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Abstract

The growing availability of single-cell and spatially-resolved transcriptomics has
led to the rapidly growing popularity of methods to infer cell-cell
communication. Many approaches have emerged, each capturing only a partial
view of the complex landscape of cell-cell communication.

Here, we present LIANA+, a scalable framework to decode coordinated inter-
and intracellular signalling events from single- and multi-condition datasets in
both single-cell and spatially-resolved data. Beyond integrating and extending
established methodologies and a rich knowledge base, LIANA+ enables novel
analyses using diverse molecular mediators, including those measured in
multi-omics data. Accessible as an open-source Python package at

https:/github.com/saezlab/liana-py, LIANA+ provides a comprehensive set of

synergistic components to study cell-cell communication.

Keywords: Cell-cell communication, Python, framework, spatial, single-cell,

multimodal, transcriptomics
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1. Background

Cell-cell communication (CCC) inference has recently emerged as a major
component of the analysis of single-cell and spatially-resolved transcriptomics
data !. Many computational tools have been developed for this purpose, each
contributing valuable ideas and developments.

The simplest class of CCC inference methods are those that infer
protein-protein interactions from dissociated single-cell transcriptomics data,
commonly referred to as ligand-receptor interaction inference methods *-°.
Moreover, there are tools that combine intercellular communication with
intracellular signalling °'°. All methods are based on multiple assumptions,
including the assumption that gene co-expression between dissociated cells, or
groups of cells, reflects CCC within tissues .

In contrast to dissociated single-cell data, spatially-resolved omics technologies
preserve spatial context and are thus thought to better reflect the intercellular
events that occur within tissues. As a consequence, multiple methods that utilise
spatial information have been developed to study CCC !'. Typically, these

methods infer relationships between proteins 213

or cell types (cellular
neighbourhoods) **. Spatially-informed methods differ in the scale at which
interactions are inferred, as some infer relationships globally, summarising

12,18,16

them across slides as a whole , while others do so locally at the individual

cell or spot locations within a slide 7-2°,

The majority of both single-cell and spatially-informed CCC methods have
focused on protein-mediated interactions, predominantly from transcriptomics
data "', and only few methods infer CCC from multi-omics data ?%. Yet,

emerging multi-omics technologies 2

are anticipated to provide a more
informed view of CCC events, prompting the development of new tools.
Furthermore, as a consequence of the almost exclusive use of transcriptomics
data, other modes of intercellular signalling, such as small molecule signalling,

have been typically ignored '.

Recent methods have attempted to infer
metabolite-mediated CCC events, again from transcriptomics data %%, but such
inference remains largely limited by the challenges of inferring metabolite
abundance from gene expression %,

While early methods analysed CCC in individual samples or single-condition

atlases, increasing sample numbers and experimental design complexity have
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prompted various strategies to extract differential CCC insights. These strategies
include methods that (1) require a list of perturbed variables %, (2) consider each

1730 (8) make use of dimensionality reduction to

variable independently
perform pairwise comparisons between conditions **!, or (4) jointly model all
variables, samples and cell types simultaneously 2. Approach (4) can be thought
of as modelling coordinated CCC events, and we refer to it as modelling
‘intercellular programmes’ from here on out.

Finally, CCC methods typically rely on pre-existing knowledge . Thus,
extensive effort has been put into curating and extending prior knowledge in

3,4,33

the context of CCC, with a focus on gathering protein- and, to a lesser

94,26,27,34

extent, metabolite-mediated interactions . In addition, in some resources,

the interactions are further associated with pathways * or transcriptional
regulators %% leading to multiple discordant databases and potential
inconsistencies caused solely by the choice of resource ™.

All these developments have been led by different groups, using various
syntaxes and are typically designed for a specific purpose.

Here, we introduce LIANA+ as a comprehensive framework that unifies and
expands CCC methods and prior knowledge (Fig.1; Supp. Table 1). LIANA+
provides eight methods for the inference of CCC from single-cell
transcriptomics (Fig. 1A) and eight methods for the inference of global and local
relationships in spatially-resolved data (Fig. 1B), all of which are applicable to
multi-omics data. These are further supplemented with four distinct strategies
to extract deregulated CCC events in both hypothesis-free and
hypothesis-driven manner (Fig. 1C). Moreover, CCC events can be connected to
intracellular signalling events (Fig.1D) via the use of a rich knowledge base
(Fig. 1E).

To showcase the scope and flexibility of LIANA+, we used it to: (1) identify
intercellular programmes driving kidney injury response in mouse single-cell
and spatial transcriptomics data; (2) extract spatial intercellular patterns in
human myocardial infarction; (3) infer CCC using single-cell CITE-seq data
from human blood; (4) learn global CCC events and identify the corresponding
subregions in spatially-resolved CITE-seq data from human tonsil; (5) identify
spatially-informed, metabolite-mediated CCC in the adult mouse brain; (6) find

ligand-receptor interactions deregulated in lupus patients; (7) hypothesise
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intracellular signalling events downstream of CCCs. LIANA+ is an extendable,
scverse-compliant ?°, open-source framework built of synergistic modules,

available at https:/github.com/saezlab/liana-py, readily applicable to a wide

range of single-cell, spatial, multi-omics datasets, with any experimental design.
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2. Main

2.1 LIANA+: an all-in-one framework for cell-cell communication

LIANA+ harmonises current CCC methods and prior knowledge as integral
components of the same framework (Fig.1). All components in LIANA+ use
standardised input and output formats, making use of the scverse ecosystem
infrastructure 3¢ (Supp. Fig. S1). This enables interoperability with external
packages and facilitates straightforward and robust extensions of contemporary

CCC applications.

2.11 LIANA+’s Single-cell Component

In the first iteration of our LIgAnd-receptor aNAlysis (LIANA) framework in R !
we focused on benchmarking existing tools that predict ligand-receptor
interactions from dissociated single-cell data. Building on our previous work,
LIANA+ is a Python package that natively re-implements eight ligand-receptor
methods for the scalable inference of interactions from single-cell data sets
(Fig. 2A). These include the algorithms of CellPhoneDB 2, CellChat *
Connectome 5, NATMI ¥, SingleCellSignalR 3, along with logFC and a
geometric mean, as well as their consensus (Fig. 1A; Supp. Table 2).

LIANA+’s single-cell component is additionally applicable to multi-omics data
(Methods). As an example, we adapted a permutation-based approach ??, initially
proposed by CellPhoneDB 2, to the inference of ligand-receptor interactions

from single-cell RNA and protein (CITE-seq) in human blood (Fig. 2B).

2.1.2 LIANA+’s Spatial Component

As a consequence of the diverse array of spatial omics technologies and the
varied tasks they encompass, a multitude of computational approaches are
required to make most of the data. In this context, LIANA+ includes several
strategies to flexibly analyse CCC from diverse spatially-resolved technologies
(Fig. 1B).

First, we implemented global Moran’s R 7 - a bivariate extension of Moran’s I -
used as a simple measure of spatial co-occurrence. Such co-occurrence
measures, however, only consider two variables at a time, and hence do not
account for complex relationships across variables. To this end, we also
implemented a multivariate, multi-view modelling approach to learn spatial

relationships across distinct types of features or spatial contexts (represented as
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views) . Our approach can learn complex relationships, such as relationships

16 39,40

between ligand expressions and pathways °, or cell types and pathways
(Fig. 2C), as well as jointly model any combination of views (Fig. 2D; Methods).
As such, it is also well-suited to jointly learn relationships across combinations
of data modalities and technologies.

Thus, depending on the goal in mind, users might opt for a simple metric that
summarises two variables at a time, or multi-view learning which not only
accounts for collinearity between features, but also provides estimates about the
predictive performance of different views.

The aforementioned methods infer global spatial relationships - i.e. they
consider all spots to infer a value for each interaction across the slide as a whole.
As such, they provide summary statistics for each interaction in a slide, but they
do not provide information about the exact site or location of the interactions.
To complement the global methods in LIANA+, we implemented six metrics to
identify local interactions at the individual spot or cell location (Fig. 2E), along
with permutation-based P-values for each (Fig. 2F; Methods). In brief, these are
(i) an extension of univariate spatial clustering measures such as local Moran’s I
(as implemented in SpatialDM "4); (ii) four spatially-weighted variants of
commonly used metrics (Cosine similarity, Pearson and Spearman correlation,
and Jaccard index); and (iii) a masked version of Spearman correlation, as
proposed by scHOT ® (Methods). Moreover, LIANA+ enables local interactions
to be categorised according to the magnitude of expression or sign of the
variables involved in the interaction (Fig. 2G; Methods).

To aid in the choice of local metrics, we evaluated their ability to preserve
biological information in two tasks: (1) binary classification of malignant spots
and non-malignant spots, and (2) cell type prediction, using for both tasks local
ligand-receptor scores as predictors (Methods). Spatially-weighted Cosine
similarity performed most consistently in both tasks (Supp. Fig. S2; Supp. Note
1). Thus, it was set as the default local metric in LIANA+, and also used for most
analyses presented in this work.

