

1 **Emerging Threat of Ranavirus: Prevalence, Genetic Diversity, and Climatic
2 Drivers of *Ranavirus* (Family Iridoviridae) in ectothermic vertebrates of Asia**

3

4

5 Jayampathi Herath^{1,2†}, Sun Dan^{1†}, Gajaba Ellepola^{1,3}, Kuttichenantran Subramaniam⁴
6 Madhava Meegaskumbura^{1,*}

7

8 ¹ Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry,
9 Guangxi University; Nanning, Guangxi 53004, People's Republic of China

10

11 ² School of Biomedical Sciences, International Institute of Health Sciences (IIHS), No
12 704 Negombo Rd, Welisara 71722, Sri Lanka

13

14 ³ Department of Zoology, Faculty of Science, University of Peradeniya; Peradeniya
15 KY20400, Sri Lanka

16

17 ⁴. Department of Infectious Diseases and Immunology, College of Veterinary Medicine,
18 University of Florida, Gainesville, Florida, 32611, USA.

19

20 † These authors contributed equally.

21

22

23 * Corresponding author. E-mail: madhava_m@mac.com

24

25

26 **ABSTRACT**

27

28 Ranavirus disease, caused by viruses within the genus *Ranavirus* (family *Iridoviridae*),
29 is considered a globally emerging infectious disease linked to mass mortality events in
30 both wild and cultured ectothermic vertebrates. Surveillance work is however limited
31 in Asia hence prevalence and the dynamics of the disease remains poorly understood.
32 To understand disease burden and the potential biotic and abiotic drivers in southern
33 China region, we conducted a systematic surveillance of the ranavirus across Guangxi
34 Zhuang Autonomous region (GAR). For this, we used a multifaceted approach
35 involving screening of amphibians and other potential reservoirs, diagnostic tests,
36 phylogenetic analyses, prevalence estimation, co-infection assessments, and climatic
37 niche analyses. Over one thousand individuals were sampled across 25 sampling sites.
38 We found ninety-two individuals from 18 species of ectothermic vertebrates to be
39 infected with ranavirus. Two lineages were responsible – *Rana nigromaculata* ranavirus
40 and Tiger frog virus were identified using phylogenetic analysis based on the major
41 capsid protein (MCP) gene fragment. We also found evidence of a co-infection with
42 ranavirus and *Bd* that can be highly detrimental to host populations; possibly the first
43 such documentation in Asia. Our niche modelling analysis suggests that precipitation
44 and seasonality play an important role in ranavirus prevalence in Guangxi region –
45 southwestern, southeastern, central and northeastern regions of GAR can be considered
46 to be optimum habitats for ranaviruses. Infection rates in wild frog species have reached
47 100% in some areas, even in nature reserves. Our research also indicates that culture
48 facilities and pet farms are frequently infected, serving as likely vectors for the regional
49 and global spread of ranaviruses. The knowledge generated suggests the need for
50 systematic surveillance, stringent biosecurity measures, and control of international
51 animal trade to prevent further transmission and protection of biodiversity and
52 aquaculture industries across Asia.

53

54 **KEYWORDS:** *Ranavirus*, introduced species, phylogenetic relationships, climate,
55 niche, co-infection

56

57

58 INTRODUCTION

59

60 Ranaviruses, a group of double-stranded DNA viruses within the genus *Ranavirus*
61 (family *Iridoviridae*; subfamily *Alphairidovirinae*), have emerged as a major threat to
62 amphibian populations worldwide, as well as other ectothermic vertebrates (Gray and
63 Chinchar, 2015). Thirty-five viruses belonging to 15 viral families (11 with RNA
64 genomes and 4 with DNA genomes) which are infecting amphibians and reptiles have
65 been identified (Harding *et al.*, 2022). Ranaviruses have been linked to mass mortality
66 events and are contributing to the ongoing decline of amphibians along with fish and
67 reptile populations (Chinchar and Waltzek, 2014), heightening concerns about
68 biodiversity loss and ecosystem functionality. Ranaviruses are thought to be a new
69 arrival in Asia, with relatively unknown effects on biodiversity (Herath *et al.*, 2021). As
70 a region with exceptional amphibian diversity and habitats under anthropogenic
71 pressure, Asia presents an important region for investigating the occurrence,
72 distribution, and potential drivers of ranavirus infections.

73

74 Ranaviruses are known to infect a broad host range, which adds to their potential for
75 causing widespread ecological damage. The virulence of these pathogens can be
76 exacerbated due to various factors such as environmental conditions, seasonality, and
77 host density and immune responses (Brunner *et al.*, 2015). Ranaviruses are typically
78 transmitted through direct contact between individuals, ingestion of infected tissues, or
79 contact with contaminated water or fomites (Brunner *et al.*, 2015; Miller *et al.*, 2011).
80 This mode of transmission enables the rapid spread of the virus within populations,
81 leading to high morbidity and mortality. Currently, there are seven species within the
82 genus *Ranavirus*, with three potential new species remaining unclassified (Chinchar *et*
83 *al.*, 2017). Frog virus 3 (FV3) and related ranaviruses primarily infect amphibians as
84 well as fish and reptiles, while *Ambystoma tigrinum* virus (ATV) predominantly affects
85 caudate amphibian specialist and few studies have shown that some anurans are
86 susceptible to the disease as well. The most recent common ancestor of common
87 midwife toad virus (CMTV), FV3, and other closely related ranaviruses appear to have
88 infected amphibians. However, CMTV may circulate independently within both
89 amphibian and fish populations (Price *et al.*, 2017). As such, understanding the host-
90 specificity, ecology and epidemiology of ranaviruses in Asia is crucial for predicting
91 and managing their impacts on regional biodiversity, aquaculture, and ecosystem
92 functioning.

93

94 It is also essential to understand the impact of ranaviruses on amphibian populations in
95 Asia for several reasons. First, many Asian amphibian species are already threatened
96 by habitat loss, pollution, and overexploitation (Rowley *et al.*, 2010). These factors may
97 make them even more vulnerable to ranavirus infections (Brunner *et al.*, 2015).
98 Identifying the presence and prevalence of ranaviruses in the region can inform targeted
99 conservation efforts and help prioritize resources to protect the most vulnerable species
100 and habitats.

101
102 Asia also serves as a nexus for global trade and wildlife trafficking, resulting in
103 importing of a large number of species for both consumption and the pet industry
104 (Hughes, 2021; Kolby *et al.*, 2014). This increases the risk of ranavirus spreading
105 through the inadvertent movement of infected specimens (Herath *et al.*, 2021). The
106 ability of ranavirus to be transmitted through water among all ectothermic vertebrate
107 classes makes it one of the highly transmissible diseases (Brenes *et al.*, 2014).
108 Investigating the genetic diversity and relationships among ranaviruses in Asia can thus
109 provide insights into their origins, transmission pathways, and evolutionary patterns,
110 enabling the development of targeted interventions to prevent further spread.
111
112 The diverse climate and topography of southern China provide an opportunity to
113 examine the potential drivers of infection prevalence, such as bioclimatic variables,
114 elevation, season, and habitat-related factors. Understanding these drivers is also
115 critical for developing targeted strategies to reduce the spread of ranaviruses and
116 mitigate their impact on amphibian populations.
117
118 Finally, studying co-infections with other pathogens affecting amphibians, such as
119 *Batrachochytrium dendrobatidis* (*Bd*), can offer a deeper understanding of disease
120 dynamics in the region. This will help inform integrated disease management strategies.
121 By examining the occurrence, distribution, and drivers of ranavirus infections in Asia,
122 we aim to contribute to the global effort to protect amphibian populations and
123 conservation of biodiversity.
124
125 In the current study, we investigate the occurrence of ranaviruses in amphibian and
126 other ectothermic vertebrate populations in southern China and assess the potential
127 drivers of infection prevalence of the diseases, thus generating vital knowledge for
128 conservation. For this, we will analyze the ranavirus infection across a vast swath of
129 land in southern China with an emphasis on the following specific points: (1) Conduct
130 diagnostic tests, to identify the presence of ranavirus in amphibians and potential
131 reservoir hosts (2) Carryout genetic analysis based on the major capsid protein (MCP)
132 gene regions to determine the ranaviruses lineages and their phylogenetic relationships.
133 (3) Estimate the infection prevalence (4) Assess co-infection with *Bd* in amphibian
134 samples. (5) Analyze the climatic niche to understand the potential distribution of
135 ranaviruses in the southern China region and identify the environmental factors that
136 contribute to their occurrence. Investigating the occurrence of ranavirus and potential
137 drivers of infection in amphibian populations of southern China is an important step in
138 preventing the regional and global spread of these diseases.
139
140 **MATERIALS AND METHODS**
141
142 **1. Identifying the presence of ranavirus in southern China**
143

144 We carried out field surveys and diagnostic tests, to uncover and monitor whether it is
145 a disease hotspot.

146

147 **Field sites**

148

149 Guangxi Autonomous Region (GAR), situated in southern China is bordered by Yunnan
150 to the west, Guizhou to the north, Hunan to the northeast, Guangdong to the east and
151 southeast, gulf of Tonkin in the south and Vietnam in the southwest (21°42.45'-
152 25°37.01' N, 107°32.59'-110°12.44' E). This massive plain covers an area of 237,600
153 km², with some mountainous terrain. Several river systems including Qin and the
154 Nanliu Rivers flow into the Gulf of Tonkin. Several tributaries flow into the larger
155 Xiang River in neighboring Hunan province, and the Xi River system flows southeast.
156 This subtropical region is moist and warm with an annual precipitation ranging from
157 723.9~2983.8 mm, and the annual mean temperature is between 17.6~23.8 °C (Hao *et*
158 *al.*, 2023). The region receives substantial precipitation during the monsoons arriving
159 from south-southwest in late April to the beginning of October. Unique karst landforms
160 are found with the central parts forming a basin surrounded by areas of higher elevation
161 (Hao *et al.*, 2023).

