

1 **Toxicokinetic Characterization of the Inter-Species Differences in**
2 **6PPD-Quinone Toxicity Across Seven Fish Species: Metabolite**
3 **Identification and Semi-Quantification**

4 David Montgomery¹, Xiaowen Ji^{2,6}, Jenna Cantin¹, Danielle Philibert³, Garrett Foster⁴, Summer
5 Selinger¹, Niteesh Jain¹, Justin Miller⁵, Jenifer McIntyre⁴, Benjamin de Jourdan³, Steve
6 Wiseman⁵, Markus Hecker^{1,2}, Markus Brinkmann^{1,2,6*}

7

8 ¹ Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

9 ² School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada

10 ³ Huntsman Marine Science Centre, St. Andrews, New Brunswick, Canada

11 ⁴ School of the Environment, Washington State University, Puyallup, Washington, United States
12 of America

13 ⁵ Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada

14 ⁶ Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada

15

16

17

18 *Corresponding author:

19 **Markus Brinkmann, PhD**

20 Toxicology Centre, University of Saskatchewan

21 44 Campus Drive

22 Saskatoon, SK, S7N 5B3 Canada

23 Email: markus.brinkmann@usask.ca

24 **ABSTRACT:**

25 N-(1,3-Dimethylbutyl)-N'-Phenyl-P-Phenylenediamine-Quinone (6PPD-Q) is a recently
26 identified contaminant that originates from the oxidation of the tire anti-degradant 6PPD. 6PPD-Q is
27 acutely toxic to select salmonids at environmentally relevant concentrations, while other fish species
28 display tolerance to concentrations surpassing those measured in the environment. The reasons for these
29 marked differences in sensitivity are presently unknown. The objective of this research was to explore
30 potential toxicokinetic drivers of species sensitivity by characterizing biliary metabolites of 6PPD-Q in
31 sensitive and tolerant fishes. For the first time, we identified an *O*-glucuronide metabolite of 6PPD-Q
32 using high-resolution mass spectrometry. The semi-quantified levels of this metabolite in tolerant species
33 or life stages, including white sturgeon (*Acipenser transmontanus*), chinook salmon (*Oncorhynchus*
34 *tshawytscha*), westslope cutthroat trout (*Oncorhynchus clarkia lewisi*) and non-fry life stages of Atlantic
35 salmon (*Salmo salar*), were greater than those in sensitive species, including coho salmon (*Oncorhynchus*
36 *kisutch*), brook trout (*Salvelinus fontinalis*), and rainbow trout (*Oncorhynchus mykiss*), suggesting that
37 tolerant species might more effectively detoxify 6PPD-Q. Thus, we hypothesize that differences in
38 species sensitivity are a result of differences in basal expression of biotransformation enzyme across
39 various fish species. Moreover, the semi-quantification of 6PPD-Q metabolites in bile extracted from
40 wild-caught fish might be a useful biomarker of exposure to 6PPD-Q, thereby being invaluable to
41 environmental monitoring and risk assessment.

42

43 **Keywords:** Species-specific toxicity; high-resolution-mass spectrometry; biotransformation; metabolite
44 identification; predictive toxicology

45 INTRODUCTION

46 N-(1,3-Dimethylbutyl)-N'-Phenyl-P-Phenylenediamine-Quinone (6PPD-Q), an oxidation product
47 of the tire anti-degradant 6PPD, is a novel contaminant of great global concern due to its high
48 ecotoxicity.¹⁻¹² 6PPD belongs to the class of *p*-phenylenediamine compounds, which are aromatic amine
49 antioxidants that function to increase the lifespan of pneumatic rubber tires and were invented in 1845.^{2,3}
50 In the environment, 6PPD rapidly oxidizes into its di-ketone (or quinone) product, 6PPD-Q.¹ This
51 oxidation product has recently been shown to be highly toxic to a variety of salmonid species, thus
52 constituting a great global concern due to its ubiquitous nature.^{1,4-12} 6PPD-Q is transported into nearby
53 waterways with roadway runoff during rainfall events, and maximum surface water concentrations of 0.6
54 to 2.3 µg/L have been reported across North America (e.g., Seattle, WA, USA; Saskatoon, SK, Canada;
55 and Toronto, ON, Canada).⁴⁻⁶

56 The toxicity of 6PPD-Q was first discovered by Tian et al.^{5,6} in coho salmon (*Oncorhynchus*
57 *kisutch*; abbreviated: CS). This species showed mass mortalities after acute exposure to environmentally
58 relevant concentrations as low as 0.095 µg/L (24-hour LC50 value).⁶ Other fish species, such as brook
59 trout (*Salvelinus fontinalis*; BT) and freshwater rainbow trout (*Oncorhynchus mykiss*; RBT), also showed
60 acute mortalities at concentrations of 6PPD-Q of 0.59 µg/L (24-hour LC50) and 1.00 µg/L (96-hour
61 LC50), respectively.⁷ Other acutely sensitive fishes may include white-spotted char (*Salvelinus*
62 *leucomaenoides*), and anadromous steelhead trout (*Oncorhynchus mykiss*), although these fishes were
63 exposed to urban roadway runoff as opposed to isolated 6PPD-Q exposure.⁸⁻⁹ Toxicity of 6PPD-Q appears
64 to be highly species-specific, and many of the tested fish species to date do not show any abnormal
65 physiological responses or acute mortality, even after exposure to much greater, non-environmentally
66 relevant concentrations.^{7-9,11} For example, Arctic char (*Salvelinus alpinus*; AC) and white sturgeon
67 (*Acipenser transmontanus*; WS) were tolerant to concentrations greater than 14.2 and 12.7 µg/L,
68 respectively.⁷ Other tolerant species include Atlantic salmon (*Salmo salar*; AS) and brown trout (*Salmo*

69 *trutta*).¹¹ Interestingly, sensitivity cannot be explained by phylogeny alone, as evolutionarily closely
70 related salmonid species, such as AC and BT differ greatly in their responses.⁷

71 Interspecific differences in response to acute exposure could be attributed to a variety of factors.
72 One explanation could be differences in the molecular targets among different fish species. A recent study
73 using gill cells of RBT suggests that 6PPD-Q results in uncoupling of the electron transport chain,
74 causing increased oxygen consumption, in line with the often-observed symptoms of gasping and
75 spiraling.^{7,12} This study reported effects that were similar to results observed with a known uncoupler,
76 carbonyl cyanide-p-trifluoromethoxyphenylhydrazone.¹² However, mitochondrial respiration is well-
77 conserved among different species of fishes, and thus, an alternative explanation or other contributing
78 factors may be plausible in explaining the species-specific toxicity of 6PPD-Q.¹³ Another explanation
79 could involve differences in toxicokinetic properties among species. For example, the abundance of a
80 chemical in the body might be influenced by relative capacities to biotransform the parent chemical into a
81 metabolite.¹⁴ The same might help explain differences in 6PPD-Q sensitivity in fishes.

82 This work highlights the characterization of the biotransformation of 6PPD-Q as a possible factor
83 contributing to the stark differences in sensitivity among fish species. In accordance with a previous
84 article that hypothesized the plausibility of a toxicokinetic mechanism as a driver of interspecific
85 differences in responses, we hypothesize that lesser metabolic capacity to rapidly detoxify 6PPD-Q may
86 be related to increased sensitivity.¹² Specifically, this study aimed to identify and characterize potential
87 differences in detoxification of 6PPD-Q across diverse species of sensitive and tolerant fishes through
88 analysis of bile samples from previously published and newly performed experiments using liquid
89 chromatography and high-resolution mass spectrometry (LC-MS).

