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ABSTRACT

Since SARS-CoV-2 emerged in late 2019, it spread from China to the rest of the world. 

An initial concern was the potential for vaccine- or antibody-enhanced disease (AED) as had 

been reported with other coronaviruses. To evaluate this, we first developed a ferret model by 

exposing ferrets to SARS-CoV-2 by either mucosal inoculation (intranasal/oral) or inhalation 

using a small particle aerosol. Mucosal inoculation caused a mild fever and weight loss that 

resolved quickly; inoculation via either route resulted in virus shedding detected in the nares, 

throat, and rectum for 7-10 days post-infection. To evaluate the potential for AED, we then 

inoculated groups of ferrets intravenously with 0.1, 0.5, or 1 mg/kg doses of a human polyclonal 

anti-SARS-CoV-2 IgG from hyper-immunized transchromosomic bovines (SAB-185). Twelve 

hours later, ferrets were challenged by mucosal inoculation with SARS-CoV-2. We found no 

significant differences in fever, weight loss, or viral shedding after infection between the three 

antibody groups or the controls. Signs of pathology in the lungs were noted in infected ferrets but 

no differences were found between control and antibody groups. The results of this study 

indicate that healthy, young adult ferrets of both sexes are a suitable model of mild COVID-19 

and that low doses of specific IgG in SAB-185 are unlikely to enhance the disease caused by 

SARS-CoV-2.
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INTRODUCTION

Coronaviruses (CoV) are positive-stranded RNA viruses of the family Coronaviridae in 

the order Nidovirales. Genome size ranges from 26-32 kb. In humans, coronaviruses are mostly 

associated with the ‘common’ cold, a mild disease that resolves in 7-10 days. In 2002 a novel 

coronavirus associated with severe acute respiratory syndrome (SARS-CoV) emerged in 

Guangdong province, China, with a ~10% case fatality rate.  The virus rapidly spread to other 

countries[1], but the outbreak was contained, resulting in 8,098 known cases and 774 deaths. A 

second novel coronavirus associated with severe disease emerged in the Middle East in 2012 

(Middle East Respiratory Syndrome; MERS); at 35%, MERS-CoV has the highest case fatality 

rate of the known zoonotic coronaviruses to date but does not readily spread human-to-

human[2]. In late 2019, another novel coronavirus (Severe Acute Respiratory Syndrome-

CoronaVirus-2, SARS-CoV-2) associated with severe respiratory disease (COVID-19) emerged 

in Wuhan, China [3, 4]. This new virus had sequence homology with the original SARS virus 

and was named SARS-CoV-2. Of the severe CoV, SARS-CoV-2 has the lowest case fatality rate 

but is the most readily transmissible, which accounts for its rapid spread across the globe. 

Considerable epidemiologic and virologic data support the notion that asymptomatic or pre-

symptomatic individuals infected with SARS-CoV-2 can transmit the virus [5-8]. Risk factors 

for severe or fatal disease include advanced age and co-morbidities such as heart disease, 

hypertension, obesity or diabetes [9]. 

One initial area of concern with SARS-CoV-2 was the potential for pre-existing, virus-

specific antibodies, such as those induced by vaccination, to enhance disease upon natural 

infection by the virus. In studies with feline peritonitis virus, kittens that received a vaccinia-

vectored vaccine expressing the spike protein succumbed to challenge earlier than control kittens 
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[10]. Vaccinated kittens had low levels of neutralizing antibody immediately prior to challenge. 