162

163 **Main sampling sites**

164

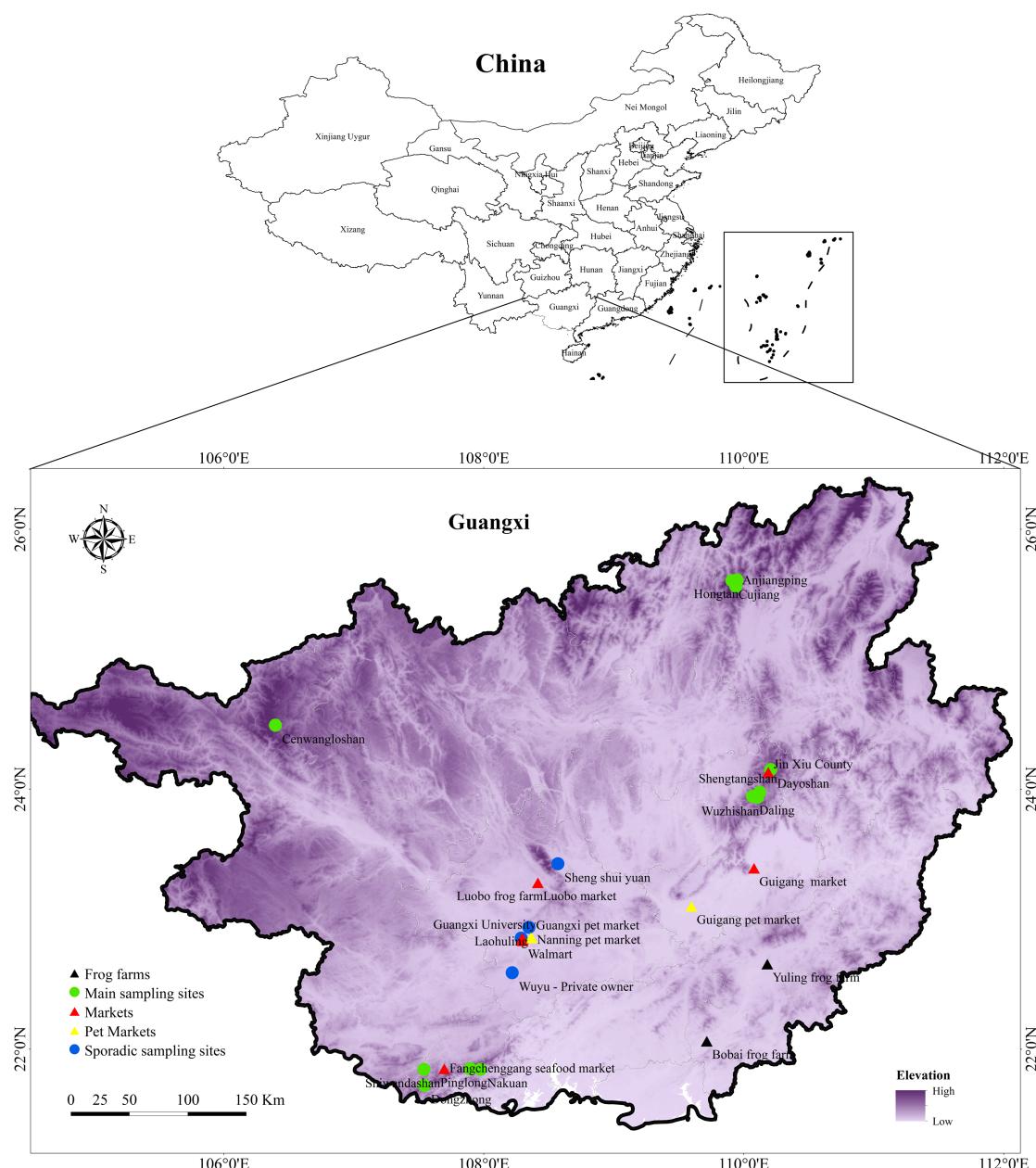
165 We sampled across a large swath of land in GAR representative of the environmental
166 heterogeneity of south China. Sampling sites covered a wide range of altitudes and
167 vegetation types including sub-tropical evergreen broad-leaved forests in the north and
168 sub-tropical evergreen seasonal rainforests in the south. The sampling design comprised
169 of paired sampling sites: one within nature reserves representing undisturbed habitats
170 and another outside the nature reserve representing disturbed habitat within average
171 distance of 10 km. A total of 12 main sampling sites were selected, namely: Shiwan
172 Dashan, Nakuan, Pinglong, Dongzhong, Dayaoshan, Cenwanglaoshan, Shengtangshan,
173 Hongtan, Anjiangping, Wuzhishan, Daling and Cuijiang (Fig: 1). Sampling was carried
174 out from September 2018 to September 2021 capturing a representation of the seasonal
175 changes as well (Fig: 1).

176

177 **Sporadic sampling**

178

179 Sporadic sampling was carried out in several locations in Guangxi region, including
180 both natural and disturbed habitats. These included ponds, paddy fields, streams and
181 seasonal ponds, river and home gardens (Fig: 1).


182

183 **Culturing facilities, Markets and Pet markets**

184

185 In addition to major sampling sites, we carried out continuous and opportunistic
186 sampling in markets and pet markets, where numerous indigenous and exotic
187 ectothermic vertebrate species were present. Many of these animals were housed under

188 substandard conditions and imported from countries with known ranavirus infections.
189 These facilities pose a high risk for disease spread as some of the species are known
190 host species of ranavirus infection. It is essential to screen for the disease in these
191 locations to understand the potential for disease transmission from captive to wild
192 animals. Swabs were taken from fish (both freshwater and marine), turtles and frogs
193 that were sold at several markets across various locations. Frog farms included Luobo,
194 Yulin and Bobai frog farms, while markets included Guigang, Luobo, Gunagxi
195 University, Jin Xiu County and Fangchenggang seafood markets together with two
196 supermarkets in Nanning. Further, sampling was also done in Nanning pet market,
197 Guangxi pet market, Guigang pet market and on several specimens from several private
198 owners (Fig: 1).
199

200

201 **Figure 1: Map of sampling sites.** The map depicts the distribution of main sampling
202 sites, sporadic sampling sites, frog farms, markets and pet markets across GAR.

203

204 **Sampling**

205

206 We sampled potential hosts from various parts of the forest including leaf litter, floor,
207 trees and various water bodies, both periodic and perennial, such as rivers, streams,
208 lakes and ponds. The primary focus was on sampling amphibians, including their egg
209 clusters and larval stages, as well as fish and reptiles. A small number of aquatic
210 mollusks, shrimps, and crabs were also sampled to investigate their potential as carriers.
211 Hand nets, umbrella nets and traps were used for sampling. Both diurnal and night
212 sampling were carried out to represent all the species living in that natural habitat.
213 Further, randomly selected specimens representing all the ectothermic vertebrates were
214 sampled in frog farms, markets and pet markets with prior approval from the owners.
215 Individuals were temporarily kept in new clean and unused 10 x 5 cm or 15 x 20 cm
216 plastic zippered bags with a few holes punctured for ventilation. All the species were
217 photographed and identified to the species level using standard guides. Data was
218 recorded along with GPS coordinates, and photographs, including the species and life
219 stage.

220

221 **Swabbing**

222

223 We used non-lethal swabbing for sample collection following Gray *et al.*, (2012).
224 Sterile, dry swabs with fine tips (Medical Wire & Equipment Co. MW 113) and plastic
225 shafts (to avoid PCR inhibitors) were used. Swabbing was performed gently but firmly,
226 swiping the swab along the surface to be tested. Surfaces typically swabbed for
227 ranaviruses include the oral cavity, cloaca, or skin lesions (Pessier and Mendelson,
228 2017). Swabbing the vent provides evidence of intestinal shedding and swabbing the
229 cloaca offers a high chance of capturing internal viral shedding. Immediately after
230 swabbing, the shaft was broken and swabs were put into 1.5 ml Eppendorf tubes without
231 touching, before releasing the amphibians back to their point of capture. The swabs in
232 Eppendorf tubes were stored at -80°C in the lab until DNA extraction. In the event of
233 dead were encountered, symptoms were recorded, and swabs were taken from internal
234 organs such as the liver, when possible, primarily in frog farms.

235

236 **Avoiding cross contamination**

237 To avoid cross-contamination, powder free nitrile disposable gloves were worn, and
238 these were changed between each individual sampled. Individual animals were not co-
239 housed; they were captured and stored in plastic bags individually until swabbed and
240 released. For tail or toe clips, sterile instruments were used to avoid sample
241 contamination. A 4 % bleach solution was used for inactivating ranavirus and other
242 pathogens, such as the amphibian chytrid fungus (Bryan *et al.*, 2009; Gold *et al.*, 2013)
243 when cleaning the sampling utensils. Boots, waders, nets, traps, clothing, or other
244 equipment that was exposed to water or mud were thoroughly washed once surveys

245 were completed at each site to remove any lingering mud containing pathogens. They
246 were then decontaminated using a mixture of 10% bleach (Pessier and Mendelson,
247 2017).

248

249 **Ethical clearance**

250

251 Ethical clearance was obtained from the Institutional Animal Care and Use Committee
252 of Guangxi University (GXU2018-048, with the extension of GXU2020-501). All the
253 procedures were carried out according to the standard ethical practices and protocols
254 while no animal was sacrificed. Prior permission was obtained from Nature reserves
255 and protected areas; relevant regulations and protocols were followed.

256

257 **DNA extraction**

258

259 QIAamp UCP Pathogen Mini Kit was used for DNA extractions which were used for
260 Real Time PCR (RT-q PCR). Protocol of pretreatment of Microbial DNA from Eye,
261 Nasal, Pharyngeal, or other Swabs (without Pre-lysis) was used. Qiagen DNeasy Blood
262 and Tissue Kit was used for DNA extractions following guidance of the producer which
263 were used for conventional PCR.

264

265 **Quantitative Real Time PCR (RT-qPCR)**

266

267 Initially, real-time quantitative PCR (RT-qPCR) was employed for disease surveillance
268 in the collected swabs from GAR during the preliminary stage of the sampling process.
269 Preliminary surveillance was essential since the preliminary data was not available.
270 Prior to this study, only one outbreak in cultured hybrid grouper had been recorded in
271 Guangxi (Xiao *et al.*, 2019). The RT-qPCR was used because it is known to be more
272 sensitive than conventional PCR with the ability to detect lower viral loads. qPCR
273 primers (RanaF1 5'- CCA GCC TGG TGT ACG AAA ACA -3 and RanaR1 5'- ACT
274 GGG ATG GAG GTG GCA TA -3') TaqMan probe (RanaP1 6FAM-TGG GAG TCG
275 AGT ACT AC-MGB) targeting a conserved region of the major capsid protein (MCP)
276 gene (Stilwell *et al.*, 2018) were used for 60 samples. This assay has been designed to
277 detect a panel of 33 different ranaviral isolates originating from fish, amphibian, and
278 reptile hosts, representing the global diversity of ranaviruses. Roche LightCycler® 480
279 was used for the RT-qPCR work. Amplification conditions were set as follows: an
280 activating cycle at 95°C (10 min), and then 45 cycles at 95 °C (10s), 60 °C (10s) and
281 70 °C (1 s) followed by a cycle 40 °C (30 s). All plates were run with a negative control
282 (nuclease-free water) and a known positive. Positive samples were run again in the
283 same machine and only samples with consecutive positive results were declared
284 positive. Subsequently, conventional PCR followed by Sanger sequencing were
285 performed as the next stage of analysis.

286

287 **PCR and gene sequencing**

288

289 PCR was performed using primers (forward primer: 5'-GACTTGGCCACTTATGAC-
290 3' and reverse primer: 5'-GTCTCTGGAGAAGAAGAA-3') targeting highly conserved
291 regions of the MCP gene (Mao *et al.*, 1997). The PCR conditions consisted of 4 min at
292 94°C, then 35 cycles of 30 s at 94°C, 30 s at 55°C, and 1 min at 72°C, followed by 10
293 min at 72°C. Negative and positive controls were included in each PCR amplification.
294 Amplicons of the expected size (500 bp) were purified and sent to a commercial Sanger
295 sequencing service (Sangon Biotech, Shanghai). A total of 78 samples were sequenced.
296

297 **2. Phylogenetic analysis based on the major capsid protein (MCP) gene**

298

299 We conducted a phylogenetic analysis to establish relationships among identified
300 ranaviruses, offering insights into their origins and transmission pathways.
301 Phylogenetic inference was based on the MCP gene fragment, utilizing sequenced
302 samples from this study combined with sequences of ranaviruses obtained from the
303 GenBank. The MCP gene sequences were aligned using MUSCLE, as implemented in
304 MEGA v.6.0 (Tamura *et al.*, 2013). Regions with low confidence in positional
305 homology were removed from the analysis and edges were trimmed. Prior to
306 constructing the phylogenetic tree, the best-fitting nucleotide substitution model was
307 determined using jModelTest v.2.1.4 (Darriba *et al.* 2012; Guindon and Gascuel, 2003).
308 A maximum likelihood (ML) tree was built using MrBayes and MEGA, while a
309 Bayesian tree was constructed using BEAST and an IQ tree in Phylosuite was
310 constructed, all of which yielded similar topologies; only the ML tree is presented here
311 (other trees are provided in supplementary materials)

312

313 **3. Estimating the infection prevalence across sampling sites**

314

315 **Infection prevalence**

316

317 We estimated infection prevalence to identify areas and species at risk that will enable
318 focused conservation efforts. Infection prevalence is a measure that estimates the
319 proportion of a population infected at a specific point in time (Gray *et al.*, 2015). This
320 measure can be regarded as a “snapshot” of the infection burden at a given time.
321 Infection prevalence was determined for positive cases recorded in main sampling sites,
322 sporadic sampling sites, and frog farms. However, it was not calculated for markets and
323 pet markets, as these are temporary holding facilities, and the animals originate from
324 various locations.

325

326 **4. Investigating the occurrence of co-infection with ranavirus and *Bd***

327

328 We assessed co-infections with *Bd* to provide a comprehensive understanding of disease
329 dynamics and interactions between pathogens that will inform integrated disease
330 management strategies.

