

The diversity and ecological significance of microbial traits potentially involved in B₁₂ biosynthesis in the global ocean

Jiayin Zhou^{1,2}, Wei Qin³, Xinda Lu^{4,†}, Yunfeng Yang⁵, David Stahl⁶, Nianzhi Jiao^{2,7}, Jizhong Zhou^{3,8}, Jihua Liu^{1,2*}, Qichao Tu^{1,2*}

¹ Institute of Marine Science and Technology, Shandong University, Qingdao, China

² Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China

³. Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA

⁴. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

⁵. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China

⁶ Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA

⁷ Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China

⁸ Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

†. Current affiliation: DermBiont Inc., Boston, MA, USA

* To date, no one has asked the question.

To whom correspondence should be addressed

* To whom correspondence should be addressed

Email: tuqichao@sdu.edu.cn; Tel: (86) 0532-58633267; Fax: (86) 0532-58633218

Running title: B - biosynthesis traits in the global ocean

22 **Abstract**

23 Cobalamin (B_{12}), an essential nutrient and growth cofactor for many living organisms on the
24 Earth, can be fully synthesized only by selected prokaryotes in nature. Therefore, microbial
25 communities related with B_{12} biosynthesis could serve as an example subsystem to disentangle
26 the underlying ecological mechanisms balancing the function and taxonomy of complex
27 functional assemblages. By anchoring microbial traits potentially involved in B_{12} biosynthesis,
28 we depict the biogeographic patterns of B_{12} biosynthesis genes and their carrying taxa in the
29 global ocean, in light of the limitation to detect *de novo* B_{12} synthesizers via metagenomes
30 alone. Both the taxonomic and functional composition of B_{12} biosynthesis genes were strongly
31 shaped by depth, differentiating epipelagic from mesopelagic zones. The functional genes were
32 relatively stably distributed across different oceans, but their carrying taxa varied considerably,
33 showing clear functional redundancy of microbial systems. Microbial taxa carrying B_{12}
34 biosynthesis genes in the surface water were influenced by environmental factors such as
35 temperature, oxygen and nitrate. However, the composition of functional genes was weakly
36 associated with these environmental factors. Null model analyses demonstrated that
37 determinism governed the compositional variation of B_{12} biosynthesis genes, whereas a higher
38 degree of stochasticity was associated with taxonomic variations. Significant associations were
39 observed between chlorophyll *a* concentration and B_{12} biosynthesis traits, indicating their
40 importance in global ocean primary production. Conclusively, this study revealed an essential
41 ecological mechanism governing the assembly of microbes in nature: the environment selects
42 function rather than taxonomy; functional redundancy underlies stochastic community
43 assembly.

44

45 **Impact Statement**

46 A central question in ecology is how a galaxy of microbial taxa is assembled and distributed
47 across space and through time, executing essential ecosystem functions. By anchoring
48 microbial functional traits potentially involved in B_{12} biosynthesis and their carrying microbial
49 taxa in the global ocean, this study addresses essential ecological questions from functional
50 and taxonomic angles. Integrating multiple lines of evidence, we show that the ecosystem
51 selects functional traits rather than taxonomic groups, and functional redundancy underlies
52 stochastic taxonomic community assembly. Also, microbial communities potentially involved
53 in B_{12} biosynthesis are significantly associated with chlorophyll *a* concentration, demonstrating

54 their importance in global ocean primary production. This study provides valuable mechanistic
55 insights into the complex microbial community assembly in natural ecosystems.

56 **Keywords:** B₁₂ biosynthesis, functional genes, functional redundancy, community assembly,
57 ocean primary production

58

59 **Introduction**

60 As the home to a galaxy of life forms (371), the global ocean provides roughly 97% of the
61 water on the Earth and 50% of the oxygen, and plays an irreplaceable role in impacting the
62 global climate (2, 3). Microbial communities, the unseen majority (4), are of fundamental
63 importance in maintaining the functionality and stability of the global ocean ecosystems. Not
64 only do they drive the global biogeochemical cycling of various nutrients and elements and
65 maintain ecosystem multi-functioning (5, 6), but also they provide essential nutrients to other
66 organisms, including both prokaryotes and eukaryotes (7). One such example is cobalamin
67 (B_{12}), an essential nutrient and growth cofactor that is utilized extensively by prokaryotes and
68 eukaryotes for numerous metabolic functions (8-11). In natural ecosystems, B_{12} biosynthesis is
69 energetically extremely expensive, which causes a high metabolic burden for B_{12} producers
70 (12). Only a small cohort of prokaryotes holds the genetic potential to accomplish such a
71 complex process, while the others have to rely on exogenous supply, forming the “corrinoid
72 economy” (13). Therefore, B_{12} auxotroph may establish close mutualistic interactions with B_{12}
73 producers, offsetting the cost of B_{12} biosynthesis to ensure sustainable sources (14). Such
74 interactive relationships have significant impacts on the composition and structure of marine
75 microbial communities. Two distinct pools of B_{12} analogs were found in the ocean, including
76 the cobalamin pool produced by a few prokaryotes such as Thaumarchaeota and alpha-
77 /gamma-proteobacterial lineages (e.g. *Rhodobacterales*, *Rhizobiales* and most of *Rickettsiales*)
78 (7, 11, 14, 15), and the pseudocobalamin pool produced by Cyanobacteria as representatives
79 (11, 14). Over the past years, the importance of B_{12} has been widely noticed, including
80 influencing the growth rate of phytoplankton in the ocean (16), impacting the size and diversity
81 of microbial community in terrestrial ecosystems (17), and altering the health status of hosts in
82 the human intestinal system (18, 19). In addition, the availability of B_{12} has critical impacts on
83 both the cellular-level metabolic processes (e.g. methionine synthesis) (20), and the system-
84 level biogeochemical cycling (e.g. photosynthesis, aerobic nitrogen cycle) (7, 21, 22). As one
85 of the highly limited nutrients and growth factors controlled by the minority, B_{12} can be
86 considered as a “hard currency” in the global ocean ecosystem.

87

88 Over the past years, several studies focusing on the importance of marine B_{12} biosynthesis have
89 been carried out. For example, most of the eukaryotic phytoplankton in the surface ocean are
90 B_{12} auxotrophic (9), and the growth rate can be limited by the availability of B_{12} , further
91 affecting primary productivity. In addition, C:P ratios of B_{12} -limited cells in diatom
92 stoichiometry of the Subarctic Pacific are significantly lower in comparison with B_{12} -replete

93 cells (23). This phenomenon becomes more pronounced with the significantly increased partial
94 pressure of CO₂ caused by anthropogenic activities and global climate changes. For example,
95 the C:P ratio gap between B₁₂-replete and B₁₂-limited cells gradually widens with the increase
96 of carbon dioxide partial pressure (pCO₂), reaching about 40% at 670 p.p.m pCO₂ (23). Recent
97 studies have also demonstrated that the growth rate and primary productivity of phytoplankton
98 are affected by the availability of B₁₂ (22-24). Although of critical importance, the diversity,
99 distribution and underlying ecological mechanisms shaping the patterns of microbial
100 communities involved in B₁₂ biosynthesis in the global ocean remain largely unexplored. This
101 will not only provide valuable insights into a clearer understanding of this subset of prokaryotes
102 in the global ocean, but also shed light on the consequential global ocean ecosystem function.
103 Importantly, the *TARA* Oceans expedition (25-27) provides a valuable resource that includes
104 comprehensive data sets at the global scale, covering a total of eight ocean regions and three
105 ocean depth ranges, making it possible to investigate the global patterns of various microbial
106 (sub)communities, including the microbial taxa related with B₁₂ biosynthesis.

107

108 In this study, by utilizing the *TARA* Oceans shotgun metagenome sequencing datasets, we
109 surveyed the diversity patterns and ecological importance of microbial traits (functional genes
110 and the corresponding taxonomic groups) potentially involved in B₁₂ biosynthesis in the global
111 ocean ecosystem. Community level investigations were mainly performed, owing to the
112 limitations of identifying *de novo* B₁₂ synthesizers via metagenomes alone. The following
113 essential ecological questions were addressed: (i) How are B₁₂ biosynthesis traits distributed
114 globally? (ii) What ecological mechanism drives and maintains the diversity patterns of B₁₂
115 biosynthesis traits? (iii) How do microbial B₁₂ biosynthesis traits contribute to the global ocean
116 ecosystem function, e.g. the ocean's primary production? Owing to their criticality to the global
117 ocean, we expected that the relative abundance of microbial functional genes involved in B₁₂
118 biosynthesis should be relatively stably distributed in the global ocean. However, owing to the
119 functional redundancy of microbial systems (28), the microbial taxonomic groups carrying
120 them may vary across different oceanic regions and depths. Determinism, therefore, should be
121 mainly responsible for the diversity patterns of functional traits. However, compared to
122 functional traits, microbial taxonomic groups would be relatively more influenced by stochastic
123 processes, due to functional redundancy in microbial systems. Our results well supported the
124 above hypothesis and showed that B₁₂ biosynthesis traits are significantly associated with
125 chlorophyll *a* concentration, confirming its important role in ocean primary production.