In line with the single-cell component, the spatially-informed methods in
LIANA+ are also easily applicable to multi-omics data. To demonstrate this, we
analysed a recent, spatially-resolved tonsil CITE-seq dataset *2. Using our global

multi-view learning approach, we found that the interaction between
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E-Cadherin protein expression and TP63 activity had the highest importance
(OLS t-value = 7.96; Methods; Supp. Fig. S3A-B), both of which are associated
with cell adhesion ****. To pinpoint the sub-region of the potential interaction,
we used the local metrics, and saw high local scores predominantly within the
boundary regions of vasculature (Supp. Fig. S3C-F).

Similarly, we used Global Moran’s R to identify co-clustered interactions
between metabolite abundances, estimated from transcriptomics data
(Methods), and their corresponding receptors. We saw that the interactions
between the gamma-aminobutyric acid (GABA) neurotransmitter and several
subunits of its corresponding GABA, receptor had the highest, albeit relatively
weak, global co-clustering; with subunit alpha 2 (Gabra2) having the strongest
association to GABA (Global Moran’s R=0.18; Supp. Fig. S4A-D). Next, we
employed a local metric to locate the brain region where the CCC event takes
place. In line with previous observations %, the interaction between GABA and
Gabra2 predominantly potentially occurred within the cortex and hippocampus
(Supp. Fig. S4E).

In conclusion, here we demonstrated that LIANA+ can be readily applied to
identify spatially-informed interactions, driven by diverse mediators, and the
corresponding regions in which they occur. We also showed how LIANA+ can
combine existing components in new ways, as in the cases of spatial CITE-seq

data and metabolite-mediated CCC.
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Figure 2. Inference of ligand-receptor interactions between peripheral blood mononucleated cells
(PMBCs) from A) Lupus single-cell transcriptomics and B) Covid-19 CITE-seq (joined modality
RNA-protein) data. C) Interaction importances (t-values) for transcription factors as predictors of
cell type proportions and D) Contributions of distinct views (Pathways and Transcription Factors)
as predictors of cell type proportions; in a 10X Visium slide of heart tissue with ischemia upon

myocardial infarction. Local spatially-weighted E) Cosine similarity, F) Permutation P-values,

and G) Categories for the interaction between VIN & ITGAV_ITGBS in the ischemic heart slide
from C and D.
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2.1.3 LIANA+ Multi-condition Component

As the number of samples and experimental design complexity in single-cell
and spatial datasets continue to increase, generalizable methods are required to
analyse CCC across conditions. In LIANA+, we provide several strategies to do
so (Fig. 1C).

As an initial strategy and in line with current best practices of differential

expression analysis in single-cell data 64

, we used hypothesis-driven tests at the
pseudobulk level with DESeq2 ***° to enable CCC inference between conditions
(Methods). Briefly, LIANA+ combines differential analysis results with gene
expression levels, and then aggregates those into ligand-receptor statistics across
cell type pairs (Methods). This aggregation of feature-level statistics facilitates
the prioritisation of potential communication events that distinguish groups of
samples or conditions (Fig. 3A).

CCC is a multicellular process, and while hypothesis testing for deregulation
events of concerted pairs of ligand-receptor transcripts between two cell types
can be helpful, such testing disregards coordinated communication events that
involve multiple cell types. As an alternative, we combine CCC inference scores,
both from dissociated and spatial data, with factorization approaches that allow
for an unsupervised analysis of CCC of spatial locations or samples. These
hypothesis-free (unsupervised) approaches utilise different dimensionality
reduction algorithms to jointly model CCC events across samples and cell types,
or locations. Specifically, they decompose inferred CCC events into latent
factors that can be interpreted as intercellular programmes representing
coordinated CCC events.

In spatial data, local spatially-informed metrics in LIANA+ can be combined
with standard non-negative matrix factorization (NMF) (Fig. 3B), along with a
heuristic approach to estimate the optimal number of factors (Methods). The
application of NMF to local metrics results in intercellular programmes
(factors), represented by factor scores per location, along with sets of
interactions associated with each factor. In addition to being applicable to a
single sample at a time, we also demonstrate that NMF can identify intercellular
programmes in cross-condition data, as presented in Section 2.2.

For cross-conditional, dissociated single-cell data, LIANA+ leverages

higher-order dimensionality reduction approaches to decompose CCC events

10
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into intercellular programs, as previously demonstrated with Tensor-cell2cell
3250 Besides Tensor-cell2cell, we propose an alternative unsupervised approach
that leverages the MOFA+ multi-view framework (Methods) *. The approach
inherits the efficiency and flexibility of MOFA+ to enable factor analysis of CCC
interactions across samples, by modelling pairs of cell groups as views. In
addition to providing information on factors that best separate the samples
according to predefined conditions (Fig. 3C), both factorization methods also
inform about the most relevant cell types (Fig. 3D) or interactions (Fig. 3E),
explaining the variability of CCC events across samples.

In LIANA+, any ligand-receptor method can be combined with MOFA+ or
Tensor-cell2cell. As such, we evaluated the ability of each combination of
ligand-receptor method and dimensionality reduction to distinguish samples
from different conditions (Methods; Supp.Note 2) wusing five public
cross-conditional atlases from the human heart, lung, and brain (Supp. Table 3).
We found that both Tensor-cell2cell and MOFA+ capture CCC events
coordinated across cell-types that separate samples according to the different
conditions at hand. Of note, while the results of most methods (except CellChat)
were comparable when decomposed with MOFA+, there were more differences
in method performance when using Tensor-cell2cell (Supp. Fig. S5; Supp. Note
2).

To showcase the combined approach of LIANA+ with MOFA+, we used public
single-cell and spatially-resolved murine acute kidney injury datasets %, In the
dissociated dataset, we identified a potential intercellular programme
modulating tissue repair in response to kidney injury (Supp. Fig. S6A-D;
Supp. Note 3). We then used the spatial component of LIANA+ to confirm that
an interaction involving Sppl, associated with kidney injury in dissociated data,
was also captured in the spatial dataset. We found that the interaction increased
in prevalence subsequent to injury (Supp. Fig. S6E&F), supporting its potential

relevance.
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Figure 3. 4) Hypothesis testing for deregulated ligand-receptor interactions upon interferon-beta
treatment in lupus PBMCs (Methods). B) NMF factor scores on local ligand-receptor metrics in an
ischemic heart slide. C) MOFA+ per-sample factor scores of decomposed ligand-receptor
interactions from a factor (Factor 1) separating control and interferon-beta-stimulated lupus
patient samples. D) Variance explained (R?) per cell type pair and E) interaction loadings in
Factor 1.
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2.1.4 LIANA+ Intracellular Signalling Component

CCC events commonly initiate or emanate from intracellular processes, and
LIANA+ provides various strategies to investigate these.

Leveraging OmniPath 33, LIANA+ enables the annotation of ligand-receptors to
pathways of interest. It is also possible to perform downstream enrichment
analyses of the output of any aforementioned CCC methods, from single-cell or
spatial data, using a wide range of gene sets and enrichment methods via the
package decoupler ** (Fig. 4A; Methods).

In addition, LIANA+ can infer signalling networks from prior knowledge,
linking identified CCC events to downstream intracellular signalling pathways
and transcription factors. In contrast to existing network methods used in the
CCC field *°, our approach considers the direction of deregulation for nodes of
interest (e.g. the activation or inhibition of receptors and transcription factors),
as well as the signs of edges within the prior knowledge (activating or inhibiting
edges; Methods). For this, CCC predictions from any method in LIANA+ are
combined with knowledge of signed and directed protein-protein interactions
as well as with transcription factors and their targets, both obtained from
OmniPath (Fig. 4B; Methods). Then a network-optimisation approach * is used
to identify putative causal paths that connect CCC events with active
transcription factors (Fig.4C; Methods). These analyses enable the user to

obtain an integrated picture of the intra- and intercellular processes.

2.1.4 LIANA+’s Prior Knowledge Component

All components of LIANA+ rely on existing biological knowledge. As such,
LIANA+ draws from OmniPath’s rich database of ligand-receptor resources ,
providing access to 15 different resources, along with a consensus resource. To
increase the flexibility of our CCC workflows, the knowledge in LIANA+ can be
further expanded by leveraging BioCypher, which provides utilities for the
modular and reproducible representation of knowledge °°. For instance, we

5758 a comprehensive and customisable resource of

created Metalinks
metabolite-protein interactions, additionally incorporating annotations such as
tissues, pathways and diseases. We foresee that similar advancement will further

refine the predictions from LIANA+.
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Figure 4. A) Pathway enrichment analysis of ligand-receptor loadings identified with
Tensor-cell2cell, showing high JAK-STAT activity following interferon-beta treatment. B)
Outline of workflow to link deregulated ligand-receptor to intracellular signalling. C) Causal
intracellular signalling network, connecting deregulated CCC events following interferon-beta
treatment with downstream transcription factors, associated with JAK-STAT signalling. All
analyses in this figure were done using the lupus PBMCs dataset (Methods).
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2.2 LIANA+ extracts Condition-specific Communication Patterns

To showcase the ability of LIANA+ to decipher the intercellular mechanisms
driving disease, we used a cross-condition spatial transcriptomics dataset
(Visium 10x) *° of human myocardial infarction encompassing samples from
myogenic, fibrotic, and ischemic regions (Fig. 5A).

