

1 **BioE3 enables the identification of *bona fide* targets of E3 ligases**

2

3 Orhi Barroso-Gomila^{1, #}, Laura Merino-Cacho^{1, #}, Veronica Muratore¹, Coralia Perez¹,
4 Vincenzo Taibi², Elena Maspero², Mikel Azkargorta^{1,3}, Ibon Iloro^{1,3}, Fredrik Trulsson⁴, Alfred
5 C. O. Vertegaal⁴, Ugo Mayor^{5,6}, Felix Elortza^{1,3}, Simona Polo^{2,7}, Rosa Barrio^{1*}, James D.
6 Sutherland^{1*}.

7

8 1. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and
9 Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.

10 2. IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.

11 3. CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0,
12 28029 Madrid, Spain.

13 4. Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden,
14 The Netherlands.

15 5. Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain.

16 6. Biochemistry and Molecular Biology Department, University of the Basque Country
17 (UPV/EHU), E-48940, Leioa, Spain.

18 7. Dipartimento di oncologia ed emato-oncologia, Università degli Studi di Milano, Milan,
19 Italy.

20

21

22 (#) Equal contribution

23 (*) Corresponding authors: jsutherland@cicbiogune.es, rbarrio@cicbiogune.es

24 R Barrio ORCID: 0000-0002-9663-0669

25 J D Sutherland ORCID: 0000-0003-3229-793X

26 **ABSTRACT**

27 The post-translational modification of proteins by ubiquitination is a highly regulated
28 process that involves a dynamic, three-step enzymatic cascade, where more than 600 E3 ligases
29 play a critical role in recognizing specific substrates for modification. Separating *bona fide*
30 targets of E3s from E3-interacting proteins remains a major challenge in the field. In this study,
31 we present BioE3, a novel approach for identifying substrates of ubiquitin-like (UbL) E3
32 ligases of interest. Using BirA-E3 ligase fusion proteins and bioUbLs, the method facilitates
33 site-specific biotinylation of UbL-modified substrates of particular E3s for proteomic
34 identification. We demonstrate that the BioE3 system can identify both known and novel
35 targets of two RING-type ubiquitin E3 ligases: RNF4, known to be involved in DNA damage
36 response and the regulation of PML nuclear bodies, and MIB1, implicated in endocytosis,
37 autophagy, and centrosomal protein homeostasis. We further show the versatility of BioE3 by
38 identifying targets of an organelle-specific E3 (MARCH5) and a relatively uncharacterized E3
39 (RNF214). Furthermore, we show that BioE3 works with HECT-type E3 ligases and identify
40 novel targets of NEDD4 involved in vesicular trafficking. BioE3 is a powerful tool that enables
41 identification of *bona fide* substrates of UbL E3 ligases and how they change with chemical
42 perturbations. BioE3 may also be applicable for UbLs beyond Ub and SUMO, as well as other
43 E3 ligase classes. The resulting knowledge can shed light on the regulation of cellular processes
44 by the complex UbL network and provide information useful for strategies such as targeted
45 protein degradation (TPD), advancing our understanding of fundamental biological
46 mechanisms and their applications.

47

48

49 INTRODUCTION

50 Protein ubiquitination is conserved in all eukaryotes and plays crucial roles in almost
51 all cellular processes. Ubiquitin (Ub) conjugation is coordinated by a three-step enzymatic
52 cascade, which can be reversed by the action of deubiquitinating enzymes (DUBs). This cycle
53 is conserved among the different ubiquitin-like proteins (UbLs), each using their own set of
54 enzymes, often depicted as E1 (activating), E2 (conjugating), E3 (ligating) and DUBs.
55 Specificity of ubiquitin toward particular targets is achieved as the cycle progresses. In humans,
56 two Ub E1 enzymes, around 40 E2s and about 700 E3 ligases cooperate to selectively target
57 thousands of substrates ¹. The question of how substrate specificity is achieved might benefit
58 from a compendium of targets for specific E3 ligases.

59 Ub E3 ligases are subdivided into categories, according to shared domains and modes
60 of action for substrate modification ². The main family covers more than 600 RING (Really
61 Interesting New Gene) type Ub E3 ligases. The RING domain allows the direct transfer of Ub
62 from the E2 to the target protein by placing them in close proximity ³. To function, some RING
63 E3 ligases (e.g. RNF4; RING Finger protein 4), dimerize through their RING domain ⁴, or
64 create multi-subunit complexes, (e.g. Cullin RING Ligases). CRLs can recognize diverse
65 targets with specificity by forming complexes with >300 different substrate receptors ².

66 In the case of HECT (Homology to E6AP C Terminus) and RBR (RING-Between-
67 RING) E3 ligases, a covalent E3~Ub thioester intermediate is formed before passing the Ub to
68 the recruited substrate. HECT type E3s present a conserved C-terminal HECT domain, which
69 contains the catalytic cysteine for Ub conjugation and transfer ⁵. There are 28 human HECT
70 E3s, with diversity in their N-terminal substrate-binding and regulatory domains ⁶.

71 Ub modifications by E3 ligases are dynamic, spatial-specific and often scarce in cells.
72 Characterizing these events *in vivo* requires efficient and specific enrichment protocols to
73 identify targets. Use of biotin-avidin technology ⁷ is used by molecular cell biologists in diverse

74 molecular contexts, including ubiquitination (reviewed in ⁸). The pairing of BirA, a biotin
75 ligase from *E. coli*, and the AviTag, a minimal peptide substrate specifically modified by BirA
76 ⁹, has been widely used to achieve site-specific biotinylation for *in vitro* and *in vivo*
77 applications. Once biotinylated, an AviTag fusion protein can be purified using streptavidin,
78 via tight binding and stringent washing ⁹. For example, AviTag-UbL fusions (bioUbLs) co-
79 expressed with BirA are specifically biotinylated, incorporating into targets *in vivo*, allowing
80 their purification and identification using liquid chromatography-mass spectrometry (LC-MS)
81 ¹⁰.

82 Although structural biology has improved our understanding on how E3 ligases work,
83 the identification of substrates for a given E3 and discriminating between non-covalent
84 interactors versus *bona fide* targets remains challenging. Various strategies have been
85 employed, included some that bring together E3 ligases and UbLs by fusion or affinity, to
86 enrich potential substrates ¹¹⁻¹⁴. Here we present BioE3, an innovative strategy designed to
87 identify specific substrates of RING and HECT E3 ligases. By combining site-specific
88 biotinylation of bioUbL-modified substrates with BirA-E3 ligase fusion proteins under
89 optimized conditions, we demonstrate that BioE3 can be applied to Ub and SUMO E3 ligases.
90 BioE3 specifically identified known and novel targets of RNF4 and MIB1, two RING-type
91 E3s. BioE3 was further applied to additional RING E3s: a membrane-bound mitochondrial E3
92 (MARCH5) and a poorly characterized cytoplasmic E3 (RNF214), yielding novel targets that
93 give insight into the biological roles of these enzymes. Lastly, we show that BioE3 can be
94 adapted for HECT type E3 ligases, identifying known and novel targets of NEDD4. As many
95 E3 ligases remain uncharacterized, BioE3 can potentially shed light on specificity, redundancy,
96 and network interconnectivity regulated by cellular UbL modifications.

97

98 **RESULTS**

99 **BioE3: a strategy to label, isolate and identify *bona fide* targets of E3 ligases**

100 Determining the specific substrates for an E3 of interest is a crucial but challenging task
101 that requires the development of new techniques. We postulated that the fusion of the biotin
102 ligase BirA to an E3 ligase of interest, combined with the bioUbL strategy ¹⁵, could be used to
103 identify specific substrates of E3 ligases, a method that we have named BioE3 (Fig. 1). Various
104 optimizations improved the technique, as detailed in the following section. Briefly, BioE3
105 employs a version of AviTag with lower affinity for BirA (called here bio^{GEF}, see below for
106 explanation) fused to a UbL encoding gene. The bio^{GEF}Ub is incorporated into a doxycycline-
107 inducible lentiviral vector for generation of stable cell lines (HEK293FT, U2OS). BirA is fused
108 to the E3 ligase of interest, which is then introduced into bio^{GEF}Ub cells, previously grown in
109 medium with dialyzed, biotin-depleted serum. DOX induction over 24 hours leads to
110 production and incorporation of bio^{GEF}Ub into cellular substrates, with concomitant increase
111 in BirA-E3 expression. Finally, exogenous biotin is added, allowing time-limited, proximity-
112 dependent labelling of bio^{GEF}Ub as it is incorporated by the BirA-E3 fusion onto specific
113 substrates. This facilitates streptavidin capture of tagged substrates and identification by LC-
114 MS.

115

116 **Engineering BioE3 specificity**

117 The widely-used wild type (WT) AviTag (hereafter called bio^{WHE}) is optimized for
118 efficient biotinylation and has high affinity for BirA, so we wondered how this would affect
119 the ability to use the BirA-bio^{WHE} pairing for detecting a transient proximity-dependent event
120 like protein ubiquitination. To evaluate the spatial-specificity, we fused the bio^{WHE} tag to a
121 version of Ub that is not processable by DUBs (Ubnc; nc = non-cleavable, L73P mutation)¹⁶,
122 to reduce any recycling of biotinylated bio^{WHE}Ub to sites other than where BirA is found. When

123 bio^{WHE}Ubnc was expressed together with BirA alone or a centrosome-targeted BirA (CEP120-
124 BirA), we observed that the biotinylation of bio^{WHE}Ubncs was general and unspecific,
125 independently of the subcellular localization of BirA (see Supplementary Note 1 and
126 Supplementary Fig. 1a-c). AviTag versions with lower affinity for BirA have been described
127^{17,18} including one where the C-terminal WHE sequence is mutated to GEF (hereafter called
128 bio^{GEF}; Fig. 2a), and these mutants enhance proximity-dependent site-specific biotinylation.
129 We compared bio^{WHE}Ubnc and bio^{GEF}Ubnc for levels of non-specific labelling by transfecting
130 them into a BirA-expressing 293FT stable cell line (Fig. 2a). To control biotin labelling
131 timings, cells were preincubated in biotin-depleted media prior to transfections and DOX
132 induction (see Supplementary Note 1). Commercial AviTag antibody still detects bio^{GEF} tag,
133 despite the mutations, and bio^{GEF}Ubncs are efficiently incorporated into substrates (Fig. 2a).
134 As expected, non-specific biotinylation of bio^{WHE}Ubncs was observed at both 0.5 and 2 hours
135 of biotin labelling, while bio^{GEF}Ubncs showed no labelling (Fig. 2a). We also compared bio^{WHE}
136 and bio^{GEF} in the context of SUMO1nc and SUMO2nc (containing Q94P and Q90P mutations,
137 respectively, to avoid recycling by SENPs¹⁹) and observed similar results, that is general
138 labelling of bio^{WHE}-SUMO1nc and SUMO2nc, but no labelling for bio^{GEF} counterparts (Fig.
139 2b). Thus, using bio^{GEF} and controlling biotin availability and timing, non-specific labelling by
140 BirA can be avoided, thereby enabling the BioE3 strategy.

