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Abstract

Advances in molecular profiling have facilitated generation of large multi-modal datasets that
can potentially reveal critical axes of biological variation underlying complex diseases. Distilling
biological meaning, however, requires computational strategies that can perform mosaic
integration across diverse cohorts and datatypes. Here, we present mosaicMPI, a framework
for discovery of low to high-resolution molecular programs representing both cell types and
states, and integration within and across datasets into a network representing biological
themes. Using existing datasets in glioblastoma, we demonstrate that this approach robustly
integrates single cell and bulk programs across multiple platforms. Clinical and molecular
annotations from cohorts are statistically propagated onto this network of programs, yielding a
richly characterized landscape of biological themes. This enables deep understanding of
individual tumor samples, systematic exploration of relationships between modalities, and
generation of a reference map onto which new datasets can rapidly be mapped. mosaicMPI is
available at https://github.com/MorrissyLab/mosaicMPI.
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Main Text

Cancer heterogeneity involves multiple axes of variation, from genetic diversity of tumor cells
to spatially distinct cell niches, to compositional differences in the tumor microenvironment
(TME), to cells in different activation states'. Generation of omics data from cancers
encompasses various cellular resolutions (including bulk, spatial, single cell, and subcellular),
and multiple modalities (including epigenetic, transcriptome and proteomic profiles)? — with no
single method able to profile all the facets of tumor biology. Although these datasets represent
invaluable system-level information across many biological axes, the development of
computational methods for performing interpretable integration of multimodal data remains a
pressing need. It would be desirable, for instance, to be able to integrate existing repositories
of cancer patient cohorts profiled at the bulk tissue level and across multiple modalities®,
together with more recent high resolution single cell and spatial transcriptome datasets
generated from fewer cases®’, leveraging both the high cellular specificity of the latter with the
extensive clinical and molecular annotations of the former. This type of integration would help
establish a systems-level landscape of biological themes operating within a given cancer type
and serve as a reference onto which additional query datasets could be integrated. Ideally, this
could be achieved without re-analysis of datasets — as iterative re-analysis with addition of each
new cohort is not trivial®°, becomes impractical with increasing numbers of datasets, and is not
feasible between modalities. Thus, development of a modular integrative approach that can
operate on already normalized and annotated cohorts would be of high value to the scientific
community.

Several computational approaches address integration by finding correspondence (i.e.
anchoring) between datasets or modalities so as to enable analysis in a shared space®®.
Horizontal integration tools''8 bridge two or more cohorts of the same modality using shared
molecular features (i.e. genes, proteins) as anchors. Vertical integration tools!*=?3 operate on
multimodal data within a cohort using samples as anchors. Neither class of tools, however, can
handle “mosaic” integration where cohorts do not all share the same samples, and where
datasets have incomplete overlap of molecular features. Many real-world integration tasks are
mosaic, including the molecular and cellular landscape envisioned here, yet methods in this
category are only just emerging and are primarily focused on single cell data?*28,

Mosaic integration poses several statistical challenges. First, molecular readouts from different
methodologies have heterogeneous statistical properties and must be modeled under different
frameworks. For example, the RNA component of proteogenomics datasets yields mRNA
expression counts, while the mass spectrometry component generates protein abundances
normalized to a reference sample®. Combining distinct data types in the same statistical
framework is not a generalizable strategy, so each modality requires bespoke analysis prior to
integration. A related problem is the signal-to-noise ratio of individual features within and
between technologies, which can mask the biological signals being sought. For instance a single
gene may play roles in multiple cellular activities, be subject to stochastic variation, or be
expressed at the detection limit of a particular profiling technology, thereby confounding
analysis. An elegant solution for improved signal detection beyond individual features entails
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unsupervised dimensionality reduction through matrix factorization approaches?’3°, These use
co-variation between molecular features to jointly predict lower-dimensional programs and
their usage across samples. The resulting programs represent coherent and co-varying signals
such as cell types, cell activities, or combinations thereof, and can serve as meaningful anchors
for integration. Existing technologies profile vastly different of molecules, however, limiting the
number of shared features and influencing dimensionality reduction. For instance, proteomics
guantifies 5,000-10,000 proteins depending on platform, while bulk RNAseq yields ~50,000
genes per sample and single cell (sc)RNAseq yields ~2,000 genes per cell. The diminishing
intersection of shared features between multiple datasets hinders integration, and strategies
that allow use of both shared and unshared features in program identification are needed.

A key parameter in matrix factorization is specification of the number of factors or programs to
solve for. Since this parameter (i.e. the rank) is not known a priori, factorization is performed
from low to high ranks to capture programs with coarse- to fine-grained resolutions. A single
rank, which in practice?®3! is the lowest-ranking solution with locally maximal cophenetic
correlation? or stability?3, is then selected for downstream analyses. However, additional
biological insight can be derived from multiple rather than single solutions, including the
kinetics of stratification between broad (low-rank) and finer (high-rank) programs within a
dataset34. Importantly to the task of integration, the ranks at which anchoring programs are
found between pairs of datasets may not be the same. For instance, single-cell data likely
capture distinct cell types and activities at lower ranks relative to bulk samples where
deconvolution is more challenging. Similarly, large cohorts with high sample diversity have
more discoverable programs than small, uniform cohorts — thus requiring higher ranks for
sufficient program resolution. Currently, no framework can optimize selection of factorization
solutions as integration anchors across a wide range of ranks and between cohorts.

Here, we introduce a modular framework for mosaic integration that can bridge across cohorts
(leveraging diverse sample types) and multi-omic data (leveraging unique technologies) to
address these challenges. We use a consensus non-negative matrix factorization method
(cNMF) to discover low to high resolution programs within individual datasets, and implement a
novel statistical approach for selecting multi-rank anchors within and between datasets.
Anchoring programs are used to construct a network on which graph-based approaches identify
communities of programs representing distinct biological themes. We statistically propagate
sample metadata onto this graph, effectively leveraging all available clinical and molecular
annotations from all cohorts, including survival, driver gene alterations, cell types, and
previously defined molecular subgroups. The resulting annotated graph, which we call the
mosaic multi-resolution program integration (mosaicMPI) landscape, enables in-depth
understanding of individual tumor samples, enables systematic exploration of relationships
between modalities, and serves as a reference map of biological themes onto which new
datasets can rapidly be mapped. Our tool, mosaicMPI, is freely available at
https://github.com/MorrissyLab/mosaicMPI.
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Results

Generalizing cNMF for robust deconvolution and dynamic global integration based on
anchoring programs

cNMF3*3 is an algorithm for inferring identity and activity programs from single cell data.
Because of its ability to discover latent, interpretable molecular programs broadly
corresponding to cell types, cell states, or their co-varying combination, we used cNMF as the
foundation of our approach. cNMF requires two user inputs: a set of over-dispersed features
used to perform the factorization, and the number of factors to solve for (rank). In its standard
implementation, cNMF's over-dispersed feature selection method is calibrated for scRNAseq
gene count data3® and does not perform well on mass spectrometry proteomics or other data
types. We modified cNMF to accommodate multiple modalities and cohorts by generalizing
feature selection. Our procedure for identifying over-dispersion selects features with higher-
than-expected variance without regard for data scale or the level of expression (see Methods).
The factorization rank dictates whether discovered programs represent the most highly
discriminating signals in the data or nuanced differences. For example, lower rank solutions can
reveal broad tumor vs normal cell programs while higher ranks can identify cell states for a
given cell type. Given that cohorts can vary widely in terms of sample diversity and
composition, it is not known a priori whether low or high rank programs will provide the best
match between cohorts. Thus, mosaic integration needs to accommodate programs at multiple
resolutions as potential anchors, and we therefore factorize across a wide range of ranks.