331

332 Swabs obtained from the main sampling sites; Shengtangshan, Hongtan, Nakuan,
333 Anjiangping, Pinglong, Hongtan, Dongzhong, Wuzhishan, Daling and Cuijiang were
334 tested for *Bd* as well (as a part of another ongoing study) (n = 501). A nested PCR assay
335 for the detection of *Bd* was carried out (Annis *et al.*, 2006; Goka *et al.*, 2009).

336

337 **5. Climatic niche and distribution analyses**

338

339 Finally, we analyzed the climatic niches of ranaviruses to gain insights into their
340 potential future distribution under changing environmental conditions and inform
341 proactive measures to prevent the spread of ranaviruses and protect vulnerable
342 amphibian populations.

343

344 **Drivers of infection prevalence analysis**

345

346 The prevalence of ranavirus was assessed using generalized linear models (GLMs).
347 Information on 19 bioclimatic variables for each occurrence point was obtained from
348 WORLDCLIM 2.172 using the “extract” function in RASTER 4.2.2.

349

350 An information-theoretic modelling approach was performed (Burnham, 2002) to
351 assess the effects of multiple bioclimatic, elevation, season (month), habitat factors, and
352 life history. Nineteen bioclimatic variables were downloaded at a resolution of 30 arc
353 sec (Stephen and Hijmans, 2017). We calculated the correlation between bioclimatic
354 factors, and only selected 4 variables (bio7, bio8, bio15 and bio18) with a correlation
355 coefficient < 0.70 for further analysis. To classify adult habitats, we used the activity
356 breadth of adults observed during the non-breeding season (Laurent, 1964; Bardua *et*
357 *al.*, 2021).

358

359 A Generalized Linear Model (GLM) was constructed, as a candidate model based on
360 all possible combinations, to analyze the influence of eight predictor variables (life
361 history, bio7, bio8, bio15, bio18, elevation, habitat, month) on ranaviruses prevalence
362 (infected individuals/all individuals) in main sampling sites, sporadic sampling sites
363 and frog farms. Meat markets and pet markets were not considered as temporary
364 holding facilities where the animals are kept for short time periods. These variables
365 were set as explanatory variables, as well as together with a null model. We used
366 populations infected by ranaviruses within sites as the response variable. were set as
367 explanatory variables, as well as together with a null model. We also included a
368 candidate model with species as the single explanatory variable was also included to
369 assess whether species per se affect the infected individuals/all individuals.

370

371 Each candidate model was quantified and evaluated based on Akaike Information
372 Criterion (AIC), Akaike second order corrected (AICc) and Akaike weights (AICw)
373 (Steidl, 2008). The final support model was validated according to the evaluation of
374 homogeneity in the residuals of the models against fitted values (Zuur *et al.*, 2010).

375

376 **Species distribution modeling using MaxEnt**

377

378 We used presence and absent data obtained during the current study to build a species
379 distribution model for ranaviruses in the Guangxi region. We included 19 presence
380 localities and 518 absent localities of Ranaviruses in the Maxent species distribution
381 model that we constructed. A biased grid was used for data thinning and reducing
382 sampling bias. Information on 19 bioclimatic variables for each occurrence point was
383 obtained for present day conditions (~1970-2000) from WORLDCLIM 2.172 using the
384 “extract” function in RASTER 3.0-773 at a spatial resolution of 30 arcsecs (~1km²).
385 Predictor collinearity was eliminated by calculating Pearson's correlation coefficients
386 for all pairs of bioclimatic variables, excluding the variables from a correlated pair ($|r|$
387 > 0.85). After excluding the correlated variables, bio2, bio3, bio5, bio11, bio16, bio17
388 and bio18 were used to build the model. The MaxEnt model was optimized using the
389 ENMeval package (Muscarella *et al.*, 2014) by looking for the best AUC value after
390 assigning a range of regularization coefficient values (0.05, 0.95, 0.05) for linear and
391 quadratic features by looping the code. A random number generator was used for
392 selecting 70% of the presence data for model building and the other 30% of presence
393 data was used for evaluating the model (model test). Model performance was measured
394 using the Area Under the Curve (AUC) and the results were overlaid on raster maps.
395

396

Land use factors on ranavirus presence

397

398 The spatial data map of the Guangxi region containing land use patterns was overlaid
399 on the constructed niche model. Inferences were made based on the 13 available spatial
400 data categories.
401

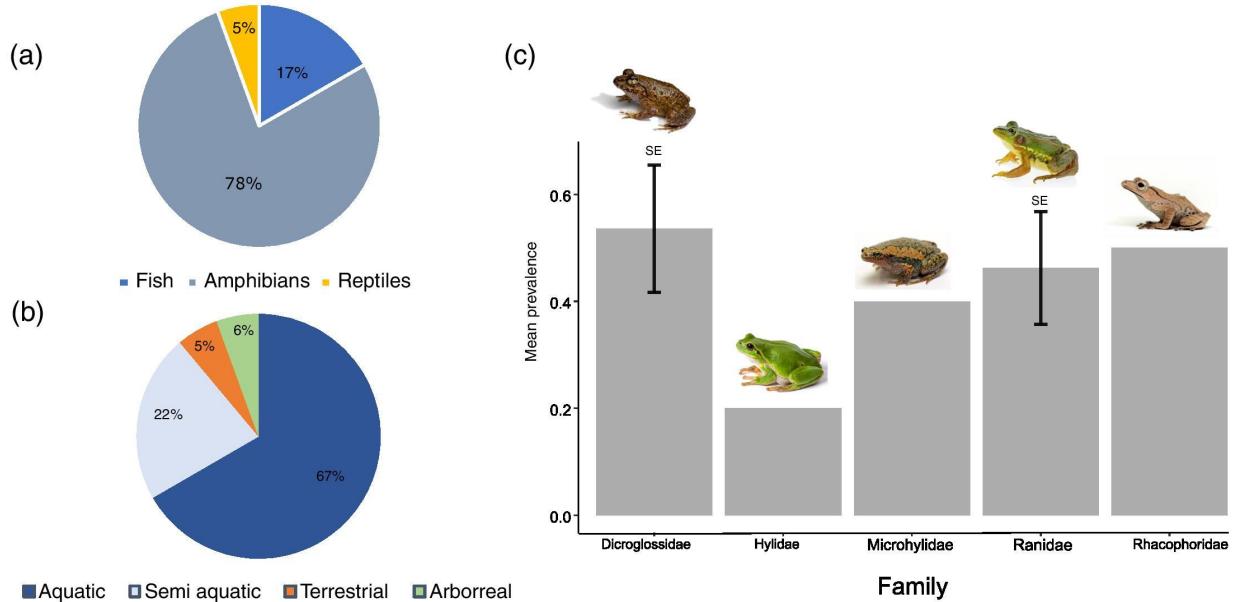
402 RESULTS

403

404 Presence of the ranaviruses in Guangxi Zhuang Autonomous Region.

405

406 Epidemiology of ranavirus


407

408 In total, 1076 individuals from various sampling sites were examined, with 92 infected
409 individuals identified across 18 species of ectothermic vertebrates. These included 84
410 PCR-positive and 8 qPCR-positive cases, encompassing 14 amphibian species (13
411 anurans and 1 caudate), 3 fish species, and 1 reptile species (testudine) (Fig 2 a, Table
412 1). The infected species were from natural environments and culture facilities
413 throughout the Guangxi region (Table 1). Anurans from the Dicroglossidae family
414 exhibited the highest mean infection prevalence, followed by Rhacophoridae, Ranidae,
415 Microhylidae, and Hylidae (Fig. 2 c). The majority of infected ectothermic vertebrates
416 were aquatic (12 species), with 4 species being semiaquatic and 1 species each from
417 terrestrial and arboreal habitats (Fig. 2 b). A freshwater crab species tested positive for

418 infection at Laohuling, likely due to environmental contamination from three infected
419 frog species inhabiting the same pool.

420
421 Most infections were detected during summer and were found in both adult and larval
422 stages of anurans. In the majority of cases, there were no notable disease symptoms or
423 mortality.

424

425

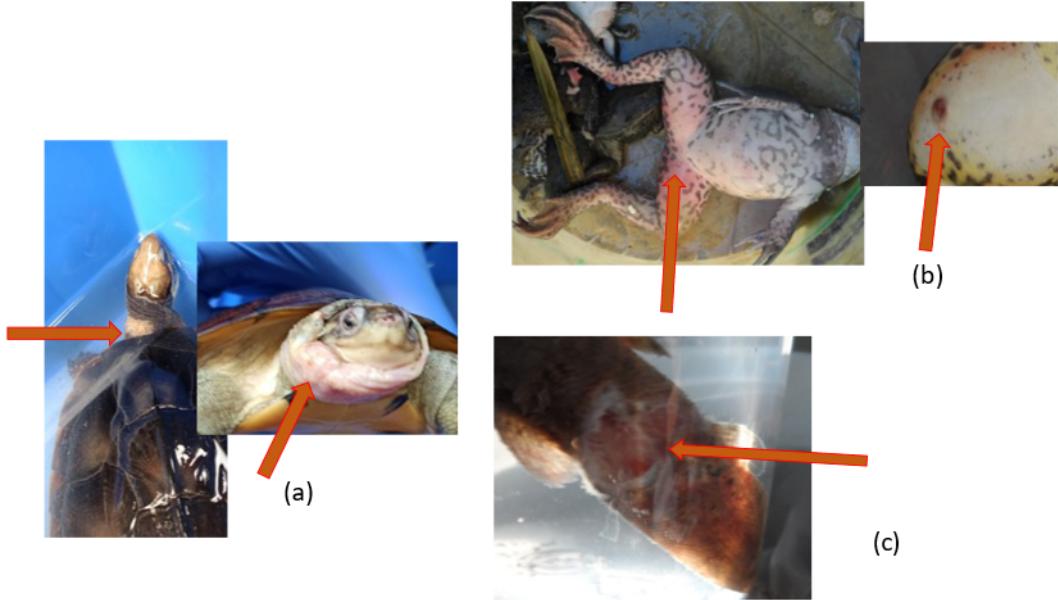
426

427

428 **Figure 2: Epidemiological characteristics of the disease.** (a) Number of species
429 infected according to class. (b) Number of species infected according to their habitat.
430 (c) Mean infection prevalence percentages among different families of anurans.
431 Standard error is only presented for Families which have more than 1 species. Ranidae
432 (n = 7 species), Dicoglossidae (n = 3 species), Rhacophoridae (n = 1 species),
433 Microhylidae (n = 1 species), Hylidae (n = 1 species).

434

435 Clinical and behavioral signs


436

437 Cutaneous ulceration and hemorrhages are two common clinical signs in frogs
438 associated with ranavirus infection (Cunningham et al., 2007). Cutaneous ulceration
439 was visible on the infected yellow pond turtle from the Nanning pet market (Fig 3a)
440 and the moribund large-scale loach from the Guigang market (Fig 3c). Erythema and
441 ulcers (Fig 3b) with erratic swimming behavior and loss of equilibrium were observed
442 on the infected tiger frog from the Bobai frog farm (Fig 4)

443

444

445

446

447 **Fig 3: Gross lesions associated with ranavirus infection.** (a) Yellow pond turtle
448 (*Mauremys mutica*) displaying cutaneous ulceration on the neck and head. (b) Tiger
449 frog (*Hoplobatrachus rugulosus*) displaying erythema and cutaneous ulceration on the
450 ventral aspect of the hindlimbs. (c) Large scale loach (*Paramisguruns dadryanus*)
451 displaying cutaneous ulceration of the caudal peduncle.

