

3

4 Short Title: Cross-tissue comparison of telomere length and quality metrics of DNA

5

6

7 Sarah E. Wolf^{1, #a}, Waylon J. Hastings^{1,2}, Qiaofeng Ye¹, Laura Etzel¹, Abner T. Apsley¹,
8 Christopher Chiaro¹, Christine C. Heim³, Thomas Heller¹, Jennie G. Noll⁴, Hannah M.C.
9 Schreier¹, Chad E. Shenk^{4,5}, Idan Shalev^{1*}

10

11 ¹Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania,
12 USA

13

14 ²Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, New
15 Orleans, Louisiana, USA

16

17 ³Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, and
18 Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Medical Psychology, Berlin,
19 Germany

20

21 ⁴Department of Human Development and Family Studies, The Pennsylvania State University,
22 University Park, PA, USA

23

24 ⁵Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey,
25 PA, USA

26

#^a Current Address: Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK

29

30

31 * Corresponding Author

32 Email: ius14@psu.edu (I.S.)

33 **Abstract**

34 Telomere length (TL) is an important biomarker of cellular aging, yet its links with health
35 outcomes may be complicated by use of different tissues. We evaluated within- and between-
36 individual variability in TL and quality metrics of DNA across five tissues using a cross-sectional
37 dataset ranging from 8 to 70 years (N=197). DNA was extracted from all tissue cells using the
38 Gentra Puregene DNA Extraction Kit. Absolute TL (aTL) in kilobase pairs was measured in
39 buccal epithelial cells, saliva, dried blood spots (DBS), buffy coat, and peripheral blood
40 mononuclear cells (PBMCs) using qPCR. aTL significantly shortened with age for all tissues
41 except saliva and buffy coat, although buffy coat was available for a restricted age range (8 to
42 15 years). aTL did not significantly differ across blood-based tissues (DBS, buffy coat, PBMC),
43 which had significantly longer aTL than buccal cells and saliva. Additionally, aTL was
44 significantly correlated for the majority of tissue pairs, with partial Spearman's correlations
45 controlling for age and sex ranging from $\rho = 0.18$ to 0.51 . We also measured quality metrics of
46 DNA including integrity, purity, and quantity of extracted DNA from all tissues and explored
47 whether controlling for DNA metrics improved predictions of aTL. We found significant tissue
48 variation: DNA from blood-based tissues had high DNA integrity, more acceptable A260/280
49 and A260/230 values, and greater extracted DNA concentrations compared to buccal cells and
50 saliva. Longer aTL was associated with lower DNA integrity, higher extracted DNA
51 concentrations, and higher A260/230, particularly for saliva. Model comparisons suggested that
52 incorporation of quality DNA metrics improves models of TL, although relevant metrics vary by
53 tissue. These findings highlight the merits of using blood-based tissues and suggest that
54 incorporation of quality DNA metrics as control variables in population-based studies can
55 improve TL predictions, especially for more variable tissues like buccal and saliva.

56 **Keywords:** telomere length; tissue; buffy coat; peripheral blood mononuclear cells; dried blood
57 spots; saliva; buccal epithelial cells; DNA integrity; DNA concentration; DNA quality;
58 geroscience; aging

59

60 **Introduction**

61 Characterizing variation in telomere length (TL) and its links to human health outcomes is of
62 interest across diverse scientific disciplines. Telomeres are ribonucleoprotein structures that
63 maintain and protect the ends of chromosomes [1]. Telomeres shorten during cell division,
64 resulting in age-related decreases in TL [2-4], occurring most rapidly early in life and continuing
65 across the lifespan [5]. Variable TLs among same-aged individuals are thought to be the result
66 of inherited genetic determinants of TL [6-8] and environmental exposures that accelerate TL
67 loss [9-12]. Because short TL is linked to higher risk of age-related health outcomes [13-16] and
68 early mortality [17-19], TL is frequently used as a biomarker of cellular aging in population
69 studies [20, 21]. However, applications of TL to assess morbidity and mortality risk have
70 produced inconsistent findings [19], leading to concerns about the utility of TL as a biomarker of
71 aging [22, 23]. Importantly, inconsistencies in population research may be driven by key
72 methodological differences in study design (e.g., tissue type, covariates selection, DNA
73 extraction) [24-27].

74 TL has the potential to be an important biomarker of cellular aging in epidemiological and clinical
75 research, yet establishing clear links with health outcomes are complicated by the use of
76 different tissues across studies. Blood leukocytes, peripheral blood mononuclear cells (PBMCs),
77 dried blood spots (DBS), saliva, and buccal epithelial cells are commonly used in population-
78 based studies. Within an individual, TL may vary among these tissues due to factors such as

79 cell composition, cell turnover rates, stem cell capacity to regenerate or differentiate, and
80 dynamic regulation of TL by telomerase and other associated proteins [28-33]. Previous work
81 has shown TL appears moderately to strongly correlated across tissues [0.53 < r < 0.93; 34, 35-
82 37], although sex, behaviors (e.g., smoking), and telomere measurement assay may modulate
83 these patterns [35, 36, 38]. Moreover, despite being correlated, there appear to be significant
84 differences in measured TL across tissues [34-37, 39]. For example, Demanelis et al. [35]
85 showed that tissue type accounted for 11.5-24.3% of variation in measured TL, which clustered
86 by the developmental origin of each tissue. McLester-Davis et al. [38] demonstrated similar
87 findings in a previous meta-analysis, observing stronger correlations among related tissues,
88 e.g., blood-based tissues. Importantly, this meta-analysis also noted significantly lower
89 correlations between tissues collected peripherally (e.g., buccal, PBMCs) and those collected
90 surgically (e.g., bone marrow, spleen), highlighting the importance of tissue collection and
91 processing procedures in cross-tissue concordance of TL measurements. In addition, previous
92 work has also demonstrated significant differences in quality metrics of DNA across different
93 tissues [40, 41], however it remains uncertain to what degree tissue-specific variation in the
94 integrity, purity, and quantity of extracted DNA may influence the efficacy of TL assays and
95 correlations among tissues. Given that tissue type is often a significant moderator of
96 associations between TL and health outcomes [42, 43], it is vital that we better understand
97 tissue diversity in TL.

98 Here, we quantified variation in absolute TL (aTL) across five tissues that are commonly used
99 in population studies, namely buccal epithelial cells, saliva, DBS, buffy coat (i.e., leukocytes),
100 and PBMCs. We evaluated within- and between-individual variation in aTL using a cross-
101 sectional dataset of individuals ranging from 8 to 70 years of age. First, we quantified biological
102 variation in aTL across tissues, age, sex, and race. We next evaluated whether tissues varied in
103 the integrity, purity, and quantity of extracted DNA, which may influence the success and

104 precision of telomere measurement assays. We subsequently assessed whether inclusion of
105 information about DNA integrity, purity, and quantity improves model fits of aTL. Finally, we
106 make recommendations on an optimal tissue type and quality control guidelines of extracted
107 DNA for large population-based research.

108

109 **Materials and Methods**

110 **Study Design and Sample Recruitment**

111 Study participants were recruited from the Pennsylvania State University (PSU) community and
112 surrounding areas, with some children recruited from other regions within Pennsylvania, as
113 described in more detail below. This study and all protocols were approved by PSU's
114 Institutional Review Board.

115 **Adults**

116 Adult participants were recruited via advertisements located on PSU's University Park campus,
117 community bulletins in State College and surrounding areas. Inclusion criteria for the study
118 included: (a) ages 18-75, (b) no significant medical illness or immune disease (e.g., cancer,
119 diabetes, or autoimmune disease), (c) current non-smoker, and (d) not pregnant or currently
120 breastfeeding. Individuals were excluded if they self-reported a recent infection, illness, and/or
121 use of antibiotics. To balance across ages and sex, eligibility became more restricted as
122 sampling progressed. The maximum age was restricted to 75 years due to mortality selection
123 [44] and the longer telomeres in exceptionally old individuals compared with controls with
124 advancing age [45]. This study included 77 adult participants between 18 and 70 years old
125 (**Table 1**).

126 After obtaining informed consent, tissue samples and demographic information were collected
127 from adult participants at PSU's Clinical Research Center (CRC). First, participants completed a
128 set of paper questionnaires to collect demographic and health-related information. Second, four
129 tissue cells were collected, namely PBMCs, DBS, saliva, and buccal cells. Specifically, 20 mL of
130 whole blood was collected in EDTA tubes via antecubital venipuncture by a trained
131 phlebotomist. Approx. 200 μ L of whole blood was applied to a Whatman 903 protein saver card,
132 which we refer to as a dried blood spot (i.e., "DBS"), after which PBMCs were isolated through
133 density-gradient centrifugation using Ficoll. Participants were also asked to provide 4 mL of
134 saliva across two Oragene tubes (OGR-500, DNA Genotek), which upon completion, was mixed
135 with the Oragene stabilizing buffer and sealed. Last, buccal cells were collected non-invasively
136 using sanitary swabs (Isohelix SK1; 8 per individual), which were coated in cells by firmly
137 scraping against the inside of the cheek several times in each direction. Collection order for all
138 tissue types was uniform across participants. Participants were asked to refrain from eating or
139 drinking anything other than water for one hour before arriving at the CRC. Tissue samples
140 were then stored as follows: PBMCs were stored at -80°C in a solution buffer composed of
141 phosphate buffered saline pH 7.2+EDTA (2mMol) + bovine serum albumin (0.5%) prior to
142 extraction. DBS were stored in sealed Ziploc bags with desiccant packets at room temperature.
143 Buccal swabs were placed in sealed Ziploc bags and stored at -80°C. Saliva samples were
144 aliquoted into 4 cryovials and stored at -80°C.

145 **Children**

146 Child participants were members of the Child Health Study (CHS), a large multidisciplinary
147 study designed to provide prospective, longitudinal data on the health and development of
148 children with and without a history of maltreatment investigations [for more details about the
149 CHS see 46]. Children were recruited using the PA statewide Child Welfare Information System
150 (CWIS) for having been investigated for substantiated maltreatment (i.e., defined according to

151 PA state law, including sexual abuse, physical abuse and neglect) within the past year, and a
152 demographically matched group of control children screened via CWIS to ensure no history of
153 child welfare involvement. While the CHS study is recruiting 700 children, this investigation
154 included the first 120 children enrolled between the ages of 8 to 15 years (**Table 1**).

155 **Table 1. Demographic summary of participants, split by child and adult cohorts.**

	Child (n = 120)	Adult (n = 77)
	Mean (SD) / Min-Max / N (%)	
Age (years)	11.95 (1.50)	42.45 (15.70)
Age Range (years)	8.6-15.08	18.28-70.01
Sex		
Female	246 (51.5%)	168 (54.5%)
Male	232 (48.5%)	140 (45.5%)
Race		
White	334 (69.9%)	264 (86.8%)
Black	52 (10.9%)	8 (2.6%)
Other	92 (19.2%)	32 (10.5%)

156
157 Non-maltreating caregivers accompanied children to PSU's University Park campus. After
158 obtaining informed consent (caregiver) and assent (child), tissue samples and
159 health/demographic data were collected from child participants. Four tissue cells were collected,
160 namely buffy coat, DBS, saliva, and buccal cells. Specifically, 20 mL of whole blood was
161 collected in EDTA tubes via antecubital venipuncture by a trained phlebotomist. Buffy coat was
162 isolated using centrifugation to separate plasma followed by treatment with 0.5x red blood cell
163 lysis buffer (Invitrogen). Using identical procedures to those described in adults, approx. 200 μ L
164 of whole blood was used to collect a DBS sample on a Whatman 903 protein saver card, and 2
165 mL of saliva (Oragene OGR-500, DNA Genotek) and 2 buccal cheek swabs (Isohelix SK1) were
166 also taken per individual. Tissue samples were stored in the same conditions as adult samples,
167 and buffy coat was stored at -80°C in a solution buffer composed of phosphate buffered saline
168 pH 7.2+EDTA (2mMol) + bovine serum albumin (0.5%).