141 To test the BioE3 method, we expressed fusion proteins of BirA together with RNF4¹²
142 or MIB1²⁰, two well characterized RING type Ubiquitin E3 ligases, in biotin-depleted U2OS
143 TRIPZ-bio^{GEF}Ubnc or bio^{WHE}Ubnc cells, followed by 2 hours of biotin-labelling (Fig. 2c).
144 Confocal microscopy revealed that cells lacking DOX induction showed no expression of
145 bioUbnc (AviTag panels) whereas cells lacking biotin treatment showed no streptavidin
146 labelling (Strep panels). The correct cellular localization was also confirmed for both BirA-
147 RNF4 (nuclear) and BirA-MIB1 (cytoplasmic, centriolar satellites; BirA panels). For both E3

148 fusions, with DOX induction and biotin labelling, the correct colocalization between the BirA
149 and streptavidin signal was observed when using bio^{GEF}Ubnc (Fig. 2c, 3rd row), but non-
150 specific streptavidin signal appeared when using bio^{WHE}Ubnc (Fig. 2c, 6th row). Both BirA-E3
151 fusions could use bio^{GEF}Ubnc almost as efficiently as bio^{GEF}Ub^{WT} to ubiquitinate and label the
152 substrates, suggesting that the non-cleavable mutant does not impede conjugation for RING-
153 type E3s (Supplementary Fig. 2a). We also tested PEX12, an Ub E3 ligase that specifically
154 localizes to peroxisomes, with PEX12 BioE3 yielding specific BirA and streptavidin
155 colocalization when using bio^{GEF}Ubnc, but additional non-specific streptavidin signal in the
156 nucleus with bio^{WHE}Ubnc (Supplementary Fig. 2b). Since bio^{GEF} improved specificity, we
157 wanted to test BioE3 using E3 ligases for other UbLs, so we prepared BirA-PIAS1 and BirA-
158 PIAS4 for use with 293FT SUMO2nc cells. As with Ub, we observed that bio^{GEF}SUMO2nc
159 showed enhanced specific labelling of PIAS1 and PIAS4 substrates (compare WT versus
160 catalytic mutant CA; Supplementary Fig.3). Taken together, use of the bio^{GEF} tag with
161 controlled biotin labelling provides the desired specificity to enable the BioE3 method for
162 multiple UbL E3 ligases.

163

164 **RNF4 BioE3 specifically targets PML**

165 To test BioE3 specificity for identifying substrates, we decided to use RNF4, a well-
166 characterized SUMO Targeted Ubiquitin Ligase (STUbL), that recognizes SUMOylated
167 substrates through SUMO Interacting Motifs (SIMs) to ubiquitinate and target them for
168 proteasomal degradation ²¹. We generated three versions of BirA-RNF4: 1) WT, 2) a
169 catalytically inactive version (CA), with a mutant RING domain to impair its interaction with
170 the E2~Ub, and 3) a version with mutated SIMs (Δ SIM) that impairs its interaction with
171 SUMOylated substrates. We performed BioE3 in 293FT bio^{GEF}Ubnc cells, comparing
172 RNF4^{WT}, with or without proteasome inhibitor, to RNF4^{CA} and RNF4 ^{Δ SIM} mutants (Fig. 3a).

173 We posited that biotin-labelled substrates seen with RNF4^{WT} compared to the RNF4^{CA} mutant,
174 especially those that accumulated upon proteasomal inhibition, would constitute the
175 ubiquitinated targets of RNF4 (Fig. 3a, biotin blot). Those targets were largely dependent on
176 SUMO-SIM interactions, as BirA-RNF4^{ΔSIM} showed biotinylation similar to the background
177 obtained with RNF4^{CA} (Fig. 3a, biotin blot). We also performed RNF4 BioE3 in the U2OS
178 bio^{GEF}Ubnc cells and checked subcellular biotinylation by confocal microscopy (Fig. 3b, Strep
179 panels). The nuclear BirA-RNF4^{WT} correctly colocalized with the streptavidin signal, while
180 the CA and ΔSIM versions showed only background levels of biotinylation (Fig. 3b).

181 A well-known substrate of RNF4 is PML, which undergoes polySUMOylation and
182 subsequent ubiquitination by RNF4 upon cellular exposure to arsenic trioxide (ATO), with the
183 modified PML targeted for proteasomal degradation^{22,23}. We performed RNF4 BioE3 in
184 293FT bio^{GEF}Ubnc cells, using mutant controls, with ATO and MG132 treatments (Fig 3c). As
185 expected, PML was highly enriched after treating the cells with ATO, compared to RNF4^{CA} or
186 RNF4^{ΔSIM} (Fig. 3c). We evaluated RNF4 BioE3 labelling of PML by confocal microscopy in
187 U2OS bio^{GEF}Ubnc cells. We observed that, in basal conditions, BirA-RNF4^{WT} biotinylates
188 proteins that localize to the nucleoplasm and some nuclear bodies, but not PML (Fig. 3d).
189 Treatment with ATO, MG132, or both induced the formation of larger PML nuclear bodies,
190 BirA-RNF4 recruitment and biotinylation, likely of Ub-modified targets, with specific
191 colocalization (Fig. 3d). These data support that BioE3 is capable to label a specific target of
192 RNF4 and moreover, in response to a chemical stimulus.

193

194 **RNF4 BioE3 identifies many SUMO-dependent targets**

195 Since RNF4 BioE3 could identify PML, we performed large-scale experiments in
196 triplicate comparing RNF4^{WT}, RNF4^{CA} and RNF4^{ΔSIM}, confirmed the samples by western blot
197 (WB, Supplementary Fig. 4) and processed the streptavidin pull-down eluates by LC-MS in

198 order to identify the specific targets of RNF4. 188 proteins were enriched using BioE3 when
199 comparing RNF4^{WT} to its CA version (Fig. 4a, Supplementary Data 1). Among them, many
200 proteins related to the Ub machinery were identified, including E1 activating enzymes (UBA2
201 and UBA6), E2 conjugating enzymes, E3 ligases and DUBs, that could represent active Ub
202 carriers that form complexes with RNF4. Some of RNF4 substrates might be components of
203 PML NBs, so we compared our list of RNF4 targets to lists of potential PML NB components
204 identified previously by proximity labelling or YFP-PML pull-down MS ^{24,25}. In total, 37 of
205 the potential targets of RNF4 associate with PML NBs (Supplementary Data 1).

206 We also compared BioE3 of RNF4^{WT} and RNF4^{ΔSIM}, to estimate the percentage of
207 SUMO-dependent substrates. In this case, BioE3-RNF4^{WT} identified 205 proteins, most of
208 them being also enriched when comparing RNF4^{WT} to RNF4^{CA} (Fig. 4b, Supplementary Data
209 1). In total, 124 out of the 188 (66%) substrates appear to be SUMO-dependent targets of
210 RNF4, indicating that SUMO-SIM-dependent substrate recognition is the prevalent mode of
211 RNF4 recruitment (Fig. 4b-d). It is worth mentioning that SUMO1 and SUMO2 peptides were
212 highly enriched in both RNF4^{WT}/ RNF4^{CA} and RNF4^{WT}/ RNF4^{ΔSIM} BioE3s (Fig. 4a-b).
213 Furthermore, BioE3-RNF4^{WT} eluates were highly enriched in SUMO2/3 modified proteins
214 compared to both RNF4^{CA}-BirA and RNF4^{ΔSIM} (Fig. 4c), showing the high specificity of BioE3
215 to purify SUMO-dependent Ub targets of RNF4. We compared our putative RNF4 targets with
216 a comprehensive database of SUMOylated proteins ²⁶, and concluded that 91% were part of
217 the SUMOylome (Fig. 4d, Supplementary Data 1).

218 RNF4 shows SIM-dependent accumulation at DNA damage sites, which are also loci
219 of SUMO-dependent signaling ^{27,28}. Two SUMO-dependent targets identified by BioE3,
220 Fanconi Anemia group I protein, FANCI and FANCD2, were shown to be SUMOylated on
221 damaged chromatin and regulated through ubiquitination by RNF4 to allow cell survival after
222 DNA damage ²⁹. MDC1 also participates in DNA repair and was previously shown to be a

223 SUMO-dependent target of RNF4³⁰. Interestingly, MDC1 SUMOylation regulates
224 homologous recombination through TP53BP1, which was also detected as RNF4 target by
225 BioE3. Also linked to DNA repair, PARP1 has previously been identified as an interactor and
226 SUMO-dependent substrate of RNF4^{31,32}.

227 In conclusion, these results show that BioE3 is highly specific and sensitive enough to
228 identify E3 substrates, as exemplified by the SUMO-dependent targets of RNF4.

229

230 **RNF4 E3 ligase activity regulates essential nuclear and Ub/ proteasome related processes**

231 To assess the functional role of RNF4 Ub E3 ligase activity, we performed STRING
232 network analysis using the 188 potential RNF4 targets. The network showed a major
233 interconnected core-cluster composed of 89% of the identified substrates (Supplementary Fig.
234 5). Unsupervised MCODE analysis highlighted 5 main derived sub-clusters composed of
235 proteins related to RNA processing, DNA repair, the ubiquitin-proteasome system (UPS),
236 DNA recombination and damage response, replication and translation (Fig. 5a). Furthermore,
237 gene ontology (GO) analysis highlighted processes related to replication, RNA binding, UPS,
238 DNA repair and cell cycle regulation (Fig. 5b, Supplementary Data 2). The DNA replication
239 machinery is particularly regulated by RNF4, as many components of the replication fork and
240 proteins with helicase activity, e.g. Cdc45-MCM-GINS (CMG) and the Mini-Chromosome
241 Maintenance (MCM) complexes, have been identified by BioE3.