To identify shared and coordinated CCC events across all slides, we used NMF
on the local (spot-level) metrics of all ligand-receptor interactions, calculated
using Cosine similarity. The "elbow" method approximated the presence of
three factors as optimal (Supp. Fig. S7A; Methods), and we thus decomposed the
local interactions into three factors, which we assumed to represent three
distinct intercellular interaction programmes (patterns).

We then aggregated the factor scores for each slide, and saw that the slides
clustered largely according to the regions from which they were obtained
(Fig. 5B). We saw high mean scores of Factor 8 in Myogenic samples, while
Factor 2 scores were prominent in Ischemic samples, and Factor 1 scores were
high in both Ischemic and Fibrotic slides (Fig. 5B). To better understand the
biological processes underlying the identified communication patterns, we did
pathway enrichment analysis on the ligand-receptor loadings of each factor
(Methods; Fig. 5C). The ischemia-associated Factor 2 showed an up-regulation
of TNFa, NFkB, and MAPK pathways (Fig.5C), reflecting expected
inflammatory communication patterns in ischemic regions (Fig.5D) °©°.
Similarly, we saw that interactions associated with TGFB signalling, a
well-known driver of fibrosis ¢, were enriched in Factor 1.

To decipher the global drivers of ischemia-associated communication patterns,
we modelled, in a spatially-informed manner, the top 20 most representative
local ligand-receptor scores from Factor 2 using two distinct sets of predictors:
tissue function, represented by transcription factor activities, and structure,
quantified by the cell-type proportions in each location (Methods).

We saw that, across the slides, the top 20 local scores from the ischemia
associated factor (Factor 2) were well explained by jointly modelling structure
and function (multi-view median R? >= 0.75; Supp.Fig. S7B), with
transcriptional factors having a higher contribution to the predictive
performance (>90%) than tissue structure (<10%; Supp. Fig. S7C). This can be
explained by the broader signalling events captured by the higher number of
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predictors - in this case transcription factors. Among the top 20 interactions in
Factor 2, we found several interactions involving SPP1, a well-known driver of
fibrosis ®2. Specifically we saw several interactions involving integrin complexes
with high variances explained (R? > 0.81; Supp. Fig. S7B), and we focused on the
interaction of SPP1 with the ITGA5_ITGBI complex (Fig. 5E). We saw that the
abundance of cell types showed the highest predictive performances of the local
score of SPP1 and the ITGA5_ITGBI integrin complex (Fig. 5F). In particular the
presence of fibroblasts was the best predictor of this interaction (median
coefficient t-value = 19.3), together with myeloid cells (median coefficient t-value
= 12.6; Fig. 5F). It was previously reported from this data set that the location of
SPP1+ macrophages is associated with the presence of myofibroblasts in
ischemic heart tissue *. Our expanded analysis revealed a collection of potential
communication events that could be linked to the proliferation or establishment
of the myofibroblast phenotype in myocardial infarction that had not been
reported before. The transcription factor most strongly associated with the
same interaction was PAX6 (median coefficient t-value = 6.8; Fig. 5F), with the
functional perturbation of PAX6 being previously associated with myofibroblast
differentiation %. We examined the local spatial co-expression of
SPP1&ITGAS5_ITGBI and its relationship with the PAX6 regulator, and saw that
their local spatial association (Supp.Fig. S7D-E) was primarily within the
boundaries of the ischemia-associated intercellular programme (Factor 2;
Fig. 5C).

In summary, this analysis showcases how LIANA+ provides a suite of
spatially-informed methods to enable the identification of disease-related
communication patterns, as well as diverse strategies to decipher and interpret

the drivers of underlying biological processes within those niches.
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Figure 5. A) Experimental design. B) Average factor scores per slide. C) Pathway enrichment of
ligand-receptor loadings. D) Factor 2 scores in a selected sample (ACHO0014). E)
Spatially-weighted Cosine similarity of SPP1 and the ITGA5_ITGB1 complex. F) Median
importance (t-values) from the MISTy models for the local interaction between SPP1 and
ITGAS5_ITGBI; showing cell type proportions and transcription factors (regulators) as predictors
in blue and pink, respectively.
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3. Discussion

As our ability to quantify molecular readouts at scale increases, so does the

demand for comprehensive methods to generate biological insights. Building

36 33

on existing methodological infrastructure and biological knowledge °,
LIANA+ integrates and expands previous methodological developments to

study CCC, redefining them into synergistic components.

Single-cell technologies capture cellular heterogeneity at an unprecedented
scale, yet during the dissociation process information about tissue architecture
is lost. Conversely, spatial technologies preserve tissue context, yet they either
provide limited resolution since each spot captures multiple cells, or they
measure a relatively low number of genes . LIANA+ addresses these limitations
by combining CCC inference from single-cell and spatially-resolved data. In our
application to murine kidney injury, we demonstrated how LIANA+ can identify
interactions between cell groups of interest from single-cell data, and then

support those by pinpointing corresponding spatially-informed interactions.

The components in LIANA+ are also complementary when applied to a single
technology. For example, spatial methods in LIANA+ range from simple
metrics, such as Global Moran’s R Y, to the spatially-informed modelling of

15, Both of these approaches summarise spatial

multi-view representations
relationships across the whole slide, and are thus highly complementary with
local spatial metrics, six of which are implemented in LIANA+, to summarise
interactions at the individual spot/cell level. As a consequence, LIANA+ provides
ways to summarise CCC interactions relevant for the whole slide, but can also

identify the specific subregions within which interactions occur.

Motivated by the rapid emergence of multi-omics, in particular

spatially-resolved technologies #

, all methods in LIANA+ are also applicable
across modalities. This was demonstrated in this work by jointly analysing RNA
and protein omics layers from single-cell ® and spatial ** CITE-seq datasets. In
our application to CITE-seq single-cell data, we showed that LIANA+ does not
only adapt existing multi-omics CCC methods ?* but also provides readily
usable novel strategies. As an example in the spatially-resolved CITE-seq

dataset, we combined multi-view learning '® with local metrics to learn spatial

18


https://sciwheel.com/work/citation?ids=14649766&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10728846&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13352792&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13527485&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12853292&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14932270&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10088809&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14440083&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9168520&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12853292&pre=&suf=&sa=0
https://doi.org/10.1101/2023.08.19.553863
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.19.553863; this version posted August 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

interactions across modalities and subsequently locate the subregion at which

they occur.

Beyond analysing multimodal data, in LIANA+ we also augment conventional
CCC inference by combining it with features derived from the data. For
example, we built up on recent applications ??5%3 (o0 propose a strategy that
estimates metabolite-mediated CCC, allowing the spatially-informed inference
of interactions between neurotransmitters and their corresponding receptors.
While this example uses only transcriptomics, the flexible nature of LIANA+
enables inferred metabolite abundance to be seamlessly replaced with
quantitatively measured metabolite levels - to be enabled by emerging spatial

metabolomics technologies %, joined with transcriptomics.

These examples further underscore the ability of LIANA+ to be readily adapted
to novel applications. Thus, we envision LIANA+ to be a versatile tool for the
study of CCC driven by diverse mediators, beyond protein-mediated
ligand-receptor interactions and expanding the range of CCC events that could

be studied, such as host-microbiome interactions 5-%°.

While each of the methods in LIANA+ are typically applied to a single slide or
sample, we combine them with dimensionality reduction techniques to enable
their application to multi-sample and multi-condition datasets. This enables the
unsupervised analysis of coordinated CCC events as intercellular programmes,
in line with approaches that aim to capture coordinated gene programs across
cell types °72. Here, we repurposed MOFA+ ° to CCC, and supported its ability
to distinguish conditions in five cross-conditional single-cell atlases. We also
used MOFA+ to identify intercellular programmes driving response to acute
kidney injury in single-cell dissociated data. Moreover, we showed that
factorisation techniques, such as standard NMF, can be combined with
spatially-informed local interactions to identify cross-conditional programmes

following myocardial infarction *°

. While here we present each factorization
technique in a specific application, they are interchangeable and in future
applications, they can also be replaced with spatially-informed dimensionality

73,74

reduction approaches . Moreover, such unsupervised approaches can be

supplemented or replaced by a hypothesis-testing approach using differential
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expression analysis, as a simpler alternative that focuses on a single interaction

at a time.

In addition to identifying CCC interactions relevant in both steady-state or
across conditions, LIANA+ facilitates interpretation of intercellular signalling by
connecting it to downstream events. Leveraging its flexibility, it can be

integrated with diverse enrichment methods **

and existing knowledge
resources * to infer CCC-associated pathways or downstream transcription
factors. LIANA+ includes a component * to infer causal paths connecting CCC
to transcription factors. While here we wused an algorithm to infer
sign-consistent networks *°, other network approaches can also be incorporated
6-10 " Consequently, LIANA+ enables the integration of both intra- and

intercellular communication events.