Our framework uses molecular programs as the basis for integration, requiring that a given pair
of modalities utilize the same annotated features. Here, we employ gene symbols, as they are
highly versatile, interpretable, and can be quantified across multiple data types. We first
perform unsupervised program identification within individual datasets using cNMF (Figure 1,
Extended Data Figure 1a-b). The contribution of every profiled feature toward each program is
guantified in a matrix of feature scores and is jointly predicted with the level of program usage
across samples. Usage values enable direct assessment of program-composition per sample.

To next identify integration anchors, we calculate pairwise correlations within and across
modalities and cohorts (Extended Data Figure 1c). Correlations operate on the feature scores
across the shared features between each pair of programs. Programs identified across a range
of ranks within a dataset necessarily share all features, however, programs identified across
modalities may only share a subset. Anchoring programs within and between datasets are then
identified from the distributions of correlation values (Extended Data Figure 1c). Distributions
are normal and centered on zero with a tail of highly positively correlated programs. Dynamic
thresholding of the outlier values within each distribution selects integration anchors (i.e. pairs
of programs with high similarity). These are either recurrently identified across multiple ranks
within single datasets, found in common between two datasets, or both. When no programs
have sufficiently high similarity between modalities, integration is not forced.
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Programs are then used to build a network which can be partitioned to identify highly
connected program communities representing distinct biological processes (Figure 1, Extended
Data Figure 1d) interpreted by classical gene set enrichment analyses. Furthermore,
communities are also used to transfer sample metadata across the set of integrated cohorts
using an over-representation statistic. This step enables cohort-specific analyses and sample
annotations to be propagated to additional datasets, effectively utilizing the results generated
from previously published analyses.

Overall, our approach integrates individual datasets (across a range of samples, resolutions, and
modalities) to link both strong and nuanced signals into a network of biological themes. In the
next sections, we demonstrate the utility of mosaicMPI using a publicly available multimodal
disease dataset.

Discovery and integration of multiresolution multimodal programs in glioblastoma

Many cancers demonstrate cellular heterogeneity arising from tumor and microenvironmental
diversity, but there are few like glioblastoma (GBM) that have diversity of both driver genes and
transcriptional subtypes, often coexisting within the same patient, making it an ideal case study
for deconvolutional approaches to integration®.

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) glioblastoma (GBM) cohort®
comprises samples from 99 high-grade astrocytoma patients and 10 normal brain samples that
have all been subjected to multimodal profiling with whole genome sequencing, global
proteomics, bulk RNAseq, and others, with a subset (n=18) subjected to additional single cell
transcriptomics. CPTAC's cryopulverization and processing pipelines ensure that both cellular
heterogeneity and patient cohort composition are fully controlled between modalities,
maximizing the correspondence between data layers, and allowing us to robustly evaluate
integration. Although patients are matched between snRNAseq and bulk datasets, each nucleus
is an independent sample with its own transcriptional profile, resulting in a many-to-one
correspondence of snRNAseq data with the other multimodal profiles. This precludes straight-
forward vertical integration and highlights the opportunity for mosaic strategies.

To illustrate mosaic integration, we focused on three CPTAC modalities: bulk RNAseq (108
samples, 19,444 genes), bulk mass-spectrometry (MS) global proteomics (110 samples, 11,293
genes), and snRNAseq (162,107 nuclei, 20,999 genes) (Figure 2a-b; Extended Data Figure 2a).
mosaicMPI identified 8,454 over-dispersed genes in bulk RNAseq, 4,541 in proteomics, and
7,072 in snRNAseq data (Extended Data Figure 2c-e). Of the 9,936 genes quantified across all
modalities, 16.3% (1,620) were over-dispersed in all three datasets, while nearly half of over-
dispersed genes were modality-specific (Extended Data Figure 2b). This modest overlap
emphasizes the significant difference in quantifiable feature variation across modalities despite
their common sample origin and is a compelling rationale for conducting program discovery
independently on each dataset.
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We factorized using cNMF across a range of resolutions (ranks 2-60, subset to reduce
redundancy, see Methods). By factorizing each modality independently, we ensured unbiased
discovery of low- to high-resolution programs within each dataset using all relevant features.
Through correlation analysis we identified 50,424 pairs of programs with above-threshold
correlations (6.1% of all pairwise program correlations) that serve as anchors. These link 1,257
programs across datasets and resolutions into a network (Figure 2c). Groups of highly
connected programs were partitioned using a community detection algorithm, and collectively
represent the landscape of biological modules discoverable in these data (Figure 2d-e). These
are further abstracted into a community-level network (Figure 2f).

The large majority of the resulting 23 communities (called C1-C23) contain programs identified
across all three modalities (17 communities), while 3 communities were found by two
modalities (Figure 2g). Another community was based on bulk RNAseq programs only (C22),
while the remaining two were based on snRNAseq programs only (C20, C23). These were found
at relatively high ranks indicating they may represent subtle or low frequency biological signals
within samples. We note that some communities emerge at much lower ranks in the bulk data
(e.g. C7: k=5 in protein, k=9 in RNAseq, k=20 in snRNA), while others emerge at low ranks in the
snRNA-Seq only (e.g. C3: k=3 in snRNA, k=25 in protein, k=15 in RNAseq), consistent with the
differing resolutions of bulk and single-nuclei samples.

Many communities emerging at higher ranks in the bulk datasets were fully supported across
modalities (e.g. C3, C5, C8, C10, C12, C13, C15, C16) indicating they represent coherent
biological themes (Figure 2g). This suggests that the common practice of choosing the lowest-
ranking stable solution from NMF or similar methods likely underestimates the power of bulk
RNA-Seq and modern mass spectrometry datasets to resolve meaningful programs. Indeed, we
find that the programs most representative of a given community (based on correlation of
feature scores to the median, see Methods) are identified across a range of intermediate ranks,
and that there is no single rank that best represents all communities (Extended Data Figure 2f).
This supports a use-case for mosaicMPI not just for integration, but for multi-resolution
exploration of programs within individual datasets. Finally, at higher ranks, many communities
contain more than one program from the same cNMF rank, indicating that these communities
could be further subdivided into coherent sub-communities (Figure 2g).

Community interpretation using metadata-based sample label enrichment

To aid the interpretation of communities, we associate program usage with both categorical
and numerical metadata including driver gene alterations, clinical variables, transcriptional
subtypes, and subgroups derived from the CPTAC integrative analyses. We developed metrics
to calculate the magnitude of over-representation or association of metadata labels within each
community (see Methods). Briefly, for each program, we calculate the Pearson residual of
observed versus expected usage across samples with distinct metadata label categories. For
numerical metadata, we calculate Pearson correlations to positively or negatively associate
program usage with numeric values. Implemented in the mosaicMPI tool, metadata-based
sample label enrichment allows for rapid annotation of communities and visualization. This
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reveals that most communities are not biased towards individual samples (Extended Data
Figure 3a), and that the biological themes they represent are found across multiple patients.
This is the anticipated profile for tumor cell states corresponding to transcriptional subtypes®
and for components of the TME, which co-occur within patients, and which we expect to
discern using mosaicMPI.