242

243 **BioE3 of MIB1 points to regulation of centrosomes and autophagy**

244 To further assess the ability of BioE3 to identify targets of RING type Ub E3 ligases,
245 we applied this strategy to MIB1, an E3 ligase involved in Notch signaling pathway^{33,34} and
246 known to localize to centriolar satellites^{35,36}. We generated constructs to express BirA-MIB1^{WT}
247 or its CA version, and tested BioE3 in 293FT bio^{GEF}Ubnc cells by WB. We observed strong

248 and specific BioE3 activity for MIB1^{WT} at 2 and 4 hours of labelling compared to its CA
249 counterpart (Fig. 6a). Subcellular localization of BioE3-MIB1 activity was checked in U2OS
250 bio^{GEF}Ubnc cells and we observed that biotinylation colocalizes with BirA-MIB1^{WT} at
251 centrosomes, as well as in vesicle-like structures (Fig. 6b, Strep panel). The CA version has
252 similar localization, but no biotinylation activity was observed (Fig. 6b).

253 We then performed a large-scale MIB1 BioE3 experiment for analysis by LC-MS. In
254 total, 57 proteins were enriched in bio^{GEF}Ubnc MIB1^{WT} BioE3 compared to MIB1^{CA} (Fig. 6c,
255 Supplementary Data 3). Among them, centrosomal-associated proteins such as PCM1,
256 CEP131, USP9X and CYLD were identified, as well as CP110 with lower confidence³⁷,
257 consistent with the fact that MIB1 localizes to centriolar satellites, pericentriolar material and
258 centrosomes. We compared BioE3 MIB1 substrates to a published MIB1 proximity labelling
259 dataset³⁶, and found that 19 proteins (33%) are high confidence MIB1 Ub substrates, among
260 which the previously mentioned centrosomal proteins are present (Supplementary Fig. 6a,
261 Supplementary Data 3). We further confirmed PCM1, USP9X and CEP131 as MIB1 Ub
262 substrates by WB (Fig. 6d). We performed STRING network analysis on the 57 identified
263 significant substrates of MIB1. 67% of the proteins formed an interconnected core-cluster,
264 from which the major sub-clusters were related to endocytosis and autophagy, containing
265 TAB1, NBR1, OPTN, HGS, SQSTM1, STAM2, and CALCOCO2 (Supplementary Fig. 6b;
266 Fig 6c). GO analysis highlighted Ub and UPS related processes, due to presence of Ub E2
267 conjugase UBE2S and DUBs (USP24, CYLD, UCHL1 and UCHL3), as well as hits related to
268 endosomal and vesicular trafficking, autophagy, centrosomes and midbody (Fig. 6e,
269 Supplementary Data 4). Thus, BioE3 enabled the identification of MIB1 substrates and
270 pathways in which its E3 ligase activity is implicated.

271

272 **Applying BioE3 to organelle-specific and uncharacterized E3 ligases**

273 To test BioE3 specificity further, we selected an organelle-specific E3 ligase,
274 MARCH5, a RING-type E3 that resides primarily in the mitochondrial outer membrane and
275 has roles in regulating mitochondrial morphology ³⁸. As before, we generated fusions of the
276 wild type E3 or its CA version to the BirA enzyme (BirA-MARCH5^{WT} and BirA-
277 MARCH5^{CA}). We tested the system in 293FT bio^{GEF}Ubnc cells by WB and observed specific
278 biotinylation of proteins after 2 and 4 hours of biotin treatment by BirA-MARCH5^{WT} in
279 comparison with its CA version (Fig. 7a). Furthermore, by confocal microscopy, BirA-
280 MARCH5^{WT} colocalized with biotinylated proteins at mitochondria in U2OS bio^{GEF}Ubnc cells
281 (Fig. 7b). The CA counterpart also displays a mitochondrial localization, but the biotinylation
282 levels were dramatically reduced.

283 We also selected a less characterized RING-type E3, RNF214, to explore the discovery
284 potential of BioE3. Using 293FT bio^{GEF}Ubnc cells, RNF214 BioE3 showed specific
285 biotinylation activity of BirA-RNF214^{WT} in comparison with the CA counterpart by WB (Fig.
286 7c). RNF214 BioE3 in U2OS bio^{GEF}Ubnc cells was analyzed by confocal microscopy and we
287 observed that BirA-RNF214 fusions localize to the cytoplasm, with additional centrosomal
288 enrichment. Biotinylation activity was only observed with BirA-RNF214^{WT}, colocalizing with
289 the BirA signal (Fig. 7d).

290 Considering this pilot data, we posited that BioE3 may specifically label targets of
291 MARCH5 or RNF214. Thus, we performed large-scale BioE3 experiments for analysis by LC-
292 MS. We expected that MARCH5 and RNF214 targets differ significantly based on their
293 different subcellular localization, so we compared the two E3 ligases with each other. We
294 identified 31 putative targets of MARCH5 (Fig. 7e, Supplementary Data 5). Among them,
295 endogenously biotinylated mitochondrial carboxylases (PC, ACACA, PCCA and MCCC1)
296 were removed from the analysis due to uncertainty of being targets, leading to a reduced list of

297 27 hits. We found confirmed targets of this E3 ligase, like MFN2³⁹ and MCL1⁴⁰, albeit with
298 lower confidence. Five out of the 27 targets were annotated in Mitocarta 3.0⁴¹ as mitochondrial
299 proteins and 18 (67%) were part of the mitochondrial proximal interactome⁴² (Supplementary
300 Fig. 7a, Supplementary Data 5). GO analysis highlighted the mitochondrial outer membrane
301 and the endoplasmic reticulum membrane (Supplementary Fig. 7b, Supplementary Data 6).
302 Furthermore, we confirmed ARFGAP1, a protein associated with the Golgi apparatus⁴³, but
303 also found by mitochondrial proximity proteomics⁴², as a novel Ub target of MARCH5 by WB
304 (Fig. 7f). This data shows the utility of BioE3 for identifying E3 substrates with possible roles
305 in organelle crosstalk.

306 RNF214 BioE3 identified 109 target proteins (Fig. 7e, Supplementary Data 5), and to
307 determine the processes in which RNF214 participates we performed a STRING network
308 analysis. 81% of the proteins formed an interconnected core-cluster, from which 4 main sub-
309 clusters were derived by unsupervised MCODE analysis (Supplementary Fig. 8). Processes
310 related to translation and metabolism were highlighted. Furthermore, GO analysis showed that
311 RNF214 plays a key role in processes related to cell adhesion, microtubules, translation and
312 ubiquitination (Supplementary Fig. 9a, Supplementary Data 6). We compared those targets to
313 a previously published proximity labelling of RNF214⁴⁴ and defined 60 high confident
314 RNF214 Ub substrates (Supplementary Fig. 9b, Supplementary Data 5). We validated by WB
315 several hits of the RNF214 BioE3 as Ub targets of RNF214 (Fig. 7f), supporting the implication
316 of the E3 ligase in the aforementioned processes: ROCK1, a kinase that regulates actin
317 cytoskeleton⁴⁵ and GIGYF2, which has a role in translation⁴⁶. We also validated CLINT1, a
318 protein involved in intracellular trafficking⁴⁷, as a ubiquitin target of RNF214, even if CLINT1
319 was below the confidence threshold. These results support the notion that BioE3 can identify
320 novel substrates for poorly characterized E3 ligases.

321

322 **Engineering BioE3 to study HECT E3 ligases**

323 The successful application of BioE3 to identify substrates of RING-type E3 ligases led
324 us to question whether it could also work for a distinct class, the HECT-type E3 ligases. HECT
325 ligases employ an extra transthiolation step in which Ub is passed from E2 to the E3 itself,
326 before transferring to substrates. Some HECT ligases (e.g. NEDD4 subgroup) are also auto-
327 inhibited through intramolecular contacts and need activation signals⁴⁸. Using NEDD4 as a
328 candidate, we either removed its N-terminal autoinhibitory C2 domain (NEDD4^{ΔC2}) or we
329 mutated selected residues in the C2 and the HECT domain (generating the hyperactive
330 NEDD4^{3M}; I36A, L37A and Y604A)⁴⁹ (see Supplementary Note 2 and Supplementary Fig.
331 10a-c). Although BirA-fusions of both NEDD4 mutants showed potential BioE3 activity, the
332 activity-to-background ratio was still low, which prompted us to seek for further
333 improvements. A previous report suggested that Ub mutant L73A is poorly transferred from
334 the E2 to E3 enzyme⁵⁰. We wondered if L73P mutation in Ubnc used in all preceding
335 experiments could be affecting the transthiolation step in the case of NEDD4 and, therefore
336 reducing BioE3 efficiency. We confirmed this hypothesis using an *in vitro* transthiolation
337 reaction, and observed a clear delay in the discharge of E2~Ub and the formation of HECT~Ub
338 adduct when the Ubnc is used (Fig. 8a). Equal usage of WT and L73P Ub was confirmed by
339 Coomassie staining since recognition by the anti-Ub antibody was partially impaired by the
340 L73P mutation itself (Fig. 8b). Due to inefficient Ub loading of Ubnc (L73P), the enzymatic
341 activity of both NEDD4^{WT} and NEDD4^{3M} hyperactive mutant is severely affected, as shown
342 by *in vitro* autoubiquitination reaction (Fig. 8c). Of note, we tried to induce NEDD4^{WT} activity
343 using ionomycin and CaCl₂ treatment, but only observed weak biotinylation, perhaps due to
344 the Ubnc (L73P) issue (see Supplementary Note 2 and Supplementary Fig. 10b). Therefore,
345 the use of Ub^{WT} could improve the efficiency of NEDD4 BioE3.