The methods implemented in LIANA+ have a number of limitations. First, they
use prior knowledge, which is limited, often exhibiting biases and a trade-off
between coverage and quality *"'”°. Most curation efforts have been focused on
annotating ligand-receptor interactions 3% and additional prior knowledge
efforts are needed in particular for the inference of CCC beyond
protein-mediated events. Moreover, contextualising prior knowledge to specific
cell types, tissues, or disease can help to reduce erroneous predictions. As an
example, we made use of MetalinksDB ¥, a comprehensive resource for the
inference of metabolite-mediated CCC, here customised to the brain. Second,
CCC from dissociated single-cell data remains limited to the co-expression of
communication partners, and this co-expression at the transcript level may not
translate to the protein level, let alone imply a functional interaction . Likewise,
while spatially-resolved data is a step further from its dissociated counterparts,
it is limited to the co-localization of transcripts. Finally, while we showed the
ability of LIANA+ to generate CCC insights across a range of technologies, along
with some preliminary evaluations, systematic benchmarks of CCC methods are
still pending. Some examples exist but they remain limited to the use of

11,76

orthogonal modalities such as spatial data or downstream signalling . As

emerging technologies 77

which provide bona fide CCC events, become
measurable at scale and widely available, LIANA+ will serve as a facilitator for

such benchmarks and comparisons. Therefore, despite its broad functionalities,
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our framework - as all CCC methods - remains a tool for hypothesis generation,

requiring validation experiments.

Overall, LIANA+ generalises the multifaceted aspects of cell-cell
communication inference into synergistic components. As illustrated in this
manuscript, these components can be combined in various ways, and their
configurations can be tailored to address diverse questions and datasets. Given
the modularity of LIANA+, new methods can be integrated into the framework
and immediately tap into the established ecosystem of methods and resources,
benefiting from enhanced compatibility and interoperability. Thus, LIANA+ not
only stands as a comprehensive and scalable tool for studying communication
events but also serves as a foundational framework and catalyst for future

collaborative developments in the field.
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4. Methods

Bivariate Spatially-informed Metrics

Common notations:

z; and Y are the vectors of two variables for spots (or cells) i

n is the number of spots,

7z and ¥ is the mean of the variable values,

Wij is a spatial proximity weight indicating the degree of spatial association

between spot 7 and spot J.

We adapted bivariate Global and local Moran's R, extensions of Moran’s I *,

from SpatialDM Y; both of which are measures of spatial co-occurrence.

Local Moran’s R is defined as:
LocalR; = (2; — 2) > wij(yi — §) + (yi — §) > wij(x; — T)
i=1 =1

while Global Moran’s R is defined as:

> s wig(wi — ) (y; — )
Vi (@i —2)2/ 307 (i — 9)?

Global R =

Inspired by scHOT *, we also implemented local weighted variants of common
similarity metrics, such as Pearson and Spearman correlation:
> wij Y (wiiys) — Y (wiis) 3 (wijy:)
VS wig Yo (wia?) — 30 (wiwi)?) (0 wiy Yo (wiy?) — 2o (wigyi)?)
> Wi Y (Wijra,Ty,) = 3 (Wijra,) 2 (wijry,)
\/(Z wij Y (wir,) — 2o (wijra,)?) (30 wig Y (wiry,) — 3o (wigry,)?)

Pearsonpw; =

Spearmanpw; =

>

where summation is performed over i and "z, v are the ranks of x and y for
spots 1.

A second masked version of Spearman correlation as proposed and default
approach in scHOT was also implemented; where we consider "z, "vi only for

spots ¢ with non-zero w.

Moreover, we provide weighted Jaccard and Cosine similarity metrics:

22


https://www.codecogs.com/eqnedit.php?latex=x_i#0
https://www.codecogs.com/eqnedit.php?latex=y_i#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%7Bx%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%7By%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://sciwheel.com/work/citation?ids=10309402&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13527485&pre=&suf=&sa=0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctext%7BLocal%7D%20R_j%20%3D%20(x_i%20-%20%5Cbar%7Bx%7D)%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dw_%7Bij%7D%20(y_i%20-%20%5Cbar%7By%7D)%20%2B%20(y_i%20-%20%5Cbar%7By%7D)%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dw_%7Bij%7D(x_i%20-%20%5Cbar%7Bx%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctext%7BGlobal%20R%7D%20%3D%20%5Cfrac%7B%20%5Csum_%7Bi%7D%5E%7Bn%7D%20%5Csum_%7Bj%7D%5E%7Bn%7D%20w_%7Bij%7D%20(x_i%20-%20%5Cbar%7Bx%7D)(y_j%20-%20%5Cbar%7By%7D)%7D%7B%20%5Csqrt%7B%20%5Csum_%7Bi%7D%5E%7Bn%7D(x_i%20-%20%5Cbar%7Bx%7D)%5E2%7D%20%5Csqrt%7B%20%5Csum_%7Bi%7D%5E%7Bn%7D(y_i%20-%20%5Cbar%7By%7D)%5E2%20%7D%20%7D%20#0
https://sciwheel.com/work/citation?ids=9273175&pre=&suf=&sa=0
https://www.codecogs.com/eqnedit.php?latex=%20%20%5Ctext%7BPearson%7D%20%5Crho%20w_j%20%3D%20%5Cfrac%7B%5Csum%20w_%7Bij%7D%20%5Csum(w_%7Bij%7D%20x_%7Bi%7Dy_%7Bi%7D)%20-%20%5Csum(w_%7Bij%7D%20x_%7Bi%7D)%5Csum(w_%7Bij%7D%20y_%7Bi%7D)%7D%7B%5Csqrt%7B(%5Csum%20w_%7Bij%7D%20%5Csum(w_%7Bij%7D%20x_%7Bi%7D%5E2)%20-%20%5Csum(w_%7Bij%7D%20x_%7Bi%7D)%5E2)%20(%5Csum%20w_%7Bij%7D%20%5Csum(w_%7Bij%7D%20y_%7Bi%7D%5E2)-%5Csum(w_%7Bij%7D%20y_%7Bi%7D)%5E2)%7D%20%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%20%5Ctext%7BSpearman%7D%20%5Crho%20w_j%20%3D%20%5Cfrac%7B%5Csum%20w_%7Bij%7D%20%5Csum(w_%7Bij%7D%20r_%7Bx_%7Bi%7D%7D%20r_%7By_%7Bi%7D%7D)%20-%20%5Csum(w_%7Bij%7D%20r_%7Bx_%7Bi%7D%7D)%5Csum(w_%7Bij%7Dr_%7By_%7Bi%7D%7D)%7D%7B%5Csqrt%7B(%20%5Csum%20w_%7Bij%7D%20%5Csum(w_%7Bij%20%7Dr_%7Bx_%7Bi%7D%7D%5E2)%20-%20%5Csum(w_%7Bij%7Dr_%7Bx_%7Bi%7D%7D)%5E2)(%5Csum%20w_%7Bij%7D%20%5Csum(w_%7Bij%7D%20r_%7By_%7Bi%7D%7D%5E2)-%5Csum(w_%7Bij%7Dr_%7By_%7Bi%7D%7D)%5E2%7D)%20#0
https://www.codecogs.com/eqnedit.php?latex=r_%7Bx_i%7D#0
https://www.codecogs.com/eqnedit.php?latex=r_%7By_i%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=r_%7Bx%7D_%7Bi%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=r_%7By%7D_%7Bi%7D#0
https://doi.org/10.1101/2023.08.19.553863
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.19.553863; this version posted August 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

2?21 min(xi, yi>wij

Jw,; =
’ 22;1 max(x;, y; ) W;;

where:
x and ¥ are vectors of the same length, binarized by setting values > O to 1, to

signify presence or absence of a read out.

n
Zizl Wi TilYi

Vo WG D Wiy

cosw; =

When working interactions, the members of which contain heteromeric
complexes, we consider the minimum expression of complex members per
spot. Any interactions, the members of which are not expressed in at least 10% of

the spots are excluded.

Local Score Categories

Inspired by GeoDa *°, we categorise local bivariate associations according to the
magnitude and sign of the two variables. If spatially-weighted variables are
non-negative (e.g. gene expression) then they are z-transformed. Then for each
spot j, we categorise interactions according to the sign of the spatially-weighted

variables (v) involved in the interaction - i.e. as positive, negative or neither:

signv; = sign(Z(viwij))

i=1

Then to obtain a category for the interaction, we combine the sign of the two
variables (z and y). If both variables are positive (high-high), then the interaction
is positive (1); if one variable is positive (high) and the other negative (low) then
the interaction is negative (-1); if both variables are negative (low-low), or either
variable is neither (e.g. equals to 0), then the interaction is labelled as “neither”
(0). The latter enables us to distinguish relationships where both variables are
highly-abundant (high-high) from those where both values are lowly-abundant

(low-low).

For statistical testing of local metrics, we use spot label permutations to generate

a Null distribution against which empirical local p-values are computed.
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We provide a detailed tutorial on the bivariate metrics at:

https:/liana-py.readthedocs.io/en/latest/notebooks/bivariate.html

Learning Spatial Relationships with MISTy

To learn multivariate interactions in space that go beyond bivariate metrics, we
re-implemented MISTy’s multi-view learning approach '°. Our multi-view
approach jointly models different spatial and functional aspects of the data, such
that it can fit any number of views, and each view can contain any number of
variables. As shown in this work, one can use it to jointly model different
combinations of RNA expression, cell type proportions, pathway or
transcription factor activities, CCC events, and protein abundance.

We additionally make use of different modelling approaches, by default, the
models are based on random forests (RF) and can capture complex non-linear
relationships. Here, we also implemented linear models. For both RF and linear
models, we use the implementations available from scikit-learn .

