

1 **The phosphorylation landscape of infection-related development by the**
2 **rice blast fungus**

3

4 **Authors**

5 Neftaly Cruz-Mireles¹, Miriam Osés-Ruiz^{1,2}, Paul Derbyshire¹, Clara Jégousse¹, Lauren S.
6 Ryder¹, Mark Jave Bautista¹, Alice Bisola Eseola¹, Jan Sklenar¹, Bozeng Tang¹, Xia Yan¹,
7 Weibin Ma¹, Kim C. Findlay, Vincent Were, Dan MacLean¹, Nicholas J. Talbot¹* and Frank
8 L.H. Menke¹*

9

10 ¹The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4
11 7UH, UK.

12 ² Current address: IMAB, Public University of Navarre (UPNA), Campus Arrosadia 31006.
13 Pamplona, Navarra, Spain

14 *To whom correspondence should be addressed

15

16 **SUMMARY**

17 Many of the world's most devastating crop diseases are caused by fungal pathogens which
18 elaborate specialized infection structures to invade plant tissue. Here we present a quantitative
19 mass spectrometry-based phosphoproteomic analysis of infection-related development by the
20 rice blast fungus *Magnaporthe oryzae*, which threatens global food security. We mapped 8,005
21 phosphosites on 2,062 fungal proteins, revealing major re-wiring of phosphorylation-based
22 signaling cascades during fungal infection. Comparing phosphosite conservation across 41
23 fungal species reveals phosphorylation signatures specifically associated with biotrophic and
24 hemibiotrophic fungal infection. We then used parallel reaction monitoring to identify
25 phosphoproteins directly regulated by the Pmk1 MAP kinase that controls plant infection by
26 *M. oryzae*. We define 33 substrates of Pmk1 and show that Pmk1-dependent phosphorylation
27 of a newly identified regulator, Vts1, is required for rice blast disease. Defining the
28 phosphorylation landscape of infection therefore identifies potential therapeutic interventions
29 for control of plant diseases.

30

31 **KEY WORDS**

32 Appressorium, Pmk1 MAP kinase pathway, protein phosphorylation, phosphoproteomics

33

34 **INTRODUCTION**

35 Fungal pathogens have evolved specialized infection-related structures to penetrate the tough
36 outer layers of plants to cause disease. These infection structures— which include appressoria,
37 hyphopodia and infection cushions —are important determinants of some of the most serious
38 crop diseases, including cereal rusts and powdery mildews ^{1,2} but their biology is poorly
39 understood. Formation of these structures requires major morphogenetic changes and
40 remodeling of signaling transduction events, including phosphorylation. Some of these events
41 are controlled by major regulators, such as mitogen-activated protein kinases (MAPK). The
42 devastating rice blast fungus *Magnaporthe oryzae*, which destroys enough rice each year to
43 feed 60 million people, develops a melanin-pigmented appressorium that generates enormous
44 turgor pressure of up to 8.0 MPa, which enables the pathogen to rupture the tough rice leaf
45 cuticle ^{3,4}. Appressorium morphogenesis in *M. oryzae* requires a MAPK signaling pathway in
46 which the Pmk1 MAPK is a central component ⁵. The importance of Pmk1 is illustrated by the
47 fact that $\Delta pmk1$ mutants are unable to form appressoria and fail to cause blast disease, while
48 conditional inactivation of the kinase using an analogue-sensitive mutant, prevents invasive
49 fungal growth in plant tissue ^{5,6}. Global transcriptional profiling has revealed that Pmk1
50 regulates 49% of the *M. oryzae* transcriptome during appressorium development— highlighting
51 both its importance, and the complexity of infection-related morphogenesis ⁷.

52

53 Components of the Pmk1 cascade have predominantly been identified based on their
54 counterparts in the well-known yeast Fus3/Kss1 pathway required for pheromone signaling
55 and invasive growth ^{8,9}. Upstream kinases Mst11 and Mst7, for example, were functionally
56 characterized based on their homology to the yeast MAPKKK Ste11 and MAPKK Ste7,
57 respectively ¹⁰. Similarly, the adaptor protein Mst50 was identified by homology to Ste50 and
58 shown to control the activity of the three-tiered Mst11-Mst7-Pmk1 MAP kinase module during
59 appressorium formation ¹¹. A limited number of downstream interactors of Pmk1 have also
60 been identified, including transcription factors Mst12, Hox7 and Slf1 ^{7,12}, and the Pmk1-
61 interacting clone Pic5 ¹³. However, the molecular mechanisms through which these
62 downstream Pmk1 signaling components regulate blast infection remain unknown.

63

64 Importantly, Pmk1 counterparts have now been identified in more than 30 fungal pathogen
65 species, including major human, animal, and plant pathogens. In all cases so far reported, these
66 MAPKs have been shown to be necessary for fungal pathogenicity ^{14,15}. This includes the

67 causal agents of many of the world's most significant crop diseases, including Septoria blotch
68 of wheat, southern corn leaf blight, and Fusarium head blight ¹⁶, and encompasses fungal
69 pathogens exhibiting biotrophic, hemibiotrophic and necrotrophic interactions. Therefore, a
70 common feature of very diverse fungal pathogens, irrespective of whether they cause invasion
71 of living plant tissue or destructive activity to kill plant cells, is their dependence on Pmk1-
72 related MAPK pathways to regulate invasive growth. Collectively, these studies suggest that
73 the Pmk1 MAPK signaling pathway may be a conserved pathway associated with fungal
74 invasive growth which has diversified among distinct groups of pathogens. However, there is
75 little direct evidence for this proposition because the substrates of Pmk1-related MAPKs are
76 largely unknown in any fungal pathogen studied to date.

77

78 In this study we decided to take advantage of recent advances in quantitative mass spectrometry
79 (MS) to analyze the global pattern of phosphorylation ¹⁷ during infection-related development
80 of *M. oryzae*. We set out to define the phosphorylation signature of MAPK signaling ¹⁸
81 associated with plant infection by fungal pathogens and identify the cellular signaling pathways
82 regulated by Pmk1 ¹⁹. Here we report the phosphorylation landscape of appressorium
83 morphogenesis by the blast fungus and define the major changes in phosphorylation that occur
84 during fungal development. We use this resource to identify conserved phosphosites specific
85 to fungal pathogens that elaborate diverse infection structures and which exhibit distinct modes
86 of fungal pathogenesis – including biotrophic, hemibiotrophic and necrotrophic species –
87 thereby defining the putative patterns of MAPK signaling across 40 major disease-causing
88 fungal species. To validate this approach, we identified 201 phosphosites and classified them
89 into signaling pathways and physiological processes required for infection by the blast fungus
90 and used parallel reaction monitoring to identify 33 novel putative Pmk1 substrates. This
91 analysis enabled the identification of a new regulator of appressorium morphogenesis, Vts1,
92 which requires Pmk1-dependent phosphorylation to fulfil a key role in rice blast disease. When
93 considered together, this study provides the most comprehensive analysis of infection-
94 phosphorylation by a fungal pathogen to date and highlights how phosphoproteomic analysis
95 can provide unprecedented insight into the biology of fungal invasive growth.

96

97

98

99

100 **RESULTS**

101

102 **The Pmk1 MAP kinase is activated during infection-related development by *M. oryzae***

103 We first set out to define a time-course for global phosphoproteomic analysis of infection-
104 related development by the blast fungus, by identifying the precise time of Pmk1 MAPK
105 activation. Plant infection by *M. oryzae* is initiated when a fungal spore, called a conidium,
106 lands on a hydrophobic surface and germinates to produce a polarized germ tube within 2h
107 (**Figure 1A**). By 4h an incipient appressorium is formed and the contents of the conidium are
108 recycled by autophagy to allow development of the appressorium (**Figure 1A and 1B**). The
109 Pmk1 MAPK is essential for both appressorium development and virulence ⁵, and $\Delta pmk1$
110 mutants are unable to form appressoria and cannot infect rice plants (**Figure 1B and 1C**). To
111 investigate the temporal dynamics of Pmk1 activation we germinated spores on an artificial
112 hydrophobic surface that mimics the host leaf surface. We extracted protein from synchronized
113 infection structures from the wild-type *M. oryzae* strain Guy11 and an isogenic $\Delta pmk1$ mutant.
114 We observed that Pmk1 is phosphorylated on its TEY motif within 1h of conidial germination
115 on a hydrophobic surface (**Figure 1A and 1D**) and remains active for up to 4h. Pmk1 activation
116 therefore precedes infection-related development but is maintained throughout appressorium
117 morphogenesis.

118

119 **Infection related development coincides with large changes in the phosphoproteome**

120 To define the phosphorylation landscape of infection-related development by *M. oryzae*, we
121 incubated conidia of Guy11 and the $\Delta pmk1$ mutant on a hydrophobic surface and performed a
122 large-scale quantitative phosphoproteomics experiment, extracting phosphoproteins from
123 synchronized infection structures at 0, 1, 1.5, 2, 4 and 6h post-germination (**Figure 2A and**
124 **S1**). Using discovery proteomics based on data-dependent acquisition (DDA), we identified
125 8005 phosphopeptides from 2,062 proteins during the 6h time-course in both strains (**Figure**
126 **2A and 2B**). We quantified this dataset using a label-free MS1-quantification approach (LFQ)
127 and were able to quantify 7048 phosphopeptides. To identify differential phosphopeptides we
128 determined the ratio between Guy11 timepoints compared to conidia (t=0) and filtered for 2-
129 fold change and an adjusted p-value < 0.05. With these settings, the abundance levels of 5058
130 phosphopeptides were found to be significantly different during germling (1h, 1.5h, 2h) and
131 appressoria (4h and 6h) stages compared to conidia (0h) in Guy11. As early as 1h after
132 germination, we identified large changes in abundance of phosphopeptides (420 less abundant

133 and 2049 more abundant) and phosphoproteins (100 less abundant and 497 more abundant)
134 (Table 2). The phosphorylation landscape of the emerging germling therefore undergoes
135 significant changes due to a combination of changes in the amount of each protein as well as
136 differential phosphorylation. Consistent with our immunoblot analysis of Pmk1
137 phosphorylation (Figure 1D), we can detect phosphorylation of the TEY motif in the activation
138 loop of Pmk1 as early as 1h after germination, peaking at 1.5h and remaining at a sustained
139 level up to 4h, and this phosphorylation was absent in the $\Delta pmk1$ mutant, as expected (Figure
140 2C). At 6h, TEY phosphorylation increases again, suggesting a second Pmk1 activation event
141 occurs between 4-6h, when the appressorium develops and a significant change in growth
142 polarity occurs. As expected, in the $\Delta pmk1$ mutant we cannot detect phosphorylation of the
143 TEY motif at any timepoint. During the first 2h the number of upregulated phosphopeptides in
144 $\Delta pmk1$ is significantly lower (1681), compared to the wild type, whilst the number of
145 downregulated phosphopeptides is significantly higher (727) consistent with the absence of
146 Pmk1 activity (Figure 2C). K-means clustering of the data revealed 5 clusters enriched for
147 differential phosphopeptides in conidia (Cluster I), germinated conidia (Cluster II and Cluster
148 III) and incipient appressoria (Cluster IV and Cluster V) (Figure 2B). Changes in overall
149 phosphopeptide abundance are similar for Guy11 and the $\Delta pmk1$ mutant in clusters I, III and
150 IV, while the abundance changes in clusters II and V are drastically different between Guy11
151 and $\Delta pmk1$. The absence or significant reduction in phosphopeptide abundance in the $\Delta pmk1$
152 background is consistent with high Pmk1 activity in Guy11 at those times. GO term enrichment
153 analysis for 4 of these clusters revealed biological processes and molecular functions related
154 to signal transduction and protein phosphorylation (Figure S2). Whilst cluster I is enriched for
155 intracellular anatomical structures, RNA binding, proteins associated with plasma membrane
156 and cation transport, but not signal transduction or protein phosphorylation. This indicates that
157 protein phosphorylation is one of the key primary processes during infection-related
158 development. GO terms related to other processes known to be essential for appressorium
159 development in *M. oryzae* are also enriched, such as autophagy (cluster II), lipid binding and
160 actin binding (cluster III) and microtubule and intracellular transport (cluster IV)²⁰⁻²³. Cluster
161 I represents phosphopeptides derived from proteins that are present in conidia and show lower
162 relative abundance during the course of infection-related development. These include proteins
163 such as the putative solute carrier transporter Slc6 (MGG_05433) (Figure 2D), Glycerate-3-
164 kinase (MGG_06149), Linolate diol synthase LDS1 (MGG_10859) and eukaryotic translation
165 initiation factor 3 subunit a (MGG_10192) (Figure S2), most of which have been shown to

166 have a function in virulence in *M. oryzae*^{24,25}, but which represent proteins involved in
167 metabolic functions rather than signaling. Cluster III represents proteins phosphorylated early
168 during appressorium development with high relative abundance of the corresponding
169 phosphopeptides between 1-4h in both Guy11 and the $\Delta pmk1$ mutant, including the Yak1
170 kinase (MGG_06399) (**Figure 2D**) and protein phosphatase Ssd1 (MGG_08084), both of
171 which are required for virulence^{26,27}. Phosphopeptides in Cluster II show a similar relative
172 abundance at early timepoints in Guy11 but little to no increase in abundance in the $\Delta pmk1$
173 mutant, suggesting the corresponding proteins require Pmk1 for their phosphorylation or
174 expression. Examples of phosphopeptides showing this type of pattern include peptides from
175 protein transporter Sec73 (MGG_06905) (**Figure 2D**) and kinases Sch9 (MGG_14773) and
176 Atg1 (MGG_06393) (**Figure S2**). Cluster IV and V represent phosphopeptides with high
177 relative abundance at the time when appressorium begins to form and these include the
178 aminophospholipid translocase Apt2 (MGG_07012), which is essential for plant infection²⁸,
179 the transcription factor Hox7 (MGG_12865), implicated in appressorium morphogenesis⁷,
180 chitin synthase Chs6 (MGG_13013) and the glucosamine-6-phosphate isomerase
181 (MGG_00625). The latter two proteins represent cluster V which again shows phosphopeptides
182 with high abundance at 6h in Guy11 but mostly absent from the $\Delta pmk1$ mutant, consistent with
183 Pmk1-dependent phosphorylation or expression. Taken together, these results show that during
184 infection-related development by the blast fungus, major changes in the phosphoproteome
185 landscape are occurring, including many proteins known to be required for virulence, and a
186 subset of these phosphoprotein changes require presence of the Pmk1 kinase.

187

188 **Distinct patterns of phosphosite conservation are evident across fungal species showing 189 diverse modes of pathogenesis**

190 Given the extensive changes in phosphorylation during infection-related development by *M.*
191 *oryzae*, we decided to investigate the extent of phosphosite conservation across different fungal
192 species. Using Orthofinder we identified orthogroups for 41 filamentous fungal species
193 including saprophytes, mutualists, plant pathogens, and human pathogens, as well as
194 *Saccharomyces cerevisiae* and *Schizosaccharomyces pombe*, the two model yeast species. We
195 then mapped the conservation of all our identified *M. oryzae* phosphorylated residues onto the
196 orthogroups for all 41 fungal species, *k*-means clustered them, using the elbow method
197 according to the subset of species in which residues were conserved, and visualized the data in
198 a heatmap containing 9 *Conserved Phosphorylated Residue* (CPR) groups (**Figure 3**) . We

199 identified a total of 1,198 conserved phosphorylated residues. Clustering species based on the
200 conservation of phosphorylated residues (**Figure 3A**) results in a tree composed of distinct
201 clades, when compared to a phylogenetic tree based on the orthogroups (**Figure 3C**). This
202 provides evidence that a large proportion of the conservation of phosphorylated residues
203 observed cannot be explained by protein conservation at the amino acid level or phylogenetic
204 distance between species. The heatmap shows several interesting CPR clusters of which
205 Cluster 4 likely represents core signaling proteins and conserved phosphorylated residues
206 observed in the majority of fungal species (**Figure 3B**). Consistent with this, the cluster
207 includes 69 proteins of which 15 are annotated as protein kinases, including the MAPKs Pmk1
208 and Osm1 and the MAPKK Mst7. Interestingly, CPR Cluster 9 shows conservation of
209 phosphorylated residues among the majority of plant pathogenic species but only limited
210 conservation in saprophytes such as *Aspergillus nidulans*, *A. fumigatus* and *A. flavus*,
211 suggesting that these residues are associated with a lifestyle dependent on plant hosts. As
212 expected, these two clusters show a strong correlation with a requirement for a Pmk1 MAPK
213 orthologue for virulence/pathogenicity (**Table 1**). CPR Cluster 6 shows a strong correlation
214 with 16 mainly hemibiotrophic plant pathogenic fungal species— hemibiotrophic species are
215 those that invade living plant tissue initially in their life cycle, before killing plant cells at later
216 stages of development. This includes many of the most important crop disease-causing fungi,
217 such as *M. oryzae* and *Zymoseptoria tritici* and reveals phosphosite conservation in at least 13
218 transcription factors and a wide range of metabolic enzymes (**Table S1**). Cluster 3 stands out
219 because it appears tightly associated with the genus *Fusarium*, including the wheat head blight
220 pathogen *F. graminearum* for example, and shows phosphosite conservation in pH-responsive
221 and morophogenetic transcriptional regulators, for example. Cluster 5 shows high levels of
222 conservation among Dothideomycete pathogens, including the causal agent of new blotch of
223 barley *Pyrenophora teres*, brown spot of rice, *Bipolaris oryzae*, and southern corn leaf blight,
224 *Cochliobolus heterostrophus*. The conservation of phosphosites within this group of related
225 cereal pathogens, provides evidence that the regulation of invasive growth may be similarly
226 configured to *M. oryzae*. Finally, Cluster 2 shows phosphosites conserved solely among fungi
227 producing pressurized, melanin-pigmented appressoria, such as the *Colletotrichum*
228 anthracnose pathogens, and consistent with this shows phosphosite conservation in a range of
229 proteins previously implicated in appressorium morphogenesis (**Table S1**). When considered
230 together, this comparative analysis provides evidence that subsets of the identified
231 phosphorylated residues in *M. oryzae* are conserved among diverse pathogens showing some
232 common life-style features, such as plant-association, invasive growth in living plant tissue,

233 and the formation of specialized infection structures, providing a key resource for defining the
234 signaling mechanisms that govern fungal pathogenesis.

235

236 **Phosphorylation of signaling pathways controlling infection-related development.**

237 To investigate the relevance of the observed patterns of phosphorylation on infection-related
238 development, we mapped 201 differentially phosphorylated residues identified by LFQ onto
239 proteins in signaling pathways implicated in appressorium morphogenesis and plant infection.
240 Out of 17 proteins associated with the Pmk1 MAPK signaling pathway, 11 proteins show
241 abundance changes for 1 or more phosphopeptides, including proteins acting upstream of
242 Pmk1, such as the MAPKK Mst7 and adaptor protein Mst50^{10,11,29,30}, as well as potential and
243 verified downstream Pmk1 targets, such as transcription factors Sfl1, Znf1, Hox7 and Mst12
244^{7,12,31,32} (**Figure 4A**). This high proportion of infection-regulated phosphoproteins is not limited
245 to the Pmk1 pathway because 12 out of 25 proteins mapped onto the Sln1 histidine kinase
246 signaling pathway, required for appressorium turgor sensing³, show phosphopeptide
247 abundance changes over the 6h time course of infection related development (**Figure 4D and**
248 **S4**). Autophagy is known to be required for appressorium function and dependent on Pmk1
249^{20,33}. Out of 23 proteins involved in autophagy, 8 proteins associated with initiation and
250 selective autophagy show abundance changes on one or more phosphopeptides (**Figure 4E**
251 **and S4**). In the Cyclic AMP Protein kinase A-dependent signaling pathway, which acts in
252 concert with Pmk1 to regulate initiation of appressorium development and turgor generation,
253 3 proteins show change in phosphoprotein levels (**Figure 4B and S4**). While the recently
254 described Vast1 pathway, implicated in control of appressorium maturation has 4 of 5 Vast1
255 phosphoproteins changing in abundance, predicting that this pathway is key to plant infection
256 (**Figure 4C and S4**). In all of the signaling pathways analysed the phosphopeptide abundance
257 profiles are distinct between Guy11 and the $\Delta pmk1$ mutant, providing evidence that Pmk1 plays
258 a role in their direct or indirect regulation, and highlighting the global nature of its regulatory
259 effect on physiological and morphogenetic processes necessary for elaboration of a functional
260 appressorium.

261

262 **Targeted phosphoproteomics defines potential targets of the Pmk1 MAPK.**

263 Given the importance of Pmk1 in regulation of proteins required for plant infection by *M.*
264 *oryzae*, we decided to identify direct substrates of the MAPK. For this purpose, we carried out
265 targeted quantitative phosphoproteomic analysis in *M. oryzae* Guy11 and the $\Delta pmk1$ mutant

266 by Parallel Reaction Monitoring (PRM). We used this separate, more accurate approach to
267 enhance confidence in the identification of differential abundance of phosphopeptides as well
268 to benchmark the LFQ data (**Supplemental Data 1**). We hypothesized that direct targets of
269 Pmk1 would be phosphorylated only in the presence of Pmk1. For PRM, we selected peptides
270 to target from a DDA library using the following criteria: a) differentially phosphorylated
271 peptides based on LFQ; b) peptides from previously reported Pmk1 target proteins; and c)
272 potential components of the Pmk1 pathway based on a hierarchical transcriptomic analysis ⁷.
273 Using this information, we selected a list of 286 phosphopeptides belonging to 101 proteins
274 (**Figure 5A**). Of the 286 phosphopeptides quantified by PRM, 182 showed differential
275 abundance compared to conidia in one or both genotypes, representing 86 proteins (fold
276 change: $-1 < \log_2(\text{FC}) > 1$; p-value ≤ 0.05) (**Figure S5**). Of the 182 phosphopeptides showing
277 differential abundance, 63 peptides from 33 proteins were differentially phosphorylated at one
278 or more timepoints in Guy11 and non-differentially phosphorylated in the $\Delta pmk1$ mutant
279 (**Figure 5B**). We named these proteins "putative targets of Pmk1". Importantly, using this
280 approach we identified some previously reported Pmk1 targets. For example, we observed
281 Pmk1-dependent phosphosites at S126 and S158 in the transcription factor Hox7 (**Figure 5C**
282 and **5D**), consistent with a previous Hox7 study ⁷. Additionally, important components of the
283 Pmk1 pathway, such as the MAPKKK Mst11, MAPKK Mst7 and adaptor protein Mst50 also
284 showed Pmk1-dependent phosphorylation (**Figure 5C and 5D**). In total, our PRM analysis of
285 a time series study of infection-related development in *M. oryzae* identified a set of 33 putative
286 substrates of Pmk1.

287
288 The identified potential Pmk1 targets are broadly representative of cellular processes
289 implicated in appressorium morphogenesis, based on previous studies ⁷, but have diverse
290 functions. Based on the Magnagenes database of gene functional studies in *M. oryzae* ³⁴, the
291 function of 22 of the putative Pmk1 targets have already been studied in the blast fungus.
292 However, 11 proteins of this subset have not yet been described (**Table 3**). Using gene ontology
293 annotation, we assigned a function to each of these proteins where possible. From the proteins
294 previously studied in *M. oryzae*, we found 5 kinases, 4 transcription factors, 1 transcriptional
295 regulator and 1 phosphatase. Additionally, we also found 5 autophagy-related proteins, 5
296 components of the Pmk1 cascade, 2 components of the cAMP signaling pathway and 1
297 cytoskeleton related-protein. To determine which proteins might be direct targets of Pmk1, we
298 carried out yeast-two-hybrid (Y2H) screening for these 33 putative targets using Pmk1 as bait

299 on high stringency selection media (quadruple drop-out medium) (**Figure 5E**). We observed
300 direct protein-protein interactions with Pmk1 in 9 of the 33 putative targets. Interactors include
301 the transcription factors Far1³⁵ implicated in the regulation of lipid metabolism associated with
302 appressorium turgor generation and Som1, which links cell cycle control of appressorium
303 morphogenesis with cAMP signaling^{36,37}, as well as Mst50 and Mst11, the phosphatase Ptp2,
304 and a set of previously uncharacterized proteins, including a potential regulatory protein called
305 Vts1. Taken together, these results show that quantitative comparative phosphoproteomics, can
306 identify putative direct targets of the Pmk1 MAP kinase.

