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Abstract
Cell-type classification is a crucial step in single-cell analysis. To facilitate this, several methods
have been proposed for the task of transferring a cell-type label from an annotated reference atlas to
unannotated query data sets. Existing methods for transferring cell-type labels lack proper uncertainty
estimation for the resulting annotations, limiting interpretability and usefulness. To address this, we
propose popular Vote (popV, https://github.com/YosefLab/popV), an ensemble of prediction models
with an ontology-based voting scheme. PopV achieves accurate cell-type labeling and provides
effective uncertainty scores. In multiple case studies, popV confidently annotates the majority of cells
while highlighting cell populations that are challenging to annotate. This additional step helps to
reduce the load of manual inspection, which is often a necessary component of the annotation process,
and enables one to focus on the most problematic parts of the annotation, streamlining the overall
annotation process.

1 Introduction
Cell type annotation is a crucial task in analyzing single-cell RNA sequencing data. The quality
of the annotations has a direct impact on downstream analyses such as the comparison of cell type
composition, as well as the analysis performed on a per cell type basis [1]. Manual annotation is highly
time-consuming and requires tissue-specific and sequencing technology-specific domain knowledge.
Thus, as scRNAseq becomes an increasingly standard lab technique, there is a growing need to
generate automated annotations. We propose here the use of a collection of cell type prediction models
to provide not only automated annotations but also well-calibrated measures of uncertainty enabling
effective incorporation of the human-in-the-loop component of the annotation process.

Automated cell type annotations encounter several challenges [2]. There is no gold standard ground
truth for cell type annotation within a specific data set. Biology is complex, and when cell states vary
continuously, delineations between cell types are imprecise, and even human experts may disagree on
the exact phenotype of a specific cell. Therefore, it is essential that annotation methods highlight areas
of uncertainty that require expert knowledge input. The continuous nature of cell states [3], along
with stochasticity in the sequencing process, as well as the domain knowledge of the person manually
annotating the data set, can lead to cells being annotated at varying levels of specificity even within
the same data set. Across multiple data sets, factors, like continuous discovery and identification of
novel cell subtypes, lead to discrepancies in cell type identification. There are a plethora of automated
cell type annotation methods [4]. However, differences in cell type granularity, experiment-specific
nuisance factors, and technology-dependent sparsity of gene expression lead to no clear ’best method’
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for automatic annotation. Based on these factors, we pose that it is crucial for automatic cell type
annotation pipelines [5] to: highlight areas of uncertainty that may require manual scrutiny; balance
specificity of predictions with accuracy; be easily accessible and usable.

To address these challenges, we developed popularVote (popV), a flexible and scalable automated cell
type annotation framework that takes in an unannotated query data set from a scRNAseq experiment,
transfers labels from an annotated reference data set, and generates predictions with a predictability
score indicating the confidence of the prediction. We pose here that various prediction methods
will disagree in their prediction if an annotation is not accurate, whereas they will tend to agree if
the predicted cell type is the correct one. We named our method popularVote because instead of
relying on the predictions of a single classifier, popV takes a consensus approach and incorporates the
predictions from eight automated annotation methods. PopV also takes into account annotations at
different levels of granularity by aggregating results over the Cell Ontology [6]; an expert-curated
formalization of cell types in a hierarchical structure with a standardized vocabulary. PopV is available
as an easy-to-install, open-source Python package and is designed to be a flexible framework for
incorporating future cell type classification methods. We provide a notebook that allows the prediction
of new data sets and provide pre-trained models for 20 different organs based on The Tabula Sapiens
data set [7].

2 Results
Overview of popV
PopV takes a consensus of experts approach to the task of automated cell type annotation. The input
is an unannotated query data set together with an annotated reference data set (Figure 1A). Both data
sets are expected to contain raw count data and demonstrate that popV can be applied to UMI, as well
as non-UMI-based technologies. PopV then runs eight different annotation methods: random forest
(RF) [8], support vector machine (SVM) [8], scANVI [9], OnClass [10], Celltypist [11] and k nearest
neighbors (k NN) after batch correction with three single cell harmonization methods: scVI [12],
BBKNN [13], and Scanorama [14] (Figure 1). The eight prediction algorithms were chosen because
they were shown to have good prediction accuracy [15] and/or good harmonization performances
[16]. These methods encompass supervised methods that are trained only on labeled data (Random
Forest - RF, Support Vector Machine - SVM, OnClass, Celltypist, k-nearest neighbor classifier (kNN)
after applying unsupervised harmonization methods that are agnostic to label information during
training (BBKNN, Scanorama, scVI) and a semi-supervised method trained with both labeled and
unlabeled data (scANVI). The unsupervised methods are coupled with a kNN classifier to generate
label predictions. However, we emphasize that popV offers an intuitive application interface (API)
for rapid inclusion of additional annotation methods. We demonstrate this capability through a code
snippet for adding a new classifier (kNN after batch correction with harmony [17]) in the Methods
section.

After applying each of these methods separately, popV proceeds to aggregate the resulting predictions
for two purposes (Suppl. Figure 1). The first is to designate a single ’consensus’ annotation for
every query cell. The second purpose is to quantify our certainty in this prediction. We estimate the
consensus annotation using a simple majority vote procedure, counting for each annotation label the
number of algorithms that support it. The one exception to this simple procedure is how we treat
OnClass annotations, as OnClass is the only method in this collection that is capable of predicting
cell types that do not exist in the reference data set. It does so through a two-step process - first
selecting an annotation out of the collection of labels in the reference data set and then propagating
it to identify a potentially more precise label in the Cell Ontology (even if this label is absent from
the reference). To account for these "out of sample" cell type annotations, we consider every label
that is on the path from the root of the ontology down to the OnClass- predicted label as a predicted
label (Suppl. Figure 1). We then perform majority voting across all labels (with OnClass having
multiple "votes" at different levels of hierarchy). We have attempted using a simple majority vote
with the "within sample" annotation from the first stage of OnClass, and with no propagation along
the Cell Ontology. In most of our analyses, we found our first strategy to be preferable. Throughout
the manuscript, we report this method, except that it is highlighted differently.

A potentially useful property of many of the algorithms included in popV is an "algorithm-intrinsic"
estimation of prediction certainty. This could, in principle, be leveraged to compute a weighted
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consensus. However, we found that the certainties are calibrated differently for the different methods,
which makes this approach futile as it will weigh more on the predictions of the most presumptuous
classifiers.

After calculating the consensus score, popV generates a sample report that includes prediction
summaries as well as integrated views of the query and reference data sets (see Suppl. Report 1).
For the latter, it displays UMAPs for the joint visualization of the reference and query data sets for
the four methods that perform data integration (Figure 1), as well as a bar plot comparing cell type
frequencies in the reference and query data set to highlight the differential abundance of various cell
types. One set of summaries in the report are confusion matrices between the consensus predictions
and each individual method to indicate which cell types were confused with another cell type for
any particular method. The report also includes a per cell type display of the consensus score (i.e.,
number of agreeing methods - between 1 and 8) to highlight which cell types are overall difficult to
predict. Complementing this ‘algorithm-extrinsic’ estimation of certainty, we also output the intrinsic
uncertainty (i.e., classifier score) of each of the eight methods (these scores are defined in the method
section). We emphasize that intrinsic and extrinsic uncertainty are two complementary measurements
essential to quantify the performance of a set of cell annotation tools.
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Figure 1: Framework of popV for automatic cell type annotation PopV takes as input an unannotated query
data set and an annotated reference data set. Each expert algorithm predicts the label on the query data set to yield
a cell type annotation. The certainty of the respective label transfer can be quantified by scoring the agreement of
those methods. The workflow yields a sample report to provide the user with insights into the annotated labels.