346 Next, we tested NEDD4 BioE3 in 293FT bio^{GEF}Ub^{WT} cells, using different versions of
347 BirA-NEDD4 (WT, CA, ΔC2, ΔC2/CA). As expected, autoinhibited NEDD4^{WT} BioE3
348 appeared similar to NEDD4^{CA}, with some auto-ubiquitinated NEDD4 detectable (Fig. 8d). In
349 contrast, NEDD4^{ΔC2} BioE3 activity was greatly enhanced compared to NEDD4^{ΔC2,CA}, probably
350 attributable to auto-ubiquitination of NEDD4^{ΔC2}, while the background biotinylation levels
351 using NEDD4^{ΔC2,CA} were comparable to NEDD4^{CA} (Fig. 8d). Similar results were obtained
352 when performing BioE3 NEDD4^{3M} versus NEDD4^{3M,CA}, with improved BioE3 activity-to-
353 background signal ratios (Fig. 8e). In this case, cells were also treated with the DUB inhibitor
354 PR619 (to potentially reduce recycling of bioUb), but no significant differences were observed
355 in patterns of biotinylated bands. We then checked the subcellular localization of BioE3
356 NEDD4 by confocal microscopy using U2OS bio^{GEF}Ub^{WT} cells with WT, ΔC2, and 3M
357 versions of NEDD4 (Fig. 8f). Compared to autoinhibited WT and partially activated ΔC2, the
358 fully-activated version NEDD4^{3M} yielded strong streptavidin signal that correlated with BirA
359 and accumulated in cytoplasmic structures that might correspond to trafficking vesicles (Fig.
360 8f). Collectively, these results show that BioE3 NEDD4 efficiency is improved when using
361 activating mutations and bio^{GEF}Ub^{WT}, which may permit target identification for HECT E3s,
362 at least of the NEDD4 subclass.

363

364 **BioE3 identifies NEDD4 substrates**

365 We performed a large-scale NEDD4 BioE3, comparing the activated 3M version to its
366 corresponding transthiolation mutant 3M/CA in 293FT bio^{GEF}Ub^{WT} cells. We identified 59
367 proteins as potential Ub substrates of NEDD4 (Fig. 8g, Supplementary Data 7). In line with
368 known biological function of NEDD4, many of them were related to vesicular transport and
369 endocytosis such as AMOTL2, PDCD6IP/ALIX, SCAMP3, DUSP1, VPS33A, CALR or the
370 GTPases RAB1A, RAB1B and RAB7A (Fig. 8g), components that were enriched after GO

371 analysis (Supplementary Fig. 10d; Supplementary Data 8). A well-known NEDD4 substrate
372 EPS15 was also identified, albeit with lower confidence. Importantly, some hits, such as
373 PDCD6IP⁵¹, SCAMP3⁵², and WBP2⁵³ had been described as NEDD4-interacting proteins.
374 NEDD4 contributes to formation of K63-linked ubiquitin chains⁵⁴, and with NEDD4 BioE3,
375 we identified the substrate ABRAXAS2, a subunit of a K63 deubiquitinase complex (BRCA1-
376 A)⁵⁵, which suggests a potential feedback regulation. We detected multiple components of the
377 TRiC molecular chaperone complex (CCT8, TCP1, CCT6A, CCT3 and CCT4), that was also
378 enriched as GO term (Supplementary Fig. 10d; Supplementary Data 8) and, in fact, CCT4 was
379 recently implicated as a crucial vesicular trafficking regulator⁵⁶. We validated CCT8, as well
380 as TP53BP2, as NEDD4 Ub substrates by WB (Fig. 8h). Unexpectedly, many components of
381 the Ub machinery, including the E1 activating enzyme UBA1, multiple E2s and distinct HECT
382 E3 ligases (UBE3A, BIRC6, TRIP12, HERC4) were enriched when performing BioE3 with
383 the transthiolation mutant NEDD4^{3M,CA} (Fig 8g). We speculate that NEDD4^{3M,CA} can still form
384 the complexes required for ubiquitination and, since the transthiolation step is impaired,
385 bio^{GEF}Ubs on the engaged client E2s become biotinylated, leading to recycling.

386 In sum, these data show that BioE3 can be adapted and applied to HECT E3 ligases.
387 NEDD4 BioE3 successfully identified specific Ub targets of the ligase, supporting its
388 fundamental roles in the regulation of proteins related to endocytosis and vesicular trafficking.
389

390 **DISCUSSION**

391 Understanding substrate recognition by particular E3 ligases, as well as identification
392 of their specific targets, are relevant areas of research in the Ub field. To pursue the latter, the
393 expression of an E3 of interest can be manipulated in cells, either reduced by RNA
394 interference/CRISPR or increased by exogenous expression, with subsequent LC-MS
395 evaluation of the total ubiquitome, via enrichment using ubiquitin-specific antibodies

396 (including Ub remnant antibodies i.e. di-Gly/UbiSITE), tagged-ubiquitin or TUBEs⁵⁷.
397 However, matching E3s to targets using these approaches can be problematic, failing to
398 distinguish between primary and secondary effects, missing low-level modified substrates, and
399 capturing non-covalent Ub interactors as false positives. When applied to E3s, BioID-based
400 proximity proteomics⁵⁸ can also serve to identify potential substrates, but will equally identify
401 non-covalent interactors or nearby components of protein complexes. Fusions between E3
402 ligases and UbLs (UBAIT, TULIP, SATT)¹¹⁻¹³ yield promising candidate substrates, but can
403 be limiting due to E3 ligase size and unexpected effects of creating non-physiological E3-UbL-
404 substrate fusions in cells. Fusions between E3s and ubiquitin binding domains¹⁴ also show
405 promise, but may have bias for polyubiquitinated substrates and yield false positives like
406 polyUb substrates arising from other proximal E3s.

407 Complementary to these mentioned approaches, BioE3 is a powerful method to label
408 and identify specific substrates of Ub E3 ligases *in vivo*. By harnessing BirA-E3 fusions for
409 proximity-dependent site-specific labelling of bioUb, with attention to recycling, expression
410 levels and biotin availability, BioE3 proves to be highly specific for tagging, purifying and
411 identifying direct targets for particular E3s. The bio^{GEF}-UbLs are only slightly larger than
412 endogenous UbLs, reducing steric effects, and BirA-E3 fusions do not remain engaged to
413 substrates. Exogenous expression of BirA-E3s is used, although lower levels could be achieved
414 using selection of stable lines or inducible expression, with corresponding scale-up in cell
415 numbers to achieve sufficient material for mass spectrometry. Since bio^{GEF} modifies the Ub N-
416 terminus, the method will not work for linear chain-specific E3s, but BioE3 does enable
417 identification of monoubiquitinated and other classes of polyubiquitinated substrates. We
418 demonstrate here that BioE3 can be applied to different types of ligases (RING, HECT), soluble
419 or membrane-associated, or in different subcellular compartments (nucleus/nuclear bodies,
420 mitochondria, centrosomes). BioE3 can be adapted to most cell lines, and allows processing of

421 lysates for WB or LC/MS, as well as microscopic analysis. This method may be used to follow
422 stimuli-dependent activation or substrate recognition of E3s (e.g. ATO and RNF4, ionomycin
423 and NEDD4). Importantly, BioE3 detects direct *bona-fide* targets of E3s, in contrast to indirect
424 targets or non-covalent interactors of the E3s.

425 We showed the applicability of BioE3 to identify Ub targets of RING-type E3 ligases,
426 the largest family of Ub E3 ligases. Concordant with the literature, we found that RNF4 targets
427 are implicated in essential nuclear processes like DNA damage response⁵⁹⁻⁶², chromosome
428 organization⁶³ and replication^{64,65}, among others. In addition, RNF4 targets coincide with
429 PML NBs, in line with the observation that inhibiting ubiquitination causes accumulation of
430 SUMOylated proteins in PML NBs⁶⁶. BioE3 was able to follow the targeting of PML by RNF4
431 in response to ATO-induced SUMOylation, suggesting that the method is able to monitor
432 changes in E3 targets during chemical treatments, a promising feature for emerging strategies
433 in drug-induced targeted protein degradation (TPD).

434 MIB1 E3 ligase activity has been linked primarily to the regulation of Notch signaling
435^{67,68} and proximity proteomics has supported roles in endosomal and vesicular trafficking, Ub
436 modifications and cell adhesion³⁶. Among the top MIB1 BioE3 hits, we identified several
437 Selective Autophagic Receptors (SARs)⁶⁹, particularly from the p62/SQSTM1-like receptor
438 (SLR) class, that culminate in selective-autophagy⁷⁰. Specifically, MIB1 BioE3 identified 5 of
439 6 known SLRs: NBR1, SQSTM1, OPTN, TAX1BP1 and CALCOCO2. These proteins have
440 well-characterized ubiquitin-binding motifs, with some evidence of direct ubiquitination;
441 MIB1 may ubiquitinate them directly. Therefore, our data add further support for MIB1 as a
442 regulator of autophagy⁷¹.

443 In concordance with its role in centriolar satellites^{72,73}, MIB1 BioE3 identified
444 centrosomal and pericentriolar proteins as high confidence targets. Interestingly, MIB1
445 ubiquitination of PCM1 was shown to be counteracted by USP9X and CYLD, to maintain

446 centriolar satellite integrity⁷⁴⁻⁷⁶. In fact, CYLD was shown to directly deubiquitinate auto-
447 ubiquitinated MIB1, inducing its inactivation⁷⁶. Our results support that MIB1 ubiquitination
448 of USP9X and CYLD may contribute in a feedback loop to regulate aspects of centrosomal
449 proteostasis.

450 To address whether BioE3 could identify substrates of a membrane-localized organelle-
451 specific E3, we chose MARCH5, known to regulate mitochondrial and endoplasmic reticulum
452 contacts through K63 ubiquitination of MFN2^{39,77}. While MFN2 was identified with low
453 confidence, we validated the high confidence hit ARFGAP1, a GTPase-activating protein that
454 promotes uncoating of Golgi-derived COPI-vesicles⁷⁸. Ubiquitination as a mechanism for
455 regulating organelle contacts is still largely unexplored. Along with MARCH5 BioE3, we
456 decided to query RNF214, a little-studied E3 ligase (of which there are many), to explore the
457 discovery potential of the method. A systematic BioID study⁴⁴ identified proximal partners of
458 RNF214 linked to mRNA biology, translation, microtubules and actin cytoskeleton, and this
459 was further supported by our BioE3 results. This highlights that BioE3 can discriminate
460 between close interactors and potential direct targets of E3s, focusing the attention on a shorter,
461 more specific list of candidate substrates.

462 We further showed BioE3 applicability to identify targets of HECT E3s. Additional
463 challenges are present when trying to identify substrates of this type of E3s, because HECTs
464 are often big proteins with signal-dependent activity, with a basal autoinhibited, inactivated
465 state. In the case of NEDD4, we bypassed signals and inhibition by using mutated “active”
466 variants NEDD4^{ΔC2} and NEDD4^{3M}^{49,79}. Together with the use of Ub^{WT} to allow efficient
467 transthiolation, the active mutants showed enhanced BioE3 activity. We believe that the
468 versatile BioE3 method could be used to evaluate the influence of activating/inhibiting
469 mutations, growth factors or other cytokines, or drugs on ligase activity for specific E3s, for
470 monitoring by UbL modification by WB, mass spectrometry, or microscopy.