307

308 **Vts1 is a novel component of the Pmk1 MAPK pathway during rice blast disease.**

309 To test the validity of our quantitative phosphoproteomic approach, we decided to investigate
310 whether Vts1 is a direct phosphorylated target of Pmk1 during appressorium development. To
311 do this we first tested whether Pmk1 associated with Vts1 *in vivo*. We found that Vts1 is able
312 to interact strongly with Pmk1 in a stringent Y2H assay (**Figure 5E and 6A**). To show whether
313 this interaction occurred during appressorium development, we carried a co-
314 immunoprecipitation experiment in appressorial protein extracts. We found that Pmk1
315 associates with Vts1 after 4h, during appressorium development, suggesting a possible role
316 during development (**Figure 6B**). From PRM analysis, we identified 3 phosphorylation sites
317 in Vts1 (**Figure 6D**). However, only S175 and S420 are differentially phosphorylated in the
318 presence of Pmk1 in our PRM analysis (**Figure 6E**). To differentiate between direct and
319 indirect effects of the absence of Pmk1 activity, we used a Pmk1 analogue-sensitive mutant
320 (*pmk1^{AS}*)⁶, which can be inhibited selectively by addition of the ATP analogue 1-Naphthyl-PP1.
321 In this way, we were able to inhibit Pmk1 *in vivo* during early appressorium formation (**Figure**
322 **6F and S6**). We used PRM to accurately measure phosphopeptide abundance, which showed
323 that specific inhibition of Pmk1 at 1-4h post-germination, affects phosphorylation at S175 and
324 S420 of Vts1 but not at T14 (**Figure 6F**). To test whether Pmk1 phosphorylates Vts1 at S175
325 and S420 we carried out an *in vitro* kinase assay, using recombinant Vts1 and Pmk1. We used
326 a recombinant constitutively active MAPKK from tobacco (*Nicotiana tabacum*) NtMEK2^{DD} to
327 activate Pmk1 as previously shown^{7,91} (**Figure S7**). The *in vitro* kinase assay showed that
328 Pmk1 specifically phosphorylates Vts1 in a [S/T]P motif (**Figure 6C and S7D**) and mass
329 spectrometry demonstrated that S175 and S420 are indeed phosphorylated by Pmk1 (**Figure**
330 **S7E**). These results indicate that Pmk1 can associate with and specifically phosphorylate Vts1
331 at residues S175 and S420, consistent with Vts1 being a direct substrate of Pmk1.

332 To investigate the role of Vts1 in fungal pathogenicity, we generated a targeted deletion mutant
333 of *VTS1* in *M. oryzae* Guy11 (**Figure S8 and S9A**). We observed that 58% of $\Delta vts1$ appressoria
334 show aberrant development compared to Guy11 (**Figure S9B**) and $\Delta vts1$ mutants were severely
335 impaired in their ability to cause rice blast disease (**Figure S9C and S9D**). To study the role
336 of Pmk1-dependent phosphorylation of Vts1, we generated phosphomimetic and non-
337 phosphorylatable ('phosphodead') alleles of *VTS1* and transformed these into the $\Delta vts1$ mutant.
338 We observed that appressorium formation was impaired only by the strain complemented with
339 the phosphodead allele *VTS1^{A175}* but not by any of the other phosphorylation mutant variants
340 (**Figure S9E**). Furthermore, leaf sheath and leaf drop infection assays showed that *VTS1^{A175}*
341 does not produce rice blast disease lesions and infection progression is severely impaired
342 (**Figure 6G and 6I**). This provides strong evidence that Pmk1-dependent phosphorylation of
343 S175 of Vts1 is necessary for development rice blast disease. Consistent with the requirement
344 of S175 for fungal virulence, we found that Vts1 S175 is conserved among filamentous fungi,
345 while S420 is not conserved in other fungal species (**Figure S10**). This suggests that S175 and
346 S420 fulfil different distinct functions. When considered together, these results demonstrate
347 that quantitative phosphoproteomics has the capacity to identify completely novel regulators
348 of fungal virulence and enable the functional characterization of signaling pathways that
349 govern plant infection by pathogenic fungi.
350

351 **DISCUSSION**

352

353 Fungal pathogenicity is a complex phenotype that encompasses the ability of many fungal
354 pathogens to develop specialized infection structures to breach the tough outer layers of plants,
355 insects or human cells, to colonize living host tissue, to suppress immunity by deployment of
356 large families of effector proteins, and finally to kill host cells and produce new infective
357 propagules to infect new hosts. Very few global regulators of fungal pathogenesis have been
358 identified to date, but MAP kinases appear to be widely conserved across fungi and in
359 pathogenic species, they have been shown to control invasive growth and virulence (**Table 1**).
360 The rice blast fungus is one of the most devastating pathogens in the world and the MAP kinase
361 Pmk1 is a master regulator of infection-related development, regulating appressorium
362 morphogenesis⁵, appressorium function^{7,33,38} and invasive growth in plant tissue⁶. This single
363 kinase has been shown to control 49% of total gene expression during appressorium
364 development, suggesting a very broad role in the control of fungal development and physiology

365 7. Identifying the exact targets of master-regulator kinases across pathogenic fungi and
366 understanding the degree of conservation between them could provide new information that
367 can be exploited to control of some of the most devastating diseases across the world.

368

369 In this study we aimed to test whether quantitative phosphoproteomics could provide new
370 insight into the biology of infection by pathogenic fungi and identify downstream processes
371 via its direct phosphorylation substrates. The first major conclusion of this study is that the
372 phosphorylation landscape of fungal infection by the rice blast fungus is complex and highly
373 dynamic. Dramatic changes in phosphorylation occur as early as initial contact to an inductive
374 surface and extend to appressorium differentiation. We found a total of 8005 peptides
375 corresponding to 2062 proteins change in abundance and/or are differentially phosphorylated
376 in just 6h of development. The approach revealed that critical physiological processes
377 previously reported to be essential for infection are highly dynamic and tightly regulated by
378 phosphorylation. These processes include autophagy, which is essential for recycling the
379 contents of the three-celled conidium into the unicellular appressorium ²⁰, lipid metabolism
380 ^{38,39}, which is essential for glycerol synthesis that acts as the compatible solute in an
381 appressorium for generation of its enormous turgor, and melanization which is essential for the
382 appressorium to generate pressure ^{40,41}. Many other processes including cell cycle regulation,
383 cell wall biogenesis, intracellular trafficking, secondary metabolism are also clearly regulated
384 by dynamic changes in phosphorylation during infection.

385

386 The second major conclusion of the study is that patterns of phosphorylation have been
387 conserved across diverse fungal species, revealing phosphorylation signatures correlated with
388 fungal pathogenesis and infection structure development, many of which are likely to be
389 dependent on Pmk1-related MAPK activity. Comparative analysis with 41 fungal species
390 provided evidence that elements of the phosphorylation landscape identified in *M. oryzae* are
391 conserved across different fungal species. A sub-set of phosphorylation sites are, for example,
392 highly conserved in plant-associated fungal species, with further phosphosites conserved only
393 in fungal pathogens that invade cereal hosts, and others only present in fungal pathogens that
394 elaborate melanised force-generating appressoria, like the blast fungus. These phosphosites
395 have the potential to enable mining of conserved physiological processes associated with
396 fungal pathogenesis, including infection structure development, and the invasion of host tissue.
397 Specific processes regulated by patterns of phosphorylation, for example, in *Colletotrichum*
398 and *Magnaporthe* include trehalose and glycogen metabolism, regulated lipolysis, cytoskeletal

399 re-modelling and BAR domain proteins implicated in membrane curvature generation. These
400 make sense in the context of development of a melanized, high pressurized appressorium, but
401 have not been studied in a comparative way between these species before.

402
403 Quantitative phosphoproteomic analysis enabled the detailed analysis of Pmk1-dependent
404 phosphorylation in *M. oryzae*, revealing the specific signaling pathways targeted by the
405 MAPK. These include the cAMP-dependent protein kinase A pathway, which serves a role
406 both in surface sensing and the physiological regulation of compatible solute generation in the
407 appressorium^{1,2} and the regulators of autophagy, such as the Atg1 kinase, Atg13 and Atg17,
408 which initiate phagophore formation at the onset of autophagy⁴². This link is consistent with
409 previous studies in which autophagy was shown to be impaired in a *Δpmk1* mutant³³, but also
410 show the likely mechanism of by which Pmk1 exerts this control. Completely new insights
411 have also been provided, however, such as the link with the Sln1 turgor sensor kinase, which
412 is necessary to regulate polarized growth and penetration peg emergence once a threshold of
413 turgor has been generated^{3,4}. Pmk1 is necessary for phosphorylation of the Sln1 histidine
414 kinase and an interacting stretch-activated gated ion channel protein Mic1, as well as the
415 components of the cell integrity pathway, such as protein kinase C that are necessary for
416 regulating the changes in cell wall structure associated with the resumption of polarized
417 growth. Interestingly, the NADPH oxidase Nox2, which is necessary for septin aggregation at
418 the appressorium pore is also phosphorylated in a Pmk1-dependent manner, along with its
419 Bem1 regulator. Similarly, the newly identified Vast1 pathway⁴³, which is necessary for TOR-
420 dependent plasma membrane homoeostasis is also regulated in a Pmk1-dependent manner.
421 This is also consistent with aminophospholipid regulators, Pde1⁴⁴ and Apt2²⁸, which are both
422 necessary for appressorium function, being phosphorylated in a Pmk1-dependent manner. A
423 third major conclusion of our study is therefore that quantitative phosphoproteomics can
424 provide unparalleled insight into the regulatory processes controlled by Pmk1 during infection.

425
426 To test the ability to identify and characterize direct substrates of the Pmk1 MAPK, we focused
427 on investigating a phosphorylated Pmk1 interactor called Vts1, a protein of unknown function
428 in the rice blast fungus. We observed that Vts1 contains a sterile alpha motif (SAM) domain.
429 SAM domain-containing proteins have been previously reported as important regulators of
430 MAPK signaling cascades (Kim & Bowie, 2003) and proteins containing SAM domains are
431 versatile because this domain has documented to take part in various interactions. They can,

432 for example, show binding affinity to other SAM and non-SAM domain proteins, but can also
433 show binding affinity to lipids and RNA ⁴⁶. Importantly, SAM domains have been reported to
434 mediate associations of MAPK modules in different fungi. In *Schizosaccharomyces pombe*, for
435 instance, association between Ste4 and Byr2 occurs via a SAM motif ⁴⁷. Similarly, in *S.*
436 *cerevisiae*, the interaction between Ste11 and Ste50 is mediated by a SAM domain ⁴⁸. In *M.*
437 *oryzae*, the MAPKK Mst11 and the putative scaffold protein Mst50 in the Pmk1 pathway also
438 both contain SAM domains ¹⁰. Furthermore, it has been demonstrated that Mst50-Mst11
439 interaction occurs via their respective SAM domains and that this is essential for appressorium
440 development and plant infection ¹¹. In this study, we have provided evidence that Vts1 is
441 phosphorylated directly by Pmk1 based on parallel reaction monitoring, the analysis of a
442 conditional analogue-sensitive Pmk1 mutant, and an *in vitro* kinase assay. Furthermore, Vts1
443 is important for fungal virulence and necessary for correct appressorium morphogenesis.
444 Finally, we demonstrated that a single Vts1 phosphosite S175 is necessary for its biological
445 activity during plant infection. These results therefore validate the use of phosphoproteomics
446 as a means of identifying new determinants of pathogenicity in the blast fungus and thereby
447 revealing how Pmk1 exerts such a major role in the regulation of fungal infection.

448

449 When considered together, this study demonstrates the importance of phosphoproteomic
450 changes during infection-related development by a pathogenic fungus. The conservation of
451 nearly 1200 phosphorylated residues in a group of 41 fungal species also reveals proteins
452 required for core functions as well as potential phosphoproteins associated with a plant
453 pathogenic lifestyle. This underscores the potential of our phosphoproteome data sets as a
454 resource that can be mined by the fungal research community to identify novel virulence
455 determinants in a wide range of fungal species.

456

457 **ACKNOWLEDGMENTS**

458 We thank Prof. Sophien Kamoun for critical input on this manuscript. We thank the John Innes
459 Centre (JIC) Bioimaging staff for providing technical support on SEM images. We thank Dr.
460 Iris Eiserman for providing the Septin4 pGBKT7 construct. This work was supported by grants
461 to NJT from the Gatsby Charitable Foundation and Biotechnology and Biological Sciences
462 Research Council (BBSRC) BBS/E/J/000PR9797 and a BBSRC grant to NJT and FLHM
463 (BB/V016342/1). NCM was supported by a John Innes Foundation, Sainsbury Laboratory

464 Rotation Programme PhD Studentship and Consejo Nacional de Humanidades, Ciencia y
465 Tecnologías (CONAHCYT).

466

467 **AUTHORS CONTRIBUTIONS**

468 NJT and FLHM conceived the project. NJT and FLHM guided the execution of the
469 experiments and oversaw the project. NCM, MOR, PD, CJ, LR, MJB, AEB, JS, BT, XY, WM,
470 VW, DM and FLHM did the experiments and analyzed the data. NCM prepared figures and
471 tables. NCM, NJT, and FLHM wrote the manuscript with contributions from all authors.

472

473 **DECLARATION OF INTEREST**

474 The authors declare no competing interests.

475

476

477

478

479

480

481

482

483

484

485

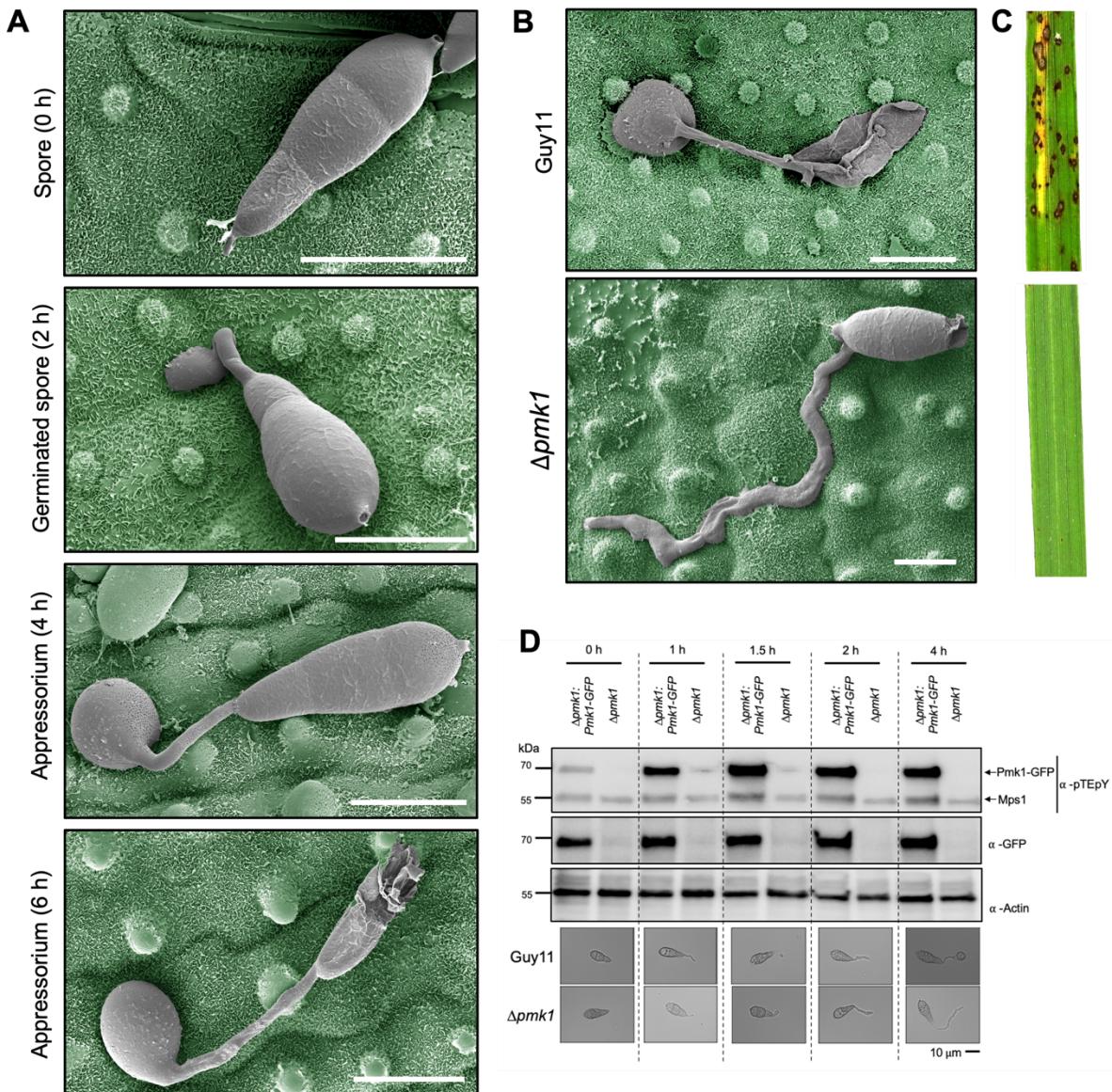
486

487

488

489

490


491

492

493

494

495 **FIGURES**

496

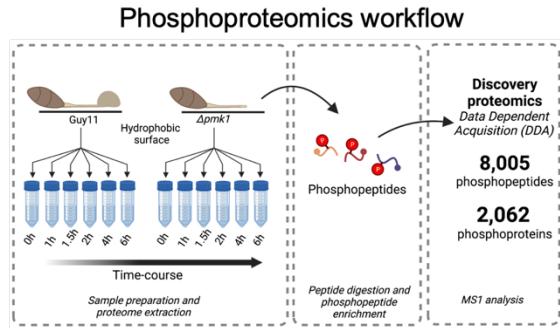
497

498 **Figure 1. Early morphogenetic transitions in the appressorium overlap with activation of**
499 **the Pmk1 signaling cascade**

500

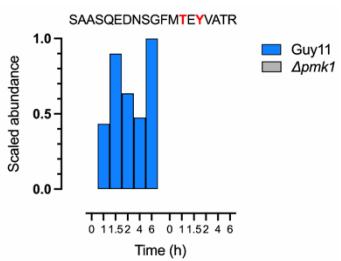
501 **(A)** Scanning electron micrographs (SEM) with false colouring to show appressorium
502 germination of wild-type strain Guy11 at 0h, 2h, 4h and 6h. **(B)** SEM with false colouring to
503 show appressorium germination of Guy11 and $\Delta pmk1$ strains at 24h. In **(A)** and **(B)** the blast
504 fungus is shown in grey, and rice leaf surface is false-colour imaged to green. Scale bars
505 indicate 10 μ m. **(C)** Rice leaves infected with Guy11 (top) and $\Delta pmk1$ (bottom) strains. Rice

506 seedlings of cultivar CO-39 were spray-inoculated with conidial suspensions of equal
507 concentrations of each strain and incubated for 5d. **(D)** Western blot analysis of total protein
508 extracted from *in vitro* germinated spores at 0, 1, 1.5, 2 and 4 h from $\Delta pmk1$ complemented
509 with *PMK1-GFP* and $\Delta pmk1$ using α -pTEpY (top panel), α -GFP (middle panel) and α -Actin
510 (lower panel). α - pTEpY has been also reported to detect the MAPK Mps1⁴⁹. Proteins were
511 immunoblotted with appropriate antisera (listed on the right). Arrows indicate expected band
512 sizes.

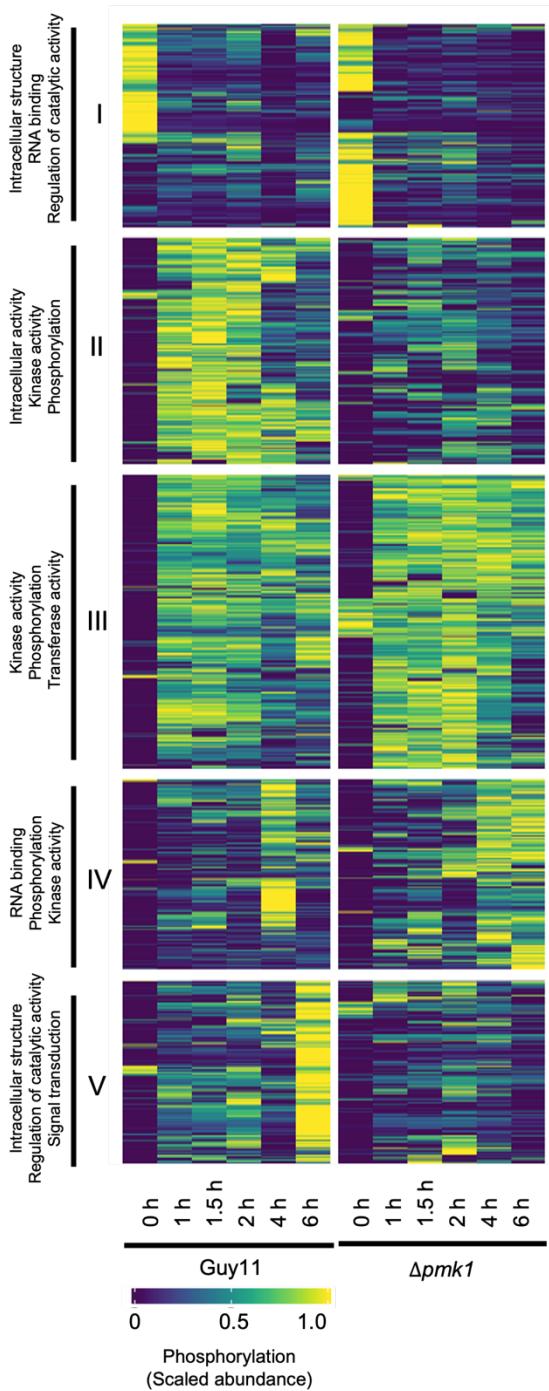

513

514

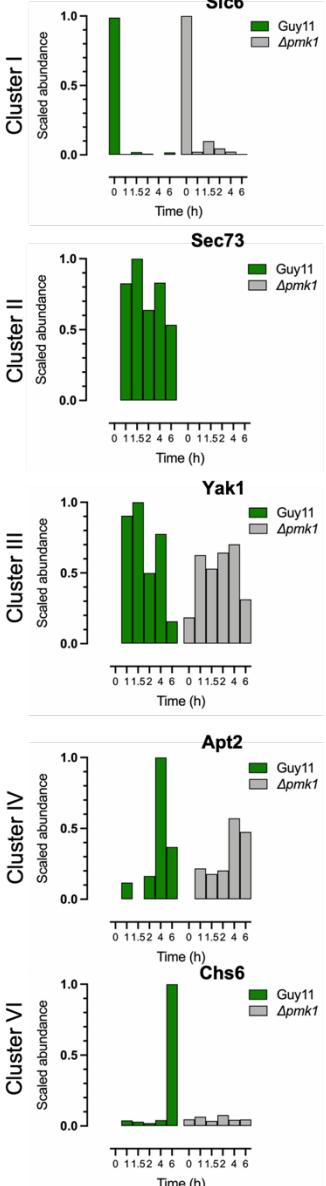
515


516

A



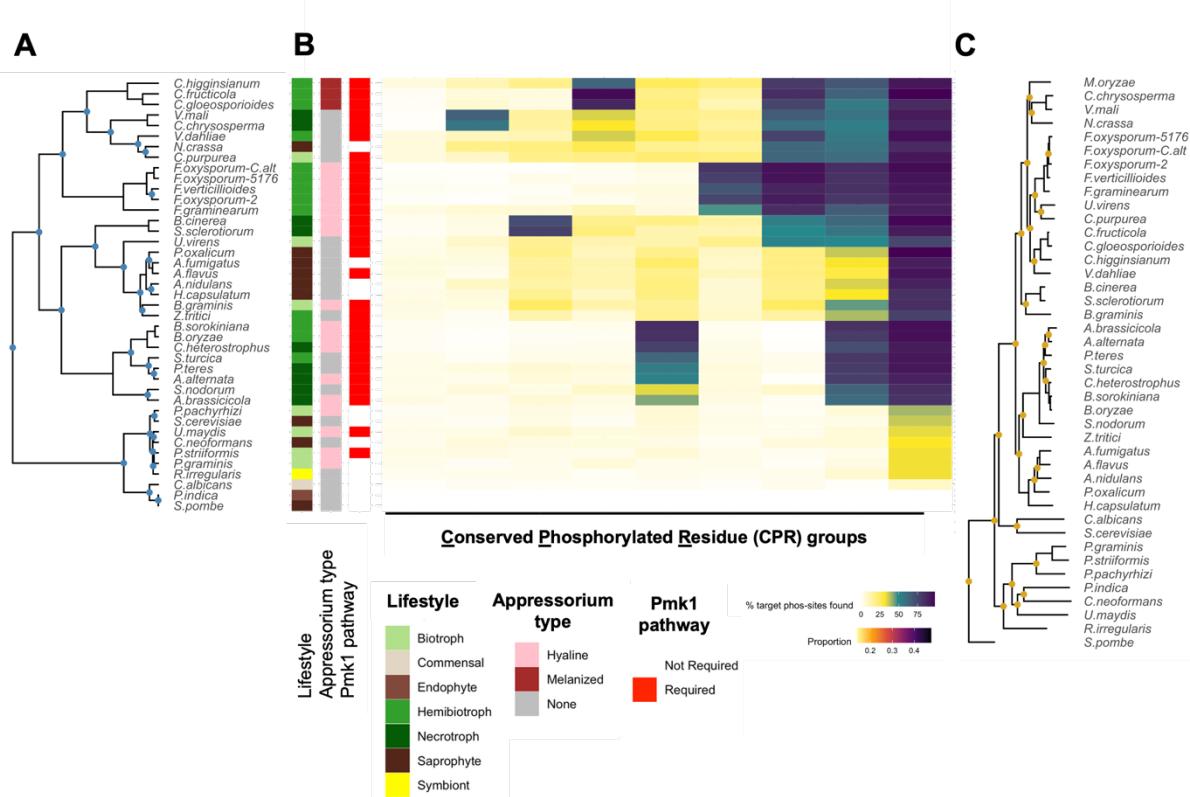
C


Prmk1 activation motif

B

D

519


520 **Figure 2. Infection-related development causes major changes in protein phosphorylation**