As expected, mosaicMPI communities represent all three main transcriptional subtypes of GBM
(Figure 3a-b). Importantly, multiple communities correspond to each subtype, indicating that
mosaicMPI can stratify transcriptional subtypes into a more refined delineation of tumor cell
and TME composition, with high support from both protein and RNA. Similarly, the landscape
also provides a high-resolution stratification of the immune and integrative subtypes previously
identified by CPTAC (Figure 3a, Extended Data Figure 3b). The coherent stratification of each
CPTAC multiomic subtype (predicted using a different integrative approach®) and of each
transcriptional subtype into multiple mosaicMPI communities highlights the ability of our tool
to identify the same broad signals, but further deconvolute these with greater sensitivity than
previously possible in this cohort.

Beyond tumor-associated communities, we observe over-representation of normal brain in
community C4 and to a lesser extend in C11 (Figure 3c). Programs in these communities are
also detected in GBM patients, indicating that mosaicMPI can deconvolute tumor-normal
admixture from bulk RNA-Seq and protein data. Additional sample annotations further support
C11 as a normal brain program, including lower tumor purity of samples with usage of C11
programs, low mutation burden, and under-representation of early somatic events (chr7 gain,
chr10 loss) (Figure 3d). Cell-type label over-representation further bolsters this conclusion.
Using the CPTAC snRNAseq annotations we sought to link C4 and C11 programs to cellular
identities and found that community C4 is strongly enriched in neuronal cells, in agreement
with cortex as the tissue of origin for these samples (Figure 3e-f). Similarly, C11 is highly
enriched in oligodendrocytes, indicating that C11 programs likely represent white matter. Since
both C4 and C11 programs are detected in GBM patients (Extended Data Figure 3b), we
conclude that mosaicMPI can deconvolute neuronal and oligodendrocytic programs in a
reference-free manner from both bulk RNA-Seq and proteomics data, and consequently, can
distinguish which tumors are invading into neuron-rich regions like the cortex versus
oligodendrocyte-rich regions like white matter.

The snRNA-Seq labels supported multiple communities as enriched in tumor-cells (e.g. C1, C2,
C3, C5, C13, C14, C18), corresponding to all transcriptional subtypes, detected across all three
CPTAC multi-omic GBM classes, and representing both IDH-mut and IDH-wt tumors (Figure
3b,c). Additional communities showed high over-representation of non-malignant cells,
including macrophage/microglia programs (C7, C10, C15, C16, C19), monocytes (C7), T-cells
(C9), oligodendrocytes (C11), astrocytes (C2), vasculature (C8), and neurons (C4, C17, C18, C23).
Altogether, the unique annotation enrichment profiles reveal three broad categories of
communities, corresponding to (i) programs enriched in normal brain, (ii) programs
distinguishing tumor cell states and subtypes, and (iii) cellular heterogeneity within the tumor
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microenvironment. The mosaicMPI landscape thus delineates key facets of GBM biology that
are supported across multiple data modalities.

Genotype associations

Although there are several known genetic drivers in GBM, our understanding of how genomic
alterations influence tumor cell phenotypes and tumor-TME composition is limited. Landmark
studies have linked specific genomic drivers with GBM transcriptional subtypes and also shown
that the mesenchymal subtype is highly associated with macrophages, revealing that tumor cell
states can influence the composition of the TME and vice versa®3>3¢. The mosaicMPI landscape
presents an opportunity to explore how driver gene status relates to communities and discover
associations of genotype to phenotype. To illustrate this, we calculated over-representation of
mutated samples across the mosaicMPI landscape and observed that many driver alterations
are associated with multiple communities, consistent with a high degree of phenotypic tumor
cell plasticity in GBM (Figure 3g). For instance, TERT and TP53 are the most commonly co-
mutated genes in the CPTAC GBM samples, and found to be enriched at both RNA and protein
levels in 5 communities (C1, C3, C6, C7, C9) that span all transcriptional subtypes (Figure 3a,g).
In contrast, and in line with previous findings, EGFR-mutated tumors were most strongly
associated with classical GBM communities (C1, C17), while NF1 alterations were mainly
associated with mesenchymal programs with high levels of microglia and macrophages (C19,
C21).

Some communities stood out as uniquely associated with single drivers. First, community C15,
proneural and high in TAM1/2 macrophages (Figures 3a,e) was predominantly associated with
PDGFRA alterations (Figure 3g). Although PDGFRA alterations are enriched in multiple
proneural communities (e.g. C6, C10, C18), those communities are also associated with other
drivers. In contrast, C15 has a one-to-one relationship with PDGFRA, uniquely linking this
genotype to a specific proneural phenotype. Second, BRAF alterations were associated in a one-
to-one relationship with C11, a proneural state program also linked with white-matter
admixture likely representing an invasion phenotype. Together, these genotype-phenotype
associations provide a compelling distinction among the identified proneural communities,
highlighting that some drivers can have unique impacts on expression programs at both RNA
and protein levels.

Community interpretation using gene set enrichment analysis

In addition to metadata-informed label-based annotations as above, we further characterize
each community de novo using gene set enrichment analysis as a label-free assessment of
biological themes. We first select a community-representative program (see Methods), then
apply ssGSEA to evaluate enrichment of gene sets from landmark RNA-Seg-based studies
distinguishing cell types and states in GBM®37742, Based on ssGSEA enrichment (Figure 3h,
Supplementary Table 1-2), neuronal and oligodendrocytic programs found using the metadata-
based label over-representation approach were validated in communities C4 and C11, as was
enrichment of T cells in C9, and vasculature/mesenchymal tumor programs in C8. We identified
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two communities highly scoring for classical/astrocytic subtype (C1, C2) but further
distinguished by high cell cycle activity (C1) and IDH-mut status (C2; Figure 3a-b). C5 and C14
represent oligodendrocyte precursor cells (OPC) and neural precursor cells (NPC) tumor cell
programs, again distinguished by higher cell cycle activity in C14. Cell cycle activity was most
pronounced in C6, along with enrichment of proneural terms. Multiple communities were
enriched in innate immune programs, including microglia (C10, C11), macrophages (C7, C15),
and a mix of microglia and macrophages (C16, C19, C21).

Pseudopalisades around necrosis (PAN) are a diagnostically relevant histologic features of GBM,
linked to hypoxia and mesenchymal cell states. These gene signatures are highly enriched
together in C3 (Figure 3h). Five additional communities (C7, C8, C12, C21, C22) have the same
enrichment but with additional distinguishing signatures. C12 also scores highly for cell cycle,
while C22 is enriched in endothelial cell programs (vasculature). C7 scores highly for
macrophages and vasculature and moderately for cell cycle. This nuanced deconvolution and
distinct contextual associations of PAN programs likely represents the physiological diversity of
hypoxic niches, recruitment and development of aberrant tumor vasculature, and infiltration of
innate immune cells including both microglia to macrophages.