169 **Demographic measures**

170 Chronological age, sex, and race were included as covariates because they are commonly
171 associated with TL [2, 47-49]. Biological sex was determined via self-report. Race was coded as
172 'White,' 'Black/African American,' or 'Other (American Indian, Alaskan Native, Multiracial, or
173 Other) based on reports provided by adult participants and child caregivers.

174 **DNA extraction and quality analyses**

175 To minimize the impact of DNA extraction procedures, DNA was extracted from all tissues using
176 the Gentra Puregene DNA Extraction Kit according to factory guidelines (Qiagen). This kit has
177 been used to extract DNA from whole blood, PBMCs, saliva, buccal cells, and DBS [50].
178 Extracted DNA was stored at -80°C in Qiagen DNA Hydration Solution.

179 Prior to assay for TL, DNA was assessed for integrity, purity, and quantity. DNA integrity and
180 purity were quantified using indicators of DNA degradation from the TapeStation 2200
181 Bioanalyzer (Agilent) and absorbance ratios from the NanoDrop 2000 spectrophotometer
182 (Thermo Fisher Scientific). DNA concentration was quantified in 3 ways: (a) the NanoDrop
183 spectrophotometer was used to quantify total nucleic acids, (b) the Agilent TapeStation and (c)
184 Quant-iT PicoGreen (Invitrogen) to determine double-stranded DNA concentrations. DNA
185 concentrations as determined by Quant-iT Picogreen were used to standardize the number of
186 telomeres being assessed in each sample. Quality DNA metrics are summarized in **Table 2**.

187

188 **Table 2. Summary of DNA integrity, purity, and quantity metrics.**

Metric	Source	Interpretation
DNA Integrity Number	TapeStation	Increased DNA degradation as values decrease from 10.0
% Unfragmented DNA	TapeStation	%DNA with length greater than 3,000 bp
% Highly Fragmented DNA	TapeStation	%DNA with length between 250 bp – 3,000 bp
% Severely Fragmented DNA	TapeStation	%DNA with length less than 250 bp
A260/230 ratio	Nanodrop Spectrometer	Increased organic contamination as values deviate (\pm) from 2.00
A260/280 ratio	Nanodrop Spectrometer	Increased protein contamination as values deviate (\pm) from 1.80
NanoDrop DNA Concentration	Nanodrop Spectrometer	Concentration of total nucleic acids in ng/ μ L
PicoGreen DNA Concentration	Quant-iT Picogreen	Concentration of double-stranded DNA in ng/ μ L
TapeStation DNA Concentration	TapeStation	Concentration of double-stranded DNA in ng/ μ L

189

190 **Assessment of telomere length via qPCR and aTL calculation**

191 TL measurements were generated using the quantitative polymerase chain reaction (qPCR) on
192 DNA extracted from PBMCs, buffy coat, DBS, buccal cells, and saliva. TL in an absolute unit of
193 kilobase pairs (aTL) was measured following a qPCR method originally developed by
194 O'Callaghan and Fenech [51] and adapted by the Shalev Lab [52] using a Rotor-Gene Q
195 thermocycler connected to an uninterrupted power source (CyberPower), which has been
196 shown to decrease variability in TL measured via qPCR [53]. Each qPCR assay consisted of
197 two runs, one quantifying telomere content (T), and a second run quantifying genome copy
198 number (S) using the single copy gene *IFNB1*. The two runs (T & S) were always performed on
199 the same day using the same DNA dilution, which was stored at 4°C between runs (~2.5 hours).

200 Estimates of kb telomeric DNA and genome copy number were calculated based on the
201 alignment of each sample with a standard curve. Estimates for the no template control were

202 subtracted from estimates of the analytical samples prior to calculating aTL values. The average
203 kb telomeric DNA estimates and genome copy number estimates across triplicate
204 measurements were used to calculate aTL values: $aTL = (\text{Estimated kb Telomeric DNA}) /$
205 ($\text{Estimated Genome Copy Number} \times 92$).

206 To control for inter-assay variability, 5 control samples were assessed on each T run and each
207 S run. The average inter-assay CV for control sample aTL estimates was 8.95%. A pseudo-
208 random selection of 88 samples balanced across tissues (except buccal) was reassessed for
209 explicit purposes of calculating the interclass correlation coefficient (ICC), an indicator of
210 measurement reliability. The ICC across 44 samples rerun for reproducibility was 0.772 (0.728
211 when a 'Tissue' factor was included). The ICC for 44 re-extracted samples was 0.826, which
212 decreased to 0.784 when a 'Tissue' factor was added to the model. Full details on qPCR assays
213 for aTL, including reaction mix composition and sequences for primers and standards, are
214 summarized in **S1 Table** in accordance with guidelines recommended by the Telomere
215 Research Network [54].

216

217 **Statistical analyses**

218 Statistical analyses were performed using R Studio V2022.07.2 (R 4.1.1). We assessed all
219 continuous variables for skewness and kurtosis. aTL was approximately normal alongside DIN,
220 % unfragmented, % highly fragmented, % severely fragmented, and A260/230 ($|\text{skew}| < 1$;
221 $|\text{kurtosis}| < 3$). However, A260/280 and all three extracted DNA concentrations violated
222 assumptions of normality. Outlier values for each continuous variable were winsorized, where
223 outliers were defined as values outside the range of $(Q1 - 1.5\text{IQR})$ to $(Q3 + 1.5\text{IQR})$ across the
224 sample stratified by cohort and tissue, where Q1 and Q3 are lower and upper quartiles
225 respectively, and IQR is the interquartile ratio. Outlier values were winsorized to the boundary

226 values of this range. Winsorizing data points based on the IQR is more appropriate for variables
227 with skewed distributions, in comparison to winsorizing based on standard deviations away from
228 the mean. 295/5891 (5.0%) data points were winsorized across the study (**S2 Table**, see **S1 Fig**
229 for variable distributions before and after winsorization). Results using raw and winsorized data
230 were not statistically different.

231 To assess biological variation in aTL, we performed a linear mixed effect model [R package
232 *nlme*; 55] predicting all aTL values with fixed effects of age, sex (female vs. male), tissue
233 (buccal, saliva, DBS, buffy coat, PBMC), race (white, black, other), and an age by tissue
234 interaction, with an additional random effect of individual ID. We included an age by tissue
235 interaction to assess whether tissues differ in chronological age-related changes in aTL [5].
236 Post-hoc analyses were performed using the *emmeans* package [56]. Using the *correlation*
237 package [57], we also assessed partial Spearman's correlations of aTL among tissue types
238 within individuals, which accounted for variation in age and sex.

239 Similar to analysis of aTL values, we performed separate linear mixed effect models predicting
240 each quality DNA metric with fixed effects of age, sex, tissue, race, and an age by tissue
241 interaction, with a random effect of individual ID. We also assessed partial Spearman's
242 correlations among metrics indicative of DNA integrity (DIN and % fragmentation indices), purity
243 (A260/280, A260/230), and quantity (extracted DNA concentration measured by NanoDrop,
244 PicoGreen, and TapeStation). Partial Spearman's correlations accounted for age and sex of
245 participants.

246 We next explored whether DNA metrics of integrity, purity, and quantity predicted aTL, using a
247 two-prong approach. First, we performed partial Spearman's correlations between aTL and
248 each DNA metric, accounting for age and sex. Second, we performed model comparisons to
249 ask whether certain DNA metrics improved model fits of tissue-specific aTL. We evaluated

250 support for competing candidate models predicting aTL. For each tissue type, we used the
251 *dredge* function [58] to create model sets from the global model (below), in which all models for
252 a given tissue included the same subset of data. Each model could include any combination of
253 age, sex, race, DIN, % unfragmented, highly fragmented, or severely fragmented DNA,
254 A260/280, A260/230, and each of three DNA concentrations, but variables with a correlation
255 above 0.40 were not allowed to coexist in a single candidate model. The number of terms
256 (excluding the intercept) in a single candidate model was limited to approximately 1 term per 10
257 observations. In addition, TapeStation metrics (DNA integrity and concentration) were not
258 included in candidate models for buffy coat to enhance statistical power because buffy coat was
259 only measured in the child cohort and only 23 children had TapeStation data. We used the
260 Akaike information criterion corrected for small sample sizes (AICc) for model comparisons [59]
261 and present Δ AIC ($AIC_i - AIC_{best}$ model) and AIC weights (weight of evidence for model) for the
262 top model set, which included models with Δ AIC ≤ 2 . Then, we performed conditional model
263 averaging of top model sets.

264 For each set of models, ANOVA tables are presented in the main text, and coefficient tables are
265 included in the supplemental material. Potential inflation in type I error of multiple statistical
266 testing was controlled separately for each part of analyses using the Benjamini-Hochberg
267 method. P values of statistical significance after controlling for false discovery rate (FDR) at
268 <0.01 were indicated using asterisks in each table or figure that involves statistical testing.

269

270 **Results**

271 **Biological variation in aTL**

272 aTL significantly shortened with chronological age ($F_{1,191} = 99.15$, $p < 0.001$), the magnitude of
273 which varied by tissue type ($F_{4,557} = 15.65$, $p < 0.001$, **Fig 1A, Table 3A, S3 Table**). In particular,
274 post hoc analyses showed significant age-related decreases from 8 to 70 years in aTL for
275 buccal, DBS, and PBMC (buccal: $\beta = -0.12$, 95% CI=[-0.15, -0.10]; DBS: $\beta = -0.12$, [-0.15, -
276 0.10]; PBMC: $\beta = -0.12$, [-0.16, -0.07]), but not for saliva (age 8 to 70 years) or buffy coat (age 8
277 to 15 years) (saliva: $\beta = -0.02$, [-0.05, 0.01]; buffy coat: $\beta = -0.05$, [-0.40, 0.31]). Tissues also
278 significantly differed in aTL values ($F_{4,557} = 131.89$, $p < 0.001$, **Fig 1B, S4 Table**). After
279 adjustment for multiple comparisons, saliva and buccal aTL were significantly shorter than all
280 other tissue types *except* for children buffy coat aTL, which was not significantly different from
281 all other tissues. aTL values of all blood-based tissues (i.e., DBS, buffy coat, and PBMCs) were
282 not statistically different. aTL did not vary by sex ($F_{1,191} = 2.46$, $p = 0.12$, **S2 Fig**) or race ($F_{2,191} =$
283 1.54, $p = 0.22$) across all tissue types.

284

285 **Fig 1. Biological variation in aTL with chronological age (A) and tissue type (B) for**
286 **individuals ranging from 8 to 70 years old.** Note that buffy coat and PBMC are exclusive to
287 child and adult cohorts, respectively.