90

91 **MATERIALS AND METHODS**

92 **Chemicals and Reagents.**

93 Deuterium-labeled 6PPD-Q-d₅ standards were obtained either from HPC Standards GmbH
94 (Borsdorf, Germany) for the Chinook salmon (*Oncorhynchus tshawytscha*; ChS) and CS exposures, from
95 Trent University (Peterborough, ON, Canada; synthesized by Dr. Pirrung) for AS exposures, or from
96 Toronto Research Chemicals (Toronto, ON, Canada) for all other species. Stock solutions for exposure of
97 6PPD-Q to fish were prepared using ethanol (EtOH) for ChS and CS or dimethyl sulfoxide (DMSO) for
98 all other tested species to achieve a final solvent concentration of 0.0007 % (v/v) EtOH (ChS and CS) and
99 0.001% - 0.04% (v/v) DMSO during exposures. Analytical standard solutions of native and mass-labeled
100 6PPD-Q were prepared in absolute EtOH (ChS and CS) or LC-MS-grade methanol (MeOH, all other
101 species). EtOH was obtained from Fisher Scientific (USA). LC-MS grade MeOH and water for bile
102 dilution samples were obtained from Thermo Scientific (Canada) and used as the LC solvents. Extractions
103 were conducted with methanol (LC-MS grade). No standards were available for the identified metabolites
104 of 6PPD-Q due to the novelty of the discovered compounds.

105

106 **Fish Source and Culture.**

107 RBT and WS were obtained from Lyndon Hatcheries (ON, Canada) and the Nechako White
108 Sturgeon Conservation Centre (Vanderhoof, BC, Canada), respectively, and cultured under standard
109 conditions at the Aquatic Toxicology Research Facility (ATRF) at the University of Saskatchewan (SK,
110 Canada). BT were from Allison Creek Trout Hatchery (Coleman, AB, Canada) and were housed in the
111 Aquatic Research Facility (ARF) at the University of Lethbridge (Lethbridge, AB, Canada). Details of
112 fish source and culture for BT, RBT, and WS can be found in Brinkmann et al. 2022.⁷

113 Westslope cutthroat trout (*Oncorhynchus clarkii lewisi*; WCT) were obtained from Allison Creek
114 Trout Hatchery (Coleman, AB). WCT were housed for eight months in 600-L insulated fiberglass tanks in
115 the Aquatic Research Facility (ARF) at the University of Lethbridge, AB, Canada, prior to the 6PPD-Q
116 exposure. The photoperiod was 14 h light: 10 h dark. Water flow in the tank was 30 L/min. Water quality

117 was assessed weekly during the holding period. Average values were as follows: DO = 98% (9.8 mg/L),
118 pH = 7.90, ammonia = 0.01 mg/L, nitrite = 0.002 mg/L, nitrate = 3.0 mg/L. Fish were fed EWOS trout
119 feed (Cargill, Canada) at 1% of their body mass per day. Studies were approved by the University of
120 Lethbridge Animal Welfare Committee (Protocol 2111).

121 CS and ChS were from Voights Creek Hatchery (Orting, WA, USA). Fish were housed in 1,000-L
122 fiberglass circular tanks at the Aquatic Toxicology Lab, Washington State University Puyallup Research
123 and Extension Centre, Puyallup, WA, USA, for 205 days (CS) and 235 days (ChS) days prior to exposure.
124 The photoperiod was 12 h light: 12 h dark. Water flow was recirculated using an aquaculture system with
125 reconstituted water treated by biofiltration and UV. Conductivity and alkalinity are maintained by an auto-
126 dosing system with stocks of Instant Ocean brand sea salt and bicarbonate. The water flow rate was 14.2
127 L/min in each rearing tank. Water quality was assessed daily (temperature, DO, pH, conductivity, and
128 ammonia) or biweekly (nitrate, nitrite, phosphate, alkalinity) during the holding period. Average values
129 were: DO \geq 8mg/L, pH = 7.5, conductivity = 800-1,000 μ S/cm. Fish were fed 2 % of body mass three
130 times a week with BioOregon BioVita fry feed. Studies were approved by Washington State University's
131 Institutional Animal Care and Use Committee.

132 AS were from in-house brood stock at the Huntsman Marine Science Centre and held for ~1 year
133 (Parr) or ~2.5 years (Post-Smolt and Post-Smolt Returns) in 7,500-L round tanks prior to exposure. The
134 parr and post-smolt returns were exposed in freshwater, while the post-smolt exposures were conducted in
135 natural seawater. The photoperiod was 10 h light: 14 h dark. Water quality was assessed during the
136 holding period. Average (\pm SD) values were as follows: temperature: 11.7 ± 0.19 °C (Post-Smolt
137 Returns), 11.4 ± 0.43 °C (Post-Smolt), 13.3 ± 0.27 °C (Parr); DO: $108.9 \pm 7.56\%$ (68.5 ± 0.93 mg/L)
138 (Post-Smolt Returns), $122.7 \pm 5.42\%$ (11.1 ± 0.61 mg/L) (Post-Smolt), $104.8 \pm 2.68\%$ (9.4 ± 0.77 mg/L)
139 (Parr). Fish were fed with a commercial salmonid diet purchased from Skretting. All holding and care for
140 fish were conducted according to the Department of Fisheries and Oceans Animal Care Committee
141 protocol AUP 22-26.

142

143 **Exposure Experiments.**

144 BT, RBT, and WS were exposed to concentrations of 6PPD-Q ranging from 0.11 to 4.35, 0.09 to
145 5.33, and 12.7 $\mu\text{g}/\text{L}$, respectively, under static renewal conditions (50% water change every 24 h).
146 Detailed descriptions of exposure conditions, study design and analytical and quality control procedures
147 for BT, RBT, and WS can be found in Brinkmann et al. 2022.⁷

148 WCT exposures were performed in 150-L inert glass fiber Krescel tanks under non-renewal
149 conditions with a 2.5 L/min turnover. WCT were exposed to either a solvent control (0.01% v/v DMSO)
150 or a nominal 6PPD-Q concentration of 10 $\mu\text{g}/\text{L}$ in 0.01% v/v DMSO. There were four replicate tanks per
151 treatment with four fish in each. Two tanks from control and treatment were sampled at 4 h and 24 h.
152 Tanks were continuously aerated, and water was recirculated over the course of the exposure. Fish were
153 acclimated to tanks for three days prior to exposure. Fish were fasted for 24 h prior to exposure. A
154 photoperiod of 14 h light: 10 h dark was used. Average ($\pm\text{SD}$) water quality parameters were as follows:
155 temperature = $10.1 \pm 0.5^\circ\text{C}$; DO = $100.3 \pm 8.2\%$.

156 ChS and CS exposures were performed in 212-L glass aquaria with silicone seals under static
157 conditions. ChS and CS were exposed to either a solvent control (0.0007% EtOH) or a LC-MS verified
158 6PPD-Q concentration of 0.04, 0.07, or 0.08 $\mu\text{g}/\text{L}$ (CS) and 2.5 $\mu\text{g}/\text{L}$ (ChS). There were two replicates per
159 concentration with eight fish each. Tanks were aerated with two glass air diffusers per tank, and no water
160 changes were necessary for the 24-h exposure. Fish were acclimated to tanks for eight hours prior to
161 exposure at 10°C . Fish were fasted for ~24 hours prior to exposure. A photoperiod of 12 h light: 12 h
162 dark was used. Average ($\pm\text{SD}$) water quality parameters were: DO = $9.30 \pm 0.24\text{ mg/L}$; pH = 7.81 ± 0.09 ;
163 conductivity = $1,124 \pm 15.86\text{ }\mu\text{S}/\text{cm}$; temperature = $10.25 \pm 0.31^\circ\text{C}$. Water samples were collected for
164 analytical confirmation of 6PPD-Q concentrations at time points 0, 3, and 24 hours. Water samples were
165 immediately spiked at 0.1 $\mu\text{g}/\text{L}$ with 6PPD-Q-d5 and stored at 4°C until they were analyzed.