Quantifying program usage within patients

The annotated mosaicMPI landscape can also be queried to understand tumor cell states and
TME composition within individual tumors. For this analysis, we make use of community-
representative programs and their usage across patients (Figure 4a, Extended Data Figure 4a).
Usage values can range between 0 and 1, with either specific (e.g. C5,C4) or broad usage among
patients (e.g. C1) (Figure 4a). Selecting a 0.1 threshold for program usage, we observe that the
majority (70.9%, Protein; 75.9%, RNA) of patients show co-usage of at least 2 programs (Figure
4b). We note that protein and RNA show differential sensitivity across communities, which may
originate from platform-specific feature sensitivity differences. For instance, C1 (classical EGFR-
driven programs) is quantified at higher levels within the RNA modality, whereas C7
(macrophages/mes/hypoxia/vasculature) has a higher signal in the proteome data (Figure 4a,c,
Extended Data Figure 4b-c). Each modality therefore reveals a partially incomplete picture of
program usage across cohorts, highlighting the challenge of functional interpretation from
single profiling platforms. The C7 program is a particularly compelling example of the value
brought by proteomics, given that pro-tumor immunosuppressive macrophages are prognostic
and clinically relevant targets in GBM3°43, Within the protein-based C7 program, many M2
polarization markers are highly scoring, indicating their very strong contribution to the protein
program identity (gene=rank; MRC1=141, CD163=305, ARG1=56, SERPINE1=94), as compared
to the RNA-based C7 program (MRC1=449, CD163=1081, ARG1=4131, SERPINE1=821)
(Supplementary Table 3).

Overall, co-clustering of protein and RNA usage values reveals subgroups of patients with
convergent patterns of program co-usage (Figure 4c). Since these are distinct from co-clustering
based on each modality independently (Extended Data Figure 4b-c) we anticipated that
patient-level analyses would benefit from stratification based on both protein and RNA. To
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illustrate this, we analyzed survival of patients with usage of C1 (CLA; classical tumors typically
with better prognosis), usage of any mesenchymal programs (MES; typically associated with
poor prognosis), or usage of both CLA and MES. Stratification of patients into these three
groups based on single modalities did not show significant survival differences because of the
differential sensitivity of RNA and protein to detect usage of these programs (Figure 4d). In
contrast, a stratification that maximized usage across both modalities revealed that patients
with usage of CLA and MES have significantly worse survival than the CLA-only group (p =
0.0123; Figure 4d). A similar finding approached significance for C7 (macrophages) and CLA co-
usage versus CLA only (Extended Data Figure 4d).

Integration of bulk RNA-Seq and Proteomics identifies context-specific post-transcriptional
regulation

How genomic information influences cellular phenotypes is of central importance in cancer
biology, yet is difficult to answer as multiple regulatory steps alter the relationship between
DNA, RNA, and protein levels**. Efforts to systematically explore these relationships genome-
wide have demonstrated that changes in DNA dosage (aneuploidy) primarily affect transcript
levels, but subsequent compensation at the protein level is widespread, thereby reducing RNA-
protein gene-wise correlations to an average range of 0.4 to 0.6 across cancer types®.
Furthermore, RNA-protein correlations exhibit large variance among pathways and tumor types
suggesting that regulation of transcripts versus proteins is modulated in a tissue and cell type-
specific manner. The observation that divergent modes of regulation can affect distinct
pathways in cancer?® motivated us to address correspondence between RNA and protein at the
level of expression programs rather than individual genes. The mosaicMPI landscape enables
exploration of regulatory relationships between RNA and protein from the perspective of
integrated biological themes.

Of the 23 communities, 21 have representation from both RNA and protein programs (Figure
2g), with ~18% of protein and RNA programs exhibiting high similarity of gene scores (Extended
Data Figure 5a). To conduct a fair comparison between modalities, we compared the gene
scores and program usage of community-representative RNA and protein programs across
samples (Extended Data Figure 5b-e). Programs pairs had high correlation across both features
and samples, with some variability among communities, an expected result given the diversity
of post-transcriptional regulatory effects in different biological contexts (Extended Data Figure
5f-g, Supplementary Table 4)**’. Strikingly high global program identity correlations in C1
(classical), C4 (normal brain), and C6 (mes, cell cycle) were in contrast with lower correlations
for C7 (mes/hypoxia/vasculature, macrophages) and C10 (microglia), potentially indicating that
immune cell programs are more dramatically impacted by global post-transcriptional regulatory
events (Extended Data Figure 5f). The variable global concordance between RNA and protein in
a subset of communities was confirmed among the set of top 1000 highly-scoring marker genes
(Figure 5a, Supplementary Table 3).

We performed gene set enrichment analysis for each representative program (using RNA-
protein shared genes only), revealing a dramatic divergence in the number of significant
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pathways found by RNA, protein, or both modalities, within each community (Figure 5b-c,
Supplementary Tables 5-7). For instance, in C1, DNA-binding transcription factor activity is
identified by both modalities, whereas many terms relevant to mRNA splicing and telomere
maintenance are only significant at the protein-level. This indicates that the later processes
have a low RNA-protein concordance and are regulated at the post-transcriptional level,
possibly to maintain complex stoichiometry, and in line with previous observations**. In C7,
shared pathways converge on immune effector processes, including migration and cell
adhesion terms, while protein-only pathways are strikingly enriched in complement activation
terms. In contrast, C8 (vasculature) is primarily characterized by shared pathways, rather than
RNA-only or protein-only, and include extracellular matrix organization and blood vessel
development terms, indicating that these biological processes are in large part transcriptionally
regulated. These findings support context-dependent modulation of transcript versus protein
levels, and the critical inclusion of proteome data for phenotypic tumor characterization.

Community-label transfer via modular integration with external cohorts

A key design feature of mosaicMPI is modularity — enabling inclusion of new query dataset(s)
onto a well-annotated reference, coupled with community-based label-transfers among
datasets. Here, we demonstrate this capability by adding a cohort of GBM patient-derived
xenograft (PDX) samples (n=66) from both primary (n=45) and recurrent (n=21) tumors (Mayo-
PDX cohort)*. Bulk RNAseq was used to quantify human gene expression specifically, and we
therefore expect to detect tumor cell-specific programs rather than TME programs.