471 In summary, we show here that the BioE3 strategy efficiently identifies specific targets
472 of E3 ligases, and could unlock new biology if applied to more of the 600 known E3 ligases,
473 most of which have unknown targets. This is particularly urgent considering the growing
474 relevance of the TPD and its potential application in biomedicine. TPD has significantly
475 evolved in the recent years, with molecular glues approved for the treatment of leukemias and
476 some PROTeolysis-TArgeting Chimeras (PROTACs) to degrade disease-causing proteins
477 undergoing clinical trials, while only a small number of E3 ligases are being employed⁸⁰.
478 BioE3 could assist in characterizing new E3s for use in TPD, identifying on-target and off-
479 target substrates when using TPD strategies, and defining the substrate-recognition properties
480 of E3s through mutant studies, pushing forward TPD innovation by increasing our knowledge
481 of the E3 ligase-substrate network.

482

483 METHODS

484 Cell Culture

485 U2OS (ATCC HTB-96) and HEK293FT (or 293FT; Invitrogen) were cultured at 37°C
486 and 5% CO₂ in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal
487 bovine serum (FBS, Gibco) and 1% penicillin/streptomycin (Gibco). In general, 293FT cells
488 were used for analyses by western and mass spectrometry, and more adherent U2OS cells for
489 microscopy experiments. For all BioE3 experiments, cells were pre-cultured for 24 hours in
490 media containing 10% dialyzed FBS (3.5kDa MWCO; 150mM NaCl; filter-sterilized) prior to
491 transfections and subsequent DOX induction, and maintained during DOX induction and timed
492 biotin labellings. Cultured cells were maintained for maximum 20 passages maximum and
493 tested negative for mycoplasma.

494 **Cloning**

495 All constructs were generated by standard cloning or by Gibson Assembly (NEBuilder
496 HiFi Assembly, NEB) using XL10-Gold bacteria (Agilent). Depending on the construction,
497 plasmid backbones derived from EYFP-N1 (Clontech/Takara), Lenti-Cas9-blast (a kind gift of
498 F. Zhang; Addgene #52962) or TRIPZ (Open Biosystems/Horizon) were used. BirA and bioUb
499 were obtained from CAG-bioUb¹⁵. NEDD4^{WT} and NEDD4^{3M} were a kind gift from S. Polo
500 and were previously described⁴⁹. SUMO1, SUMO2, CEP120, RNF4, MIB1, PEX12,
501 MARCH5 and RNF214 ORFs were amplified from hTERT-RPE1 cell cDNA by high-fidelity
502 PCR (Platinum SuperFi DNA Polymerase; Invitrogen). A GSQ linker
503 (GGGSSGGGQISYASRG) was placed between the BirA and E3 ligases. Mutations described
504 in the text were introduced by overlap PCR, Quikchange method (Agilent), or by gene
505 synthesis (IDT; Geneart/Thermo Fisher). Constructions were validated by Sanger sequencing.
506 Details of all constructs are described in Supplementary Table 1, and information about primers
507 used in this study is available in Supplementary Table 2. Sequences/maps of representative
508 constructs are available in the Source Data file. Other cloning details are available upon
509 request.

510 **Lentiviral transduction**

511 Lentiviral expression constructs were packaged in HEK293FT cells using calcium
512 phosphate transfection of psPAX2 and pMD2.G (kind gifts of D. Trono; Addgene #12260,
513 #12259) and pTAT (kind gift of P. Fortes; for TRIPZ-based vectors). Transfection medium
514 was removed after 12-18 hours and replaced with fresh media. Lentiviral supernatants were
515 collected twice (24 hours each), pooled, filtered (0.45 µm), supplemented with sterile 8.5%
516 PEG6000, 0.3 M NaCl, and incubated 12-18 hours at 4°C. Lentiviral particles were
517 concentrated by centrifugation (1500 x g, 45 minutes, 4°C). Non-concentrated virus was used

518 to transduce HEK293FT and 5x concentrated virus was used for U2OS cells. Drug selection
519 was performed with 1 μ g/ml puromycin (ChemCruz).

520 **Transfections and drug treatments**

521 HEK293FT cells were transfected using calcium phosphate method. U2OS cells were
522 transfected using Effectene Transfection Reagent (Qiagen) or Lipofectamine 3000 (Thermo
523 Fisher). For all BioE3 experiments, cells were pre-cultured for 24 hours in 10% dialyzed FBS
524 containing media prior to transfections. For stably transduced TRIPZ cell lines, induction with
525 DOX (doxycycline hydralate 1 μ g/ml; 24 hours; Sigma-Aldrich) was performed prior to biotin
526 treatment (50 μ M; Sigma-Aldrich) for the indicated exposure times. MG132 (10 μ M;
527 ChemCruz), ATO (1 μ M; Sigma-Aldrich), PR619 (20 μ M; Merck), CaCl₂ (2 mM; Sigma-
528 Aldrich) and ionomycin (1 μ M; Thermo Fisher) treatments were performed (with or without
529 biotin, depending on the experiment; see Supplementary Note 2) prior to cell lysis or
530 immunostaining at the indicated time-points.

531 **Western blot analysis**

532 Cells were washed 2x with 1x PBS to remove excess biotin and lysed in highly stringent
533 washing buffer 5 (WB5; 8 M urea, 1% SDS in 1x PBS) supplemented with 1x protease inhibitor
534 cocktail (Roche) and 50 μ M NEM. Samples were then sonicated and cleared by centrifugation
535 (25000 x g, 30 minutes at room temperature, RT). 10-20 μ g of protein were loaded for SDS-
536 PAGE and transferred to nitrocellulose membranes. Blocking was performed in 5% milk in
537 PBT (1x PBS, 0.1% Tween-20). Casein-based blocking solution (Sigma) was used for anti-
538 biotin blots. Primary antibodies were incubated overnight at 4°C and secondary antibodies for
539 1 hour at RT. Primary antibodies used as follows: Cell Signaling Technology: anti-biotin-HRP
540 (1/1000; Cat#7075S), anti-alpha-Actinin (1/5000; Cat#6487S), anti-PCM1 (1/1000;
541 Cat#5213S); SinoBiological: anti-BirA (1/1000; Cat#11582-T16); Proteintech: anti-USP9X
542 (1/1000; Cat#55054-1-AP), anti-CEP131 (1/1000; Cat#25735-1-AP), anti-SUMO2/3 (1/1000;

543 Cat#67154-1-Ig), anti-GAPDH (1/5000; Cat#60004-1-Ig), anti-PML (1/1000; Cat#21041-1-
544 AP), anti-ROCK1 (1/1000; Cat#21850-1-AP), anti-GIGYF2 (1/1000; Cat#24790-1-AP), anti-
545 CLINT1 (1/1000; Cat#10470-1-AP), anti-ARFGAP1 (1/1000; Cat#13571-1-AP); GenScript:
546 anti-AviTag (1/1000; Cat#A00674); Sigma-Aldrich: anti-CCT8 (1/1000; Cat#HPA021051),
547 anti-TP53BP2 (1/1000; Cat#HPA021603); anti-ubiquitin (1/5; ZTA10; generated at IFOM⁸¹);
548 Jackson ImmunoResearch: anti-Mouse-HRP (1/5000; Cat#115-035-062), anti-Rabbit-HRP
549 (1/5000; Cat#111-035-045). Proteins were detected using Clarity ECL (BioRad) or Super
550 Signal West Femto (ThermoFisher) in an iBright CL1500 imaging system (Thermo Fisher).
551 All uncropped blots are provided within the Source Data file.

552 Immunostaining and confocal microscopy

553 U2OS cells were seeded on 11 mm coverslips (25,000 cells per well; 24 well plate).
554 After washing 3 times with 1x PBS, cells were fixed with 4% PFA supplemented with 0.1%
555 Triton X-100 in 1x PBS for 15 minutes at RT. Then, coverslips were washed 3 times with 1x
556 PBS. Blocking was performed for 30 minutes at RT in blocking buffer (2% fetal calf serum,
557 1% BSA in 1x PBS). Primary antibodies were incubated for 1-2 hours at 37°C and cells were
558 washed with 1x PBS 3 times. Primary antibodies used as follows: SinoBiological: anti-BirA
559 (1/500; Cat#11582-T16); Novus Biologicals: anti-BirA (1/200; Cat#NBP2-59939); GenScript:
560 anti-AviTag (1/100; Cat#A00674); Proteintech: anti-PML (1/150; Cat#21041-1-AP);
561 BioLegend: anti-CETN2 (1/100; Cat#698602); BD Biosciences: anti-HSP60 (1/100;
562 Cat#H99020); Secondary antibodies (together with fluorescent streptavidin) were incubated
563 for 1 hour at 37°C, followed by nuclear staining with DAPI (10 minutes, 300 ng/ml in 1x PBS;
564 Sigma Aldrich). Secondary antibodies (ThermoFisher) were all used at 1/200: anti-Rabbit
565 Alexa Fluor 488 (Cat#A-11034), anti-Mouse Alexa Fluor 488 (Cat#A-11029), anti-Mouse
566 Alexa Fluor 647 (Cat#A-31571), anti-Rabbit Alexa Fluor 647 (Cat#A-21244), anti-Rat Alexa
567 Fluor 647 (Cat#A-21247). Streptavidin Alexa Fluor 594 (1/200; Cat#016-290-084; Jackson

568 ImmunoResearch) was used. Fluorescence imaging was performed using confocal microscopy
569 (Leica SP8 Lightning) with 63x Plan ApoChromat NA1.4 objective.