166 AS exposures were performed in 212-L steel drums with a plastic bag during exposure under
167 static conditions. AS were exposed to either a solvent control (0.04 % v/v DMSO) or a nominal 6PPD-Q
168 concentration of 3, 10, 30, or 100 µg/L. There were three replicates per treatment with five fish each
169 (Post-Smolt and Post-Smolt Returns) or ten fish each (Parr). All tanks from control and treatment were
170 sampled at 24 h of exposure. Tanks were aggressively aerated, and water was not changed over the course
171 of the exposure. Fish were acclimated in the test vessel for 0.5-1 hour at ~11.5 °C (Post-Smolt and Post-
172 Smolt Returns) or ~13 °C (Parr) prior to dosing. Fish were fasted for three days (Post-Smolt and Post-
173 Smolt Returns) or two days (Parr) prior to exposure. A photoperiod of 10 h light: 14 h dark was used.
174 Average (\pm SD) water quality measurements were as follows: Pre-exposure: Salinity = 33 PSU (Post-
175 Smolt); pH = 7.8 (Post-Smolt Returns), 8.25 (Post-Smolt), 6.88 (Parr); Hardness = 13 mg/L (Post-Smolt
176 Returns), 13 mg/L (Parr); Alkalinity = 20 (Post-Smolt Returns), 24 mg/L (Parr). Post-exposure
177 parameters: Salinity = 32.0 - 33.0 PSU (Post-Smolt); pH = 6.87 - 7.81 (Post-Smolt Returns), 7.65 – 7.96
178 (Post-Smolt), 7.16 – 7.29 (Parr); Hardness = 12 mg/L (Post-Smolt Returns), 12 mg/L (Parr); Alkalinity =
179 20 - 28 mg/L (Parr); Ammonia = 0.56 – 1.08 mg/L (Post-Smolt Returns), 0.16 – 0.83 mg/L (Post-Smolt)
180 and 0.08 – 0.33 mg/L (Parr).

181

182 **Biological Sampling.**

183 WCT were euthanized using 1 g/L Tricaine methanesufonate (TMS) at 4 and 24 h and
184 gallbladders removed and placed in 2-mL cryovials.. CS and ChS were euthanized by percussive stunning
185 followed by pithing. ChS and CS gallbladders were excised and pooled for each replicate into glass vials.
186 Bile was extracted by removing gallbladder tissues with jeweller forceps within collection vials and
187 immediately flash frozen in liquid nitrogen. Bile from ChS was collected at the end of the 24 h exposure
188 period, while for CS, bile was collected from control and 6PPD-Q exposed fish at 8, 9, 11, 19, or 23 h for
189 the few fish that became moribund at those times or 24 h for the remaining fish.

190 In the AS trials, surviving parr, post-smolt, and post-smolt returns were euthanized with 400 mg/L
191 of TMS at the end of the 24 h exposure. AS bile was extracted from gallbladders using a 1-mL syringe
192 and aliquoted directly into cryovial tubes and subsequently flash-frozen using liquid nitrogen. WS bile
193 was collected from control and 6PPD-Q exposed fish at 96 h of exposure. RBT bile was expressed from
194 gallbladders directly into cryovials that were subsequently flash-frozen in liquid nitrogen. Bile was
195 collected from control and 6PPD-Q exposed fish at ~12, 16, 60 h for moribund fish, and 96 h for the
196 remaining fish. BT bile was extracted and subsequently frozen at -20°C. Bile was collected from control
197 and 6PPD-Q exposed fish at ~3, 5, 6, 10, 14 h for moribund fish and 24 h for the remaining fish.

198

199 **Sample Processing.**

200 Bile samples generated by collaborators were shipped to the University of Saskatchewan on dry
201 ice and stored at -80 °C until further analysis. Samples were thawed at 4 °C or on ice and subsequently
202 aliquoted into MeOH (LC-MS grade) for extraction with a final dilution percentage of 1% for BT, RBT,
203 WS, WCT, 10% for CS, 5% for ChS and 1, 2 or 5% for AS (**Table S2**). After dilution, bile samples were
204 set aside for a minimum of 12 hours at 4 °C for protein. Larger volumes of diluted bile (500 µL) were
205 subsequently filtered through 0.2 µm PTFE filters obtained from Chromatographic Specialties (Canada),
206 and plastic two-piece 3-mL syringes from Thermo Scientific (Canada). Smaller diluted bile samples for
207 CS (30 µL) were centrifuged for 15 minutes at 2 °C and 3,381 ×g, and the remaining supernatant was
208 extracted for chemical analyses.

209

210 **Instrument Analysis.**

211 **Non-Targeted Analysis Method.**

212 Details on the separation of analytes using ultra-high performance liquid chromatography
213 (UPLC) coupled with an Exactive HF Orbitrap high-resolution mass spectrometer (HESI) ion source
214 (Thermo Scientific) are provided in **Table S3**. The following parameters for non-target analysis of bile
215 extracts were used to acquire the data-dependent MS2 (ddMS2) positive mode scans: sheath gas flow =
216 35, aux gas flow = 10, sweep gas flow = 1, aux gas heater temperature = 300 °C, spray voltage = 4.00 kV,
217 S-lens RF = 60.0, capillary temperature = 350 °C. A Full MS method used scan settings of resolution =
218 120,000, positive ion, AGC target = 500,000, maximum injection time = 100 ms, Full MS scan range of
219 70-1,000 m/z. The ddMS2 component of the method used the following scan settings: resolution =
220 30,000, positive ion, AGC target = 100,000, maximum injection time = 100 ms, loop count = 5, MSX
221 count 2, TopN = 10, with an isolation window of 2.0 m/z and collision energy of 15, 30 and 45 kV.

222

223 **Parallel Reaction Monitoring Method.**

224 Details on the separation of analytes using ultra-high performance liquid chromatography
225 (UPLC) coupled with an Exactive HF Orbitrap high-resolution mass spectrometer (HESI) ion source
226 (Thermo Scientific) are provided in **Table S3**. The following parameters for targeted analysis of bile
227 extracts were used to acquire the data-dependent MS2 (ddMS2) positive mode scans: sheath gas flow =
228 35, aux gas flow = 10, sweep gas flow = 1, aux gas heater temperature = 300 °C, spray voltage = 4.00 kV,
229 S-lens RF = 60.0, capillary temperature = 350 °C. A Full MS/parallel reaction monitoring (PRM) method
230 used the following scan settings: resolution = 30,000, positive ion, AGC target = 2e5, maximum injection
231 time = 100 ms, Full MS scan range of 100.0-1,000 m/z and PRM isolation window of 4.0 m/z. Inclusion
232 list ions, collision energies, and retention times are provided in **Table S4**.

233 Semi-quantification was achieved using peak areas quantified in Qual Browser Xcalibur (Thermo
234 Scientific) from data generated by the Q-Exactive HF Orbitrap. No standards were available for the
235 discovered compounds, and therefore, the data reported should be considered semi-quantitative. Although

236 full quantitation cannot be achieved without a standard curve, abundance of the metabolites relative to
237 each other are precise and reliable.