Passive immunization with antiserum against feline peritonitis virus also caused early death[11, 

12]. In vitro, virus-specific antiserum increased uptake of the virus by feline macrophages. In 

another study, mice vaccinated with an inactivated MERS-CoV vaccine had increased 

eosinophilic lung infiltrates upon challenge [13]. Similarly, mice vaccinated with an alum-

adjuvanted SARS-CoV vaccine had enhanced eosinophilia and lung pathology after 

challenge[14]. Ferrets vaccinated with a modified vaccinia virus Ankara vaccine expressing the 

spike and nucleocapsid proteins for SARS-CoV had enhanced disease (stronger inflammatory 

responses & focal necrosis in the liver) when challenged with SARS-CoV [15, 16]. Rhesus 

macaques vaccinated with an inactivated SARS-CoV vaccine or with vaccinia virus expressing 

spike protein and challenged with SARS-CoV showed evidence of antibody-enhanced 

disease[17, 18]. Passive immunization with IgG against SARS-CoV spike abrogated the wound 

healing process, promoted MCP1 and IL-8 production, and recruited proinflammatory myeloid-

lineage cells to the lung. There was cause for concern then that suboptimal antibody response, 

whether induced by vaccination or passive immunization, could enhance COVID-19[19].

Ferrets are often used as an animal model for studying respiratory viral infections, particularly 

influenza, respiratory syncytial virus, and SARS-CoV[20-26].  Relevant to both SARS and 

SARS-CoV-2, the sequence of the ACE2 receptor in ferrets shares considerable homology with 

that of humans, suggesting that ferrets could be a potential model for COVID-19 [27]. Other 

groups have indeed shown that healthy, adult ferrets can be infected with SARS-CoV-2 and 

develop mild disease with considerable virus shedding following infection via intranasal and/or 

intratracheal inoculation[28-30]. There is also a question of whether SARS-CoV-2 transmission 

is by contact, droplet, or aerosol, with increasing evidence that aerosol transmission of SARS-
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CoV-2 is indeed occurring[31-34]. The virus would be more likely to reach the deep lung if 

inhaled in a droplet (<5 µm mass median aerodynamic diameter) and this might alter disease 

course and pathology, as we have previously shown for H5N1[35].  The present study adds to the 

body of SARS-CoV-2 literature for the ferret model, including different virus isolates, routes of 

infection, and whether low titers of neutralizing antibody against SARS-CoV-2 spike could 

enhance disease. 
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MATERIALS & METHODS

Ethics. The University of Pittsburgh is fully accredited by the Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC). All animal work was performed under the 

standards of the Guide for the Care and Use of Laboratory Animals published by the National 

Institutes of Health and according to the Animal Welfare Act guidelines. All animal studies 

adhered to the principles stated in the Public Health Services Policy on Humane Care and Use of 

Laboratory Animals. The University of Pittsburgh Institutional Animal Care and Use Committee 

(IACUC) approved and oversaw the animal protocol for these studies.

Biological safety. All work with SARS-CoV-2 was conducted in the University of Pittsburgh 

Center for Vaccine Research (CVR) Regional Biocontainment Lab (RBL) under BSL-3 

conditions. Respiratory protection for all personnel when handling infectious samples or working 

with animals was provided by powered air-purifying respirators (PAPRs; Versaflo TR-300; 3M, 

St. Paul, MN). Liquid and surface disinfection was performed using Peroxigard disinfectant 

(1:16 dilution), while solid wastes, caging, and animal wastes were steam sterilized in an 

autoclave.

Ferrets. Eleven adult ferrets of both sexes ranging in weight from 0.8-1.6 kg were purchased 

from Triple F Farms for use in these studies. Ferrets were neutered or spayed and descented 

before shipment to the University of Pittsburgh.

Virology. The SARS-CoV-2 isolates used were passage 6 (p6) of the CDC/2019-

nCoV/USA_WA1/2020 (WA1) isolate (a gift from Dr. Natalie Thornburg at the Centers for 

Disease Control in Atlanta) and passage 3 (p3) of the SARS-CoV-2/Münchin-1.1/2020/929 

(Munich) isolate (a gift from Drs Christen Drosten & Jan Felix Drexler, Charité – 
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Universitätsmedizin Berlin) described previously [36]. Virus was titrated by conventional plaque 

assay on Vero E6 cells (ATCC CRL1586) and titers are expressed as plaque forming units (pfu) 

and infection was visualized in cells by indirect immunofluorescence, as described [36].