126

127 **Results**

128 **Overall diversity of potential B₁₂ biosynthesis traits in the global ocean**

129 B₁₂ can be fully synthesized only by a small fraction of prokaryotes (7, 15) due to the multiple
130 enzymatic steps involved (Supplementary Figure 1). By applying VB₁₂Path (29) to the *TARA*
131 Oceans shotgun metagenome data, an average of 0.2% reads per sample were identified to
132 encode gene families potentially involved in B₁₂ biosynthesis pathways. Consistent with the
133 *TARA* Oceans study that the whole microbial communities significantly differ between
134 mesopelagic layers (MES) and epipelagic zones (26), the same pattern was observed for
135 microbial taxa carrying B₁₂ biosynthesis genes. Compared with that in epipelagic zones, the
136 microbial communities potentially involved in B₁₂ biosynthesis in MES showed significantly
137 higher taxonomic and functional diversity as well as dramatically different composition (Fig.
138 1A, Supplementary Figure 2, 3 and 4, Supplementary Table 1). Surprisingly, the evenness of
139 B₁₂ biosynthesis functional traits and their carrying taxa were negatively correlated, leading to
140 negatively correlated community diversity (Shannon-Wiener index) (Supplementary Figure 5).
141 The negative correlation is likely due to the fact that only a small fraction of microbial taxa
142 carries a (nearly) full set of gene families involved in B₁₂ biosynthesis, thereby even
143 distribution of microbial taxa resulted in uneven distribution of functional traits.

144

145 At the pathway level, microbial functional traits potentially involved in precorrin-2 synthesis
146 (63.84%) and aerobic (24.48%) pathways exhibited the highest relative abundance in the
147 *TARA* Oceans samples, while anaerobic (9.26%) and post-Adocbi-P (4.87%) pathways were
148 less abundant (Fig. 1C). At the functional gene level, gene families related with aerobic
149 pathways were generally more abundant in epipelagic zones, while the ones related with
150 anaerobic pathways were more abundant in the MES (Fig. 1C, Supplementary Table 4). Most
151 importantly, consistent with our expectations, the relative abundance of functional genes was
152 relatively stable in the global ocean (Fig. 1B), while the taxonomic composition is highly
153 variable. This pattern was observed for microbial communities sampled from different depth
154 intervals and oceanic regions (Fig. 1A). Such results pinpointed an essential microbial
155 ecological discipline that taxonomically highly varied microbial communities still executed
156 similar ecosystem functions.

157

158 **Microbial taxa carrying B₁₂ biosynthesis genes in the global ocean**

159 Among the identified microbial taxa containing B₁₂ biosynthesis genes, Proteobacteria were
160 abundantly detected in all samples, whereas Cyanobacteria dominated in epipelagic zones and

161 dramatically depleted in mesopelagic waters. Compared to that in epipelagic zones,
162 Thaumarchaeota were significantly enriched in the MES, especially targeting the anaerobic
163 pathway of B₁₂ biosynthesis, for which 9 *cbi* genes were detected (Fig. 1A and C,
164 Supplementary Table 3). Different modules of B₁₂ biosynthesis pathway were featured by
165 different microbial taxonomic groups (Fig. 1C). This was especially evident for samples in the
166 MES. Microbial taxa belonging to Thaumarchaeota and Bacteroidetes were respectively
167 dominantly observed with genes belonging to anaerobic and salvage pathways. This agrees
168 with previous studies suggesting that cobalamin in the surface ocean may be primarily the
169 result of *de novo* synthesis by heterotrophic bacteria or via modification of cyanobacterially-
170 produced pseudocobalamin, while Thaumarchaeota may be a major cobalamin producer at
171 depth (14). Despite the high abundance of Bacteroidetes in the MES, studies have shown that
172 only 0.6% of Bacteroidetes have complete B₁₂ synthesis pathways (15). Gene families (e.g.
173 *cobO*, *pduO* and *cobA*) belonging to the salvage pathway were dominantly carried by
174 Cyanobacteria, more specifically *Prochlorococcus* (Fig. 1C, Supplementary Table 2). A quick
175 BLAST searching these gene families against *Prochlorococcus* genomes in the NCBI database
176 also suggested the wide spreading of these gene families in *Prochlorococcus* (data not shown).
177 While Cyanobacteria are in general pseudocobalamin synthesizers (30), the carrying of gene
178 families belonging to the salvage pathway by *Prochlorococcus* indicated the potential of this
179 genus to remodel B₁₂ precursors/analogs in certain conditions. Notably, a recent genomic study
180 also observed salvage pathway gene families in *Synechococcus* genomes, possibly due to
181 horizontal gene transfer events or loss of function (*de novo* B₁₂ biosynthesis) during evolution
182 (31). In addition, a high portion of microbial taxa carrying B₁₂ biosynthesis genes belonged to
183 unclassified taxonomic groups, especially in the MES, suggesting that much remains to be
184 further explored for the B₁₂ biosynthesis gene and taxa in the deep ocean.

185
186 Microbial taxa potentially involved in B₁₂ biosynthesis in the global ocean were further
187 investigated (Supplementary Table 2) by selecting the putative key B₁₂ synthesis gene families
188 in previous investigations (7, 32). B₁₂ biosynthesis genes were detected in many microbial taxa,
189 but microbial taxa carrying complete *de novo* B₁₂ biosynthesis pathways were rarely found,
190 possibly due to inadequate sequencing depth for detecting these genes and the rarity of
191 microbial taxa containing complete B₁₂ biosynthesis pathways. Overall, microbial species
192 including *Prochlorococcus marinus*, *Candidatus Nitrosopelagicus brevis*, *Candidatus*
193 *Nitrosomarinus catalina* and *Synechococcus* sp. CC9902 were the taxa carrying a high number
194 of key B₁₂ biosynthesis gene families. Although B₁₂ biosynthesis genes were detected in some

195 microbial taxa (e.g. *Synechococcaceae*, *Prochlorococcaceae* and *Pelagibacteraceae*), they
196 were considered as auxotrophic due to the lack of gene families necessary for DMB such as
197 *bluB* (necessary for DMB biosynthesis) (33, 34) and *cobT* (required for DMB activation) (32).
198 For example, the genus *Synechococcus* contains many genes belonging to B₁₂ biosynthesis
199 pathways but lacks key genes for DMB synthesis (Supplementary Table 2) and has been shown
200 to be B₁₂ auxotrophic by previous studies (32). Therefore, detection of B₁₂ biosynthesis genes
201 in microbial taxa does not necessarily imply the capacity of *de novo* biosynthesis of this
202 cofactor. Further experimental evidence is required to validate such capacity. The results also
203 demonstrated great challenges in identifying potential B₁₂ synthesizers using metagenomic
204 approaches, on the basis that the majority of microbial taxa were unknown and metagenomic
205 recovery of rare microbial taxa was almost not possible.

206

207 **Latitudinal diversity patterns and distance-decay relationships**

208 We also investigated whether microbial communities potentially involved in B₁₂ biosynthesis
209 followed typical biogeographic patterns such as latitudinal diversity gradient (LDG) and
210 distance-decay relationships (DDR), which are well recognized ecological patterns for both
211 microbial and macrobial communities (35, 36). Discordant patterns between the compositions
212 of microbial taxonomic groups and functional genes were observed in this study (Fig. 1A and
213 B). B₁₂ biosynthesis serves as an essential ecosystem function and shall be stably maintained
214 in the global ocean. However, the microbial taxa carrying these functional traits are influenced
215 by various environmental conditions. We expected clear LDG and DDR patterns for microbial
216 taxa carrying B₁₂ biosynthesis genes, but weaker or even nonexistent patterns for the functional
217 genes. Consistent with our expectation, LDG pattern was weakly observed for the functional
218 genes at the surface water layer (SRF) ($P = 0.02$), and not found at the deep chlorophyll
219 maximum layer (DCM) and mesopelagic zone (MES). No significant DDR pattern was
220 observed for B₁₂ biosynthesis genes at all three pelagic zones. For microbial taxa carrying B₁₂
221 biosynthesis genes, a strong LDG pattern was observed at the SRF zone ($P = 0.006$). DDR,
222 however, was observed at all three pelagic zones ($P \leq 1e-7$) (Fig. 2AB). Such distinct
223 biogeographic patterns of functional genes and taxonomic groups again pointed to the essential
224 microbial ecology principle, i.e. microbial functional genes executing essential ecosystem
225 functions are prevalently distributed, whereas their carrying microbial taxa may dramatically
226 vary.

227

228 **Environmental factors associated with the variations of potential B₁₂ biosynthesis traits**

229 Here, the associations between B₁₂ biosynthesis traits and environmental factors were also
230 investigated (Supplementary Figure 6). Since both the functional and taxonomic compositions
231 of B₁₂ biosynthesis genes dramatically differ by depth, the associations with geo-environmental
232 factors were analyzed by a given range of water depths, eliminating the effects of depth and
233 depth-correlated environmental factors. As a result, weakened effects of environmental factors
234 on the taxonomic compositions were observed from the SRF to the MES layers. In the SRF
235 layer, the concentrations of dissolved oxygen and nitrate availability were significantly
236 associated with the taxonomic compositions. Such effects, however, gradually diminished in
237 the DCM and MES layers. Interestingly, significant associations were not observed between
238 environmental factors and the functional compositions of B₁₂ biosynthesis genes in all three
239 oceanic layers, suggesting that changes in environmental conditions mainly affected the
240 taxonomic compositions.