To allow for fast annotation of new query data sets, we provide pre-trained models for all 20 organs
present in Tabula Sapiens [18]. Pre-training is possible for all methods except Scanorama and
BBKNN, which compute a joint embedding of reference and query data set and make pre-training
infeasible. For scVI and scANVI, we provide pre-trained embeddings of the reference data set and
map the query data set to this embedding using scArches [19]. PopV has three different modes of cell
type prediction; in retrain mode all classifiers are trained from scratch, which requires an hour for
100k cells in a Google Colab session, in inference mode pre-trained models are used where applicable,
which requires 30 minutes for 100k cells, in fast mode only pretrained models are used and only cell
types in the query data set are predicted, which requires 5 minutes for 100k query cells. PopV is
available as an open-source Python project and includes an online Google Colab notebook with free
computing resources. The codebase enables the addition of new reference data sets (in addition to
Tabula Sapiens) through a simple API and can be invoked from the same notebook environment. We
recommend that in any newly added reference data sets, the annotations should be consistent with
Cell Ontology, either by matching terms in the ontology or by hierarchically assigning new terms to
existing terms in the ontology. To this end, we provide scripts to add custom cell type labels to The
Cell Ontology before processing by popV (where it is used for running OnClass and calculating our
consensus scores).
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PopV prediction score discriminates high and low quality annotations.
We evaluated the performance of cell type annotation using popV with a human lung cell atlas as
the query data set [20] and the lung tissue of Tabula Sapiens as a reference data set. The Lung
Cell Atlas is carefully annotated to a high level of granularity. It contains a wide variety of cell
types across immune cells, epithelial cells, endothelial cells, and stromal cells and is therefore well
suited for studying tissues with diverse labels. To make the labels comparable across both data sets,
we translated the Lung Cell Atlas labels to the corresponding terms in the Cell Ontology (Suppl.
Figure 2).

PopV achieves high accuracy on the Lung Cell Atlas. We visualize the popV predictions against
the manual annotations in the Lung Cell Atlas and see a strong agreement between the prediction
and the original annotation, as well as a good integration between the query and the reference cells
(Figure 2A). We decided here to use scANVI integration as it showed the highest performance in
scIB metrics, which measures data integration and biological conservation [16] (Suppl. Figure 3A).
To evaluate the quality of our predictions, we compute accuracy terms based on the Cell Ontology
tree (see Methods). Exact Match, as the name implies, means that the predicted cell type is exactly
the same as the manual annotation. Furthermore, intuitively, a prediction algorithm that predicts one
cell type as another similar cell type performs better than a prediction algorithm that predicts the cell
is of an unrelated type. The Parent Match, Child Match and Sibling Match take this into account and
measure if the predicted cell type is the parent, child, or sibling in the Cell Ontology tree compared to
the ground truth annotation. This measure is especially useful if a cell type label exists only in the
query and not in the reference data set. Every prediction that did not match any of these relationships
was classified as No Match. PopV overall achieves high accuracy for most cell types (Figure 2B and
Suppl. Figure 3C). Except scANVI and OnClass, all methods have comparable performance in this
data set. Furthermore, we compared the performance of popV with Seurat, which is another popular
tool for cell type annotation transfer [21] and found that Seurat performs worse than most methods
used in popV. We also included OnClass predictions after step one (OnClass_seen), where OnClass
only predicts cell types that were present in the reference data set and found this to perform similarly to
the good-performing annotation tools, so that the lower performance of OnClass here is solely due to
the prediction of unseen cell types. Overall, popV performed best for the number of Exact Match and
comparable in the number of cells with No Match. Overall, the popV prediction is more accurate than
any of the single methods. For a better insight into the prediction, we display bar plots in the report for
popV highlighting the abundance of cell types in query and reference data set, as well as prediction
accuracy (Suppl. Figure 3) and display confusion of cell types using alluvial plots (Suppl. Figure 4).
We used this case study to demonstrate the utility of our consensus scoring strategy, compared to a
simple majority vote, observing an overall superior performance (Suppl. Figure 5).

When checking the popV prediction scores, we found that the accuracy of the prediction is highly
correlated with the prediction score (Figure 2C). For scores of 6 and higher, we found that more than
90% of the annotations were exact matches with the ground truth. For scores of 8, which is a perfect
agreement between all methods, 98% of the predictions were exact matches. For scores of 3 and
lower, the prediction accuracy was lower than 50%, highlighting that the popV consensus score is
a valuable metric to reflect the classification accuracy and points to groups of cells that should be
further (and manually) scrutinized.
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Figure 2: PopV prediction on Lung Cell Atlas and Tabula Sapiens lung as reference is accurate and
interpretable. A, UMAP embedding after scANVI integration of Tabula Sapiens reference cells, Lung Cell
Atlas query cells labeled with predicted label and Lung Cell Atlas query cells labels with the ground-truth label.
B, Ontology accuracy (see methods) for the various methods computed on the query cells. C, Ontology accuracy
for the prediction scores in popV. D, highlighted cells with a consensus score of 4 or less (Low Consensus) and
(E) Zoomed in view of endothelial cells in the Lung Cell Atlas with popV predicted labels and ground-truth
labels displayed. The zoomed-in picture is rotated by 90 degrees to allow readability of all labels. Alveolar
capillary type 2 endothelial cell is the cell ontology term for capillary aerocytes. The Lung Cell Atlas annotated
additional cell types between Capillary Aerocytes and Capillary
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When considering cells that were assigned with a low consensus score, we found three possible
reasons that may explain the disagreement between the different methods (Figure 2D). The first is that
the distinction between certain cell subsets with different labels is unclear. This often arises in cases of
a continuum of cell states with no clear decision boundary in transcriptome space. In such cases, the
boundaries determined by different algorithms may vary (because they depend on different objectives
or techniques), leading to low consistency. It is, however, exactly those cases that merit closer (and
often manual) inspection, and - if needed - assignment of multiple optional labels. As an example, we
found several areas of low consensus score in the various lung endothelial cells (Figure 2E). Most
endothelial cells with a low consensus score arise between capillary endothelial cells and alveolar
capillary type 2 endothelial cells. In this region, the various algorithms disagree on the correct
boundary, but all algorithms predict those cells with either of those labels. We found that alveolar
capillary type 2 endothelial cells express EDNRB and HPGD, and capillary endothelial cells express
FCN3 and IL7R. Cells between both cell types are double positive in both markers, while they do not
show any specific marker gene. Therefore, we conclude that neither the term capillary endothelial
cell nor the term alveolar capillary type 2 endothelial cell is adequate to describe these cells, but their
phenotype is between both cell types. Thus, it is a region that requires manual scrutiny to determine
the correct label of those cells. In fact, such scrutiny was applied in the original annotation of the Lung
Cell Atlas, which was not provided to popV and which labeled these cells as Capillary Intermediate 1
and 2. Therefore, this example demonstrates that a low consensus score can help identify areas that
require a refined label, possibly extending the vocabulary available in the reference atlas.

The second reason for a low consensus score in this case study occurs when the query data set contains
subsets of cells that are absent from the reference atlas. As an example, while the Lung Cell Atlas
(which we use as the query) includes a subset of endothelial cells that was originally labeled bronchial
vessel 2, this subset (and its respective label) seems to be absent from our reference atlas. Indeed,
when checking marker genes for these cells, their expression was high in PLVAP and low in the vein
endothelial marker ACKR1 (Suppl. Figure 6), which can be interpreted as an intermediate stage
between capillary endothelial cells (negative for both markers) and lung microvascular endothelial
cells (positive for both markers). This combination of marker gene expression was not observed in
Tabula sapiens and therefore marks a cell type not present in the reference data set.

The third possible reason we find for the low consensus is inaccuracy in the reference annotation. As
an example, we found a subset of T cells with a low consensus score (Suppl. Figure 7). All cells of
this group that came from the query data set were originally labeled (by the authors of the Lung Cell
Atlas) as effector CD4 positive alpha-beta T cells, while cells originating from the Tabula Sapiens
reference were labeled with a mixture of CD4 and CD8 T cells. Consequently, most algorithms in
popV labeled this low-consensus group as a mix of CD4 and CD8 T cells with different decision
boundaries. Manually following up this low scoring group, we checked the marker gene CD8A and
found a clear cut-off that distinguishes the CD4+ (T helper) and CD8+ (cytotoxic) subsets, in a manner
consistent with the (hidden) query annotation. Despite this clear delineation, we found that many
CD8 negative cells are labeled in the reference atlas as CD8+ T cells. A low consensus score in this
group of cells helped to identify wrongly annotated cells in the reference data set, and we highlight
that manual scrutiny can clean up these wrong labels.

We have demonstrated here that the consensus score can highlight regions that require manual scrutiny
and that reannotation in those regions can be performed using marker gene expression. This leads to
novel delineation of cell types not discovered in the reference data set, detection of query-specific cell
types, and correction of the cell type label of wrongly assigned reference cell type labels.
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PopV detects a-priori differences between query and reference tissues and
enables label transfer at different levels of granularity
We next set out to study cell type annotation in cases where the reference and query data sets
originate from similar, yet not identical tissue environments. This will allow us to test whether
the low-consensus regions of popV align with differences between the tissues and therefore require
further scrutiny. To this end, we decided to use a recent multidonor effort to study the anatomy of the
human brain [22]. In this study, three million nuclei were sequenced in three postmortem donors
and approximately 100 dissections in various regions of the brain. For our analysis, we focussed on
the motor cortex (M1C) and the middle temporal gyrus (MTG) - two of the profiled regions that
had a large number of nuclei and are also largely overlapping in terms of their milieu of cell subsets.
Therefore, we designated the nuclei of the M1C region as the reference data set and the nuclei of
MTG as the query data set.