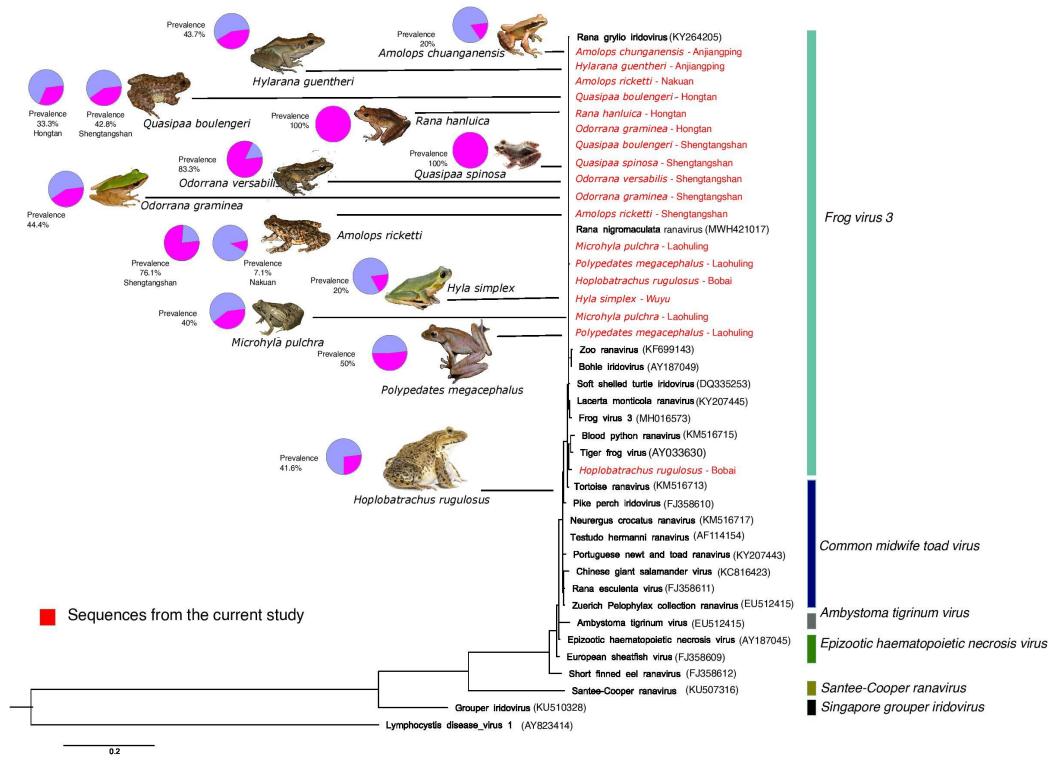
452

453

454

455 **Figure 4: Erratic swimming behavior observed in tiger frogs**

456


457

458 2. Phylogenetic analysis based on the major capsid protein (MCP) gene to
459 determine the genetic relationships

460

461 All sequenced samples were identical to *Rana nigromaculata* ranavirus (as the pairwise
462 distance between the sequences was zero) except for one sample resembling tiger frog
463 virus. *Rana nigromaculata* ranavirus was found in all the positive species in
464 Shengtangshan, Hongtan, Nakuan, Anjiangping, Laohuling and Wuyu as well as two
465 *Polypedates megacephalus* from Laohuling, two *Microhyla pulchra* from Laohuling,
466 one *Hyla simplex* from Wuyu and one tiger frog from Bobai frog farm. The only
467 detection of tiger frog virus was recorded from a tiger frog originated in Bobai frog
468 farm (Fig 5).

469

470

471 **Figure 5: Phylogenetic tree based on the MCP gene sequenced.** Highlighted in red
472 are the sequences produced from this study.

473 *Only 18 samples out of 77 are shown here. Seventy-six sequences are identical to *Rana*
474 *nigromaculata* ranavirus and each other.

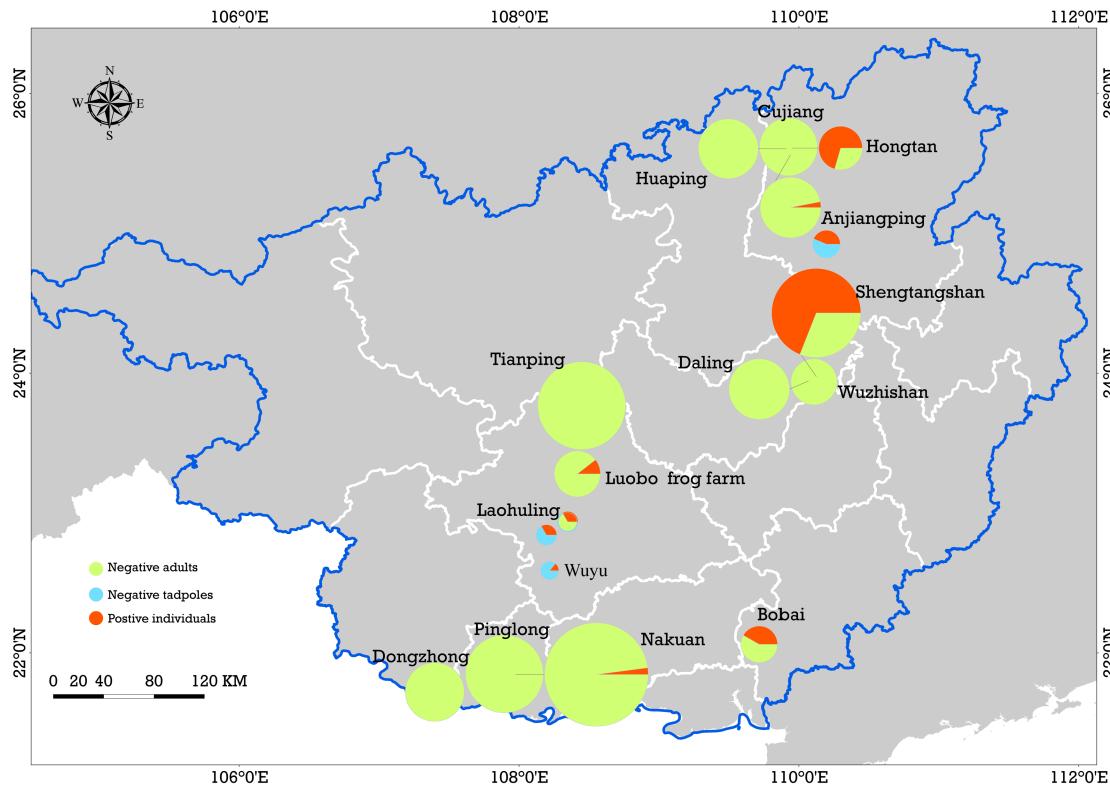
475

476 3. Estimate the infection prevalence in main sampling sites, sporadic sampling
477 sites, culturing facilities, markets and pet markets

478

479 **Disease prevalence**

480 Highest infection prevalence percentages (100%) were observed from *Q. spinosa* from
481 Shengtangshan and *R. hanluica* from Hongtan (Table 1). Both of these cases were


482 recorded from natural habitats and exhibited higher prevalent rates compared to
483 sporadic sampling sites and Culturing facilities.

484

485 **Location prevalence**

486 Infections were detected in 12 out of 29 sampling sites, with a location prevalence of
487 41.37%. Among the main sites, infections were recorded in 4 out of 12, while 2 out of
488 4 sporadic sampling sites had infections. Frog farms had a high infection rate (2/3), with
489 infections found in 3 out of 7 markets and 1 out of 3 pet markets (Fig 6).

490

491

492 **Figure 6: Map of sampling sites and infection prevalence recorded.** Represents the
493 Infection prevalence of main sampling sites, sporadic sampling sites and frog farms.
494 The size variations of the circles correspond to the numbers of skin swab samples.

495 **Table 1: Infection prevalence in GAR Represents the sampling sites, host species,**
496 **number of infected individuals of a species per a site, number of total sampled**
497 **individuals of a species per a site, infection prevalence and infection prevalence**
498 **percentage.**

499

Location	Species	Number infected	Total sample	Infection Prevalence %
Shengtangshan	<i>Amolops ricketti</i>	16	21	0.7619
	<i>Odorrana graminea</i>	4	9	0.4444
	<i>Odorrana versabilis</i>	15	18	0.8333
	<i>Quasipaa spinosa</i>	8	8	1.0000
	<i>Quasipaa boulengeri</i>	6	14	0.4286
Hongtan	<i>Odorrana graminea</i>	8	9	0.8889
	<i>Rana hanluica</i>	3	3	1.0000
	<i>Quasipaa boulengeri</i>	1	3	0.3333
Nakuan	<i>Amolops ricketti</i>	2	28	0.0714
Anjiangping	<i>Hylarana guentheri</i>	7	16	0.4375
	<i>Amolops chunganensis</i>	1	5	0.2000
Laohuling	<i>Polypedates megacephalus</i>	2	4	0.5000
	<i>Microhyla pulchra</i>	2	5	0.4000
	Tiger frog (<i>Hoplobatrachus rugulosus</i>)	1	2	0.5000
Wuyu	<i>Hyla simplex</i>	1	5	0.2000
Luobo frog farm	American Bullfrog (<i>Lithobates catesbeianus</i>)	2	19	0.1053
Luobo market	American Bullfrog (<i>Lithobates catesbeianus</i>)	1	5	0.2000
Bobai frog farm	American Bullfrog (<i>Lithobates catesbeianus</i>)	1	7	0.1429
	Tiger frog (<i>Hoplobatrachus rugulosus</i>)	5	12	0.4167
Guigang market	Tiger frog (<i>Hoplobatrachus rugulosus</i>)	1		
	Large scale loach (<i>Paramisgurnus dabryanus</i>)	1		
Nanning pet market	Northern Snakehead - (<i>Channa argus</i>)	1		
	Yellow Pond Turtle- (<i>Mauremys mutica</i>)	1		
	Golden Albino Axolotl (<i>Ambystoma mexicanum</i>)	1		

500

501 **4. Occurrence of co-infection with ranavirus and *Bd***

502

503 Two frog species, *O. graminea* (LC IUCN status) and *Q. boulengeri*, (VU IUCN status)
504 were found to have co-infections of both ranaviruses and *Bd* out of 501 samples. Co-
505 infections are present in GAR though the rate of co-infection is very low. There were
506 no records of *Bsal* found in GAR. (Sun *et al.*, 2023a; Sun *et al.*, 2023b)