241

242 The associations between environmental factors and community diversity were also
243 investigated. Significant associations between environmental factors and community diversity
244 could be observed (Supplementary Figure 7A). However, such effects were weakened or even
245 diminished when looking at individual pelagic zones (Supplementary Figure 7B, C, and D),
246 suggesting that depth differences from SRF to MES layers and their correlation with
247 environmental factors were mainly responsible for such “pseudo-associations”. Surprisingly,
248 the effects of temperature on B₁₂ biosynthesis functional trait diversity differed dramatically
249 by oceanic layers. The temperature was positively associated with the functional gene diversity
250 in epipelagic layers (Supplementary Figure 7B and C), but negatively in the MES
251 (Supplementary Figure 7D), leading to insignificant associations across the whole upper ocean
252 (Supplementary Figure 7A). Such opposite patterns were also observed for other environmental
253 factors such as oxygen, nitrite and nitrate concentration (NO₂NO₃), and nitrate, though some
254 of them were not statistically significant ($P \geq 0.05$).

255

256 **Ecological mechanisms governing the assembly of B₁₂ biosynthesis traits**

257 Considering the critical roles that B₁₂ play in the ecosystem, we expected that the assembly of
258 microbial functional traits be highly deterministic. To examine this hypothesis, we quantified
259 the relative importance of deterministic and stochastic processes in governing the assembly of
260 functional traits potentially involved in B₁₂ biosynthesis. Here, the null model analysis was

261 employed to characterize the ratio of stochasticity to determinism by comparing the observed
262 and null model community β -diversity (Fig. 3A). Consistent with our hypothetical expectations,
263 the stochastic ratio suggested that both the assembly of microbial functional genes and their
264 carrying taxa were highly deterministic. Compared to the functional traits, the taxonomic
265 groups had higher stochastic ratios, especially in the MES layer, suggesting that the assembly
266 of taxonomic groups was more stochastic than functional traits. Such patterns of stochastic
267 ratios between functional traits and taxonomic groups were consistent in different oceanic
268 layers.

269

270 We hypothesized that deterministic factors should govern the assembly of microbial functional
271 traits, and that the assembly of microbial taxa shall be relatively more stochastic than functional
272 traits. All the results described above, e.g., stable distribution of functional traits vs. highly
273 varied taxonomic groups (Fig. 1AB), stronger biogeographic patterns for taxonomic groups
274 than functional traits (Supplementary Figure 6 and Supplementary Figure 7), and relative
275 importance of deterministic and stochastic processes (Fig. 3A), provided supportive evidence
276 for our hypotheses for community assembly of B_{12} biosynthesis traits. Integrating all lines of
277 evidence, we proposed a functional-trait-based ecological model to explain the complex
278 microbial community assembly in natural ecosystems (Fig. 3B). Variations of geo-
279 environmental factors such as depth, temperature, and oxygen form multiple ecological niches
280 in the oceanic ecosystem (e.g. epipelagic zone and MES). Microorganisms capable of living in
281 these ecological niches comprise the species pools. To maintain fundamental ecosystem
282 function, microorganisms carrying essential functional traits are selected. Therefore, it is the
283 function rather than taxonomy that the environment truly selects (37). However, owing to
284 functional redundancy in microbial systems (28), different taxonomic groups carry the same
285 functional traits. Meanwhile, stochastic processes such as drift and dispersal are associated
286 with microbial taxa. Stochastic community assembly occurs at the time these functional traits
287 are selected. As a result, varied taxonomic compositions come with comparable functional
288 traits combinations, as have been observed in multiple ecosystems (38-40). For microbial traits
289 potentially involved in B_{12} biosynthesis, both taxonomic groups and functional traits were
290 governed by deterministic processes, and functional redundancy of microbial taxonomic
291 groups led to higher stochasticity in community assembly.

292

293 **Ecological importance of potential B_{12} biosynthesis traits in the global ocean**

Finally, we investigated the ecological roles that the potential B₁₂ biosynthesis traits play in the oceanic ecosystem, such as cobalamin-dependent microorganisms and their contribution to the ocean's primary production (7, 9, 14, 24). To investigate if B₁₂ biosynthesis traits are potentially associated with cobalamin-dependent microbial communities and global ocean primary productivity, we investigated the associations between the community diversity of B₁₂ biosynthesis traits with the relative abundances of the *metH* gene family (encoding cobalamin-dependent methionine synthase) and the chlorophyll *a* concentration. First, a significant association was observed between the relative abundance of *metH* gene family and B₁₂ biosynthesis trait diversity (Supplementary Figure 8), confirming the importance of B₁₂ biosynthesis members to cobalamin-dependent members in the oceanic ecosystem. Second, the concentrations of chlorophyll *a* in the epipelagic zone were also significantly associated with B₁₂ biosynthesis trait diversity ($P \leq 0.005$) (Fig. 4A). Notably, the concentrations of chlorophyll *a* were positively correlated with the taxonomic diversity of B₁₂ biosynthesis traits, but negatively with functional gene diversity. Such an opposite pattern was attributed to the negative correlation between the evenness of B₁₂ biosynthesis genes and their carrying taxa (Supplementary Figure 8). Meanwhile, to exclude the potential influence of the whole microbial community and further confirm the significant correlations between chlorophyll *a* concentration and B₁₂ biosynthesis traits, we also inspected the associations between the concentrations of chlorophyll *a* and the prokaryotic community diversity. As a result, the association strength between chlorophyll *a* concentrations and prokaryotic community diversity was either insignificant or much weaker than that with B₁₂ biosynthesis traits (Fig. 4B). Finally, the machine learning approach random forest was employed to further verify the importance of B₁₂ biosynthesis traits by predicting chlorophyll *a* concentration using B₁₂ community profiles. The results demonstrated that both the taxonomic and functional profile of B₁₂ biosynthesis traits can well predict the concentration of chlorophyll *a* in the ocean (Fig. 4C and D). This also held true when using SRF microbial data as training data set and predicting chlorophyll *a* in the DCM layer, or vice versa (Supplementary Figure 9).

321

322 **Discussion**

323 Focusing on “who is doing what, where, and how?”, this study investigated the ecological
324 mechanisms driving the diversity patterns of microbial traits potentially involved in B₁₂
325 biosynthesis and their ecological importance in the global ocean. Limited by the rarity of the
326 targeted microbial taxa and current technologies, confident inference of *de novo* B₁₂

327 synthesizers can hardly be approached. Therefore, community-level investigations were
328 performed in this study. Similar to what has been observed for the global ocean microbiome
329 (26), both the taxonomic and functional gene composition related with B₁₂ biosynthesis
330 differed by depth instead of oceanic regions. Multiple factors such as depth, light and
331 temperature and other associated environmental factors shall be responsible for such patterns.
332 This probably suggested completely different niche preferences by B₁₂ biosynthesis traits in
333 different oceanic layers. We also noticed that the evenness of B₁₂ biosynthesis genes and their
334 carrying taxa were negatively correlated, suggesting that even distribution of microbial taxa
335 may not lead to even distribution of functional traits. Such negative correlation should be due
336 to the fact that only a small fraction of microbial taxa contains (near) complete B₁₂ biosynthesis
337 pathway in their genomes, and even distribution of microbial taxa does not reflect even
338 functional traits.

339
340 Microbial taxa carrying B₁₂ biosynthesis genes in the ocean ecosystem were also investigated
341 at a refined taxonomic resolution. However, limited information could be gained. First, the
342 taxonomy of the majority of B₁₂ biosynthesis genes remained unclassified, even against
343 taxonomic databases built from the most recent NCBI database. This is especially crucial for
344 microbial taxa in the MES. Such shortage is mainly caused by the limitations of current
345 genomic databases (41), the uncultured majority of microbial taxa in nature (42), and potential
346 limitations of read-based analyses. This also suggests that much remains to be further explored
347 for this tiny group of microorganisms on Earth, especially in the deep ocean. Second, consistent
348 with our current knowledge (14), only a few microbial genera in the ocean were found to carry
349 *de novo* B₁₂ biosynthesis potential by judging the gene families linked to the microbial taxa.
350 However, comparative genomics of currently sequenced microbial genomes from NCBI
351 RefSeq suggest that 37% of prokaryotic microbial species have the potential to biosynthesize
352 cobamides *de novo*, though complete pathways are not always detected (15). Among these, 57%
353 of Actinobacteria are predicted to biosynthesize cobamides, whereas only 0.6% of
354 Bacteroidetes have the complete pathway (15). Such inconsistency between metagenomic and
355 genomic studies indicated the rarity and unknown property of *de novo* B₁₂ synthesizers in the
356 ocean, and current sequencing technologies and depth may not well capture them. Third,
357 identifying *de novo* B₁₂ synthesizers is challenging and requires further attention.
358 *Rhodobacteraceae*, *Rhizobiales* and a subset of *Cyanobacteria* were the most important
359 candidates to be B₁₂ prototrophic in neritic ecosystems by metatranscriptomic and
360 metaproteomic analyses (43). However, one needs to be aware that the lower ligand is DMB