Another important feature of this data set is that the annotations in the original study were done
at different levels of granularity. Here, we consider two of these - a coarse level with 22 labels
and a fine level (nested in the coarse one) with 214 labels (Suppl. Figure 8A). This will allow us
to evaluate how the consensus scores of popV can help determine the desirable level of prediction
granularity, balancing between resolution (more granular is better) and accuracy (more granular is
more difficult).

Considering integration-based algorithms in popV, we find that our query and reference data sets are
well mixed, which agrees with our prior expectation on the similarities between the two respective
brain regions (e.g., scANVI integration in Figure 3A). Taking into account the coarse-grained
annotation level, we find that the most prevalent labels (represented by more than ten nuclei) were
correctly transferred using popV (Figure 3B and Suppl. Figure 9). The two exceptions are also
highlighted as low consensus (Figure 3B, C). In the first case, four of the algorithms in popV assigned
a label of Upper rhombic lip neurons to a small group of nuclei in the query data set, although it is
not expected that cells of this type will be found in the brain cortex. The remaining three algorithms
(here OnClass was not used as the labels were not matched to the cell ontology database) assigned
these nuclei with a label of Upper-layer intratelencephalic neurons and deep-layer intratelencephalic
neurons, which matches their original (hidden) label. This case demonstrates that manual scrutiny of
the predictions made by the different algorithms in low-consensus areas can help identify and resolve
issues with automated annotations (in this case, using prior knowledge on brain physiology). In the
second case, we once again find a disagreement between the different algorithms, this time for a group
of nascent oligodendrocytes. While four algorithms in popV assign to most of these nuclei a label
of Commited Oligodendrocytes precursors, the remaining three choose Oligodendrocyte precursor.
Similarly to the previous case, the minority vote of popV matches with the original (hidden) reference
annotation, and highlighting this region as low consensus can help recover the correct label by manual
inspection of the different predictions.

Interestingly, the only other coarse-grained label that did not show a perfect consensus is Upper-layer
intratelencephalic neuron. Here, we find a subset of nuclei for which six algorithms assign the label
of upper-layer intratelencephalic neuron while scANVI assigns them as deep-layer intratelencephalic
neurons. Although the (hidden) reference annotation agrees with the majority vote of popV, it is
interesting to see a lack of perfect consensus in this case. Indeed, the upper-layer intratelencephalic
neurons in M1C and MTG clustered separately in the original study, showing that there are region-
specific effect on the transcriptomes of these nuclei. To explore this, we calculated differentially
expressed genes for all cluster IDs in upper-layer intratelencephalic neurons (query and reference) and
found several markers that are specific to those query-specific clusters of upper-layer intratelencephalic
neurons (clusters 135 and 138 in the original study; highlighted in Figure 3D and Suppl. Figure 8B).
Furthermore, we found several genes that distinguish query-specific clusters from reference ones,
which are also expressed in deep-layer intratelencephalic neurons (TSHZ2, FOXP2, PDZRN4 and
RXFP1), thus providing some reasoning for the lack of consensus from popV. More generally, this
case demonstrates that a lower consensus score allows one to highlight subtle differences in cell type
phenotypes between query and reference cells and, if necessary, to manually curate those cells.
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Figure 3: PopV accurately performs labeling of cell types across different brain regions and highlights
region-specific neurons. A, UMAP embedding after scANVI integration of reference nuclei (motor cortex,
M1G) and query nuclei (medial temporal gyrus, MTG) labeled with consensus score, brain region (ROI), popV
prediction, and original annotation (supercluster term). B, confusion matrix for the cell types predicted by popV
and their respective manual annotations highlights the agreement between both annotations. C, mean agreement
score per cell type shows that confused cell types also exhibit a lower agreement score and can be detected
based on their score. D, differentially expressed genes for cluster ID for upper-layer intratelencephalic neurons.
Highlighted are cluster IDs 135 and 138 which are over-represented in the MTG over the M1G. These clusters
show an overexpression of FOXP3 and TSHZ2 and are very similar to each other.

Next, we wanted to explore which of the granular labels can be reliably refined by applying popV
with the fine-grained labels of the reference (M1C) data set. Based on the resulting consensus scores,
we found that for some groups of nuclei, a more refined annotation can be reliably achieved, while for
others, it was more difficult to go beyond the coarse-grained level of annotation (Suppl. Figure 10).
As an example for the first case, we found that the group of upper-layer intra-telencephalic neurons in
the query (MTG) data set can be further divided into subgroups with a high level of consensus and
with a high level of agreement with the (hidden) query labels (Figure 8D). In particular, although in
the original study those subsets of upper-layer intertelencephalic neurons are associated with distinct
labels, there is no discussion about their functional distinction. However, we find that two of these
subclusters (clusters 135 and 138 in the original study; highlighted above) are distinguished from
all other upper-layer intertelencephalic neurons by their expression of FOXP2 (Figure 3D), which
is genetically associated with speech disorders in humans [23]. Therefore, this higher resolution
annotation points to specific subsets of FOXP2+ neurons in the MTG, a region that has a critical and
long-studied role in language processing.

An example for the second case are oligodendrocytes. When attempting to conduct a finer annotation of
these cells in the query data, we achieve low consensus scores. When we examine the different subsets
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of oligodendrocytes in the fine-grained reference, we indeed find little transcriptomic differences,
which makes the classification task difficult. This highlights a case where coarse-level annotation is
safer, and any refinement of the labels requires manual curation - deciding whether minor differences
in transcriptome are indeed relevant for cellular function and justify distinct labels.

PopV provides useful label transfer in case of drastic differences in cellular
composition.
After highlighting that popV is capable of detecting query-specific cells and that the consensus score
is capable of highlighting these cells, we studied whether this can also be achieved when we have
very different query and reference data sets. To this end, we studied the annotation of thymus cells
using Tabula sapiens as a reference data set and a second study, which profiled thymi from different
age groups (fetal, childhood, adolescence, and adulthood) as query [24]. In particular, the thymus
undergoes involution with age, and the adult thymus, which we use here as reference, does not
accurately represent the structure and function of the thymus in younger individuals. In particular, we
anticipate that the reference sample will not provide ample representation of the developing T cell
population, which should be prevalent in our query data.

UMAP embedding of the two harmonized data sets (with scANVI) clearly highlights the subsets of
query cells that are represented in both data sets vs. the ones that are query-specific. For most of the
common cell types, we found a high consensus between the methods and good agreement between
popV prediction and the original (hidden) annotation of the query data set (e.g., accuracy greater
than 95% for cells with a popV prediction score of 7 and 8; Figure 4B, Suppl. Figuer 13 and Suppl.
Figure 14). In contrast, and as expected by the age of the donors in the Tabula Sapiens project, the
compartments of thymocytes and developing T cells are almost absent from the reference data set
(Figure 4A). Reassuringly, popV assigned low consensus scores to the majority of cells from both of
these compartments, highlighting them for manual annotation (Suppl. Figure 16).

We identified two other cell populations that are underrepresented in Tabula sapiens compared to
the query data set, which are cortical thymic epithelial cells (also associated with involution [25]),
and plasmacytoid dendritic cells. Similarly to our previous examples, we find that the consensus
score associated with cortical epithelial cells is indeed low, with a variety of annotations assigned to
these cells by the different algorithms, including fibroblasts and medullary epithelial cells (Suppl.
Figure 14). The low consensus score suggests that manual curation of this group of cells is needed.
In this case, the manual assignment of the correct out-of-reference label is relatively straightforward
using PSMB11, an established marker of cortical thymic epithelial cells that is not expressed in any
cell in the Tabula sapiens reference.

For plasmacytoid dendritic cells, all algorithms except SCANORAMA + kNN predicted that those
cells are B cells or plasma cells. SCANORAMA + kNN predicted that those cells are dendritic cells.
Even OnClass, which can predict cells not present in the reference data set, predicted those cells as
antibody secreting cells or lymphocytes of B lineage with not a single cell correctly predicted as a
plasmacytoid dendritic cell. However, these query cells expressed high levels of CLEC4C and IL3RA
and were therefore correctly labeled as plasmacytoid dendritic cells. As two thirds of plasmacytoid
dendritic cells have a score of 5 or lower, manual identification of these cells is possible and displaying
marker genes identify those confidently wrongly annotated cells, as above.