288

289 **Table 3. Linear mixed effects models predicting aTL and metrics of DNA integrity, purity,**
 290 **and quantity with tissue type and sample demographics.** P-values were adjusted for
 291 multiple comparisons using the Benjamini-Hochberg method. Asterisks indicate significant p-
 292 values after controlling false discovery rate (FDR) at < 0.01 . Primary outcomes of interest were
 293 analyzed in different models indicated by different panels A-J.

(A) aTL				(F) A260/280			
Predictors	df	F	p	Predictor	df	F	p
(Intercept)	1, 557	3965.51	<0.001*	(Intercept)	1, 577	340349.02	<0.001*
Age	1, 191	99.15	<0.001*	Age	1, 191	15.70	<0.001*
Sex	1, 191	2.46	0.119	Sex	1, 191	2.04	0.155
Tissue	4, 557	131.89	<0.001*	Tissue	4, 577	86.36	<0.001*
Race	2, 191	1.54	0.216	Race	2, 191	0.87	0.419
Age x Tissue	4, 557	15.65	<0.001*	Age x Tissue	4, 577	20.24	<0.001*
(B) DNA Integrity Number (DIN)				(G) A260/230			
(Intercept)	1, 280	29497.55	<0.001*	(Intercept)	1, 577	4568.29	<0.001*
Age	1, 94	22.33	<0.001*	Age	1, 191	46.77	<0.001*
Sex	1, 94	0.91	0.343	Sex	1, 191	1.49	0.224
Tissue	4, 280	212.95	<0.001*	Tissue	4, 577	45.03	<0.001*
Race	2, 94	3.95	0.023	Race	2, 191	0.35	0.707
Age x Tissue	4, 280	1.32	0.264	Age x Tissue	4, 577	3.17	0.014
(C) %Unfragmented DNA (> 3000 bp)				(H) Nanodrop Concentration (ng/µL)			
(Intercept)	1, 288	15664.94	<0.001*	(Intercept)	1, 577	740.35	<0.001*
Age	1, 94	14.20	<0.001*	Age	1, 191	0.65	0.421
Sex	1, 94	1.42	0.237	Sex	1, 191	0.06	0.801
Tissue	4, 288	173.18	<0.001*	Tissue	4, 577	113.41	<0.001*
Race	2, 94	2.12	0.125	Race	2, 191	0.55	0.578
Age x Tissue	4, 288	2.86	0.024	Age x Tissue	4, 577	3.22	0.013
(D) %Highly Fragmented DNA (250–3000 bp)				(I) PicoGreen Concentration (ng/µL)			
(Intercept)	1, 288	997.72	<0.001*	(Intercept)	1, 577	684.23	<0.001*
Age	1, 94	5.59	0.02	Age	1, 191	0.00	0.996
Sex	1, 94	1.33	0.252	Sex	1, 191	0.16	0.694
Tissue	4, 288	133.65	<0.001*	Tissue	4, 577	188.55	<0.001*
Race	2, 94	1.46	0.238	Race	2, 191	0.19	0.825
Age x Tissue	4, 288	4.65	0.001*	Age x Tissue	4, 577	1.40	0.231
(E) %Severely Fragmented DNA (< 250 bp)				(J) TapeStation Concentration (ng/µL)			
(Intercept)	1, 288	817.11	<0.001*	(Intercept)	1, 288	322.02	<0.001*
Age	1, 94	2.52	0.116	Age	1, 94	1.25	0.267
Sex	1, 94	0.63	0.43	Sex	1, 94	2.15	0.146
Tissue	4, 288	79.57	<0.001*	Tissue	4, 288	105.48	<0.001*
Race	2, 94	1.27	0.286	Race	2, 94	0.39	0.678
Age x Tissue	4, 288	4.26	0.002*	Age x Tissue	4, 288	2.86	0.024

294

295

296 aTL values were significantly correlated between all tissue pairs except PBMC-buccal ($\rho = 0.21$)
297 and PBMC-saliva ($\rho = 0.18$), as well as correlations between buffy coat and saliva ($\rho = 0.22$, **Fig**
298 **2**). Partial Spearman's ρ values for all the pairs ranged from 0.18 (PBMC-saliva) to 0.51 (PBMC-
299 DBS). Several of the stronger correlations occurred between related tissues, e.g., DBS-buffy
300 coat and DBS-PBMC in the child and adult cohorts, respectively. Excepting buccal-saliva
301 correlations, which were significant in adults ($\rho = 0.41$), but not children ($\rho = 0.26$), tissue pair
302 correlations did not significantly differ if separated by cohort (see **S3 Fig**).

303

304 **Fig 2. Partial Spearman's correlations of aTL among tissue types, which account for age**
305 **and sex.** Ellipse shape and color denotes the strength and direction of correlations. Asterisks
306 indicate significant p-values after adjusting for multiple comparisons using the Benjamini-
307 Hochberg method and controlling false discovery rate (FDR) at < 0.01 .

308

309 **Biological variation in DNA metrics of integrity, purity, and** 310 **quantity**

311 All results describing variation in DNA metrics can be found in **Fig 3, Tables 3-4**, and **S4-S5**
312 **Tables.** DIN values significantly varied by tissue type ($F_{4,280} = 212.95$, $p < 0.001$, **Fig 3A-D**) and
313 are mirrored by patterns of % DNA fragmentation (unfragmented: $F_{4,288} = 173.18$, $p < 0.001$,
314 highly fragmented: $F_{4,288} = 133.65$, $p < 0.001$; severely fragmented: $F_{4,288} = 79.57$, $p < 0.001$).
315 Notably, buccal DIN values were lowest among all tissues ($DIN_{mean} = 5.6$). Interestingly, DIN and
316 % unfragmented DNA appear higher in samples from older participants (DIN: $F_{1,94} = 22.33$, $p <$
317 0.001 ; unfragmented: $F_{1,94} = 14.20$, $p < 0.001$). A260/280 values also varied by tissue type
318 ($F_{4,577} = 86.36$, $p < 0.001$, **Fig 3E**), where DBS had significantly lower A260/280 values than all

319 other tissue types. A260/280 values were lower in older participants ($F_{1,191} = 15.70$, $p < 0.001$),
320 although this varied by tissue ($F_{4,577} = 20.24$, $p < 0.0001$). A260/230 values also significantly
321 differed by tissue type ($F_{4,577} = 48.163$, $p < 0.001$, **Fig 3F**); PBMCs had significantly higher
322 A260/230 than all other tissues except for buffy coat. A260/230 values were significantly lower
323 in older participants ($F_{1,191} = 46.77$, $p < 0.001$). All DNA concentration types significantly varied
324 among the majority of tissue pairs (NanoDrop: $F_{4,577} = 113.41$, $p < 0.001$; PicoGreen: $F_{4,577} =$
325 188.55, $p < 0.001$; TapeStation: $F_{4,577} = 105.48$, $p < 0.001$; **Fig 3H-J**), with DBS/saliva and buffy
326 coat/PBMC exhibiting the lowest and highest concentrations, respectively. DNA metrics did not
327 vary by sex or race.

328

329 **Fig 3. Variation in metrics of DNA integrity (A-D), purity (E-F), and quantity (G-I) across**
330 **tissue types.**

331 **Table 4. Tissue-level averages of aTL and metrics of DNA integrity, purity, and quantity, split by child and adult cohorts.**

332 Values are presented as tissue/cohort averages with standard error in parentheses.

333

Variable	Buccal		Saliva		DBS		Buffy Coat		PBMC	
	Child	Adult	Child	Adult	Child	Adult	Child	Adult	Child	Adult
aTL (kb)	12.39 (3.25)	7.45 (1.99)	7.10 (4.86)	6.05 (2.90)	14.38 (2.86)	9.75 (3.06)	13.08 (3.19)	10.27 (2.96)		
DIN	5.31 (1.31)	5.89 (0.71)	7.43 (1.16)	8.08 (0.87)	7.41 (0.59)	8.33 (0.74)	8.47 (0.71)	9.02 (0.59)		
% Unfragmented DNA (> 3000 bp)	50.25 (12.68)	55.73 (11.98)	64.5 (15.57)	72.83 (13.99)	75.22 (7.87)	79.61 (9.87)	91.58 (4.16)	91.41 (3.47)		
% Highly Fragmented DNA (250 – 3000 bp)	27.44 (9.05)	22.59 (8.96)	20.26 (11.19)	15.48 (9.61)	11.56 (4.23)	12.71 (6.91)	1.67 (1.48)	1.10 (0.99)		
% Severely Fragmented DNA (<250 bp)	8.01 (3.38)	6.36 (3.13)	7.64 (4.54)	6.32 (4.12)	4.61 (1.68)	5.62 (2.98)	0.67 (0.82)	0.43 (0.38)		
A260/A280	1.87 (0.08)	1.80 (0.06)	1.84 (0.09)	1.90 (0.10)	1.77 (0.07)	1.65 (0.18)	1.84 (0.02)	1.87 (0.02)		
A260/A230	1.05 (0.28)	0.75 (0.21)	1.13 (0.45)	0.84 (0.29)	1.19 (0.33)	0.76 (0.41)	1.36 (0.43)	1.35 (0.48)		
Nanodrop Concentration (ng/µL)	164.67 (147.06)	178.38 (99.04)	64.11 (51.35)	107.58 (67.23)	28.88 (10.21)	29.49 (16.25)	381.64 (335.82)	297.27 (198.29)		
PicoGreen Concentration (ng/µL)	47.61 (39.15)	54.44 (29.23)	5.15 (4.75)	11.28 (9.14)	10.04 (4.46)	9.98 (5.64)	149.97 (120.79)	141.24 (85.26)		
TapeStation Concentration (ng/µL)	48.84 (27.84)	50.98 (28.79)	9.76 (5.77)	12.65 (9.24)	11.91 (3.78)	10.27 (5.14)	188.96 (173.32)	156.22 (100.64)		

334 Many metrics of DNA integrity, purity, and quantity were moderately to strongly correlated. Full
335 results are shown in **Fig 4**, **S4 Fig**, and **S5 Table**, but we highlight key patterns here. First, DIN
336 values were strongly correlated with DNA fragmentation indices for all tissue types, with the
337 exception of buffy coat, for which we had limited power. Absolute ρ values ranged from 0.19 to
338 0.95, where high DIN values were characterized by a higher proportion of unfragmented DNA.
339 In addition, all extracted DNA concentrations were significantly positively correlated for all
340 tissues except buffy coat ($0.37 < \rho < 0.94$; $\rho_{\text{mean}} = 0.70$). Interestingly, higher extracted DNA
341 concentrations were linked to higher DIN values, particularly for DNA concentrations measured
342 via TapeStation. For NanoDrop and PicoGreen concentrations, correlations are strongest for
343 saliva and DBS ($0.16 < \rho < 0.81$; $\rho_{\text{mean}} = 0.60$). Concentration of extracted DNA was also
344 positively associated with A260/230 in all tissues except DBS; however, A260/280 exhibited
345 inconsistent associations with DNA quantity, with absolute values of ρ ranging from 0.03 to 0.56.
346 DIN metrics were inconsistently related to A260/280 and A260/230.