In LIANA+, multi-views are represented as subclasses of MuData *, modified to
ensure the correct format of the views and corresponding spatial connectivities.
Each multi-view structure has an intrinsic view (intraview) that contains the
target variables of interest for each spatial location. The other views can be
considered as “extra” views, composed solely of predictor variables. Predictor
variables can also represent a transformation of the variables within the
intraview taking into account a specific spatial context, as well as other
categories of variables.

Once the multi-view structure is defined, each target is modelled by predictors
from each view independently. As such, for each target we obtain (1)
relationship importances for each of the predictors from the distinct views; (2)
the relative ‘contribution’ of each view to the joint prediction of each target (3);
as well as the goodness of fit (e.g. R?) of the model.

The way that importances of target-predictor relationships (1) are calculated
depends on the modelling approach. For RFs, we use the reduction of variance
explained that can be attributed to each predictor across all regression trees. For
the linear models we use the t-statistic of the estimated parameters under the
zero value null hypothesis. The independent view-specific predictions are

combined by a cross-validated regularised linear meta-model '® to obtain the
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contributions of view-specific models (2), along with the goodness of fit of the
overall model, for each target variable (3). In particular, we can discern between
the contribution of the intraview, modelled as the intrinsic variability among
target variables within the same cells/spots, from the predictive contribution of
“extra” views, which encode spatial information.

To facilitate the use of our multi-view learning approach, we provide in depth
tutorials on how to generate and model custom and predefined multi-view

structures: https:/liana-pv.readthedocs.io/en/latest/notebooks/misty.html.

Estimation of Spatial Connectivities

As in MISTy ' spatial connectivity weights are calculated using families of

d-
dfj d2. ]

. . _dij . R w = .
radial basis: w = e~ 2, Gaussian w = e 22, linear [ , and exponential

~7": where w is a weight matrix Wij € 0,1] of shape n x n, d;is the

kernels w = e
Euclidean distance between cells or spots iz and j, [ is a parameter controlling the
shape, or bandwidth. We additionally provide a cutoff parameter below which
spatial connectivities are set to zero. Throughout the manuscript, unless
otherwise specified, we used Gaussian weights with a bandwidth of 150, and a
cutoff of 0.05, and the diagonal (self to self) was set to 1 for local scores and O for
MISTy.

Programmatically the calculation of spatial connectivities mirrors Squidpy’s
spatial_neighbors function, and thus spatial connectivities can be easily

replaced with Squidpy’s neighbourhood graphs .

Ligand-Receptor Pathway Enrichment

To perform ligand-receptor pathway enrichment, we first convert gene set
(pathway) resources, represented as weighted bipartite graphs where each gene
belongs to a gene set, into ligand-receptor sets. Specifically, we assign a weight to
each ligand-receptor interaction, based on the mean weight of the ligands and
receptors involved in the interaction, also taking into account the presence of
heteromeric subunits. Moreover, we assign a given ligand-receptor interaction
to a specific gene set (or pathway), only if all members of the interaction are part
of the gene set, and in the case of weighted resources are additionally

sign-consistent. Finally, once a ligand-receptor resource is generated, we use

25


https://liana-py.readthedocs.io/en/latest/notebooks/misty.html
https://sciwheel.com/work/citation?ids=12853292&pre=&suf=&sa=0
https://www.codecogs.com/eqnedit.php?latex=w%3D%7Be%7D%5E%7B-%5Cfrac%7Bd_%7Bij%7D%5E2%7D%7Bl%5E2%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=w%3D%7Be%7D%5E%7B-%5Cfrac%7Bd_%7Bij%7D%5E2%7D%7B2l%5E2%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=w%3D1-%5Cfrac%7Bd_%7Bij%7D%7D%7Bl%7D#0
https://www.codecogs.com/eqnedit.php?latex=w%3D%7Be%7D%5E%7B-%5Cfrac%7Bd_%7Bij%7D%7D%7Bl%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bij%7D%20%5Cin%20%5C%5B0%2C1%5C%5D#0
https://sciwheel.com/work/citation?ids=12380658&pre=&suf=&sa=0
https://doi.org/10.1101/2023.08.19.553863
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.19.553863; this version posted August 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

decoupler-py to perform enrichment with univariate linear regression .

In this manuscript, we used the PROGENy resource * to assign pathway
annotations to ligand-receptor interactions. In contrast to classic pathway gene
sets, PROGENy contains consensually regulated targets of pathway

8 not genes thought to be members of the pathways. However,

perturbations
this resource-conversion procedure is applicable to any resource, including
undirected resources, such as GO terms for which all members of a gene set will

be assigned a weight of 1.

Hypothesis testing for deregulated CCC across Conditions

To enable hypothesis testing for CCC, similarly to the strategy in MultiNicheNet
8 we first generate pseudobulk profiles by summing raw expression counts for
each sample and cell type with the decoupler-py package *. After filtering low
quality genes in (e.g. considering minimum expression in terms of total counts
and samples in which the gene is expressed), we perform differential analysis for
each cell type independently with DESeq2*®, as implemented in PyDESeq2 *°.
Once feature statistics per cell type are generated, we transform those into a
dataframe of interaction statistics by joining them to a selected ligand-receptor
resource, while additionally calculating average feature expression and
expression proportions per cell type, based on a user-provided AnnData object
8, Similarly to any other method in LIANA+, interactions expressed in less than
10% (by default) of the cells per cell type are filtered, considering the individual
members of heteromeric complexes.

A detailed tutorial is available at:

https:/liana-py.readthedocs.io/en/latest/notebooks/targeted.html

Sign-consistent Intracellular Networks

By combining CCC predictions with prior knowledge networks of intracellular
signalling, it is possible to recover putative causal networks linking CCC events
to transcription factors. To accomplish this, we used CORNETO ¥ - a Python
package that unifies network inference problems from prior knowledge - to
implement a modified version of the integer linear programming (ILP)

formulation implemented in CARNIVAL 88,
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This modified version of CARNIVAL % takes four distinct inputs: (1) a prior
knowledge graph (PKN) of signed protein-protein interactions, where nodes are
proteins and edges are activating or inhibitory interactions; continuous and
signed (2) starting (input) nodes and (3) end (output) node values, with negative
values indicating downregulation and positive values indicating upregulation. In
addition, we take (4) values for the rest of the nodes in the graph [0, 1] (e.g. gene
expression proportions), with higher values incurring less penalty than genes
with lower values when the gene is included in the inferred network. Then, a
subnetwork, optimised for sparsity, is extracted from the PKN which connects
the input (starting) nodes to the output (end) nodes.

The resulting inferred network is a directed acyclic graph that connects the (2)
input nodes to the (3) end nodes (e.g. receptor to transcription factors),
including the values for each edge and node of the graph indicating if the node
is upregulated (+1), or downregulated (-1). A node n. in the graph can be
upregulated only if there is at least one selected parent node n, such that n, is
upregulated and there is an activating edge between n, and n,, or n, is inhibited
and there is an inhibitory edge between n, and n.. Similarly, a node n. can be
downregulated if there is a parent node n, downregulated with an activating
edge between n, and n,, or if a parent node n, is upregulated and there is an
inhibitory edge between n, and n..

These rules are encoded using linear constraints and continuous/binary
variables to define a Mixed ILP problem, which is a particular type of a

combinatorial problem with linear constraints. The optimization problem is
defined as:
argeriXH_ Lxt,x7) = Z (1—x v + Z (1— a7 )|vi] +Z)\i($:’+x;)

’ ;>0 i:0; <0 i

where z* is a vector of binary variables for each node in the PKN indicating

L. + . .
whether the node i is upregulated (¥; = 1) or not; 2~ is a vector of binary

variables for each node in the PKN indicating whether node i in the PKN is

downregulated (%i = 1y or not; v is a vector of values for measured nodes (input
nodes and output nodes), where positive values are upregulated species and
negative values are downregulated species. For example, v can be estimated as
fold change, t-statistic or any other score indicating difference in activity in a

protein in the PKN between two conditions.;
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In this modified version of CARNIVAL, we additionally introduce A - a vector of
penalties to penalise the inclusion of protein nodes in the resulting inferred

network, according to (4) node weights w [0, 1] in the (1) PKN.
We set \ to penalty, .. (1 as default) and penalty,,i, (0.01 as default):

)\i —
penalty, .. if w; < threshold

penalty, ., if w; > threshold

Linear constraints impose conditions on the variables of the ILP problem. For

example, a node cannot be upregulated and downregulated at the same time (

2" 42~ <1). The problem includes other variables and linear constraints to
guarantee that the final networks valid solutions are acyclic networks and that
the rules explained before are respected. Additional information about the
formulation can be found in Liu et al. (2019) % .