The only cell fraction that had a high consensus score but low accuracy is a group of cells labeled as
Endothelial cells by popV, while annotated as Lymphocytes in the original (hidden) annotation of
the query data set. However, these cells express CAVIN2, TFPI, which fits well with an annotation
as endothelial cells. We found that their gene expression aligns well with lymphatic endothelial
cells. Therefore, it suggests a wrong annotation in the query data set and a correct prediction by
popV.
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Figure 4: PopV identifies thymocytes as a query-specific cell types and yields highly interpretable consensus
scores. A, UMAP embedding after scANVI integration of reference cells (Tabula sapiens) and query cells
(thymus cells across different age groups) labeled by popV prediction, and original annotation. B, popV prediction
score overlaid on the UMAP plot. The prediction score is low for thymocytes and higher for most other cell
types. C, the prediction accuracy of the popV prediction highlights the low accuracy in developing thymocytes.
D, the prediction accuracy of the popV prediction in adult thymus cells in the query shows high accuracy except
for CD8 T cells. E, all methods show comparable accuracy with varying numbers of Parent Match. PopV, RF,
and OnClass_seen show a good correlation of certainty and accuracy, while popV has the highest number of
confidently annotated cells.
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Overall, this demonstrates that the consensus score yields an interpretable metric for prediction
accuracy, and that it helps handle cases of discrepancies between the query and reference data
set.

3 Discussion
We have developed popV, an ensemble method for cell type annotation, to yield an interpretable
certainty quantification for the task of cell type annotation. We have demonstrated throughout
this manuscript that in various scenarios with different sequencing technologies, various cell type
resolutions, and various overlaps of reference and query data sets, popV yields a confidence score that
is well correlated with the actual accuracy of cell type transfer. We demonstrated that the prediction
score can predict cell types that are specific to the query data set (MTG-specific neurons), incorrectly
annotated in the reference (CD4 T cell subsets in Tabula sapiens) or in the query data set (lymphatic
endothelial cells in the thymus), or cell types that are not annotated in the reference data set while
present in both data set (lung intermediate capillary endothelial cells in Tabula sapiens).

PopV is implemented as an easy-to-install, open-source Python tool. The code base is designed so that
adding additional cell type classification algorithms is straightforward, thereby allowing researchers
to mitigate the risk of choosing a single algorithm (i.e., circumvent the no "one size fits all" problem).
We expect future annotation tools to be developed and popV to be used as a tool to handle various
biases in these tools and to help quantify certainty in automatic prediction. As an example, upon user
request, we included harmony + kNN, which was not part of the initial release and therefore not
used throughout the manuscript, as a classification model and found popV’s flexible framework to be
straightforward in implementing novel predictors.

PopV’s performance is limited by the performance of the underlying predictors. We showed throughout
the manuscript that overall popV performed equally well as the single-best method in terms of accuracy.
However, the aim of popV is not to improve the accuracy of cell type annotation over the single
predictors but to yield a metric of certainty that is easy to interpret and well-calibrated. Indeed, we
found that algorithm-intrinsic certainties tend to be poorly correlated with the accuracy of cell type
annotation. This is also reflected in a recent study that highlights the low calibration of conventional
classification tools [26]. Conversely, we demonstrated that the popV consensus score is highly
associated with accuracy and that it helps identify cases where manual involvement is required.

To make popV a valuable resource for the community, we provide a Google Colab notebook with
pre-trained models for every tissue in the final Tabula sapiens publication. Moving forward, we expect
popV to be integrated with the annotation platform of the Human Cell Atlas. This will allow code-free
and interactive browsing of the results such as prediction, popV consensus score, and visualization of
marker genes for manual scrutiny.
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4 Methods
PopV is a Python package available via the Python Package Index (PyPI). Further details on popV, the
source code, and a model tutorial are available at https://github.com/YosefLab/popV.

Data sets
Tabula sapiens Tabula sapiens was used throughout the manuscript as the reference data set.
Tabula sapiens was downloaded from CELLxGENE https://cellxgene.cziscience.com/
collections/e5f58829-1a66-40b5-a624-9046778e74f5. The expression data was set to the
raw object of the h5ad object, which contains count data for all cells and genes. This yields 483152
cells and 58559 genes. We filter every cell that has less than 10 cells in a respective tissue as the kNN
used in popV cannot predict cells with less than 8 examples (15 nearest neighbors by default) (Suppl.
Table 1). We confirmed that all cell types are present in the recent version of the Cell Ontology
downloaded from https://github.com/obophenotype/cell-ontology/tree/v2023-02-19.
Furthermore, we validated that the cell type annotation was not donor-dependent in Tabula sapiens.
Tabula sapiens was annotated on a per donor basis and for early donors cell type labels have different
names for the same cell type compared to latter donors. To reduce the effect of this inconsistency,
we excluded several samples (Suppl. Table 2). Additionally, we found a strong batch effect between
some 10X samples. After contacting the original authors, we found the 10X chemistry to be the
reason for this and created a new metadata column containing the correct assay. The corrected assay
can be accessed through https://doi.org/10.5281/zenodo.7587774. All models were trained
using a batch covariate of concatenated donor and assay and separated by tissue (Suppl. Table 3 and
4).

Lung Cell Atlas Data was downloaded from CELLxGENE https://cellxgene.cziscience.
com/collections/5d445965-6f1a-4b68-ba3a-b8f765155d3a. We relabeled the cell types to
attain conformity with the Cell Ontology (Suppl. Tab 6). Additionally, we filtered all blood samples
collected for the construction of the Lung Cell Atlas. We created a concatenated column of sample
ID and assay and used these concatenated metadata as the query data set batch key in popV (Suppl.
Table5. Throughout this manuscript, the query data set label was not used as input to scANVI as the
general application of popV works with an unlabeled query data set. The lung cell atlas contains
75071 cells in total and 39 unique cell types were used as cell ontology labels out of 59 unique cell
types in the original lung cell atlas.

Brain data set Data was downloaded from CELLxGENE https://cellxgene.cziscience.
com/collections/283d65eb-dd53-496d-adb7-7570c7caa443. We downloaded Dissection:
Cerebral cortex (Cx) - Precentral gyrus (PrCG) - Primary motor cortex - M1C and Dissection:
Cerebral cortex (Cx) - Middle Temporal Gyrus - MTG as the two cortical regions with the largest
number of cells. Original cell type labels were used for this data set and we used respectively cluster_id
and supercluster_term as the cell type key. We remove cells labeled with the super-cluster terms
Splatter as well as Miscelleanous as these likely contain low-quality cells where manual annotation
was failing. For all downstream metrics, we removed cell types with less than 10 cells in each cell
type label as we found those to be reflective of nuclei from distinct brain regions (Medium spiny
neuron, Hippocampal dentate gyrus, Hippocampal CA1-3, Amygdala excitatory) We decided against
using the labels that conform to the Cell Ontology, as all neurons were labeled with the same cell
ontology term "neuron", which does not reflect the heterogeneity of these cells. The cell type labels
termed subcluster_id were the finest level of annotation. However, we found little evidence in the
transcriptome of nuclei to trust those labels and were excluding those from analysis.
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Thymus data set Data was downloaded fromhttps://cellxgene.cziscience.com/collections/
de13e3e2-23b6-40ed-a413-e9e12d7d3910 and the data was analyzed using the same CELLx-
GENE access link. We relabeled the cell types to achieve granularity comparable to the reference
data set (Suppl. Tab 6). For subset analysis, fetal samples were filtered to every Development Stage
containing th week as a substring, adult samples were filtered to human early adulthood stage. We use
the donor ID and assay as the query data set batch key in popV (Suppl. Table8. The thymus data set
contains 255901 cells in total and 28 unique cell types were used as cell ontologies out of 31 unique
cell types in the original thymus data set. All cells in this data set were labeled according to the cell
ontology. However, we decided to summarize all CD4-positive, as well as all CD8-positive T cells,
into a common cell type to make the annotation granularity comparable between reference and query
data sets (Suppl. Figure 12). We additionally summarized all B cells in the query and reference
data set to be annotated as B cells, as the label of B cells in Tabula sapiens showed strong donor
inconsistencies and summarized all endothelial cells to be labeled as endothelial cells to harmonize
the granularity of cell type labels.