347

348 **Fig 4. Partial Spearman's correlations among DNA metrics for each tissue type, after**
349 **accounting for age and sex of participants.** Spearman's ρ values range from -1 to 1 on the y-
350 axis. Asterisks indicate significant p-values after adjusting for multiple comparisons using the
351 Benjamini-Hochberg method and controlling false discovery rate (FDR) at < 0.01 .

352

353 **Covariation between aTL and metrics of DNA integrity, purity,**
354 **and quantity**

355 Partial Spearman's correlations showed that aTL is significantly correlated with DNA integrity
356 values in some tissues (**Fig 5**, **S5 Fig**, **S6 Table**). While aTL is overall weakly and inconsistently

357 correlated with DIN and DIN-related metrics, higher DIN or low % fragmentation is significantly
358 associated with longer aTL in saliva and PBMCs. In addition, aTL is significantly and positively
359 correlated with all three DNA concentrations across most tissues, ranging from $0.02 < \rho < 0.62$,
360 particularly so in saliva, buccal, and buffy coat. Correlations between aTL and A260/280 were
361 overall weak, and A260/230 was only significantly associated with aTL in buccal and buffy coat.
362 Overall, longer aTL is associated with lower % DNA fragmentation, higher extracted DNA
363 concentrations, and higher A260/230. We also note that correlations between DNA metrics and
364 aTL appear particularly strong for saliva.

365

366 **Fig 5. Partial Spearman's correlations between aTL and metrics of DNA integrity, purity,**
367 **and quantity, adjusted for age and sex and split by tissue type.** Spearman's ρ values range
368 from -1 to 1 on the y-axis. Asterisks indicate significant p-values after adjusting for multiple
369 comparisons using the Benjamini-Hochberg method and controlling false discovery rate (FDR)
370 at < 0.01 .

371

372 Results for model comparisons can be found in **Table 5** and **S7 Table**. Among candidate
373 models predicting aTL in buccal, the top-ranked model set included DIN, % highly fragmented
374 DNA, and A260/230 as significant predictors of aTL. TapeStation/PicoGreen DNA
375 concentrations were also included in the top-ranked model set but did not significantly predict
376 buccal aTL. The top-ranked model set in saliva only included % severely degraded DNA and
377 A260/280, for which only the former had high variable importance and significantly predicted
378 aTL. The top-ranked model set in DBS included DIN, A260/280, A260/230, and TapeStation
379 DNA concentration, and all variables but DIN significantly predicted aTL after conditional
380 averaging. The top-ranked model set predicting buffy coat aTL only included NanoDrop DNA

381 concentration as a significant predictor (TapeStation metrics were not included in models for
382 buffy coat). The top-ranked model set in PBMC included DIN, % unfragmented and severely
383 fragmented DNA, A260/280, and TapeStation and NanoDrop concentrations, but only DIN and
384 TapeStation concentration predicted PBMC aTL. Across all tissues, Δ AIC values for null
385 intercept-only models were ≥ 17.00 and for null age-only models, were ≥ 7.85 (**Table S7**),
386 suggesting that inclusion of DNA metrics significantly improved model fits of aTL beyond that of
387 chronological age alone. However, there were no consistent variables across tissues in the top
388 model sets.

389

390 **Table 5. Conditional model-averaged coefficients for the top models sets ($\Delta AIC \leq 2$) investigating the relative importance**
 391 **among DNA metrics in improving model fit of aTL values, split by tissue type.** For each DNA metric in the top model set, we
 392 also provide variable importance (VIMP), or the sum of model weights across all top models that contain each DNA metric,
 393 standardized by the sum of model weights of the top model set. A VIMP value equal to 1 means that variable was present in all
 394 models in the top model set. For race, B/O refer to estimates of aTL for Blacks and Other relative to Whites.

	Buccal		Saliva		DBS		Buffy Coat		PBMC	
	β (SE)	VIMP	β (SE)	VIMP	β (SE)	VIMP	β (SE)	VIMP	β (SE)	VIMP
Age	-0.05 (0.01)*	1.00	-0.05 (0.02)*	1.00	-0.08 (0.02)*	1.00	-0.09 (0.18)	0.18	-0.08 (0.20)*	1.00
Sex	-0.49 (0.40)	0.35	-0.49 (0.60)	0.19			-0.61 (0.55)	0.25	-1.42 (0.61)	1.00
Race	B 1.81 (1.01) O 0.13 (0.62)	0.21	3.86 (1.69) -0.14 (0.99)	0.78	3.17 (1.45) -0.45 (0.88)	0.55				
DIN	-1.16 (.23)*	0.44			-0.54 (0.39)	0.53			1.39 (0.54)	0.67
%Unfragmented (> 3000 bp)									0.12 (0.10)	0.15
%Highly Fragmented (250–3000 bp)	0.12 (0.02)*	0.56								
%Severely Fragmented (<250 bp)			-0.63 (0.09)*	1.00					-0.74 (0.89)	0.15
A260/280			-2.99 (3.62)	0.19	6.51 (1.98)*	0.12			20.83 (15.39)	0.44
A260/230	6.17 (0.92)*	1.00			2.60 (0.75)*	0.88				
TapeStation	0.01 (0.01)	0.37			0.26 (0.07)*	1.00			0.003 (0.003)	0.15
PicoGreen	0.008 (0.01)	0.06					0.004 (0.001)*	1.00	0.005 (0.002)*	0.32
Nanodrop										

*p < 0.01 after FDR

396 Discussion

397 We assessed tissue variation in aTL in a cross-sectional dataset of 8- to 70-year-old individuals.

398 To our knowledge, this is one of a few studies to compare TL between a selection of invasively

399 and non-invasively sampled tissues in a cohort that includes both children and adults. aTL

400 significantly shortened with chronological age for all tissues except saliva and buffy coat, the

401 latter of which had a restricted age range (i.e., 8 to 15 years). aTL varied by tissue, particularly

402 between blood and non-blood tissues. Despite this variation, aTL was correlated across most

403 tissue pairs. We also observed variation in metrics of DNA integrity, purity, and quantity and

404 explored whether controlling for such variation improved predictions of aTL. Many metrics were

405 correlated: higher extracted DNA concentration was associated with higher DIN and more

406 acceptable A260/230 values. DNA metrics varied by tissue, and blood-based tissues (especially

407 PBMC and buffy coat) had higher integrity and quantity DNA. Cross-tissue variation in DNA

408 qualities may help drive variation in aTL, and we provided evidence that longer aTL is linked to

409 higher DIN, DNA concentrations, and to some extent, A260/230 values. Model comparisons

410 suggest that incorporation of DNA metrics significantly improves predictions of aTL, although

411 important metrics vary by tissue. These results highlight potential considerations for tissue

412 selection in future population-based studies of TL and the value of incorporating quality DNA

413 metrics as control variables to improve TL prediction.

414 Tissues significantly differed in aTL values and age-related changes in aTL. In particular, non-

415 invasively sampled tissues (buccal cells and saliva) had shorter aTL than blood-based tissues

416 [similar to 35]. This does contrast with other work in which saliva TL is longer than blood [60,

417 61]; however, methodological differences may drive this discrepancy. Tissue type often maps

418 onto variation in TL [34-37] and is likely due to tissue-specific cell composition and turnover

419 rates, stem 'cellness', and TL maintenance [28, 30, 33]. Similar TL regulation among related

420 tissues may explain why aTL of blood-based tissues were similar, and such physiology may
421 also influence rates of TL attrition. Here, all tissues *except* saliva and buffy coat shortened with
422 age: aTL of buccal, DBS, and PBMC decreased by ~120 bp/year, but only by 18 and 48 bp/year
423 for saliva and buffy coat, respectively. 120 bp/year is higher than previous estimates, i.e., well
424 below 100 bp/year for most tissues [34, 62]. Null associations between age and aTL buffy coat
425 could be explained by a narrow age range within the child cohort (8-15 years).

426 While aTL decreased with chronological age for most tissue types, it was not significantly linked
427 with other external validity metrics, including sex and race. Previous work often reveals longer
428 TL in females than males [48, 63], although this pattern varies across vertebrates [47]. Here,
429 sex differences may be masked by the relatively larger variation in aTL among tissue types. In
430 addition, TL is often found to be longer in individuals self-identifying as non-Hispanic Black
431 relative to non-Hispanic White [2, 49, but see 64], an effect that we cannot fully test due to the
432 limited racial/ethnic diversity of participants in this study.

433 Complementing the rapidly-growing number of TL studies in epidemiology is additional research
434 on the consequences of variation in TL methodology on measurement validity and research
435 outcomes [24-26], including sample collection, storage, extraction, and TL measurement assay.
436 Yet, whether and how sample-specific metrics of DNA quality influence TL is unexplored. DNA
437 degradation and amount are used to predict genotyping success [65] and has become
438 particularly relevant for degraded forensic samples [66]. Similarly, poorer-quality DNA may
439 interfere with telomere assay precision and/or yield inaccurately short TL values. Here,
440 assessing variation in quality DNA metrics has revealed several patterns.

441 First, tissues differed in DNA integrity, purity, and quantity. Results show that blood-based
442 tissues (buffy coat and PBMCs) had higher quality DNA, namely higher and less variable DNA
443 integrity, less variable A260/280, more acceptable A260/230, and higher extracted DNA

444 concentrations. On the other hand, buccal cells and DBS had the lowest DIN and A260/280
445 values, respectively. Few other studies have compared DNA metrics by tissue, but Lucena-
446 Aguilar [41] showed that DNA purity and integrity were lower in formalin-fixed paraffin-
447 embedded tissues compared to frozen tissues and saliva. In addition, Hansen et al. [40] showed
448 that DNA quality was highest in blood, and surprisingly saliva, when compared to DNA from
449 buccal cells. Interestingly, DIN was higher and A260/280 was lower in older individuals,
450 although the former could be an artifact driven by high PBMC (adult-only tissue) DIN. Age
451 differences may also stem from age-related changes in cell composition or amount and ease of
452 tissue collection [67].

453 Second, many metrics of DNA integrity, purity, and quantity were significantly correlated. As
454 expected, high DIN values were associated with increased percentages of unfragmented DNA,
455 and DNA concentration was correlated across all three quantification methods (i.e., NanoDrop,
456 PicoGreen, and TapeStation). Interestingly, high extracted DNA concentrations for the majority
457 of tissue types were associated with high DNA integrity and A260/230, the latter of which has
458 been shown in human saliva [41]. This may be expected if we assume that samples with high
459 extracted DNA concentrations come from tissues with higher cellular density, as exemplified by
460 the higher DNA concentrations of buffy coat and PBMCs vs non-blood tissues, and relative to
461 DBS cards, which were collected from whole blood and thereby included a large proportion of
462 non-nucleated red blood cells. In this case, samples with increased cellular density (and higher
463 DNA concentration) may degrade less during storage and extraction and be less susceptible to
464 organic or protein contamination. Given that DNA integrity may influence telomere assays, it
465 may therefore be important to minimize variation in and correlations among DNA metrics by
466 standardizing sample inputs during extraction by volume and cell counts.