361 to produce B₁₂ and not pseudocobalamin. Perhaps judgment by synthesis and activation of key
362 genes of DMB, e.g., *bluB* (33, 34) and *cobT* (32), is also an option. Cyanobacteria strains
363 release pseudo-B₁₂ into the media at a high rate, and it is speculated that Cyanobacteria may
364 be the main providers of (pseudo-)B₁₂ in algae metabolism (44). Similarly, genes potentially
365 involved in B₁₂ biosynthesis were frequently detected in Cyanobacteria genera such as
366 *Synechococcus* and *Prochlorococcus*, which may only produce pseudocobalamin due to
367 adenine as the low ligand instead of DMB, consistent with previous studies (7, 11, 14). In
368 certain cases, microbial taxa (e.g. *Dehalococcoides mccartyi* strain 195, *Chlamydomonas*
369 *reinhardtii*) may remodel non-functional cobamides (e.g. pseudocobalamin) to B₁₂ under
370 suitable environmental conditions such as at the presence of DMB or its intermediate α-ribazole
371 (11, 32, 45). Interestingly, *bluB* and *cobT* were detected from *Prochlorococcus marinus* at high
372 taxonomic levels (Supplementary Table 2), and previous studies also mentioned that
373 *Prochlorococcus marinus* SS120 may encode the full set of enzymes of the biosynthetic
374 pathways for heme B₁₂ (46). In the marine ecosystem, *Rhodobacterales* are the major
375 alphaproteobacterial B₁₂ producers, but we did not detect *bluB* from it (e.g. *Epibacterium*
376 *mobile*). Therefore, even if these key B₁₂ biosynthesis gene families are detected, further
377 experimental validation is needed for confirming their function in the ecosystem.

378

379 This study also revealed important implications regarding the ecological roles that B₁₂
380 biosynthesis traits play in the oceanic ecosystem. Previous studies suggested that eukaryotic
381 phytoplankton in the surface ocean are B₁₂ auxotrophs (9, 32), and the growth rate may be
382 limited by the availability of B₁₂, further affecting ocean primary productivity (16, 24, 47, 48).
383 Most of these eukaryotic algae requirements for B₁₂ are primarily mediated by methionine
384 synthase (9, 49), a key enzyme in cellular one-carbon metabolism responsible for catalyzing
385 the conversion of homocysteine and 5-methyl-tetrahydrofolate to tetrahydrofolate and
386 methionine (50, 51). Although B₁₂-independent methionine synthase (MetE) and B₁₂-
387 dependent methionine synthase (MetH) are capable of completing this reaction (9, 49), MetE
388 is approximately 100-fold less efficient in catalysis than MetH (52), and this inefficiency
389 further results in an approximately 30-40-fold increase in nitrogen and zinc requirements for
390 MetE compared to MetH (53). Consistent with previous studies, significant correlation was
391 observed between B₁₂ biosynthesis traits and *metH* gene encoding B₁₂-dependent methionine
392 synthase, as well as chlorophyll *a* concentration. This suggested that B₁₂ biosynthesis traits
393 exerted strong effects on chlorophyll *a* concentration, demonstrating the importance of this
394 microbial group on primary production in the global ocean.

395
396 In addition to investigating the diversity patterns of B₁₂ biosynthesis traits in the oceanic
397 ecosystem, the microbial subcommunities also served as an example to reveal an intriguing
398 functional-trait-based ecological mechanism explaining the complex microbial community
399 assembly in nature. Both deterministic and stochastic processes govern microbial community
400 assembly, and a major question is which one is more important (54-56). Considering that B₁₂
401 biosynthesis is an essential ecosystem function and shall be stably maintained in the global
402 ocean (7, 15, 57), we speculated that strong determinism shall govern the assembly of potential
403 B₁₂ biosynthesis traits. However, microbial communities are usually functionally redundant
404 (28), for which multiple different microbial taxa may execute the same function. Similar to
405 previous studies in the ocean (26, 58, 59), high functional redundancy was also observed in
406 this study. A previous study suggests that the ecosystem tends to select microbial functional
407 traits rather than taxonomic groups (37). In addition, stochastic processes such as drift and
408 dispersal are associated with microbial taxa (60). As multiple microbial taxa carried the same
409 functional traits, a certain degree of randomness shall be associated with microbial taxa in the
410 ecosystem. Consistent with our expectations, higher stochasticity was observed in the assembly
411 of microbial taxa than functional traits. To summarize, the environment selects microbial
412 functional traits rather than taxonomy (37), and functional redundancy (28) underlies stochastic
413 microbial community assembly, thereby maintaining essential ecosystem function and stability
414 (61). In addition, we urge mechanistic studies in microbial community ecology should not only
415 focus on microbial taxonomy, but also functional genes that they carry. Whenever possible,
416 microbial functional genes and taxonomy shall be equally considered in microbial systems.

417
418 In conclusion, using B₁₂ biosynthesis subsystem as an example, this study investigated the
419 diversity, biogeographic patterns, and ecological drivers of this specific microbial functional
420 group in the global ocean. Comparative pattern analyses of B₁₂ biosynthesis genes and their
421 carrying microbial taxa revealed an important microbial ecological mechanism, elucidating the
422 relationship between natural ecosystems and complex microbial communities from the
423 functional angle. Also, B₁₂ biosynthesis traits were significantly associated with chlorophyll *a*
424 concentration, demonstrating its importance in global ocean primary production. This study
425 provided valuable mechanistic insights into the complex microbial community assembly in
426 natural ecosystems.

427
428 **Materials and Methods**

429 **Tara Oceans shotgun metagenomes and geo-environmental factors**
430 A total of 359 shotgun metagenomes targeting 138 samples covering three oceanic layers,
431 including surface water layer (SRF, 5 to 10 m), deep chlorophyll maximum layer (DCM, 17 to
432 180 m) and mesopelagic zone (MES, 250 to 1000 m), were downloaded from the European
433 Bioinformatics Institute (EBI) repository under project ID ERP001736 (26). Forward and
434 reverse reads were merged into longer sequences by the program PEAR (version 0.9.6, -q 30)
435 (62). An average of 208,881,758 merged reads per sample were obtained. Geo-environmental
436 factors, the overall taxonomical profiles, and KEGG orthologous group profiles associated with
437 the shotgun metagenome data were downloaded from <http://ocean-microbiome.embl.de/companion.html>. Metadata for chlorophyll *a* concentrations in these
438 TARA Oceans samples were obtained from the ZENODO website under the record number
439 7739198 (<https://zenodo.org/record/7739198>) according to a previous study (63).

441

442 **Metagenomic profiling of marine functional genes potentially involved in B₁₂ biosynthesis**
443 To keep the fidelity of taxonomic and functional profiles and get more usable information from
444 the metagenomic dataset (64), read-based analysis was performed. Considering the accuracy
445 of gene definition and computational efficiency, VB₁₂Path (29), a specific functional gene
446 database for metagenomic profiling of gene families involved in B₁₂ biosynthesis pathways,
447 was employed. Although this database is relatively small, both targeted gene families and their
448 homologs from large public databases (e.g. KEGG, eggNOG and COG) are integrated,
449 minimizing false positive assignments. Briefly, merged metagenomic reads were searched
450 against VB₁₂Path. A total of 54 gene families involved in five modules of B₁₂ biosynthesis
451 pathway as previously described (29), including precorrin-2 synthesis processes, aerobic
452 pathway, anaerobic pathway, salvage and remodeling pathway, post-Adocbi-P pathway, are
453 targeted in the database. The program DIAMOND (version 0.9.25, option: -k 1 -e 0.0001) (65)
454 was used to search nucleotide sequences against VB₁₂Path using the blastx mode. Sequences
455 matching VB₁₂Path were retrieved to generate functional profiles targeting gene families
456 involved in marine B₁₂ biosynthesis using the PERL script provided in VB₁₂Path. To minimize
457 bias associated with sequence number variations across different samples, rarefaction was
458 applied to each metagenome by a random subsampling effort of 100,000,000 sequences. Four
459 samples were excluded from further analysis due to insufficient sequences.

460

461 To obtain taxonomic profiles for microbial taxa carrying B₁₂ biosynthesis genes, merged
462 metagenomic sequences belonging to targeted gene families in VB₁₂Path were extracted by the
463 seqtk program (<https://github.com/lh3/seqtk>). Extracted sequences were then subject to
464 taxonomic assignment by Kraken2 (66). A standard Kraken2 database was built locally based
465 on the most recent NCBI database at the time this study was carried out. Taxonomic profiles
466 were generated at multiple taxonomic levels based on the Kraken2 report files. After obtaining
467 the functional and taxonomic profiles, Kruskal-Wallis test was conducted to estimate statistical
468 differences in relative abundances of potential B₁₂ biosynthesis taxonomic groups and
469 functional traits between the epipelagic (SRF/DCM) zone and MES. The false discovery rate
470 (FDR) approach was employed to adjust the *P* value to control for false positives using the
471 “stats” package in R. All gene families of the B₁₂ biosynthetic pathway, and the microbial taxa
472 containing B₁₂ biosynthetic gene families are collectively referred to as B₁₂ biosynthesis traits
473 in the context.