507

508 **Drivers of infection prevalence analysis**

509

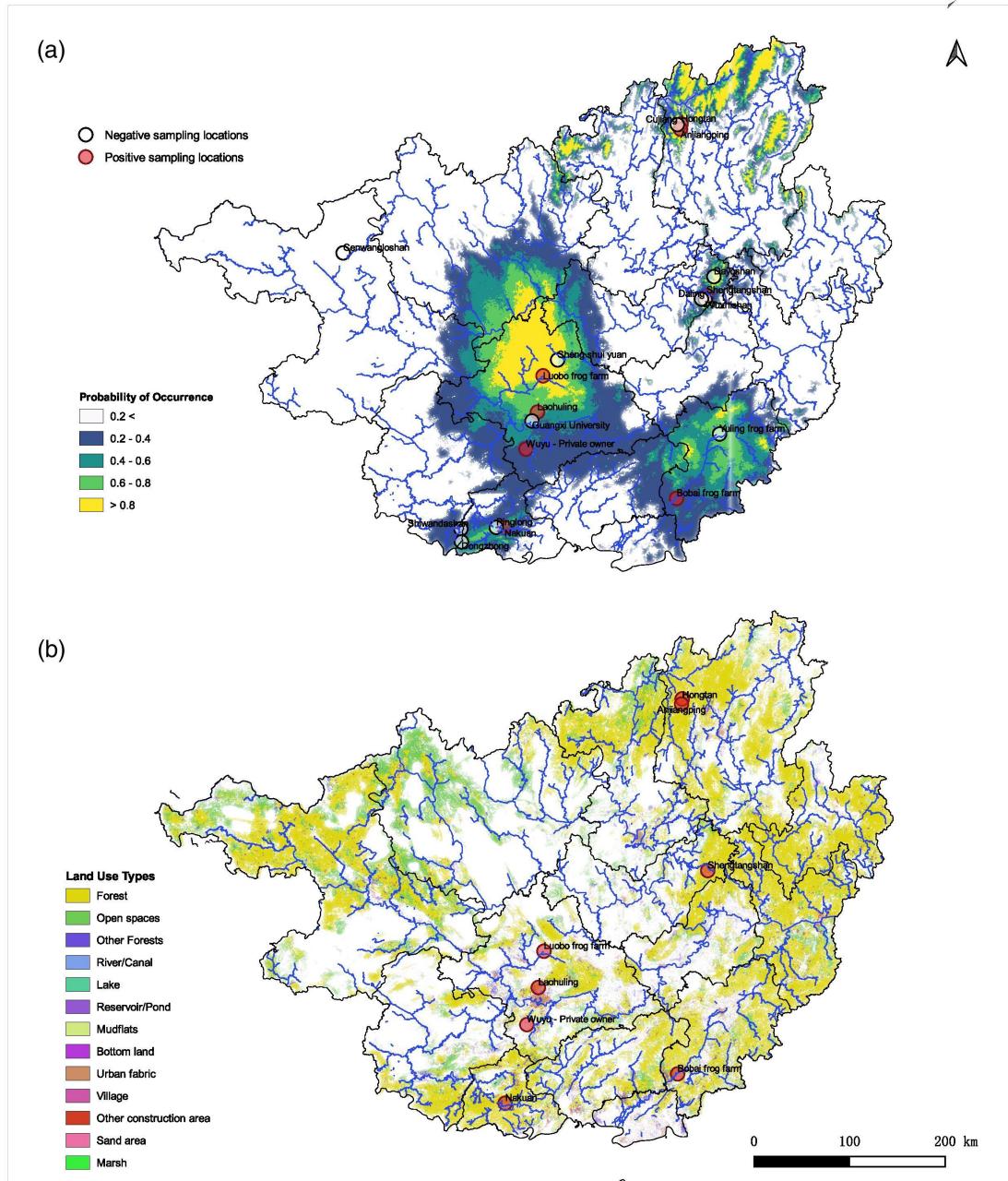
510 Bio15 may explain the prevalence of ranavirus (AICc = 51.31 and AICc weight = 0.25).
511 Bio15 stands for Precipitation seasonality, which is defined as the measure of the
512 variation in monthly precipitation totals over the course of the year. Our model shows
513 that the prevalence may become higher during the dry summer and become lower
514 during the rainy seasons (bio15). It is followed by bio08, bio18, elevation, and life stage
515 (Table S2 and Supplementary Fig S4).

516

517 **Species distribution modeling using MaxEnt**

518

519 The Maxent distribution model reported an AUC value of 0.85 ± 0.01 providing fairly
520 high robustness to the model. According to the model, the distribution of ranaviruses in
521 GAR had higher responsiveness towards the variables bio2, bio3, bio5, bio11, bio16,
522 bio17 and bio18. The model predicted that suitable habitats for ranaviruses prevail in
523 southwestern, southeastern, central and northeastern regions of Guangxi (Fig7 a).


524

525 **The influence of land use factors on ranavirus presence**

526

527 Infections are recorded from both natural environments and modified environments by
528 humans. It has been recorded inside forests, in the vicinity of villages, rivers/canals,
529 reservoir/ponds and other construction areas. It appears that there is no barrier for the
530 disease transmission (Fig 7 b)

531

532

533 **Figure 7. Predicted habitat suitability of ranaviruses in Guangxi region and its**
534 **association with land use patterns.** (a) demonstrates the probabilities of distributions
535 in GAR with higher probability of occurrence towards the central, northeastern and
536 southeastern regions of the map b) Spatial data map of the GAR representing how
537 different land use patterns may contribute to the presence of ranavirus cases according
538 to the geographic location. Forest habitats as well as urban settings seem to be
539 associated with the predicted distribution of ranaviruses in GAR.

540

541 **Native species infected and threat to biodiversity conservation**

542

543 The emergence of infectious diseases with a broad host range has become one of the
544 main threats to biodiversity as they can have a dramatic impact on entire communities.

545 This is very concerning especially in small populations where recovery is slow as the
546 ability of crossing species barriers of ranavirus can give rise to catastrophic
547 consequences (Earl and Gray, 2014; Price *et al.*, 2014). It has indicated up to 80%
548 declines among ranavirus die-off sites among in common frog abundance in England
549 (Teacher *et al.*, 2010). In addition, amphibian recruitment attenuated in consecutive
550 years signifying poor recovery following population declines at sites where ranavirus
551 die-offs occurred (Petránka *et al.*, 2003). There were 14 native species infected with
552 ranavirus (11 species of anurans, 2 species of fish and 1 species of testudines) (Table
553 S2). Out of 11 species of anurans, 9 species belonging to families of Ranidae,
554 Rhacophoridae, Microhylidae and Hylidae are considered Least concern (LC) in IUCN
555 Threat levels. Both species belonging to the family Dic平glossidae are known to be
556 vulnerable (Table S2). Northern snakehead (*C. argus*) and large-scale loach (*P. dabryanus*) are widely used as cultured fish species and northern snakehead is
557 considered to be Least concern (LC). However yellow pond turtle (*M. mutica*) which is
558 widely used in pet industry considered as Critically endangered according to IUCN
559 criteria. The individuals available at the pet markets are captive bred.
560

561

562

563 **DISCUSSION**

564

565 **Presence of the ranaviruses in GAR.**

566

567 **Epidemiology of ranavirus**

568

569 Our study shows that ranaviruses are present across all classes of ectothermic
570 vertebrates in south China, spanning various natural habitats and aquaculture facilities,
571 highlighting the extensive reach of this disease across the region and possibly in other
572 parts of Asia. The high number of infected amphibian species (14 in total), including
573 both native and introduced host species, underscores the importance of monitoring and
574 managing the spread of ranaviruses, particularly involving the ranaculture, aquaculture,
575 mariculture and the pet trade. We also observed that susceptibility to ranaviruses varies
576 greatly among host species, which is consistent with the findings from previous
577 research (Bruner *et al.*, 2015). The variation in infection prevalence among anuran
578 families and the greater susceptibility of aquatic species compared to semi-aquatic,
579 terrestrial, and arboreal species, suggest that host ecology is an important determinant
580 of ranavirus disease dynamics. Our findings also underscore the need to consider
581 multiple factors when investigating ranavirus outbreaks. Shedding rates, behavior,
582 community composition, and interspecific variation in susceptibility are all likely to
583 influence the likelihood, dynamics, and outcome of ranavirus outbreaks (Bruner *et al.*,
584 2015).

585

586 The results of this study advance our understanding of the true burden of ranavirus
587 infections in south China and highlight the potential threats it poses to its biodiversity,
588 frog farming, and the pet industry. Prior to this research, only one case of ranavirus

589 infecting cultured hybrid grouper had been recorded in GAR (Xiao *et al.*, 2019). The
590 high number of infected individuals and species found in this study suggests that GAR
591 is a "burden hotspot," in the context of Lessler *et al.*, (2017).

592
593 These findings are of significant concern given the high biodiversity of GAR and its
594 location within the Indo-Burma biodiversity hotspot (Myers *et al.*, 2000). Furthermore,
595 the proximity of GAR to Yunnan province, an amphibian hotspot in terms of high
596 species diversity that is already threatened (Chen and Bi, 2007), is also of concern. The
597 transmission of ranaviruses in these regions could have severe consequences for
598 regional biodiversity.

599
600 Ranavirus disease have been documented in various native wild species and cultured
601 species in China (Herath *et al.*, 2021), including the Critically Endangered (IUCN threat
602 categories) Chinese giant salamanders (Chen *et al.*, 2013). High mortality rates have
603 been recorded in some cases, such as the 90% mortality in black-spotted pond frogs (*R.*
604 *nigromaculata*) tadpoles (Mu *et al.*, 2018; Yu *et al.*, 2020). However, we did not witness
605 mass mortality during the course of our study.

606
607 Given the pervasiveness of the disease, we emphasize the need for increased screening
608 efforts to address the risks of ranavirus infections due to intensive aquaculture,
609 ranaculture, and mariculture, as well as the pet industry.

610
611 **Phylogenetic analysis based on the major capsid protein (MCP) gene**

612
613 As the MCP gene is highly conserved, it is making it a desirable region to target for
614 identifying the presence of ranavirus. Our MCP gene analysis identified only two
615 strains of ranaviruses, *Rana nigromaculata* ranavirus and tiger frog virus, in the Guangxi
616 region. *Rana nigromaculata* ranavirus strain that we found is identical to each other and
617 to other ranaviruses reported from China, Japan, and Korea (Huang *et al.*, 2009; Mu *et*
618 *al.*, 2018; Lei *et al.*, 2012; Une *et al.*, 2009; Yu *et al.*, 2020; Zhang *et al.*, 2001). The
619 sequencing attempt on the ranaviruses detected in fish and reptiles was futile and not
620 included in the phylogenetic analysis. The limited Ranavirus lineage diversity suggests
621 a recent introduction, with rapid spread among different taxa due to their broad host
622 range and transmission facilitated by regional and international trade of introduced
623 species such as the American bullfrog and tiger frog (Both *et al.*, 2011; Mazzoni *et al.*,
624 2009; Sriwanayos *et al.*, 2020).

625
626 Our results point towards interspecies and interclass transmission of these ranaviruses.
627 Ranaviruses are known to infect fish, amphibians and reptiles, presumably due to host-
628 switching events. The group of newly acquired genes in the ranavirus genome may have
629 undergone recent adaptive changes that have facilitated interspecies and interclass host
630 switching (Abrams *et al.*, 2013). A phylogenetic analysis indicates that *Rana*
631 *nigromaculata* ranavirus infects both introduced farmed tiger frogs and native frog
632 species, with a considerable number of cases of the disease in farmed frogs. Previous

633 studies also have shown the transmission of ranaviruses to native species from cultured
634 species (Cunningham *et al.*, 2015; Zhou *et al.*, 2013; Chen *et al.*, 2013). This suggests
635 that the disease may have initially been introduced through cultured species.

636

637 So far, Asia harbors four out of seven ranavirus species recognized by the International
638 Committee on Taxonomy of Viruses (Chinchar *et al.*, 2017). Common midwife toad
639 virus, frog virus 3, Santee-Cooper ranavirus and Singapore grouper iridovirus have
640 been recorded in Asia while *ambystoma tigrinum* virus, epizootic haematopoietic
641 necrosis virus and European North Atlantic ranavirus (or their isolates) have not yet
642 been reported from the region (Herath *et al.*, 2021).

643

644 Disease transmission may have been facilitated by poor biosecurity measures in GAR
645 and throughout Asia (Herath *et al.*, 2021; Sriwanayos *et al.*, 2000). The possibility of
646 interspecies transmission is supported by the close proximity of many main and
647 sporadic sampling sites to frog farms, markets and pet markets which are well-
648 established throughout GAR. The possibility of interclass transmission is supported by
649 the presence of the disease in species such as tiger frogs, large scale loach, northern
650 snakehead, yellow Pond Turtle, and golden albino axolotl, which are kept in adjacent
651 containers for sales.

652

653 Our results point towards the potential role of fish and reptiles as reservoirs for
654 ranavirus, given their ability to harbor subclinical infections (Brenes *et al.*, 2014). These
655 subclinical infections could contribute to the persistence of the pathogen in the
656 environment, particularly when highly susceptible hosts, such as amphibians that rely
657 on cool-wet conditions, are absent due to seasonal fluctuations in temperature and
658 rainfall.

659

660 **Co-infection with ranavirus and *Bd***

661

662 Another significance of our results is the identification of co-infection of one population
663 with ranavirus and *Bd*. This is likely the first record of such co-infection in Asia.
664 Previous studies have reported co-infection cases in other regions, including South
665 America and Turkey (Warne *et al.*, 2016; Erişmiş *et al.*, 2019). The co-infection of
666 ranaviruses and *Bd* is of concern, as it can lead to high mortality and morbidity. This
667 happens through a primary infection with one pathogen weakening the immunity of the
668 host, making it more susceptible to secondary infections (Herczeg *et al.*, 2021). This is
669 particularly alarming in the context of amphibian populations already facing stress from
670 factors such as climate change and anthropogenic stressors.