467

468 Next, we assessed whether variation in quality metrics of DNA improved models of aTL.

469 Interestingly, longer aTL was associated with lower % DNA fragmentation, higher DNA

470 concentrations, and more acceptable (or closer to 2.0) A260/230. That the extracted DNA

471 concentration predicts aTL *despite* a standardized amount of DNA being put into TL reactions

472 suggests that controlling for or reducing variation in extracted DNA concentration could be vital

473 to decreasing noise in aTL outputs. Interestingly, saliva aTL appears consistently and strongly

474 associated with DNA metrics (i.e., DIN, A260/230, DNA concentration), and so incorporating

475 these metrics may be vital in certain tissue types. In fact, model comparisons show that

476 incorporation of DNA metrics into aTL models significantly improved model fit, as age-only null

477 models had much greater Δ AIC values than models with age and DNA metrics. However,

478 across tissues, there were no quality metrics of DNA that appeared more often in top-ranked

479 sets, i.e., most DNA metrics appeared in 2-3 tissues' top-ranked model sets. Tissues exhibiting

480 a low-quality 'tail' for a specific DNA metric were more likely to have that DNA metric appear as

481 predictive of aTL for that tissue. For example, buccal and DBS have low-DIN and low-A260/280

482 'tails', respectively, and here, their aTLs are significantly related to those metrics. Future studies

483 should continue to assess the importance of quality metrics of DNA to improve models of TL.

484 We acknowledge certain limitations of this study. First, tissue types collected from the child and

485 adult cohorts were unbalanced. The child cohort did not have PBMCs isolated from whole

486 blood, while the adult cohort did not have buffy coat. This restricted the age range of the dataset

487 when evaluating cross-tissue and cross-age variations of aTL and DNA metrics, which may

488 explain the non-significant shortening of TL with age observed in buffy coat. Second,

489 TapeStation metrics were not measured for all child samples, which limited the power to

490 examine their associations with age and aTL, especially in buffy coat, a child-only tissue.

491 Additionally, we did not control for several factors that may induce variation in aTL, including

492 blood cell proportions for blood-based tissues [68] and factors like exposures and lifestyles that
493 are linked to TL dynamics in previous work [69, 70].

494 How might this information inform future population-based studies of TL? As shown in limited
495 previous work [41], blood-based samples exhibited the highest quality DNA and therefore, may
496 be preferred for reliable measurement of TL. Buffy coat and PBMCs exhibited high DNA
497 integrity and more acceptable A260/280 and A260/230 values compared to less invasive tissues
498 like buccal and saliva, which appear to exhibit more variable and lower quality DNA metrics.

499 DBS, as a minimally invasive tissue, had similar aTL values to PBMC and buffy coat, and can
500 be an alternative to blood-based samples, especially in pediatric populations. Saliva in particular
501 had lower DNA integrity and aTL values that were strongly influenced by metrics of DNA quality
502 and did not significantly decrease with age despite being measured in both the child and adult
503 cohorts. That previous work supports saliva as an acceptable alternative to blood [40, 41]
504 conflicts with our results and suggests the need for additional tissue comparisons of DNA quality
505 metrics. However, not all new or ongoing studies can rely on blood-based tissues. In this case,
506 our results show that quantifying sample-specific metrics of DNA quality for use in model
507 predictions of TL can improve model fits of the data, thereby strengthening the signal of
508 exogenous predictors of TL and the utility of TL as a proxy for health-related outcomes.

509 Alternative to controlling for variation in DNA metrics, standardizing DNA extractions to yield
510 consistent concentrations could also minimize methodological impacts on TL measures. We
511 encourage further study of variation in quality metrics of DNA across tissues and how it may
512 mediate variation in TL, which can help inform how to select tissues and/or control for
513 differences in DNA quality in future population-based telomere studies.

514

515

516 Acknowledgements

517 We thank the children and caregivers for their participation in the study, Child Health Study staff,
518 all nurses at the CRC and the adult participants in this study.

519

520 References

- 521 1. Blackburn EH. Structure and Function of Telomeres. *Nature*. 1991;350(6319):569-73.
- 522 2. Codd V, Denniff M, Swinfield C, Warner S, Papakonstantinou M, Sheth S, et al. Measurement and Initial Characterization of Leukocyte Telomere Length in 474,074 Participants in UK Biobank. *Nature Aging*. 2022;2(2):170-9.
- 523 3. Lapham K, Kvale MN, Lin J, Connell S, Croen LA, Dispensa BP, et al. Automated Assay of Telomere Length Measurement and Informatics for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (Gera) Cohort. *Genetics*. 2015;200(4):1061-72.
- 524 4. Müezzinler A, Zaineddin AK, Brenner H. A Systematic Review of Leukocyte Telomere Length and Age in Adults. *Ageing research reviews*. 2013;12(2):509-19.
- 525 5. Ye Q, Apsley AT, Etzel L, Hastings WJ, Kozlosky JT, Walker C, et al. Telomere Length and Chronological Age across the Human Lifespan: A Systematic Review and Meta-Analysis of 414 Study Samples Including 743,019 Individuals. *Ageing Research Reviews*. 2023;102031.
- 526 6. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of Seven Loci Affecting Mean Telomere Length and Their Association with Disease. *Nature genetics*. 2013;45(4):422.
- 527 7. Kuo CL, Pilling LC, Kuchel GA, Ferrucci L, Melzer D. Telomere Length and Aging-Related Outcomes in Humans: A Mendelian Randomization Study in 261,000 Older Participants. *Aging Cell*. 2019;18(6):e13017.

540 8. Zhang C, Doherty JA, Burgess S, Hung RJ, Lindström S, Kraft P, et al. Genetic
541 Determinants of Telomere Length and Risk of Common Cancers: A Mendelian Randomization
542 Study. *Human molecular genetics*. 2015;24(18):5356-66.

543 9. Oliveira BS, Zunzunegui MV, Quinlan J, Fahmi H, Tu MT, Guerra RO. Systematic
544 Review of the Association between Chronic Social Stress and Telomere Length: A Life Course
545 Perspective. *Ageing research reviews*. 2016;26:37-52.

546 10. Passos JDC, Felisbino K, Laureano HA, Guioski IC. Occupational Exposure to
547 Pesticides and Its Association with Telomere Length-a Systematic Review and Meta-Analysis.
548 *Science of The Total Environment*. 2022;157715.

549 11. Pepper GV, Bateson M, Nettle D. Telomeres as Integrative Markers of Exposure to
550 Stress and Adversity: A Systematic Review and Meta-Analysis. *Royal Society open science*.
551 2018;5(8):180744.

552 12. Shalev I, Moffitt TE, Sugden K, Williams B, Houts RM, Danese A, et al. Exposure to
553 Violence During Childhood Is Associated with Telomere Erosion from 5 to 10 Years of Age: A
554 Longitudinal Study. *Molecular Psychiatry*. 2013;18(5):576-81.

555 13. Forero DA, Gonzalez-Giraldo Y, Lopez-Quintero C, Castro-Vega LJ, Barreto GE, Perry
556 G. Meta-Analysis of Telomere Length in Alzheimer's Disease. *Journals of Gerontology Series A:*
557 *Biomedical Sciences and Medical Sciences*. 2016;71(8):1069-73.

558 14. Georgin-Lavialle S, Aouba A, Mounthon L, Londono-Vallejo JA, Lepelletier Y, Gabet AS,
559 et al. The Telomere/Telomerase System in Autoimmune and Systemic Immune-Mediated
560 Diseases. *Autoimmunity Reviews*. 2010;9(10):646-51.

561 15. Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P. Leucocyte
562 Telomere Length and Risk of Cardiovascular Disease: Systematic Review and Meta-Analysis.
563 *Bmj*. 2014;349.

564 16. Ma H, Zhou Z, Wei S, Liu Z, Pooley KA, Dunning AM, et al. Shortened Telomere Length
565 Is Associated with Increased Risk of Cancer: A Meta-Analysis. *PloS one*. 2011;6(6):e20466.

566 17. Arbeev KG, Verhulst S, Steenstrup T, Kark JD, Bagley O, Kooperberg C, et al.
567 Association of Leukocyte Telomere Length with Mortality among Adult Participants in 3
568 Longitudinal Studies. *JAMA network open*. 2020;3(2):e200023-e.
569 18. Rode L, Nordestgaard BG, Bojesen SE. Peripheral Blood Leukocyte Telomere Length
570 and Mortality among 64 637 Individuals from the General Population. *JNCI: Journal of the*
571 *National Cancer Institute*. 2015;107(6).
572 19. Wang Q, Zhan Y, Pedersen NL, Fang F, Hägg S. Telomere Length and All-Cause
573 Mortality: A Meta-Analysis. *Ageing research reviews*. 2018;48:11-20.
574 20. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. *Geroscience: Linking Aging to Chronic Disease*. *Cell*. 2014;159(4):709-13.
575 21. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. *Hallmarks of Aging: An Expanding Universe*. *Cell*. 2023.
576 22. Vaiserman A, Krasnienkov D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. *Front Genet*. 2020;11:630186.
577 23. Hastings WJ, Shalev I, Belsky DW. Translating Measures of Biological Aging to Test Effectiveness of Geroprotective Interventions: What Can We Learn from Research on Telomeres? *Front Genet*. 2017;8:164.
578 24. Haussmann MF, Salomons H, Verhulst S. Telomere Measurement Tools: Telometric Produces Biased Estimates of Telomere Length. *Heredity*. 2011;107(4):371-.
579 25. Lin J, Smith DL, Esteves K, Drury S. Telomere Length Measurement by Qpcr—Summary of Critical Factors and Recommendations for Assay Design. *Psychoneuroendocrinology*.
580 2019;99:271-8.
581 26. Lindrose AR, McLester-Davis LW, Tristano RI, Kataria L, Gadalla SM, Eisenberg DT, et al. Method Comparison Studies of Telomere Length Measurement Using Qpcr Approaches: A Critical Appraisal of the Literature. *PLoS One*. 2021;16(1):e0245582.

591 27. Lin J, Verhulst S, Fernandez Alonso C, Dagnall C, Gadalla S, Hastings W, et al. Effects
592 of DNA Extraction, DNA Integrity, and Laboratory on the Precision of Qpcr-Based Telomere
593 Length Measurement-a Multi-Lab Impartial Study. *bioRxiv*. 2022;2022.12. 14.520438.

594 28. Gammaitoni L, Weisel KC, Gunetti M, Wu K-D, Bruno S, Pinelli S, et al. Elevated
595 Telomerase Activity and Minimal Telomere Loss in Cord Blood Long-Term Cultures with
596 Extensive Stem Cell Replication. *Blood*. 2004;103(12):4440-8.

597 29. Haussmann MF, Winkler DW, Huntington CE, Nisbet IC, Vleck CM. Telomerase Activity
598 Is Maintained Throughout the Lifespan of Long-Lived Birds. *Experimental Gerontology*.
599 2007;42(7):610-8.

600 30. Ludlow AT, Witkowski S, Marshall MR, Wang J, Lima LC, Guth LM, et al. Chronic
601 Exercise Modifies Age-Related Telomere Dynamics in a Tissue-Specific Fashion. *Journals of
602 Gerontology Series A: Biomedical Sciences and Medical Sciences*. 2012;67(9):911-26.

603 31. Monteiro J, Batliwalla F, Ostrer H, Gregersen PK. Shortened Telomeres in Clonally
604 Expanded Cd28-Cd8+ T Cells Imply a Replicative History That Is Distinct from Their Cd28+
605 Cd8+ Counterparts. *Journal of immunology (Baltimore, Md: 1950)*. 1996;156(10):3587-90.