474

475 **Diversity indices**

476 Various diversity indices were calculated by the “vegan” package (67) in R (software version
477 4.0.3). Specifically, the richness, Shannon-Wiener index and Pielou’s evenness index were
478 calculated for within sample diversity, i.e. alpha diversity. The Bray-Curtis dissimilarity was
479 calculated to represent between sample diversity, i.e. community dissimilarity or beta diversity.
480 The complement of community dissimilarity (1-dissimilarity) was calculated to quantitate
481 community similarity. Both within sample and between sample diversity indices were
482 calculated for functional and taxonomic profiles. Compositional variance among samples in
483 different layers and oceans, as well as epipelagic zone and MES were calculated using Bray-
484 Curtis dissimilarities and explored by Principal coordinated analysis (PCoA), of which the first
485 two axes were extracted for visualization. Three different nonparametric analyses, including
486 permutational multivariate analysis of variance (PERMANOVA), analysis of similarity
487 (ANOSIM) and multi-response permutation procedure (MRPP), were performed to evaluate
488 the statistical significance of compositional variations among SRF, DCM, and MES layers.

489

490 **Latitudinal diversity gradient and distance decay relationship**

491 Two major biogeographic patterns, including the latitudinal diversity gradient (LDG) and
492 distance decay relationships (DDR), were analyzed to investigate the diversity trend of B₁₂

493 biosynthesis traits. For LDG, the relationship between community richness (species and
494 functional traits) and absolute latitude was analyzed. For DDR, the relationship between
495 community similarity and geographic distance was analyzed. The geographic distance between
496 different samples was calculated by the Vincenty Ellipsoid formula based on the latitude and
497 longitude coordinates using the "geosphere" package in R (68). Community similarity values
498 (Bray-Curtis indices) were obtained by subtracting community dissimilarity from 1. For DDR
499 analyses, both the geographic distance and community similarity values were logarithmically
500 transformed. For both LDG and DDR, linear regression analysis was carried out to visualize
501 the diversity trendline. Values including correlation coefficients, slope and significance P
502 values were calculated. Analyses were performed for samples in three different layers.

503

504 **Correlating environmental factors with the diversity and composition of microbial
505 communities**

506 To identify the potential environmental factors shaping the variations of B_{12} community
507 diversity and composition, the partial mantel test was performed by correcting for geographic
508 distance. Bray-Curtis dissimilarity was selected to characterize the community distance for
509 both taxonomic and functional trait profiles. The Euclidean distance method was used to
510 characterize the distance between environmental factors. A permutation time of 9,999 was set
511 for the partial mantel test. A total of 11 environmental variables were recruited, including
512 latitude, longitude, depth, temperature, oxygen, mean nitrates concentration, NO_2 , nitrite and
513 nitrate concentration (NO_2NO_3), phosphate (PO_4), salinity, and silica (Si). To analyze the
514 associations between environmental factors and community diversity, redundancy analysis
515 (RDA) was used to evaluate the collinearity between environmental variables and the
516 taxonomic and functional trait composition. After excluding variables with high collinearity, a
517 total of six geo-environmental variables were retained, including depth, temperature, oxygen,
518 nitrates, NO_2NO_3 , and PO_4 . Then, linear regression analyses were conducted to investigate the
519 relationships between each remaining individual environmental variable and community
520 diversity (Shannon-Wiener index). Spearman's rank coefficient of correlation was calculated.
521 All of the above statistical analyses were performed using the "vegan" package (67) in R.

522

523 **Correlating *metH* gene abundance and chlorophyll *a* concentrations with B_{12} biosynthesis
524 trait diversity**

525 To disentangle the potential effects of B₁₂ biosynthesis traits on cobalamin-dependent
526 microbial communities and the ocean's primary productivity, the *metH* gene relative abundance
527 and chlorophyll *a* concentration were correlated with the community diversity of B₁₂
528 biosynthesis traits. Of these, *metH* gene was selected for its encoding of B₁₂-dependent
529 methionine synthase, a pivotal enzyme of cellular one-carbon metabolism and DNA synthesis
530 (49). Positive associations were expected between *metH* communities and B₁₂ biosynthesis
531 functional genes. And chlorophyll *a* was selected as a proxy for phytoplankton biomass to
532 further approximate primary productivity. Linear regression analysis was used to explore the
533 relationship between *metH* relative abundance, the chlorophyll *a* concentration and B₁₂
534 biosynthesis trait diversity. To eliminate the potential impact of the whole prokaryotic
535 community and confirm the importance of B₁₂ biosynthesis traits, linear regression analysis
536 was also carried out between the whole prokaryotic microbial community and chlorophyll *a*
537 concentration. Both the taxonomic profiles and functional profiles (KEGG orthologous groups)
538 were analyzed. The analyses were carried out for samples in different layers. Spearman's rank
539 coefficient of correlation was calculated. Correlation coefficients with significance *P* values <
540 0.005 was termed as significant correlation.

541

542 In addition to linear regression analyses, the machine learning approach random forest was also
543 employed to verify the importance of B₁₂ biosynthesis traits on chlorophyll *a* concentration by
544 predicting chlorophyll *a* concentrations using the functional and taxonomic profiles of B₁₂
545 biosynthesis traits. Here, half of the microbial data from epipelagic zones were randomly
546 selected for developing a random forest training model, which was used to predict chlorophyll
547 *a* concentration using the remaining microbial data in epipelagic zones. In addition, individual
548 layers were also validated, using samples from one layer (SRF/DCM) as the training set to
549 predict the chlorophyll *a* concentration in the other layer. The relationship between predicted
550 and observed chlorophyll *a* concentration was analyzed to evaluate the importance of B₁₂
551 communities. The random forest analysis was performed using the "randomForest" package
552 (69) in R.

553

554 **Community assembly mechanisms**

555 The null model analysis was employed to investigate the potential ecological mechanisms
556 governing the compositional variations of B₁₂ biosynthesis traits. Since the taxonomic and

557 functional trait profiles for B₁₂ biosynthesis genes were obtained by extracting targeted
558 sequences from the shotgun metagenomic dataset, phylogenetic markers for these profiles were
559 not applicable. Therefore, the approach proposed by Zhou et al. was employed in this study
560 (70, 71). In the analysis, stochastic strength was calculated via null models to characterize the
561 relative importance of deterministic and stochastic processes in driving the assembly of B₁₂
562 biosynthesis traits. The within-sample (local) and across-sample (regional) richness were
563 constrained to produce null models, in order to rule out potential influence of local and regional
564 species richness on β-diversity (72). A dissimilarity matrix was calculated based on Bray-
565 Curtis index. The complementary similarity matrix was obtained by (1- dissimilarity). This
566 procedure was repeated 1,000 times to generate a total of 1,000 null models, based on which
567 an average similarity matrix was obtained. Community assembly stochasticity was estimated
568 by comparing the observed and randomized community similarity, according to a modified
569 method as described previously (54, 73). The stochastic ratio was calculated considering two
570 scenarios: i) communities are governed by deterministic factors that produce more similar
571 communities. In such case, the observed community similarity (C_{ij}) between the i -th and j -th
572 communities would be larger than the null expectations (\bar{E}_{ij}). ii) communities are governed by
573 deterministic factors making communities more dissimilar. As such, C_{ij} would be smaller
574 than \bar{E}_{ij} . As a result, the observed dissimilarity ($D_{ij} = 1 - C_{ij}$) would be larger than the null
575 model dissimilarity ($\bar{G}_{ij} = 1 - \bar{E}_{ij}$). Hence, the following functions can be used to evaluate the
576 stochastic ratio:

577
$$ST_{ij}^A = \frac{\bar{E}_{ij}}{C_{ij}} \cdot \frac{D_{ij}}{\bar{G}_{ij}} \text{ if } C_{ij} \geq \bar{E}_{ij}$$

578
$$ST_{ij}^B = \frac{\bar{G}_{ij}}{D_{ij}} \cdot \frac{C_{ij}}{\bar{E}_{ij}} \text{ if } C_{ij} < \bar{E}_{ij}$$

579
$$ST = \frac{\sum_{ij}^{n^A} ST_{ij}^A + \sum_{ij}^{n^B} ST_{ij}^B}{n^A + n^B}$$

580 The null model analysis was carried out for both taxonomic and functional profiles. R packages
581 including vegan (67), bioenv (74), and NST (39) were used in the analysis.

582

583 **Data availability**

584 Sequences belonging to the B₁₂ biosynthesis traits extracted from the TARA Oceans shotgun
585 metagenome datasets are deposited at ZENODO website under the record number 7520550.

586 **Acknowledgements**

587 This study was supported by National Key Research and Development Program of China
588 (2020YFA0607600, 2019YFA0606700, 2017YFA0604300), the National Natural Science
589 Foundation of China (31971446, 92051110), the Natural Science Foundations of Shandong
590 Province (2020ZLYS04, ZR2020YQ21), the Taishan Young Scholarship of Shandong
591 Province, and the Qilu Young Scholarship of Shandong University. The funders had no role in
592 study design, data collection and interpretation, or the decision to submit the work for
593 publication.

594

595 **Author Contributions**

596 Qichao Tu conceived the research. Jiayin Zhou and Qichao Tu performed the bioinformatics
597 analyses and wrote the manuscript. Wei Qin and Xinda Lu helped with the data analysis. Wei
598 Qin, Xinda Lu, Yunfeng Yang, David Stahl, Nianzhi Jiao, Jizhong Zhou and Jihua Liu revised
599 the manuscript.