671

672 **Climatic niche analysis**

673

674 Our climatic niche analysis shows that the ranaviruses in our study are capable of
675 adapting to a wide range of climatic conditions. The adaptability, along with the high
676 number of asymptomatic cases and low mortality rates observed, suggests that these

677 ranaviruses can persist and spread sub-clinically throughout the region without drawing
678 much attention (Gray and Bruner, 2015).

679
680 The niche modeling further indicates that precipitation seasonality plays an important
681 role in ranavirus prevalence in GAR. With climate change leading to rising
682 temperatures, the spread of ranaviruses may be facilitated, potentially causing mass die-
683 offs in the region. Our spatial analysis also sheds light on the transmission pathways
684 and habitats of the ranaviruses. The detection of ranavirus in a variety of habitats,
685 including forests, villages, rivers/canals, reservoirs/ponds, and construction areas,
686 suggests a potential transmission pathway among ectothermic vertebrate classes, which
687 has not been previously reported.

688
689 The presence of ranavirus in wildlife in nature reserves or forest areas is particularly
690 concerning, as it demonstrates that the disease has spread even into protected areas.
691 With no effective treatment currently available to reduce mortality and morbidity in
692 wild populations (OIE, 2019), strict control measures, such as limiting international
693 animal trade and implementing disease screening, must be followed.

694
695 **Conclusion**
696

697 In conclusion, our study provides compelling evidence that ranavirus disease is
698 widespread throughout GAR. With infection prevalence rates reaching as high as 100%
699 in some wild frog species and even penetrating nature reserves, the current situation is
700 of concern. Our research highlights the common presence of infections in culture
701 facilities and pet farms, which likely serve as primary sources for the movement and
702 transmission of ranaviruses throughout the region, country, and across the world
703 through animal trade. Our findings suggest a recent introduction of ranaviruses to the
704 GAR, followed by rapid transmission across various habitats. The co-infection of
705 ranaviruses and *Bd* adds an extra layer of complexity to disease management, making
706 it increasingly challenging to address. To mitigate the risk and impact of these
707 pathogens, we strongly recommend implementing well-planned, systematic
708 surveillance throughout Asia and enforcing stringent biosecurity measures to control
709 further transmission.

710

711 **References**

712 Abrams, A. J., Cannatella, D. C., Hillis, D. M., & Sawyer, S. L. (2013). Recent host-
713 shifts in ranaviruses: signatures of positive selection in the viral genome.
714 *Journal of General Virology*, 94(9), 2082–2093.
715 <https://doi.org/10.1099/vir.0.052837-0>

716 Annis, S. L., Dastoor, F. P., Ziel, H., Daszak, P., & Longcore, J. E. (2004). A DNA-
717 bases assay identifies *Batrachochytrium dendrobatidis* in amphibians. *Journal*
718 *of Wildlife Diseases*, 40(3), 420–428. <https://doi.org/10.7589/0090-3558-40.3.420>

720 Bardua, C., Fabre, A.-C., Clavel, J., Bon, M., Das, K., Stanley, E. L., Blackburn, D.
721 C., & Goswami, A. (2021). Size, microhabitat, and loss of larval feeding drive
722 cranial diversification in frogs. *Nature Communications*, 12(1), 2503.
723 <https://doi.org/10.1038/s41467-021-22792-y>

724 Both, C., Lingnau, R., Santos, A. Jr., Madalozzo, B., Lima, L. P., & Grant, T. (2011).
725 Widespread occurrence of the American bullfrog, *Lithobates catesbeianus*
726 (Shaw 1802) (Anura: Ranidae), in Brazil. *South American Journal of*
727 *Herpetology*, 6, 127–134.

728 Brenes, R., Gray, M. J., Waltzek, T. B., Wilkes, R. P., & Miller, D. L. (2014).
729 Transmission of Ranavirus between Ectothermic Vertebrate Hosts. *PLoS*
730 *ONE*, 9(3), e92476. <https://doi.org/10.1371/journal.pone.0092476>

731 Brenes, R., Miller, D. L., Waltzek, T. B., Wilkes, R. P., Tucker, J. L., Chaney, J. C.,
732 Hardman, R. H., Brand, M. D., Huether, R. R., & Gray, M. J. (2014).
733 Susceptibility of fish and turtles to three ranaviruses isolated from different

734 ectothermic vertebrate classes. *Journal of Aquatic Animal Health*, 26(2), 118–

735 126. <https://doi.org/10.1080/08997659.2014.886637>

736 Brunner, J. L., Storfer, A., Gray, M. J., & Hoverman, J. T. (2015). Ranavirus Ecology

737 and Evolution: From Epidemiology to Extinction. *Ranaviruses*, 71–104.

738 https://doi.org/10.1007/978-3-319-13755-1_4

739 Bryan, L., Baldwin, C., Gray, M., & Miller, D. (2009). Efficacy of select disinfectants

740 at inactivating Ranavirus. *Diseases of Aquatic Organisms*, 84, 89–94.

741 <https://doi.org/10.3354/dao02036>

742 Burnham KP. (2002). DR A. Model selection and multimodel Inference: A practical

743 information-theoretic approach. 2nd ed. Springer, New York, NY.

744 Chen, Y., & Bi, J. (2007). Biogeography and hotspots of amphibian species of China:

745 Implications to reserve selection and conservation. *Current Science*, 92(4),

746 480–489. <https://www.jstor.org/stable/24097561>

747 Chen, Z., Gui, J.-F., Gao, X.-C., Pei, C., Hong, Y., & Zhang, Q.-Y. (2013). Genome

748 architecture changes and major gene variations of *Andrias davidianus*

749 ranavirus (ADRV). *Veterinary Research*, 44(1). <https://doi.org/10.1186/1297->

750 9716-44-101

751 Chinchar, V. G., & Waltzek, T. B. (2014). Ranaviruses: Not Just for Frogs. *PLoS*

752 *Pathogens*, 10(1), e1003850. <https://doi.org/10.1371/journal.ppat.1003850>

753 Chinchar, V., Hick, P., Huang, J., Ince, I., Jancovich, J., Marschang, R., Qin, Q.,

754 Subramaniam, K., Waltzek, T., Whittington, R., Williams, T., Zhang, Q.-Y.,

755 Hick, P., Ince, I., Qin, R., Subramaniam, Q., Waltzek, K., Whittington, T.,

756 Williams, R., & Zhang, T. (2017). *Virus Taxonomy The ICTV Report on Virus*

757 *Classification and Taxon Nomenclature Iridoviridae Chapter Iridoviridae*

758 *Citation.* Retrieved August 18, 2023, from

759 <http://taxonomy.cvr.gla.ac.uk/PDF/Iridoviridae.pdf>

760 Cunningham, A. A., Turvey, S. T., Zhou, F., Meredith, H. M. R., Guan, W., Liu, X.,

761 Sun, C., Wang, Z., & Wu, M. (2015). Development of the Chinese giant

762 salamander *Andrias davidianus* farming industry in Shaanxi Province, China:

763 conservation threats and opportunities. *Oryx*, 50(2), 265–273.

764 <https://doi.org/10.1017/s0030605314000842>

765 Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more

766 models, new heuristics and parallel computing. *Nature Methods*, 9(8), 772–

767 772. <https://doi.org/10.1038/nmeth.2109>

768 Earl, J. E., & Gray, M. J. (2014). Introduction of Ranavirus to Isolated Wood Frog

769 Populations Could Cause Local Extinction. *EcoHealth*, 11(4), 581–592.

770 <https://doi.org/10.1007/s10393-014-0950-y>

771 Erişmiş, U. C., & Yoldaş, T. (2019). Investigation of Prevalence of Co-Infection by

772 *Batrachochytrium dendrobatidis* and Ranavirus in Endemic Beyşehir Frog

773 (*Pelophylax caralitanus*). *Acta Aquatica Turcica*, 15(2), 239–246.

774 Goka, K., Yokoyama, J., Une, Y., Kuroki, T., Suzuki, K., Nakaharm, M., Kobayashi,

775 A., Inba I, S., Mizutanti, T., & Hyatt, A. D. (2009). Amphibian

776 chytridiomycosis in Japan: distribution, haplotypes and possible route of entry

777 into Japan. *Molecular Ecology*, 18(23), 4757–4774.

778 <https://doi.org/10.1111/j.1365-294x.2009.04384.x>

779 Gold, K., Reed, P., Bemis, D., Miller, D., Gray, M., & Souza, M. (2013). Efficacy of

780 common disinfectants and terbinafine in inactivating the growth of

781 *Batrachochytrium dendrobatidis* in culture. *Diseases of Aquatic Organisms*,

782 107(1), 77–81. <https://doi.org/10.3354/dao02670>

783 Gray, M. J., & V. Gregory Chinchar. (2015). Ranaviruses. In *Springer eBooks*.

784 Springer. <https://doi.org/10.1007/978-3-319-13755-1>

785 Gray, M. J., Brunner, J. L., Earl, J. E., & Ariel, E. (2015). Design and Analysis of

786 Ranavirus Studies: Surveillance and Assessing Risk. *Ranaviruses*, 209–240.

787 https://doi.org/10.1007/978-3-319-13755-1_8

788 Gray, M., Miller, D., & Hoverman, J. (2012). Reliability of non-lethal surveillance

789 methods for detecting ranavirus infection. *Diseases of Aquatic Organisms*,

790 99(1), 1–6. <https://doi.org/10.3354/dao02436>

791 Guindon, S., & Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to

792 Estimate Large Phylogenies by Maximum Likelihood. *Systematic Biology*,

793 52(5), 696–704. <https://doi.org/10.1080/10635150390235520>

794 Hao, X., Qiu, Y., Jia, G., Menenti, M., Ma, J., & Jiang, Z. (2023). Evaluation of

795 Global Land Use–Land Cover Data Products in Guangxi, China. *Remote*

796 *Sensing*, 15(5), 1291. <https://doi.org/10.3390/rs15051291>

797 Harding, E. F., Russo, A. G., Yan, G. J. H., Mercer, L. K., & White, P. A. (2022).
798 Revealing the uncharacterised diversity of amphibian and reptile viruses.
799 *ISME Communications*, 2(1). <https://doi.org/10.1038/s43705-022-00180-x>

800 Herath, J., Ellepola, G., & Meegaskumbura, M. (2021). Patterns of infection, origins,
801 and transmission of ranaviruses among the ectothermic vertebrates of Asia.
802 *Ecology and Evolution*, 11(22), 15498–15519.
803 <https://doi.org/10.1002/ece3.8243>

804 Herczeg, D., Ujszegi, J., Kásler, A., Holly, D., & Hettyey, A. (2021). Host–
805 multiparasite interactions in amphibians: a review. *Parasites & Vectors*, 14(1).
806 <https://doi.org/10.1186/s13071-021-04796-1>

807 Huang, Y., Huang, X., Liu, H., Gong, J., Ouyang, Z., Cui, H., Cao, J., Zhao, Y.,
808 Wang, X., Jiang, Y., & Qin, Q. (2009). Complete sequence determination of a
809 novel reptile iridovirus isolated from soft-shelled turtle and evolutionary
810 analysis of Iridoviridae. *BMC Genomics*, 10(1), 224.
811 <https://doi.org/10.1186/1471-2164-10-224>

812 Hughes, A.C, (2021). Wildlife Trade. *Current Biology*, 31(19),
813 <https://doi.org/10.1016/j.cub.2021.08.056>.
814 [sciencedirect.com/science/article/pii/S0960982221011921](https://doi.org/10.1016/j.cub.2021.08.056.sciencedirect.com/science/article/pii/S0960982221011921)

815 Fick, Stephen E., and Robert J. Hijmans. WorldClim 2: New 1-Km Spatial Resolution
816 Climate Surfaces for Global Land Areas. *International Journal of
817 Climatology*, 37(12), 4302–4315, <https://doi.org/10.1002/joc.5086>.