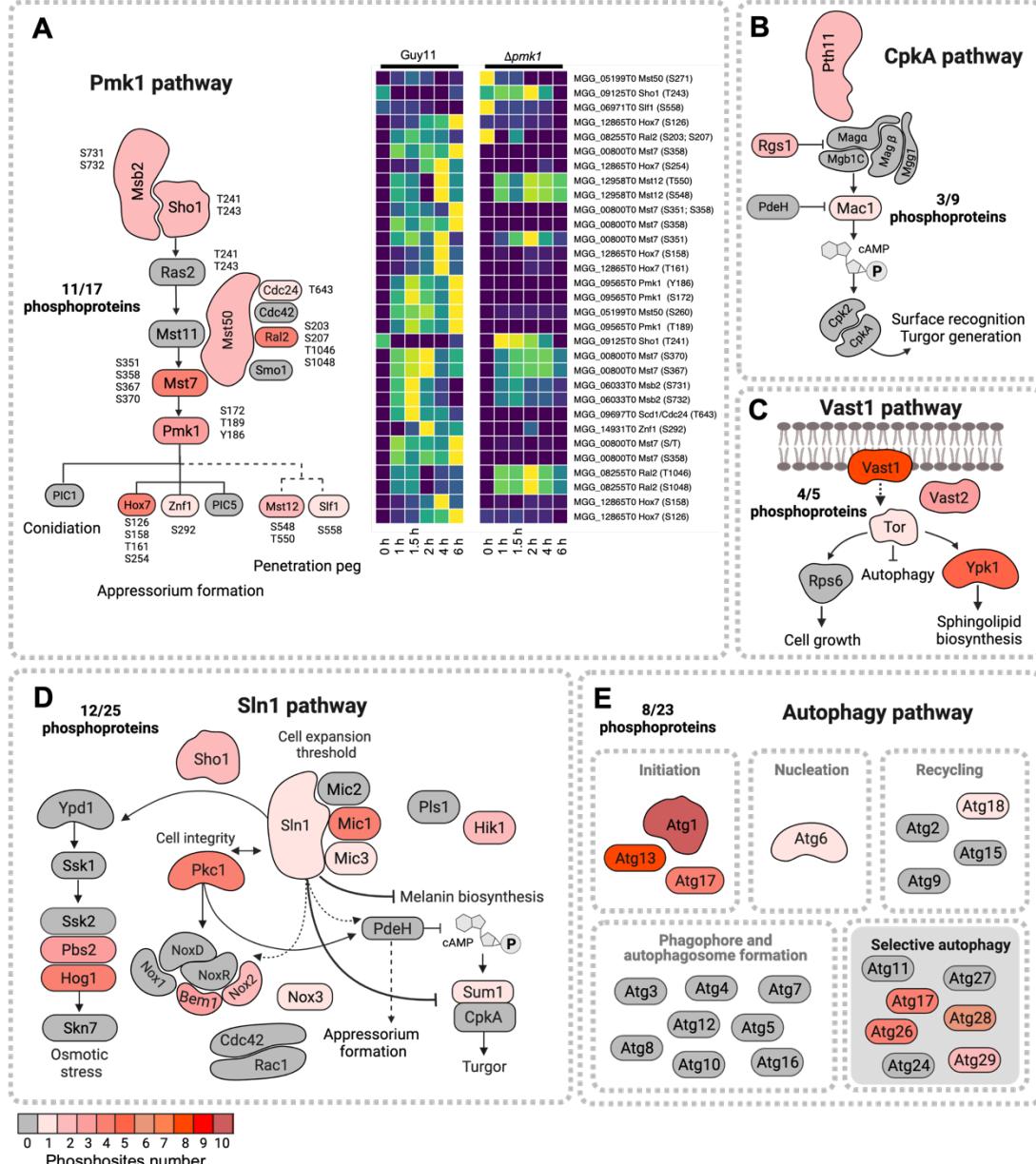
521

522 **(A)** Schematic to show the infection-related development experiment in a pathogenic (Guy11)
523 and non-pathogenic ($\Delta pmk1$) *M. oryzae* strain. Spores and germinated cells were synchronized
524 at 0h, 1h, 1.5h, 2h, 4h and 6h. Phosphopeptides were enriched using TiO_2 microspheres and
525 were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Samples
526 were analyzed on Data Dependent Acquisition (DDA) mode to be quantified using an label
527 free quantification based on precursor ions (MS1). **(B)** Heatmap to show the differentially
528 phosphorylated phosphopeptides in Guy11 and $\Delta pmk1$. Each row corresponds to a single
529 phosphosite and rows are ordered by hierarchical clustering (I-V). The top three GO terms for
530 each cluster are indicated. **(C)** Bar graphs to show relative phosphorylation abundance for the
531 peptide containing the Pmk1 activation motif (pTEpY) during early infection. **(D)** Relative
532 phosphorylation for representative phosphopeptides in each defined cluster. Cluster I, solute
533 carrier family protein Slc6 (MGG_05433); Cluster II, Sec73 (MGG_06905); Cluster III, Yak1
534 (MGG_06399); Cluster IV, Apt2 (MGG_07012) and Cluster V, chitin synthase 6, CH6
535 (MGG_13013).

536

537

538


539

540 **Figure 3. Evolutionary analysis determines appressorium specific phosphosites across**
541 **fungal species.**

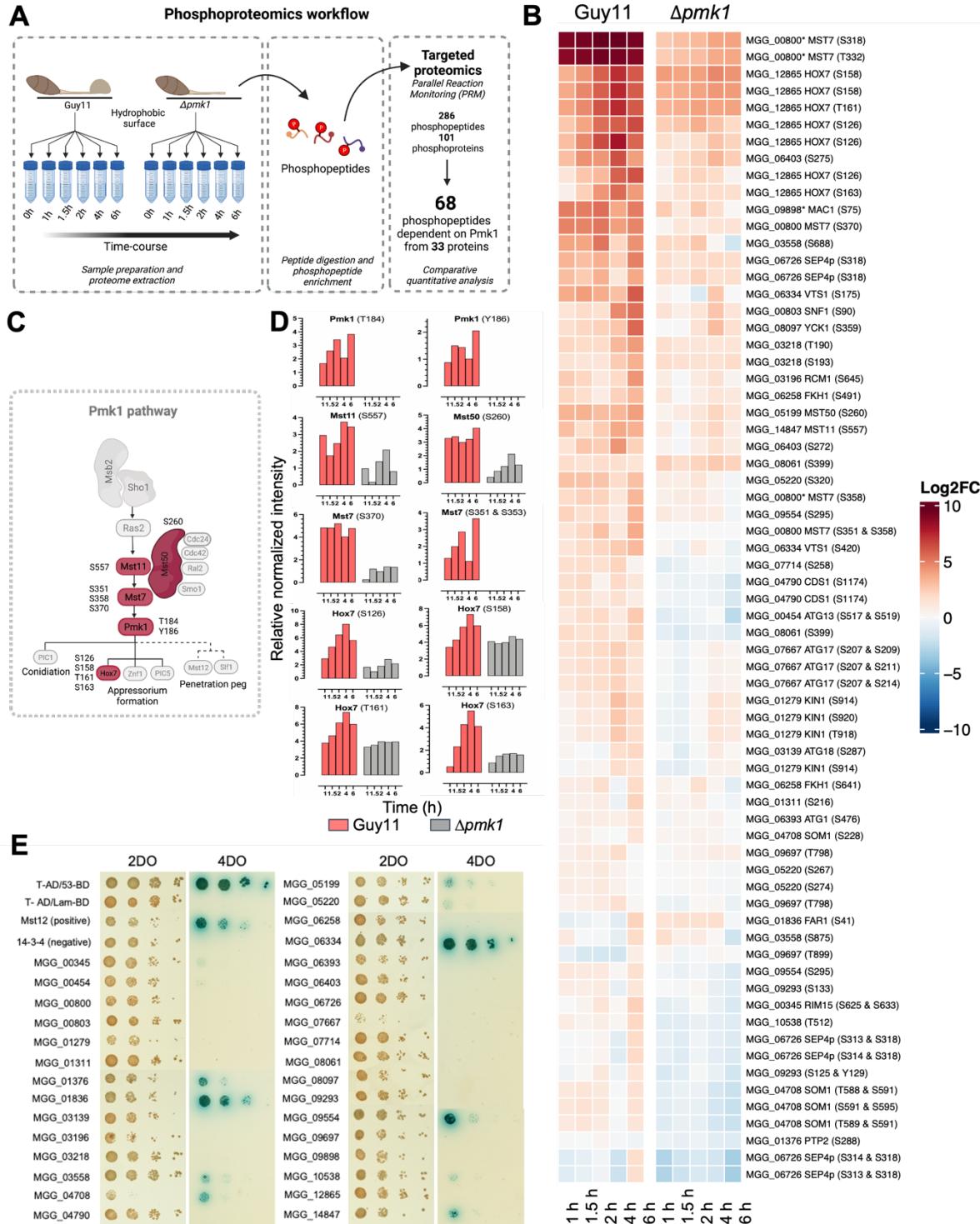
542

543 **(A)** Fungal species tree based on based on the conservation of phosphorylated residues. **(B)**
544 Heatmap to show *k*-means clustered conserved phosphorylated residues among 41 fungal
545 species from the infection-related development dataset in *M. oryzae*. Each row corresponds to
546 a single species, and rows and columns are ordered by hierarchical clustering in 9 Conserved
547 Phosphorylated Residue (CPR) groups. Colour indicates the percent of target phosphosites
548 from *M. oryzae* found in other species. **(C)** Phylogenetic tree based on the orthogroups for the
549 41 fungal species: *Alternaria alternata*, *Alternaria brassicicola*, *Aspergillus flavus*, *Aspergillus*
550 *fumigatus*, *Aspergillus nidulans*, *Bipolaris oryzae*, *Bipolaris sorokiniana* (*Cochliobolus*
551 *sativus*), *Blumeria graminis*, *Botrytis cinerea*, *Candida albicans*, *Claviceps purpurea*,
552 *Cochliobolus heterostrophus*, *Colletotrichum fructicola*, *Colletotrichum gloeosporioides*,
553 *Colletotrichum higginsianum*, *Cryptococcus neoformans*, *Cytospora chrysosperma*, *Fusarium*
554 *graminearum*, *Fusarium oxysporum*-2, *Fusarium oxysporum*-5176, *Fusarium oxysporum*-
555 *C.alt*, *Fusarium verticillioides*, *Histoplasma capsulatum*, *Neurospora crassa*, *Penicillium*
556 *oxalicum*, *Phakopsora pachyrhizi*, *Piriformospora indica*, *Puccinia graminis*, *Puccinia*
557 *striiformis*, *Pyrenophora teres*, *Rhizophagus irregularis*, *Saccharomyces cerevisiae*,
558 *Schizosaccharomyces pombe*, *Sclerotinia sclerotiorum*, *Setosphaeria turcica*, *Stagonospora*
559 *nodorum*, *Ustilaginoidea virens*, *Ustilago maydis*, *Valsa mali*, *Verticillium dahliae*,
560 *Zymoseptoria tritici*.

561

562

563

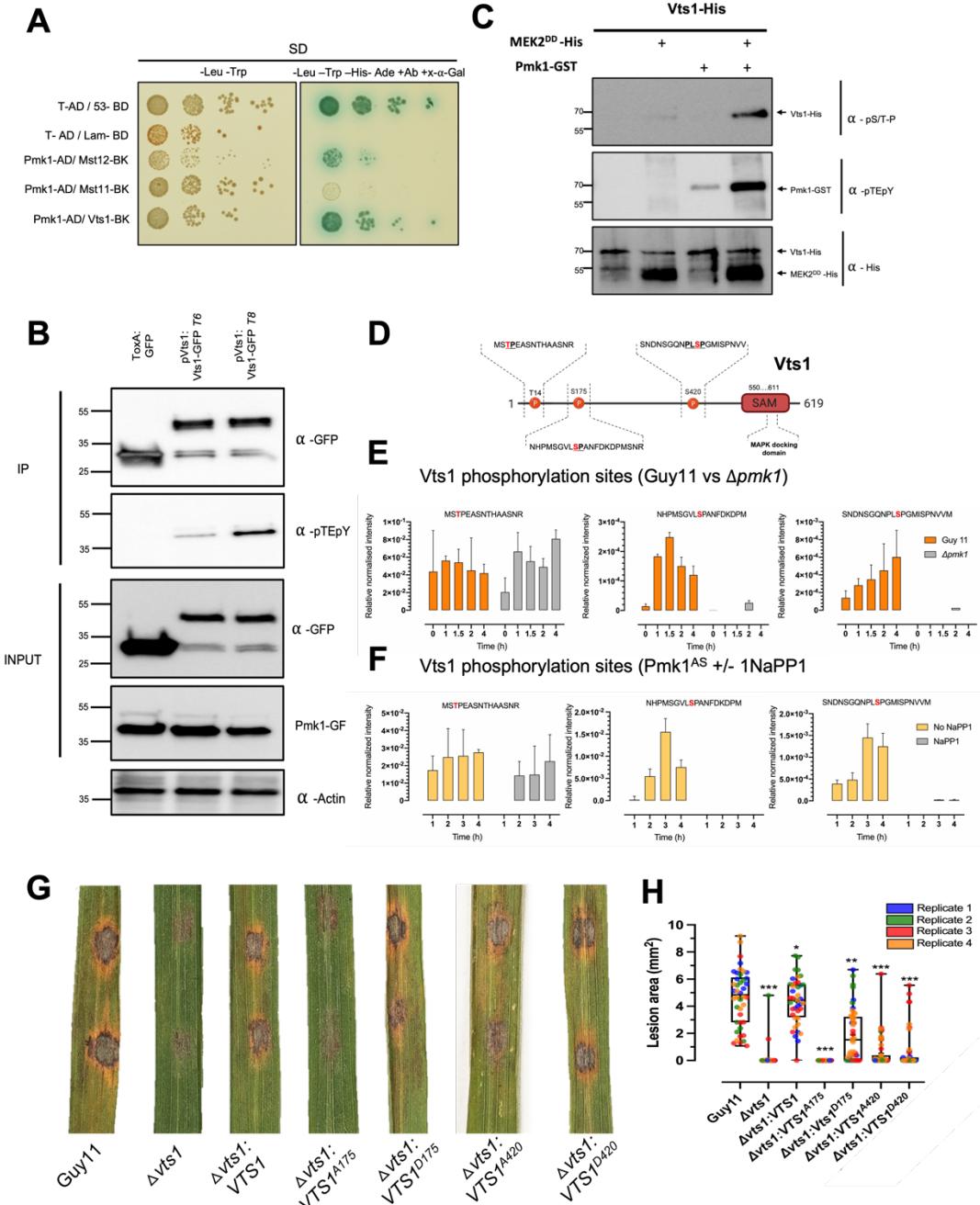

564 **Figure 4. Phosphorylation is a major modification in proteins from pathways that control**
565 **infection-related development.**

566

567 (A) On the left, schematic representation of components of the Pmk1 signaling pathway in *M.*
 568 *oryzae*. Differentially phosphorylated residues in are indicated for each protein (p value <= 0.05). On the right, heatmap to show the differentially phosphorylated phosphopeptides in
 569 Guy11 and $\Delta pmk1$ during infection-related development. Each row corresponds to a single
 570 phosphosite. (B-E) Schematic representation of components of (B) CpkA, (C) Vast1, (D) Sln1

572 and (E) Autophagy pathways. For all represented proteins, the number of differentially
573 phosphorylated residues is represented in red.

574


575

576 **Figure 5. Quantitative phosphoproteomics defines 33 putative targets of the Pmk1 MAPK**
577 **pathway.**

578

579 **(A)** Schematic to show the phosphoproteomic workflow for the quantitative analysis
580 experiment between Guy11 and $\Delta pmk1$ to determine Pmk1 direct targets in *M. oryzae*. Spores
581 and germinated cells were synchronized at 0h, 1h, 1.5h, 2h, 4h and 6h. Phosphopeptides were
582 enriched using TiO₂ microspheres and were subjected to liquid chromatography-tandem mass
583 spectrometry (LC-MS/MS). Samples were analyzed by Parallel Reaction Monitoring (PRM).
584 **(B)** Heatmap to show the differentially phosphorylated phosphopeptides in Guy11 and $\Delta pmk1$.
585 Each row corresponds to a single phosphosite. **(C)** Schematic representation of components of
586 the Pmk1 signaling pathway in *M. oryzae*. Differentially phosphorylated residues in are
587 indicated for each protein (adjusted p value <= 0.05). **(D)** Bar graphs to show relative
588 normalized intensity determined by PRM of peptides associated to Mst11, Mst7, Pmk1, Mst50
589 and Hox7 during early infection from 0-6h in Guy11 and $\Delta pmk1$. **(E)** Yeast-two-hybrid (Y2H)
590 assay to determine the interaction of Pmk1 with its putative direct targets. Protein interactions
591 were tested in yeast grown on SD medium -Trp - Leu -Ade -His + alpha X-gal +Au (4DO
592 panels). Viability of all transformed yeast cells was demonstrated by growth on SD medium -
593 Trp -Leu (2DO panels). Yeast cells were inoculated onto media as a tenfold dilution series.
594 Mst12 was used as the positive control.

595
596

Figure 6. Vts1 is a novel target of the Pmk1 MAPK pathway necessary for rice blast disease.

(A) Yeast-two-hybrid (Y2H) assay to determine the interaction of Pmk1 with its putative direct targets. Protein interactions were tested in yeast grown on SD medium -Trp - Leu -Ade -His +X gal +Au (4DO panels). Viability of all transformed yeast cells was demonstrated by growth on SD medium -Trp -Leu (2DO panels). Yeast cells were inoculated onto media as a tenfold dilution series. Mst12 was used as the positive control. **(B)** Co-immunoprecipitation of Vts1-

607 GFP. C-terminal GFP tagged Vts1 was transformed into *M. oryzae* Guy11. Anti-pTEpY
608 antiserum was used to detect double phosphorylated Pmk1. Immunoprecipitates obtained with
609 anti-GFP antiserum, and total proteins extracts, were probed with appropriate antisera. **(C)**
610 Western blot analysis of *in vitro* phosphorylation experiment between Pmk1 and Vts1 (N-
611 terminally tagged with 6xHis). Proteins were immunoblotted with appropriate antisera (listed
612 on the right). Arrows indicate expected band sizes. **(D)** Schematic diagram to show Vts1
613 phosphorylated residues T14, S175, S420 and position of the predicted SAM domain. **(E-F)**
614 Relative normalized intensity determined by PRM of Vts1 phosphopeptides associated with
615 T14, S175 and S420 during appressorium development from 0-4h in *M. oryzae* for **(E)** Guy11
616 and the $\Delta pmk1$ mutant, and **(F)** the analogue-sensitive mutant $pmk1^{AS}$ in the presence or
617 absence of the inhibitor 1NaPP1. **(G)** Leaf drop assay using 3-week-old seedlings of rice
618 cultivar CO-39 that were inoculated with equal amounts of conidial suspensions of Guy11,
619 $\Delta vts1$ and Vts1 phosphorylation mutant strains (10^5 conidia mL $^{-1}$) in 0.2% gelatin. Seedlings
620 were incubated for 5 days to develop blast disease at 26 °C. Fully susceptible, sporulating
621 disease lesions can be distinguished by their grey centres. **(H)** Bar chart to show the lesion size
622 for each *M. oryzae* phosphoallele. * $P < 0.05$: ** $P < 0.01$; *** $P < 0.001$ represent significance
623 using unpaired two-tailed Student's *t*-test. Data from four biological replicates.

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638 **TABLES WITH TITLES AND LEGENDS**

639 **Table 1. List of characterized Pmk1 orthologs in pathogenic fungi.**

640

Fungal species	Fus3/Kss1 orthologue	Reference
<i>Alternaria alternata</i>	Fus3	50
<i>Alternaria brassicicola</i>	Amk1	51
<i>Aspergillus flavus</i>	MpkB	52
<i>Bipolaris oryzae</i>	Bmk1	53
<i>Bipolaris sorokiniana</i>	Fus3	54
<i>(Cochliobolus sativus)</i>		
<i>Blumeria graminis</i>	Mpk1	55
<i>Botrytis cinerea</i>	Bmp1	56
<i>Claviceps purpurea</i>	Cpmk1	57
<i>Cochliobolus heterostrophus</i>	Chk1	58
<i>Colletotrichum fructicola</i>	Cfmk1	59,60
<i>Colletotrichum gloeosporioides</i>	CgMk1	61
<i>Colletotrichum higginsianum</i>	ChMK1	62
<i>Colletotrichum lagenarium</i>	Cmk1	63
<i>Colletotrichum scovillei</i>	CsPmk1	64
<i>Cytospora chrysosperma</i>	CcPmk1	65
<i>Fusarium graminearum</i>	Gmpk1	66
<i>Fusarium oxysporum</i>	Fmk1	67
<i>Fusarium verticillioides</i>	Mk1	68
<i>Magnaporthe oryzae</i>	Pmk1	5
<i>Metarhizium robertsii</i>	Fus3	69
<i>Mycosphaerella graminicola</i>	Fus3	70
<i>Penicillium oxalicum</i>	PoxMk1	71
<i>Puccinia striiformis</i>	Mapk1	72
<i>Pyrenophora teres</i>	Ptk1	73
<i>Sclerotinia sclerotiorum</i>	Smk1	74
<i>Setosphaeria turcica</i>	Stk2	75
<i>Stagonospora nodorum</i>	Mak2	76
<i>Ustilaginoidea virens</i>	UvPmk1	77
<i>Ustilago maydis</i>	Kpp2 Kpp6	78,79
<i>Valsa mali</i>	VmPmk1	80
<i>Verticillium dahliae</i>	Vmk1	81

641

642 **Table 2. The number of phosphosites at each developmental stage clustered as defined in**

643 **Figure 2B.**

Time	Guy11		$\Delta pmk1$	
	Up-regulated	Down-regulated	Up-regulated	Down-regulated
1h	420	2049	727	1681
1.5h	469	2168	619	1844
2h	344	2332	527	1986
4h	599	2323	569	2373
6h	329	3322	744	1736

644

645

646 **Table 3. Pmk1 putative targets identified during appressorium formation by PRM**

647

Gene ID	Name	Function/ Process	Pmk1 dependent phosphorylation site
MGG_01311	Nuclear elongation protein	Uncharacterized	S216
MGG_03218	Calcipressin protein	Uncharacterized	T190, S193
MGG_03558	PH domain protein	Uncharacterized	S666, S688, S875
MGG_05220	S/T protein kinase	Uncharacterized	S267, S274, S320
MGG_06334	Vts1	Uncharacterized	S175, S420
MGG_06403	PH domain protein	Uncharacterized	S272, S275
MGG_07714	Actin cytoskeleton organization protein	Uncharacterized	S258
MGG_09293	Cell division control protein	Uncharacterized	S97, S125, Y129, S133
MGG_09554	Anaphase-promoting complex subunit	Uncharacterized	S295
MGG_09697	PH domain protein	Uncharacterized	T798, T899
MGG_10538	RSC complex subunit	Uncharacterized	T512
MGG_00345	RIM15	Kinases	S402, S625, S633
MGG_00803	SNF1	Kinases	S90
MGG_01279	KIN1	Kinases	S914, T918, S920
MGG_04790	CDS1	Kinases	S1174
MGG_08097	YCK1	Kinases	S359
MGG_06393	Atg1	Autophagy	S476, S547
MGG_00454	Atg13	Autophagy	S517, S519, S920
MGG_07667	Atg17	Autophagy	S207, S209, S211, S214
MGG_03139	Atg18	Autophagy	S287, S295
MGG_08061	Atg28	Autophagy	S399
MGG_14847	Mst11	Pmk1 pathway	T551, S557
MGG_00800	Mst7	Pmk1 pathway	S351, S358, S370
XP_368444.2	Mst7	Pmk1 pathway	S318, T332, S358
MGG_05199	Mst50	Pmk1 pathway	S260
MGG_01836	FAR1	Transcription factor	S41
MGG_06258	FKH1	Transcription factor	S491, S641
MGG_12865	HOX7	Transcription factor/ Pmk1 pathway	S126, S158, T161, S163
MGG_04708	SOM1	Transcription factor/ cAMP pathway	S228, T588, T589, S591, S595
MGG_09898	MAC1 (XP_365053.1)	cAMP pathway	S75
MGG_06726	Septin4	Cytoskeleton related	S313, S314, S318
MGG_03196	RCM1	Transcriptional regulator	S645
MGG_01376	PTP2	Phosphatase	S288