To start the integration, we first run cNMF independently on the Mayo-PDX cohort as described
previously (Extended Data Figure 1, 6a-c), generating programs from low to high ranks. Second,
we identify anchoring programs among the Mayo cohort programs and the previously defined
CPTAC programs (Figure 6a; Extended Data Figure 6¢). The CPTAC::Mayo-PDX integration
stratified into 23 communities (Figure 6b), that aligned well with the previously described
CPTAC-only communities (Figure 6c). Both CPTAC and Mayo-PDX metadata enrichment can be
included to delineate themes within each community (Extended Data Figure 6d-e). As expected
from inclusion of human genes only, communities enriched in TME programs lacked
representation in the Mayo-PDX cohort (Figure 6c,d). Many of the CPTAC tumor cell-specific
communities (e.g. C1,C2,C5,C6,C13) had one-to-one relationships of node-composition with the
CPTAC::Mayo-PDX integration (C1,C2,C3,C8,C10), and significant contribution of nodes from
both datasets (Figure 6c). This integration supports the conclusion that the GBM IDH-wt PDX
models faithfully represent the major tumor-cell programs in GBM. In contrast, the IDH-mut
models are over-represented within the CPTAC::Mayo-PDX communities C3 and C15
(proneural) (Figure 6e-f), however, none of the CPTAC IDH-mut patient samples correspond to
C15 (they are instead enriched in C2, C3, C19), potentially indicating that in vivo models of IDH-
mut tumors shift away from programs observed in patients and toward a proneural phenotype.
Additional samples would be needed to strengthen this conclusion. We discover several new
communities predominantly represented in the PDX models (C16,C17,C19,C21). These have
some support at high ranks in the CPTAC data (Figure 6a), and thus likely represent low
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frequency signals in patient samples that are used preferentially in the context of xenograft
biology (Extended Data Figure 6f, Supplementary Table 8).

Finally, we illustrate label transfer from CPTAC to Mayo using transcriptional subtypes.
Transferred values are quantitative scores, calculated based on community usage in the CPTAC
samples (label source) and the Mayo samples (label destination) (Figure 6g). There was good
agreement between annotation sources using this approach, with a 72% overall concordance
across samples of the most abundant CPTAC-label with the Mayo-based transcriptional
subtypes (Figure 6g-f). We highlight that the transferred labels further provide a quantification
of the transcriptional subtype co-existence within each Mayo sample, providing a refined
interpretation of program usage within samples of this cohort.

Discussion

In this study, we introduce a novel and generalizable framework for dimensionality reduction
and mosaic integration. We demonstrate interpretable integration of multiple and multimodal
datasets, generating a meaningful low-dimensional representation of biological programs. The
dataset-specific factorization strategy we employ maximizes information content from each
modality toward program discovery. Importantly, this allows for modular and nimble
incorporation of new datasets within already highly annotated and well understood reference
integrations.

A potential concern with mosaic integration is loss of relevant information between modalities
given that not all features are shared. This could be particularly detrimental if substantial loss
occurs at the level of initial program identification. Three aspects of our strategy help mitigate
against this. First, in cNMF, once factorization is performed using the subset of over-dispersed
features, non-negative least squares (NNLS) re-fits the identified programs across all features33.
When comparing across modalities we can therefore operate on the intersection of all features
rather than of the smaller subset of over-dispersed features, improving identification of
program anchors. Second, program discovery is performed using all available features within
each dataset. This can include a mixture of feature types, for example, both genic and
intergenic peaks in chromatin accessibility data. Leveraging all features ensures we do not
compromise robust identification of molecular programs, and that all features are assigned a
guantifiable program-identity score. Third, correlations utilize the shared features among a
single pair of datasets, rather than among all datasets. Thus, when integrating proteomics, bulk
RNAseq, and scRNAseq datasets together, RNA features shared with the proteome will
converge on protein coding genes, while shared features between bulk and scRNAseq can
additionally include non-coding genes. Altogether, our approach uncouples optimal program
discovery within each dataset from subsequent pairwise program correlations, while
maximizing power to identify integration anchors.

A unique strength of mosaicMPI is the ability to leverage programs across a wide range of

resolutions that span coarse-grained to nuanced biological signals. The need for multi-
resolution approaches was recently underscored by another study demonstrating that low and
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high resolution programs contribute complementary, rather than redundant, information3*, and
indeed, we find that in general there is no single factorization rank that best represents all
discoverable biological themes either within or between datasets. This underscores the utility
of mosaicMPI not only for cross-cohort or multimodal integrations, but also for multi-resolution
exploration of programs within individual datasets. In either scenario, once community-
representative programs are identified, program gene scores can be used for numerous
downstream analyses, including identification of enriched pathways, marker genes, and
inference of gene regulatory networks. Likewise, program usages can be used to understand
sample composition and predict co-occurring and potentially prognostic combinations.

We show that mosaicMPI can utilize community-specific metadata from every input modality,
thereby enabling coordinated multi-dataset annotation of an integrated biological landscape.
This provides a means by which to take full advantage of diversity in sample composition and
across sampled features. In general, datasets capturing diverse molecular layers (e.g. protein,
DNA methylation, RNAseq), or profiling across a significant amount of biological variation (e.g.
tumors with rare genomic drivers, samples from primary and metastatic compartments, in
vitro/vivo models), should be strategically incorporated to maximize discovery and co-
embedding of relevant biological programs. Along this line, and more generally, the feasibility
of modular mosaic integration demonstrated here has the potential to inform future study
designs, in which existing resources can be computationally integrated while new data
generation is directed toward specific sample types or technologies. We thus anticipate that
mosaicMPI will have broad and diverse applicability in many areas of disease biology.
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Figure Legends

Figure 1. Discovery and integration of cNMF programs using network-based community-
detection enables metadata transfer and annotation

One or more datasets with partially overlapping features can be integrated using mosaicMPI.
Datasets are each factorized into programs and their associated usages across samples (1).
Programs are used to construct a network with edges representing high correlations between
and within datasets (ll). Community detection partitions the network into communities which
can be either integrative or dataset specific. These can be directly interpreted using gene set
analyses (lll, feature-based). Through the program usage matrices, communities are also
associated statistically with categorical or numerical metadata representing clinical, ontological,
or numerical annotations (lll, label-based). Integrative communities allow for metadata transfer
across datasets while preserving the individual programs of each dataset for downstream
analyses. Datasets can represent distinct multi-omic layers, different patient cohorts, or even
imbalanced sample sizes, provided there is partial feature overlap.

Figure 2. Integration of programs from single-nuclei RNAseq, bulk RNA-Seq, and proteomics
a, UpSet plot showing the number of patients profiled with scRNA-Seq, RNA-Seq, and MS
Proteomics in the CPTAC GBM cohort. For each combination of datasets, the number of shared
or distinct patients is noted. b, UpSet plot showing the number of samples or single cells
profiled in each dataset. c, Distribution of Pearson correlation coefficients for all pairs of
programs within and between datasets from ranks 2 to 60. Using dynamic thresholding (see
Methods), a minimum correlation cutoff (dotted line) is identified per distribution (minimum
correlation threshold in black text; percentage of all program pairs selected in red text). d,
Program-level network with node colour corresponding to communities. e, Program-level
network with node colour corresponding to dataset of origin. f, Community-level network.
Nodes are communities with size proportional to number of programs, and edge width is
proportional to the number of high program correlations between communities. g, Plot
indicating the number of programs included in each community (y-axis) across datasets (panels)
and cNMF ranks (x-axis). For each community, a symbol indicates whether a representative
program is identified at a given rank, with programs from sequential ranks connected by
horizontal lines, showing continuity of program inclusion across ranks. Symbols indicate
whether there is exactly 1 program (square), 2 programs (tick), or 3+ programs (none) included
in the community from a given rank. Black square outlines identify the rank at which the
community-representative program is identified in each community.