606 32. Rufer N, Brümmendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, et al.
607 Telomere Fluorescence Measurements in Granulocytes and T Lymphocyte Subsets Point to a
608 High Turnover of Hematopoietic Stem Cells and Memory T Cells in Early Childhood. *The
609 Journal of experimental medicine*. 1999;190(2):157-68.

610 33. Ulaner GA, Hu JF, Vu TH, Giudice LC, Hoffman AR. Tissue-Specific Alternate Splicing
611 of Human Telomerase Reverse Transcriptase (Htert) Influences Telomere Lengths During
612 Human Development. *International Journal of Cancer*. 2001;91(5):644-9.

613 34. Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, et al. Telomeres Shorten
614 at Equivalent Rates in Somatic Tissues of Adults. *Nature communications*. 2013;4:1597.

615 35. Demanelis K, Jasmine F, Chen LS, Chernoff M, Tong L, Delgado D, et al. Determinants
616 of Telomere Length across Human Tissues. *Science*. 2020;369(6509):eaaz6876.

617 36. Goldman EA, Eick GN, Compton D, Kowal P, Snodgrass JJ, Eisenberg DTA, et al.
618 Evaluating Minimally Invasive Sample Collection Methods for Telomere Length Measurement.
619 American Journal of Human Biology. 2018;30(1):e23062.

620 37. Zanet DL, Saberi S, Oliveira L, Sattha B, Gadawski I, Côté HC. Blood and Dried Blood
621 Spot Telomere Length Measurement by Qpcr: Assay Considerations. PloS one.
622 2013;8(2):e57787.

623 38. McLester-Davis LW, Estrada P, Hastings WJ, Kataria LA, Martin NA, Siebeneicher JT, et
624 al. A Review and Meta-Analysis: Cross-Tissue Telomere Length Correlations in Healthy
625 Humans. Ageing Research Reviews. 2023:101942.

626 39. Geronimus AT, Bound J, Mitchell C, Martinez-Cardoso A, Evans L, Hughes L, et al.
627 Coming up Short: Comparing Venous Blood, Dried Blood Spots & Saliva Samples for
628 Measuring Telomere Length in Health Equity Research. PloS one. 2021;16(8):e0255237.

629 40. Hansen TvO, Simonsen MK, Nielsen FC, Hundrup YA. Collection of Blood, Saliva, and
630 Buccal Cell Samples in a Pilot Study on the Danish Nurse Cohort: Comparison of the Response
631 Rate and Quality of Genomic DNA. Cancer Epidemiology Biomarkers & Prevention.
632 2007;16(10):2072-6.

633 41. Lucena-Aguilar G, Sánchez-López AM, Barberán-Aceituno C, Carrillo-Avila JA, López-
634 Guerrero JA, Aguilar-Quesada R. DNA Source Selection for Downstream Applications Based on
635 DNA Quality Indicators Analysis. Biopreservation and biobanking. 2016;14(4):264-70.

636 42. Ridout KK, Levandowski M, Ridout SJ, Gantz L, Goonan K, Palermo D, et al. Early Life
637 Adversity and Telomere Length: A Meta-Analysis. Molecular Psychiatry. 2018;23(4):858-71.

638 43. Hu R, Hua XG, Jiang QC. Associations of Telomere Length in Risk and Recurrence of
639 Prostate Cancer: A Meta-Analysis. Andrologia. 2019;51(7):e13304.

640 44. Cawthon RM, Smith KR, O'Brien E, Sivatchenko A, Kerber RA. Association between
641 Telomere Length in Blood and Mortality in People Aged 60 Years or Older. The Lancet.
642 2003;361(9355):393-5.

643 45. Atzmon G, Cho M, Cawthon RM, Budagov T, Katz M, Yang X, et al. Genetic Variation in
644 Human Telomerase Is Associated with Telomere Length in Ashkenazi Centenarians.
645 Proceedings of the National Academy of Sciences. 2010;107(suppl_1):1710-7.

646 46. Schreier HM, Heim CM, Rose EJ, Shalev I, Shenk CE, Noll JG. Assembling a Cohort for
647 in-Depth, Longitudinal Assessments of the Biological Embedding of Child Maltreatment:
648 Methods, Complexities, and Lessons Learned. Development and psychopathology.
649 2021;33(2):394-408.

650 47. Remot F, Ronget V, Froy H, Rey B, Gaillard J-M, Nussey DH, et al. No Sex Differences
651 in Adult Telomere Length across Vertebrates: A Meta-Analysis. Royal Society open science.
652 2020;7(11):200548.

653 48. Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, et al. Gender and Telomere
654 Length: Systematic Review and Meta-Analysis. Experimental gerontology. 2014;51:15-27.

655 49. Brown L, Needham B, Ailshire J. Telomere Length among Older Us Adults: Differences
656 by Race/Ethnicity, Gender, and Age. Journal of aging and health. 2017;29(8):1350-66.

657 50. Koontz D, Baecher K, Amin M, Nikolova S, Gallagher M, Dollard S. Evaluation of DNA
658 Extraction Methods for the Detection of Cytomegalovirus in Dried Blood Spots. Journal of
659 Clinical Virology. 2015;66:95-9.

660 51. O'Callaghan NJ, Fenech M. A Quantitative Pcr Method for Measuring Absolute Telomere
661 Length. Biological procedures online. 2011;13:1-10.

662 52. Hastings WJ, Shalev I. Telomere Length Measurement Using Qpcr 2022 [updated July
663 20, 2022. Available from: <https://trn.tulane.edu/wp-content/uploads/sites/445/2023/01/Shalev-TL-Measurement-Protocol-for-TRN.pdf>.

665 53. Hastings WJ, Eisenberg DT, Shalev I. Uninterruptible Power Supply Improves Precision
666 and External Validity of Telomere Length Measurement Via Qpcr. Experimental results.
667 2020;1:e52.

668 54. Lindrose A, Drury S. Minimum Reporting Recommendations for Pcr-Based Telomere
669 Length Measurement. 2020.

670 55. Pinheiro J, Bates D, DebRoy S, Sarkar D. *Nlme: Linear and Nonlinear Mixed Effects*
671 *Models*. 2019.

672 56. Lenth R. *Emmeans: Estimated Marginal Means, Aka Least-Squares Means*. 2019.

673 57. Makowski D, Ben-Shachar MS, Patil I, Lüdecke D. Methods and Algorithms for
674 Correlation Analysis in R. *Journal of Open Source Software*. 2020;5(51):2306.

675 58. Barton K. *Mumin: Multi-Model Inference*. 2019.

676 59. Burnham K, Anderson D. *Model Selection and Multimodal Inference: A Practical*
677 *Information-Theoretic Approach*. 2nd ed. New York: Springer; 2002.

678 60. Mitchell C, Hobcraft J, McLanahan SS, Siegel SR, Berg A, Brooks-Gunn J, et al. Social
679 Disadvantage, Genetic Sensitivity, and Children's Telomere Length. *Proceedings of the National*
680 *Academy of Sciences*. 2014;111(16):5944-9.

681 61. Stout SA, Lin J, Hernandez N, Davis EP, Blackburn E, Carroll JE, et al. Validation of
682 Minimally-Invasive Sample Collection Methods for Measurement of Telomere Length. *Frontiers*
683 *in aging neuroscience*. 2017;9:397.

684 62. Takubo K, Aida J, Izumiya-Shimomura N, Ishikawa N, Sawabe M, Kurabayashi R, et
685 al. Changes of Telomere Length with Aging. *Geriatrics & gerontology international*.
686 2010;10:S197-S206.

687 63. Barrett EL, Richardson DS. Sex Differences in Telomeres and Lifespan. *Aging Cell*.
688 2011;10(6):913-21.

689 64. Diez Roux AV, Ranjit N, Jenny NS, Shea S, Cushman M, Fitzpatrick A, et al.
690 Race/Ethnicity and Telomere Length in the Multi-Ethnic Study of Atherosclerosis. *Aging Cell*.
691 2009;8(3):251-7.

692 65. R. Hughes-Stamm S, J. Ashton K, Van Daal A. Assessment of DNA Degradation and
693 the Genotyping Success of Highly Degraded Samples. International journal of legal medicine.
694 2011;125:341-8.

695 66. Fondevila M, Phillips C, Naverán N, Cerezo M, Rodríguez A, Calvo R, et al. Challenging
696 DNA: Assessment of a Range of Genotyping Approaches for Highly Degraded Forensic
697 Samples. Forensic Science International: Genetics Supplement Series. 2008;1(1):26-8.

698 67. Hulstaert F, Hennet I, Deneys V, Munhyeshuli V, Reichert T, De Bruyère M, et al. Age-
699 Related Changes in Human Blood Lymphocyte Subpopulations: II. Varying Kinetics of
700 Percentage and Absolute Count Measurements. Clinical immunology and immunopathology.
701 1994;70(2):152-8.

702 68. Chen BH, Carty CL, Kimura M, Kark JD, Chen W, Li S, et al. Leukocyte Telomere
703 Length, T Cell Composition and DNA Methylation Age. Aging (Albany NY). 2017;9(9):1983.

704 69. Price LH, Kao HT, Burgers DE, Carpenter LL, Tyrka AR. Telomeres and Early-Life
705 Stress: An Overview. Biol Psychiatry. 2013;73(1):15-23.

706 70. Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J, et al. Stress and
707 Telomere Biology: A Lifespan Perspective. Psychoneuroendocrinology. 2013;38(9):1835-42.
708

709 **Supporting Information**

710 **S1 Table. Telomere Research Network Reporting Guidelines**

711 **S2 Table. Number of winsorized data points for each continuous variable, split by cohort**
712 **and tissue.** Outliers are defined as values outside the range of (Q1-1.5IQR) to (Q3+1.5IQR) for
713 each cohort-tissue subset of data points, where Q1 and Q3 are lower and upper quartiles
714 respectively, and IQR is the interquartile ratio. Outlier values were winsorized to the boundary
715 values of this range. 295/5891 (5.0%) datapoints were winsorized across the study.

716 **S3 Table. Summary of coefficient outputs for models predicting aTL and metrics of DNA
717 integrity, purity, and quantity with tissue type and sample demographics.**

718 **S4 Table. Contrasts between tissues for each dependent variable, including aTL and
719 metrics of DNA integrity, purity, and quality.** Asterisks indicate significant p-values after
720 adjusting for multiple comparisons using the Benjamini-Hochberg method and controlling false
721 discovery rate (FDR) at < 0.01.

722 **S5 Table. Partial Spearman's ρ values for correlations between metrics of DNA integrity,
723 purity, and quantity, as shown in Fig 3 in the main text.**

724 **S6 Table. Partial Spearman's ρ values for correlations between metrics of DNA integrity,
725 purity, and quantity and aTL.**

726 **S7 Table. Top model sets ($\Delta\text{AICc} \leq 2$) for models predicting aTL with age, sex, race, and
727 metrics of DNA integrity, purity, and quantity,** in which no predictors were correlated above ρ
728 = 0.4. k = number of parameters in each candidate model, including the intercept; w_i = Akaike
729 model weight. Intercept-only and age-only null models are highlighted in gray for each tissue.