Model parameters
We use eight different cell type annotation algorithms and in the following explain our parameters for
those annotation algorithms as well as the data preprocessing pipeline that we use for popV. For UMAP
embedding, we used scanpy default parameters except a min_dist of 0.3. For the ’kNN classifier, we
use uniform weights and n_neighbors equal to 15 in sklearn.neighbors.KNeighborsClassifier. The
classifier is first trained on all reference cell labels and is then applied to all query cells in prediction
mode. To increase performance of this classifier we use an sklearn pipeline and use PyNNDescent for
neighbor computation [27]. All default parameters for the underlying methods can be changed using
a dictionary method_kwargs upon calling popv.annotate_data

Pre-processing Every data set was pre-processed using the Process_Query function in popV. The
input parameters of Process_Query are explained in the popV documentation. If using a pre-trained
model folder, both reference and query data sets are subsets of the same genes. It is validated that
both data sets contain raw counts. The cell type labels in the reference data set are subsampled to 300
labeled cells by default to reduce the runtime of the underlying methods. The intersection of genes
between the query data set and the reference data set is taken, and both data sets are concatenated.
We remove all batches in the query and the reference data set that contain less than 9 cells in total as
otherwise BBKNN is failing and remove all cells with less than 20 counts. Highly variable genes
are computed using seurat_v3 flavor in scanpy [28] and by default 4000 genes are selected. Count
data is stored and counts are further normalized to 10k counts and the log1p function is applied for
methods that require normalized data and stored in a separate layer. For the computation of principal
components, the count data is scaled to unit variance. These principal components are used for
SCANORAMA and BBKNN. All keys used to set up the model are stored in the uns field of the
anndata object [29]. PopV has three different modes:

• retrain: Trains all methods from scratch and stores the classifier to reuse them on other data
sets. This hugely benefits from a GPU to train the scVI and scANVI algorithms as well as
the OnClass algorithm.

• inference: Uses pre-trained methods to classify query and reference cells. It computes a
joint UMAP embedding of query and reference cells and by default uses all eight methods.
Trains scVI and scANVI models for 20 epochs using scArches query embedding [19].

• fast: Uses pre-trained methods to classify only query cells. Computes a UMAP embedding
of query cells if enabled. Skips Scanorama and BBKNN data integration as those recompute
an embedding instead of projecting cells into an existing embedding. Trains scVI and
scANVI models for 1 epoch using scArches query embedding.

BBKNN Batch-balanced K nearest neighbor is a data integration method. To integrate the data
sets, BBKNN takes the nearest neighbors from each batch to construct a balanced neighborhood
graph. This nearest-neighbor graph can then be used as a batch-corrected graph embedding of the
data [13]. The default settings for popV and those used throughout the manuscript are 50 principal
components, 8 neighbors_within_batch, and the angular metric. We found that the angular metric
outperforms a standard Euclidean metric in our use case. We use the implementation of BBKNN
in scanpy.external.pp.bbknn. The batch-balanced nearest neighbors are used as a precomputed
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metric in sklearn.neighbors.KNeighborsClassifier and used as input for UMAP dimensionality
reduction.

SCANORAMA SCANORAMA is a data integration method. SCANORAMA searches for the
mutual nearest neighbors across data sets and uses panoramic stitching. Cells are then integrated
in PCA space using those mutual neighbors. By default in popV and throughout the manuscript 50
principal components are used. We compute a new joint embedding of the query and the reference
data set using scanorama.integrate_scanpy function. This joint embedding is used for the ’kNN
classification and UMAP embedding.

scVI ScVI is a variational auto-encoder that incorporates batch keys as latent variables and
provides data integration in its latent space. We use the following non-default parameters for scVI
dropout_rate= 0.05, n_layers=3, n_latent=20, gene_likelihood=nb, encode_covariates=True and
use_layer_norm=both. The reason for these non-standard parameters is to facilitate integration
of a query data set using scArches. For the training parameters, we use by default scVI with
n_epochs_kl_warmup=20 epochs. We compute the joint latent representation of query and reference
data and this joint embedding is used for the ’kNN classification and UMAP embedding.

scANVI In addition to scVI, a classifier is trained during training of the auto-encoder on the
positions in latent space to classify cells into the provided reference cell type labels. We continue
training based on the trained scVI model to reduce the overall training time. For the classifier in
scANVI we use n_layers=3 and dropout_rate=0.1. Subsampled labels are used as discussed above.
We use as training parameters batch_size=512 and n_samples_per_label=20 to stabilize training of
the classifier. Subsequently, the built-in classifier is used to predict cell type labels in the query data
set.

Random Forest Random Forest uses an ensemble of classification trees together with random
feature sub-setting to regularize the classification trees. The final prediction is the majority vote
across the tree ensemble. We use normalized counts (see above) as input for Random Forest
and sklearn.ensemble.RandomForestClassifier as the classifier. We use non-default parameters as
max_features=200 and class_weight=balanced_subsample as we found the best performance using
this parameter combination. For training the classifier, subsampled cell type labels are used as
described above, as this improves prediction speed.

Support Vector Machine Support Vector Machines find the hyperplane that best separates the
data. We use sklearn.svm.LinearSVC as the classifier. We use non-default parameters as C=1 and
max_iter=5000 and class_weight=balanced as we found the best performance using this combination
of parameters. For training the classifier, subsampled cell type labels are used as described
above, as this improves prediction speed. To allow computation of prediction probabilities, we use
sklearn.calibration.CalibratedClassifierCV.

Celltypist Celltypist uses a logistic regression framework. We use non-default parameters
check_expression = False and max_iter=500 to allow for faster model training. During celltyp-
ist.annotate, we use majority_voting=True. As intrinsic probabilities we use predictions.probability_matrix
as the majority voting purity and not the initial logistic regression probabilities. This is similar to the
probabilities used in the Celltypist tutorials.

OnClass OnClass first computes an embedding of the Cell Ontology using Natural Language
Processing on the cell type names and then applies random walks. This can be embedded using
Singular Value Decomposition [30]. Then a bipartite neural network was optimized to allow
classification of the reference cells. This network is then applied to unannotated cells. By design,
this allows classification of unseen cell types in the cell ontology term-based low-dimensional
embedding. We downloaded the obo Ontology files in version releases/2023-01-09. To allow fast
retraining of sentence embedding, we use sentencetransformer.SentenceTransformer(’all-mpnet-base-
v2’) as the NLP model. This is a newer NLP model than in the original OnClass publication, but
allows for faster convergence. We encode all descriptions or cell type labels in the obo file. We
provide notebooks to retrain with newer releases of ontology files or different species. We provide
several ontology files in our Github repository, these are cl.obo which is the downloaded file from
https://github.com/obophenotype/cell-ontology. Cl.ontology which is a file containing
only the is_a cell type relationships from the cl.obo file and cl.ontology.nlp.emb, which contains
the embeddings of the cl.obo file. As count data, we use normalized data (see above) and disable
the options to recompute this normalization in OnClass. OnClass provides the option to use batch
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integration using SCANORAMA. We disabled this option to not bias the prediction based on the
performance of SCANORAMA. We found no sign of a strong batch effect in cell type prediction.
For OnClass, we provide two different cell type labels. OnClass_seen is the prediction of all cells
limited to the cell types in the reference data set, while OnClass_prediction contains for each cell type
the final output of the OnClass model. OnClass currently only outputs predictions after step 2 for
10% of the cells, even though it computes those on all cells. We found this procedure wasteful and
implemented our own version that outputs labels after step 2 on all cells.

Harmony Harmony was not used throughout the manuscript. However, we found it to perform
better on large scale data set (more than a million cells and 50 batches) than SCANORAMA. Harmony
uses soft-Kmeans clustering and shifts the centroids of those Kmeans clusters to allow for batch
correction [17]. We use 50 principal components as default input to harmony. We use the efficient
GPU enabled version of harmony https://github.com/lilab-bcb/harmony-pytorch. We
compute a new joint embedding of the query and the reference data set using harmony.harmonize
function. This joint embedding is used for the ’kNN classification and UMAP embedding.

Seurat Seurat uses canonical component analysis and nearest neighbor matching to integrate first
the reference data set and then maps the query data set to this integrated data set [21]. Seurat is not
part of popV as copying a data frame to R can be a time consuming step for large data. However, we
compared the performance of popV with Seurat for the Lung Cell Atlas. We computed 2000 genes
using FindVariableFeatures with vst transformation. We called FindIntegrationAnchors using 30
CCA components. Aferwards we scaled the corrected counts and computed 30 PCA components.
Those components were used in FindTransferAnchors and afterwards TransferData is called to transfer
the labels from the reference data set to the query data set.

