenic operons.
Wilcoxon tests, **** indicates p value < 0.0001. (e-f) TP increases as genes are regulated by more regulators.
Boxplots demonstrate a monotonic relationship between TP and the number of activators. (e). Genes targeted by
only one repressor display the lowest TPs. Error bars represent mean + SD of TPs. Statistical significance was

assessed by Wilcoxon tests, * p value 0.0001 ~ 0.05, **** p value < 0.0001. (g) A schematic illustrating the
relationships between the four genetic features and TP.
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Variations in TP within the DosR regulon, exemplified by comparing expression profiles of two high-TP genes (hspX and Rv1738) with
two low-TP genes (dosT and pncB2). (d) Deviation in GC% from the genome average partially explains TP variations of genes of the
same regulon. Linear fits and Spearman’s correlation coefficients are shown for two representative regulons, WhiB4 and Rv1828/SigH.
(e) TPs of co-regulated genes negatively correlate with their gene lengths. Spearman’s correction coefficient and the corresponding p
values are provided. The associations between primary genetic features and TP for genes in additional regulons are illustrated in Fig.
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Fig. 6 TP and its underlying genetic determinants are conserved in other Mycobacterium species. (a-b).
The TP profiles of M. smegmatis (Msm) and M. abscessus (Mab) genes resemble those of the Mtb homologs.
The 2D density contour plots illustrate the distribution of gene orthologs according to their TPs in
corresponding Mycobacterium species. Red lines denote the linear fits. © Non-essential Msm genes have
higher TPs than their essential Msm counterparts. Error bars represent mean + SD of TPs. Statistical
significance was measured by Wilcoxon tests, **** p value < 0.0001. (d) Msm genes vulnerable to
transcriptional perturbation exhibit low TPs. The grey circle highlights the lack of genes with both high TP and
high vulnerabilit©(e) Gene length is negatively associated with TP in Msm (orange) and Mab (blue). The 2D
density contour plots illustrate the distribution of genes based on TP and gene length. (f). A linear correlation is
observed between TPs and gene lengths for genes shorter than 600 bp. (g-h) Genes with GC% close to the
genome-wide average (67.4% in Msm and 64.1% in Mab, annotated by black dashed lines) display lower TP in
both Msm (g) and Mab (h). The 2D density contour plots depict the distribution of genes by their TPs and GC%.