We show the inference of sign-consistent networks downstream of deregulated

CCC events, identified using differential expression analysis with PyDESeq2 *°
here: https:/liana-py.readthedocs.io/en/latest/notebooks/targeted.html

NMF on ligand-receptor local scores

A utility function was implemented that takes an AnnData object 5

as input and
uses Scikit-learn’s NMF implementation to factorise the input matrix into two
matrices of dimensions &, n and k, m; where m is the number of features, 7 is the
number of observations (cells); and & is the number of components (factors). To
estimate k, we additionally provide an heuristic elbow selection procedure, in
which the optimal component number (k) is chosen from a sequential range of
components using elbow selection as implemented in the kneedle package ®°.
Selection of optimal % is based on the mean absolute reconstruction error.
LIANA+ in multimodal single-cell & spatial data

To enable the inference of CCC across modalities, the methods implemented in
LIANA+ accept MuData objects 32 as input. These essentially provide

functionalities to load and store multimodal data *2, and can be thought of as an
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extension of AnnData objects *¢, which are the default input of LIANA+ when
working with unimodal single-cell or spatial data.

Feature level transformations such as z-scoring or min-max scaling are used to
transform features within omics and across omics to a comparable scale to

facilitate integration.

Intercellular Communication Factorization with MOFA+
Inspired by the CCC factorization approach proposed in Tensor-cell2cell #? and
building on our recent application of MOFA+ to dissociated cross-condition

atlases !

, we use the ligand-receptor inference methods from LIANA+ across
each sample independently, and then transform this into a multi-view structure
of cell type pairs (views), each represented by samples and the ligand-receptor
interaction scores in each. To build the multi-view structure, we use the MuData
format 2, and only views with at least 20 (by default) interactions in at least 3 (by
default) samples are kept. Moreover, we exclude samples if they have less than
10 interactions (by default) and interactions are considered only if they are
present in at least 50% of the samples (by default). Then we use the MOFA+

statistical framework %

to decompose the variance of the samples into
intercellular communication programmes.

A tutorial on extracting intercellular programmes from single-cell dissociated
data with MOFA-+ is available at:

https:/liana-pv.readthedocs.io/en/latest/notebooks/mofatalk.html

Spot Calling using Local metrics

To benchmark how well each local score in LIANA+ preserves biological
information, we devised spot classification and regression tasks. In the spot
classification task, we used four public breast cancer 10X Visium slides %, with
annotations labelled as malignant (containing “cancer” in their annotation) or
non-malignant spots (any other spot). For each slide, we calculate local
ligand-receptor scores using the local metrics in LIANA+. Then for each local
metric, we trained and evaluated Random Forest Classifiers, with 100
estimators, using a Stratified K-Fold cross-validation strategy (k=10). AUROC
and weighted F1 were calculated on the test sets, and their average across the

folds was used in visualisations.
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In the regression task, we used a public dataset with 28 10x Visium slides from
left-ventricle heart tissues to compare how well different local metrics capture
cell-type specific ligand-receptor events. In particular, we checked how well do
the local scores LIANA+ predict cell type proportions per spot, inferred using

cell2location !

as done in Kuppe et al, 2022 *°. We used a Random Forest
Regressor, with 100 estimators, utilising a K-fold cross-validation training
strategy (k=5), and calculated the variance explained (R? and root mean squared
error for each score. All classification and regression tasks were performed
through Scikit-learn (v.1.10.1).

For the inference of ligand-receptor interactions throughout this work, we used
LIANA’s consensus resource - a resource combining the curated ligand-receptor

resources in OmniPath 2.

Sample Label Classification

For the condition classification task, building on a similar approach ®?, we used
public, pre-processed, cross-conditional atlases (Supp. Table 3), each selected
such that they include more than five samples per condition following
preprocessing. To ensure that only high-quality samples were used in each of
the atlases, we removed any samples with less than 1,000 cells or z-transformed
total counts above or below a z-score of 3 and -2, respectively. In the Carraro et
al. dataset ?2, we kept samples with more than 700 cells. Moreover, only cell
types found in at least 5 samples and with at least 20 cells in each individual
sample were considered. To ensure that the samples were balanced between the
conditions, if either condition had a sample ratio higher than 1.5 x the number
of samples in the other condition, then the overrepresented condition was
subsampled to the number of samples in the underrepresented one. Each
dataset was normalised to 10,000 total counts per cell and loglp-transformed.
Subsequent to preprocessing, we inferred ligand-receptor interactions at the
cell-type level using the homogenised methods in LIANA+, independently for
each sample. Any interactions not expressed in at least 10% of the cells in both
source and receiver cell types were filtered.

Then the output from LIANA+ was converted to the structures used by the
factorization approaches employed by MOFA+ and Tensor-cell2cell - a

multi-view and a 4D tensor, respectively. For the factorization in both, we
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consider interactions only if they were present in 33% of the samples, and any
interactions missing in a sample were assumed to be biologically-meaningful
and assigned as zero. For all datasets, we decomposed the CCC events into 10
factors, except Reichart et al 3, which was decomposed into 20 factors due to its
larger sample size.

Using the factor scores for each method-factorization approach combination we
then performed a classification task, modelled to the one from Armingol et al. .
Specifically, a Random Forest Classifier, with 100 estimators, was trained and
evaluated on the sample factor scores computed for each score-factorization
combination, utilising a Stratified K-Folds cross-validation strategy (k=3),
performed over 5 seeds. Then the mean Area Under the Receiver-Operator
Curve (AUROC) and weighted F1 scores were then calculated on testing set’s the

probabilities and label predictions, respectively.

Analysis of Single-Cell Data from Lupus Patients

% each

We used a pre-processed dataset of 8 pooled patient lupus samples
before and after interferon-beta stimulation. An AnnData object with the
processed data was obtained from

https:/figshare.com/ndownloader/files/34464122; available via pertpy %. Raw

gene counts were normalised to 10,000 total counts per cell and
loglp-transformed.

For the factorisation of CCC events with MOFA+, we used LIANA’s consensus
rank aggregate of magnitude ligand-receptor scores (Supp. Table 2), focusing
on ligand-receptors with at least 20 interactions in 30% of the samples, and
views with at least 10 samples. Missing interaction values were filled with zeroes.
Factorisation was also carried out with Tensor-cell2cell using the consensus rank
aggregate. A 4D tensor was built such that all cell types were preserved, and
Tensor-cell2cell estimated an optimal rank of six components. Ligand-receptor
pathway enrichment analysis was then performed on the interaction loadings
using multivariate linear regression *, with gene annotations from PROGENy 3.
For hypothesis-testing with PyDeSeq2, for each pseudobulk profile we
considered only genes with counts in at least 5 of the samples, and at least 10
counts across all samples. Differential testing was performed between stimulated

and control samples, using control as the reference. Then we used only the
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samples subsequent to interferon-beta stimulation to calculate gene expression
and proportion statistics. We kept only interactions, all members of which were
expressed in at least 10% of the cells in both source and target cell types.
For the inference of the downstream signalling events, we obtained a
protein-protein interactions resource from OmniPath, considering only
interactions with consensus direction, and a curation effort >= 5. We estimated
the transcription factor activity using the Wald statistics from PyDeSeq2 with
univariate linear regression ** and CollecTRI . Then using CORNETO
(v0.9.1-alpha.3), we inferred causal networks between receptors from the top 10
interactions, in terms of mean interaction Wald statistic, and the top 5
transcription factors, with highest enrichment scores, in CD14 monocytes. We
used gene proportions with a cutoff of 0.1, such that nodes above the cutoff were
assigned a penalty of 1, and those below a penalty of 0.01. An edge penalty of
97

0.01 was also used, and the problem was solved with the HIGHs solver
available within SCIPY (v1.10.1) %,

Analysis of Dissociated Single-cell CITE-seq Data

We obtained a single-cell CITE-seq dataset of peripheral blood mononucleated
cells from COVID-19 positive controls . We normalised the gene expression
and ADT counts using loglp and centred log-ratio normalisation, respectively.
Then we inferred ligand-receptor interactions, using the normalised gene
expression for the ligands and protein abundances for receptors. Both assays
were feature-wise transformed using zero-inflated minmax, prior to applying

an approach similar to CellPhoneDBv2 %2,

Analysis of Spatial CITE-seq data in human Tonsil

We obtained a processed secondary lymphoid (tonsil) tissue with 278 measured
proteins captured via barcoded antibodies and genome-wide gene expression *%,
For transcriptome counts we used total count and loglp normalisation, while for
protein abundances we used centred log-ratio normalisation. We then estimated
transcription factor activities as a way to reduce the dimensionality and improve
the signal within the dataset. Decoupler ** was used to estimate the transcription
factor activity, based on univariate linear regression, with DoRothEA . We then

used our multi-view learning approach ° to explore the spatial relationships
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between proteins and transcription factor activities, modelling predictions and
importances for individual views with multivariate linear regression. We used

22

feature-wise zero-inflated minmax transformation *?, with values below 0.25

being set to O, to calculate spatially-weighted Cosine similarity.

Analysis of Murine Acute Kidney Injury

We first filtered the preprocessed single-cell dataset, with pre-annotated cell
types, to only those cell types with at least 15 cells in at least 10 samples;
additionally excluding urothelial cells as they are not expected to communicate
with most of the other cell types in the kidney. Following total count and loglp
normalisation, we inferred ligand-receptor interactions using LIANA’s
consensus method (Supp. Table 2), excluding any interactions not expressed in
at least 10% of the cells in both the source and target cell types. Then we
transformed the resulting ligand-receptor interactions into views representing
cell type pairs, keeping only those interactions present in at least 25% of the
samples, views with at least 15 interactions and at least 5 views. Finally, we
decomposed those views into 5 factors using MOFA+. Kruskal Wallis test was
performed on the sample loadings for Factor 1.