648

649 **KEY RESOURCES TABLE**

650

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Bacterial and virus strains		
<i>Escherichia coli</i> Stellar TM Chemically Competent Cell	Takara Bio	Cat# 636763
<i>Escherichia coli</i> DH5 α	TIANGEN	Cat# CB101-02
<i>Escherichia coli</i> BL21 Rosetta (DE3)	Sigma-Aldrich	Cat# 70954
Chemicals, peptides, and recombinant proteins		

pTEpY (p44/42 MAPK) antibody	Cell Signaling Technology	Cat#4370S
pS/pT-P antibody	Abcam	Cat#ab934
GFP antibody	Santa Cruz Biotechnology	Cat#sc-9996
Actin antibody	Agrisera com	Cat#AS13 2640
6xHis antibody	Abcam	Cat#ab1187
Rabbit secondary antibody	Cell Signaling Technology	Cat#7074S
Critical commercial assays		
HiScript® II 1st Strand cDNA Synthesis Kit	Vazyme	Cat# R211-01/02
In-Fusion HD Cloning Plus Kits	Clontech	Cat# 638920
RNeasy Plant Mini Kit	QIAGEN	Cat# 74904
Experimental models: Organisms/strains		
<i>Magnaporthe oryzae</i>		N/A
<i>Oryza sativa</i> cultivar CO-39		N/A
Oligonucleotides		
GFP_F ATGGTGAGCAAGGGCGAGGA	this paper	
TrpC GFP_R TCGACGGTATCGATAAGCTTCTCGAGTGGAGATGTGG AGT	this paper	
6334p_F TGCAGCCCAATGTGGAATTCGGTTGTAAGTACCGCAC TC	this paper	
6334 GFP_R GCCCTTGCTCACCATAGTAGATAGACGTCCCTCAG	this paper	
pGADT7_6334_F GGAGGCCAGTGAATTCATGTCAGCTGCTCAGTCCACC	this paper	
pGADT7_6334_R CGAGCTCGATGGATCCTTAAGTAGATAGACGTCCCTC	this paper	
6334_Int_R CCTTATCAAAGTTGGCGGGTGAC	this paper	
6334_Int_F CCAACTTGATAAGGATCCCATGTCAAACCGTCTC	this paper	
6334_BK_F CATGGAGGCCGAATTCATGTCAGCTGCTCAGTCCACC	this paper	
6334_BK_R GCAGGTCGACGGATCCTTAAGTAGATAGACGTCCCTC	this paper	
05257_AD_F GGAGGCCAGTGAATTCATGTTCAGCCAACAACCGAG	this paper	
05257_AD_R CGAGCTCGATGGATCCCTAGGCTCTCGCTATGTCGTC	this paper	
06403_AD_F GGAGGCCAGTGAATTCATGCTTGAAACCATGGTTGAC G	this paper	
06403_AD_R CGAGCTCGATGGATCCTCAAGCCGCAAGGTTGATGG	this paper	
pGADT7_6419_F GGAGGCCAGTGAATTCATGAGTGCAGCCATGCCATG	this paper	
pGADT7_6419_R CGAGCTCGATGGATCCTCAAGAGTGGAACAGGTCCCA	this paper	
883_BK_F CATGGAGGCCGAATTCATGTATCCAGGAAGTAGCC	this paper	
883_BK_R GCAGGTCGACGGATCCTCAGTACGTCCCTCTGATCTTG	this paper	
07714_BK_F CATGGAGGCCGAATTCATGCAATCGCAGTCGGCATG	this paper	

07714_BK_R GCAGGGTGCACGGATCCCTATCTTCAGCTCTGCCATC GC	this paper	
05257_BK_F CATGGAGGCCGAATTCATGTTCAGCCAACAACCGAG	this paper	
05257_BK_F GCAGGGTGCACGGATCCCTAGGCTCTCGCTATGTCGTC	this paper	
06403_BK_F CATGGAGGCCGAATTCATGCTTCAAACCATGGTTGAC G	this paper	
06403_BK_R GCAGGGTGCACGGATCCTCAAGCCGCAAGGTTGATGG	this paper	
pOPIN_Pmk1_FL_F AAGTTCTGTTCAGGGCCCGATGTCTCGCGCCAATCCA CC	this paper	
pOPIN_Pmk1_FL_R ATGGTCTAGAAAGCTTACCGCATAATTCTGGTAGA TG	this paper	
Vts1_PD1_F AGTTTGCCCCCGCCAACTTGATAAGGGTCAGT	this paper	
Vts1_PD1_R AGTTGGCGGGGGCCAAAACCTCCTGAC	this paper	
Vts1_PD2_F CCCTCTAGCCCCGGGTATGATCTCCCCAACGTGCG	this paper	
Vts1_PD2_R TCATACCCGGGGCTAGAGGGTTCTGTC	this paper	
Vts1_PM1_F AGTTTTGGACCCCGCCAACTTGATAAGGGTCAGT	this paper	
Vts1_PM1_R AGTTGGCGGGGTCCAAAACCTCCTGAC	this paper	
Vts1_PM2_F CCCTCTAGACCCGGGTATGATCTCCCCAACGTGCG	this paper	
Vts1_PM2_R TCATACCCGGGTCTAGAGGGTTCTGTC	this paper	
Vts1_LF5 TCCCTGCCTGCGCATTGGCGTGG	this paper	
Vts1_LF3 GTCGTGACTGGAAAACCTGGCGCTGGCGCGTGAG TGTGGAGGCC	this paper	
Vts1_RF5 TCCTGTGTGAAATTGTTATCCGCTCAAGACTGAGGGAC GTCTATCTAC	this paper	
Vts1_RF3 CCTCTTCGTCGATGCACATATGC	this paper	
Vts1g_500_UP_F TTTGTAAAGTACCGCACTCATCCTG	this paper	
Vts1_pOPINs_F AAGTTCTGTTCAGGGCCCGATGTCAGCTGCTCAGTCC ACC	this paper	
Vts1_pOPINs_R ATGGTCTAGAAAGCTTATTAAGTAGATAGACGTCCCT C	this paper	
Vts1_LF1_F CCTTGGAAAGTCTCGAAACAGTTGC	this paper	
Vts1_LF2_F GCTGAGCTTGCACAACTCTAAC	this paper	
Vts1_ATG_F ATGTCAGCTGCTCAGTCCACC	this paper	

Vts1_RF1_R AGCTTTCCAAGTCTGCAAGGGC	this paper	
Vts1_RF2_R TCGTAATGTCCATATGCGCCG	this paper	
Vts1_Int_seq_R1 GCTGACTCTGCATCCCTTGCA	this paper	
Vts1_Int_seq_R2 CTTGTCAAGCGGTCAAGGGTT	this paper	
Software and algorithms		
tidyverse		https://www.tidyverse.org/
ggplot2		https://ggplot2.tidyverse.org/
ImageJ-fiji		https://imagej.net/

651

652

653 **RESOURCE AVAILABILITY**

654 **Lead Contact**

655 Frank Menke is the lead contact for MS-related data and proteomics and Nicolas Talbot is the
656 lead contact for biological materials and fungal strains.

657

658 **Materials Availability**

659 The DDA proteomics data have been deposited to the ProteomeXchange Consortium via the
660 PRIDE ⁸² partner repository with the dataset identifier PXDxxxxx and xxxxxxxxxxxx. and
661 targeted proteomic data via Panorama ⁸³.

662

663 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

664 **Fungal strains**

665 *Magnaporthe oryzae* strains used in this study were routinely grown on agar plates with solid
666 complete medium. Fungal strains were incubated at 26°C with a 12 h light and dark cycle ⁸⁴.
667 For long-term storage, *M. oryzae* strains were grown over sterile filter paper discs (Whatman
668 International) placed on complete medium agar plates. The paper discs were then dehydrated
669 and stored at -20°C.

670 **Rice plants**

671 Blast susceptible rice (*Oryza sativa*) cultivar CO-39 plants were used in this study. Plants were
672 grown in controlled environment rooms at 26°C day temperature and 24 °C night temperature,
673 16-hour light period, and 85% humidity ^{84,85}.

674

675 **METHODS DETAILS**

676 ***M. oryzae* appressorium *in vitro* assay for proteomics analysis**

677 Conidia were harvested from a Petri dish culture using a sterile disposable plastic spreader in
678 3 mL sterile distilled water from 8–12 days old cultures grown on CM agar. The conidial
679 suspension was filtered through sterile Miracloth (Calbiochem, UK) and fractionated by
680 centrifugation at 5000 x g (Beckman, JA-17) for 15 min at room temperature. The pellet of
681 conidia was re-suspended in 0.2 % (w/v) gelatin (BDH) and the spore concentration determined
682 using a haemocytometer (Improved Neubauer, UK). Spores were diluted to a final
683 concentration of 5×10^4 conidia mL⁻¹. Conidia were quantified and then diluted in sterile water
684 to 7.5×10^5 conidia/mL in the presence of 50 ng/µL 1,16-Hexadecanediol (Sigma SA). For
685 microscopic observations, a 50 µL aliquot of conidial suspension was inoculated onto a
686 borosilicate glass coverslip (Menzel-Gläser, Fisher Scientific UK Ltd.) and placed on a moist
687 paper towel. Conidia were incubated at 24 °C and observed as indicated. For large-scale
688 conidial germination assays, conidial suspensions were poured into square petri plates (12 cm
689 X 12 cm X 1.7 cm) (Greiner Bio One) to which 10 glass cover slips (Menzel-Gläser, Fisher
690 Scientific UK Ltd.) were attached by adhesive. Appressorium formation was monitored under
691 a Will-Wetzlar light inverted microscope (Wilover[®], Hund Wetzlar, Germany) for ensuring
692 homogeneous and synchronized infection structure formation. Samples were collected as
693 indicated by scraping the surface of the coverslips with a sterile razor blade (Fisher Scientific,
694 UK). Harvested samples were immediately frozen in liquid nitrogen and stored at –80 °C for
695 subsequent protein extraction. The appressorium *in vitro* development assay was adapted from
696 Hamer et al., 1988⁸⁶.

697

698 **Virulence analysis of fungal strains on rice**

699 Conidia were harvested from a Petri dish culture using a sterile disposable plastic spreader in
700 3 mL sterile distilled water from 8–12 days old cultures grown on CM agar. The conidial
701 suspension was filtered through sterile Miracloth (Calbiochem, UK) and fractionated by
702 centrifugation at 5000 x g (Beckman, JA-17) for 15 min at room temperature. The pellet of
703 conidia was re-suspended in 0.2 % (w/v) gelatin (BDH) and the spore concentration determined
704 using a hemocytometer (Improved Neubauer, UK). Spores were diluted to a final concentration
705 of 5×10^4 conidia mL⁻¹. For spray infection assays, the spore suspension was used to infect rice
706 using an airbrush (Badger, USA). After spray inoculation, the plants were covered in polythene
707 bags and incubated in a controlled plant growth chamber (Conviron, UK) at 24°C for 48 h with
708 a 12 h light and dark cycle, and 85% relative humidity. The inoculated plants were incubated

709 for 5-6 days before scoring the lesions ⁸⁷. For leaf drop assays, the spore suspension was drop-
710 inoculated on detached rice leaves using a micropipette. Rice CO-39 plants were grown for 3
711 weeks in 9 cm diameter plastic plant pots.

712

713 **Confocal laser scanning microscopy**

714 Confocal laser scanning fluorescence microscopy was performed on a Leica TCS SP8
715 microscope using 40x or 63x/1.4 oil immersion objective lens. Images were acquired using
716 Leica LAS AF software (Leica Microsystems Inc., Buffalo Grove, IL, USA). Fluorescence
717 was observed using HyD detectors and white laser. The filter sets used for GFP were excitation
718 wavelength 488 nm and emission collected at 495–550 nm. For RFP probes, the excitation
719 wavelength was 543 nm and emission collected at 584 nm. Confocal microscopy images were
720 processed with the Leica LAS AF software and ImageJ (2.0) programs.

721

722 **Cryo-Scanning Electron Microscopy**

723 The infected rice leaf samples were mounted on an aluminium stub using Tissue Tek^R (BDH
724 Laboratory Supplies, Poole, England). The stub was then immediately plunged into liquid
725 nitrogen slush at approximately -210°C to cryo-preserve the material. The sample was
726 transferred onto the cryo-stage of an ALTO 2500 cryo-transfer system (Gatan, Oxford,
727 England) attached to an FEI Nova NanoSEM 450 (FEI, Eindhoven, The Netherlands).
728 Sublimation of surface frost was performed at -95°C for three minutes before sputter coating
729 the sample with platinum for 3 mins at 10mA, at colder than -110°C. After sputter-coating, the
730 sample was moved onto the cryo-stage in the main chamber of the microscope, held at
731 approximately -125°C. The sample was imaged at 3kV and digital TIFF files were stored.

732

733 **Yeast-Two-Hybrid (Y2H) analysis**

734 Desired constructs in pGBKT7 and pGADT7 were co-transformed into chemically competent
735 *Saccharomyces cerevisiae* Y2HGold cells (Takara Bio, USA) using the commercial kit Frozen-
736 EZ Yeast Transformation IITM (Zymo Research, UK) as detailed in the user manual. The
737 Matchmaker[®] Gold Yeast Two-Hybrid System (Takara Bio USA) was used to detect protein–
738 protein interactions between Pmk1 and its putative targets. Single co-transformed colonies
739 grown on selection plates were inoculated in 5mL of SD^{-Leu-Trp} and grown overnight at 30°C.
740 Saturated culture was then used to make serial dilutions of OD₆₀₀ 1, 1⁻¹, 1⁻², 1⁻³, respectively.
741 An aliquot of 5µl of each dilution was then spotted on a SD^{-Leu-Trp} plate as a growth control,
742 SD^{-Leu-Trp-His} (low stringency media) and SD^{-Leu-Trp-Ade-His} (high stringency media) plate

743 containing X- α -gal and aureobasidin A. Plates were imaged after incubation for 60 - 72 hr at
744 30°C.

745

746 ***M. oryzae* genomic DNA purification**

747 For large-scale DNA extraction, fungal mycelium was generated by growing fungal culture on
748 either cellophane discs or liquid as previously described ⁸⁵. Using a mortar and pestle, 7-12
749 days old mycelium was ground into powder. Mycelial powder was decanted to a 1.5 mL
750 microcentrifuge tube and mixed with 500 μ L of pre-warmed CTAB (2% (w/v)
751 Hexadecyltrimethylammonium Bromide (CTAB), 100 mM Tris base, 10 mM EDTA and 0.7
752 M NaCl) and incubated at 65°C with gentle mixing every 10 min. An equal volume of
753 chloroform iso-amyl alcohol (CIA) was added, mixed thoroughly, and incubated with shaking
754 for 30 min at room temperature. This was followed by centrifugation at 17000 x g for 10 min.
755 This step was repeated twice by adding equal volumes of CIA and mixing vigorously on a
756 shaker before centrifugation. The final supernatant was transferred into a clean sterile
757 microcentrifuge tube and of isopropanol (2 x vol) added before incubating at -20°C overnight.
758 The samples were centrifuged at 17000 x g for 10 min and the supernatant (isopropanol) was
759 gently removed and the resulting pellet re-suspended in 500 μ L sterile distilled water (SDW)
760 and left to dissolve at room temperature with gentle tapping to mix. Sodium acetate (NaOAc)
761 (0.1 vol) and 100% ethanol (2 vol) were added to re-precipitate nucleic acids. The mixture was
762 incubated at -20°C for 2 h and pelleted by centrifugation at maximum speed, before washing
763 with 400 μ L of 70% (v/v) ethanol. The DNA was re-suspended in nuclease-free water. RNase
764 (2 μ L) was added and incubated at 37°C for 1 h to digest contaminating RNA.

765

766 **Southern blotting**

767 In this study, Southern blot analysis was used to determine positive *M. oryzae* null mutants for
768 the *VTS1* gene. DNA digestion of *M. oryzae* transformants was performed overnight using
769 *Hind*III endonuclease and subsequently fractionated by electrophoresis in an agarose gel at
770 100V. Fragments of genomic DNA were separated in agarose gels were transferred to Hybond-
771 NX (Amersham Biosciences). Prior to blotting, partial depurination of DNA molecules was
772 performed to enhance DNA transfer by submerging the agarose gel in 0.25 M with gentle
773 rocking. Gels were then neutralized by replacing HCl with 0.4 M NaOH. For transfer of DNA
774 from the agarose gel to the positively charged membrane, blots were carried out using a 0.4M
775 NaOH transfer buffer that was drawn through a wet paper wick (Whatman /international)
776 supported by a Perspex panel onto which the agarose gel was placed. A sheet of Hybond-NX

777 membrane was then laid on the gel and positions of the wells were pencil marked. Three layers
778 of Whatman 3MM paper and a stack of paper towels (Kimberley Clark Corporation) were laid
779 over the membrane followed by a glass plate and a 500 g weight were placed on the stack as a
780 weight. The transfer was left at room temperature overnight. Then, the nucleic acid was fixed
781 to the membrane by UV crosslinking to the membrane with 120 milijoules.cm⁻² using a BLX
782 crosslinker (Bio-Link).

783

784 ***M. oryzae* whole genome sequencing**

785 Purified DNA was obtained using the CTAB procedure, as previously described ⁸⁵. A
786 NanoDrop spectrophotometer (Thermo Scientific, UK) and a Qubit BR assay (Thermo Fischer,
787 USA) were used to analyze template quality and determine the concentration of double-
788 stranded DNA. Sequencing was carried out using Novogene Sequencing services (Cambridge,
789 UK). Whole genome sequencing was performed on NovaSeq 6000 system (Illumina), with two
790 lanes per sample. BAM files were created by using bowtie2 for aligning raw reads to the *M.*
791 *oryzae* reference genome 70-15. Finally, the IGV viewer was used for the visualization of the
792 generated BAM files.

793

794 **Protoplast-mediated transformation of *M. oryzae***

795 A section of 2.5 cm² mycelium from a *M. oryzae* plate culture (8-10 days-old) was blended in
796 150 mL CM liquid and incubated at 25°C, shaking (125 rpm) in an orbital incubator for 48h.
797 Fresh ST (sucrose, 0.6M, Tris-HCl 0.1 M (pH 7), STC (sucrose, 1.2 M, Tris-HCl, 10 mM (pH
7.5)) and PTC (PRG 4000, 60%, Tris-HCl, 10 mM (pH 7.5), calcium chloride) buffers were
799 prepared and stored at 4°C. The culture was harvested by filtration through sterile Miracloth
800 and the mycelium washed with sterile deionized water (SDW). The mycelium was transferred
801 to a 50 mL falcon tube with 40 mL OM buffer (1.2 M magnesium sulfate, 10 mM sodium
802 phosphate (pH5.8), Glucanex 5% (Novo Industries, Copenhagen)). Mycelium in the falcon
803 tube with OM buffer was shaken gently to disperse hyphal clumps. Then, it was incubated at
804 30°C with gentle (75 rpm) shaking, for 3 h. The digested mycelium was transferred to two
805 sterile polycarbonate Oakridge tubes (Nalgene) and overlaid with an equal volume of cold ST
806 buffer. Resulting protoplasts were recovered at the OM/ST interface by centrifugation at 5000
807 x g, for 15 min at 4°C in a swinging bucket rotor (Beckman JS-13.1) in a Beckman J2.MC
808 centrifuge. Protoplasts were recovered and transferred to a sterile Oakridge tube, which was
809 then filled with cold STC buffer. The protoplasts were pelleted at 3,000 x g for 10 min
810 (Beckman JS-13.1 rotor). This wash was carried out twice more with STC, with complete re-

811 suspension of the pellet. After the last wash, protoplasts were resuspended in 1 mL of STC and
812 checked by microscopy. In an Eppendorf tube, an aliquot of protoplasts was combined with 6
813 µg DNA. The mixture was incubated at room temperature for 30 min. After incubation, 1 mL
814 of PTC was added in 2 aliquots, mixed gently by inversion, and incubated at room temperature
815 for 20 min. The transformation mixture was added to 150 mL of molten agar medium and
816 poured into 5 sterile Petri dishes. For selection of transformants on hygromycin B
817 (Calbiochem), plate cultures were incubated in the dark for at least 16 h at 24°C and then
818 overlaid with approximately 15 mL of OCM/1% agar (CM osmotically stabilised with sucrose,
819 0.8M) containing 600 µg mL⁻¹ hygromycin B. For selection of bialaphos (Basta) resistant
820 transformants, OCM was replaced with BDCM (yeast nitrogen base without amino acids and
821 ammonium sulfate, 1.7 g L⁻¹ (Difco), ammonium nitrate, 2 g L⁻¹ asparagine, 1 g L⁻¹ glucose, 10
822 g L⁻¹ sucrose, 0.8 (pH 6)). In the overlay, CM was replaced by BDCM without sucrose and
823 hygromycin B was replaced by glufosinate (30 µg mL⁻¹) from a stock at 100 mg mL⁻¹ in DSW.
824 For selection of sulfonylurea resistant transformants, OCM was replaced with BDCM and in
825 the overlay, hygromycin B was replaced with chlorimuron ethyl, at 30 µg mL⁻¹ freshly diluted
826 from a stock solution, at 100 mg mL⁻¹.

827

828 SDS-PAGE and Western blot

829 Western blot analysis was performed on recombinant proteins and *M. oryzae* total protein. *M.*
830 *oryzae* total protein samples were collected at indicated time point and snap-frozen in liquid-
831 nitrogen. Lyophilised samples were lysed, and proteins were extracted with GTEN buffer (10
832 % glycerol, 25 mM Tris pH 7.5, 1 mM EDTA, 150 mM NaCl) with 10 mM DTT, 1% NP-40
833 and protease inhibitor cocktail (cOmplete™, EDTA-free; Merck), phosphatase inhibitor
834 cocktail 2 (SigmaAldrich; P5726) and phosphatase inhibitor cocktail 3 (Sigma-Aldrich;
835 P0044). After centrifugation at 13,000 rpm for 10 mins, protein concentration was measured
836 and normalised with the Bradford assay (Protein Assay Dye Reagent Concentrate; Bio-Rad).
837 After normalization, extracts were heated in 2× TruPAGE™ LDS Sample Buffer
838 (SigmaAldrich) at 70 °C for at least 5 mins. Different percentage SDS-PAGE gels were used
839 to run samples of difference sizes. Proteins were separated by SDS-PAGE and transferred onto
840 a polyvinylidene diflouride (PVDF) membrane using a Trans-Blot turbo transfer system (Bio-
841 Rad, Germany). The membrane was blocked with 3% BSA in Tris-buffered saline and Tween
842 20. Membranes were immunoblotted with antibodies specified in Table 2.1. Membrane
843 imaging was carried out with an ImageQuant LAS 4000 luminescent imager (GE Healthcare
844 Life Sciences, Piscataway, NJ, U.S.A.).

845

846 **Recombinant proteins production and purification**

847 Recombinant pOPIN plasmids encoding 6xHisGST-Pmk1 and 6xHis-Vts1 were transformed
848 into *E. coli* RosettaTM (DE3) cells. The bacteria were pre- inoculated in 100 mL of LB medium
849 with carbenicillin and chloramphenicol overnight. An amount of 25 mL culture was then
850 diluted into 1 L of autoinduction media (AIM) (10 g/L tryptone, 5 g/L yeast extract, 3.3 g/L
851 (NH₄)₂SO₄, 6.8 g/L KH₂PO₄, 7.1 g/L Na₂HPO₄, 0.5 g/L glucose, 2 g/L α - lactose, 0.15 g/L
852 MgSO₄ magnesium sulphate and 0.03 g/L trace elements) (Studier, 2005) with appropriate
853 antibiotics and grown in at 37 °C (30 °C for Shuffle cells) for 6 h and then 16 °C overnight.
854 Cells were harvested and resuspended in ice-cold lysis buffer (50 mM Tris-HCl pH 8.0, 50 mM
855 glycine, 5% glycerol, 500 mM NaCl and 20 mM imidazole, supplemented with cCompleteTM
856 EDTA-free Protease Inhibitor Cocktail). The cells were then disrupted by sonication using a
857 Vibra-CellTM sonicator (SONICS) with a single 13 mm probe, with the cells chilled on ice.
858 The sonicator was set at 40 % amplitude, with a 1 s pulse followed by a 3 s pause, for 16 min.
859 After the first sonication cell lysate was stirred and followed by another sonication of 8 min.
860 The soluble fraction of the cell lysate was obtained by centrifuging for 30 min at 36,250 g at 4
861 °C. The supernatant was transferred to an ÄKTAXpress to carry out immobilised metal affinity
862 chromatography (IMAC) in tandem with gel filtration. IMAC was carried out using 5 mL
863 HisTrapTM HP NTA columns (GE Healthcare). After washing with 100 mL of washing buffer
864 (50 mM Tris-HCl pH 8.0, 50 mM glycine, 5% glycerol, 500 mM NaCl and 20 mM imidazole),
865 proteins were then eluted with 25 mL of elution buffer (50 mM Tris- HCl pH 8.0, 50 mM
866 glycine, 500 mM NaCl, 500 mM imidazole, 5% (v/v) glycerol). This elution was then loaded
867 onto a gel filtration SuperdexTM 200 HiLoadTM 26/600 column (GE Healthcare) equilibrated
868 with gel filtration buffer (20 mM HEPES pH 7.5 and 150 mM NaCl). The gel filtration buffer
869 for 6xHisGST-Pmk1 proteins was supplemented with 1 mM TCEP. Protein samples were
870 separated by size and fractionated in 2 mL fractions that were analysed by SDS-PAGE to assess
871 the presence of proteins. Fractions containing the proteins of interest were pooled and
872 concentrated to 1 mL using VivaSpin® concentrators (Sartorius) with an appropriate molecular
873 weight cut-off. Recombinant proteins were aliquoted and frozen in liquid nitrogen for storage
874 at -80 °C. Heterologous production and purification of MPK6 and MEK2^{DD} was performed, as
875 previously described ⁸⁸.