Mucosal inoculation: Ferrets were anesthetized with Isoflurane; once anesthesia was achieved 

they were inoculated with 1 ml of stock virus given orally, 0.5 ml of stock virus inoculated into 

each nare, and 0.05 ml of virus inoculated into each eye. Ferrets were returned to their cage and 

observed until they had fully recovered from anesthesia.

Aerosol exposure. Aerosol exposures were performed using the Aero3G aerosol management 

platform (Biaera Technologies, Hagerstown, MD). Ferrets were loaded individually into metal 

exposure cages and transported to a class III biological safety cabinet using a mobile transfer 

cart. In the class III cabinet, ferrets were placed inside a whole-body exposure chamber and 

exposed four at a time. Aerosol exposures were 10 minutes in duration. Aerosols were generated 

using an Aerogen Solo vibrating mesh nebulizer (Aerogen, Chicago, IL) as previously described 

[37], with a total airflow of 22.0 liters per minute into the chamber. Total exhaust, including 

sampling, was set to be equal to intake air at the rate of one air change inside the exposure 

chamber every two minutes. To determine inhaled dose, aerosol sampling was performed during 

each exposure with an all-glass impinger (AGI) operating at 6 lpm, -6 to -15 psi (AGI; Ace 

Glass, Vineland, NJ). Particle size was measured once during each exposure at 5 minutes using 

an Aerodynamic Particle Sizer with a diluter at 1:100 (TSI, Shoreview, MN). Mass median 

aerodynamic diameter was 1.72 µm with a geometric square deviation of 1.72. After a 5 minute 

air wash with clean air, the animal was removed from the cabinet and transported back to its 

cage. Nebulizer and AGI samples were assessed by plaque assay to determine virus 

concentration and inhaled dose was calculated as the product of aerosol concentration of the 
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virus and the accumulated volume of inhaled air, determined as the product of the duration of 

exposure and the animal’s minute volume [38].

Telemetry. Each ferret was implanted with a DSI PhysioTel Digital radiotelemetry transmitter 

(DSI Model No. M00) capable of continuously recording body temperature. Telemetry implants 

were implanted abdominally and the surgical site closed using skin sutures. During acquisition, 

data was transmitted from the implant to a TRX-1 receiver mounted in the room connected via a 

Communications Link Controller (CLC) to a computer running Ponemah v6.5 (DSI) software. 

Preexposure data collection began at least seven days in advance of infection. Data collected 

from Ponemah was exported as 15-minute averages into Excel files which were subsequently 

analyzed in MatLab 2019a as previously described [39, 40]. Using pre-exposure baseline data, an 

auto-regressive integrated moving average (ARIMA) model was used to forecast body 

temperature assuming diurnal variation across a 24-hour period. The code is available at 

https://github.com/ReedLabatPitt/Reed-Lab-Code-Library. Residual temperatures were 

calculated as actual minus predicted temperatures. Upper and lower limits to determine 

significant changes were calculated as the product of 3 times the square root of the residual sum 

of squares from the baseline data.

Clinical Scoring. Clinical signs were recorded twice per day and each animal was given an 

objective score for weight, temperature, appearance & behavior, and respiratory signs 

(Supplemental Table I).

Plethysmography. Respiratory function was assessed in ferrets using a whole-body 

plethysmography chamber and pneumotach connected to a digital preamplifier run by Finepointe 

v2.8 software (DSI). For purposes of this study, we used a study protocol for chronic obstructive 

pulmonary disease (COPD) that is defined in Finepointe software. The chamber and pneumotach 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.553970doi: bioRxiv preprint 

https://github.com/ReedLabatPitt/Reed-Lab-Code-Library
https://doi.org/10.1101/2023.08.19.553970
http://creativecommons.org/licenses/by/4.0/


were calibrated each day before use. The chamber lid was removed, the ferret was placed in the 

chamber after which the chamber was sealed. The system was run for 3-5 minutes to acclimate 

the ferret to the chamber and ensure good data is being collected prior to initiation of data 

collection which was for 3-5 minutes. Data was analyzed within Finepointe or in Excel & 

GraphPad.