Consensus voting. As described in the manuscript, we tried majority voting as well as cell ontology-
based aggregation of OnClass results. We found the cell-ontology-based aggregation to outperform
majority voting 1. For this voting strategy, we take the majority vote (counting all predictions) for all
predictors except OnClass. For OnClass prediction, we use the predicted cell type and in addition
every cell type along the path from this cell type to the root node of the Cell Ontology graph and
increase the score of those ancestors by 1. We take as consensus score the score at each cell type level
node and take as popV prediction the cell type node with the highest score. For majority voting, we
use the prediction in OnClass_seen and count the predictors who agree on a certain cell type node.
The node with the majority of votes is used as the majority voted cell type label. If there is a tie
between two nodes in the amount of votes, we use the cell type label that is further down the cell
ontology tree meaning the more granular cell type, if there is still disagreement, we use the cell type
that is latter in the alphabet to have a deterministic mapping and not rely on the order of cell types in
the prediction matrix.

4.1 Evaluation metrics
All code for creating evaluation plots is available in the popV package as a _reproducibility module.
We will discuss those metrics here. For displaying the translations of cell type terms we use alluvial
plots that highlight the corresponding cell types before and after translation to a Cell Ontology
conform term.

Accuracy metrics If no cell ontology graph is available, we use F1 metrics to quantify accuracy.
The micro F1 accuracy computes the amount of exact matches across the whole data set and is a
global metric, whereas the macro F1 score computes a per cell type accuracy and averages this across
all cell types. The macro F1 accuracy therefore better represents the performance across rare cell
types. We found agreement of both metrics in their evaluation of performance but the macro F1
accuracy to be more sensitive as rare cell types are harder to predict.

If a cell-ontology is available we reasoned that the performance of a predictor is preferable if it
predicts a closely related cell type, we therefore computed different matching scores. We computed
an exact match similar to the F1 score as cell types that are correctly predicted. Parent match means
that the predicted term is a node that is one step closer to the root of the Cell Ontology graph, while
child match means that the predicted term is one step further away from root. Sibling match means
that the cell type is two steps away from the correct cell and has the same depth as the original cell
type in the Cell Ontology tree. We also experimented with more fine-grained metrics quantifying
the distance in the Cell Ontology tree between two cell types but found after manually checking the
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corresponding cell types those nearest matches to be the correct metric to evaluate classification as
cell types that are further away have less similarity.

Confusion matrix We use scikit-learn.metric.confusion_matrix and normalize those entries. We
compute these entries for all algorithms and the ground-truth label but also between the different
algorithms and the consensus label.

Differential expression analysis We use scanpy.tl.rank_genes_groups with default parameters
to yield differentially expressed genes and scanpy.pl.rank_genes_groups_dotplot to plot those
results.

Code availability
The code to reproduce the experiments of this manuscript will be made available at https:
//github.com/YosefLab/popv-reproducibility upon final acceptance of the manuscript. The
popV package can be found on GitHub at https://github.com/YosefLab/popV. Documentation
and tutorials can be found at https://github.com/YosefLab/popV.
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Supplementary Figure 1: Comparison of majority voting and PopV prediction score. A single cell is
annotated by seven different algorithms that are restricted to the cell type labels in the reference data set.
For simple majority voting, we use the prediction of OnClass at step 1, where it is bound to seen cell types
(OnClass_seen) and count the predictions of each algorithm. In step 2, however, OnClass predicts unseen cell
types. Those predictions can have a finer or coarser level along the Cell Ontology hierarchy. A coarser level
annotation is called a misclassified cell. To also use finer-level annotations, every cell along the path from the root
term to the predicted term receives a score of 1 and the majority voting is performed to receive the consensus cell.
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Supplementary Figure 2: Translation of cell-types in original publication to used cell ontology for lung
cell atlas. Cell types were relabeled based on this alluvial plot to assign them to cell ontologies. The closest
match in the ontology was manually identified and used as the cell ontology term for every cell type. Of note,
several finely resolved cell types were concatenated (e.g. Signaling Alveolar Epithelial Type 2 was renamed to
type 2 pneumocyte).
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Supplementary Figure 3: scANVI shows the highest integration of query cells and popV shows low
confidence for lowly abundant cell types. A scIB metrics comparing integration scores after integrating query
and reference data set showed the best integration using scANVI and improvement over uncorrected data. Labels
from the original Lung Cell Atlas paper were used to compute cell type-dependent scores and scores were
computed only on query cells. B Displayed is the number of each predicted cell type in query cells and the
accuracy for each annotated cell type C. Of note, cells that were rarely predicted (smooth muscle cells and blood
vessel endothelial cells showed the lowest accuracy). Most cell types have an accuracy above 0.9.
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Supplementary Figure 4: Alluvial plot of annotation in Lung Cell Atlas highlights cells with high diversity
of ground-truth labels. The alluvial plot highlights popV predictions of query cells from the Lung Cell Atlas
compared to the original annotation. Predicted CD8-positive, alpha-beta T cells e.g. have a wide of original
cell-type labels, highlighting the problems with correctly annotating T cells detailed in the main text.
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Supplementary Figure 5: Comparison of consensus scoring and majority voting. Suppl. Figure 1 highlights
both scoring options in PopV (majority voting and consensus score). We highlight here cells with different
predictions based on both scores. A. Alluvial plots between popV prediction with majority voting and ground-
truth labels on these cells. B. Alluvial plots between popV prediction with consensus scoring and ground-truth
labels on these cells. C. Comparison of various accuracy metrics between predictions from both scores highlights
improved prediction with consensus scoring (popv_prediction) over majority voting.
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Supplementary Figure 6: Marker genes for endothelial cells in query and reference cells. We display here
marker genes for endothelial cells in both query (A) and reference (B) data set. CXCL12 and GJA are canonical
markers for arterial endothelial cells. ACKR1 is a marker for venous endothelial cells. SPRY1 and PLVAP were
used as markers for bronchial endothelial cells. EDNRB and HPGD are markers for aerocytes. IL7R and FCN3
are markers of capillary endothelial cells.
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Supplementary Figure 7: Analysis of T cell sub-clustering in Lung Cell Atlas and Tabula sapiens. A.
UMAP of cells from the reference data set labelled by cell-type labels from Tabula sapiens, highlights overlap of
those labels in integrated space with no clear distinction between CD4 and CD8 T cells. Differential expression
analysis identifies surfactant protein genes as markers for annotated effector T cells, which is due to ambient
counts and no strong marker gene expression in CD4 T cells. B. UMAP of cells from the query data set labelled
by cell-type labels from the Lung Cell Atlas shows clear distinction between different cell-types. Differentially
expressed genes for those cell types align well with the respective literature. C. Canonical marker genes for
various sub-types shows a clear split between T-cells and NK cells as well as CD8 and CD4 T-cells. GZMA but
not GZMB production is also present in CD4 T-cells.
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Supplementary Figure 8: Marker genes show a pronounced heterogeneity in deep-layer inter-telencephalic
neurons. Additional meta-data for embedding in Fig 3 3 is displayed in A. Data from different donors is well
integrated using scANVI embedded space. The cell ontology labels from the paper have a very low resolution
and were not used here. Reference and query cells are well integrated. Cluster ID, which is a higher-resolution
clustering is conserved in UMAP embedding (legend omitted here to increase readability). B We identified
marker genes for various cluster IDs in upper-layer intratelencephalic neurons. Their expression is displayed
here. The first row shows differentially expressed genes for all upper-layer intratelencephalic neurons. The
second row shows those genes that are more enriched in the M1C. The third row shows genes that are more
enriched in the MTG. Genes from MTG are also expressed in deep-layer intratelencephalic neurons
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Supplementary Figure 9: Prediction and certainty for every predictor in brain data. We compared the
performance of the various predictors. Except for Random Forest, all probabilities have great certainty in their
predictions. Random Forest highlights a more diverse probability across the different cells, highlighting the query
specific nuclei described in the main text. Despite its high certainty, scANVI predicts a region of deep-layer
intra-telenchephalic neurons as upper-layer intra-telenchephalic neurons.
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Supplementary Figure 10: Prediction of cluster ID in brain data using PopV shows low consensus score.
In addition to running PopV on the more coarse cell-type labels, we also executed it on the more fine-grained
cluster ID. Displayed is the UMAP based on scANVI embedded data using cluster ID as the reference cell-type
annotation. The consensus score is clearly lower. Reference and query as well as donors are well integrated. The
supercluster term is well conserved in this embedding.
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Supplementary Figure 11: Prediction and probability for every predictor in brain data using cluster ID
labels. Due to the higher cell type granularity, the prediction probabilities are much lower when using cluster ID
as the ground truth label. Especially for oligodendrocytes every predictor except Celltypist and scANVI display
a high uncertainty. Celltypist and scANVI show a high certainty across all cell types.
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Supplementary Figure 12: Translation of original cell type label to ontology cell type labels for thymus
query data set. Cell types were relabeled based on this alluvial plot to assign them to cell ontology terms and
make the granularity comparable between reference and query data set. For every cell type, the closest match
in the reference data set was identified and used as the new label, if no appropriate term was found the label
remained unchanged. We summed up all different types of B cells and fine sub-types of CD4 and CD8 T cells.
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Supplementary Figure 13: scANVI shows the highest integration of query cells and popV shows low
confidence for developing T cells. A. scIB metrics comparing integration scores after integrating query and
reference data sets showed the best integration using scANVI and improvement over uncorrected data. Labels
from the original paper were used to compute cell-type dependent scores. B, C. Displayed is the number of
each predicted cell type in query cells and the accuracy for each annotated cell type. Of note, T cells are highly
abundant but not accurately predicted.
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Supplementary Figure 14: Alluvial plot of annotation in Thymus cells highlights cells with major
disagreement. The major disagreement between popV prediction and original annotation in the paper is
displayed. A wide variety of labels is predicted for thymocytes as well as mature T cells.
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Supplementary Figure 15: Calibration of certainty and accuracy for methods left out in 4. KNN after
scVI, KNN after SCANORAMA, Seurat prediction and KNN after BBKNN integration shows no tendency
to higher accuracy with higher certainty. Accuracy and certainty are almost independent of those. Celltypist
shows a high proportion of low-probability as well as high-probability cells and a high number of parent matches.
Probabilities and ground truth are not correlated. SVM shows a good correlation between accuracy and certainty
with an 80% accuracy for high certainty prediction. This is low compared to the PopV prediction score.
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Supplementary Figure 16: Annotation certainty and accuracy in adult thymus cells for the different
algorithms. We display the internal certainty of the various algorithms compared to the respective accuracy and
see again a high variability in the prediction certainty with scANVI being over-confident and RF having low
certainty in its predictions. All classifiers show lower certainty for T cells compared to other cell types. Most
algorithms show a lower intrinsic certainty for cortical epithelial cells (BBKNN, RF, SVM).
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Supplementary Figure 17: Prediction of cell types in fetal thymus using adult thymus as reference. We
compare the prediction of popV with the prediction of OnClass. The reason is that OnClass can predict unseen
cell types and those known query cell types are largely not seen in the reference data set. OnClass prediction
shows a higher number of Exact Match and Sibling Match for thymocytes compared to PopV prediction. While
PopV shows Exact Match for several cell types outside of the thymocytes, where OnClass predictions predicts
cell-types with a child or parent relationship to the original annotation. OnClass is inaccurate for the transitional
states in developing thymocytes annotating all cells as DN thymocytes and ignoring DP thymocytes as well as
early mature cells. PopV predicts DN4 thymocytes for cells originally labeled as DP thymocytes as well as a
large number of thymocytes. By construction DN4 thymocytes leads to No Match compared to the correct label
double-positive, alpha-beta thymocyte, whereas OnClass predictions of DN thymocytes leads to a sibling match.
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Supplementary Tables