876

877 **Co-immunoprecipitation (Co-IP)**

878 Co-IP experiments were performed to validate Pmk1 - Vts1 interactions during appressorium
879 development. *M. oryzae* appressorium samples of 4 h development transformed were generated
880 for *ToxA*:GFP and *VTS1*-GFP. Total protein was extracted from each frozen sample using
881 mortar and pestle to ground into fine powder. Appressorium powder was mixed with 2x w/v
882 ice-cold extraction buffer (10% glycerol, 25 mM Tris pH 7.5, 1 mM EDTA, 150 mM NaCl,
883 2% w/v PVPP, 10 mM DTT, 1x protease inhibitor cocktail (Sigma), 0.1% Tween 20 (Sigma))
884 and vortexed vigorously. After centrifugation at 4,200 x g/4 °C for 20-30 min, the supernatant
885 was used to determine the protein concentration by the Bradford assay. The presence of each
886 protein in the input was determined by SDS-PAGE/Western blot. *ToxA*:GFP and VTS1-GFP
887 proteins were detected by probing the membrane with anti-GFP horseradish peroxidase (HRP)-
888 conjugated antibody (Santa Cruz Biotechnology, USA), Pmk1 with a Phospho-p44/42 MAPK
889 (Erk1/2) (Thr202/Tyr204) (D13.14.4E) antibody (Santa Cruz Biotechnology, Santa Cruz, CA,
890 U.S.A.) and a HRP-conjugated anti-rabbit antibody (Abcam, UK). *M. oryzae* actin protein was
891 used as loading control and detected with an anti-actin primary antibody (Agrisera com,
892 Sweden) and the anti-rabbit HRP conjugated antibody.

893 For immunoprecipitation, 1 ug of total protein was incubated with 30 µL of GFP beads
894 (ChromoTek, Germany) in a rotatory mixer at 4 °C. After 3 h, the beads were pelleted (800 x
895 g, 1 min) and the supernatant removed. The pellet was washed and resuspended in 1 mL of IP
896 buffer (10% glycerol, 25 mM Tris pH 7.5, 1 mM EDTA, 150 mM NaCl, 0.1% Tween 20
897 (Sigma)) and pelleted again by centrifugation as before. Washing steps were repeated five
898 times. Finally, 30 µL of 1:1 dilution of SDS buffer and water supplemented with 100 mM DTT
899 was added to the beads and incubated for 10 min at 70 °C. The beads were pelleted again, and
900 the supernatant loaded onto SDS-PAGE gels prior to Western blotting. Membranes were
901 probed with anti-GFP and a Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E)
902 antibody as described before. Blots membrane imaging was carried out with an ImageQuant
903 LAS 4000 luminescent imager (GE Healthcare Life Sciences, Piscataway, NJ, U.S.A.).
904

905 ***In vitro* phosphorylation assay**

906 For *in vitro* phosphorylation assays, 6xHis-GST tagged Pmk1 (250ng) was activated by
907 incubation with recombinant MEK2^{DD} (250ng). Recombinant 6xHis tagged Vts1 (500ng)
908 (500ng) was incubated with active Pmk1 in kinase buffer (25mM Tris pH 7.5, 10mM MnCl₂,
909 1mM EGTA and 1mM DTT) in the presence of 1 mM ATP at 30 °C for 30 min. Proteins were
910 separated by SDS-PAGE and transferred to a polyvinylidene difluoride (PVDF) membrane
911 using a Trans-Blot turbo transfer system (Bio-Rad). PVDF membrane was blocked with 2%

912 bovine serum albumin (BSA) in Tris-buffered saline and 1% Tween 20. His tag detection was
913 carried using polyclonal anti-6xHis horseradish peroxidase (HRP) -conjugated antibody
914 (Abcam). Pmk1 activated was detected using Phospho-p44/42 MAPK (Erk1/2)
915 (Thr202/Tyr204) (Santa Cruz Biotechnology) and anti-rabbit HRP-conjugated antibodies.
916 Pierce ECL Western Blotting Substrate (Thermo Fisher Scientific) was used for detection.
917 Membranes were imaged using ImageQuant LAS 4000 luminescent imager (GE Life
918 Sciences). Phosphorylation assays were analysed by mass spectrometry.

919

920 **Functional categorization of Pmk1 targets**

921 To further understand the putative direct Pmk1 targets obtained from the MS approach,
922 selected phosphoproteins containing a MAPK phosphorylation motif (Pxx[S/T] P or [S/T] P)
923 were categorized based on functional annotations from Blast2GO ⁸⁹ and Pfam ⁹⁰.

924

925 **Protein extraction and phosphopeptide enrichment**

926 Spores and appressoria samples were lyophilized and resuspended in extraction buffer (Urea
927 8M, NaCl 150 mM, Tris pH 8 100 mM, EDTA 5 Mm, aprotinin 1 µg/mL, leupeptin 2 µg/mL)
928 for mechanical disruption using GenoGrinder 2010 (Thermo Scientific) in cold conditions (1
929 min at 1200 rpm). The homogenate was centrifuged for 10 min at 16,000 × g (Eppendorf 5415D
930 microcentrifuge). The supernatant was used for phosphopeptide enrichment. Sample
931 preparation started from 1.5 mg of protein extract (determined using the Bradford assay)
932 dissolved in ammonium bicarbonate buffer containing 8 M urea. First, the protein extracts were
933 reduced with 5 mM Tris (2-carboxyethyl) phosphine (TCEP) for 30 min at 30°C with gentle
934 shaking, followed by alkylation of cysteine residues with 40mM iodoacetamide at room
935 temperature for 1 hour. Subsequently, the samples were diluted to a final concentration of 1.6
936 M urea with 50mM ammonium bicarbonate and digested overnight with trypsin (Promega;
937 1:100 enzyme to substrate ratio). Peptide digests were purified using C18 SepPak columns as
938 described before ⁹¹. Phosphopeptides were enriched using titanium dioxide (TiO₂, GL Science)
939 with phthalic acid as a modifier as described previously ⁹². Phosphopeptides were eluted by a
940 pH-shift to pH 10.5 and immediately purified using C18 microspin columns (The Nest Group
941 Inc., 5 – 60 µg loading capacity). After purification, all samples were dried in a Speedvac,
942 stored at -80°C and re-suspended in 2% Acetonitril (AcN) with 0.1% trifluoroacetic acid (TFA)
943 just before the mass spectrometric measurement.

944 **Mass-Spectrometry analysis**

945 LC-MS/MS analysis was performed using a Orbitrap Fusion trihybrid mass spectrometer
946 (Thermo Scientific) and a nanoflow-UHPLC system (Dionex Ultimate3000, Thermo
947 Scientific) Peptides were trapped to a reverse phase trap column (Acclaim PepMap, C18 5 μ m,
948 100 μ m x 2 c \S m, Thermo Scientific) connected to an analytical column (Acclaim PepMap 100,
949 C18 3 μ m, 75 μ m x 50 cm, Thermo Scientific). Peptides were eluted in a gradient of 3-40 %
950 acetonitrile in 0.1 % formic (solvent B) acid over 120 min followed by gradient of 40-80 % B
951 over 6 min at a flow rate of 200 nL/min at 40°C. The mass spectrometer was operated in
952 positive ion mode with nano-electrospray ion source with ID 0.02mm fused silica emitter (New
953 Objective). Voltage +2200 V was applied via platinum wire held in PEEK T-shaped coupling
954 union with transfer capillary temperature set to 275 °C. The Orbitrap, MS scan resolution of
955 120,000 at 400 m/z, range 300 to 1800 m/z was used, and automatic gain control (AGC) was
956 set at 2e5 and maximum inject time to 50 ms. In the linear ion trap, MS/MS spectra were
957 triggered with data dependent acquisition method using ‘top speed’ and ‘most intense ion’
958 settings. The selected precursor ions were fragmented sequentially in both the ion trap using
959 CID and in the HCD cell. Dynamic exclusion was set to 15 sec. Charge state allowed between
960 2+ and 7+ charge states to be selected for MS/MS fragmentation.

961

962 **Spectral library generation and raw data processing**

963 Peak lists in the format of Mascot generic files (.mgf files) were prepared from raw data using
964 MSConvert package (Matrix Science). Peak lists were searched on Mascot server v.2.4.1
965 (Matrix Science) against either *Magnaporthe oryzae* (isolate 70-15, version 8) database, an in-
966 house contaminants database, or *Magnaporthe oryzae* (isolate 70-15 version 8) database,
967 Uniprot Rice database (UP000007015; *Oryza sativa subspecies indica*, strain: cv. 93-11) and
968 an in-house contaminants database. Tryptic peptides with up to 2 possible mis-cleavages and
969 charge states +2, +3, +4, were allowed in the search. The following modifications were
970 included in the search: oxidized methionine, phosphorylation on Serine, Threonine, Tyrosine
971 as variable modification and carbamidomethylated cysteine as static modification. Data were
972 searched with a monoisotopic precursor and fragment ions mass tolerance 10ppm and 0.6 Da
973 respectively. Mascot results were combined in Scaffold v. 4 (Proteome Software) and exported
974 in Excel (Microsoft Office).

975

976 **Label free quantification at MS1 level**

977 Peptide quantification was performed as described recently⁹³ with the following modifications.
978 Raw data files were processed using Proteome Discoverer 2.5 (Thermo Fisher Scientific) and

979 searched against an in-house constructs and contaminants database and the *Magnaporthe*
980 *oryzae* (isolate 70-15 version 8) database. The processing workflow was made up of the
981 Sequest HT search engine, Percolator (for target/decoy selection) and IMP-ptmRS (to calculate
982 modification site probabilities). Tryptic peptides with up to 2 possible mis-cleavage and charge
983 states +2, +3 were allowed in the search and the follow modifications were included in the
984 search: carbamidomethylated Cysteine (fixed), oxidized Methionine (variable) and
985 phosphorylated Serine, Threonine and Tyrosine (variable). Data were searched with a
986 monoisotopic precursor and fragment ion mass tolerance 10 ppm and 0.6 Da respectively.
987 Peptides were quantified using the ‘basic modification analysis’ consensus workflow provided
988 by Proteome Discoverer 2.5 and expressed as abundance ratios. Peptides in the Peptide groups
989 tab in the results files were filtered for ‘phospho’ and reliable and detectable ‘quan’ values.
990 Threshold for differential phosphopeptides was set at minimum 2-fold change in abundance
991 ratio and an adjusted abundance ratio p-value of less than 0.05. Data for Peptide groups were
992 exported to Excel and processed in R.

993

994 **Phosphosite conservation analysis**

995 To determine the conservation of phosphosites across species, a list of 41 fungi of various
996 lifestyles was prepared, and the protein sequences for a given assembly downloaded from the
997 sources listed in Supplemental Table 1. These were then used in Orthofinder version 2.3.7⁹⁴.
998 Running diamond 2.0.14⁹⁵ to compute orthogroups and species trees. Each *M. oryzae* phos-
999 site was taken in turn and the orthologues of the source protein were compared to it in turn
1000 using blastp from BLAST+2.9.0⁹⁶. If any matches were found according to BLAST defaults,
1001 the best HSP (by bitscore) was retained and the HSP in the orthologue was extended to match
1002 the full range of the length of the *M. oryzae* phosphopeptide sequence. If then the phos-site lies
1003 in the range the HSP of the orthologue was then checked to see whether the corresponding
1004 residue in the orthologue has a match to the *M. oryzae* phos-site residue.

1005

1006 **Clustering of phosphosites by conservation**

1007 For each phos-site and query fungal species the proportion of *M. oryzae* sites matched was
1008 calculated and tabulated for *k*-means clustering. The value of *k* was determined by scanning
1009 values of *k* from 2 to 50 and calculating the variance as Within Sum of Squares at each *k*. The
1010 variance in clusters stopped decreasing noticeably at about *k* = 9 and that was taken as the value
1011 of *k* for final clustering. *K* means clustering was performed using the factoextra package⁹⁷
1012 *kmeans* function in R⁹⁸ version 4.2.0. Data preparation was performed in R using the tidyverse

1013 packages ⁹⁹. Heatmaps were prepared using ComplexHeatmap¹⁰⁰. Phylogenetic trees were
1014 analyzed in ape¹⁰¹, dendextend ¹⁰² and rendered in ggtree¹⁰³.

1015

1016 **Clustering and Gene Ontology Analysis**

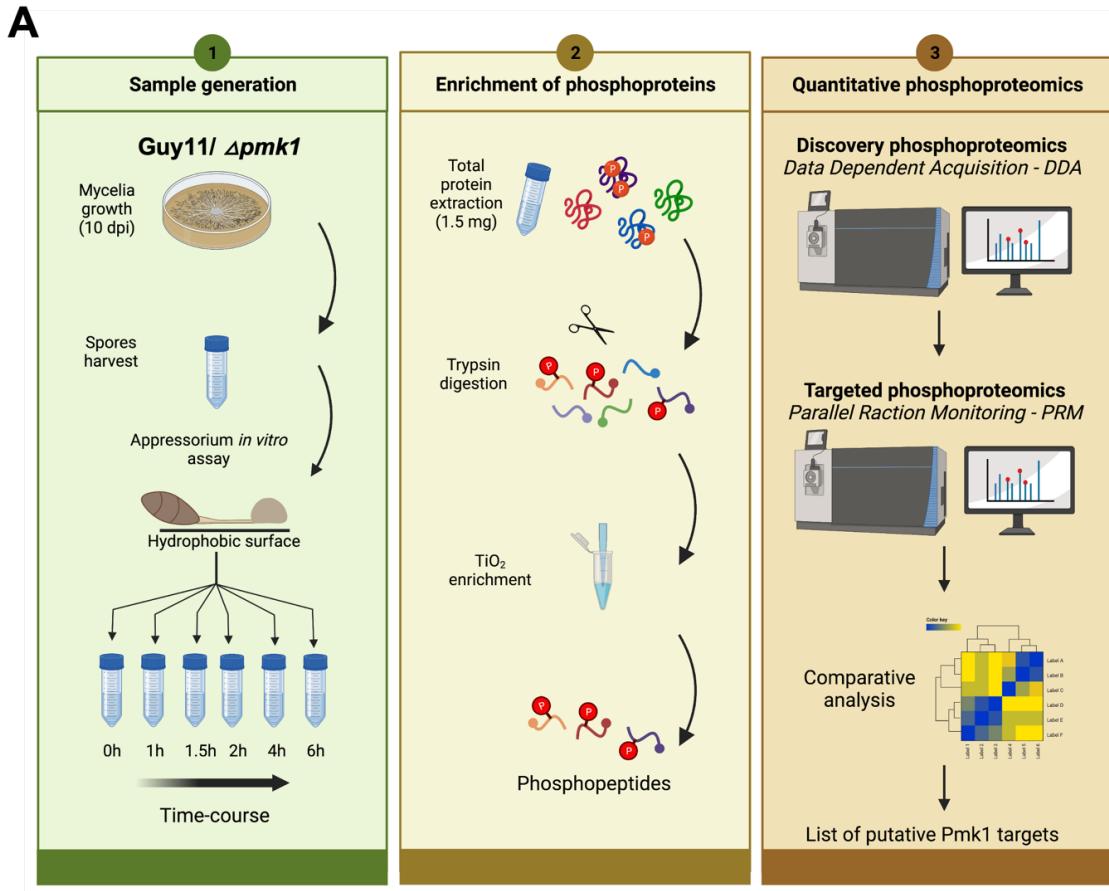
1017 *M. oryzae* Gene Ontology analysis was performed using the version MG8 annotations from
1018 ENSEMBL BioMart. Cluster enrichment computations were performed in the R package
1019 clusterProfiler 4.6.2¹⁰⁴ at a p-value of ≤ 0.05 with Benjamini-Hochberg corrections for
1020 multiple hypothesis tests.

1021

1022 **Parallel Reaction Monitoring (PRM)**

1023 Peptide quantitation was performed using Parallel Reaction Monitoring (PRM) as described
1024 previously ¹⁰⁵. Briefly, mass to charge ratios (m/z) corresponding to selected phospho-peptides
1025 were monitored and filtered by the first quadrupole and fragment ions were scanned out in the
1026 orbitrap mass analyzer over the duration of the elution profile. The PRM assay also included a
1027 selection of control peptides having similar relative intensities in each sample and used to
1028 measure relative phospho-peptide content (Supplementary Table 1). Raw data were peak
1029 picked and searched against the data bases on the Mascot server as described above and
1030 combined with chromatographic profiles in Skyline ¹⁰⁶ to determine individual peptide
1031 intensities. Extracted phospho-peptides intensity were normalized against the summed control
1032 peptide intensities to correct for differences in phospho-peptide yield. The assay was performed
1033 once for each of three biological replicates and results were subjected to differential
1034 phosphosite analysis.

1035

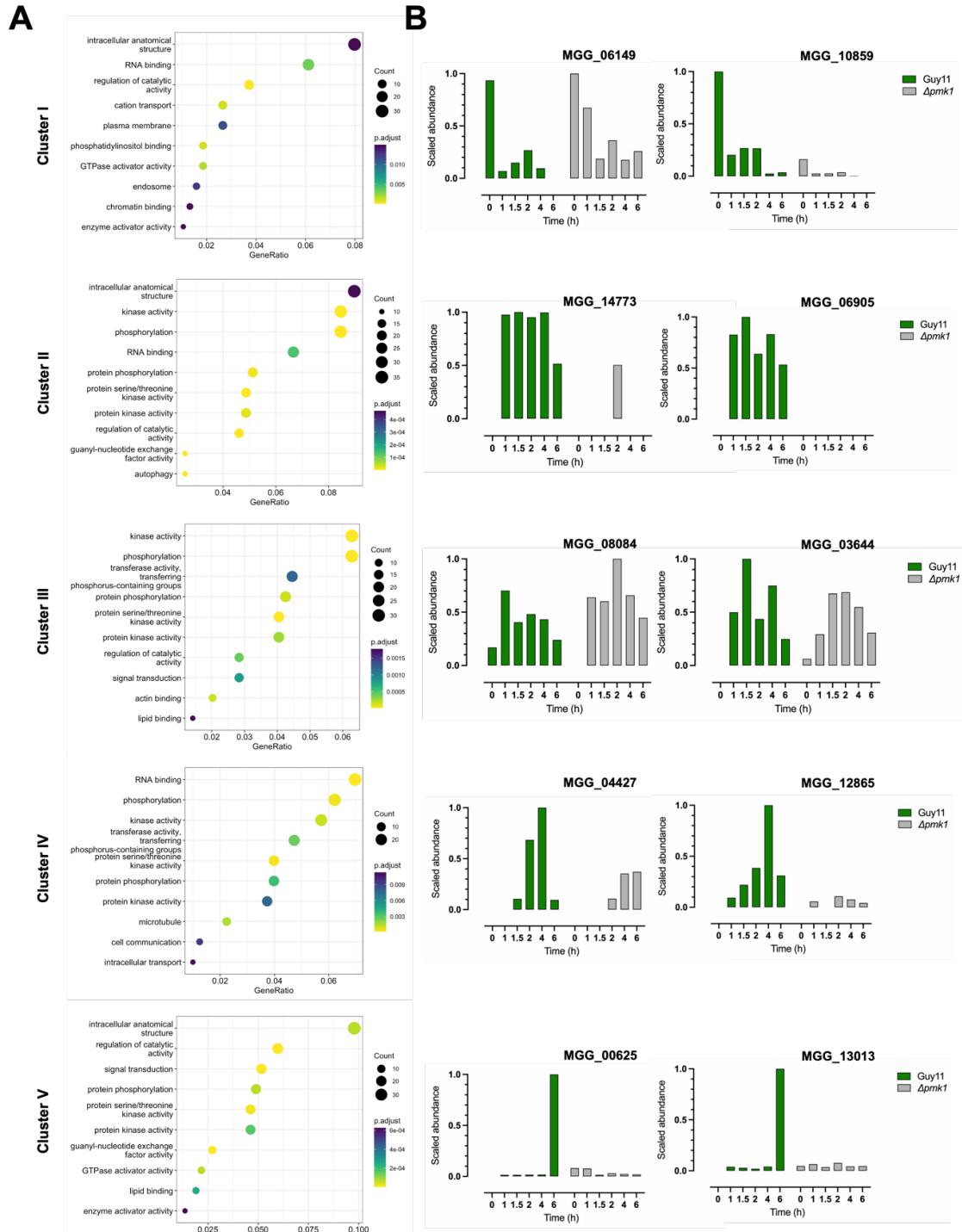

1036 **Differential phosphosite analysis**

1037 To determine whether phosphosites were differentially abundant between samples we prepared
1038 PRM data by replacing missing values with the lowest observed intensity in that replicate and
1039 then performed a bootstrap *t*-test with 1000 bootstrap resamples with replacement for each
1040 phosphosite using the MKInfer package ¹⁰⁷. We used $p \leq 0.05$ as a threshold for differential
1041 abundance.

1042

1043

1044 **SUPPLEMENTAL INFORMATION TITLES AND LEGENDS**

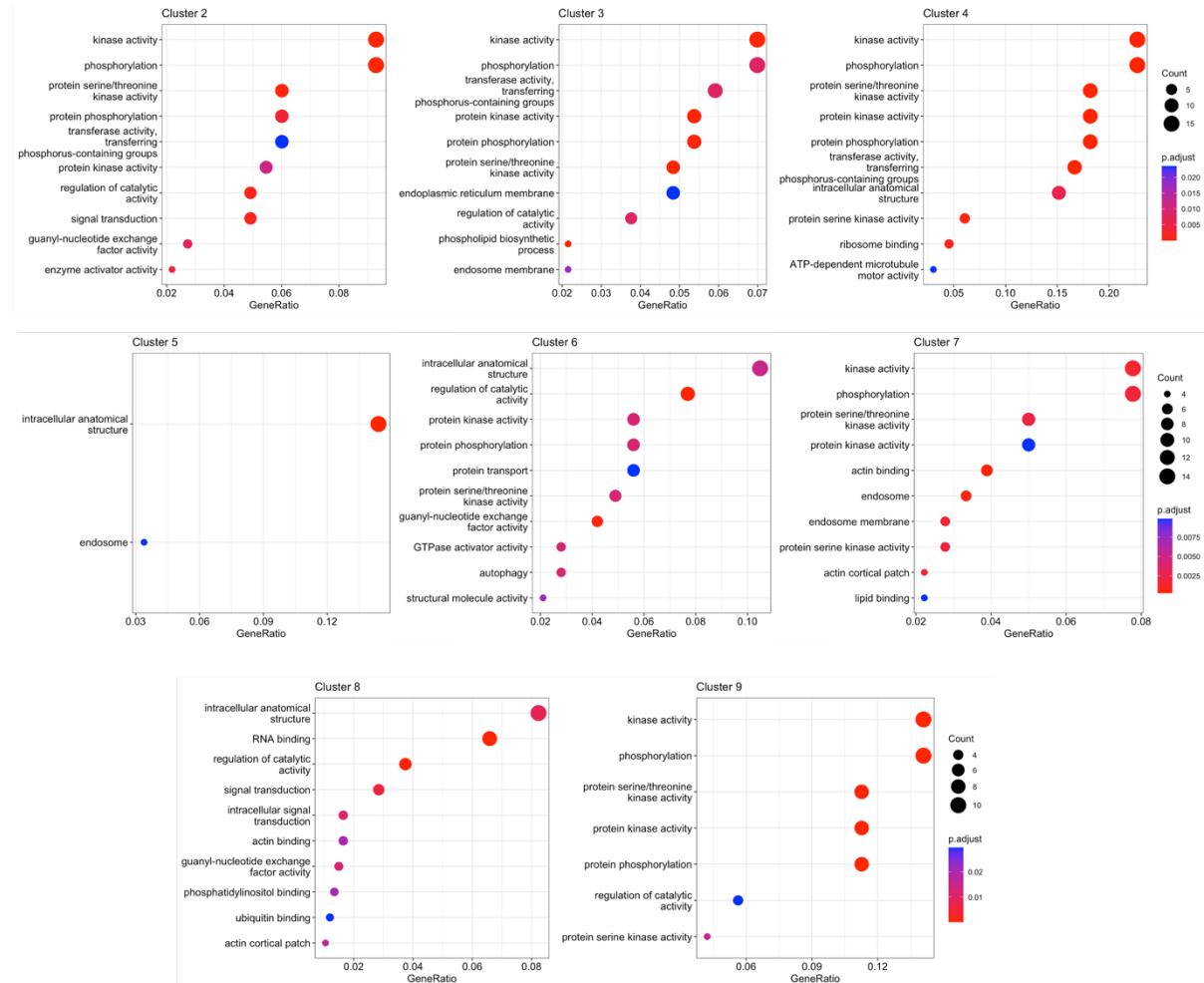

1045

1046

1047 **Supplemental Figure 1. Phosphoproteomics experimental workflow and data analysis**
1048 **pipeline to determine the phosphorylation landscape during infection-related**
1049 **development in *M. oryzae*.** Flowchart showing the experimental strategy during sample
1050 generation, phosphopeptide enrichment and quantitative phosphoproteomic analysis to
1051 determine the phosphorylation landscape of early infection and the Pmk1 targets.