Figure 3. Community annotation using metadata and geneset enrichment

a, Heatmaps of metadata over-representation across communities for both RNA and Protein
programs. B, Over-representation of the 5 CPTAC sample types, overlaid onto the summary
community network, separately for RNA and Protein datasets. Wedge area is proportional to
the over-representation. C, Over-representation of sample type for each community, d,
Heatmap of Pearson correlation between selected continuous metadata annotations and
community program usage, e, Over-representation of cell type annotations from the snRNA-
Seq dataset. F, The total number of cells of each cell type in the snRNA-Seq dataset. G, Over-
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representation analysis associating known driver alterations to usage of specific programs in
the RNA and proteomics data. h, ssGSEA normalized enrichment scores for selected gene sets
derived from landmark studies in GBM, for each community and dataset. OC: oligodendrocyte;
NPC: neural progenitor cell; NC: neural C; AC: astrocytic; MG: microglia; MDM: monocyte
derived macrophages; MVP: microvascular proliferation; EC: endothelial cells; MES:
mesenchymal; LE: leading edge; PAN: pseudopalisades around necrosis; CT: cellular tumor.
Publications of origin for genelists: Neftel®, scType?’, Patel*8, Klemm?3°, Parker®, lvyGAP*,
Verhaak*?.

Figure 4. Program co-usage within patients

a, Program usage boxplots for selected programs across IDH-wild-type GBM (RNA, Protein:
n=92), IDH-mutant GBM (RNA, Protein: n=6), and Normal brain (RNA: n=6, Protein: n=10) are
shown separately for RNA (top) and protein (bottom). b, Histogram displaying the number of
programs detected per sample with usage > 0.1, based on bulk RNA and Protein data. c,
Heatmap of program usage from RNA and protein, with samples clustered by usage of both
RNA and Protein programs. d, Kaplan Meier plots of patient survival for three patient groups,
based on a minimum usage of at least 0.2 in either RNA or protein modalities, or each modality.

Figure 5. Functional analysis of program communities at the RNA and Protein level identifies
gene sets altered by post-transcriptional regulation

a, Overlap of the top 1000 marker genes (i.e. genes with the highest program scores) for
community-representative RNA and protein program pairs. b, Number of gene sets significantly
enriched in RNA only, protein only, or both gene lists. ¢, Summary of gene set enrichments.
Gene sets with significant enrichments are ordered from top to bottom by community of
highest enrichment score, then by enrichment score. Gene sets are separated by whether they
were enriched in both RNA and Protein gene lists, RNA only, or Protein only.

Figure 6. Modular integration of multi-omic CPTAC programs with the Mayo-PDX cohort

a, Summary of programs in each community (y-axis) across datasets (panels) and cNMF ranks
(x-axis). For each community, a symbol indicates whether a representative program is identified
at a given rank, with programs from sequential ranks connected by horizontal lines, showing
continuity across ranks. Symbols indicate whether there is exactly 1 program (square), 2
programs (tick), or 3+ programs (none) included in the community from a given rank. Square
outlines identify the rank at which the most representative program is identified for each
community. b, Network of program communities summarizing the size (node diameter scales
with the number of constituent programs) and the similarity between communities (edge
width, the number of highly correlated programs between communities). ¢, Jaccard index of the
programs (nodes) from the first CPTAC-only integration (y-axis) with the new CPTAC::MayoPDX
integration (x-axis). Number of programs (nodes) from each integration is shown on the top and
right bar plots. d, Over-representation of CPTAC snRNA-Seq cell types on the new
CPTAC::Mayo-PDX landscape. e, Over-representation of the WHO classifications of the
MayoPDX dataset. f, Over-representation of transcriptional subtype (CPTAC RNA and Protein
datasets) and WHO class (MayoPDX dataset). f, Demonstration of label transfer from the
annotated CPTAC::Mayo-PDX integrative communities to the Mayo-PDX samples. Heatmap of
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transcriptional subtype labels from CPTAC (rows) are based on community usage and scored for
each Mayo-PDX sample (columns). The Mayo-PDX cohort-derived transcriptional subtype
labels are also annotated above the heatmap. h, Classification of Mayo samples based on the
most highly scoring CPTAC transcriptional subtyp labels.

Extended Data

Extended Data Figure 1: mosaicMPI workflow and architecture

a, Input data for integration of one or more datasets. Each dataset can have unshared and
shared features, with no requirement for shared samples/cells. Categorical and numerical data
can optionally be included for any dataset, allowing missing metadata. b, For each dataset
separately, overdispersed features are identified based on the mean-variance relationship, and
cNMF factorization is conducted from rank (k) 2-60. ¢, programs are concatenated from all
datasets across ranks, and a distribution is generated from all pairwise program correlations
across and within each dataset. Dynamic thresholding identifies programs with outlier
correlations. A network of programs is constructed, with edges connecting highly-correlated
program pairs. Community detection identifies dataset-specific and integrative communities. d,
Communities are annotated based on input metadata and usage of community programs.
Numerical metadata is associated to communities using correlation of program usage;
Categorical metadata is associated to communities using over-representation of category
labels. e, Architecture of the mosaicMPI python package. Data and metadata text files can be
read into mosaicMPI to create Dataset objects, which are AnnData objects that structure data,
metadata, and cNMF results in an object that can be persisted as an h5ad file (one per dataset).
h5ad files are compatible with major single-cell and spatial analysis packages including scanpy,
muon, Seurat, scvi-tools, and squidpy. Datasets processed using these packages can also be
directly input in mosaicMPI for factorization and integration. All factorization parameters,
statistics, and outputs are stored within the AnnData-based Dataset object, simplifying data
provenance and organization. All plots are produced and customizable with mosaicMPI’s
plotting API which can output figures for subsequent modification in python, or can be saved in
raster and vector formats. Factorization and integration results can be output as tables for
further downstream analysis. The entire mosaicMPI workflow can also be managed through a
flexible and configurable command-line interface to produce a standard set of figures and
tables.

Extended Data Figure 2. Overdispersed feature selection

a, UpSet plot of all feature overlaps between datasets. b, UpSet plot of the overdispersed
feature overlaps between datasets. ¢, 2d histogram of log10-transformed feature mean and
variance. Red denotes features above the model (green, odscore = 1.0), with an overdispersion
score (odscore) > 1.0. d, plot of log10(mean) and odscore. Red denotes features above the
model (green, odscore = 1.0), with an overdispersion score (odscore) > 1.0. e, comparison in
number of overdispersed genes using the default parameters of cNMF compared to the
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mosaicMPI re-implementation for each of the three datasets. f, Stability vs error plots for
factorization from k = 2 — 60 for each dataset.

Extended Data Figure 3. Community-level over-representation bar plots.
Bar plots showing overrepresentation within RNA and protein programs of a, individual patient
IDs and b, transcriptional subtypes, CP'TAC immune subtypes, and CPTAC multiomic subtypes.

Extended Data Figure 4. Usage values for representative programs in each community.

a, For each community, usage of the representative program in each sample, grouped by IDH-
wild-type GBM (RNA, Protein: n=92), IDH-mutant GBM (RNA, Protein: n=6), and Normal brain
(RNA: n=6, Protein: n=10) samples. b-c, Clustered heatmap of representative program usage,
where usage > 0.1, for b, RNA and ¢, Protein programs. d, Kaplan Meier plots of patient survival
for three groups of patients, stratified based on minimum usage of at least 0.2 in two programs
either in the RNA or protein modalities, or across both.