730 **S1 Fig. Histogram distributions of continuous variables of interest, before and after
731 winsorization (gray and blue distributions, respectively).** A datapoint was winsorized if it fell
732 outside the range of $(Q1 - 1.5\text{IQR})$ to $(Q3 + 1.5\text{IQR})$ for its respective cohort-tissue distribution of
733 data points, where Q1 and Q3 are lower and upper quartiles respectively, and the IQR is the
734 interquartile ratio. Outlier values were winsorized to the boundary values of this range. 375/6673
735 (5.6%) datapoints were winsorized across the study.

736 **S2 Fig. Biological variation in aTL with tissue type and sex for individuals ranging from 8
737 to 70 years old.** Buffy coat and PBMC are exclusive to child and adult cohorts, respectively.

738 **S3 Fig. Partial Spearman's correlations of aTL among tissue types, accounting for age**

739 **and sex and split by child and adult cohorts.** Ellipse shape and color denotes the strength

740 and direction of correlations. Significant correlations ($p < 0.05$) are indicated by an asterisk.

741 Buffy coat and PBMC are exclusive to the child or adult cohort, respectively.

742 **S4 Fig. Partial Spearman's correlations among metrics of DNA integrity, purity, and**

743 **quantity, split by cohort and tissue type, after accounting for age and sex of participants.**

744 Y-axis p values range from -1 to 1, and significant correlations ($p < 0.05$) are indicated by an

745 asterisk.

746 **S5 Fig. Partial Spearman's correlations between aTL and metrics of DNA integrity, purity,**

747 **and quantity, adjusted for age and sex and split by tissue and cohort.**

748

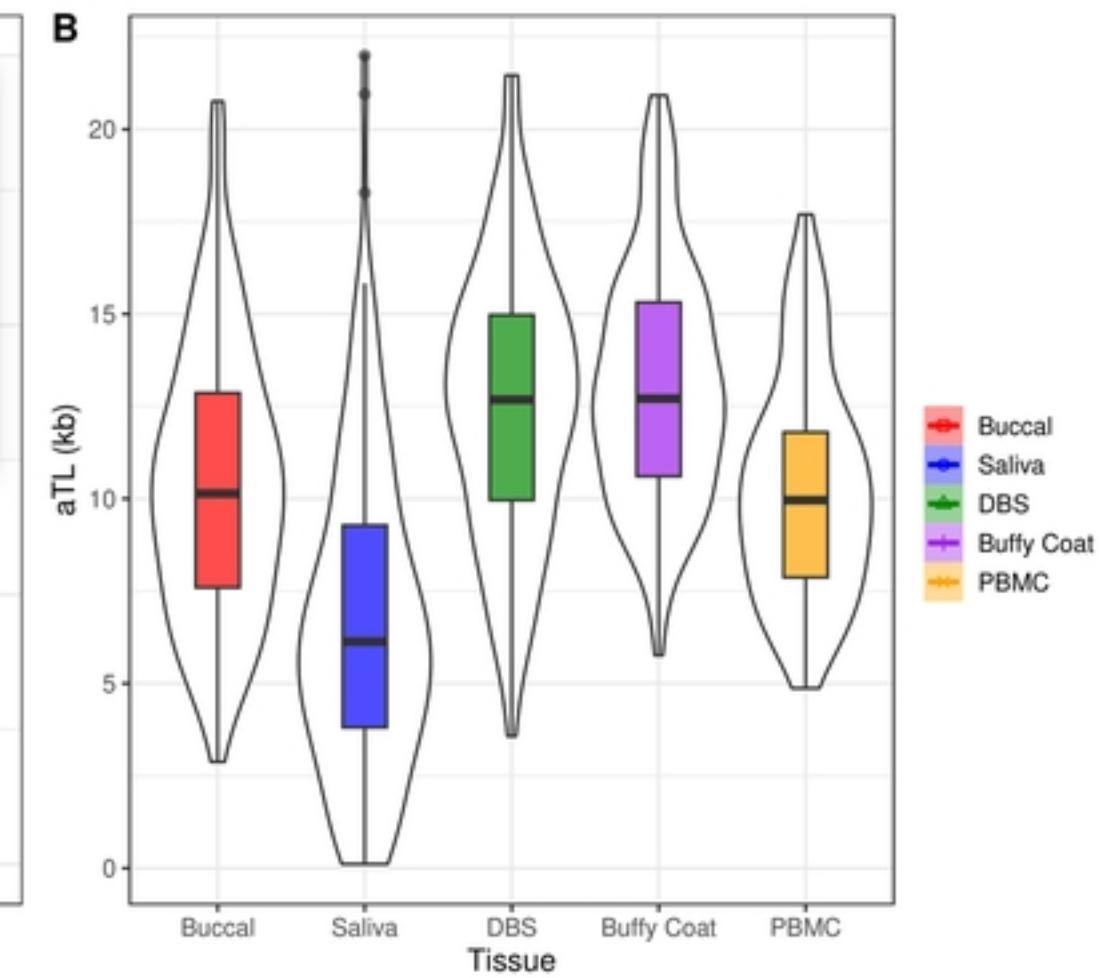
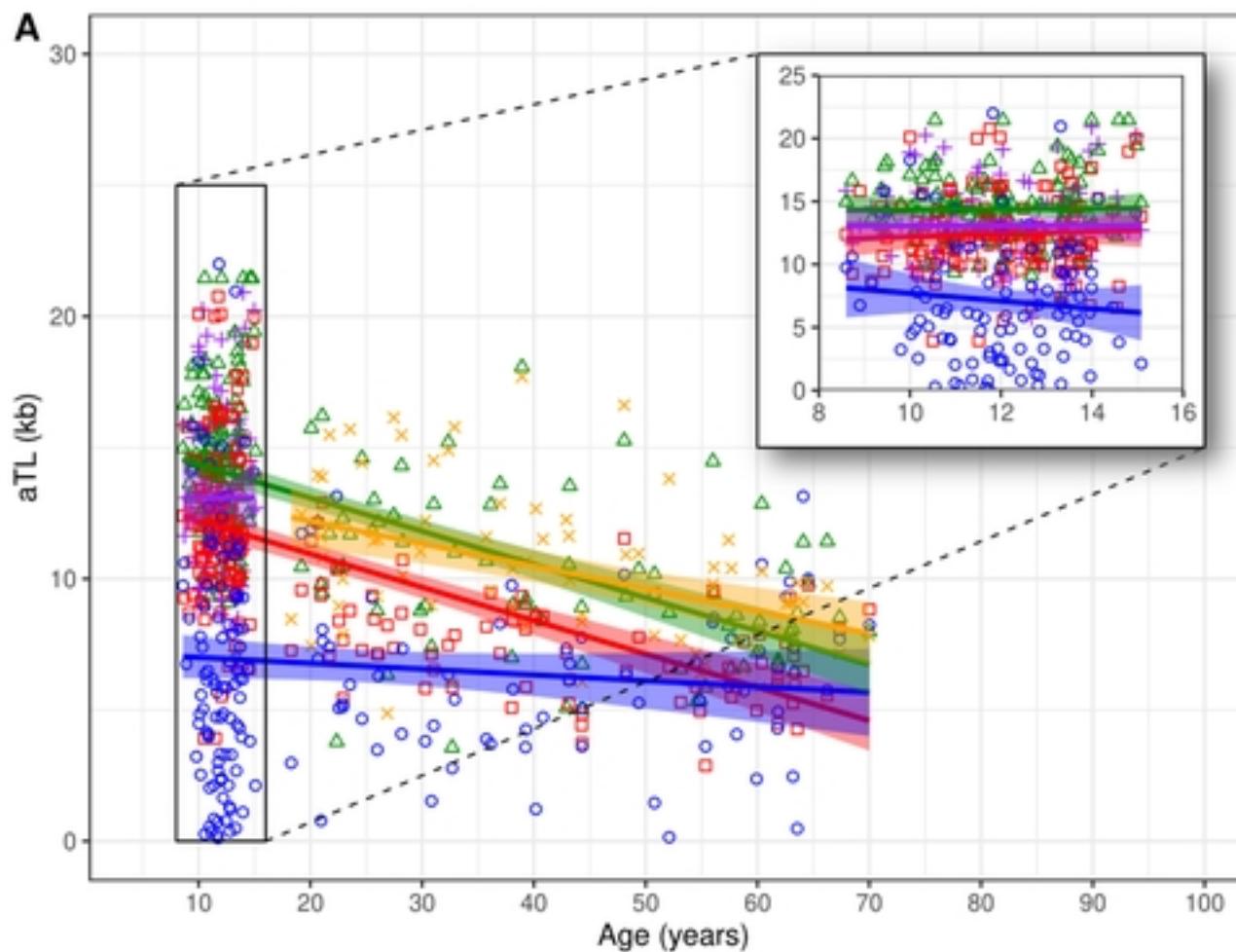