For the spatial data, we filtered the preprocessed 10x slides, such that only spots
with at least 400 genes expressed and genes expressed in at least 5 spots were
kept. We additionally excluded any spot outliers according to mitochondrial,
ribosomal and total count content, using comparable but slide-specific
thresholds. Then for the interactions of interest identified in the dissociated
datasets, we calculated local cosine similarity and global Moran’s R.

Analysis of Human Myocardial Infarction

We first estimated ligand-receptor local scores using Cosine similarity
independently on each of the processed 10X Visium transcriptomics slides. We
considered interactions whose members were expressed in at least 10% of the
spots. Then we concatenated the resulting ligand-receptor AnnData objects
(slides), and kept only those interactions present in at least 10 of the slides.
Subsequently, we factorised the concatenated object with NMF, calculated the
average factor scores per slide, and hierarchically clustered the results using
Euclidean distances.

Pathway activities of ligand-receptor interaction loadings were calculated using
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linear regression **

and sets of ligand-receptor pathways, annotated using the
PROGENYy pathway resource 3 with all genes.

Focusing on the top 20 interactions, in terms of highest loadings, from
ischemia-associated (Factor 2), we modelled a multi-view representation such
that the interactions were treated as targetes (intra-view), while cell type
proportions and pathway activities were two distinct extra (predictor) views.
Transcription factor activities were calculated using linear regression with the
DoRothEA resource %, while cell type proportions were inferred with
cell2location ! and available in the processed slides *°. We excluded proliferating
cell type proportions when modelling because their phenotype is independent
of cell-type lineages. This process was done for each slide from ischemic heart
regions and aggregated statistics, such as ordinary least squares t-values,
contribution and goodness of fit, were calculated using the median.

An ischemic slide (accession number: ACHO0O013) from this dataset was also used

in the examples presented throughout the manuscript.

Analysis of Metabolite-mediated CCC in Spatial Mouse Brain Data

In line with recent developments, we used simple enrichment-like approaches
to estimate the abundance of metabolites using the expression of their
corresponding enzymes ?*?°, To generate the required prior knowledge, we
made use of MetalinksDB °° - a comprehensive metabolite-protein knowledge
graph (KG). Briefly, MetalinksDB is built from metabolite-protein interactions

extracted from databases ??"1°! and genome-scale metabolic models 102103

as an
annotated KG using BioCypher adapters *°. This KG was customised to only
include metabolites found in the brain or cerebrospinal fluid. Using this
customised KG we generated: (1) a consensus resource of manually curated
metabolite-receptor interactions; (2) sets of producing and degrading enzymes,
respectively weighted as 1 and -1; (3) sets of transporters for each metabolite,
with exporters being assigned to 1 and importers -1.

We then use a univariate linear regression model ** to estimate metabolite
abundances for each cell/spot. In a second step, inspired by NeuronChat %, we
calculate a transporter (export) score for each metabolite using a simple

arithmetic mean, such that estimated metabolite abundances in each cell/spot,

the export score of which is negative or O, are set to 0. The metabolite
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estimation step in LIANA+ can be replaced by other more informed models ',

at the user's discretion.

We used the approach, described above, to estimate metabolite abundances
from a preprocessed adult mouse brain 10x Visium slide. Then we calculated
Global Moran’s R and local Cosine similarity on feature-wise
minmax-transformed metabolite abundances and normalised receptor gene
expression. We additionally calculated P-values for the local Cosine similarities

using 100 permutations.

Data Availability

All datasets used in this work are publicly available.

Code Availability

The latest version of LIANA+ is available at https:/github.com/saezlab/liana-py,
along with detailed tutorials describing the distinct components presented here
(https:/liana-py.readthedocs.io). LIANA+ is regularly released on Github and

stable versions are released on PyPI (https:/pypi.org/project/liana/).
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9. Appendix
Supplementary table 1. Feature comparison of selected CCC tools.
Multi
CellPho | CellC | -Nich | Tensor-ce Spati | COM
LIANA+ LIANA neDB hat | eNet 112cell Scriabin | alDM | MOT | NCEM
Single-cell Inference
7 methods + | 6 methods +
Group-based LR| Consensus Consensus v v v v X X X X
Group-free LR X X X X X X v X X X
Spatial Inference
Global
Bivariate v X X X X X X v X v
Multi-view v X X X X X X X X v
Local
Bivarite v X X X X X v v X X
Multi-variate X X X X X X X X v X
Multi-condition
DEA-Based v X v X v X X X X X
Hypothesis-free v X X v X v v *q X X
Multimodal
Handles
modalities v X X X X X X X X X
Knowledge
Protein-mediate | 15 Resources | 15 Resources LIANA's
dLR + Consensus | + Consensus v v v v Resorces | v v v
Metabolite-medi
ated LR v X v X X X X X X X
LR Pathway
Annotations *2 X X v X v X X X X
v (e v/ (via
Downstream xten NicheNet
Signalling v X X X |sive) X ) X X X
Misc
Pyth | Pyth | Pytho
Language Python R Python| R R Python R on on n

approaches for hypothesis-free multi-condition analysis

*1 SpatialDM uses z-scores across samples to find differentially deregulated LRs, other tools utilise factorization

*2 LIANA provides a flexible function to annotate interactions according to any pathway gene set
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Supplementary table 2. Single-cell ligand-receptor methods implemented in LIANA+

Method* Magnitude Specificity
CellPhoneDBv2 3 CellPhoneDBv2'’s cell
IR ~_ L¢ + Rg, label permutation
Mmeank,i; = 9 approach; See p
Geometric Mean LRgeometric.meany;; = 1/ Lc, - ch See P
CellChatt * L¢, - Re, Seep

LRproby,;; =
Rpro k,ij Kh"_L*CZ ] R*C]

where Kh = 0.5 by default and
L* & R* are aggregated using
Tuckey's Trimean function.

SingleCellSignalR * /L Re, -

LRscorey, ;; =
kg \/LCZ-RC]' +u

where p is the mean of the
expression matrix M

LRpTOdUCtk’M - LC,L RC] Speci ficityWeight,;; = Z[;(L - ZI"?(I% -
NATMI % o

LRproducty;; = L¢,Re, ZLe, T ZRe,
2
where z is the z-score of

the expression matrix M

LRz.meany ;; =
Connectome ° ki

Log2FC,. ; + Log2FC,.
LOgFCi - LRlog2FCy;j = o ‘ I—; ° iR

LIANA’'s Consensus# Uses all of the above, except Geometric mean,
independently for both magnitude and specificity

Shared Notation:

k is the k-th ligand-receptor interaction

L - expression of ligand L; R - expression of receptor R; See R

C - cell cluster

i-cellgroupi

j - cell group j

M - a library-size normalised and log1p-transformed gene expression matrix
X - normalised gene expression vector

Permutations to calculate specificity:

P
1 * * * *
p'valuek,ij — ﬁ Z[funpermuted( C;» RC]-) Z funobserved( C;» RCj )}
p=1 ; where P is the number of
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permutations, and L * and R * are ligand and receptor expressions aggregated by group (cluster)
using fun; arithmetic mean for CellPhoneDB and Geometric Mean, and Tuckey’s TriMean for
_ Qo.25(X) +2 - Qo5(X) + Qo.rs(X)

4

TriMean(X)
CellChat:

# Consensus

First, a normalised rank matrix[0,1] is generated separately for magnitude and specificity as:

rank;;

Tij (1<i<m,1<j5<n)

- max(rank;)

where m is the number of ranked score vectors, n is the length of each score vector (number of
interactions), rankij is the rank of the j-th element (interaction) in the i-th score rank vector, and

max(ranki)is the maximum rank in the i-th rank vector.

For each normalised rank vector r, we then ask how probable it is to obtain r"u”(k) <= Ty where

rnu”(k) is a rank vector generated under the null hypothesis. The RobustRankAggregate method "%

expresses the probability r"u”(k) <= r,, as B, () through a beta distribution. This entails that we

obtain probabilities for each score vector r as:

p(r) = r NP (1) %N

..... n

where we take the minimum probability p for each interaction across the score vectors, and we apply a
Bonferroni multi-testing correction to the P-values by multiplying them by n.

Notes:

1 The original CellChat implementation also uses information of mediator proteins and pathways,
which are specific to the CellChat resource. To enable CellChat’s scores to be resource-agnostic
we do not utilise this information

M While we refer to the genes as ligands and receptors for simplicity, these can represent the gene
expression also of membrane-bound or extracellular-matrix proteins, as well as heteromeric
complexes for which the minimum expression across subunits is used.