570 **Pull-down of biotinylated proteins**

571 Samples were processed as previously described⁸². Cleared lysates from WB5 lysis
572 buffer were adjusted to the same protein concentration before incubating them with 1/50
573 (vol_{beads}/vol_{lysate}) equilibrated NeutrAvidin-agarose beads (ThermoFisher) over-night at RT.
574 Due to the high-affinity interaction between biotin and streptavidin, beads were subjected to
575 stringent series of washes, using the following WBs (vol_{WB}/2vol_{lysate}): 2x WB1 (8 M urea,
576 0.25% SDS); 3x WB2 (6 M Guanidine-HCl); 1x WB3 (6.4 M urea, 1 M NaCl, 0.2% SDS); 3x
577 WB4 (4 M urea, 1 M NaCl, 10% isopropanol, 10% ethanol and 0.2% SDS); 1x WB1; 1x WB5;
578 and 3x WB6 (2% SDS; WB1-6 prepared in 1x PBS). Biotinylated proteins were eluted in 1
579 vol_{beads} of Elution Buffer (4x Laemmli buffer, 100 mM DTT; 80 µl for LC-MS/MS
580 experiments) through heating at 99°C for 5 minutes and subsequent vortexing. Beads were
581 separated using clarifying filters (2000 x g, 2 minutes; Vivaclear Mini, Sartorius).

582 **Liquid Chromatography Mass Spectrometry (LC-MS/MS)**

583 Stable HEK293FT TRIPZ-bio^{GEF}Ubnc or TRIPZ-bio^{GEF}Ub^{WT} lines were generated,
584 selected with puromycin (1 µg/ml). Cells were subcloned, and selected clones exhibiting low
585 background and good Dox-inducibility of bioUb were validated by WB and immunostaining
586 prior to use for large-scale mass spectrometry experiments. Unless specified otherwise, the
587 bio^{GEF}Ubnc cell line was used. For RNF4 BioE3, cells were transfected with EFS–BirA–
588 RNF4^{WT}, EFS–BirA–RNF4^{CA} or EFS–BirA–RNF4^{ΔSIM}. For MIB1 BioE3, cells were
589 transfected with EFS–BirA–MIB1^{WT} or EFS–BirA–MIB1^{CA}. For MARCH5 and RNF214
590 BioE3 experiments, cells were transfected with EFS–BirA–MARCH5^{WT}, EFS–BirA–
591 MARCH5^{CA}, EFS–BirA–RNF214^{WT} or EFS–BirA–RNF214^{CA}. For NEDD4 BioE3, the
592 bio^{GEF}Ub^{WT} cell line was used, and transfected with EFS–BirA–NEDD4^{3M} or EFS–BirA–

593 NEDD4^{3M,CA}. For pilot BioE3 experiments for western analysis and immunofluorescence,
594 controls without DOX induction or biotin labelling were added (except for
595 MARCH5/RNF214).

596 All mass-spectrometry experiments were performed in triplicates (three independent
597 pull-down experiments). Four confluent 15 cm dishes (= 8 x 10⁷ cells, 2 ml of lysis/plate; 8 ml
598 total) per replicate were analyzed by LC-MS/MS. Samples eluted from the NeutrAvidin beads
599 were separated in SDS-PAGE (50% loaded) and stained with Sypro Ruby (Invitrogen; data
600 provided in the source data file) according to manufacturer's instructions. Gel lanes were sliced
601 into three pieces as accurately as possible to guarantee reproducibility. The slices were
602 subsequently washed in milli-Q water. Reduction and alkylation were performed (10 mM DTT
603 in 50 mM ammonium bicarbonate; 56°C; 20 mins; followed by 50 mM chloroacetamide in 50
604 mM ammonium bicarbonate; 20 mins; protected from light). Gel pieces were dried and
605 incubated with trypsin (12.5 µg/ml in 50 mM ammonium bicarbonate; 20 mins; ice-cold). After
606 rehydration, the trypsin supernatant was discarded. Gel pieces were hydrated with 50 mM
607 ammonium bicarbonate, and incubated overnight at 37°C. After digestion, acidic peptides were
608 cleaned with TFA 0.1% and dried out in a RVC2 25 speedvac concentrator (Christ). Peptides
609 were resuspended in 10 µL 0.1% formic acid (FA) and sonicated for 5 minutes prior to analysis.

610 Samples were analyzed using a timsTOF Pro mass spectrometer (trapped ion mobility
611 spectrometry/quadrupole time of flight hybrid; Bruker Daltonics) coupled online to a
612 nanoElute liquid chromatography system (Bruker) at the proteomics platform of CIC
613 bioGUNE. This mass spectrometer also uses PASEF scan mode (parallel accumulation – serial
614 fragmentation). Sample (200 ng) was directly loaded in a 15 cm Bruker nano-elute FIFTEEN
615 C18 analytical column (Bruker) and resolved at 400 nl/minute with a 100 minutes gradient.
616 Column was heated to 50°C using an oven.

617 **Mass Spectrometry data analysis**

618 Raw MS files were analyzed using MaxQuant (version 2.2)⁸³ matching to a human
619 proteome (Uniprot filtered reviewed *H. sapiens* proteome, UP000005640) with a maximum of
620 4 missed cleavages and with precursor and fragment tolerances of 20 ppm and 0.05 Da. Label-
621 Free Quantification (LFQ) was enabled with default values except for a ratio count set to 1.
622 Slices corresponding to same lanes were considered as fractions. Matching between runs and
623 matching unidentified features were enabled. Only proteins identified with more than one
624 peptide at FDR<1% were considered for further analysis. Data were loaded onto the Perseus
625 platform (version 1.6.15)⁸⁴ and further processed (Log2 transformation, imputation). Proteins
626 detected with at least 2 peptides and in at least 2 of the 3 replicates in at least one group were
627 included. A two-sided Student's *t*-test was applied to determine the statistical significance of
628 the differences detected. Data were loaded into GraphPad Prism 8 version 8.4.3 to build the
629 corresponding volcano-plots. All Principal Component Analysis (PCA), correlation Scatter
630 plots and Sypro Ruby gel stainings for each of the LC-MS experiments are provided in the
631 source data file.

632 Network analysis was performed using the STRING app version 1.4.2⁸⁵ in Cytoscape
633 version 3.9.1⁸⁶, with a high confidence interaction score (0.7). Transparency and width of the
634 edges were continuously mapped to the String score (text mining, databases, coexpression,
635 experiments, fusion, neighborhood and cooccurrence). The Molecular COmplex DEtection
636 (MCODE) plug-in version 1.5.1⁸⁷ was used to identify highly connected subclusters of
637 proteins (degree cutoff of 2; Cluster finding: Haircut; Node score cutoff of 0.2; K-Core of 2;
638 Max. Depth of 100). Gene ontology (GO) analysis was performed using g:Profiler web server
639 version e108_eg55_p17_0254fbf⁸⁸. Venn diagrams were drawn using InteractiVenn⁸⁹ web
640 tool.

641 ***In vitro* transthiolation assay**

642 WT Ub (Sigma) and non-cleavable Ub mutant (Ubnc, L73P, UBPBio) were assayed
643 side by side. E1, E2, and E3 domains were produced in bacteria, as previously described ⁸¹.
644 These assays were performed in two steps. First, the E1 enzyme (Ube1, 100 nM) was used to
645 load Ub (10 μ M; WT or L73P) onto the E2 enzyme (Ube2D3, 5 μ M) in ubiquitination buffer
646 (25 mM Tris-HCl, pH 7.6, 5 mM MgCl₂, 100 mM NaCl, 2 mM ATP) for 30 minutes at 37°C
647 and then quenched on ice by a two-fold dilution with 0.5 M EDTA. Then, the loaded E2 was
648 mixed with HECT^{NEDD4} ⁸¹ in ubiquitination buffer to the following final concentrations: E2,
649 1.4 μ M; Ub, 2.8 μ M; HECT, 1 μ M. The reaction mixture was placed at 25°C, and thioester
650 formation on the HECT^{NEDD4} was monitored by quenching the reaction at different time points
651 with Laemmli buffer without reducing agent, followed by analysis by polyacrylamide gel
652 electrophoresis (SDS-PAGE).

653 ***In vitro* ubiquitination assay**

654 Reaction mixtures contained purified enzymes (20 nM E1-Ube1, 250 nM E2-Ube2D3,
655 250 nM E3), and 1.25 μ M of Ub (WT or L73P) in ubiquitination buffer (25 mM Tris-HCl, pH
656 7.6, 5 mM MgCl₂, 100 mM NaCl, 2 mM ATP). Reactions were incubated at 37°C. At the
657 indicated time point, the reaction mix was stopped by addition of Laemmli buffer with reducing
658 agent (100 mM DTT) before SDS-PAGE analysis. Ubiquitination activity of WT NEDD4
659 (NEDD4^{WT}) was compared with NEDD4 C2-HECT binding surface triple mutant (NEDD4^{3M})
660 ⁴⁹. Detection was performed by immunoblotting using mouse monoclonal anti-Ub ⁸¹ and
661 Coomassie gel-staining.

662

663 **DATA AVAILABILITY**

664 All data supporting the findings are provided within the paper, the Supplementary Data,
665 the Supplementary Information and the Source Data file. The fasta file of the human proteome

666 (Uniprot filtered reviewed *H. sapiens* proteome, UP000005640
667 [<https://www.uniprot.org/uniprot/?query=proteome:UP000005640%20reviewed:yes>]) was
668 downloaded from Uniprot. In addition, the mass spectrometry proteomics raw data have been
669 deposited to the ProteomeXchange Consortium via the PRIDE partner repository⁹⁰ with the
670 dataset identifier PXD041685. Processed LC-MS/MS data as well as their corresponding gene
671 ontology source data are provided as Supplementary Data files. Source data are provided with
672 this paper.

673

674 **ACKNOWLEDGEMENTS**

675 For scientific support and advice, we thank Iraide Escobes (Proteomics Platform, CIC
676 bioGUNE), Carolina da Fonseca and Arantza Juanes (CIC bioGUNE), Arnoud de Ru and P.A.
677 van Veelen (Center for Proteomics and Metabolomics, LUMC), and Christian Renz (IMB,
678 Mainz). OB-G, FT, RB and ACOV acknowledge funding by the grant 765445-EU (UbiCODE
679 Program). RB, JDS, SP and ACOV acknowledge networking support from the ProteoCure
680 COST Action (CA20113). OB-G acknowledges funding by the FEBS Short-Term Fellowship.
681 RB acknowledges MCIN/AEI/10.13039/501100011033 (PID2020-114178GB-I00, SEV-
682 2016-0644 and CEX2021-001136-S Severo Ochoa Excellence Program). Additional support
683 was provided by the Department of Industry, Tourism, and Trade of the Basque Country
684 Government (Elkartek Research Programs) and by the Innovation Technology Department of
685 the Bizkaia County. LM-C acknowledges FPU grant FPU20/05282 (Ministerio de Educación
686 y Formación Profesional). VM acknowledges FPI grant PRE2018-086230
687 (MCIU/AEI/FEDER, EU). FE acknowledges ProteoRed-ISCIII (PT13/0001/0027) and
688 CIBERehd. UM acknowledges the Basque Government Department of Education (IT1165-19)
689 and the Spanish MCIU (SAF2016-76898-P (FEDER/EU)).