1052

1053

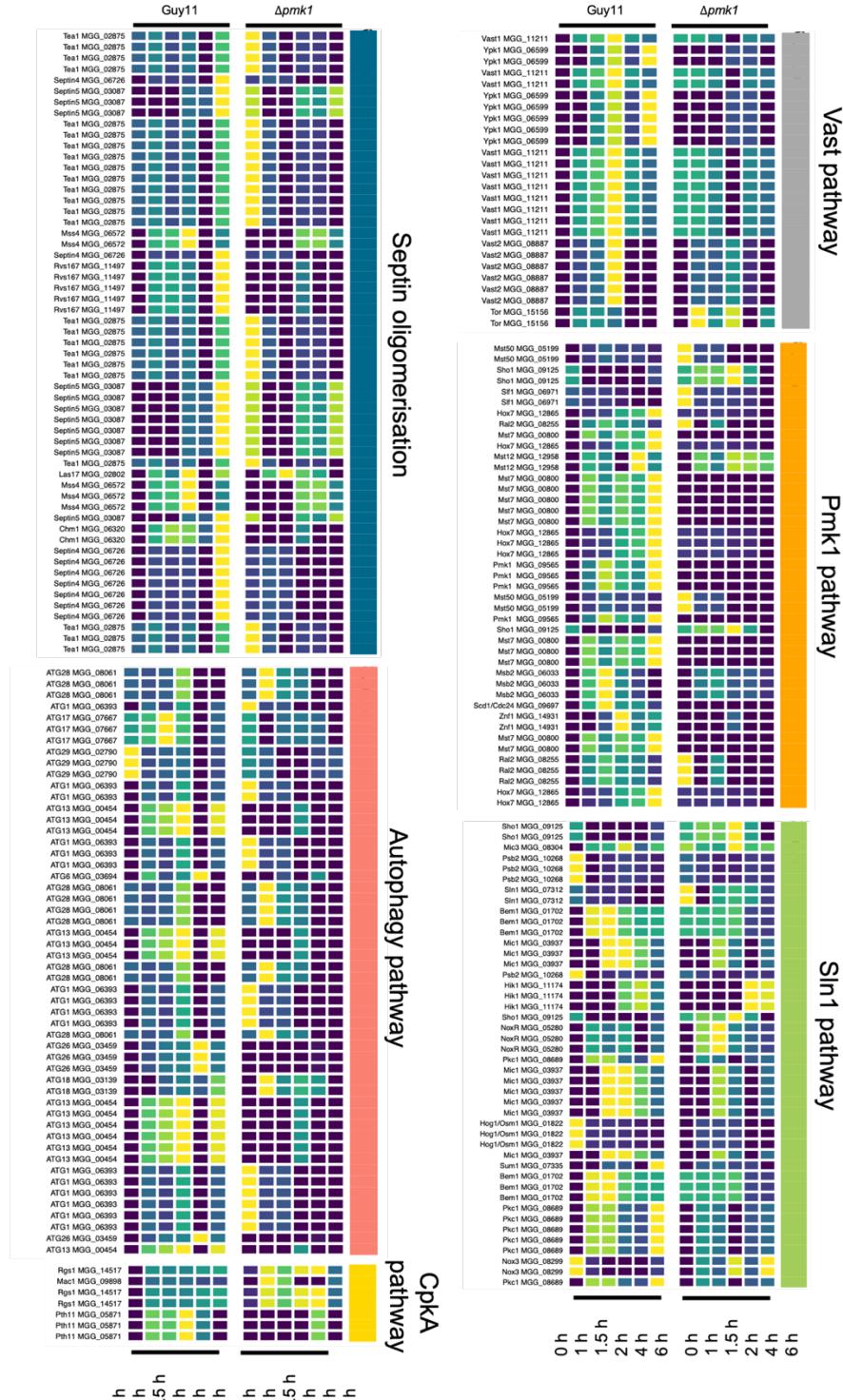


1054

1055 **Supplemental Figure 2. GO-term enrichment for differentially phosphorylated proteins**
1056 **(MS1 analysis).** (A) GO term analysis of differentially phosphopeptides analyzed by MS1,
1057 categorized according to the time point at which they passed significance threshold. (B)
1058 Relative phosphorylation for representative phosphopeptides in each defined cluster. Cluster I,
1059 MGG_05433 and MGG_10859; Cluster II, MGG_14773 and MGG_06905; Cluster III,
1060 MGG_08084 and MGG_03644; Cluster IV, MGG_04427 and MGG_12865; and Cluster V,
1061 MGG_00625 and MGG_13013.

1062

1063

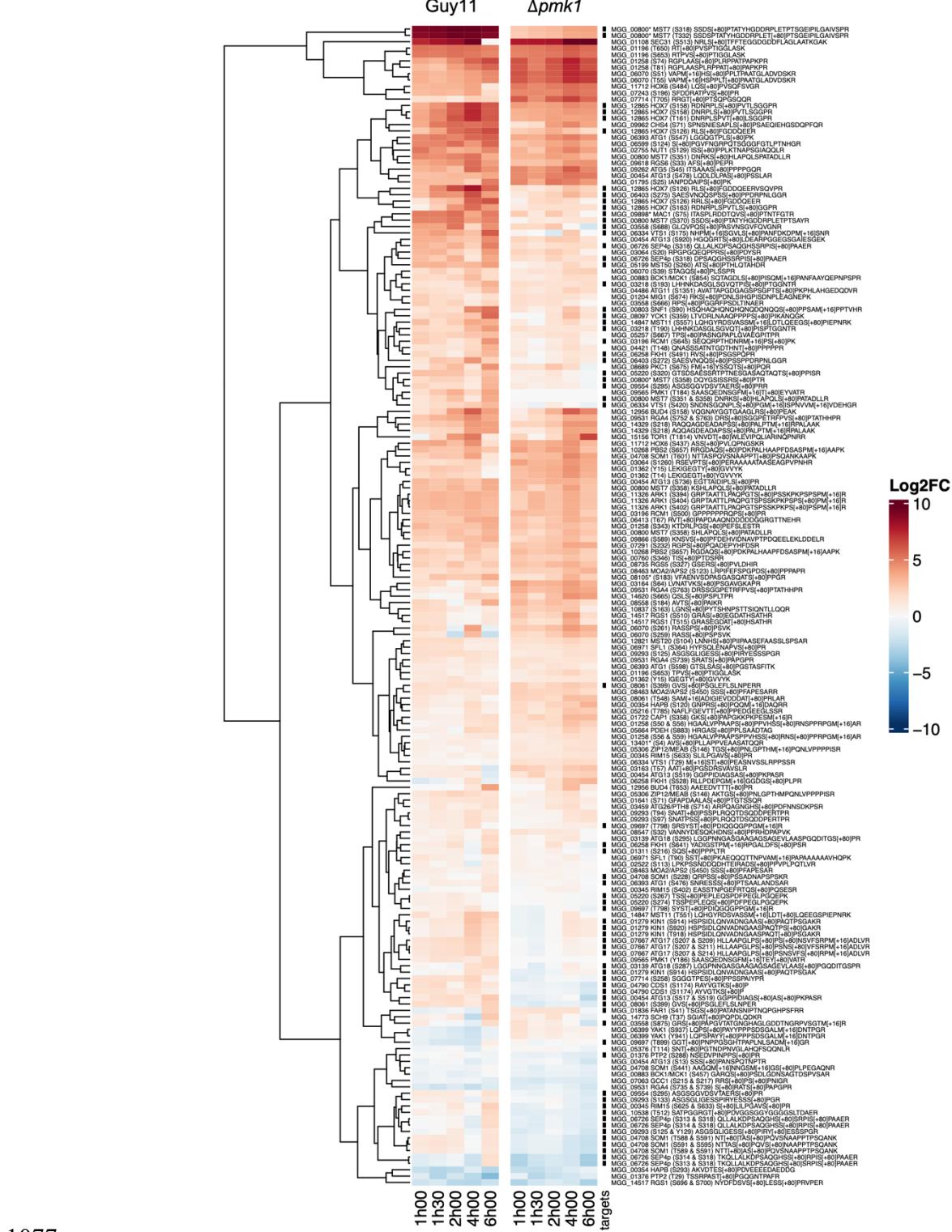


1064

1065

1066 **Supplemental Figure 3. GO-term enrichment for the Conserved Phosphorylated Residue (CPR) groups.** GO term analysis of evolutionary conserved phosphopeptides analyzed by MS1, categorized according to the time point at which they passed significance threshold.

1069

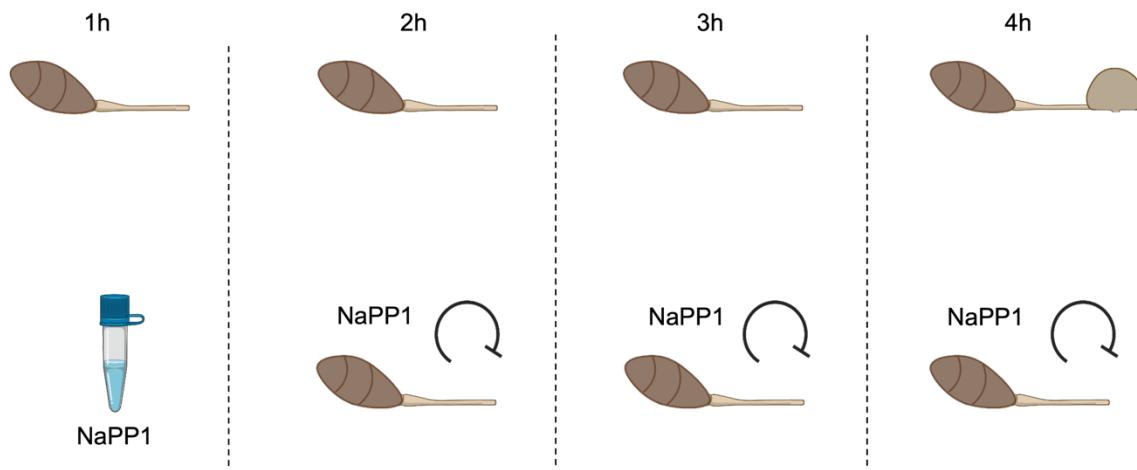


1070

1071

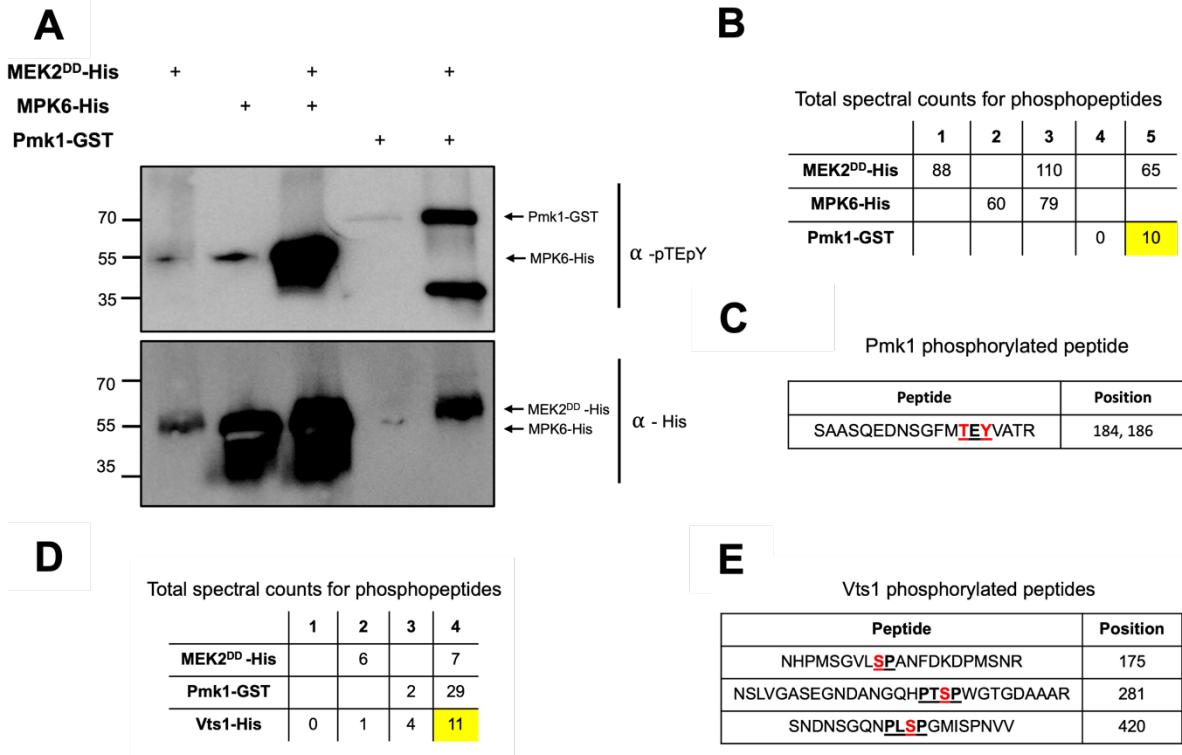
1072 **Supplementary Figure 4. Phosphorylation profile of early appressorium development**
 1073 **pathways.** Heat map to show relative intensities of differentially phosphorylated peptides in
 1074 Guy11 and $\Delta pmk1$ clustered by signalling pathway. MGG number, gene name and phosphosite
 1075 detected are shown.

1076


1077

1078

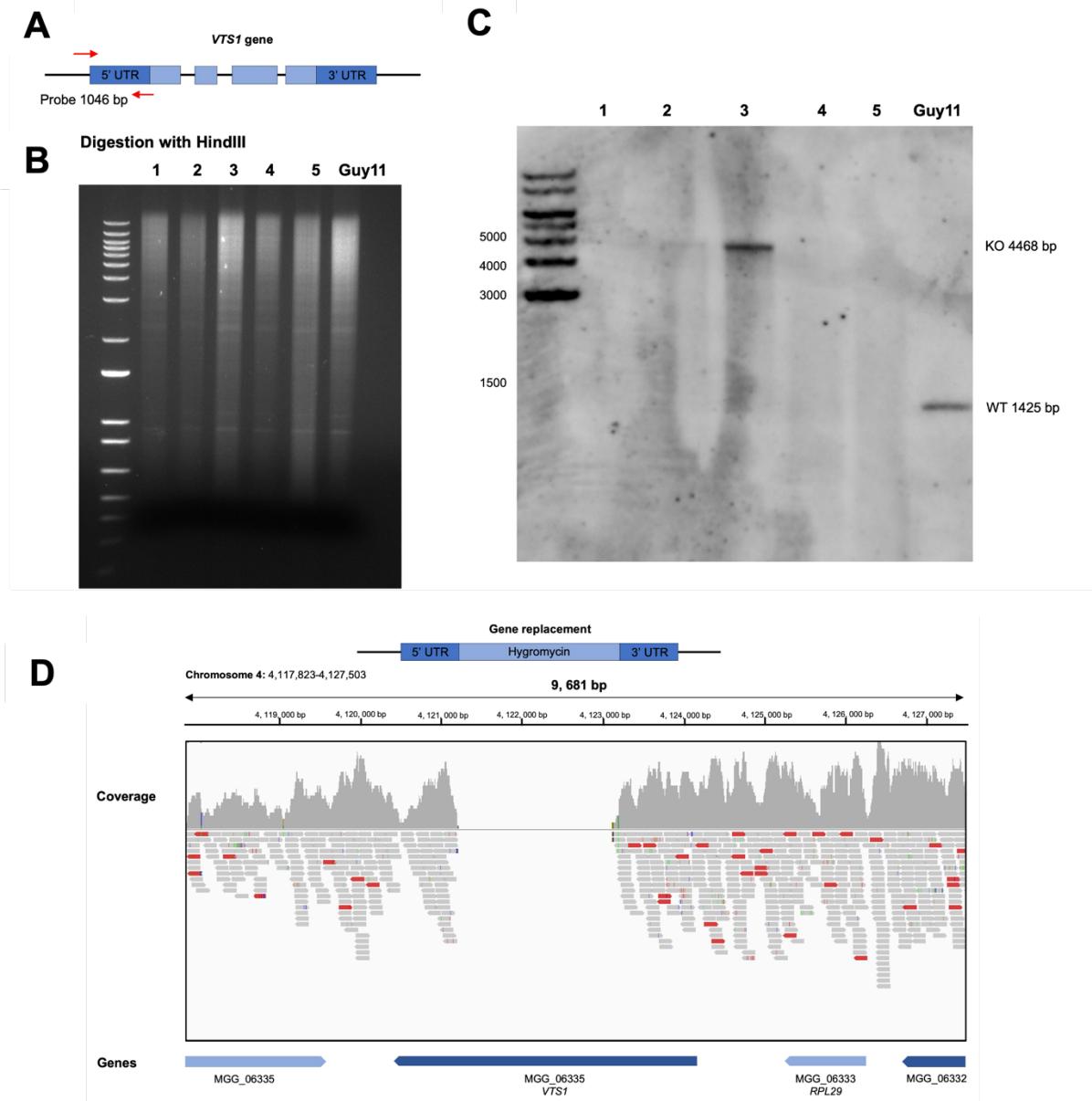
1079 **Supplementary Figure 5. Quantitative phosphoproteomics defines putative targets of the**
 1080 **Pmk1 MAPK pathway.** Heat map to show relative intensities of 181 differentially
 1081 phosphorylated peptides in Guy11 and $\Delta pmk1$. MGG number, gene name and phosphosite
 1082 detected are shown.


1083
1084
1085
1086
1087

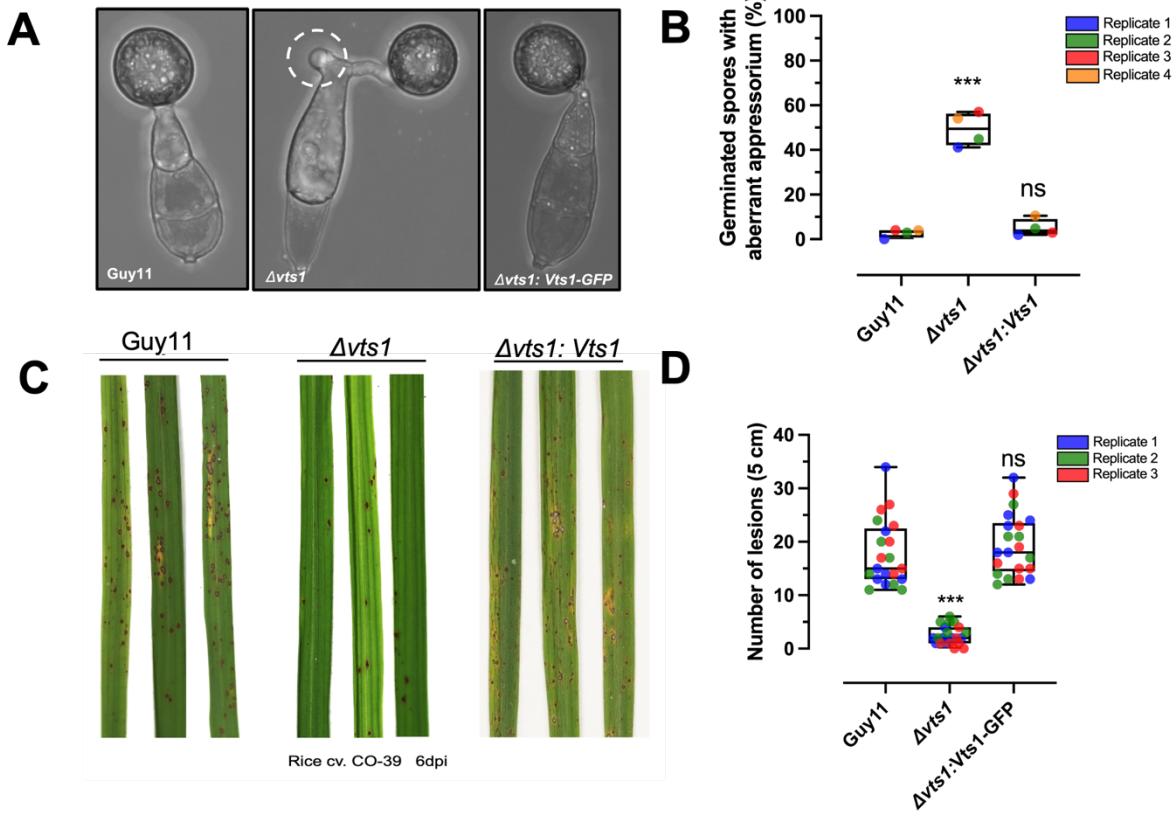
***pmk1^{AS}* germination on a hydrophobic surface**

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

Supplemental Figure 6. Experimental design for parallel reaction monitoring of the Pmk1 analogue-sensitive mutant of *M. oryzae* during the early stages of appressorium development. The *pmk1^{AS}* conditional mutant was incubated on a hydrophobic surface for 1, 2, 3 and 4 h in the presence or absence of the ATP analogue 1NaPP1.


1098

1099


1100 **Supplemental Figure 7. MEK2^{DD} activates *in vitro* Pmk1 on its TEY motif. (A)** Western
1101 blot analysis of *in vitro* phosphorylation experiment between MEK2^{DD} (N-terminally tagged
1102 with 6xHis) and Pmk1 (N-terminally tagged with GST). The previously reported MEK2^{DD}
1103 phosphorylation of MPK6 (N-terminally tagged with 6xHis) was used as a positive control.
1104 Proteins were immunoblotted with appropriate antisera (listed on the right). Arrows indicate
1105 expected band sizes. **(B)** Phosphopeptides identified by LC-MS for the *in vitro* kinase assay.
1106 **(C)** Phosphorylation sites (in red) identified by LC-MS on the Pmk1 MAPK. **(D)**
1107 Phosphopeptides identified by LC- MS for the *in vitro* kinase assay. **(E)** Phosphorylation sites
1108 (in red) identified by LC-MS on Vts1.

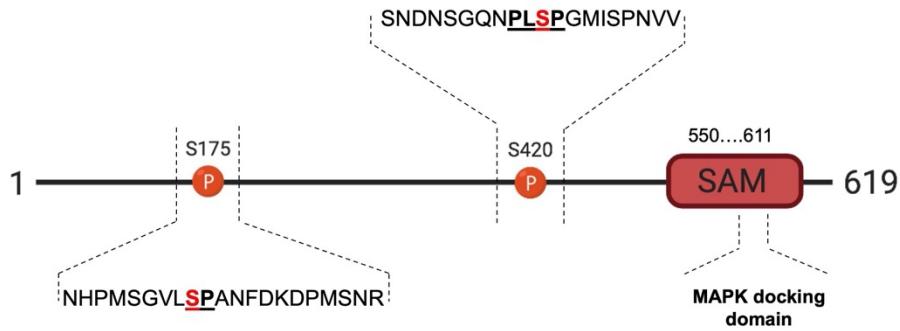
1109

1110

Supplemental Figure 8. Southern blot and whole genome sequencing confirm VTS1 null mutant. (A) A probe of 1046 bp was generated to hybridise to the *VTS1* gene in its 5' UTR region. **(B)** Genomic DNA of the putative transformants was digested with *Hind*III, gel fractionated, and transferred to Hybond-NX. **(C)** Southern blot analysis showing a single band of 4468 bp for positive null mutants (KO) and 1425 bp for wild-type strains (WT). The blot was probed with 1046 bp DNA fragment specific to *VTS1*. **(D)** Bioinformatic analysis of one positive $\Delta vts1$ null mutant showing the absence of coverage (reads) for the *VTS1* gene due to the presence of the *HPH* cassette inserted by the split marker strategy.

1122

1123


1124 **Supplemental Figure 9. A Pmk1-dependent Vts1 phosphorylation is necessary for rice**
1125 **blast disease. (A)** Micrographs to show appressorium development of Guy11, $\Delta vts1$ and
1126 $\Delta vts1: VTS1-GFP$ strains. Conidia were harvested from Guy11 and $\Delta vts1$ mutants, inoculated
1127 onto glass coverslips, and observed at 24h. Scale bar= 10 μ m. **(B)** Bar chart showing the
1128 frequency of conidial germination from one and two cells. Three biological replicates were
1129 carried out with 100 appressoria recorded per replicate. * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$
1130 represent significant differences using an unpaired two-tailed Student's *t*-test. Data are from
1131 four biological replicates. **(C)** Two-week-old seedlings of rice cultivar CO-39 were inoculated
1132 with equal amounts of conidial suspensions of Guy11 and $\Delta vts1$ containing 10⁵ conidia mL⁻¹
1133 in 0.2% gelatine. Seedlings were incubated for 6 days to develop blast disease at 26 °C and 90
1134 % humidity. **(D)** Scatter chart to show the number of disease lesions in Guy11 and two
1135 independent $\Delta vts1$ mutants. Horizontal line represents the mean, and the error bar is the
1136 standard deviation. Data points are shown from three biological replicates in different colours
1137 (red, blue, green).