Tissue Cell type
Eye retina horizontal cell
Lymph Node plasmacytoid dendritic cell
Tongue Schwann cell
Blood plasmablast
Uterus B cell
Skin naive B cell
Bone Marrow plasmablast
Pancreas pancreatic D cell
Fat mast cell
Thymus myeloid dendritic cell
Trachea double-positive, alpha-beta thymocyte
Prostate mast cell
Lung myofibroblast cell

Supplementary Table 1: Removed cell-type from Tabula sapiens due to less than 10 cells per cell type.

Tissue Cell type
TSP14 Liver
TSP2 Trachea
TSP2 Lymph Node
TSP2 Spleen
TSP2 Large Intestine
TSP2 Small Intestine
TSP1 Blood
TSP2 Blood
TSP14 Prostate
TSP2 Thymus

Supplementary Table 2: Removed tissues from Tabula sapiens due to inconsistent cell-type annotation
across donors.
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Tissue Donor ID Assay Cell Count
Bladder TSP1 10x 3’ v3 11022
Bladder TSP14 10x 3’ v3 3066
Bladder TSP1 Smart-seq2 714
Bladder TSP2 10x 3’ v3 9334
Bladder TSP2 Smart-seq2 447
Blood TSP10 10x 3’ v3 5004
Blood TSP14 10x 3’ v3 6733
Blood TSP14 10x 5’ v3 3229
Blood TSP8 10x 3’ v3 1974
Blood TSP7 10x 3’ v3 17213
Blood TSP7 Smart-seq2 613
Bone_Marrow TSP11 Smart-seq2 1031
Bone_Marrow TSP11 10x 3’ v3 1456
Bone_Marrow TSP14 10x 3’ v3 4457
Bone_Marrow TSP13 Smart-seq2 536
Bone_Marrow TSP14 10x 5’ v3 1396
Bone_Marrow TSP2 10x 3’ v3 2698
Bone_Marrow TSP2 Smart-seq2 719
Eye TSP15 10x 3’ v3 5599
Eye TSP3 10x 3’ v3 2163
Eye TSP3 Smart-seq2 279
Eye TSP5 10x 3’ v3 2453
Eye TSP5 Smart-seq2 132
Fat TSP10 Smart-seq2 648
Fat TSP10 10x 3’ v3 11941
Fat TSP14 10x 3’ v3 7670
Heart TSP12 Smart-seq2 277
Heart TSP12 10x 3’ v3 11228
Kidney TSP2 10x 3’ v3 9271
Kidney TSP2 Smart-seq2 370
Large_Intestine TSP14 10x 3’ v3 11439
Liver TSP6 10x 3’ v3 2647
Liver TSP6 Smart-seq2 213
Lung TSP14 10x 3’ v3 4350
Lung TSP1 10x 3’ v3 12507
Lung TSP1 Smart-seq2 689
Lung TSP2 10x 3’ v3 17225
Lung TSP2 Smart-seq2 901
Lymph_Node TSP14 10x 3’ v3 16383
Lymph_Node TSP14 10x 5’ v3 14044
Lymph_Node TSP7 Smart-seq2 1162
Lymph_Node TSP7 10x 3’ v3 11913
Mammary TSP4 10x 3’ v3 10795
Mammary TSP4 Smart-seq2 580
Muscle TSP14 10x 3’ v3 8394
Muscle TSP1 10x 3’ v3 2512
Muscle TSP1 Smart-seq2 1248
Muscle TSP2 10x 3’ v3 14797
Muscle TSP2 Smart-seq2 1550
Muscle TSP4 Smart-seq2 2245
Pancreas TSP9 10x 3’ v3 6616
Pancreas TSP9 Smart-seq2 83
Pancreas TSP1 10x 3’ v3 5876
Pancreas TSP1 Smart-seq2 913
Prostate TSP8 Smart-seq2 633
Prostate TSP8 10x 3’ v3 12460

Supplementary Table 3: Overview of donor ID and assay in Tabula sapiens data. Part1.
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Tissue Donor ID Assay Cell Count
Salivary_Gland TSP14 10x 3’ v3 17762
Salivary_Gland TSP7 Smart-seq2 832
Salivary_Gland TSP7 10x 3’ v3 8605
Skin TSP10 Smart-seq2 839
Skin TSP10 10x 3’ v3 5008
Skin TSP14 10x 3’ v3 3551
Small_Intestine TSP14 10x 3’ v3 10458
Spleen TSP14 10x 3’ v3 10935
Spleen TSP14 10x 5’ v3 8029
Spleen TSP7 Smart-seq2 1167
Spleen TSP7 10x 3’ v3 6194
Thymus TSP14 10x 3’ v3 8729
Thymus TSP14 10x 5’ v3 12846
Tongue TSP14 10x 3’ v3 5407
Tongue TSP7 Smart-seq2 1205
Tongue TSP4 Smart-seq2 186
Tongue TSP7 10x 3’ v3 8212
Trachea TSP6 10x 3’ v3 4757
Trachea TSP6 Smart-seq2 355
Uterus TSP4 Smart-seq2 286
Uterus TSP4 10x 3’ v3 6828
Vasculature TSP14 10x 3’ v3 7389
Vasculature TSP2 10x 3’ v3 7801
Vasculature TSP2 Smart-seq2 847

Supplementary Table 4: Overview of donor ID and assay in Tabula sapiens data. Part2.