690 **AUTHOR CONTRIBUTIONS**

691 O.B.-G., L.M.-C., J.D.S. and R.B designed experiments, analyzed data and wrote the
692 manuscript. O.B.-G., L.M.-C., V.M., C.P., F.T., V.T., E.M., M.A., I.I., and J.D.S. developed
693 experimental protocols and performed experiments. F.E., U.M., S.P., and A.C.O.V. provided
694 scientific resources.

695

696 **COMPETING INTERESTS**

697 The authors declare no competing interests.

698

699 **REFERENCES**

- 700 1. George, A.J., Hoffiz, Y.C., Charles, A.J., Zhu, Y. & Mabb, A.M. A Comprehensive
701 Atlas of E3 Ubiquitin Ligase Mutations in Neurological Disorders. *Front Genet* **9**, 29
702 (2018).
- 703 2. Buetow, L. & Huang, D.T. Structural insights into the catalysis and regulation of E3
704 ubiquitin ligases. *Nat Rev Mol Cell Biol* **17**, 626-642 (2016).
- 705 3. Garcia-Barcena, C., Osinalde, N., Ramirez, J. & Mayor, U. How to Inactivate Human
706 Ubiquitin E3 Ligases by Mutation. *Front Cell Dev Biol* **8**, 39 (2020).
- 707 4. Liew, C.W., Sun, H., Hunter, T. & Day, C.L. RING domain dimerization is essential
708 for RNF4 function. *Biochem J* **431**, 23-29 (2010).
- 709 5. Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases.
710 *Nat Rev Mol Cell Biol* **10**, 398-409 (2009).
- 711 6. Qian, H. *et al.* Structure and Function of HECT E3 Ubiquitin Ligases and their Role in
712 Oxidative Stress. *J Transl Int Med* **8**, 71-79 (2020).
- 713 7. Chapman-Smith, A. & Cronan, J.E., Jr. In vivo enzymatic protein biotinylation. *Biomol
714 Eng* **16**, 119-125 (1999).

715 8. Barroso-Gomila, O. *et al.* Studying the ubiquitin code through biotin-based labelling
716 methods. *Semin Cell Dev Biol* (2022).

717 9. Fairhead, M. & Howarth, M. Site-specific biotinylation of purified proteins using BirA.
718 *Methods Mol Biol* **1266**, 171-184 (2015).

719 10. Franco, M., Seyfried, N.T., Brand, A.H., Peng, J. & Mayor, U. A novel strategy to
720 isolate ubiquitin conjugates reveals wide role for ubiquitination during neural
721 development. *Mol Cell Proteomics* **10**, M110 002188 (2011).

722 11. O'Connor, H.F. *et al.* Ubiquitin-Activated Interaction Traps (UBAITs) identify E3
723 ligase binding partners. *EMBO Rep* **16**, 1699-1712 (2015).

724 12. Kumar, R., Gonzalez-Prieto, R., Xiao, Z., Verlaan-de Vries, M. & Vertegaal, A.C.O.
725 The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO
726 conjugation machinery. *Nat Commun* **8**, 1809 (2017).

727 13. Salas-Lloret, D. *et al.* SUMO Activated Target Traps (SATTs) enable the identification
728 of a comprehensive E3-specific SUMO proteome. *bioRxiv*, 2022.2006.2022.497173
729 (2022).

730 14. Watanabe, M. *et al.* A substrate-trapping strategy to find E3 ubiquitin ligase substrates
731 identifies Parkin and TRIM28 targets. *Commun Biol* **3**, 592 (2020).

732 15. Pirone, L. *et al.* A comprehensive platform for the analysis of ubiquitin-like protein
733 modifications using in vivo biotinylation. *Sci Rep* **7**, 40756 (2017).

734 16. Bekes, M. *et al.* DUB-resistant ubiquitin to survey ubiquitination switches in
735 mammalian cells. *Cell Rep* **5**, 826-838 (2013).

736 17. Fernandez-Suarez, M., Chen, T.S. & Ting, A.Y. Protein-protein interaction detection
737 in vitro and in cells by proximity biotinylation. *J Am Chem Soc* **130**, 9251-9253 (2008).

738 18. Kulyyassov, A., Ramankulov, Y. & Ogryzko, V. Generation of Peptides for Highly
739 Efficient Proximity Utilizing Site-Specific Biotinylation in Cells. *Life (Basel)* **12**
740 (2022).

741 19. Bekes, M. *et al.* The dynamics and mechanism of SUMO chain deconjugation by
742 SUMO-specific proteases. *J Biol Chem* **286**, 10238-10247 (2011).

743 20. McMillan, B.J. *et al.* A tail of two sites: a bipartite mechanism for recognition of notch
744 ligands by mind bomb E3 ligases. *Mol Cell* **57**, 912-924 (2015).

745 21. Kumar, R. & Sabapathy, K. RNF4-A Paradigm for SUMOylation-Mediated
746 Ubiquitination. *Proteomics* **19**, e1900185 (2019).

747 22. Tatham, M.H. *et al.* RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for
748 arsenic-induced PML degradation. *Nat Cell Biol* **10**, 538-546 (2008).

749 23. Lallemand-Breitenbach, V. *et al.* Arsenic degrades PML or PML-RARalpha through a
750 SUMO-triggered RNF4/ubiquitin-mediated pathway. *Nat Cell Biol* **10**, 547-555 (2008).

751 24. Barroso-Gomila, O. *et al.* Identification of proximal SUMO-dependent interactors
752 using SUMO-ID. *Nat Commun* **12**, 6671 (2021).

753 25. Jaffray, E.G. *et al.* The p97/VCP segregase is essential for arsenic-induced degradation
754 of PML and PML-RARA. *J Cell Biol* **222** (2023).

755 26. Hendriks, I.A. & Vertegaal, A.C. A comprehensive compilation of SUMO proteomics.
756 *Nat Rev Mol Cell Biol* **17**, 581-595 (2016).

757 27. Sarangi, P. & Zhao, X. SUMO-mediated regulation of DNA damage repair and
758 responses. *Trends Biochem Sci* **40**, 233-242 (2015).

759 28. Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA
760 repair. *Nature* **458**, 461-467 (2009).

761 29. Gibbs-Seymour, I. *et al.* Ubiquitin-SUMO circuitry controls activated fanconi anemia
762 ID complex dosage in response to DNA damage. *Mol Cell* **57**, 150-164 (2015).

763 30. Luo, K., Zhang, H., Wang, L., Yuan, J. & Lou, Z. Sumoylation of MDC1 is important
764 for proper DNA damage response. *EMBO J* **31**, 3008-3019 (2012).

765 31. Martin, N. *et al.* PARP-1 transcriptional activity is regulated by sumoylation upon heat
766 shock. *EMBO J* **28**, 3534-3548 (2009).

767 32. Krastev, D.B. *et al.* The ubiquitin-dependent ATPase p97 removes cytotoxic trapped
768 PARP1 from chromatin. *Nat Cell Biol* **24**, 62-73 (2022).

769 33. Meloty-Kapella, L., Shergill, B., Kuon, J., Botvinick, E. & Weinmaster, G. Notch
770 ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins,
771 and actin. *Dev Cell* **22**, 1299-1312 (2012).

772 34. Musse, A.A., Meloty-Kapella, L. & Weinmaster, G. Notch ligand endocytosis:
773 mechanistic basis of signaling activity. *Semin Cell Dev Biol* **23**, 429-436 (2012).

774 35. Firat-Karalar, E.N., Rauniyar, N., Yates, J.R., 3rd & Stearns, T. Proximity interactions
775 among centrosome components identify regulators of centriole duplication. *Curr Biol*
776 **24**, 664-670 (2014).

777 36. Dho, S.E. *et al.* Proximity interactions of the ubiquitin ligase Mind bomb 1 reveal a role
778 in regulation of epithelial polarity complex proteins. *Sci Rep* **9**, 12471 (2019).

779 37. Xie, S., Naslavsky, N. & Caplan, S. EHD1 promotes CP110 ubiquitination by centriolar
780 satellite delivery of HERC2 to the mother centriole. *EMBO Rep*, e56317 (2023).

781 38. Nagashima, S., Tokuyama, T., Yonashiro, R., Inatome, R. & Yanagi, S. Roles of
782 mitochondrial ubiquitin ligase MITOL/MARCH5 in mitochondrial dynamics and
783 diseases. *J Biochem* **155**, 273-279 (2014).

784 39. Sugiura, A. *et al.* MITOL regulates endoplasmic reticulum-mitochondria contacts via
785 Mitofusin2. *Mol Cell* **51**, 20-34 (2013).

786 40. Arai, S. *et al.* MARCH5 mediates NOXA-dependent MCL1 degradation driven by
787 kinase inhibitors and integrated stress response activation. *Elife* **9** (2020).

788 41. Rath, S. *et al.* MitoCarta3.0: an updated mitochondrial proteome now with sub-
789 organelle localization and pathway annotations. *Nucleic Acids Res* **49**, D1541-D1547
790 (2021).

791 42. Antonicka, H. *et al.* A High-Density Human Mitochondrial Proximity Interaction
792 Network. *Cell Metab* **32**, 479-497 e479 (2020).

793 43. Cukierman, E., Huber, I., Rotman, M. & Cassel, D. The ARF1 GTPase-activating
794 protein: zinc finger motif and Golgi complex localization. *Science* **270**, 1999-2002
795 (1995).

796 44. Youn, J.Y. *et al.* High-Density Proximity Mapping Reveals the Subcellular
797 Organization of mRNA-Associated Granules and Bodies. *Mol Cell* **69**, 517-532 e511
798 (2018).

799 45. Maekawa, M. *et al.* Signaling from Rho to the actin cytoskeleton through protein
800 kinases ROCK and LIM-kinase. *Science* **285**, 895-898 (1999).

801 46. Morita, M. *et al.* A novel 4EHP-GIGYF2 translational repressor complex is essential
802 for mammalian development. *Mol Cell Biol* **32**, 3585-3593 (2012).