600

601 **Ethics Statement**

602 This study does not contain any studies with human participants or animals performed by any
603 of the authors.

604

605 **Conflict of interests**

606 The authors declare no conflict of interest.

607

608 **References**

- 609 1. Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. *Proc Natl Acad Sci*
610 USA. 2016;113(21):5970-5.
- 611 2. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, et al. Climate change
612 impacts on marine ecosystems. *Ann Rev Mar Sci*. 2012;4:11-37.
- 613 3. Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ.
614 Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes.
615 *Science*. 2015;347(6223):1257594.
- 616 4. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: The unseen majority. *Proc Natl*
617 *Acad Sci USA*. 1998;95(12):6578-83.
- 618 5. Falkowski PG, Fenchel T, Delong EF. The Microbial Engines That Drive Earth's
619 Biogeochemical Cycles. *Science*. 2008;320(5879):1034-9.
- 620 6. Fuhrman JA. Microbial community structure and its functional implications. *Nature*.
621 2009;459(7244):193-9.
- 622 7. Sañudo-Wilhelmy SA, Gomez-Consarnau L, Suffridge C, Webb EA. The role of B
623 vitamins in marine biogeochemistry. *Ann Rev Mar Sci*. 2014;6(1):339-67.
- 624 8. Akduman N, Lightfoot JW, Rseler W, Witte H, Lo W-S, Rödelsperger C, et al. Bacterial
625 vitamin B₁₂ production enhances nematode predatory behavior. *ISME J*. 2020;14(6):1494-507.
- 626 9. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith A. Algae acquire vitamin B₁₂
627 through a symbiotic relationship with bacteria. *Nature*. 2005;438(7064):90-3.
- 628 10. Stubbe J. Binding Site Revealed of Nature's Most Beautiful Cofactor. *Science*.
629 1994;266(5191):1663-4.
- 630 11. Wienhausen G, Dlugosch L, Jarling R, Wilkes H, Giebel HA, Simon M. Availability of
631 vitamin B₁₂ and its lower ligand intermediate alpha-ribazole impact prokaryotic and protist
632 communities in oceanic systems. *ISME J*. 2022;16(8):2002-14.
- 633 12. Raux E, Schubert HL, Roper JM, Wilson KS, Warren MJ. Vitamin B₁₂: Insights into
634 Biosynthesis's Mount Improbable. *Bioorg Chem*. 1999;27(2):100-18.
- 635 13. Sonnenburg ED, Sonnenburg JL. Gut microbes take their vitamins. *Cell Host & Microbe*.
636 2014;15(1):5-6.
- 637 14. Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, et al. Two
638 distinct pools of B₁₂ analogs reveal community interdependencies in the ocean. *Proc Natl Acad*
639 *Sci USA*. 2017;114(2):364-9.

640 15. Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, et al. Uneven distribution
641 of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics.
642 *ISME J.* 2019;13:789-804.

643 16. Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, Delmont TO, et al.
644 Phytoplankton-bacterial interactions mediate micronutrient colimitation at the coastal
645 Antarctic sea ice edge. *Proc Natl Acad Sci USA.* 2015;112(32):9938-43.

646 17. Lu X, Heal KR, Ingalls AE, Doxey AC, Neufeld JD. Metagenomic and chemical
647 characterization of soil cobalamin production. *ISME J.* 2020;14(1):53-66.

648 18. Degnan PH, Taga ME, Goodman AL. Vitamin B₁₂ as a modulator of gut microbial ecology.
649 *Cell Metabolism.* 2014;20(5):769-78.

650 19. Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL. Human gut microbes use
651 multiple transporters to distinguish vitamin B₁₂ analogs and compete in the gut. *Cell Host &*
652 *Microbe.* 2014;15(1):47-57.

653 20. Romine MF, Rodionov DA, Maezato Y, Anderson LN, Nandhikonda P, Rodionova IA, et
654 al. Elucidation of roles for vitamin B₁₂ in regulation of folate, ubiquinone, and methionine
655 metabolism. *Proc Natl Acad Sci USA.* 2017;114(7):E1205-E14.

656 21. Lucke S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, et al. A Nitrospira
657 metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing
658 bacteria. *Proc Natl Acad Sci USA.* 2010;107(30):13479-84.

659 22. Bertrand EM, Allen AE. Influence of vitamin B auxotrophy on nitrogen metabolism in
660 eukaryotic phytoplankton. *Front Microbiol.* 2012;3:375.

661 23. King AL, Sanudo-Wilhelmy SA, Leblanc K, Hutchins DA, Fu F. CO₂ and vitamin B₁₂
662 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom. *ISME*
663 *J.* 2011;5(8):1388-96.

664 24. Koch F, Marcoval MA, Panzeca C, Bruland KW, Sanudo-Wilhelmy SA, Gobler CJ. The
665 effect of vitamin B₁₂ on phytoplankton growth and community structure in the Gulf of Alaska.
666 *Limnol Oceanogr.* 2011;56(3):1023-34.

667 25. Sunagawa S, Acinas SG, Bork P, Bowler C, Tara Oceans C, Eveillard D, et al. Tara Oceans:
668 towards global ocean ecosystems biology. *Nat Rev Microbiol.* 2020;18(8):428-45.

669 26. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure
670 and function of the global ocean microbiome. *Science.* 2015;348(6237):1261359.

671 27. Bork P, Bowler C, de Vargas C, Gorsky G, Karsenti E, Wincker P. Tara Oceans studies
672 plankton at planetary scale. *Science.* 2015;348(6237):1261605.

673 28. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O'Connor MI, et al. Function and
674 functional redundancy in microbial systems. *Nat Ecol Evol*. 2018;2(6):936-43.

675 29. Zhou J, Yu X, Liu J, Qin W, He Z, Stahl D, et al. VB₁₂Path for accurate metagenomic
676 profiling of microbially driven cobalamin synthesis pathways. *mSystems*. 2021;6(3):e00497-
677 21.

678 30. Helliwell KE, Lawrence AD, Holzer A, Kudahl UJ, Sasso S, Kräutler B, et al.
679 Cyanobacteria and Eukaryotic Algae Use Different Chemical Variants of Vitamin B₁₂. *Curr
680 Biol*. 2016;26(8):999-1008.

681 31. Włodarczyk A, Selão TT, Norling B, Nixon PJ. Newly discovered *Synechococcus* sp. *PCC
682 11901* is a robust cyanobacterial strain for high biomass production. *Communications Biology*.
683 2020;3(1):215.

684 32. Helliwell K, Lawrence A, Holzer A, Kudahl U, Sasso S, Krutler B, et al. Cyanobacteria
685 and Eukaryotic Algae Use Different Chemical Variants of Vitamin B₁₂. *Current Biology*.
686 2016;26(8):999-1008.

687 33. Taga ME, Larsen NA, Howard-Jones AR, Walsh CT, Walker GC. *BluB* cannibalizes flavin
688 to form the lower ligand of vitamin B₁₂. *Nature*. 2007;446(7134):449-53.

689 34. Campbell GRO, Taga ME, Mistry K, Lloret J, Anderson PJ, Roth JR, et al. *Sinorhizobium
690 meliloti* *bluB* is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of
691 B₁₂. *Proc Natl Acad Sci USA*. 2006;103(12):4634-9.

692 35. Hillebrand H. On the generality of the latitudinal diversity gradient. *Am Nat*.
693 2004;163(2):192-211.

694 36. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al.
695 Microbial biogeography: putting microorganisms on the map. *Nature Reviews Microbiology*.
696 2006;4(2):102-12.

697 37. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly
698 based on functional genes rather than species. *Proc Natl Acad Sci USA*. 2011;108(34):14288-
699 93.

700 38. Louca S, Jacques SM, Pires AP, Leal JS, Srivastava DS, Parfrey LW, et al. High taxonomic
701 variability despite stable functional structure across microbial communities. *Nature ecology &
702 evolution*. 2016;1(1):0015.

703 39. Ning D, Deng Y, Tiedje JM, Zhou J. A general framework for quantitatively assessing
704 ecological stochasticity. *Proc Natl Acad Sci USA*. 2019;116(34):16892-8.

705 40. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core
706 gut microbiome in obese and lean twins. *Nature*. 2009;457(7228):480-4.

707 41. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, et al. A phylogeny-
708 driven genomic encyclopaedia of Bacteria and Archaea. *Nature*. 2009;462(7276):1056-60.

709 42. Steen AD, Crits-Christoph A, Carini P, DeAngelis KM, Fierer N, Lloyd KG, et al. High
710 proportions of bacteria and archaea across most biomes remain uncultured. *ISME J*.
711 2019;13(12):3126-30.

712 43. Gomez-Consarnau L, Sachdeva R, Gifford SM, Cutter LS, Fuhrman JA, Sanudo-
713 Wilhelmy SA, et al. Mosaic patterns of B-vitamin synthesis and utilization in a natural marine
714 microbial community. *Environ Microbiol*. 2018;20(8):2809-23.

715 44. Bonnet S, Webb EA, Panzeca C, Karl DM, Capone DG, Wilhelmy SAS. Vitamin B₁₂
716 excretion by cultures of the marine cyanobacteria *Crocospaera* and *Synechococcus*. *Limnol*
717 *Oceanogr*. 2010;55(5):1959-64.