1138

1139

1140

S. cerevisiae S I L N D D V L K Y T K L K I E T L T N T P F I S - - P P I L P A I A S P I P N R D - - - - D T Q I I
M. oryzae G - Q A D M L A N A T A M K L A A M S T V N N R F A L D D V R K Y R R T R S N D N S - G Q - - - N P L S P G M - I S P - - N V V M V D E H G R V I
G. tritici GVGADMLANATAMKLAAAMSTVNNRFALDDVRYRRARSNDAPGNQ - - - GGLSPGM - QVPGANVVMI DEHGRV
N. crassa QGNNAADMVANATAMKLAAALSTVNNRFALDDVRYRRARSNDAPGGPMSAQLTPGCCGV - N I P G T N V V M I N E H G Q V I
V. dahliae GGSQADMVANATAMKLAAALSTVNNRFALDDVRYRRARSNDAPGGPMSAQLTPGCCGV - N I P G T N V V M I N E H G Q V I
C. chlorophyt NGTQADMVANATAMKLAAALSTVNNRFALDDVRYRRARSNDAPGGPMSAQLTPGCCGV - N I P G T N V V M I N E H G Q V I
C. sublineola SGTQADMVANATAMKLAAALSTVNNRFALDDVRYRRARSNDAPGGPMSAQLTPGCCGV - N I P G T N V V M I N E H G Q V I
T. lentiforme - - GQADMVANATAMKLAAALSTVNNRFALDDVRYRRARSNDAPGGPMSAQLTPGCCGV - N I P G T N V V M I N E H G Q V I
F. mangiferae GGNQADMVANATAMKLAAALSTVNNRFALDDVRYRRARSNDAPGGPMSAQLTPGCCGV - N I P G T N V V M I N E H G Q V I
F. oxysporum GGNQADMVANATAMKLAAALSTVNNRFALDDVRYRRARSNDAPGGPMSAQLTPGCCGV - N I P G T N V V M I N E H G Q V I

S. cerevisiae 1 - - - - - M K H P Y E E F P T G S K S P Y N M S R G A H P G - - - - - A V L L S P Q S A I N K N N P G
M. oryzae 126 | E Q W F R V L S E A E R T A A L Y A L L Q Q T T Q V Q I R F F I | Q V L | Q C M G K N H P M - - - S G V L S P A N F D K - - - - - D P M S N R L S D A M N K L S V -
G. tritici 125 | E Q W F R V L S E A E R T A A L Y A L L Q Q T T Q V Q I R F F I | Q V L | Q C M G K N H P M - - - S G V L S P A S F D K - - - - - D P M S N R L S D A M N K L N V G
N. crassa 117 | E Q W F R V L S E A E R T A A L Y A L L Q Q T T Q V Q I R F F I | Q V L | Q C M G K N H P M - - - S G V L S P A N F D K - - - - - D P M S S R L S D A M N K L C L E V -
V. dahliae 115 | E Q W F R V L S E A E R T A A L Y A L L Q Q T T Q V Q I R F F I | Q V L | Q C M G K N H P M - - - S G V L S P A N F D K - - - - - D P M S N R L S D A M N K L N V -
C. chlorophyt 115 | E Q W F R V L S E A E R T A A L Y A L L Q Q T T Q V Q I R F F I | Q V L | Q C M G K N H P M - - - S G V L S P A N F D K - - - - - D P M S N R L S D A M N K L N V -
C. sublineola 114 | E Q W F R V L S E A E R T A A L Y A L L Q Q T T Q V Q I R F F I | Q V L | Q C M G K N H P M - - - S G V L S P A T F D K - - - - - D P M S S R L S D A M N K L N V -
T. lentiforme 115 | E Q W F R V L S E A E R T A A L Y A L L Q Q T T Q V Q I R F F I | Q V L | Q C M G K N H P M - - - S G V L S P A S F D K - - - - - D P M S N R L S D A M N K L N V -
F. mangiferae 115 | E Q W F R V L S E A E R T A A L Y A L L Q Q T T Q V Q I R F F I | Q V L | Q C M G K N H P M - - - S G V L S P A S F D K - - - - - D P M S N R L S D A M N K L N V -
F. oxysporum 115 | E Q W F R V L S E A E R T A A L Y A L L Q Q T T Q V Q I R F F I | Q V L | Q C M G K N H P M - - - S G V L S P A S F D K - - - - - D P M S N R L S D A M N K L N V -

1141

1142

1143 **Supplemental Figure 10. The Vts1 S175 residue is present in a conserved region among**
1144 **filamentous fungi.** Schematic representation to show arrangement of each phosphorylation

1145 site identified for Vts1 and its conservation. Alignments of neighbouring regions surrounding

1146 Vts1 S175 and S420 from different filamentous fungi were carried out using ClustalX.

1147

1148 **Supplementary Table 1.** Name, assembly version and source of proteome sequences used

1149 for phosphorylation site conservation analysis.

1150

Name	Version	Source
<i>M. oryzae</i>	MG8	https://ftp.ebi.ac.uk/ensemblgenomes/pub/release-56/fungi/fasta/magnaporthe_oryzae/pep/Magnaporthe_oryzae.MG8.pep.all.fa.gz
<i>A. alternata</i>	Altal1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fungi/fungi_ascomycota3_collection/alternaria_alternata_gca_001642055/pep/Alternaria_alternata_gca_001642055.Altal1.pep.all.fa.gz
<i>C. fructicola</i>	ASM977102v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fungi/fungi_ascomycota4_collection/colletotrichum_fructicola_gca_009771025/pep/Colletotrichum_fructicola_gca_009771025.ASM977102v1.pep.all.fa.gz

<i>C. gloeosporioides</i>	GCA_000319635.1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/colletotrichum_gloeosporioides/pep/Colletotrichum_gloeosporioides.GCA_000319635.1.pep.all.fa.gz
<i>C. higginsianum</i>	GCA_000313795.2	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/colletotrichum_higginsianum/pep/Colletotrichum_higginsianum.GCA_000313795.2.pep.all.fa.gz
<i>B. graminis</i>	EF2	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/blumeria_graminis/pep/Blumeria_graminis.EF2.pep.all.fa.gz
<i>P. graminis</i>	ASM14992v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/puccinia_graminis/pep/Puccinia_graminis.ASM14992v1.pep.all.fa.gz
<i>U. maydis</i>	Umaydis521_2.0	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/ustilago_maydis/pep/Ustilago_maydis.Umaydis521_2.0.pep.all.fa.gz
<i>P. pachyrhizi</i>	PpacPPUFV02	https://genome.jgi.doe.gov/portal/PpacPPUFV02/download/PpacPPUFV02_GeneCatalog_proteins_20210128.aa.fasta.gz
<i>B. oryzae</i>	Cochliobolus_miyabeanus_v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fungi_ascomycota1_collection/bipolaris_oryzae_atcc_44560_gca_000523455/pep/Bipolaris_oryzae_atcc_44560_gca_000523455.Cochliobolus_miyabeanus_v1.0.pep.all.fa.gz
<i>B. sorokiniana</i>	Cocs1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fungi_ascomycota1_collection/bipolaris_sorokiniana_nd90pr_gca_000338995/pep/Bipolaris_sorokiniana_nd90pr_gca_000338995.Cocs1.pep.all.fa.gz
<i>B. cinerea</i>	ASM83294v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/botrytis_cinerea/pep/Botrytis_cinerea.ASM83294v1.pep.all.fa.gz
<i>C. heterostrophus</i>	CocheC5_3	https://genome.jgi.doe.gov/portal/CocheC5_3/download/CocheC5_1_GeneModels_FilteredModels1_aa.fasta.gz
<i>P. striiformis</i>	PST-130_1.0	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/puccinia_striiformis/pep/Puccinia_striiformis.PST-130_1.0.pep.all.fa.gz
<i>S. cerevisiae</i>	ScR64-1-1	https://ftp.ebi.ac.uk/ensemblgenomes/pub/release-56/fungi/fasta/saccharomyces_cerevisiae/pep/Saccharomyces_cerevisiae.R64-1-1.pep.all.fa.gz
<i>F. oxysporum-5176</i>	GCA_000222805.1	https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes/Eukaryota/UP000002489/UP000002489_660025.fasta.gz
<i>A. nidulans</i>	ASM1142v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/aspergillus_nidulans/pep/Aspergillus_nidulans.ASM1142v1.pep.all.fa.gz
<i>S. pombe</i>	ASM294v2	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/schizosaccharomyces_pombe/pep/Schizosaccharomyces_pombe.ASM294v2.pep.all.fa.gz

<i>N. crassa</i>	NC12	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/neurospora_crassa/pep/Neurospora_crassa.NC12.pep.all.fa.gz
<i>C. albicans</i>	SC5314 v22	http://candidagenome.org/download/sequence/C_albicans_SC5314/Assembly22/current/C_albicans_SC5314_version_A22-s07-m01-r182_default_protein.fasta.gz
<i>A. fumigatus</i>	ASM265v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/aspergillus_fumigatus/pep/Aspergillus_fumigatus.ASM265v1.pep.all.fa.gz
<i>C. neoformans</i>	ASM9104v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/cryptococcus_neoformans/pep/Cryptococcus_neoformans.ASM9104v1.pep.all.fa.gz
<i>H. capsulatum</i>	GCA000170615v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/histoplasma_capsulatum/pep/Histoplasma_capsulatum.GCA000170615v1.pep.all.fa.gz
<i>F. oxysporum-2</i>	FO2	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fusarium_oxysporum/pep/Fusarium_oxysporum.FO2.pep.all.fa.gz
<i>C. purpurea</i>	ASM34735v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fungi_ascomycota1_collection/claviceps_purpurea_20_1_gca_000347355/pep/Claviceps_purpurea_20_1_gca_000347355.ASM34735v1.pep.all.fa.gz
<i>A. brassicicola</i>	Albra1	https://genome.jgi.doe.gov/portal/Altbr1/download/Alternaria_brassicicola_proteins.fasta.gz
<i>A. flavus</i>	Aspfl2_3	https://genome.jgi.doe.gov/portal/Aspfl2_3/download/Aspfl2_3_GeneCatalog_proteins_20200207.aa.fasta.gz
<i>C. chrysosperma</i>	Cytch1	https://genome.jgi.doe.gov/portal/Cytch1/download/Cytch1_GeneCatalog_proteins_20171014.aa.fasta.gz
<i>F. graminearum</i>	RR1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fusarium_graminearum/pep/Fusarium_graminearum.RR1.pep.all.fa.gz
<i>F. verticillioides</i>	ASM331697v2	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fungi_ascomycota5_collection/fusarium_verticillioides_gca_003316975/pep/Fusarium_verticillioides_gca_003316975.ASM331697v2.pep.all.fa.gz
<i>Z. tritici</i>	MG2	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/zymoseptoria_tritici/pep/Zymoseptoria_tritici.MG2.pep.all.fa.gz
<i>P. oxalicum</i>	pde_v1.0	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fungi_ascomycota1_collection/penicillium_oxalicum_114_2_gca_000346795.pde_v1.0.pep.all.fa.gz
<i>P. teres</i>	ASM972866v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fungi_ascomycota4_collection/pyrenophora_teres_f_teres_gca_0097

		28665/pep/Pyrenophora_teres_f_teres_gca_009728665.ASM972866v1.pep.all.fa.gz
<i>S. sclerotiorum</i>	ASM185786v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fungi_ascomycota3_collection/sclerotinia_sclerotiorum_1980_uf_70_gca_001857865/pep/Sclerotinia_sclerotiorum_1980_uf_70_gca_001857865.ASM185786v1.pep.all.fa.gz
<i>S. turcica</i>	Settu3	https://genome.jgi.doe.gov/portal/Settu3/download/Settu3_GeneCatalog_proteins_20170818.aa.fasta.gz
<i>S. nodorum</i>	Stano2	https://genome.jgi.doe.gov/portal/Stano2/download/Stano2_GeneCatalog_prot eins_20110506.aa.fasta.gz
<i>U. virens</i>	ASM96522v2	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fungi_ascomycota3_collection/ustilaginoidea_virens_gca_000965225/pep/Ustilaginoidea_virens_gca_000965225.ASM96522v2.pep.all.fa.gz
<i>V. mali</i>	ASM81815v1	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fungi_ascomycota3_collection/valsa_mali_gca_000818155/pep/Valsa_mali_gca_000818155.ASM81815v1.pep.all.fa.gz
<i>V. dahliae</i>	VDAG_JR2v.4.0	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/verticillium_dahliaejr2/pep/Verticillium_dahliaejr2.VDAG_JR2v.4.0.pep.all.fa.gz
<i>P. indica</i>	Pirin1	https://genome.jgi.doe.gov/portal/Pirin1/download/Pirin1_GeneCatalog_proteins_20111203.aa.fasta.gz
<i>R. irregularis</i>	ASM43914v3	https://ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/fungi_mucoromycota1_collection/rhizophagus_irregularis_daom_181602_gca_000439145/pep/Rhizophagus_irregularis_daom_181602_gca_000439145.ASM43914v3.pep.all.fa.gz
<i>F. oxysporum</i> -C. alt	FCALT_unknown	Berasategui et al., Curr Biology 2022 10.1016/j.cub.2022.07.065

1151

1152 1153 **Supplementary Table 2:** Control peptides used in PRM assay

Control peptides	Precursor <i>m/z</i>	Precursor Charge (z)
VDS[+80]AVQGLSSSPKDTK	566.9364	3
VHS[+80]PVYGGPPGAADSR	549.5823	3
KPAGS[+80]PAVVDK	435.5623	3
AFGSGPM[+16]S[+80]DEDDEDGPHGAER	803.6289	3
IAQAVGGGS[+80]DDDLQAR	826.8674	2
T[+80]KSESKVPAVEPAESR	598.9593	3
ANS[+80]PPPSSLLNHNK	519.2470	3
RKS[+80]SSGSSYAGSYQGTR	620.2742	3
SIS[+80]PGLHAQR	573.2768	2
KVEDEDGEIS[+80]EPEDPM[+16]M[+16]FQR	870.0083	3

ALDNAPS[+80]GRVT[+80]PVAPPPR	658.9781	3
GM[+16]APYPNS[+80]PQPR	705.7972	2
TSTS[+80]GTATPTAAGR	679.8010	2
SAGREDAQGVIHIDDS[+80]DDEGDVQM[+16]GGTPGPR	820.0979	4
RGSLST[+80]NGSESIDESAIDEDEVGAPNSR	991.4299	3
S[+80]GSITENIFE SER	774.8325	2
SDS[+80]HQAGGGVSGDATSLPTLN P VLSR	868.4081	3
NYIFGDPDS[+80]EDEVPR	916.8724	2

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164 REFERENCES

1165

- 1166 1. Cruz-Mireles, N., Eseola, A.B., Osés-Ruiz, M., Ryder, L.S., and Talbot, N.J. (2021).
1167 From appressorium to transpressorium—Defining the morphogenetic basis of host cell
1168 invasion by the rice blast fungus. *PLOS Pathog.* *17*, e1009779.
1169 10.1371/JOURNAL.PPAT.1009779.
- 1170 2. Ryder, L.S., Cruz-Mireles, N., Molinari, C., Eisermann, I., Eseola, A.B., and Talbot,
1171 N.J. (2022). The appressorium at a glance. *J. Cell Sci.* *135*. 10.1242/jcs.259857.
- 1172 3. Ryder, L.S., Dagdas, Y.F., Kershaw, M.J., Venkataraman, C., Madzvamuse, A., Yan,
1173 X., Cruz-Mireles, N., Soanes, D.M., Osés-Ruiz, M., Styles, V., et al. (2019). A sensor
1174 kinase controls turgor-driven plant infection by the rice blast fungus. *Nature* *574*, 423–
1175 427. 10.1038/s41586-019-1637-x.
- 1176 4. Ryder, L.S., Lopez, S.G., Michels, L., Eseola, A.B., Sprakel, J., Ma, W., and Talbot,
1177 N.J. (2023). A molecular mechanosensor for real-time visualization of appressorium
1178 membrane tension in *Magnaporthe oryzae*. *Nat. Microbiol.* 10.1038/s41564-023-
1179 01430-x.
- 1180 5. Xu, J.R., and Hamer, J.E. (1996). MAP kinase and cAMP signaling regulate infection

1181 structure formation and pathogenic growth in the rice blast fungus *Magnaporthe*
1182 *grisea*. *Genes Dev.* *10*, 2696–2706.

1183 6. Sakulkoo, W., Osés-Ruiz, M., Oliveira Garcia, E., Soanes, D.M., Littlejohn, G.R.,
1184 Hacker, C., Correia, A., Valent, B., and Talbot, N.J. (2018). A single fungal MAP
1185 kinase controls plant cell-to-cell invasion by the rice blast fungus. *Science* (80-). *359*,
1186 1399–1403. 10.1126/science.aaq0892.

1187 7. Osés-Ruiz, M., Cruz-Mireles, N., Martin-Urdiroz, M., Soanes, D.M., Eseola, A.B.,
1188 Tang, B., Derbyshire, P., Nielsen, M., Cheema, J., Were, V., et al. (2021).
1189 Appressorium-mediated plant infection by *Magnaporthe oryzae* is regulated by a
1190 Pmk1-dependent hierarchical transcriptional network. *Nat. Microbiol.* *6*, 1383–1397.
1191 10.1038/S41564-021-00978-W.

1192 8. Elion, E.A., Grisafi, P.L., and Fink, G.R. (1990). FUS3 encodes a cdc2+/CDC28-
1193 related kinase required for the transition from mitosis into conjugation. *Cell* *60*, 649–
1194 664. 10.1016/0092-8674(90)90668-5.

1195 9. Elion, E.A., Brill, J.A., and Fink, G.R. (1991). FUS3 represses CLN1 and CLN2 and
1196 in concert with KSS1 promotes signal transduction. *Proc. Natl. Acad. Sci. U. S. A.* *88*,
1197 9392–9396. 10.1073/PNAS.88.21.9392.

1198 10. Zhao, X., Kim, Y., Park, G., and Xu, J.-R. (2005). A Mitogen-Activated Protein
1199 Kinase Cascade Regulating Infection-Related Morphogenesis in *Magnaporthe grisea*.
1200 *Plant Cell* *17*, 1317–1329. 10.1105/tpc.104.029116.

1201 11. Park, G., Xue, C., Zhao, X., Kim, Y., Orbach, M., and Xu, J.-R. (2006). Multiple
1202 upstream signals converge on the adaptor protein Mst50 in *Magnaporthe grisea*. *Plant*
1203 *Cell* *18*, 2822–2835. 10.1105/tpc.105.038422.

1204 12. Li, G., Zhou, X., Kong, L., Wang, Y., Zhang, H., Zhu, H., Mitchell, T.K., Dean, R.A.,
1205 and Xu, J.-R. (2011). MoSfl1 Is Important for Virulence and Heat Tolerance in
1206 *Magnaporthe oryzae*. *PLoS One* *6*, e19951. 10.1371/journal.pone.0019951.

1207 13. Zhang, H., Xue, C., Kong, L., Li, G., and Xu, J.-R. (2011). A Pmk1-interacting gene is
1208 involved in appressorium differentiation and plant infection in *Magnaporthe oryzae*.
1209 *Eukaryot. Cell* *10*, 1062–1070. 10.1128/EC.00007-11.

1210 14. Rispail, N., Soanes, D.M., Ant, C., Czajkowski, R., Grünler, A., Huguet, R., Perez-
1211 Nadales, E., Poli, A., Sartorel, E., Valiante, V., et al. (2009). Comparative genomics of
1212 MAP kinase and calcium-calcineurin signalling components in plant and human
1213 pathogenic fungi. *Fungal Genet. Biol.* *46*, 287–298. 10.1016/J.FGB.2009.01.002.

1214 15. Jiang, C., Zhang, X., Liu, H., and Xu, J.-R. (2018). Mitogen-activated protein kinase

1215 signaling in plant pathogenic fungi. *PLOS Pathog.* *14*, e1006875.
1216 10.1371/journal.ppat.1006875.

1217 16. Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., and Nelson, A.
1218 (2019). The global burden of pathogens and pests on major food crops. *Nat. Ecol.
1219 Evol.* *3*, 430–439. 10.1038/s41559-018-0793-y.

1220 17. Strumillo, M.J., Oplová, M., Viéitez, C., Ochoa, D., Shahraz, M., Busby, B.P., Sopko,
1221 R., Studer, R.A., Perrimon, N., Panse, V.G., et al. (2019). Conserved phosphorylation
1222 hotspots in eukaryotic protein domain families. *Nat. Commun.* *2019* *10*, 1–11.
1223 10.1038/s41467-019-09952-x.

1224 18. Takáč, T., and Šamaj, J. (2015). Advantages and limitations of shot-gun proteomic
1225 analyses on *Arabidopsis* plants with altered MAPK signaling. *Front. Plant Sci.* *6*, 107.
1226 10.3389/FPLS.2015.00107/BIBTEX.

1227 19. Savage, S.R., and Zhang, B. (2020). Using phosphoproteomics data to understand
1228 cellular signaling: A comprehensive guide to bioinformatics resources. *Clin.
1229 Proteomics* *17*, 1–18. 10.1186/S12014-020-09290-X/TABLES/7.

1230 20. Veneault-Fourrey, C., Barooah, M., Egan, M., Wakley, G., and Talbot, N.J. (2006).
1231 Autophagic fungal cell death is necessary for infection by the rice blast fungus.
1232 *Science* (80-). *312*, 580–583. 10.1126/science.1124550.

1233 21. Dagdas, Y.F., Yoshino, K., Dagdas, G., Ryder, L.S., Bielska, E., Steinberg, G., and
1234 Talbot, N.J. (2012). Septin-mediated plant cell invasion by the rice blast fungus,
1235 *Magnaporthe oryzae*. *Science* (80-). *336*, 1590–1595. 10.1126/science.1222934.

1236 22. Dulal, N., Rogers, A., Wang, Y., and Egan, M. (2020). Dynamic assembly of a higher-
1237 order septin structure during appressorium morphogenesis by the rice blast fungus.
1238 *Fungal Genet. Biol.* *140*. 10.1016/J.FGB.2020.103385.

1239 23. Li, G., Gong, Z., Dulal, N., Marroquin-Guzman, M., Rocha, R.O., Richter, M., and
1240 Wilson, R.A. (2023). A protein kinase coordinates cycles of autophagy and
1241 glutaminolysis in invasive hyphae of the fungus *Magnaporthe oryzae* within rice cells.
1242 *Nat. Commun.* *14*, 4146. 10.1038/s41467-023-39880-w.

1243 24. Jeon, J., Park, S.-Y., Chi, M.-H., Choi, J., Park, J., Rho, H.-S., Kim, S., Goh, J., Yoo,
1244 S., Choi, J., et al. (2007). Genome-wide functional analysis of pathogenicity genes in
1245 the rice blast fungus. *Nat. Genet.* *39*, 561–565. 10.1038/ng2002.

1246 25. Mir, A.A., Park, S.-Y., Sadat, M.A., Kim, S., Choi, J., Jeon, J., and Lee, Y.-H. (2015).
1247 Systematic characterization of the peroxidase gene family provides new insights into
1248 fungal pathogenicity in *Magnaporthe oryzae*. *Sci. Rep.* *5*, 11831. 10.1038/srep11831.

1249 26. Han, J.H., Lee, H.M., Shin, J.H., Lee, Y.H., and Kim, K.S. (2015). Role of the
1250 MoYAK1 protein kinase gene in *Magnaporthe oryzae* development and pathogenicity.
1251 *Environ. Microbiol.* *17*, 4672–4689. 10.1111/1462-2920.13010/SUPPINFO.

1252 27. Tanaka, S., Yamada, K., Yabumoto, K., Fujii, S., Huser, A., Tsuji, G., Koga, H., Dohi,
1253 K., Mori, M., Shiraishi, T., et al. (2007). *Saccharomyces cerevisiae* SSD1 orthologues
1254 are essential for host infection by the ascomycete plant pathogens *Colletotrichum*
1255 *lagenarium* and *Magnaporthe grisea*. *Mol. Microbiol.* *64*, 1332–1349. 10.1111/J.1365-
1256 2958.2007.05742.X.

1257 28. Gilbert, M.J., Thornton, C.R., Wakley, G.E., and Talbot, N.J. (2006). A P-type
1258 ATPase required for rice blast disease and induction of host resistance. *Nature* *440*,
1259 535–539. 10.1038/nature04567.

1260 29. Zhao, X., and Xu, J.-R. (2007). A highly conserved MAPK-docking site in Mst7 is
1261 essential for Pmk1 activation in *Magnaporthe grisea*. *Mol. Microbiol.* *63*, 881–894.
1262 10.1111/j.1365-2958.2006.05548.x.

1263 30. Li, G., Zhang, X., Tian, H., Choi, Y.-E., Tao, W.A., and Xu, J.-R. (2017). *MST50* is
1264 involved in multiple MAP kinase signaling pathways in *Magnaporthe oryzae*. *Environ.*
1265 *Microbiol.* *19*, 1959–1974. 10.1111/1462-2920.13710.

1266 31. Yue, X., Que, Y., Xu, L., Deng, S., Peng, Y., Talbot, N.J., and Wang, Z. (2016). ZNF1
1267 encodes a putative C2H2 zinc-finger protein essential for appressorium differentiation
1268 by the rice blast fungus *magnaporthe oryzae*. *Mol. Plant-Microbe Interact.* *29*, 22–35.
1269 10.1094/MPMI-09-15-0201-R/ASSET/IMAGES/LARGE/MPMI-09-15-0201-
1270 R_F9.jpeg.