818 Kolby, J. E., Smith, K. M., Berger, L., Karesh, W. B., Preston, A., Pessier, A. P., &

819 Skerratt, L. F. (2014). First Evidence of Amphibian Chytrid Fungus

820 (*Batrachochytrium dendrobatidis*) and Ranavirus in Hong Kong Amphibian

821 Trade. *PLoS ONE*, 9(3), e90750. <https://doi.org/10.1371/journal.pone.0090750>

822 Laurent, R. F. (1964). Adaptive modifications in frogs of an isolated highland fauna in

823 Central Africa. *Evolution. Evolution*, 18(3), 458–467.

824 <https://doi.org/10.1111/j.1558-5646.1964.tb01622.x>

825 Lei, X.-Y., Ou, T., Zhu, R.-L., & Zhang, Q.-Y. (2012). Sequencing and analysis of the

826 complete genome of *Rana grylio* virus (RGV). *Archives of Virology*, 157(8),

827 1559–1564. <https://doi.org/10.1007/s00705-012-1316-9>

828 Lessler, J., Azman, A. S., McKay, H. S., & Moore, S. M. (2017). What is a Hotspot

829 Anyway? *The American Journal of Tropical Medicine and Hygiene*, 96(6),

830 1270–1273. <https://doi.org/10.4269/ajtmh.16-0427>

831 Mao, J., Hedrick, R. P., & Chinchar, V. G. (1997). Molecular Characterization,

832 Sequence Analysis, and Taxonomic Position of Newly Isolated Fish

833 Iridoviruses. *Virology*, 229(1), 212–220.

834 <https://doi.org/10.1006/viro.1996.8435>

835 Mazzoni, R., de Mesquita, A., Fleury, L., Brito, W., Nunes, I., Robert, J., Morales, H.,

836 Coelho, A., Barthasson, D., Galli, L., & Catoxo, M. (2009). Mass mortality

837 associated with a frog virus 3- like Ranavirus infection in farmed tadpoles

838 *Rana catesbeiana* from Brazil. *Diseases of Aquatic Organisms*, 86, 181–191.

839 <https://doi.org/10.3354/dao02096>

840 Miller, D., Gray, M., & Storfer, A. (2011). Ecopathology of Ranaviruses Infecting
841 Amphibians. *Viruses*, 3(11), 2351–2373. <https://doi.org/10.3390/v3112351>

842 Mu, W. H., Geng, Y., Yu, Z. H., Wang, K. Y., Huang, X. L., Ou, Y. P., Chen, D. F.,
843 He, C. L., Zhong, Z. J., Yang, Z. X., & Lai, W. M. (2018). FV3-like ranavirus
844 infection outbreak in black-spotted pond frogs (*Rana nigromaculata*) in China.
845 *Microbial Pathogenesis*, 123, 111–114.

846 <https://doi.org/10.1016/j.micpath.2018.06.047>

847 Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte,
848 M., & Anderson, R. P. (2014). ENMeval: An R package for conducting
849 spatially independent evaluations and estimating optimal model complexity
850 for Maxentecological niche models. *Methods in Ecology and Evolution*, 5(11),
851 1198–1205. <https://doi.org/10.1111/2041-210x.12261>

852 Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J.
853 (2000). Biodiversity hotspots for conservation priorities. *Nature*, 403(6772),
854 853–858.

855 Pessier, A.P. and Mendelson, J.R. (2017). A Manual for Control of Infectious
856 Diseases in Amphibian Survival Assurance Colonies and Reintroduction
857 Programs, Ver. 2.0. IUCN/SSC Conservation Breeding Specialist Group:
858 Apple Valley, MN

859 Petranka, J. W., Murray, S. S., & Kennedy, C. A. (2003). Responses of amphibians to
860 restoration of a southern Appalachian wetland: Perturbations confound post-

861 restoration assessment. *Wetlands*, 23(2), 278–290. <https://doi.org/10.1672/7->

862 20

863 Price, S. J., Garner, T. W. J., Nichols, R. A., Balloux, F., Ayres, C., Mora-Cabello de

864 Alba, A., & Bosch, J. (2014). Collapse of amphibian communities due to an

865 introduced Ranavirus. *Current Biology: CB*, 24(21), 2586–2591.

866 <https://doi.org/10.1016/j.cub.2014.09.028>

867 Price, S.J., Ariel, E., Maclaine, A., Rosa, G.M., Gray, M.J., Brunner, J.L., Garner.

868 T.W.J. (2017). .From fish to frogs and beyond: Impact and host range of

869 emergent ranaviruses, *Virology*, 511, 272-279, ISSN 0042-

870 822, <https://doi.org/10.1016/j.virol.2017.08.001>.

871 Rowley, J., Brown, R., Bain, R., Kusrini, M., Inger, R., Stuart, B., Wogan, G., Thy,

872 N., Chan-ard, T., Trung, C. T., Diesmos, A., Iskandar, D. T., Lau, M., Ming,

873 L. T., Makchai, S., Truong, N. Q., & Phimmachak, S. (2010). Impending

874 conservation crisis for Southeast Asian amphibians. *Biology Letters*, 6(3),

875 336–338. <https://doi.org/10.1098/rsbl.2009.0793>

876 Sriwanayos, P., Subramaniam, K., Stilwell, N. K., Imnoi, K., Popov, V. L.,

877 Kanchanakhan, S., Polchana, J., & Waltzek, T. B. (2020). Phylogenomic

878 characterization of ranaviruses isolated from cultured fish and amphibians in

879 Thailand. *FACETS*, 5(1), 963–979. <https://doi.org/10.1139/facets-2020-0043>

880 Steidl, R. J. (2008). Model Based Inference in the Life Sciences: A Primer on

881 Evidence . David R. Anderson. *Journal of Wildlife Management*, 72(7), 1658–

882 1659. <https://doi.org/10.2193/2008-264>

883 Stilwell, N. K., Whittington, R. J., Hick, P. M., Becker, J. A., Ariel, E., van Beurden,
884 S., Vendramin, N., Olesen, N. J., & Waltzek, T. B. (2018). Partial validation
885 of a TaqMan real-time quantitative PCR for the detection of ranaviruses.
886 *Diseases of Aquatic Organisms*, 128(2), 105–116.
887 <https://doi.org/10.3354/dao03214>

888 Sun, D., Ellepola, G., Herath, J., & Meegaskumbura, M. (2023a). Climate as a
889 gatekeeper: Unexpected absence of *Batrachochytrium salamandrivorans* in an
890 Asian Chytrid hotspot suggests a narrow climatic niche for the pathogen.
891 Authorea. <https://www.authorea.com/users/613620/articles/640881-climate->
892 [as-a-gatekeeper-unexpected-absence-of-batrachochytrium-salamandrivorans-in-an-asian-chytrid-hotspot-suggests-a-narrow-climatic-niche-for-batrachochytrium-salamandrivorans](https://www.authorea.com/users/613620/articles/640881-climate-as-a-gatekeeper-unexpected-absence-of-batrachochytrium-salamandrivorans-in-an-asian-chytrid-hotspot-suggests-a-narrow-climatic-niche-for-batrachochytrium-salamandrivorans)

893 Sun, D., Gajaba Ellepola, Herath, J., Liu, H., Liu, Y., Murray, K., & Madhava
894 Meegaskumbura. (2023b). New climatically specialized lineages of
895 *Batrachochytrium dendrobatidis* and their sub-lethal effects on amphibians
896 establish the Asiatic origins of the pathogen. bioRxiv.
897 <https://doi.org/10.1101/2023.01.23.525302>

898 Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6:
899 Molecular Evolutionary Genetics Analysis Version 6.0. *Molecular Biology*
900 and Evolution

901, 30(12), 2725–2729. <https://doi.org/10.1093/molbev/mst197>

902 Teacher, A. G. F., Cunningham, A. A., & Garner, T. W. J. (2010). Assessing the long-
903 term impact of Ranavirus infection in wild common frog populations. *Animal*

905 *Conservation*, 13(5), 514–522. <https://doi.org/10.1111/j.1469-1795.2010.00373.x>

906

907 Une, Y., Sakuma, A., Matsueda, H., Nakai, K., & Murakami, M. (2009). Ranavirus

908 Outbreak in North American Bullfrogs (*Rana catesbeiana*), Japan, 2008.

909 *Emerging Infectious Diseases*, 15(7), 1146–1147.

910 <https://doi.org/10.3201/eid1507.081636>

911 Warne, R. W., LaBumbard, B., LaGrange, S., Vredenburg, V. T., & Catenazzi, A.

912 (2016). Co-Infection by Chytrid Fungus and Ranaviruses in Wild and

913 Harvested Frogs in the Tropical Andes. *PLOS ONE*, 11(1), e0145864.

914 <https://doi.org/10.1371/journal.pone.0145864>

915 World Organization for Animal Health (OIE). (2019). Manual of diagnostic tests for

916 aquatic animals. xiv, 589p.

917 Xiao, H., Liu, M., Li, S., Shi, D., Zhu, D., Ke, K., Xu, Y., Dong, D., Zhu, L., Yu, Q.,

918 & Li, P. (2019). Isolation and Characterization of a Ranavirus Associated with

919 Disease Outbreaks in Cultured Hybrid Grouper (♀ Tiger Grouper *Epinephelus*

920 *fuscoguttatus* × ♂ Giant Grouper *E. lanceolatus*) in Guangxi, China. *Journal*

921 *of Aquatic Animal Health*, 31(4), 364–370. <https://doi.org/10.1002/aah.10090>

922 Yu, Z., Mou, W., Geng, Y., Wang, K., Chen, D., Huang, X., Ouyang, P., Zhong, Z.,

923 He, C., Zuo, Z., Huang, C., Guo, H., Fang, J., & Lai, W. (2020).

924 Characterization and genomic analysis of a ranavirus associated with cultured

925 black-spotted pond frogs (*Rana nigromaculata*) tadpoles mortalities in China.

926 *Transboundary and Emerging Diseases*. <https://doi.org/10.1111/tbed.13534>

927 Zhang Qy, Xiao, F., Zq, L., Gui, J.-F., Mao, J.-H., & V. Gregory Chinchar. (2001).
928 *Characterization of an iridovirus from the cultured pig frog Rana grylio with*
929 *lethal syndrome.* 48, 27–36. <https://doi.org/10.3354/dao048027>
930 Zhou, Z. Y., Geng, Y., Liu, X. X., Ren, S. Y., Zhou, Y., Wang, K. Y., Huang, X. L.,
931 Chen, D. F., Peng, X., & Lai, W. M. (2013). Characterization of a ranavirus
932 isolated from the Chinese giant salamander (*Andrias davidianus*, Blanchard,
933 1871) in China. *Aquaculture*, 384-387, 66–73.
934 <https://doi.org/10.1016/j.aquaculture.2012.12.018>
935 Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to
936 avoid common statistical problems. *Methods in Ecology and Evolution*, 1(1),
937 3–14. <https://doi.org/10.1111/j.2041-210x.2009.00001.x>

938
939 **Acknowledgements**
940
941 We thank Guangxi University Laboratory Startup Funding (MM), China Scholarship
942 Council Fellowship for graduate studies. We are also grateful to staff members of nature
943 reserves for granting permission and assisting with fieldwork. Further owners and staff
944 members of the pet markets, frog farms and private collections are also acknowledged.
945 We also express our gratitude Prof. Thomas B. Waltzek (Washington State University),
946 Prof. Ellen Ariel (James Cook University) and Prof. Jess Brunner (Washington State
947 University) Prof. Kun Fang, Cao (Guangxi University), Prof. Aiwu, Jiang (Guangxi
948 University), Prof. Christos Mammides (Guangxi University) and all the lab members
949 of Ecology, Development and Evolutionary biology (EED) of Guangxi University.
950
951
952
953
954
955
956
957
958
959

960 **EXTENDED MATERIAL**

961

962 **Table S1: Model used for the analysis.** This includes different possible combinations.