718 45. Yi S, Seth EC, Men YJ, Stabler SP, Allen RH, Alvarez-Cohen L, et al. Versatility in
719 corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in
720 *Dehalococcoides mccartyi*. *Appl Environ Microbiol*. 2012;78(21):7745-52.

721 46. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM. Genome sequence
722 of the cyanobacterium *Prochlorococcus marinus* *SS120*, a nearly minimal oxyphototrophic
723 genome. *Proc Natl Acad Sci USA*. 2003;100(17):5.

724 47. Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, et al. Vitamin
725 B₁₂ and iron colimitation of phytoplankton growth in the Ross Sea. *Limnol Oceanogr*.
726 2007;52(3):1079-93.

727 48. Browning TJ, Achterberg EP, Rapp I, Engel A, Bertrand EM, Tagliabue A, et al. Nutrient
728 co-limitation at the boundary of an oceanic gyre. *Nature*. 2017;551(7679):242-6.

729 49. Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG. Insights into the
730 evolution of vitamin B₁₂ auxotrophy from sequenced algal genomes. *Mol Biol Evol*.
731 2011;28(10):2921-33.

732 50. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. The biosynthesis of
733 adenosylcobalamin (vitamin B₁₂). *Cheminform*. 2002;19(4):390-412.

734 51. Roth J, Lawrence J, Bobik T. Cobalamin (coenzyme B₁₂): synthesis and biological
735 significance. *Annu Rev Microbiol*. 1996;50(1):137-81.

736 52. Gonzalez JC, Banerjee RV, Huang S, Sumner JS, Matthews RG. Comparison of
737 cobalamin-independent and cobalamin-dependent methionine synthases from *Escherichia coli*:
738 two solutions to the same chemical problem. *Biochemistry*. 1992;31(26):6045-56.

739 53. Bertrand EM, Moran DM, McIlvin MR, Hoffman JM, Allen AE, Saito MA. Methionine
740 synthase interreplacement in diatom cultures and communities: Implications for the persistence
741 of B₁₂ use by eukaryotic phytoplankton. *Limnol Oceanogr*. 2013;58(4):1431-50.

742 54. Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology?
743 *Microbiol Mol Biol Rev*. 2017;81(4):e00002-17.

744 55. Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberod AK, Schmidt TSB, et al.
745 Disentangling the mechanisms shaping the surface ocean microbiota. *Microbiome*.
746 2020;8(1):55.

747 56. Milke F, Wagner-Doebler I, Wienhausen G, Simon M. Selection, drift and community
748 interactions shape microbial biogeographic patterns in the Pacific Ocean. *ISME J*.
749 2022;16(12):2653-65.

750 57. Sultana S, Bruns S, Wilkes H, Simon M, Wienhausen G. Vitamin B₍₁₂₎ is not shared by
751 all marine prototrophic bacteria with their environment. *ISME J*. 2023;17(6):836–45.

752 58. Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean
753 microbiome. *Science*. 2016;353(6305):1272-7.

754 59. Tully BJ, Wheat CG, Glazer BT, Huber JA. A dynamic microbial community with high
755 functional redundancy inhabits the cold, oxic subseafloor aquifer. *ISME J*. 2018;12(1):1-16.

756 60. Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying
757 community assembly processes and identifying features that impose them. *ISME J*.
758 2013;7(11):2069-79.

759 61. Biggs CR, Yeager LA, Bolser DG, Bonsell C, Dichiera AM, Hou Z, et al. Does functional
760 redundancy affect ecological stability and resilience? A review and meta-analysis. *Ecosphere*.
761 2020;11(7):e03184.

762 62. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-
763 End reAd mergeR. *Bioinformatics*. 2014;30(5):614-20.

764 63. Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Sunagawa S. Gene Expression Changes and
765 Community Turnover Differentially Shape the Global Ocean Metatranscriptome. *Cell*.
766 2019;179(5):1068-83.e21.

767 64. Zhou J, Song W, Tu Q. To assemble or not to assemble: metagenomic profiling of
768 microbially mediated biogeochemical pathways in complex communities. *Brief Bioinform*.
769 2023;24(1):1–10.

770 65. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND.
771 *Nature Methods*. 2015;12(1):59-60.

772 66. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. *Genome*
773 *Biology*. 2019;20(1):257.

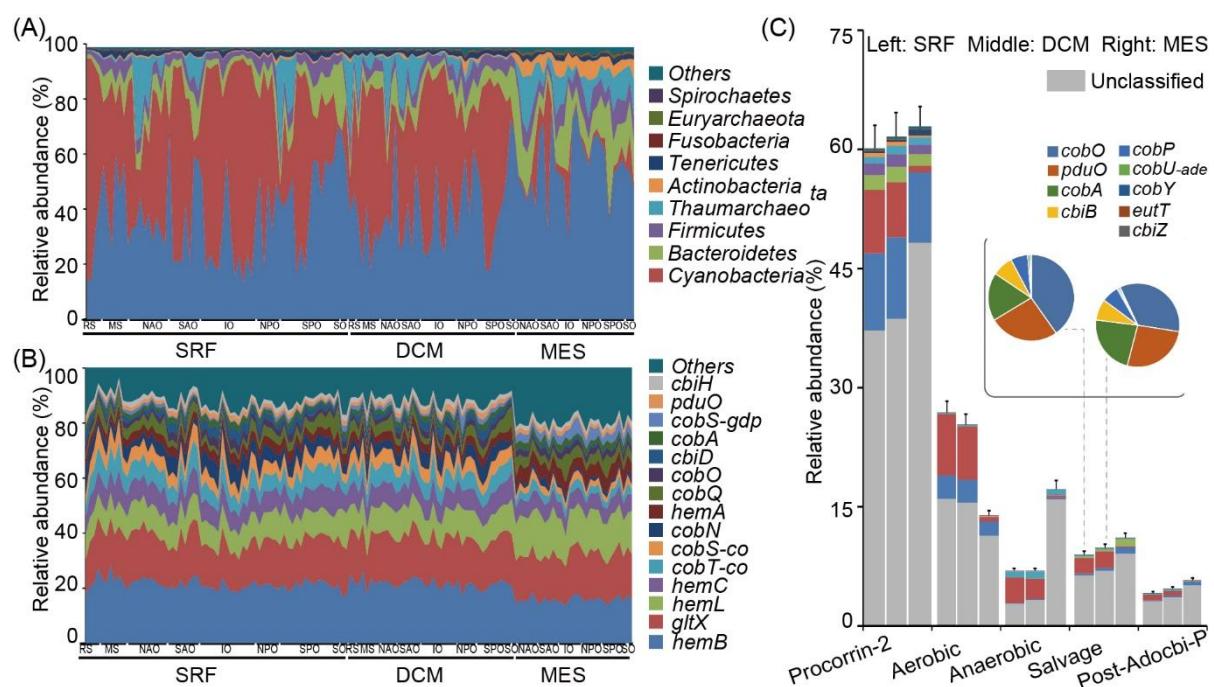
774 67. Dixon P. VEGAN, a package of R functions for community ecology. *Journal of Vegetation*
775 *Science*. 2003;14(6):927-30.

776 68. Karney CFF. Algorithms for geodesics. *Journal of Geodesy*. 2013;87(1):43-55.

777 69. Breiman L. Random Forests. *Machine Learning*. 2001;45:5-32.

778 70. Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Van Nostrand JD, et al. Stochasticity,
779 succession, and environmental perturbations in a fluidic ecosystem. *Proc Natl Acad Sci USA*.
780 2014;111(9):E836-45.