1271 32. Cao, H., Huang, P., Zhang, L., Shi, Y., Sun, D., Yan, Y., Liu, X., Dong, B., Chen, G.,
1272 Snyder, J.H., et al. (2016). Characterization of 47 Cys2 -His2 zinc finger proteins
1273 required for the development and pathogenicity of the rice blast fungus *Magnaporthe*
1274 *oryzae*. *New Phytol.* *211*, 1035–1051. 10.1111/NPH.13948.

1275 33. Kershaw, M.J., and Talbot, N.J. (2009). Genome-wide functional analysis reveals that
1276 infection-associated fungal autophagy is necessary for rice blast disease. *Proc. Natl.*
1277 *Acad. Sci.* *106*, 15967–15972. 10.1073/PNAS.0901477106.

1278 34. Foster, A.J., Were, V.M., Yan, X., Win, J., Harant, A., Langner, T., Kamoun, S., and
1279 Talbot, N.J. (2021). MagnaGenes (v.1.0): an open science database of gene function
1280 studies in the blast fungus *Magnaporthe oryzae*. 10.5281/ZENODO.4647766.

1281 35. Bin Yusof, M.T., Kershaw, M.J., Soanes, D.M., and Talbot, N.J. (2014). FAR1 and
1282 FAR2 regulate the expression of genes associated with lipid metabolism in the rice

blast fungus *Magnaporthe oryzae*. *PLoS One* 9. 10.1371/JOURNAL.PONE.0099760.

36. Yan, X., Li, Y., Yue, X., Wang, C., Que, Y., Kong, D., Ma, Z., Talbot, N.J., and Wang, Z. (2011). Two Novel Transcriptional Regulators Are Essential for Infection-related Morphogenesis and Pathogenicity of the Rice Blast Fungus *Magnaporthe oryzae*. *PLOS Pathog.* 7, e1002385. 10.1371/JOURNAL.PPAT.1002385.

37. Yue, X., Que, Y., Deng, S., Xu, L., Oses-Ruiz, M., Talbot, N.J., Peng, Y., and Wang, Z. (2017). The cyclin dependent kinase subunit Cks1 is required for infection-associated development of the rice blast fungus *Magnaporthe oryzae*. *Environ. Microbiol.* 19, 3959–3981. 10.1111/1462-2920.13796.

38. Thines, E., Weber, R.W., and Talbot, N.J. (2000). MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by *Magnaporthe grisea*. *Plant Cell* 12, 1703–1718.

39. Wang, Z.Y., Soanes, D.M., Kershaw, M.J., and Talbot, N.J. (2007). Functional Analysis of Lipid Metabolism in *Magnaporthe grisea* Reveals a Requirement for Peroxisomal Fatty Acid β -Oxidation During Appressorium-Mediated Plant Infection. <https://doi.org/10.1094/MPMI-20-5-0475> 20, 475–491. 10.1094/MPMI-20-5-0475.

40. de Jong, J.C., McCormack, B.J., Smirnoff, N., and Talbot, N.J. (1997). Glycerol generates turgor in rice blast. *Nature* 389, 244. 10.1038/38418.

41. Howard, R.J., and Valent, B. (1996). BREAKING AND ENTERING: Host Penetration by the Fungal Rice Blast Pathogen *Magnaporthe grisea*. *Annu. Rev. Microbiol.* 50, 491–512. 10.1146/annurev.micro.50.1.491.

42. Yamamoto, H., Fujioka, Y., Suzuki, S.W., Noshiro, D., Suzuki, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Ando, T., Noda, N.N., et al. (2016). The Intrinsically Disordered Protein Atg13 Mediates Supramolecular Assembly of Autophagy Initiation Complexes. *Dev. Cell* 38, 86–99. 10.1016/J.DEVCEL.2016.06.015.

43. Zhu, X.M., Li, L., Cai, Y.Y., Wu, X.Y., Shi, H. Bin, Liang, S., Qu, Y.M., Naqvi, N.I., Del Poeta, M., Dong, B., et al. (2021). A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus. *Autophagy* 17, 2939–2961. 10.1080/15548627.2020.1848129/SUPPL_FILE/KAUP_A_1848129_SM0951.ZIP.

44. Balhadère, P. V, Foster, A.J., and Talbot, N.J. (1999). Identification of Pathogenicity Mutants of the Rice Blast Fungus *Magnaporthe grisea* by Insertional Mutagenesis. / 129 *MPMI* 12, 129–142.

45. Kim, C.A., and Bowie, J.U. (2003). SAM domains: uniform structure, diversity of

1317 function. *Trends Biochem. Sci.* 28, 625–628. 10.1016/J.TIBS.2003.11.001.

1318 46. Knight, M.J., Leettola, C., Gingery, M., Li, H., and Bowie, J.U. (2011). A human
1319 sterile alpha motif domain polymerizome. *Protein Sci.* 20, 1697. 10.1002/PRO.703.

1320 47. Ramachander, R., Kim, C.A., Phillips, M.L., Mackereth, C.D., Thanos, C.D.,
1321 McIntosh, L.P., and Bowie, J.U. (2002). Oligomerization-dependent Association of the
1322 SAM Domains from *Schizosaccharomyces pombe* Byr2 and Ste4. *J. Biol. Chem.* 277,
1323 39585–39593. 10.1074/JBC.M207273200.

1324 48. Grimshaw, S.J., Mott, H.R., Stott, K.M., Nielsen, P.R., Evetts, K.A., Hopkins, L.J.,
1325 Nietlispach, D., and Owen, D. (2004). Structure of the Sterile α Motif (SAM) Domain
1326 of the *Saccharomyces cerevisiae* Mitogen-activated Protein Kinase Pathway-
1327 modulating Protein STE50 and Analysis of Its Interaction with the STE11 SAM. *J.*
1328 *Biol. Chem.* 279, 2192–2201. 10.1074/JBC.M305605200.

1329 49. Zhang, X., Bian, Z., and Xu, J.R. (2018). Assays for MAP Kinase Activation in
1330 *Magnaporthe oryzae* and Other Plant Pathogenic Fungi. *Methods Mol. Biol.* 1848, 93–
1331 101. 10.1007/978-1-4939-8724-5_8.

1332 50. Lin, C.H., Yang, S.L., Wang, N.Y., and Chung, K.R. (2010). The FUS3 MAPK
1333 signaling pathway of the citrus pathogen *Alternaria alternata* functions independently
1334 or cooperatively with the fungal redox-responsive AP1 regulator for diverse
1335 developmental, physiological and pathogenic processes. *Fungal Genet. Biol.* 47, 381–
1336 391. 10.1016/J.FGB.2009.12.009.

1337 51. Cho, Y., Cramer, R.A., Kim, K.H., Davis, J., Mitchell, T.K., Figuli, P., Pryor, B.M.,
1338 Lemasters, E., and Lawrence, C.B. (2007). The Fus3/Kss1 MAP kinase homolog
1339 Amk1 regulates the expression of genes encoding hydrolytic enzymes in *Alternaria*
1340 *brassicicola*. *Fungal Genet. Biol.* 44, 543–553. 10.1016/J.FGB.2006.11.015.

1341 52. Jun, S.C., Kim, J.H., and Han, K.H. (2020). The Conserved MAP Kinase MpkB
1342 Regulates Development and Sporulation without Affecting Aflatoxin Biosynthesis in
1343 *Aspergillus flavus*. *J. fungi* (Basel, Switzerland) 6, 1–16. 10.3390/JOF6040289.

1344 53. Moriwaki, A., Kihara, J., Mori, C., and Arase, S. (2007). A MAP kinase gene, BMK1,
1345 is required for conidiation and pathogenicity in the rice leaf spot pathogen *Bipolaris*
1346 *oryzae*. *Microbiol. Res.* 162, 108–114. 10.1016/J.MICRES.2006.01.014.

1347 54. Leng, Y., and Zhong, S. (2015). The Role of Mitogen-Activated Protein (MAP)
1348 Kinase Signaling Components in the Fungal Development, Stress Response and
1349 Virulence of the Fungal Cereal Pathogen *Bipolaris sorokiniana*. *PLoS One* 10,
1350 e0128291. 10.1371/JOURNAL.PONE.0128291.

1351 55. Zhang, Z., and Gurr, S.J. (2001). Expression and sequence analysis of the *Blumeria*
1352 *graminis* mitogen-activated protein kinase genes, mpk1 and mpk2. *Gene* *266*, 57–65.
1353 10.1016/S0378-1119(01)00381-X.

1354 56. Zheng, L., Campbell, M., Murphy, J., Lam, S., and Xu, J.-R. (2000). The BMP1 Gene
1355 Is Essential for Pathogenicity in the Gray Mold Fungus *Botrytis cinerea*. *Mol. Plant-*
1356 *Microbe Interact. MPMI* *13*, 724–732.

1357 57. Mey, G., Oeser, B., Lebrun, M.H., and Tudzynski, P. (2002). The biotrophic, non-
1358 appressorium-forming grass pathogen *Claviceps purpurea* needs a Fus3/Pmk1
1359 homologous mitogen-activated protein kinase for colonization of rye ovarian tissue.
1360 *Mol. Plant. Microbe. Interact.* *15*, 303–312. 10.1094/MPMI.2002.15.4.303.

1361 58. Lev, S., Sharon, A., Hadar, R., Ma, H., and Horwitz, B.A. (1999). A mitogen-activated
1362 protein kinase of the corn leaf pathogen *Cochliobolus heterostrophus* is involved in
1363 conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-
1364 activated protein kinase homologs in foliar pathogens. *Proc. Natl. Acad. Sci. U. S. A.*
1365 *96*, 13542–13547. 10.1073/pnas.96.23.13542.

1366 59. Liang, X., Wei, T., Cao, M., Zhang, X., Liu, W., Kong, Y., Zhang, R., and Sun, G.
1367 (2019). The MAP Kinase CfPMK1 Is a Key Regulator of Pathogenesis, Development,
1368 and Stress Tolerance of *Colletotrichum franticola*. *Front. Microbiol.* *10*, 1070.
1369 10.3389/fmicb.2019.01070.

1370 60. Li, C., Sun, W., Cao, S., Hou, R., Li, X., Ming, L., Kan, J., Zhao, Y., and Liu, F.
1371 (2022). The CfMK1 Gene Regulates Reproduction, Appressorium Formation, and
1372 Pathogenesis in a Pear Anthracnose-Causing Fungus. *J. fungi* (Basel, Switzerland) *8*.
1373 10.3390/JOF8010077.

1374 61. He, P., Wang, Y., Wang, X., Zhang, X., and Tian, C. (2017). The Mitogen-Activated
1375 Protein Kinase CgMK1 Governs Appressorium Formation, Melanin Synthesis, and
1376 Plant Infection of *Colletotrichum gloeosporioides*. *Front. Microbiol.* *8*.
1377 10.3389/FMICB.2017.02216.

1378 62. Wei, W., Xiong, Y., Zhu, W., Wang, N., Yang, G., and Peng, F. (2016).
1379 *Colletotrichum higginsianum* Mitogen-Activated Protein Kinase ChMK1: Role in
1380 Growth, Cell Wall Integrity, Colony Melanization, and Pathogenicity. *Front.*
1381 *Microbiol.* *7*. 10.3389/FMICB.2016.01212.

1382 63. Takano, Y., Kikuchi, T., Kubo, Y., Hamer, J.E., Mise, K., and Furusawa, I. (2000).
1383 The *Colletotrichum lagenarium* MAP Kinase Gene *CMK1* Regulates Diverse Aspects
1384 of Fungal Pathogenesis. *Mol. Plant-Microbe Interact.* *13*, 374–383.

1385 10.1094/MPMI.2000.13.4.374.

1386 64. Fu, T., Shin, J.-H., Lee, N.-H., Lee, K.H., and Kim, K.S. (2022). Mitogen-Activated
1387 Protein Kinase CsPMK1 Is Essential for Pepper Fruit Anthracnose by *Colletotrichum*
1388 *scovillei*. *Front. Microbiol.* *13*. 10.3389/FMICB.2022.770119.

1389 65. Xiong, D., Yu, L., Shan, H., and Tian, C. (2021). CcPmk1 is a regulator of
1390 pathogenicity in *Cytospora chrysosperma* and can be used as a potential target for
1391 disease control. *Mol. Plant Pathol.* *22*, 710–726. 10.1111/MPP.13059.

1392 66. Jenczmionka, N.J., and Schiffer, W. (2005). The Gpmk1 MAP kinase of *Fusarium*
1393 *graminearum* regulates the induction of specific secreted enzymes. *Curr. Genet.* *47*,
1394 29–36. 10.1007/s00294-004-0547-z.

1395 67. Di Pietro, A., García-MacEira, F.I., Méglez, E., and Roncero, M.I. (2001). A MAP
1396 kinase of the vascular wilt fungus *Fusarium oxysporum* is essential for root penetration
1397 and pathogenesis. *Mol. Microbiol.* *39*, 1140–1152.

1398 68. Zhang, Y., Choi, Y.E., Zou, X., and Xu, J.R. (2011). The FvMK1 mitogen-activated
1399 protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in
1400 *Fusarium verticillioides*. *Fungal Genet. Biol.* *48*, 71–79. 10.1016/J.FGB.2010.09.004.

1401 69. Meng, Y., Zhang, X., Tang, D., Chen, X., Zhang, D., Chen, J., and Fang, W. (2021). A
1402 Novel Nitrogen and Carbon Metabolism Regulatory Cascade Is Implicated in
1403 Entomopathogenicity of the Fungus *Metarhizium robertsii*. *mSystems* *6*.
1404 10.1128/MSYSTEMS.00499-21.

1405 70. Cousin, A., Mehrabi, R., Guilleroux, M., Dufresne, M., Van Der Lee, T., Waalwijk,
1406 C., Langin, T., and Kema, G.H.J. (2006). The MAP kinase-encoding gene MgFus3 of
1407 the non-appressorium phytopathogen *Mycosphaerella graminicola* is required for
1408 penetration and in vitro pycnidia formation. *Mol. Plant Pathol.* *7*, 269–278.
1409 10.1111/J.1364-3703.2006.00337.X.

1410 71. Ma, B., Ning, Y.N., Li, C.X., Tian, D., Guo, H., Pang, X.M., Luo, X.M., Zhao, S., and
1411 Feng, J.X. (2021). A mitogen-activated protein kinase PoxMK1 mediates regulation of
1412 the production of plant-biomass-degrading enzymes, vegetative growth, and pigment
1413 biosynthesis in *Penicillium oxalicum*. *Appl. Microbiol. Biotechnol.* *105*.
1414 10.1007/S00253-020-11020-0.

1415 72. Guo, J., Dai, X., Xu, J.R., Wang, Y., Bai, P., Liu, F., Duan, Y., Zhang, H., Huang, L.,
1416 and Kang, Z. (2011). Molecular Characterization of a Fus3/Kss1 Type MAPK from
1417 *Puccinia striiformis* f. sp. *tritici*, PsMAPK1. *PLoS One* *6*.
1418 10.1371/JOURNAL.PONE.0021895.

1419 73. Ruiz-Roldán, M.C., Maier, F.J., and Schäfer, W. (2001). *PTK1*, a Mitogen-Activated-
1420 Protein Kinase Gene, Is Required for Conidiation, Appressorium Formation, and
1421 Pathogenicity of *Pyrenophora teres* on Barley. *Mol. Plant-Microbe Interact.* *14*, 116–
1422 125. 10.1094/MPMI.2001.14.2.116.

1423 74. Chen, C., Harel, A., Gorovoits, R., Yarden, O., and Dickman, M.B. (2007). MAPK
1424 Regulation of Sclerotial Development in *Sclerotinia sclerotiorum* Is Linked with pH
1425 and cAMP Sensing. <http://dx.doi.org/10.1094/MPMI.2004.17.4.404> *17*, 404–413.
1426 10.1094/MPMI.2004.17.4.404.

1427 75. Gu, S. qin, Yang, Y., Li, P., Zhang, C. zhi, Fan, Y., Zhang, X. yu, Tian, L., Hao, Z.
1428 min, Cao, Z. yan, Gong, X. dong, et al. (2013). Stk2, a Mitogen-Activated Protein
1429 Kinase from *Setosphaeria turcica*, Specifically Complements the Functions of the Fus3
1430 and Kss1 of *Saccharomyces cerevisiae* in Filamentation, Invasive Growth, and Mating
1431 Behavior. *J. Integr. Agric.* *12*, 2209–2216. 10.1016/S2095-3119(13)60296-8.

1432 76. Solomon, P.S., Waters, O.D.C., Simmonds, J., Cooper, R.M., and Oliver, R.P. (2005).
1433 The Mak2 MAP kinase signal transduction pathway is required for pathogenicity in
1434 *Stagonospora nodorum*. *Curr. Genet.* *48*, 60–68. 10.1007/S00294-005-0588-
1435 Y/FIGURES/5.

1436 77. Tang, J., Bai, J., Chen, X., Zheng, L., Liu, H., and Huang, J. (2020). Two protein
1437 kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress
1438 response and pathogenicity of rice false smut fungus *Ustilaginoidea virens*. *Curr.*
1439 *Genet.* *66*, 409–420. 10.1007/S00294-019-01029-Y.

1440 78. Müller, P., Aichinger, C., Feldbrügge, M., and Kahmann, R. (1999). The MAP kinase
1441 kpp2 regulates mating and pathogenic development in *Ustilago maydis*. *Mol.*
1442 *Microbiol.* *34*, 1007–1017. 10.1046/J.1365-2958.1999.01661.X.

1443 79. Brachmann, A., Schirawski, J., Müller, P., and Kahmann, R. (2003). An unusual MAP
1444 kinase is required for efficient penetration of the plant surface by *Ustilago maydis*.
1445 *EMBO J.* *22*, 2199–2210. 10.1093/EMBOJ/CDG198.

1446 80. Wu, Y., Xu, L., Liu, J., Yin, Z., Gao, X., Feng, H., and Huang, L. (2017). A mitogen-
1447 activated protein kinase gene (VmPmk1) regulates virulence and cell wall degrading
1448 enzyme expression in *Valsa mali*. *Microb. Pathog.* *111*, 298–306.
1449 10.1016/J.MICPATH.2017.09.003.

1450 81. Rauyaree, P., Ospina-Giraldo, M.D., Kang, S., Bhat, R.G., Subbarao, K. V., Grant,
1451 S.J., and Dobinson, K.F. (2005). Mutations in VMK1, a mitogen-activated protein
1452 kinase gene, affect microsclerotia formation and pathogenicity in *Verticillium dahliae*.

1453 Curr. Genet. 48, 109–116. 10.1007/S00294-005-0586-0.

1454 82. Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S.,
1455 Kundu, D.J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., et al. (2019). The
1456 PRIDE database and related tools and resources in 2019: improving support for
1457 quantification data. Nucleic Acids Res. 47, D442. 10.1093/NAR/GKY1106.

1458 83. Sharma, V., Eckels, J., Taylor, G.K., Shulman, N.J., Stergachis, A.B., Joyner, S.A.,
1459 Yan, P., Whiteaker, J.R., Halusa, G.N., Schilling, B., et al. (2014). Panorama: A
1460 targeted proteomics knowledge base. J. Proteome Res. 13, 4205–4210.
1461 10.1021/PR5006636/SUPPL_FILE/PR5006636_SI_001.PDF.

1462 84. Talbot, N.J., Ebbole, D.J., Hamer, J.E., Coughlan, S., and Valent, B. (1993).
1463 Identification and Characterization of MPG1, a Gene Involved in Pathogenicity from
1464 the Rice Blast Fungus Magnaporthe grisea. Plant Cell 5, 1575–1590.
1465 10.1105/tpc.5.11.1575.

1466 85. Molinari, C., and Talbot, N.J. (2022). A Basic Guide to the Growth and Manipulation
1467 of the Blast Fungus, Magnaporthe oryzae. Curr. Protoc. 2, e523. 10.1002/CPZ1.523.

1468 86. Hamer, J.E., Howard, R.J., Chumley, F.G., and Valent, B. (1988). A Mechanism for
1469 Surface Attachment in Spores of a Plant Pathogenic Fungus. Science (80-). 239, 288–
1470 290. 10.1126/science.239.4837.288.

1471 87. Valent, B., Farrall, L., and Chumley, F.G. (1991). Magnaporthe grisea genes for
1472 pathogenicity and virulence identified through a series of backcrosses. Genetics 127,
1473 87–101. 10.1093/GENETICS/127.1.87.

1474 88. Menke, F.L.H., Kang, H.-G., Chen, Z., Park, J.M., Kumar, D., and Klessig, D.F.
1475 (2005). Tobacco Transcription Factor WRKY1 Is Phosphorylated by the MAP Kinase
1476 SIPK and Mediates HR-Like Cell Death in Tobacco. / 1027 MPMI 18, 1027–1034.
1477 10.1094/MPMI.

1478 89. Conesa, A., and Götz, S. (2008). Blast2GO: A comprehensive suite for functional
1479 analysis in plant genomics. Int. J. Plant Genomics 2008, 619832.
1480 10.1155/2008/619832.

1481 90. Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger,
1482 A., Hetherington, K., Holm, L., Mistry, J., et al. (2014). Pfam: the protein families
1483 database. Nucleic Acids Res. 42, D222–D230. 10.1093/nar/gkt1223.

1484 91. Mithoe, S.C., Ludwig, C., Pel, M.J., Cucinotta, M., Casartelli, A., Mbengue, M.,
1485 Sklenar, J., Derbyshire, P., Robatzek, S., Pieterse, C.M., et al. (2016). Attenuation of
1486 pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase.

1487 EMBO Rep. 17, 441–454. 10.15252/embr.201540806.

1488 92. Mithoe, S.C., and Menke, F.L.H. (2023). Titanium Oxide-Based Phosphopeptide
1489 Enrichment from Arabidopsis Seedlings. Methods Mol. Biol. 2581, 255–265.
1490 10.1007/978-1-0716-2784-6_18/FIGURES/1.

1491 93. Li, H., Wang, J., Kuan, T.A., Tang, B., Feng, L., Wang, J., Cheng, Z., Sklenar, J.,
1492 Derbyshire, P., Hulin, M., et al. (2023). Pathogen protein modularity enables elaborate
1493 mimicry of a host phosphatase. Cell 186. 10.1016/J.CELL.2023.05.049.

1494 94. Emms, D.M., and Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for
1495 comparative genomics. Genome Biol. 20, 238. 10.1186/s13059-019-1832-y.

1496 95. Buchfink, B., Reuter, K., and Drost, H.G. (2021). Sensitive protein alignments at tree-
1497 of-life scale using DIAMOND. Nat. Methods 2021 184 18, 366–368. 10.1038/s41592-
1498 021-01101-x.

1499 96. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and
1500 Madden, T.L. (2009). BLAST+: architecture and applications. BMC Bioinformatics
1501 10, 421. 10.1186/1471-2105-10-421.

1502 97. Developers factoextra : Extract and Visualize the Results of Multivariate Data
1503 Analyses. <https://rpkgs.datanovia.com/factoextra/index.html>.

1504 98. R Core Team (2021). R: A Language and Environment for Statistical Computing. R
1505 Foundation for Statistical Computing, Vienna.

1506 99. Wickham, H., Averick, M., Bryan, J., Chang, W., D', L., McGowan, A., François, R.,
1507 Golemud, G., Hayes, A., Henry, L., et al. (2019). Welcome to the Tidyverse. J. Open
1508 Source Softw. 4, 1686. 10.21105/JOSS.01686.

1509 100. Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and
1510 correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849.
1511 10.1093/BIOINFORMATICS/BTW313.

1512 101. Paradis, E., and Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics
1513 and evolutionary analyses in R. Bioinformatics 35, 526–528.
1514 10.1093/BIOINFORMATICS/BTY633.

1515 102. Galili, T. (2015). dendextend: an R package for visualizing, adjusting and comparing
1516 trees of hierarchical clustering. Bioinformatics 31, 3718–3720.
1517 10.1093/BIOINFORMATICS/BTV428.

1518 103. Yu, G., Smith, D.K., Zhu, H., Guan, Y., and Lam, T.T.Y. (2017). ggtree: an r package
1519 for visualization and annotation of phylogenetic trees with their covariates and other
1520 associated data. Methods Ecol. Evol. 8, 28–36. 10.1111/2041-210X.12628.

1521 104. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan,
1522 L., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics
1523 data. *Innov.* 2, 100141. 10.1016/J.XINN.2021.100141.

1524 105. Guo, H., Ahn, H.K., Sklenar, J., Huang, J., Ma, Y., Ding, P., Menke, F.L.H., and
1525 Jones, J.D.G. (2020). Phosphorylation-Regulated Activation of the Arabidopsis RRS1-
1526 R/RPS4 Immune Receptor Complex Reveals Two Distinct Effector Recognition
1527 Mechanisms. *Cell Host Microbe* 27, 769-781.e6. 10.1016/J.CHOM.2020.03.008.

1528 106. MacLean, B., Tomazela, D.M., Shulman, N., Chambers, M., Finney, G.L., Frewen, B.,
1529 Kern, R., Tabb, D.L., Liebler, D.C., and MacCoss, M.J. (2010). Skyline: an open
1530 source document editor for creating and analyzing targeted proteomics experiments.
1531 *Bioinformatics* 26, 966. 10.1093/BIOINFORMATICS/BTQ054.

1532 107. stamats – Statistische Beratung – Prof. Dr. rer. nat. Dipl. Math. (Univ.) Matthias Kohl
1533 <https://www.stamats.de/>.

1534

1535