Quantitative RT-PCR: RNA was extracted from tissues using Trizol reagent and qRT-PCR 

assays on extracted RNA were performed exactly as previously described [36]. 

SAB-185 human IgG: Production and purification of the SAB-185 human IgG preparation has 

been described elsewhere  [41-45]. Briefly, transchromosomic bovines were hyperimmunized 

two times with a DNA plasmid expressing the WA-1 spike (S) protein followed by at least three 

times with purified recombinant S protein of the same amino acid sequence.  Bovines were bled 

and human IgG purified for use in ferret studies.  

Alveolar space analysis: Formaldehyde fixed tissues were paraffin embedded by the University 

of Pittsburgh McGowan Institute or the Biospecimen Core. Tissue sections were cut to 5 µm and 

mounted on positively charged glass slides. Standard regressive hematoxylin (Cat # MHS16-

500ml) and eosin (Cat # E511-100) staining was used to stain for histopathology. Coverslips 

were placed on the slides promptly using a 1:1 xylene:toluene mixture as a mounting medium. 

Using an Olympus Provis microscope, images of stained lungs were captured at 10x for analysis. 

At least 5 images were captured of the lungs from each ferret. Transmitted light was set at 9.0 

and exposure time was kept consistent for all images. The microscope was white balanced, and a 

blank image was obtained to remove shading. NIS-ElementsAR v5.30.01 was used to remove 

background shading and scale images to 1.35 μm per pixel 47. Alveolar space analysis was 

performed on H&E samples post imaging in FIJI v1.53c. Images were converted to 8-bit and 
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Huang thresholding with dark background was used to distinguish between alveolar spaces and 

tissues. Regions of interest were selected and alveolar space was assessed using the ‘Analyze 

Particles’ function of the FIJI software with size set to 50 μm2 to infinity to exclude nuclei. 

Summaries and results for each image were saved as Microsoft Excel files.
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RESULTS

Comparison of aerosol and mucosal infection with SARS-CoV-2 in ferrets

Prior to evaluating SAB185 for AED potential, we first developed a ferret model of 

COVID-19 by infecting ferrets with the WA1/2020 isolate. Because transmission of SARS-CoV-

2 is primarily airborne, we compared viral inoculation by the traditional ‘mucosal’ inoculation 

(IN/oral/ocular) and inhalation of virus via small particle aerosol. Two ferrets were exposed to 

media alone by either mucosal inoculation or aerosol to serve as mock, uninfected controls (C1 

& C2). As expected, there was no fever or substantial (>5%) weight loss in the controls although 

there is weight loss over time in the controls (Figure 1). Ferrets are prone to lose weight when 

stressed, and it is possible that the daily monitoring and observations may have been responsible 

for the weight loss observed. The two mucosally-inoculated ferrets (designated M1 & M2) 

received a dose of 4x106 pfu; both had a spike in fever within the first 36 hours of infection 

which returned to normal by 48 hours; there were some small spikes in fever seen at 5-7 dpi and 

again around 12 dpi. Both mucosally-inoculated ferrets also lost weight fairly rapidly post-

infection, reaching 5% around days 2-3 before beginning to rebound. Four ferrets (designated 

A1-A4) were exposed to WA1/2020 by aerosol with an inhaled dose of 2x104 pfu. Higher doses 

by aerosol would only have been possible by generating a very large stock of virus and 

concentrating it via sucrose-gradient purification. Because of concerns regarding adaptation of 

the virus to cell culture and the significant amount of time and cost required, concentrating the 

virus was not pursued. No significant fever was seen in the 4 ferrets exposed to WA1/2020 by 

aerosol and only 1 of the 4 lost >5% of its body weight in the post-infection period.