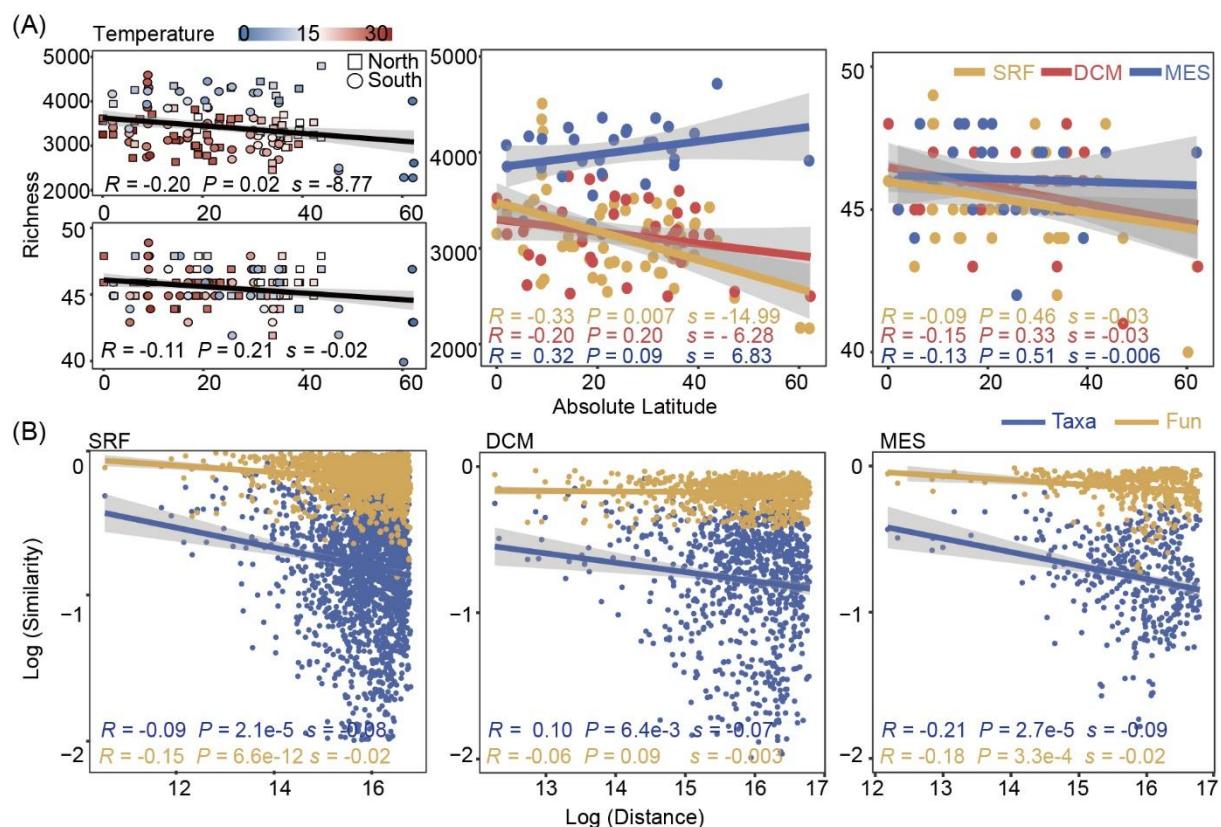
781 71. Ning D, Deng Y, Tiedje JM, Zhou J. A general framework for quantitatively assessing
782 ecological stochasticity. *Proc Natl Acad Sci USA*. 2019;116(34):16892-8.


783 72. Chase JM, Kraft NJ, Smith KG, Vellend M, Inouye BD. Using null models to disentangle
784 variation in community dissimilarity from variation in α -diversity. *Ecosphere*. 2011;2(2):1-11.

785 73. Guo X, Feng J, Shi Z, Zhou X, Yuan M, Tao X, et al. Climate warming leads to divergent
786 succession of grassland microbial communities. *Nature Climate Change*. 2018;8(9):813-8.

787 74. Clarke K, Ainsworth M. A method of linking multivariate community structure to
788 environmental variables. *Mar Ecol Prog Ser*. 1993;92(3):205-19.

789


1 **Figure legends**

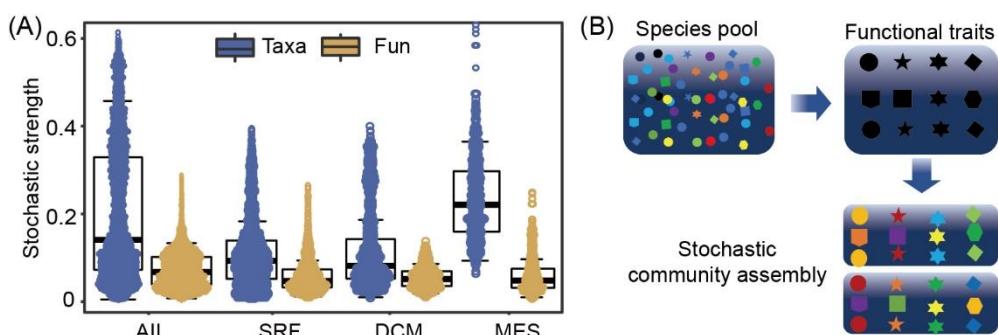
2

3 **Figure 1** The compositions of microbial taxonomic groups and functional traits related with
4 B₁₂ biosynthesis in the global ocean. (A) Compositions of microbial taxa carrying B₁₂
5 biosynthesis genes across different samples; (B) Compositions of microbial functional traits
6 potentially involved in B₁₂ biosynthesis across different samples; (C) Relative abundances of
7 microbial phyla carrying genes in different B₁₂ biosynthesis pathways and different ocean
8 layers. Relative abundance of functional traits belonging to the salvage pathway in epipelagic
9 zones were presented in pie charts. For the panel A and bar chart in panel C the same scaling
10 color code was used. For the panel B and pie chart in panel C the same scaling color code
11 was used. The major microbial taxa and functional traits were displayed in the figure. SRF,
12 surface water layer; DCM, deep chlorophyll maximum layer; MES, mesopelagic zone.

13

14 **Figure 2** Biogeographic patterns of potential B₁₂ biosynthesis traits in the global ocean. (A)

15 Latitudinal diversity gradient patterns for B₁₂ biosynthesis traits in the global ocean; (B)

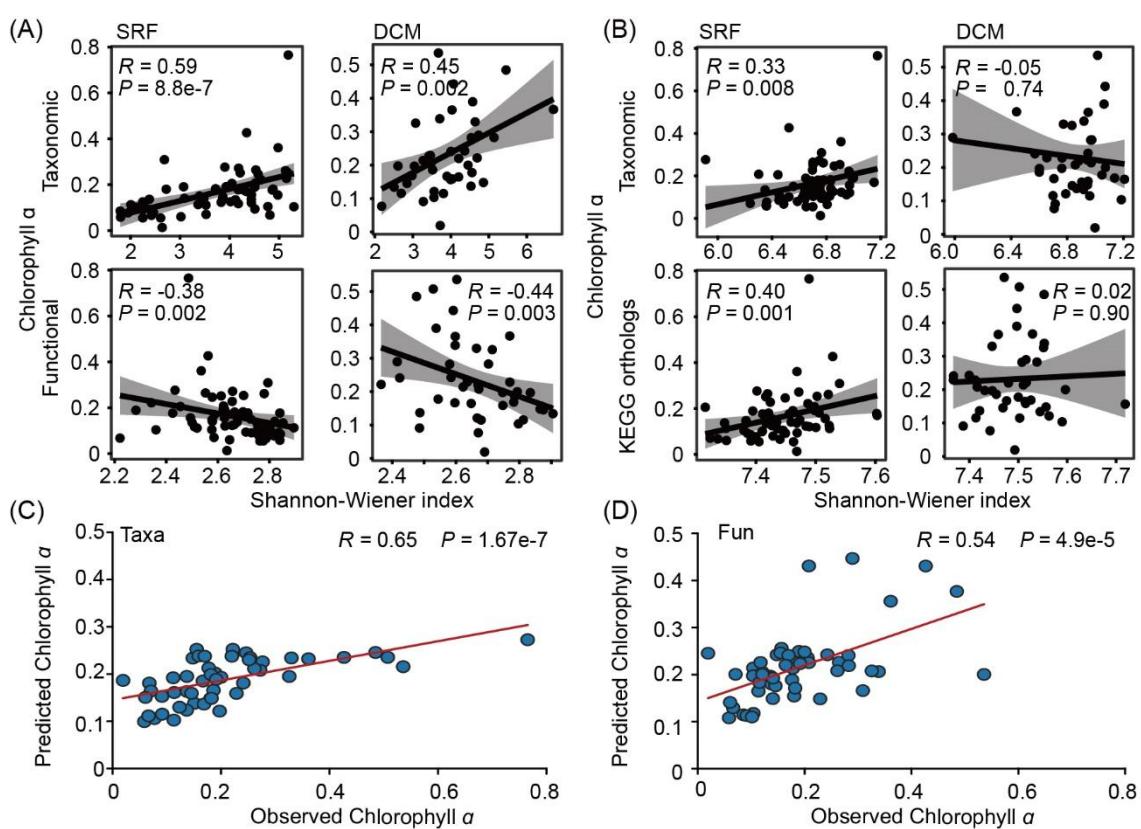

16 Distance-decay relationship for B₁₂ biosynthesis traits in the global ocean. The patterns for

17 taxonomic groups and functional traits were investigated. Taxa, taxonomic composition; Fun,

18 functional composition.

19

20



21

22 **Figure 3** Mechanisms governing the assembly of B_{12} biosynthesis traits in the ocean
23 ecosystem. (A) Stochasticity of community assembly as revealed by null model analysis; (B)
24 An ecological model explaining community assembly of microbial functional groups in the
25 ocean ecosystem. According to the model, the environment selected microbial functional
26 traits rather than taxonomy, and functional redundancy underlies stochastic community
27 assembly. In the ecological model, different colors represent different microbial taxa,
28 whereas different shapes represent different functional traits. Taxa, taxonomic composition;
29 Fun, functional composition.

30

31

32

33 **Figure 4** Association between microbial community diversity and chlorophyll *a*
34 concentrations in the global ocean. (A) Associations (Spearman's ρ) between B_{12}
35 biosynthesis trait diversity (taxonomic and functional trait) and chlorophyll *a* concentrations;
36 (B) Associations (Spearman's ρ) between overall prokaryotic community diversity
37 (taxonomic and KEGG orthologous groups) and chlorophyll *a* concentrations; (C) Predicted
38 chlorophyll *a* concentrations using microbial taxa carrying B_{12} biosynthesis genes; (D)
39 Predicted chlorophyll *a* concentrations using B_{12} biosynthesis functional trait profiles. Taxa,
40 taxonomic composition; Fun, functional composition.

41

42