Extended Data Figure 5. Selecting comparable programs for differential gene set analysis
between RNA and Protein.

a, The number of highly correlated RNA-protein program pairs within each community is shown
compared to the total number of highly correlated program pairs. b-e, From left to right, panels
show b, the RNA-protein correlation distribution for all the communities, ¢, the correlation of
the RNA and protein program pairs across samples, and the sum of the usage of the respective
RNA (d) or protein (e) programs for each community. Violin plots showing how the community-
representative RNA-protein program pair correlations (blue dot) compared to all pairwise
correlations (grey violin) within a community, both in terms of f, genes, and g, program usage
across samples.

Extended Data Figure 6. Integration of the MayoPDX cohort with CPTAC multiomic datasets.
a, Stability-error plot for the Mayo-PDX factorization from ranks k = 2 = 60. b, UpSet plot
comparing all features (left) and the overdispersed subset of features (right) from the four
integrated datasets. c, distribution of program pairs within and between datasets. Outlier
correlations used for constructing the network are shown in red. Above each panel, the AUC
(proportion of pairwise correlations selected) is shown as well as the range of correlations they
span. d, heatmap of over-representation for transcriptional subtypes, multiomic subtypes, and
immune subtypes, using RNA and Protein programs. e, bar plots showing cross-cohort
annotation using Mayo-PDX and CPTAC snRNA-Seq metadata. Categorial metadata includes
relevant clinical categories of the patient samples prior to PDX establishment, including
histological grade, initial diagnosis, and primary vs recurrence. The CPTAC snRNA-Seqg-based cell
types are also shown on the new integration map. f, Gene set enrichment for the top 1000
marker genes of the MayoPDX communities C16, C17, C19, and C21.
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Supplementary Information

Supplementary Table 1: Marker genes for GBM histological regions and cell types
Supplementary Table 2: ssGSEA Normalized enrichment scores for representative programs
Supplementary Table 3: Marker genes, ranked by score, for the representative programs
Supplementary Table 4: RNA vs Protein correlation for Representative Programs
Supplementary Table 5: g:Profiler results for RNA and Protein shared pathways
Supplementary Table 6: g:Profiler results for RNA only pathways

Supplementary Table 7: g:Profiler results for Protein only pathways

Supplementary Table 8: g:Profiler results for MayoPDX only pathways

Supplementary Table 9: Purity Estimation

Supplementary Table 10: Marker Genes for cellassign analysis of single-nuclei RNA-Seq data
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Methods
Program discovery

General-purpose program discovery from a wide variety of datasets is performed using cNMF,
re-implemented in the mosaicMPI package for improved memory and CPU efficiency, error
handling, and data management practices. mosaicMPI leverages the AnnData class within the
scverse framework for seamless interoperability with other single-cell data analysis tools*¥°,

cNMF improves upon NMF, (including the NMF R package implementation®!) in two main ways.
The first is by producing consensus programs from randomly initialized NMF runs, overcoming
the variability inherent to NMF and providing more stable and accurate deconvolution results.
The second is by applying a variance normalization procedure prior to factorization. In scaling
all genes by their variance, each gene is equally likely to influence the factorization result,
increasing the likelihood of identifying gene expression programs characterized by important
genes with low expression, such as transcription factors and other regulators. However,
variance normalization has the undesirable effect of amplifying the variance of genes with low
variance relative to other genes with the same mean expression. cNMF mitigates this by
selecting overdispersed genes for the factorization step, and then using NNLS to re-fit the
programs using all genes instead of only the overdispersed subset.

In cNMF, overdispersed genes are selected based on a modified Poisson model, after filtering
for a minimum mean of 0.5 counts per gene across all cells. Calibrated for current single-cell
short-read RNA-Seq count data, cNMF cannot consistently identify overdispersed genes from
normalized data, including most mass spectrometry proteomics datasets (see Extended Data
Figure 2e) and TPM-normalized RNA-Seq data, leading to poor ability to resolve programs. To
overcome this limitation, the mosaicMPI tool models feature mean and variance using a
smooth curve fitting procedure, similar to STdeconvolve>? (Extended Data Figure 2A). We
identified overdispersed genes in an unbiased way by modelling the relationship between mean
and variance for each dataset separately, selecting genes with higher-than-expected variance
without regard for data scale or gene expression level. Overdispersed genes are selected based
on an overdispersion score, equivalent to the residual variance after correcting for the mean-
variance relationship (Extended Data Figure 2B), although a top-N strategy can also be
performed. By default, mosaicMPI uses a relaxed threshold for overdispersion, including genes
with any degree of overdispersion (od-score > 1) relative to the model.

Factorization of the input data was performed using 200 replicates, and the Kullback-Leibler
divergence beta-loss function. Consensus programs are generated using a local density
threshold of 0.5, and local neighbourhood size of 0.3. By default, cNMF is run for rank 2-60,
independently for each dataset. cNMF programs and run statistics are merged into each
dataset’s AnnData .h5ad file, for compact storage of the dataset’s original input data, cNMF
models, as well as accompanying metadata in a single, compressed file.

Creating a mosaicMPI landscape
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To integrate across ranks and datasets, we construct a network of programs based on the
similarity of each pair of programs. To overcome dataset-specific biases including batch effects,
unequal feature overlap, and unequal cohort representation, we identify a minimum
correlation threshold separately for within-dataset anchors (from all ranks), and between-
dataset anchors (for all ranks), separately for each pair of datasets. While each program
includes gene scores for all features, we can only calculate pairwise correlations over shared
features. Compared to using the feature subset that is shared between all datasets, this
approach maximizes shared information and minimizes changes in network structure when new
datasets are added or any dataset is removed.

The correlation threshold is set dynamically based on the distribution of all pairwise
correlations in the correlation matrix. For each dataset or dataset pair, we have a distribution of
correlations E and check that its mean is between -0.01 and 0.01. We then create a new
distribution F from E composed of only its negative elements, multiplied by —1. This
distribution, derived from the negative part of E, reflects what the positive part of E would be
in the absence of significantly correlated programs. We use the 95th percentile of this
distribution as a correlation threshold, that has several advantageous properties. By using the
negative part of the distribution, we enable discovery of a long tail of positively correlated,
outlier programs . At the same time, if no such long tail of positive correlations exists, the
resulting threshold will exclude almost all programs, indicating no alignment between datasets
is found. Additionally, by using the 95" percentile, the threshold is robust to variation in the
minimum and maximum of E that can arise, for example, if the number of correlations in the
distribution is low or in the presence of outlier correlations.

The network is created with all programs pairs whose correlations exceeded the dynamic
thresholds. To further reduce network complexity, we subset nodes at higher ranks. Above k =
10, only ranks where mod(k,5) = O are retained.

Community detection

We use the greedy community detection algorithm from scikit-learn®3 to partition the network
into communities (Figure 2D), many of which contain programs identified from each modality
(Figure 2E) and across multiple ranks. Communities containing only a single node are pruned
for network simplicity.