238

239 **Data Analysis and Statistics.**

240 A list of suspected biotransformation products of 6PPD-Q was generated *in silico* using the online
241 tool BioTransformer 3.0 (<https://biotransformer.ca/>). Data from non-targeted screening were observed in
242 Thermo Scientific FreeStyle software to determine precursor and fragment ions of potential biliary
243 compounds and compared against these *in silico* predictions. To elucidate the most likely molecular
244 position of chemical biotransformation, we used the tool CFM-ID (<https://cfmid.wishartlab.com/>) to
245 predict MS/MS fragments of 6PPD-Q biotransformation products predicted by BioTransformer 3.0. Once
246 fragments were identified and included within the PRM inclusion list, Thermo Excalibur Qual Browser
247 was used to determine metabolite peak areas in chromatograms in conjunction with fragments within the
248 mass spectra. Peak areas for each metabolite were normalized to 1% bile dilutions if dilutions had more
249 than 1% bile, and then exported into GraphPad Prism 9 software (La Jolla, FL, USA) for subsequent
250 analyses.

251 Data transformations were necessary to ensure datasets met the requirements of normal
252 distribution (Shapiro-Wilk's test) and homoscedasticity (Bartlett's test) prior to statistical testing. A
253 logarithmic function was used to transform phase I data (**Figure 1 A, C**) and phase II data (**Figure 1 B,**
254 **D**). A one-way ANOVA and subsequent post-hoc Tukey's test was conducted for these datasets. No
255 transformations could successfully normalize the data in (**Figure 1 E, F**). Therefore, a Kruskal-Wallis
256 with Dunn's post-hoc test was performed on these respective datasets. A principal component analysis
257 (PCA) was performed using GraphPad Prism 9 software to elucidate the extent to which exposure
258 concentration, species sensitivity (LC50), and the abundance of both metabolites are related to each
259 principal component (**Figure 3**).

260

261 **RESULTS AND DISCUSSION**

262 **Toxicity of 6PPD-Q to Test Species.**

263 The responses of BT, RBT, and WS to exposure with 6PPD-Q were described previously (**Table**
264 **S1**).⁷ AS Parr and later life (Post-Smolt and Post-Smolt Returns) stages displayed tolerance to very high
265 nominal concentrations of 6PPD-Q (100 µg/L), while fry displayed sensitivity to exposure (**Table S1**). CS
266 displayed few mortalities (8/53) at the exposure concentrations (≤ 8 µg/L), while ChS displayed tolerance
267 to 6PPD-Q exposure to verified concentrations of 2.5 µg/L (**Table S1**). WCT were insensitive to a
268 nominal 6PPD-Q concentration of 10 µg/L (**Table S1**). No mortalities were seen in WCT, WS, RBT, BT
269 AS, CS, and ChS exposures in control treatments.

270

271 **Analytical Identification of 6PPD-Q Metabolites.**

272 Using a full-MS ddMS2 non-targeted analytical workflow, we discovered two suspected
273 metabolites of 6PPD-Q: (1) mono-hydroxy-6PPD-Q (OH-6PPD-Q) and (2) 6PPD-*O*-glucuronide (6PPD-
274 Q-*O*-Gluc) (**Figures S1-S4**). OH-6PPD-Q (m/z 315.17) showed a mass-to-charge ratio of parent 6PPD-Q
275 (m/z 299.17) + 16 (**Figure S4**). The 6PPD-Q-*O*-Gluc metabolite showed an m/z of OH-6PPD-Q + 176,
276 which is characteristic of glucuronide conjugation (**Figure S3**). Fragments for both metabolites appeared
277 to be present in their respective mass spectra. No other biotransformation products predicted by
278 BioTransformer 3.0 beyond the two described here could be confirmed in the tested species. The CFM-ID
279 MS/MS fragment predictor was used to output potential fragments for different OH-6PPD-Q and 6PPD-
280 Q-*O*-Gluc isomers, whereby only those modified at the aryl moiety contained fragments which matched
281 the observed spectra (**Figure S4**). Based on these comparisons, it appeared most likely that the initial
282 hydroxylation occurs at the phenyl ring adjacent to the quinone rather than the alkyl moiety (**Figure 2**).

283 We recognize that this information is only of preliminary nature, and follow-up investigations using NMR
284 and other methods are required to fully characterize these tentatively identified metabolites.

285 **Analytical Verification of 6PPD-Q Metabolites.**

286 Based on the findings of the non-target ddMS2 method, we developed a parallel reaction
287 monitoring (PRM) method using the characteristic transitions summarized in **Table S4**. The PRM method
288 successfully eliminated irrelevant noise and resulted in increased sensitivity and resolution for the
289 targeted biotransformation products. Instrumental chemical analyses of bile samples using the newly
290 developed PRM methods revealed significant differences in OH-6PPD-Q (phase I) and 6PPD-Q-*O*-Gluc
291 (phase II) metabolite abundance, which varied between species (**Figure 1 A, B**), as well as within species
292 at varying exposure concentrations of 6PPD-Q exposure (**Figure 1 C-F**). Specific comparisons are
293 discussed and further examined in the following sections.

294 **Interspecific Differences Based on Pooled Data.**

295 Both OH-6PPD-Q and 6PPD-Q-*O*-Gluc were not detectable in bile liquid of control treatments of
296 any of the investigated species (data not shown). This is an important observation that confirms that there
297 is no endogenous formation of these two metabolites when not exposed to 6PPD-Q. Similarly, OH-6PPD-
298 Q was not detected in the bile of CS, BT, and ChS. The average abundance of OH-6PPD-Q in the bile
299 liquid of RBT (3.37×10^7 arbitrary units, au) was significantly lower than that in the bile liquid of AS
300 (4.52×10^7 au), WS (2.69×10^8 au), and WCT (2.97×10^8 au). With the exception of ChS, the abundance
301 of OH-6PPD-Q was smallest in the most sensitive species and increased with decreasing sensitivity
302 (**Figure 1A**). Similarly, the abundance of 6PPD-Q-*O*-Gluc was lowest in the three sensitive species (CS,
303 BT, and RBT) and increased with decreasing sensitivity (**Figure 1B**). However, it should be
304 acknowledged that the only sensitive life stage of AS (fry) was not represented in the bile dataset due to
305 their small size (see below), and hence, further studies are required to characterize metabolite abundance

306 in the more sensitive life stage of AS. Overall, these findings suggest that metabolite profiles might be
307 useful to distinguish species that are tolerant or sensitive to 6PPD-Q exposure.

308 Factors that could contribute to the observed differences in abundance of the two metabolites are
309 manifold, including not only differences in metabolic capacity but also potential impacts of temperature
310 on passive absorption, distribution, and elimination.^{15,16} However, temperatures of exposure were similar
311 for all tested species: most were tested at 10 °C, with some tested at 12 ± 1 °C. Therefore, it is improbable
312 that differential rates of passive transport of 6PPD-Q into the gills contributed to metabolite abundance
313 study. Although temperature is an unlikely contributing factor, absorption rates of 6PPD-Q may still have
314 played a major role in metabolite abundance. Metabolite levels in WCT 24 h samples were either 4.1
315 (OH-6PPD-Q) or 5.8 (6PPD-Q-O-Gluc) times larger than in 4 h samples, indicating the acute duration of
316 6PPD-Q exposure influenced initial metabolite abundance. Although, the total duration of exposure
317 typically followed a 24-hour time course for non-moribund fishes, moribund fishes were sampled earlier,
318 thereby yielding decreased metabolite abundance. Little is known about the absorption, distribution,
319 metabolism and excretion (ADME) properties of 6PPD-Q. Preferential distribution of 6PPD-Q
320 throughout the body is not yet discerned and the rate of 6PPD-Q uptake and biotransformation into or *via*
321 the liver has not yet been published. Other ADME factors, such as active transport into the liver or rapid
322 elimination rates, might have contributed toward the measured abundance of metabolites. However,
323 further studies are needed to fully elucidate the contribution of these potential factors.