Viral shedding from mucosal sites was also assessed in these ferrets (Figure 2). In the 

mucosally-inoculated ferrets, vRNA (viral) was found on oral swabs taken on days 2 and 4 from 
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both ferrets. Nasal swabs were positive on days 2 and 7 from both mucosal-inoculated ferrets and 

one of the two on day 10. For both mucosal-inoculated ferrets, vRNA was isolated from rectal 

swabs only at 2 dpi. Infectious virus was isolated from only M1 at 2 dpi in the oral and nasal 

cavities and day 4 orally from both M1 and m2 (Supplemental Table 1). Despite the lower dose 

achieved by aerosol, viral shedding from the oral and nasal cavities was very similar for aerosol-

infected ferrets compared to mucosal-inoculated ferrets in terms of genomes/ml and duration. 

Oral swabs from three of the four aerosol-infected ferrets were positive for vRNA out to day 7; 

two of the four were also positive for vRNA in the nasal cavity at day 7. Two of the four aerosol-

infected ferrets were positive for vRNA from rectal swabs on day 4 and one was positive on day 

7. Infectious virus was found in the oral and nasal cavities from all four aerosol-infected ferrets 

on day 2 but only two were positive on day 4 and one on day 7 (Supplemental Table 1). None of 

the mucosally-inoculated or aerosol-infected ferrets were positive for infectious virus from the 

rectal swabs at any timepoint.

Ferrets were euthanized after day 14 post-infection with WA1/2020 and samples 

collected to evaluate viral load in tissues. No infectious virus was found in any tissues. For the 

mucosally-inoculated ferrets, vRNA was found sporadically throughout the respiratory tract, 

intestines, lymph nodes and also the CNS, heart, kidney and bladder (Figure 3). Lower levels of 

vRNA were found in the aerosol-infected ferrets, and was mostly confined to the respiratory 

tract.

No evidence for antibody-dependent enhancement of disease with SAB185.

SAB185 is human IgG specific for SARS-CoV-2 that is purified from the plasma of 

vaccinated transchromosomic cows expressing human immunoglobulin genes. As part of the pre-

clinical evaluation of SAB185, we examined whether low doses of SAB185 would induce 
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enhanced disease in ferrets when challenged with SARS-CoV-2. Based on the model 

development data, we opted to go with the mucosal inoculation, but with a European isolate that 

had the D614G isolate (Munich-1.1) instead of WA1/2020. Twelve hours before challenge, 

ferrets were inoculated IV with SAB185 at doses of 0.1, 0.5, or 1.0 mg/kg. A fourth group was 

given an irrelevant control IgG against dengue virus. The following morning, all of the ferrets 

were challenged with 8x105 pfu of Munich-1.1 by mucosal inoculation (IN/oral).

Similar to the WA1/2020 isolate, control ferrets inoculated mucosally with Munich-1.1 

spiked a fever 1-2 dpi which subsided within a day although occasional spikes in temperature 

were seen out to 14 dpi when the study was ended (Figure 4). Similar spikes were seen in all 

three SAB185 groups but in several of the ferrets from these groups there was a more substantial 

spike in temperature between 6-10 dpi than was seen in the controls. However, quantitative 

analysis of the fever response failed to identify a significant difference in the fever response 

between groups in terms of maximum temperature seen, duration or severity (Supplemental 

Table 2). Overall, average daily weight loss in all four groups was minimal (less than 5% from 

baseline) although there was one ferret in the control group that lost nearly 10% of its body 

weight in the first 3 days after infection but then quickly recovered (Figure 5). One ferret in the 

1.0 mg/kg group had a more gradual weight loss over the 14 days post-infection but by study 

endpoint had only lost 5% of its baseline weight.

No change in viral shedding with SAB185 treatment.

We also examined whether low dose SAB-185 treatment altered the kinetics of viral 

shedding in the ferrets. Figure 6 shows the levels of vRNA recovered from oral swabs (A), nasal 

washes (B) and rectal swabs (C) out to 14 days after infection. At all three sites, vRNA titers 

were higher than those seen in the WA1/2020-infected ferrets and persisted longer. No 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.553970doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.19.553970
http://creativecommons.org/licenses/by/4.0/


significant differences in vRNA levels were seen between the controls and any of the SAB185 

groups, suggesting that low-dose SAB185 neither prevented nor enhanced viral 

shedding/transmission. Infectious virus was also found in the oral swabs and nasal washes from 

ferrets in all three groups out to day 8 post-infection (Supplemental Table 3). Rectal swabs were 

negative for infectious virus at all timepoints and in all ferrets.