Network visualization

To visualize networks, we used the Fruchterman-Reingold force-directed layout from
NetworkX>*>>. To visualize dense networks with > 50,000 edges, we supplied a custom weight
function. Edges were multiplied by 500 if the edge connected two programs of the same

community, and by 1.05 if the edge connected two programs of the same dataset.

Mass spectrometry data analysis
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264 raw files (24 fractions per 11-plex TMT experiment, and 11 TMT experiments in total) were
reanalysed and processed together using Proteome Discoverer 2.5 (Thermo Fisher Scientific) to
identify peptides and quantify TMT reporter ions. Using the UniProt human proteome
(UP000005640, accessed March 20, 2021) including isoforms as a reference as well as 116
common contaminants from the CRAPome database®®, a fully tryptic search was conducted
with Sequest HT allowing for up to 2 missed cleavages, and peptide length between 6 and 150
amino acids. Static modifications were specified for carbamidomethylation of cysteine and
TMT-11plex of peptide N-termini and lysine residues. Dynamic modifications included oxidation
of methionine and deamidation of Asparagine and Glutamine. Sequest HT used a 10 ppm
precursor mass tolerance and 0.6 Da Fragment Mass Tolerance. Peptide spectrum matches
(PSMs) were re-scored using Percolator within Proteome Discoverer. Reporter lons were
guantified using 20 ppm integration tolerance and the Most Confident Centroid method.
Merged PSM-level quantification and identification data for all PSMs was exported from
Proteome Discoverer as 1 table per TMT 11-plex experiment.

Improved discrimination between target and decoy PSMs was achieved by incorporating the
deviation from retention time across runs using DART-ID’.

To ensure quantification for all genes with at least 1 unique peptide, we employed a gene-
centric strategy using gpGrouper2. In addition to PSM g-value thresholds, gpGrouper requires
search engine score thresholding which has the effect of indirectly controlling the protein-level
FDR. To calibrate the scores for the Sequest HT search engine, we adopted the authors’
recommended method. This resulted in the use of 3 thresholds which divide the spectra into 4
bins based on XCorr score: 1.35, 1.93, and 2.41. Strict peptides, defined by having either a PSM
g-value < 0.01 or having a relaxed g-value (PSM g < 0.05) with a high search score (XCorr score
(>2.41) were included. Unique-to-gene peptides were used for this analysis.

Imputation was performed using the Birnn algorithm within DreamAI®?, for features with up to
50% missingness across samples.

Tumor Purity Estimation

To estimate tumor purity for the CPTAC samples, we used variant allele frequencies from
whole-exome sequencing data, and then refined them using matched mass spectrometry
proteomics data. We downloaded somatic mutation annotation format (MAF) files from the NCI
genomics data commons (GDC) for 99 GBM cases in the cohort. Using mClust® with default
parameters, somatic variant allele frequencies were modelled separately for each sample to
identify multiple gaussian VAF distributions. For each sample, we manually reviewed the
distributions identified by mClust to identify the distribution corresponding to heterozygous
variants. Our criteria for identifying the heterozygous mutation frequency included, in order of
priority: 1) distribution with a mean VAF less than or equal to 0.5; 2) presence of a smaller
population of mutations with a mean VAF approximately twice that of the heterozygous
mutations, corresponding to homozygous mutations; 3) in ambiguous cases, preference for
distributions with relatively narrow standard deviations for both heterozygous and homozygous
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mutation distributions. We then used the fitted mean of the heterozygous peak multiplied by
two as our estimate of purity for each sample.

To refine our estimates based on the expression data, we used deNet, part of the TSNet R
package, to fit tumor and normal co-expression networks to the normalized proteomics data,
using our mutation-based estimates as a prior for model fitting®l. We used the fitted purity
values as the final TSNet estimate purity values. Fitted values and the input purity estimates are
available in Supplementary Table 9.

Over-representation Analysis

Categorical data was associated with samples (bulk RNA-Seq or MS Proteomics) or single-nuclei
(snRNA-Seq) by calculating overrepresentation as follows. For a given program, its usage across
samples/cells can be expressed as:

U=[u1 U, - un]

Given these samples/cells also have a categorical metadata for some or all of the same
samples:

C=[a ¢ - G
And A represents the set of possible categories:
A = {al az b am}

We create a vector of observed usage 0, by summing the GEP usage within each category:

n —

ci=a; U

0 — [01 02 cee om]’oi — Z {] ]
j=1lelse 0

We also create a vector of expected usage E, composed of the frequencies of the category
labels in C. Let ¢; be the number of non-missing elements in C that are equal to a;, and s be the
total number of non-missing values in C.

€1 € €m
po[2 2 L o
s s S

We then calculated overrepresentation using the Pearson residual, r:
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Association with numerical metadata
Numerical metadata was associated with samples (bulk RNA-Seq or MS Proteomics) or single-
nuclei (snRNA-Seq) by calculating Pearson correlation as follows. For a given program, its usage
across samples/cells can be expressed as:

U= [ul U, - un]
Given these samples/cells also have numerical metadata for some or all samples/cells:

V = [171 ‘Uz e UTL]

Then, we use Pearson correlation of U and V where values are not missing to calculate
correlation and association across samples:

A =corr(U,V)
Representative programs

To identify a single program that would best represent each community for each dataset, we
began with a matrix for each community, c, defined by:

Sf1;p1 o Sf1:py
MCd — . . .

y

an,p1 o an'py

where y is the number of programs in community ¢ from dataset d, n is the number of features
from dataset d, and Sfup; is the program score of feature i in program j.

First, the median of features is computed across all programs in M 4. Then, a representative
program is selected which has the highest correlation with the median of features.

ssGSEA

ssGSEA analysis was carried out with default parameters in pyGSEA’s ssGSEA function, and
using literature-derived gene sets. Minimum and Maximum gene set intersection size was 5 and
10,000, respectively.

cellAssign

To recreate the cell type annotations in the CPTAC GBM study (which were not made available),

we used marker genes provided as previously described®, as well as additional cell types based
on more recent single-cell analyses in GBM®? to improve resolution of tumor associated
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microglia/macrophages (marker genes provided in Supplementary Table 10) . We used
cellassign® with default parameters and these marker genes to assign cell type labels.

Software availability

mosaicMPI is implemented as a platform-independent, object-oriented Python 3.9 module that
can be used in Python and Jupyter notebooks, as well as through a command-line interface (CLI)
(Supplementary Figure S1E). Both the CLI and Python module are cross-platform and have been
tested on Windows, Linux, and macOS. Source code and documentation for mosaicMPI is
available at https://github.com/MorrissyLab/mosaicMPI.

Data Availability

The current manuscript is a computational study using published datasets. Code used in this
manuscript are available in GitHub, https://github.com/MorrissyLab/mosaicMPI. All relevant
study data are included in the article, in the Supplementary files, and as data files in the
mosaicMPI GitHub repository. The following previously published data sets were used:

Clinical Proteomics Tumor Analysis Consortium (2020) GDC Data Portal (CPTAC-3).
https://portal.gdc.cancer.gov/projects/CPTAC-3

Mayo clinic PDX study:
https://www.cbioportal.org/study/summary?id=gbm_mayo_pdx_sarkaria_2019
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