Figure 1

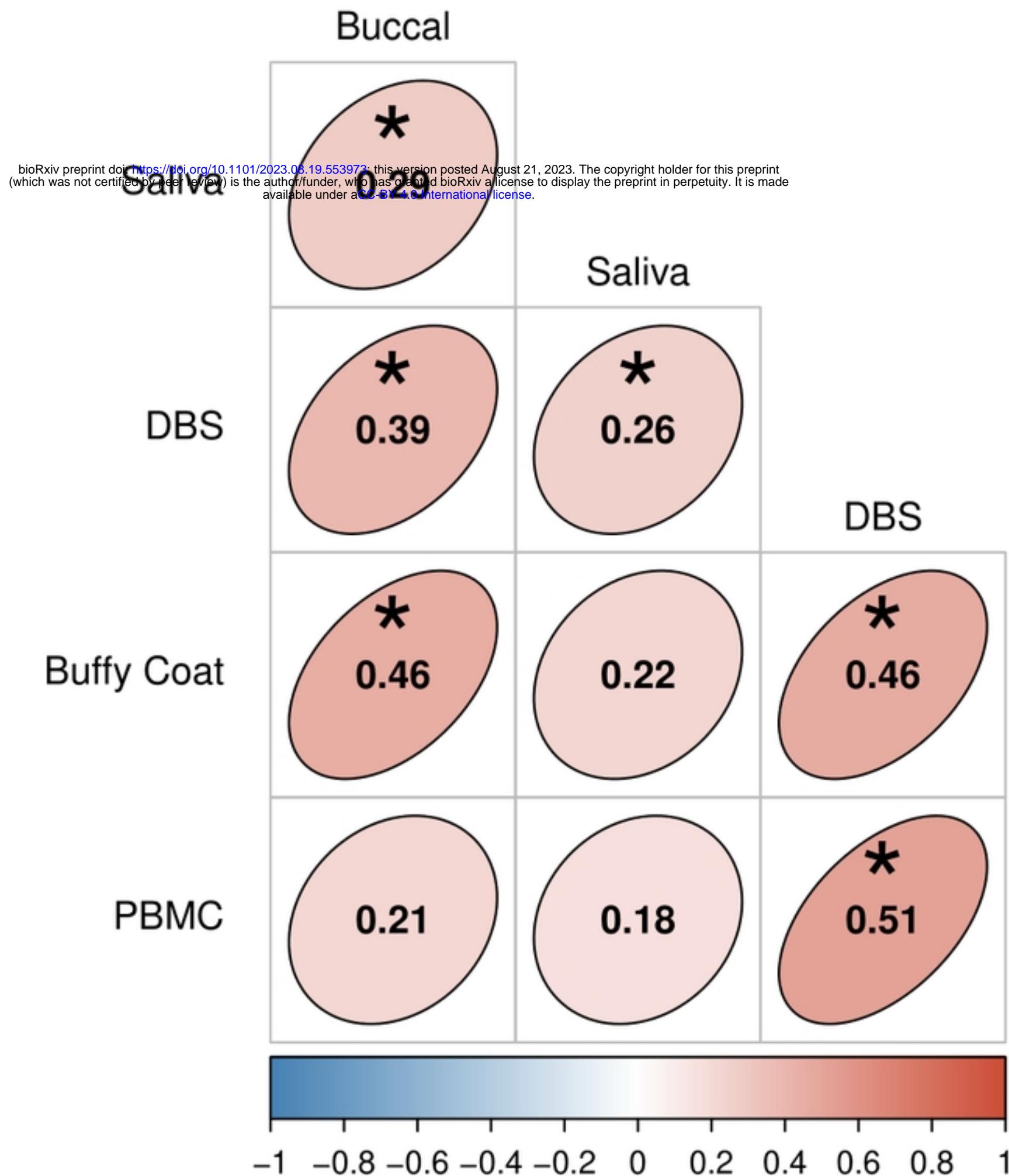


Figure 2

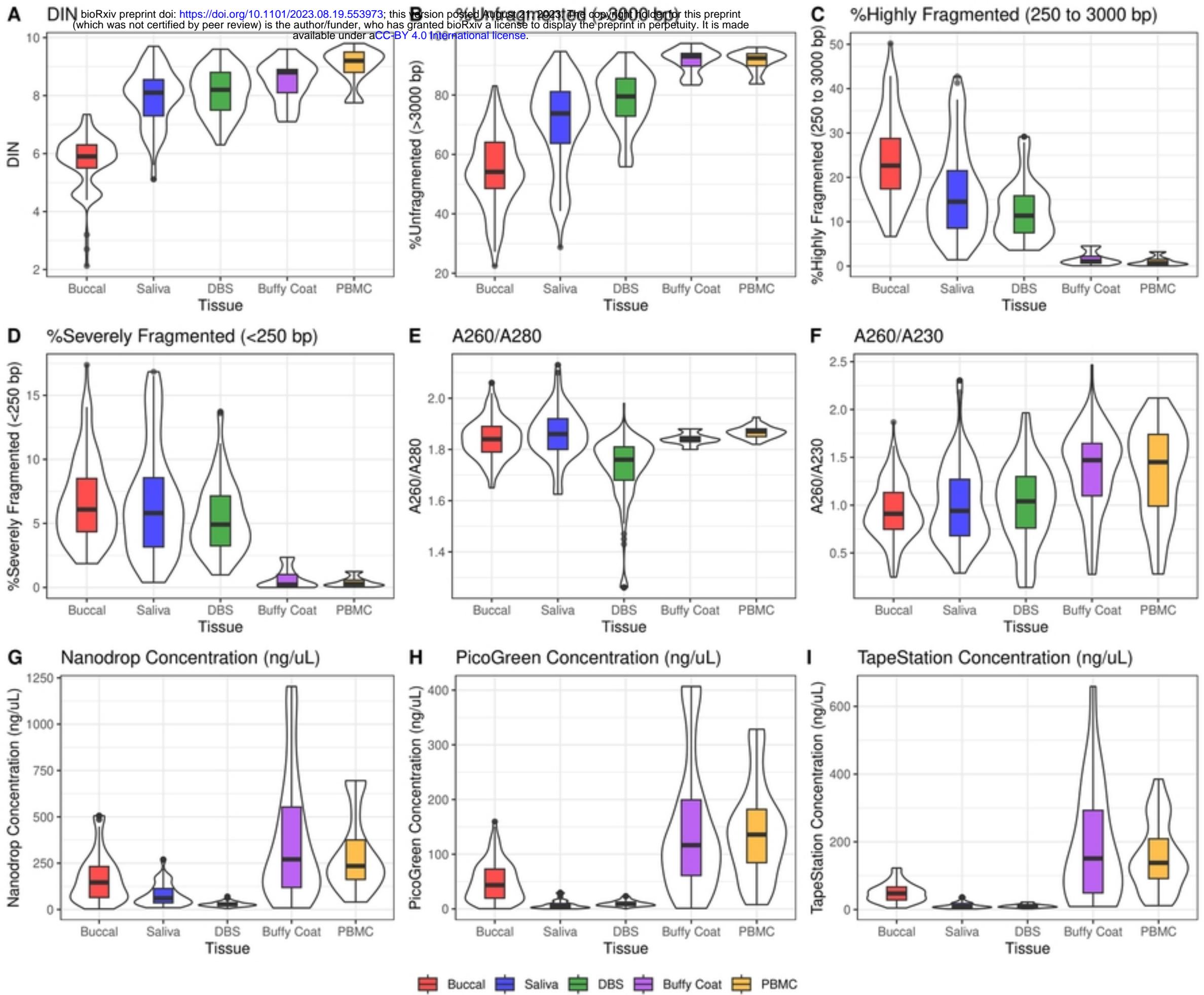


Figure 3

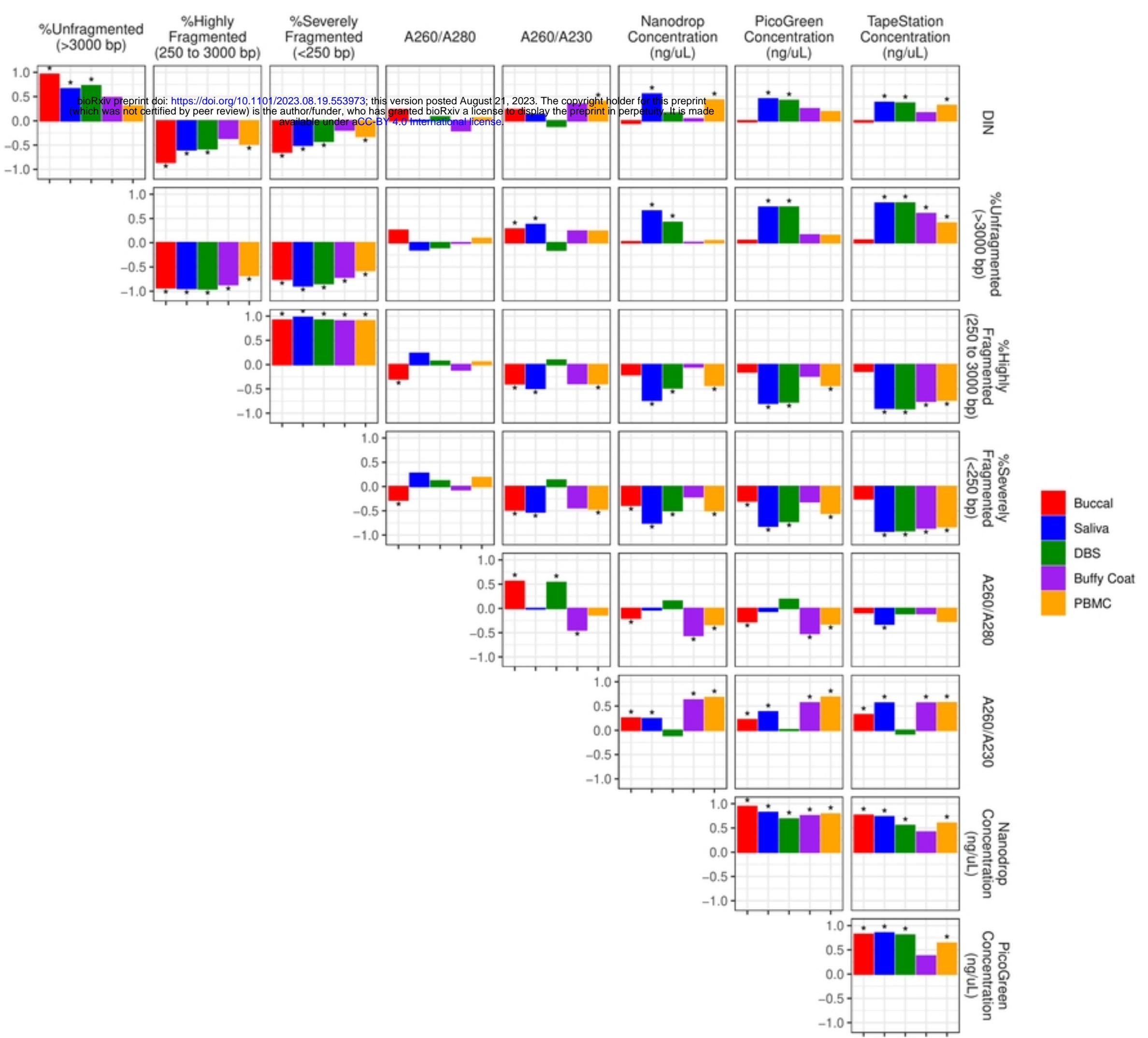


Figure 4

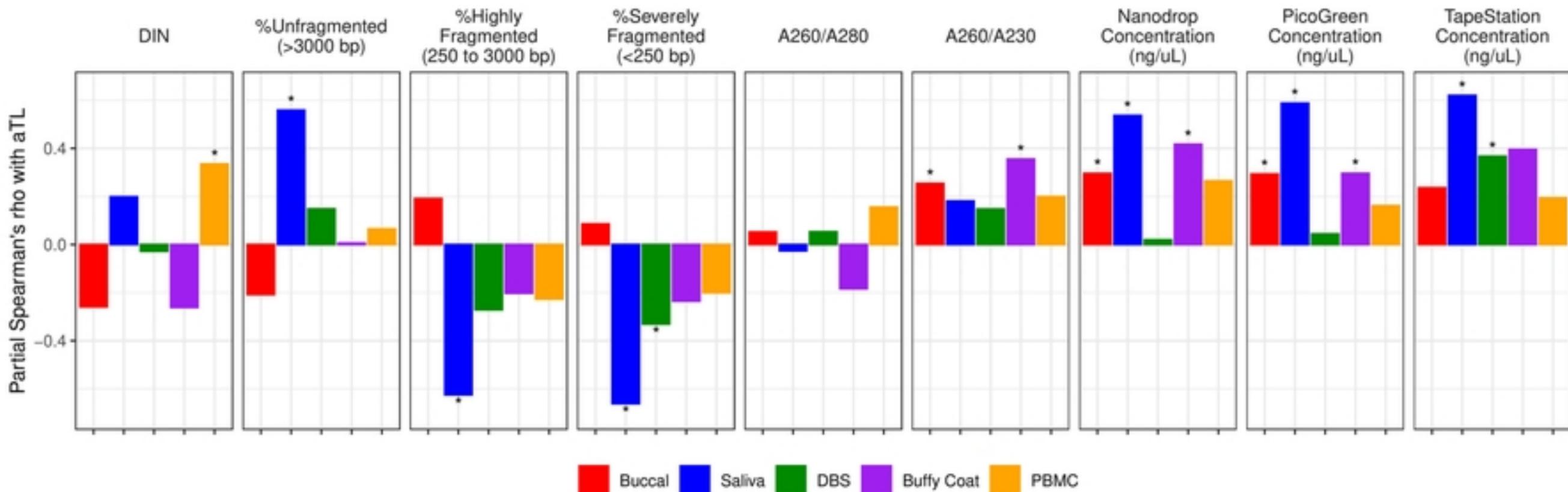


Figure 5