No evidence for antibody-enhancement of lung pathology

Lungs collected at study endpoint were also evaluated for pathological changes by hematoxylin 

and eosin staining, with representative images shown in Figure 7. Despite the general lack of 

overt clinical signs of disease, there was considerable pathology noted in the lungs of all of the 

infected ferrets. There does not appear to be any enhanced pathology in SAB185-inoculated 

ferrets at any of the doses tested. Alveolar space analysis of multiple 10x images of lungs from 

each ferret are shown in Figure 7B. Although the pathology appears worse for the Munich isolate 

compared to WA1 in the images shown, the alveolar space analysis of multiple images from the 

lungs of infected ferrets found no significant difference between Munich and the mucosal WA1 

group. There appears to be more alveolar space in the ferrets infected with WA1 by aerosol, but 

this difference was not statistically significant (likely because of the number of animals used and 

the range of values seen). The apparent difference between aerosol and mucosal could be a 

function of the virus dose, since the aerosol exposure dose was 100-fold lower than what was 

given mucosally. Alveolar space analysis found no differences in ferrets inoculated with SAB-

185 and challenged with Munich compared to control (no antibody) Munich-infected ferrets. 

What is notable is that across all the groups, in many of the ferrets the pathology is not uniform 

within an individual animal, with some areas showing minimal pathology and others showing 
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considerable pathology. Some regions have 80-90% alveolar space and other regions in the same 

ferret have less than 20% alveolar space.
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DISCUSSION

We have reported here our efforts to develop the ferret as an animal model for COVID-

19 and to use that model to evaluate the potential for antibody-enhanced disease. We started with 

the original U.S. isolate, WA1/2020, and compared ‘mucosal’ (oral/IN/IT/ocular) inoculation 

and aerosol. The thought was that inhalation of the virus in a small particle aerosol would be 

more likely to result in moderate or severe disease than the mucosal inoculation, similar to what 

we had previously reported with aerosol delivery of H5N1 into cynomolgus macaques which 

triggered a rapid, acutely lethal infection where prior reports with mucosal inoculation only 

rarely saw lethal disease[35]. Here, however, inhalation of SARS-CoV-2 did not result in more 

serious disease in comparison to the mucosal inoculation. It is important to note that the aerosol 

dose is significantly lower than the mucosal inoculation, which may have altered the outcome. 

Achieving a higher aerosol dose in the ferrets would have required growing up considerable 

amounts of SARS-CoV-2 and concentrating the virus. While technically feasible, there were 

concerns that culture adaptation of the virus could attenuate the virus[36] and that growing up 

sufficient stocks to support not just model development but future vaccine or drug efficacy 

studies would require considerable equipment and effort with no guarantee that a higher dose 

would in fact cause a more severe disease phenotype. For H5N1 viruses, aerosol delivery via 

small particle aerosol increases the amount of virus reaching the deep lung, where alveolar 

epithelium expresses the α2,3 sialic acid receptors that the virus binds to. ACE2, which serves as 

the receptor for SARS-CoV-2, is found throughout the respiratory tract including the bronchial 

epithelium[46]. In our estimation then, inhalation of SARS-CoV-2 as a small particle aerosol is 

not necessary for animal studies to understand pathogenesis or evaluate potential vaccines or 

therapeutics.
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While conducting these studies, the D614G mutation in the spike protein emerged in 

Europe and quickly became the dominant circulating virus around the world. We had obtained a 

SARS-CoV-2 isolate from Munich which had the D614G mutation. While the WA1/2020 and 

Munich-1.1 isolates were not tested head-to-head in the same study, the data we obtained in 

ferrets demonstrated more disease (fever, weight loss) and prolonged viral shedding with 

Munich-1.1 compared to WA1/2020 even though the dose of Munich-1.1 given was lower. At 

necropsy, we found evidence for the persistence of viral RNA for WA1/2020 (but not infectious 

virus) out to at least day 14. This is similar to what we saw in nonhuman primates where viral 

RNA was isolated from African green monkeys more than a month after infection[47]. In the 

African green monkeys, we also saw occasional fever spikes that coincided with increased viral 

RNA at mucosal sites 2-3 weeks after resolution of the original infection. Whether these findings 

in ferrets and African green monkeys is just remnants of viral RNA or intact virus is not clear but 

this may warrant further investigation considering reports of chronic COVID-19 in patients with 

initially mild/moderate disease.