324 The most likely contributing factor could be differences in metabolic capacity to biotransform
325 6PPD-Q between sensitive and insensitive species. In this context, lower 6PPD-Q metabolite abundance
326 in sensitive versus insensitive species might be attributed to two potential factors. First, 6PPD-Q was
327 shown to uncouple mitochondrial respiration in RBT gill cells,¹² which is known to lead to a depletion of
328 ATP pools and in turn, a reduction in overall metabolic activity. This could have directly impacted
329 metabolite abundance by limiting the clearance of 6PPD-Q. However, mitochondrial respiration is well
330 conserved among all fishes and unlikely to differ sufficiently between species to explain differences in

331 metabolite abundances. The second and more plausible explanation is that basal expression of
332 biotransformation enzymes responsible for catalyzing phase I and/or phase II reactions might be
333 substantially lower in sensitive species compared to insensitive species. This hypothesis requires further
334 investigation, as the specific enzymes and/or isoforms catalyzing the first hydroxylation reaction of
335 6PPD-Q, e.g., cytochrome P450-dependent monooxygenases (CYPs), and the UDP
336 glucuronosyltransferase (UDPGT) isoforms responsible for glucuronidation, have not been identified yet.
337 Based on our findings, however, we hypothesize tolerant species and life stages of fish can efficiently
338 remove 6PPD-Q from their circulation prior to the onset of acute lethality.

339 Generally, the levels of OH-6PPD-Q were about one order of magnitude lower compared to those
340 of 6PPD-Q-*O*-Gluc across all samples (Figure 1). This observation is not uncommon for
341 biotransformation processes since expression levels and activities of phase II enzymes in vertebrates are
342 normally several orders of magnitude greater than those of phase I enzymes, thereby efficiently
343 facilitating the removal of a variety of phase I biotransformation products. In a previous study, this can be
344 seen when comparing the activities of ethoxresorufin *O*-deethylase (EROD), which is catalyzed by
345 CYP1A, versus those of UDPGT and glutathione *S*-transferase (GST), in RBT hepatocytes.¹⁷ In this study,
346 UDPGT activity was, on average, 50-fold greater than that of EROD, and GST activity was 40,000-fold
347 greater.¹⁷ As a result, levels of phase II biotransformation products are often considerably greater than
348 those of phase I products. For example, the levels of *O*-glucuronides of the polycyclic aromatic
349 hydrocarbon benzo[*a*]pyrene (BaP) were a factor of roughly 100 greater than those of OH-BaP in early-
350 life stages of fathead minnows (*Pimephales promelas*) following exposure to BaP.^{17,18}

351

352 **Intraspecific Differences Based on Exposure Concentration and Duration.**

353 When comparing OH-6PPD-Q abundance across species (except for AS) and exposure
354 concentrations (Figure 1C), most samples showed levels below the sensitivity threshold of the analytical

355 instrument. In addition, for the few samples that showed measurable levels OH-6PPD-Q, there were no
356 statistically significant differences across concentrations within each species.

357 6PPD-Q-*O*-Gluc levels showed concentration-dependent trends among some of the investigated
358 species (**Figure 1D**). For example, the abundance of 6PPD-*O*-Gluc in CS exposed to 0.07 and 0.08 µg/L
359 6PPD-Q were a factor of 1.4 and 1.8, respectively, greater than in those exposed at 0.04 µg/L. However,
360 these differences were not significant due to the necessity to pool CS samples due to their low volume.
361 Similarly, in BT exposed to 0.11 µg/L and 4.0 µg/L, the abundance of 6PPD-*O*-Gluc was a factor of 13.6
362 greater in the 4.0 µg/L treatment. However, this difference was not significant due to the low number of
363 surviving fish at the highest exposure concentration.

364 Interestingly, we observed an inverse U-shaped concentration response in RBT. Here, 6PPD-Q-*O*-
365 Gluc abundance appeared to increase between 0.09 to 0.72 µg/L, followed by a decrease between 0.72 to
366 5.33 µg/L (**Figure 1D**). This pattern of lower phase II metabolite abundance is likely a result of the earlier
367 onset of mortalities with increasing concentrations and a consequent decrease in exposure duration of
368 analyzed fish. The 96-hour LC50 value for RBT was determined to be 1.00 µg/L, which corresponds to
369 the cut-off where the decrease in phase II metabolite abundance began (**Figure 1D**).⁷ To study the impact
370 of exposure time further, both time and concentration-dependence of metabolite abundance should be the
371 subject of future research.

372 **Differences in Atlantic Salmon Across Life Stages and Concentrations.**

373 Significant differences were detected in OH-6PPD-Q abundance in AS bile across the various life
374 stages tested (**Figure 1E**). Specifically, there was a concentration-dependent increase in OH-6PPD-Q
375 abundance at the Parr stage, which was significantly greater at the 100 µg/L exposure concentration (6.13
376 x 10⁸ au) compared to the other life stages and concentrations, ranging from non-detected to 2.05 x 10⁸ au
377 (**Figure 1E**). Similarly, Parr showed the greatest abundance of 6PPD-Q-*O*-Gluc in bile liquid, followed
378 by Post-smolt and Post-Smolt Returns (**Figure 1F**). However, while there were concentration-dependent

379 increasing trends in metabolite abundance at the same life stage, these differences were only statistically
380 significant in 6PPD-Q-*O*-Gluc data. The observed concentration responses are likely more conclusive
381 compared to BT and RBT since these life stages were not sensitive, and all fish were exposed for the
382 same duration. Sampling of the only sensitive life stage of AS, fry, was not possible due to their small
383 size. Therefore, we could not determine conclusively whether there are significant differences in
384 metabolite abundance across life stages that could help explain the observed life stage differences in
385 sensitivity. However, the three life stages of Parr, Post-Smolt Returns, and Post-Smolt showed similarly
386 low sensitivity and similar levels of 6PPD-Q-*O*-Gluc. It is expected that the sensitive fry life stage of AS
387 would have a lower presence of metabolites due to the trends described above. In addition to this, earlier
388 life stages of fish tend to have lower CYP expression than their older counterparts.¹⁹ It is possible that
389 CYPs are responsible for the initial detoxification step of 6PPD-Q; however, this needs further
390 elucidation, as no published studies to date have examined biotransformation pathways of 6PPD-Q in
391 fish.

392 **Multi-Variate Analysis for LC50, Exposure Concentration and Metabolite Abundance.**

393 The principal component analysis (PCA) revealed that principal component 1 (PC1) explained
394 45.75% of the variance in the data, while PC1 and PC2 together explained 73.56% of the variance within
395 the data (**Figure 3**). Scores for insensitive species clustered in the same quadrant, typically as an
396 individual group or otherwise clustered as one insensitive group (**Figure 3**), while sensitive species scores
397 closely clustered as one collective group (**Figure 3**). The scores for AS appeared to cluster in three
398 separate groups, with no obvious relation to the other sensitive or insensitive clusters (**Figure 3**). In PC1,
399 the small negative exposure duration loading pointed in the opposite direction of all other large positive
400 loadings (**Figure 3**). In PC2, the small positive duration, large positive OH-6PPD-Q and large positive
401 LC50 loadings all point in the opposite direction of the two other loadings, that is the small negative
402 6PPD-Q-*O*-Gluc and large negative exposure concentration loadings (**Figure 3**). Based on these results, it
403 appears that samples from sensitive and insensitive species, as well as AS were distinct from another.