I 1-vs-rest cell group log2FC for each gene is calculated as
log2 FC = log, (mean(X;)) — log, (mean(X,ot,))

* LIANA considers interactions as occurring only if both the ligand and receptor, as well as all of
their subunits, are expressed above a certain proportion of cells in both clusters involved in the
interaction (0.1 by default). This can be formulated as an indicator function as follows:

1 {Lgﬁpr'p“’p > 0.1 and Rapr'pmp > 0.1}
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Supplementary table 3. Cross-conditional atlases used in the sample classification task

Dataset Organ |Samplest Condition Reference Data URL
- . . 81910283-
Kuppe heart 23 Cardiac Infarction 40 0816-424b-9b61-c3e1d6258a77
https://cellxgene.cziscience.com/collections/e75342a8-
Reichart heart 126 Cardiomyopathies % - - -
i?, =
Carraro lung 16 Cystic fibrosis 92 SE150674
Haberman https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G
n lung 18 Pulmanory Fibrosis 106 SE135893
https://codeocean.com/capsule/9737314/tree/v2;
Velmeshev | brain 38 Autism Spectrum Disorder 107 https://www.ncbi.nlm.nih.gov/bioproject/PRINA434002/
¥ Following quality control and included in the classification
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Supplementary Note 1. Spot calling Evaluation

First, we evaluated the ability of the spatially-weighted local metrics to classify
malignant and non-malignant spots in four breast cancer slides *° (Methods). All
scoring functions did well at classifying malignancy (AUROC > 0.9; weighted F1
> 0.85; Supp. Fig. S2A-B). Spatially-informed Jaccard and Cosine similarity
functions had slightly higher and more AUROCs and F1 scores than other
methods across the slides, followed by weighted Pearson and Spearman
correlations, masked Spearman correlation, and finally bivariate Moran’s R
(Supp. Fig. S2A-B).

Second, using 28 spatial transcriptomics slides from myogenic, ischemic, and
fibrotic heart tissue upon myocardial infarction *°, we evaluated the ability of
local ligand-receptor scores to recover cell type proportions (Methods). We
noted that Cosine and Jaccard similarities had the highest predictive
performance in ischemic (R? = 0.82) and fibrotic tissues (R?~ 0.28), while Moran’s
R did best in myogenic (R* = 0.13) (Supp. Fig. S2C); with similar results also
observed in terms of Root Mean Squared Error (RMSE).

In summary, all spatially-informed local scores in LIANA+ preserved the
biological signal of gene expression. Moreover, our results suggest that
spatially-informed Cosine similarity, which performed best in both the
regression and classification tasks, might be most suitable as a default local
scoring function. However, the other scoring metrics are likely suited better for
other tasks. For example, spatially-weighted Jaccard index should be well suited
for categorical or binary data. Similarly, Spearman correlation should be more
relevant when inferring relationships between ordinal, ranked, or non-linear
variables. Thus, the choice of metric should take in consideration the data and

task at hand.
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Supplementary Note 2. Sample Label Classification

To evaluate the ability of different combinations of ligand-receptor methods
and dimensionality reductions to distinguish samples coming from different
conditions, we set up a classification task (Methods). In each dataset, we inferred
interactions independently for each sample using scoring functions from each
ligand-receptor method in LIANA+, focusing on magnitude-based scores
whenever available (Supp. Table 2). Then, we decomposed the ligand-receptor
output, obtained per sample and method using MOFA+ and Tensor-cell2cell
(Supp. Fig. S5A). Using a binary classification setup, we then calculate AUROC
and Fl for each method-factorisation combination to see well each classified
condition (Supp. Fig. S5A; Methods).

We saw that all combinations performed better than random in most datasets
(Supp. Fig. S5B). On average all methods performed similarly when combined
with MOFA+ (with average AUROCs between 0.83 and 0.85), with the exception
of CellChat’s score (0.62 average AUROC; Supp. Fig. S5B).

On the other hand, we saw more variability between the methods when
combined with Tensor-cell2cell. Specifically, ligand-receptor gene expression
products, used by NATMI and Connectome, and LIANA’s consensus, with
respective average AUROCs of 0.81 and 0.78, were most consistent across the
datasets. The AUROCSs of the rest of the methods ranged between 0.61 and 0.74
(Supp. Fig. S5B).

Moreover, MOFA+ had on average higher AUROCSs than Tensor-cell2cell across
all scores, except CellChat. This potentially reflects an intrinsic difference of the
regularizations used between the two approaches. Specifically as MOFA+
attempts to enforce orthogonality %, while the non-negative tensor component
analysis used by Tensor-cell2cell, which can be thought of as a higher-order
extension of NMF %2, does not. We also saw similar results when using weighted
F1 (Supp. Fig. S5C)

Overall, our results show that both Tensor-cell2cell and MOFA+ are capable of
capturing CCC events coordinated across cell-types that separate samples

according to the different conditions at hand.
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Supplementary Note 3. LIANA+ enables joined CCC single-cell and spatial analysis
To jointly study CCC events in dissociated and spatially-resolved data, we used
LIANA+ with two public datasets of mouse acute kidney injury (AKI) model ***2.
Both datasets employed a time course experimental design, in which murine
kidneys were sequenced following bilateral ischemia-reperfusion injury
(Supp. Fig. S6A).

First, using a single-nucleus AKI atlas (n=24) °?, we inferred potential
ligand-receptor interactions between groups of cells at the sample level and
decomposed the interactions with MOFA+ into a set of factors (Methods), with
the aim to identify deregulated intercellular programmes associated with
kidney injury. After quality control (Methods), we analysed CCC interactions
across 88 cell type pairs and saw that Factor 1 separated early acute time points
from the rest (Kruskal-Wallis P-value = 0.0069; Supp. Fig. S6B). Sample factor
scores associated in Factor 1 were highest at the 12 hour time point, earlier than
previously CCC results in a similar mouse model by Li et al., 2022 '°8. Factor 1
explained on average 13.5% of the variability (R?) of ligand-receptor interactions
across cell-type pairs, with Fibroblasts being involved in the several cell type
pairs with variances explained > 30%, including their interaction as potential
sources of communication with Proximal tubule epithelia (R? = 52.7%; Supp. Fig.
S6C). Fibroblasts were also the recipient cell type with the highest mean
variance explained (average R? = 23.5%; Supp. Fig. S6C), likely associated with
their potential role in mediating the repair process following kidney injury '°.
Within the top 15 interactions associated with Factor 1 (Supp. Fig. S6D), we
noted several potential interactions that involved Sppl and Tnc, known to
contribute to extracellular-matrix remodelling and tissue repair "*!, Other
extracellular-matrix interactions, such as Slit2 and Robol/2, as well as Lama2 &
Dagl, were negatively associated with Factor 1 (Supp. Fig. S6D). Thus, Factor 1
potentially represents an intercellular response related to the disruption of the
extracellular matrix and its remodelling.

To see if the interactions found between groups of dissociated cells are also
captured in spatially-resolved data, we inferred potential interactions using
LIANA+’s spatial component in five 10x Visium slides from the same AKI model
% We saw that the interactions between Sppl and the Itgav/Itgbl integrin

complex increased both in spatial coverage, as well as co-clustering (Moran's R)
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albeit low, subsequent AKI (Supp. Fig. S6E); in line with findings from Li et al,,
2022 in dissociated single-cell data °®. Specifically, we saw that in the control
slide, the interaction was localised mostly in a specific part of the kidney, the
medulla, while subsequent to kidney injury the interaction was ubiquitous
across the whole kidney, coherent with its ubiquitous Factor 1 loadings
(Supp. Fig. S6D).

In summary, using LIANA+ we identified in a hypothesis-free manner
intercellular programmes potentially involved in early response to AKI in
dissociated single-cell data, and supported those using independent spatial

transcriptomics samples.
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Supplementary Figure S1. LIANA+ accepts inputs as unimodal (AnnData) or multimodal
(MuData) data objects together with optional prior knowledge resource and/or spatial
information. These are then transformed into dataframes of aggregated interaction results or
statistics at the individual spot- or cell-level.
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Supplementary Figure S2. 4) AUROC and B) weighted F1 for when using local metrics to
classify malignant spots in breast cancer; C) R-squared and D) RMSE when using local metrics to
predict cell type proportions in the heart.
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Supplementary Figure S3. Analysis of spatial CITE-seq data from human secondary lymphoid
(tonsil) tissue. A) Top 25 proteins with highest variance explained (R?), with 467 of the spatial
variability of E-Cadherin being explained by transcription factor activities in neighbouring spots.
B) Interaction scores (OLS t-values) for the top 50 interactions. C) E-Cadherin protein
abundances. D) Spatially-smoothed TP63 transcription factor activity E) Spatially-weighted
cosine similarity of E-Cadherin protein abundance and TP63 response. F) Spots clustered using
the protein abundances.
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Supplementary Figure S6. A) Experimental design of a murine AKI model °*°%. B)
Distribution of Factor 1 sample scores at different time points following AKI. C) Variance
explained by pairs of cell groups (views). D) Interaction loadings associated with Factor 1. E)
Spatial Clustering (Global Moran’s R) and Coverage (mean Cosine similarity) of
Spp1&ltgav_Itgbl across conditions. F) Spatially-weighted Cosine similarity of Sppl and the
Itgav/Itgbl complex in Control, 4 and 12 hours afier injury.
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Supplementary Figure S7. 4) Elbow curve plot with a dashed red line showing the estimated
optimal rank. B) Median R? per Interaction. C) Contribution of Tissue Composition and
Transcriptional Regulators. D) Cosine Similarity, E) Interaction category, and F) local
permutation P-values for the spatial association between PAX6 and SPP1 & ITGA5_ITGBL.
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