Donor Sample Assay Tissue Cell Count
1 blood 1 10x 3’ v2 blood 2220
3 blood 3 10x 3’ v2 blood 2449
1 blood 1 Smart-seq2 blood 752
3 proximal 3 10x 3’ v2 lung 7773
3 medial 3 Smart-seq2 lung 559
3 distal 3 10x 3’ v2 lung 16903
3 distal 3 Smart-seq2 lung 1190
2 distal 2 10x 3’ v2 lung 18542
1 distal 1b Smart-seq2 lung 1642
1 distal 1a Smart-seq2 lung 1593
1 distal 1a 10x 3’ v2 lung 7524
2 medial 2 Smart-seq2 lung 1291
2 medial 2 10x 3’ v2 lung 10251
2 distal 2 Smart-seq2 lung 1982
3 proximal 3 Smart-seq2 lung 400

Supplementary Table 5: Overview of donor ID and assay in Lung Cell Atlas.
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Atlas annotation Cell Ontology Cell Count
Adventitial Fibroblast adventitial cell 715
Airway Smooth Muscle bronchial smooth muscle cell 1039
Alveolar Epithelial Type 1 type I pneumocyte 1393
Alveolar Epithelial Type 2 type II pneumocyte 4574
Alveolar Fibroblast fibroblast 1656
Artery endothelial cell of artery 1576
B B cell 854
Basal basal cell 676
Basophil/Mast 1 basophil 1396
Basophil/Mast 2 basophil 552
Bronchial Vessel 1 lung microvascular endothelial cell 561
Bronchial Vessel 2 lung microvascular endothelial cell 235
CD4+ Memory/Effector T effector CD4-positive, alpha-beta T cell 3139
CD4+ Naive T CD4-positive, alpha-beta T cell 1063
CD8+ Memory/Effector T effector CD8-positive, alpha-beta T cell 1249
CD8+ Naive T CD8-positive, alpha-beta T cell 2420
Capillary Aerocyte alveolar capillary type 2 endothelial cell 4974
Capillary Intermediate 1 capillary endothelial cell 716
Capillary Intermediate 2 capillary endothelial cell 464
Capillary capillary endothelial cell 8263
Ciliated lung ciliated cell 1872
Classical Monocyte classical monocyte 2183
Club club cell 1829
Dendritic dendritic cell 10
Differentiating Basal basal cell 308
EREG+ Dendritic dendritic cell 142
Fibromyocyte fibroblast 113
Goblet respiratory goblet cell 392
IGSF21+ Dendritic dendritic cell 288
Intermediate Monocyte intermediate monocyte 194
Ionocyte pulmonary ionocyte 24
Lipofibroblast fibroblast 55
Lymphatic endothelial cell of lymphatic vessel 511
Macrophage macrophage 14766
Mesothelial mesothelial cell 29
Mucous mucus secreting cell 491
Myeloid Dendritic Type 1 dendritic cell 131
Myeloid Dendritic Type 2 dendritic cell 273
Myofibroblast myofibroblast cell 300
Natural Killer T mature NK T cell 387
Natural Killer mature NK T cell 6001
Neuroendocrine lung neuroendocrine cell 66
Neutrophil neutrophil 113
Nonclassical Monocyte non-classical monocyte 831
OLR1+ Classical Monocyte classical monocyte 207
Pericyte pericyte 2126
Plasma plasma cell 189
Plasmacytoid Dendritic plasmacytoid dendritic cell 150
Platelet/Megakaryocyte megakaryocyte 40
Proliferating Basal basal cell 47
Proliferating Macrophage macrophage 226
Proliferating NK/T mature NK T cell 122
Proximal Basal basal cell 157
Proximal Ciliated lung ciliated cell 88
Serous serous cell of epithelium of bronchus 24
Signaling Alveolar Epithelial Type 2 type II pneumocyte 870
TREM2+ Dendritic dendritic cell 159
Vascular Smooth Muscle vascular associated smooth muscle cell 645
Vein vein endothelial cell 1197

Supplementary Table 6: Mapping of lung cell atlas annotations to annotations for cell ontology and
accuracy computation.
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Dataset PopV Brain Region Donor Cell Count
ref Human M1C H18.30.001 50753
ref Human M1C H18.30.002 38946
ref Human M1C H19.30.001 12879
ref Human M1C H19.30.002 12737
query Human MTG H18.30.002 46701
query Human MTG H19.30.001 26789
query Human MTG H19.30.002 33411

Supplementary Table 7: Overview of donor ID and assay in both brain data sets.

Development Stage Donor Assay Cell Count
human early adulthood stage A43 10x 5’ v1 22804
young adult stage A16 10x 5’ v1 11491
young adult stage A16 10x 3’ v2 11180
organogenesis stage C40 10x 3’ v3 14021
organogenesis stage C41 10x 3’ v3 11409
9th week post-fertilization human stage C34 10x 5’ v1 390
9th week post-fertilization human stage F22 10x 3’ v2 3137
10th week post-fertilization human stage F74 10x 5’ v1 7410
11th week post-fertilization human stage F64 10x 5’ v1 7739
11th week post-fertilization human stage F23 10x 3’ v2 5774
12th week post-fertilization human stage F45 10x 3’ v2 10380
12th week post-fertilization human stage F45 10x 5’ v1 9630
12th week post-fertilization human stage F67 10x 5’ v1 13579
13th week post-fertilization human stage F38 10x 5’ v1 3047
13th week post-fertilization human stage F38 10x 3’ v2 5987
14th week post-fertilization human stage F30 10x 3’ v2 7535
14th week post-fertilization human stage F30 10x 5’ v1 5199
16th week post-fertilization human stage F41 10x 5’ v1 3363
16th week post-fertilization human stage F41 10x 3’ v2 6238
16th week post-fertilization human stage F21 10x 3’ v2 8481
17th week post-fertilization human stage F83 10x 5’ v1 3678
17th week post-fertilization human stage F29 10x 3’ v2 6146
17th week post-fertilization human stage F29 10x 5’ v1 5254
infant stage P3 10x 3’ v2 12288
infant stage P1 10x 3’ v2 10811
adolescent stage P2 10x 3’ v2 12423
2-year-old human stage T06 10x 5’ v1 19423
3-month-old human stage T07 10x 5’ v1 12295
10-month-old human stage T03 10x 5’ v1 4789

Supplementary Table 8: Overview of donor ID and assay in Thymus data set.
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Atlas annotation Cell Ontology Cell Count
CD8-positive, alpha-beta T cell CD8-positive, alpha-beta T cell 13257
CD4-positive, alpha-beta T cell CD4-positive helper T cell 14506
double-positive, alpha-beta thymocyte double-positive, alpha-beta thymocyte 97183
CD8-alpha-alpha-positive, alpha-beta in-
traepithelial T cell

CD8-alpha-alpha-positive, alpha-beta in-
traepitelial T cell

6783

regulatory T cell naive regulatory T cell 7444
alpha-beta T cell alpha-beta T cell 11235
T cell T cell 3614
double negative thymocyte double negative thymocyte 42474
monocyte monocyte 265
naive B cell B cell 2152
dendritic cell dendritic cell 2625
CD4-positive, alpha-beta memory T cell CD4-positive helper T cell 2879
gamma-delta T cell gamma-delta T cell 2582
plasmacytoid dendritic cell plasmacytoid dendritic cell 1048
natural killer cell mature NK T cell 1964
macrophage macrophage 863
memory B cell B cell 2161
precursor B cell B cell 290
progenitor cell thymocyte 185
fibroblast fibroblast 11749
early T lineage precursor thymocyte 316
mast cell mast cell 148
group 3 innate lymphoid cell innate lymphoid cell 561
erythrocyte erythrocyte 644
vascular associated smooth muscle cell vascular associated smooth muscle cell 3788
medullary thymic epithelial cell medullary thymic epithelial cell 7193
epithelial cell of thymus epithelial cell of thymus 554
endothelial cell endothelial cell 5753
cortical thymic epithelial cell cortical thymic epithelial cell 9411
megakaryocyte megakaryocyte 36
lymphocyte lymphocyte 115
plasma cell plasma cell 479
CD8-positive, alpha-beta memory T cell CD8-positive, alpha-beta T cell 1644

Supplementary Table 9: Mapping of thymus annotations to annotations for cell ontology and accuracy
computation.

Data availability
All pre-trained model are located at https://doi.org/10.5281/zenodo.7580707. All pre-
processed data objects used to pretrain the Tabula sapiens reference models are deposited at
https://doi.org/10.5281/zenodo.7587774. All other data is freely accessible through CELLx-
GENE.

Code availability
The code to reproduce the experiments of this manuscript will be made available upon publication at
https://github.com/YosefLab/popv-reproducibility. The PopV package can be found on
GitHub at https://github.com/czbiohub/PopV,
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