404 More specifically, OH-6PPD-Q abundance and LC50 were highly correlated ($R = +0.706$) throughout the
405 dataset. Therefore, it appears phase I detoxification of 6PPD-Q is the major driver for distinguishing
406 sensitive from insensitive species. Although the correlation matrix depicts a correlation between 6PPD-Q-
407 *O*-Gluc and LC50 ($R = +0.487$), the strength of correlation is weaker than its phase I counterpart, OH-
408 6PPD-Q, which further supports the notion that the phase I reaction is primarily responsible for
409 detoxification of 6PPD-Q. While 6PPD-Q-*O*-Gluc and exposure concentration also appear to be strongly
410 correlated ($R = +0.800$), the correlation between OH-6PPD-Q and exposure concentration did not appear
411 to be strong ($R = -0.058$). Therefore, exposure concentration may have played a role in 6PPD-Q-*O*-Gluc
412 abundance but is unlikely for OH-6PPD-Q abundance. All correlations with exposure duration showed
413 very low values (ranging from $R = -0.132$ to $+0.009$), therefore it is unlikely exposure duration played a
414 major role in metabolite abundance in the present dataset. Based on these results, it appears that 6PPD-Q-
415 *O*-Gluc abundance was driven mostly by exposure concentration, and could therefore be considered a
416 biomarker of exposure, while the abundance of OH-6PPD-Q was driven mostly by the sensitivity of the
417 species (LC50) and could therefore be an important indicator of species sensitivity.

418 **Outlook and Future Research Needs.**

419 This study is the first to test the hypothesis that differential detoxification rates of 6PPD-Q could
420 contribute toward the highly species-specific acute lethality of this compound. However, several studies
421 are required to evaluate this potential mechanism further. The variability of duration and concentrations of
422 exposure makes comparisons difficult within this study. Further testing of bile samples from the same
423 sublethal exposure concentrations for the same study duration and life stage of fish might help elucidate
424 this further. To confirm the major route of detoxification is in the liver, *in vitro* substrate depletion assays
425 exposing hepatocytes of different species to 6PPD-Q may provide a more comprehensive comparison for
426 the relative rates of hepatic 6PPD-Q biotransformation. Additionally, co-exposure with different enzyme-
427 specific inhibitors might help pinpoint the identity of responsible biotransformation enzyme(s) and/or
428 isoform(s). Lastly, the chemical synthesis and further characterization of neat chemical standards for each

429 of the tentatively identified metabolites should be attempted, thereby increasing confidence and
430 permitting quantitative determination of these metabolites in fish samples.

431 Based on the findings described above, detection of 6PPD-Q-*O*-Gluc in the bile of field-exposed
432 fish might be a useful biomarker of exposure to 6PPD-Q. A sublethal exposure of 6PPD-Q to fish *in vivo*,
433 should contribute significantly to determining the residence time of each metabolite and further elucidate
434 the feasibility of 6PPD-Q-*O*-Gluc as a biomarker of exposure. Similar to the determination of biliary
435 metabolites of polyaromatic hydrocarbons in fish,²⁰ this method might enable improved environmental
436 monitoring of exposure of wild-caught or caged fish and has the potential to tremendously benefit the
437 environmental risk assessment of 6PPD-Q.

438

439

440

441 **Acknowledgments**

442 This project was supported partially by a financial contribution from Fisheries and Oceans
443 Canada. Additional funding was provided to M.B., M.H., and S.W. through the Discovery Grants program
444 of the Natural Sciences and Engineering Research Council of Canada (NSERC). Instrumentation used for
445 chemical analyses within this research was obtained with funding from Western Economic Diversification
446 Canada (WED) and the Canadian Foundation for Innovation (CFI). M.B. is currently a faculty member of
447 the Global Water Futures (GWF) program, which received funds from the Canada First Research
448 Excellence Funds (CFREF). S.W. and M.H. were supported by the Canada Research Chairs Program. The
449 authors acknowledge the animal care support of Zoë Henrikson and Dale Jefferson (ATRF) and Holly
450 Shepherd and Mamun Shamsuddin (ARF). Analytical support was provided by Xiaowen Ji and Jenna
451 Cantin. The authors also acknowledge the general assistance provided by Katherine Raes, Lucy
452 Kapronczai, Evan Kohlman, and Phillip Ankley.

453

454 **References**

455 (1) *Product-Chemical Profile for Motor Vehicle Tires Containing 6PPD - Final Version*. (n.d.). from https://dtsc.ca.gov/wp-content/uploads/sites/31/2022/05/6PPD-in-Tires-Priority-Product-Profile_FINAL-VERSION_accessible.pdf

456 (2) Peter (2022). *Where Does Rubber For Tires Come From?* (n.d.). Retrieved February 5, 2023 *Product-Chemical Profile for Motor Vehicle Tires Containing 6PPD - Final Version*. (n.d.). from https://dtsc.ca.gov/wp-content/uploads/sites/31/2022/05/6PPD-in-Tires-Priority-Product-Profile_FINAL-VERSION_accessible.pdf

457 (3) Classification of antioxidants used in rubber tires. (n.d.). Henan Xuannuo Chemicals Co. Ltd. Retrieved February 5, 2023, from <https://www.xnadditive.com/info/classif>

458 (4) Challis, J. K., Popick, H., Prajapati, S., Harder, P., Giesy, J. P., McPhedran, K., & Brinkmann, M. (2021). Occurrences of Tire Rubber-Derived Contaminants in Cold-Climate Urban Runoff. *Environmental Science & Technology Letters*, 8(11), 961–967. <https://doi.org/10.1021/acs.estlett.1c00682>

459 (5) Johannessen, C., Helm, P., Lashuk, B., Yargeau, V., & Metcalfe, C. D. (2022). The Tire Wear Compounds 6PPD-Quinone and 1,3-Diphenylguanidine in an Urban Watershed. *Archives of Environmental Contamination and Toxicology*, 82(2), 171–179. <https://doi.org/10.1007/s00244-021-00878-4>

460 (5) Tian, Z., Zhao, H., Peter, K. T., Gonzalez, M., Wetzel, J., Wu, C., Hu, X., Prat, J., Mudrock, E., Hettinger, R., Cortina, A. E., Biswas, R. G., Kock, F. V. C., Soong, R., Jenne, A., Du, B., Hou, F., He, H., Lundein, R., ... Kolodziej, E. P. (2021). A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. *Science & Technology Letters*, 9(9), 733–738. <https://doi.org/10.1021/acs.estlett.2c00467>

461 (6) Tian, Z., Gonzalez, M., Rideout, C. A., Zhao, H. N., Hu, X., Wetzel, J., Mudrock, E., James, C. A., McIntyre, J. K., & Kolodziej, E. P. (2022). 6PPD-Quinone: Revised Toxicity Assessment and Quantification with a Commercial Standard. *Environmental Science & Technology Letters*, 9(2), 140–146. <https://doi.org/10.1021/acs.estlett.1c00910>

462 (7) Brinkmann, M., Montgomery, D., Selinger, S., Miller, J. G. P., Stock, E., Alcaraz, A. J., Challis, J. K., Weber, L., Janz, D., Hecker, M., & Wiseman, S. (2022). Acute toxicity of the Tire Rubber-Derived Chemical 6PPD-quinone to Four Fishes of Commercial, Cultural, and Ecological Importance. *Environmental Science & Technology Letters*, acs.estlett.2c00050. <https://doi.org/10.1021/acs.estlett.2c00050>

463 (8) Hiki, K., & Yamamoto, H. (2022). The Tire-Derived Chemical 6PPD-quinone Is Lethally Toxic to the White-Spotted Char *Salvelinus leucomaenis* but Not to Two Other Salmonid species. *Environmental Science & Technology Letters*, 9(12), 1050–1055. <https://doi.org/10.1021/acs.estlett.2c00683>