963

No	Model	K	AICc	DAICc	Weight	LogLiK
1	bio15	2	51.31	0	0.25	-23.16
2	bio18	2	51.94	0.62	0.18	-23.47
3	bio15+bio18	3	53.29	1.98	0.09	-22.55
4	bio08+bio15	3	53.8	2.48	0.07	-22.81
5	bio18+elevation	3	53.92	2.6	0.07	-22.87
6	bio15+elevation	3	54.3	3.1	0.05	-23.06
7	bio15+life stage	3	54.42	3.33	0.05	-23.12
8	bio18+life stage	3	54.64	3.33	0.05	-23.23
9	bio08	3	54.64	4.97	0.05	-25.64
10	bio07+bio15+bio18	2	56.29	5.34	0.02	-22.33
11	bio07+bio08+bio18	4	56.66	5.65	0.02	-22.48
12	bio15+bio18+life stage	4	56.97	5.8	0.01	-22.55
13	bio18+elevation+life stage	4	57.11	5.87	0.01	-22.59
14	bio08+bio15+life stage	4	57.18	6.13	0.01	-22.72
15	bio07+bio08+elevation	4	57.44	6.27	0.01	-22.79

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986 **Table S2: Infected native species with their life stage and IUCN conservation**
987 **status.** Conservation status is based on IUCN categories with acronyms representing
988 from low to high extinction risk: LC, least concern; NT, near threatened; VU,
989 vulnerable; EN, endangered; DD, Data Deficiency

990

991

992

Family	Species	Infected life stage	IUCN status
Ranidae	<i>Amolops ricketti</i>	Adults	LC
	<i>Amolops chunganensis</i>	Adults	LC
	<i>Odorrana gramine</i>	Adults	LC
	<i>Odorrana versabilis</i>	Adults	LC
	<i>Rana hanluica</i>	Adults	LC
	<i>Hylarana guentheri</i>	Tadpoles	LC
Dicoglossidae	<i>Quasipaa spinosa</i>	Adults	VU
	<i>Quasipaa boulengeri</i>	Adults	VU
Hylidae	<i>Hyla simplex</i>	Tadpoles	LC
Microhylidae	<i>Microhyla pulchra</i>	Tadpoles	LC
Rhacophoridae	<i>Polypedates megacephalus</i>	Tadpoles	LC
Cobitidae	<i>Paramisgurnus dabryanus</i>	Adults	-
Channidae	<i>Channa argus</i>	Adults	LC
Geoemydidae	<i>Mauremys mutica</i>	Adults	CR

993

994

995

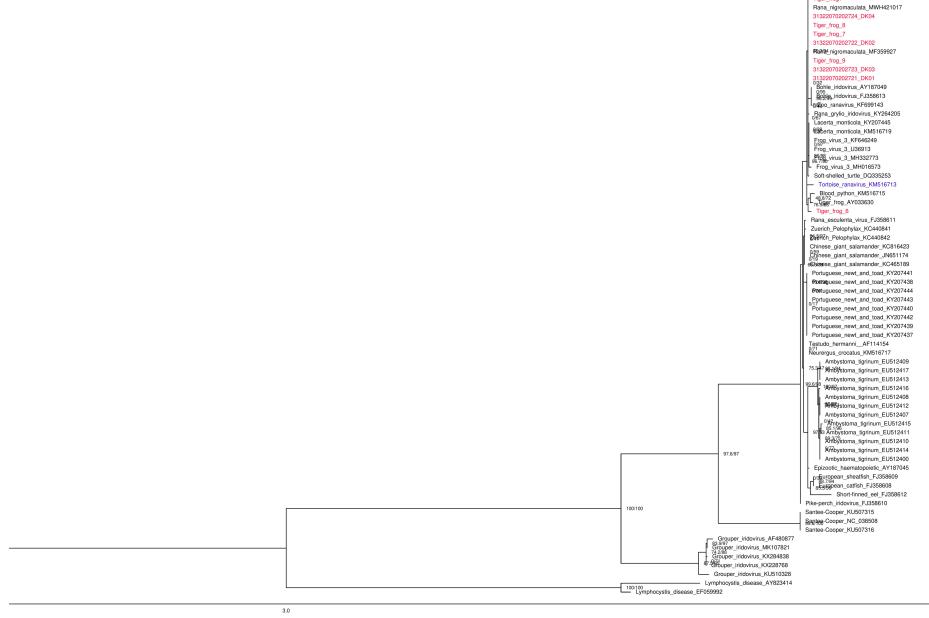
996

997

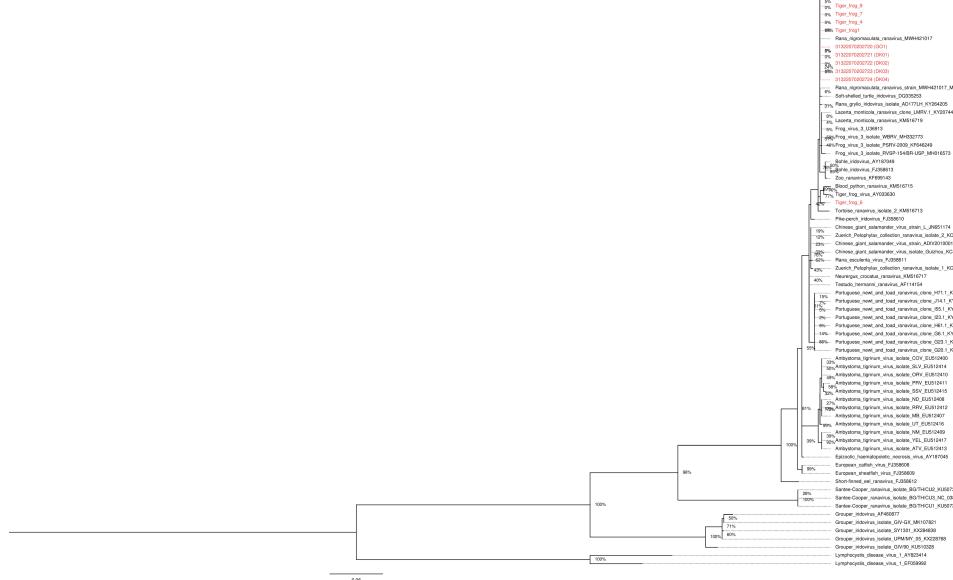
998

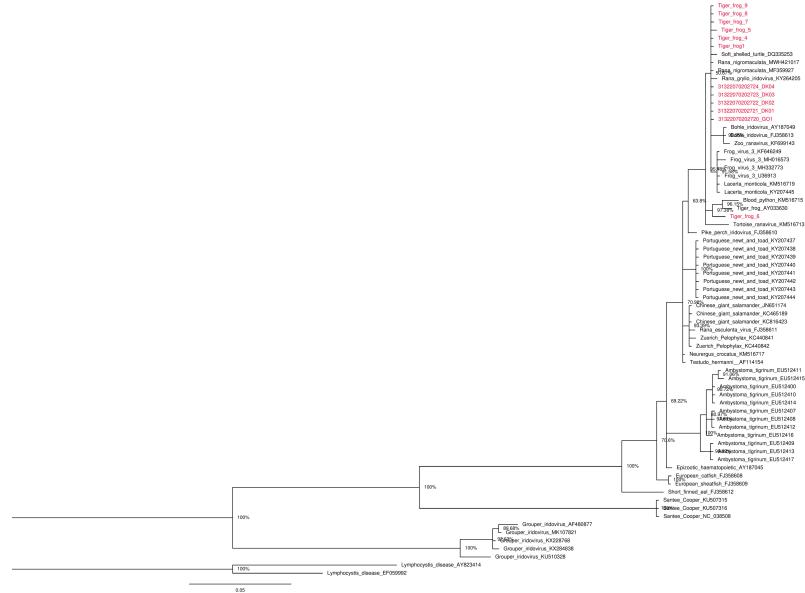
999

1000


1001

1002


1003


1004

1005
1006
1007
1008 **Figure S1: Phylogenetic tree based on the MCP gene sequences made using IQ-TREE**
1009
1010

1011
1012
1013 **Figure S2: Phylogenetic tree based on the MCP gene sequences made using MEGA**
1014
1015
1016
1017
1018
1019

1020

1021

1022

1023 **Figure S3: Phylogenetic tree based on the MCP gene sequences made using**
1024 **MrBayes**

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

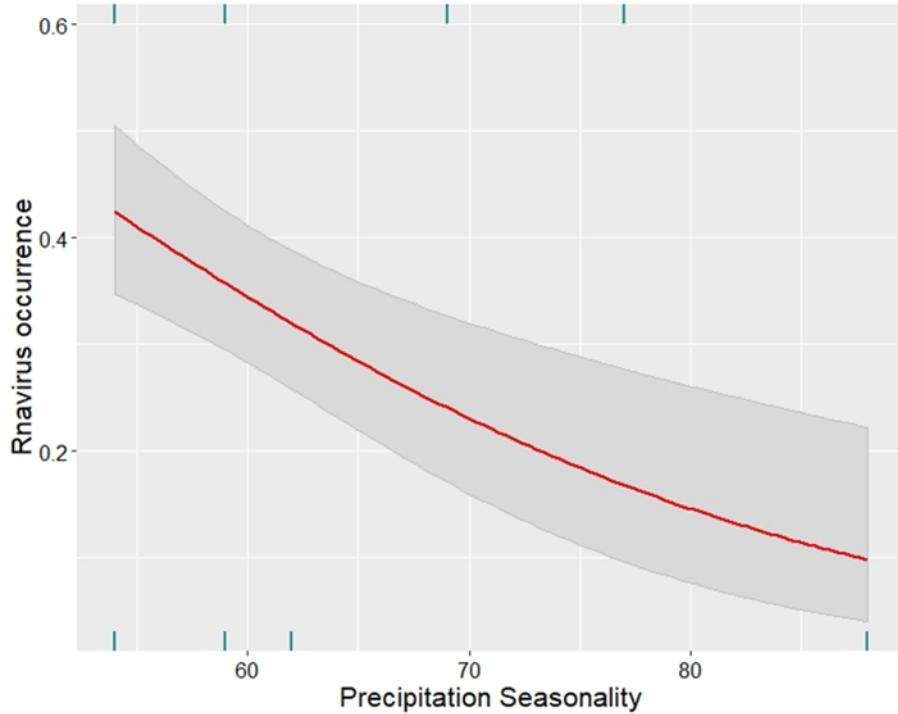
1040

1041

1042

1043

1044

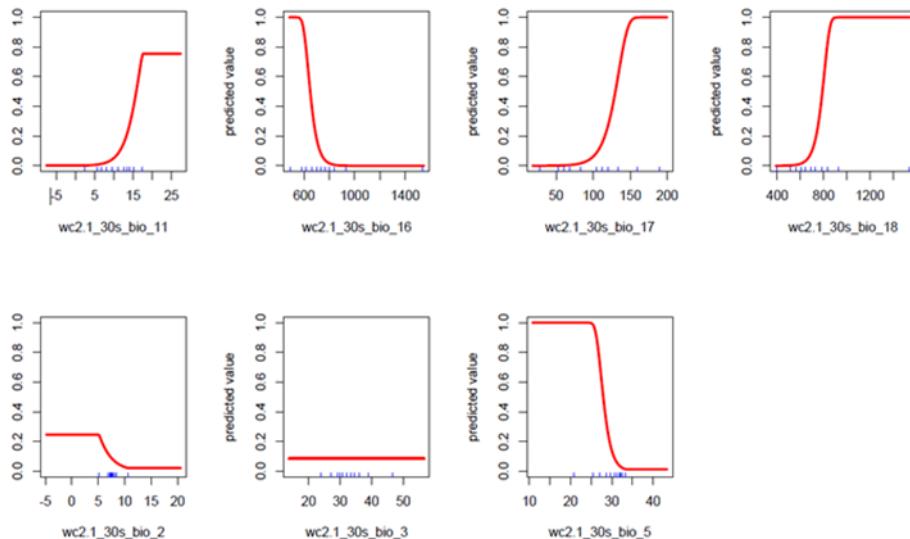

1045

1046

1047

1048

1049


1050

1051

1052

Figure S4: Precipitation seasonality

1053

1054

1055

Figure S5: Response curves

1056

1057

1058

1059