We also partnered with SAb Biotherapeutics to evaluate whether SAB185, a polyclonal 

humanized antibody product for treatment of SARS-CoV-2 infection, would enhance disease if 

given at a low dose. Prior published data from other coronaviruses in animal models, including 

ferrets, have shown evidence for antibody-enhanced disease after vaccination or passive 

immunization[10-17]. Systemic inflammation, hepatitis, and even death have been observed. 

Since SARS-CoV-2 produces only mild disease in ferrets[29, 30], we reasoned that if low doses 

of antibody induced enhanced disease, ferrets might be a good model for making that 

determination. Our results (fever, weight, viral shedding, pathology), however, would suggest 

that at least with SAB185 in ferrets at the doses administered, there are no concerns about ADE. 
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This data was submitted as part of the IND request that was submitted to, and allowed, by the 

FDA for the ACTIV2 SARS-CoV-2 clinical trial (ClinicalTrials.gov Identifier: NCT04469179).

 It was reported that human-derived anti-SARS-CoV-2 antibodies could enhance 

infection of cells in vitro but when these antibodies were infused into mice and macaques they 

suppressed SARS-CoV-2 replication and did not enhance disease[48]. It is possible that human 

antibodies do not bind animal FcRs sufficiently to cause enhanced disease. However, there have 

been other animal as well as human studies evaluating antibody-based therapies and vaccines 

and no reports of enhanced disease[48-52]. Based on that and our findings reported here, in 

addition to the considerable number of human patients that have received monoclonal antibodies 

or convalescent serum, it seems unlikely that antibody-enhanced disease is a concern for SARS-

CoV-2. 
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FIGURE LEGENDS

Figure 1. Mild fever and weight loss in ferrets infected with WA1/2020 either mucosally or 

by aerosol. Graphs show residual 6-hour median body temperatures (difference between actual 

and predicted temperatures) (A-C) for individual ferrets in each group as determined from 

ARIMA modeling. Graphs in D-F show percent change in body weight (D-F) in control mock-

infected ferrets (A, D), mucosally-inoculated ferrets (B, E) and aerosol-infected ferrets (C, F).

Figure 2. Viral shedding from ferrets after mucosal or aerosol infection with WA1/2020. 

Data shown is in genomes/ml determined from qRT-PCR for ferrets infected with WA1/2020 via 

mucosal (top) and aerosol (bottom) delivery of virus from A, B) oral swabs, C,D) nasal swabs, 

and E, F) rectal swabs.

Figure 3. Viral RNA is predominantly found in the respiratory tract and gastrointestinal 

system of SARS-CoV-2-infected ferrets. Results shown are in log10 genomes/gm of tissue for 

the two mucosal-infected ferrets and four aerosol-infected ferrets from tissues collected at study 

endpoint.

Figure 4. No difference in fever response to SARS-CoV-2 challenge in SAB185-inoculated 

ferrets. Graphs show residual 6-hour median body temperatures (difference between actual and 

predicted temperatures) (A-D) for individual ferrets in each group as determined from ARIMA 

modeling. A) Control ferrets, B) 0.1 mg/kg SAB-185, C) 0.5 mg/kg SAB-185, D) 1.0 mg./kg 

SAB-185.

Figure 5. Minimal weight loss after infection with SARS-CoV-2 in SAB-185 inoculated 

ferrets, regardless of dose. Graphs shown daily percent change in weight from baseline, pre-

challenge weights.
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Figure 6. Viral shedding from mucosal sites is not affected in SAB-185 inoculated ferrets 

after Munich challenge. Graphs show average and standard deviation of viral titer as 

determined by qRT-PCR at mucosal sites over time for each group as determined from A) oral, 

B) nasal, and C) rectal swabs after challenge.