464 (9) French, B. F., Baldwin, D. H., Cameron, J., Prat, J., King, K., Davis, J. W., McIntyre, J. K., & Scholz, N. L. (2022). Urban Roadway Runoff Is Lethal to Juvenile Coho, Steelhead, and Chinook Salmonids, But Not Congeneric Sockeye. *Environmental Science*, 371(6525), 185–189. <https://doi.org/10.1126/science.abd6951>

483 (10) Lo, B. P., Marlatt, V. L., Liao, X., Reger, S., Gallilee, C., & Brown, T. M. (n.d.). Acute toxicity of 6PPD-quinone to early life stage juvenile
484 Chinook (*Oncorhynchus tshawytscha*) and coho (*Oncorhynchus kisutch*) salmon. *Environmental Toxicology and Chemistry*, n/a(n/a).
485 <https://doi.org/10.1002/etc.5568>

486 (11) Foldvik, A., Kryuchkov, F., Sandodden, R., & Uhlig, S. (2022). Acute Toxicity Testing of the Tire Rubber-Derived Chemical 6PPD-quinone
487 on Atlantic Salmon (*Salmo salar*) and Brown Trout (*Salmo trutta*). *Environmental Toxicology and Chemistry*, 41(12), 3041–3045.
488 <https://doi.org/10.1002/etc.5487>

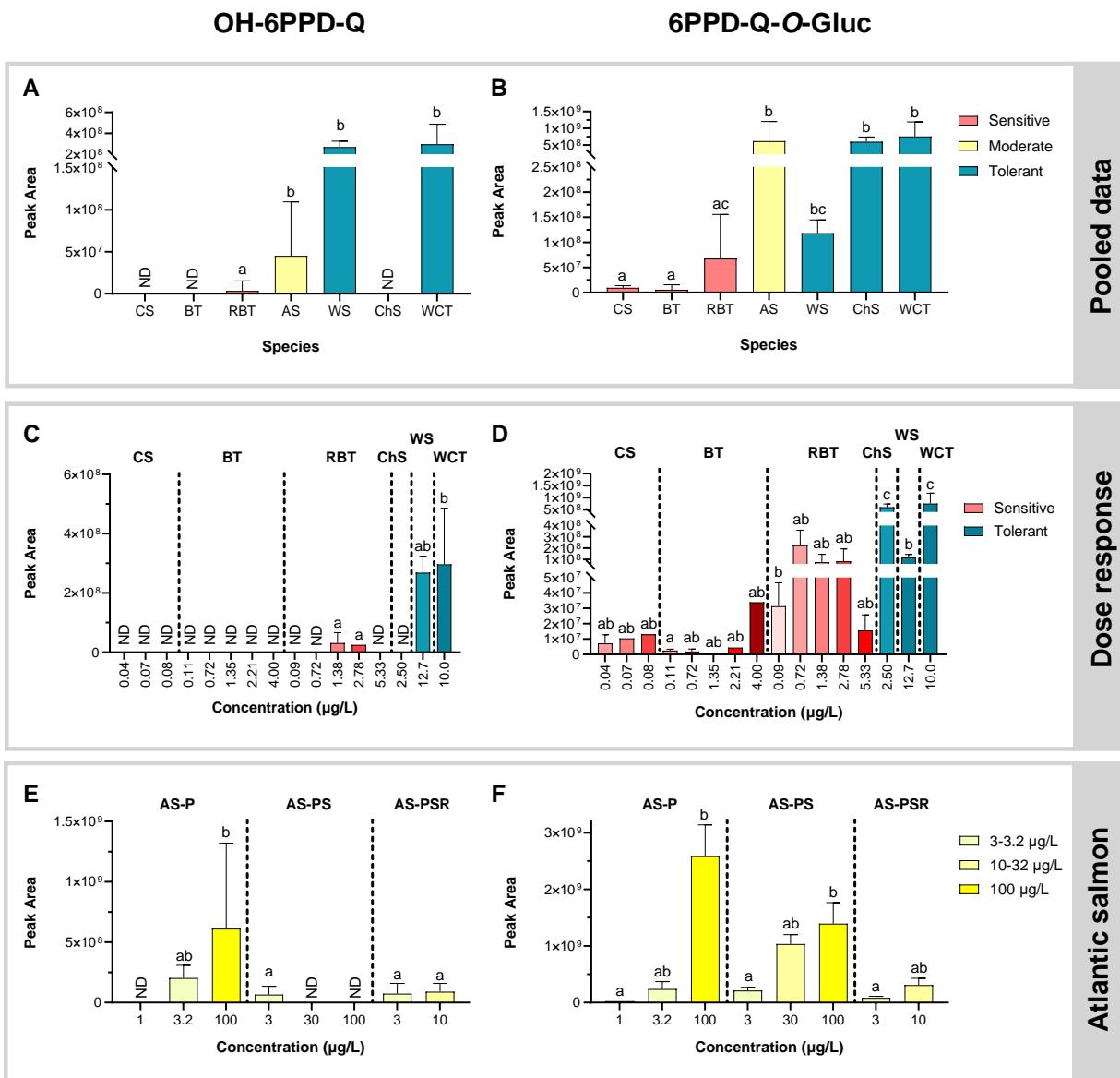
489 (12) Mahoney, H., da Silva Junior, F. C., Roberts, C., Schultz, M., Ji, X., Alcaraz, A. J., Montgomery, D., Selinger, S., Challis, J. K., Giesy, J. P.,
490 Weber, L., Janz, D., Wiseman, S., Hecker, M., & Brinkmann, M (2022). Exposure to the Tire Rubber-Derived Contaminant 6PPD-Quinone
491 Causes Mitochondrial Dysfunction In Vitro. *Environmental Science & Technology Letters*, 9(9), 765–771.
492 <https://doi.org/10.1021/acs.estlett.2c00431>

493 (13) Irene, V., & Sazanov, L. A. (2022). The assembly, regulation and function of the mitochondrial respiratory chain. *Nature Reviews Molecular
494 Cell Biology*, 23(2), 141-161. doi:<https://doi.org/10.1038/s41580-021-00415-0>

495 (14) Ribalta, C., Sanchez-Hernandez, J. C., & Sole, M. (2015). Hepatic biotransformation and antioxidant enzyme activities in Mediterranean fish
496 from different habitat depths. *Science of The Total Environment*, 532, 176–183. <https://doi.org/10.1016/j.scitotenv.2015.06.001>

497 (15) Zhernenkov, M., Bolmatov, D., Soloviov, D., Zhernenkov, K., Toperverg, B. P., Cunsolo, A., Bosak, A., & Cai, Y. Q. (2016). Revealing the
498 mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations. *Nature Communications*, 7(1), Article
499 1. <https://doi.org/10.1038/ncomms11575>

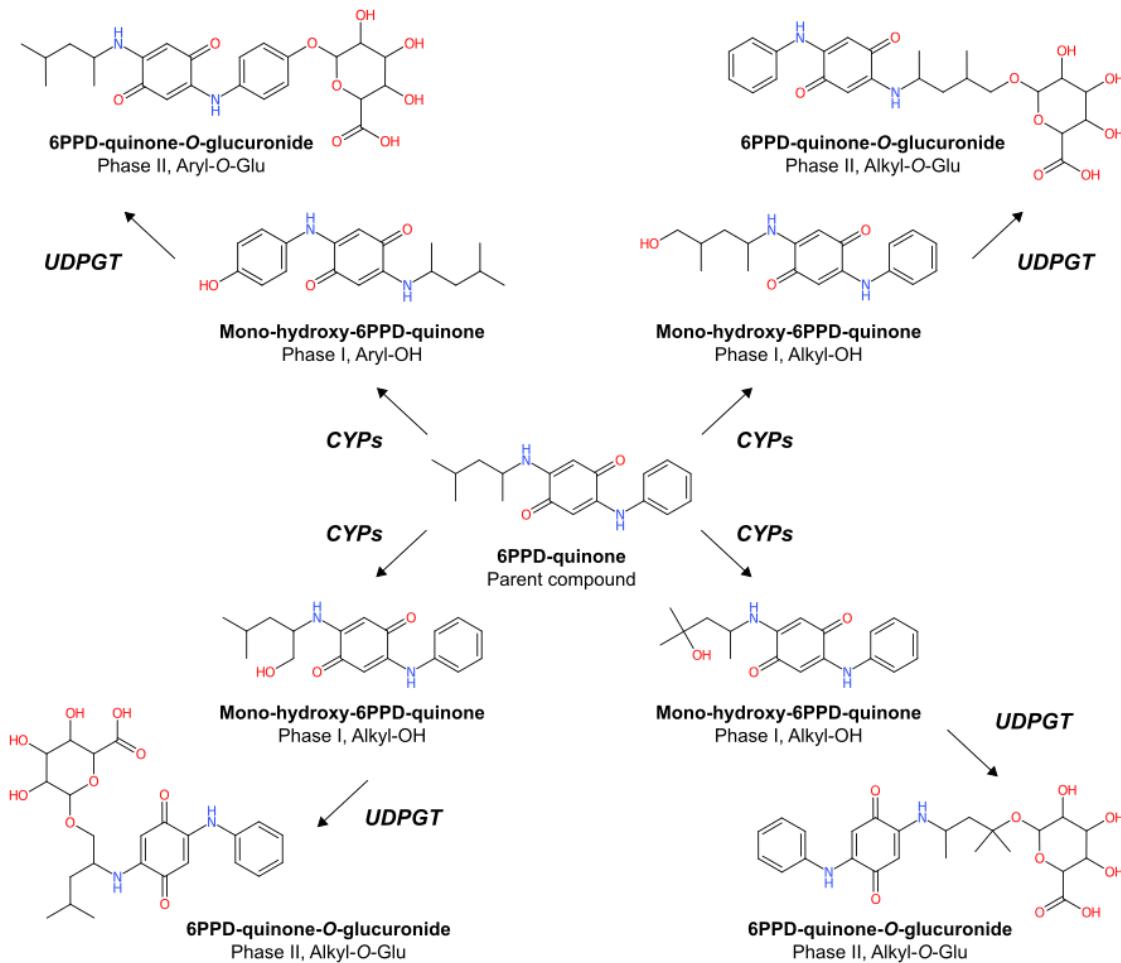
500 (16) Xu, H., Feng, C., Cao, Y., Lu, Y., Xi, J., Ji, J., Lu, D., Zhang, X.-Y., & Luan, Y. (2019). Distribution of the parent compound and its
501 metabolites in serum, urine, and feces of mice administered 2,2',4,4'-tetrabromodiphenyl ether. *Chemosphere*, 225, 217–225.
502 <https://doi.org/10.1016/j.chemosphere.2019.03.030>


503 (17) Fay, K. A., Fitzsimmons, P. N., Hoffman, A. D., & Nichols, J. W. (2017). Comparison of Trout Hepatocytes and Liver S9 Fractions as In
504 Vitro Models for Predicting Hepatic Clearance in Fish. *Environmental Toxicology and Chemistry*, 36(2), 463–471.
505 <https://doi.org/10.1002/etc.3572>

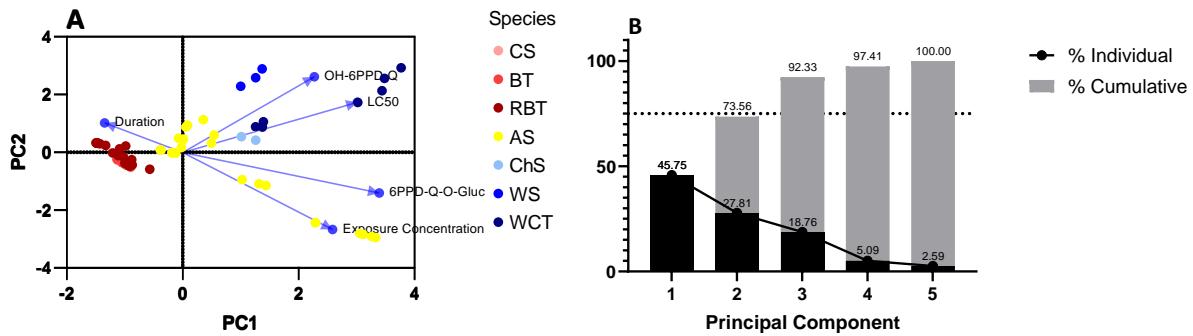
506 (18) Grimard, C., Mangold-Döring, A., Schmitz, M., Alharbi, H., Jones, P. D., Giesy, J. P., Hecker, M., & Brinkmann, M. (2020). In vitro-in vivo
507 and cross-life stage extrapolation of uptake and biotransformation of benzo[a]pyrene in the fathead minnow (*Pimephales promelas*). *Aquatic
508 Toxicology*, 228, 105616. <https://doi.org/10.1016/j.aquatox.2020.105616>

509 (19) Saad, M., Cavanaugh, K., Verbueken, E., Pype, C., Casteleyn, C., Van Ginneken, C., & Van Cruchten, S. (2016). Xenobiotic metabolism in
510 the zebrafish: A review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3. *Journal of Toxicological
511 Sciences*, 41(1), 1–11. <https://doi.org/10.2131/jts.41.1>

512 (20) Kammann, U., Akcha, F., Budzinski, H., Burgeot, T., Gubbins, M. J., Lang, T., Le Menach, K., Vethaak, A. D., & Hylland, K. (2017). PAH
513 metabolites in fish bile: From the Seine estuary to Iceland. *Marine Environmental Research*, 124, 41–45.
514 <https://doi.org/10.1016/j.marenvres.2016.02.014>


515

516


517 **Figure 1:** Peak areas indicating the relative abundance of phase I OH-6PPD-Q (A, C, E) and phase II
518 6PPD-Q-O-Gluc (B, D, F) metabolites in bile samples from various species of fishes. Data in panels A
519 and B were compiled according to the closest possible match in measured 6PPD-Q exposure

520 concentration, with the intention of highlighting relationships with species sensitivity. Data in panels **C**
521 and **D** depict the available data across species and measured exposure concentrations of 6PPD-Q, except
522 for Atlantic salmon (AS), while panels **E** and **F** show comparisons of the abundance of phase I and II
523 metabolites across different AS life stages and exposure concentrations of 6PPD-Q. Data from coho
524 salmon (CS) and chinook salmon (ChS) were generated from pooled bile samples, while data from AS,
525 brook trout (BT), rainbow trout (RBT), white sturgeon (WS), and westslope cutthroat trout (WCT) were
526 obtained from individual fish. Suffixes in AS samples are defined as follows: P – Parr, PS – Post-Smolt,
527 PSR – Post-Smolt Returns. Groups marked with different letters were statistically different from one
528 another. *ND – not detected.*

529

530 **Figure 2:** *In silico* predictions for the biotransformation of 6PPD-quinone into a phase I mono-hydroxy-
531 metabolite and a subsequent phase II *O*-glucuronide metabolite. Comparison of MS2 spectra with those
532 predicted by CFM-ID suggested the presence of aryl-substituted (top left) instead of alkyl-substituted
533 metabolites.

534

535 **Figure 3:** Principal component analysis (PCA) biplot (A) and proportions of variance (B) for exposure
536 concentration, duration of exposure, LC50, OH-6PPD-Q, and 6PPD-Q-O-Gluc. The dotted line in B
537 indicates the typical cut-off of 75% for total variance used in PCA.