Figure 7. Low dose SAB185 does not affect lung pathology of ferrets infected with SARS-

CoV-2. A) hematoxylin and eosin staining of representative lung sections from each group, 2x 

magnification. B) superplot of alveoloar space analysis from lung sections imaged at 10x. 

Multiple 10x images of the lung from individual ferrets within a group are shown as the same 

color without borders; the mean for that ferret is the colored symbol with the black border. The 

black line and error bars are the median value with the interquartile range for that group.
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Supplemental Table 1. Plaque assay results for infectious virus in mucosal samples 

recovered from ferrets after infection with WA1/2020

D2 D4 D7 D14Route Ferret
oral nasal rectal oral nasal rectal oral nasal rectal oral nasal rectal

M1 + + ─ + ─ ─ ─ ─ ─ ─ ─ ─Mucosal
M2 ─ ─ ─ + ─ ─ ─ ─ ─ ─ ─ ─
A1 + + ─ ─ + ─ ─ ─ ─ ─ ─ ─
A2 + ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
A3 ─ + ─ ─ ─ ─ ─ ─ ─ ─ ─ ─

Aerosol

A4 + + ─ + ─ ─ ─ + ─ ─ ─ ─

Supplemental Table 2. Fever data for SAB-185-inoculated and control groups

Fever Ave
Group Ferret ∆Tmaxa Durationb Fever-Hoursc Elevationd

F67-20 1.62 84.00 69.30 0.83
F69-20 1.10 48.25 30.88 0.64
F71-20 1.49 57.25 44.06 0.77

1*

Average 1.40 63.17 48.08 0.74
F65-20 1.00 34.50 22.62 0.66
F72-20 1.37 40.50 27.64 0.68
F66-20 1.23 40.25 28.58 0.71

0.5*

Average 1.20 38.42 26.28 0.68
F63-20 1.09 6.75 4.33 0.64
F68-20 1.93 44.50 41.15 0.92
F70-20 1.11 20.25 13.81 0.68

0.1*

Average 1.38 23.83 19.77 0.75
F61-20 1.49 21.75 16.09 0.74
F62-20 1.65 30.25 26.55 0.88
F64-20 1.58 28.00 23.65 0.84

Control

Average 1.57 26.67 22.10 0.82
*dose of SAB-185, in mg/kg

a maximum residual difference in temperature, in degrees Celsius

b fever duration in hours
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c sum of significant residual elevations in body temperature, divided by 4 to convert to fever-

hours

d average residual difference in temperature, in degrees Celsius

Supplemental Table 3. Plaque assay results for infectious virus in mucosal samples from 

SAB-185 inoculated and control ferrets after challenge with Munich.

 D2 D4 D6 D8 D14
Group Ferret oral nasal rectal oral nasal rectal oral nasal rectal oral nasal rectal oral nasal rectal

F61 + - - + + - + + - + ─ ─ ─ ─ ─
F62 - + - + + - + - - - ─ ─ ─ ─ ─Control
F64 + - - + - - + - - - ─ ─ ─ ─ ─
F63 + + - + + - - ?+ - - ─ ─ ─ ─ ─
F68 - + - + - - + + - ?+ ─ ─ ─ ─ ─0.1 

mg/kg
F70 - + - + + - + + - - ─ ─ ─ ─ ─
F65 + + - - + - + + - - ─ ─ ─ ─ ─
F66 - + - + + - + + - - ─ ─ ─ ─ ─0.5 

mg/kg
F72 + + - + + - - - - - ─ ─ ─ ─ ─
F67 ?+ - - - - - - - - - ─ ─ ─ ─ ─
F69 + + - + x - + + ?+ - ─ ─ ─ ─ ─1.0 

mg/kg
F71 + + - + + - + + ?+ - ─ ─ ─ ─ ─
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