803 47. Kalthoff, C., Groos, S., Kohl, R., Mahrhold, S. & Ungewickell, E.J. Clint: a novel
804 clathrin-binding ENTH-domain protein at the Golgi. *Mol Biol Cell* **13**, 4060-4073
805 (2002).

806 48. Wang, Y., Argiles-Castillo, D., Kane, E.I., Zhou, A. & Spratt, D.E. HECT E3 ubiquitin
807 ligases - emerging insights into their biological roles and disease relevance. *J Cell Sci*
808 **133** (2020).

809 49. Mari, S. *et al.* Structural and functional framework for the autoinhibition of Nedd4-
810 family ubiquitin ligases. *Structure* **22**, 1639-1649 (2014).

811 50. Wang, M., Cheng, D., Peng, J. & Pickart, C.M. Molecular determinants of
812 polyubiquitin linkage selection by an HECT ubiquitin ligase. *EMBO J* **25**, 1710-1719
813 (2006).

814 51. Sette, P., Jadwin, J.A., Dussupt, V., Bello, N.F. & Bouamr, F. The ESCRT-associated
815 protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through
816 the LYPXnL L domain motif. *J Virol* **84**, 8181-8192 (2010).

817 52. Aoh, Q.L., Castle, A.M., Hubbard, C.H., Katsumata, O. & Castle, J.D. SCAMP3
818 negatively regulates epidermal growth factor receptor degradation and promotes
819 receptor recycling. *Mol Biol Cell* **20**, 1816-1832 (2009).

820 53. Martinez-Noel, G. *et al.* Identification and proteomic analysis of distinct UBE3A/E6AP
821 protein complexes. *Mol Cell Biol* **32**, 3095-3106 (2012).

822 54. Kim, H.T. *et al.* Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-
823 protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all
824 possible isopeptide linkages. *J Biol Chem* **282**, 17375-17386 (2007).

825 55. Rabl, J. BRCA1-A and BRISC: Multifunctional Molecular Machines for Ubiquitin
826 Signaling. *Biomolecules* **10** (2020).

827 56. Chen, Y., Kang, J., Zhen, R., Zhang, L. & Chen, C. A genome-wide CRISPR screen
828 identifies the CCT chaperonin as a critical regulator of vesicle trafficking. *FASEB J* **37**,
829 e22757 (2023).

830 57. Mattern, M., Sutherland, J., Kadimisetty, K., Barrio, R. & Rodriguez, M.S. Using
831 Ubiquitin Binders to Decipher the Ubiquitin Code. *Trends Biochem Sci* **44**, 599-615
832 (2019).

833 58. Kim, D.I. & Roux, K.J. Filling the Void: Proximity-Based Labeling of Proteins in
834 Living Cells. *Trends Cell Biol* **26**, 804-817 (2016).

835 59. Liu, J.C.Y. *et al.* Mechanism and function of DNA replication-independent DNA-
836 protein crosslink repair via the SUMO-RNF4 pathway. *EMBO J* **40**, e107413 (2021).

837 60. Kuo, C.Y., Li, X., Stark, J.M., Shih, H.M. & Ann, D.K. RNF4 regulates DNA double-
838 strand break repair in a cell cycle-dependent manner. *Cell Cycle* **15**, 787-798 (2016).

839 61. Galanty, Y., Belotserkovskaya, R., Coates, J. & Jackson, S.P. RNF4, a SUMO-targeted
840 ubiquitin E3 ligase, promotes DNA double-strand break repair. *Genes Dev* **26**, 1179-
841 1195 (2012).

842 62. Grocock, L.M. *et al.* RNF4 interacts with both SUMO and nucleosomes to promote
843 the DNA damage response. *EMBO Rep* **15**, 601-608 (2014).

844 63. Hirota, K. *et al.* SUMO-targeted ubiquitin ligase RNF4 plays a critical role in
845 preventing chromosome loss. *Genes Cells* **19**, 743-754 (2014).

846 64. Ding, L. *et al.* RNF4 controls the extent of replication fork reversal to preserve genome
847 stability. *Nucleic Acids Res* **50**, 5672-5687 (2022).

848 65. Ellis, N. *et al.* RNF4 Regulates the BLM Helicase in Recovery From Replication Fork
849 Collapse. *Front Genet* **12**, 753535 (2021).

850 66. Sha, Z., Blyszcz, T., Gonzalez-Prieto, R., Vertegaal, A.C.O. & Goldberg, A.L.
851 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized
852 nuclear proteins at PML bodies. *J Biol Chem* **294**, 15218-15234 (2019).

853 67. Barsi, J.C., Rajendra, R., Wu, J.I. & Artzt, K. Mind bomb1 is a ubiquitin ligase essential
854 for mouse embryonic development and Notch signaling. *Mech Dev* **122**, 1106-1117
855 (2005).

856 68. Koo, B.K. *et al.* Mind bomb 1 is essential for generating functional Notch ligands to
857 activate Notch. *Development* **132**, 3459-3470 (2005).

858 69. Kirkin, V. & Rogov, V.V. A Diversity of Selective Autophagy Receptors Determines
859 the Specificity of the Autophagy Pathway. *Mol Cell* **76**, 268-285 (2019).

860 70. Shaid, S., Brandts, C.H., Serve, H. & Dikic, I. Ubiquitination and selective autophagy.
861 *Cell Death Differ* **20**, 21-30 (2013).

862 71. Joachim, J. *et al.* Centriolar Satellites Control GABARAP Ubiquitination and
863 GABARAP-Mediated Autophagy. *Curr Biol* **27**, 2123-2136 e2127 (2017).

864 72. Cajanek, L., Glatter, T. & Nigg, E.A. The E3 ubiquitin ligase Mib1 regulates Plk4 and
865 centriole biogenesis. *J Cell Sci* **128**, 1674-1682 (2015).

866 73. Wang, L., Lee, K., Malonis, R., Sanchez, I. & Dynlacht, B.D. Tethering of an E3 ligase
867 by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes
868 ciliogenesis. *Elife* **5** (2016).

869 74. Han, K.J. *et al.* Deubiquitylase USP9X maintains centriolar satellite integrity by
870 stabilizing pericentriolar material 1 protein. *J Cell Sci* **132** (2019).

871 75. Wang, P. *et al.* SNX17 Recruits USP9X to Antagonize MIB1-Mediated Ubiquitination
872 and Degradation of PCM1 during Serum-Starvation-Induced Ciliogenesis. *Cells* **8**
873 (2019).

874 76. Douanne, T. *et al.* CYLD Regulates Centriolar Satellites Proteostasis by Counteracting
875 the E3 Ligase MIB1. *Cell Rep* **27**, 1657-1665 e1654 (2019).

876 77. Nagashima, S., Ito, N., Shiiba, I., Shimura, H. & Yanagi, S. Ubiquitin-mediated
877 mitochondrial regulation by MITOL/MARCHF5 at a glance. *J Biochem* **173**, 1-11
878 (2022).

879 78. Arakel, E.C. & Schwappach, B. Formation of COPI-coated vesicles at a glance. *J Cell*
880 *Sci* **131** (2018).

881 79. Broix, L. *et al.* Mutations in the HECT domain of NEDD4L lead to AKT-mTOR
882 pathway deregulation and cause periventricular nodular heterotopia. *Nat Genet* **48**,
883 1349-1358 (2016).

884 80. Bekes, M., Langley, D.R. & Crews, C.M. PROTAC targeted protein degraders: the past
885 is prologue. *Nat Rev Drug Discov* **21**, 181-200 (2022).

886 81. Maspero, E. *et al.* Structure of a ubiquitin-loaded HECT ligase reveals the molecular
887 basis for catalytic priming. *Nat Struct Mol Biol* **20**, 696-701 (2013).

888 82. Barroso-Gomila, O., Mayor, U., Barrio, R. & Sutherland, J.D. SUMO-ID: A Strategy
889 for the Identification of SUMO-Dependent Proximal Interactors. *Methods Mol Biol*
890 **2602**, 177-189 (2023).

891 83. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized
892 p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nat Biotechnol*
893 **26**, 1367-1372 (2008).

894 84. Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of
895 (prote)omics data. *Nat Methods* **13**, 731-740 (2016).

896 85. Snel, B., Lehmann, G., Bork, P. & Huynen, M.A. STRING: a web-server to retrieve
897 and display the repeatedly occurring neighbourhood of a gene. *Nucleic Acids Res* **28**,
898 3442-3444 (2000).

899 86. Shannon, P. *et al.* Cytoscape: a software environment for integrated models of
900 biomolecular interaction networks. *Genome Res* **13**, 2498-2504 (2003).

901 87. Bader, G.D. & Hogue, C.W. An automated method for finding molecular complexes in
902 large protein interaction networks. *BMC Bioinformatics* **4**, 2 (2003).

903 88. Reimand, J. *et al.* g:Profiler-a web server for functional interpretation of gene lists
904 (2016 update). *Nucleic Acids Res* **44**, W83-89 (2016).

905 89. Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P. & Minghim, R. InteractiVenn:
906 a web-based tool for the analysis of sets through Venn diagrams. *BMC Bioinformatics*
907 **16**, 169 (2015).

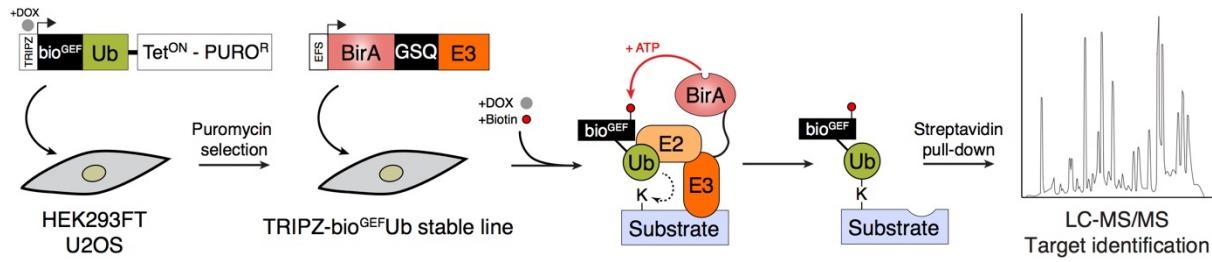
908 90. Vizcaino, J.A. *et al.* 2016 update of the PRIDE database and its related tools. *Nucleic*
909 *Acids Res* **44**, 11033 (2016).

910

911

912 FIGURES/LEGENDS

913


914

915

916

917

918

919

920

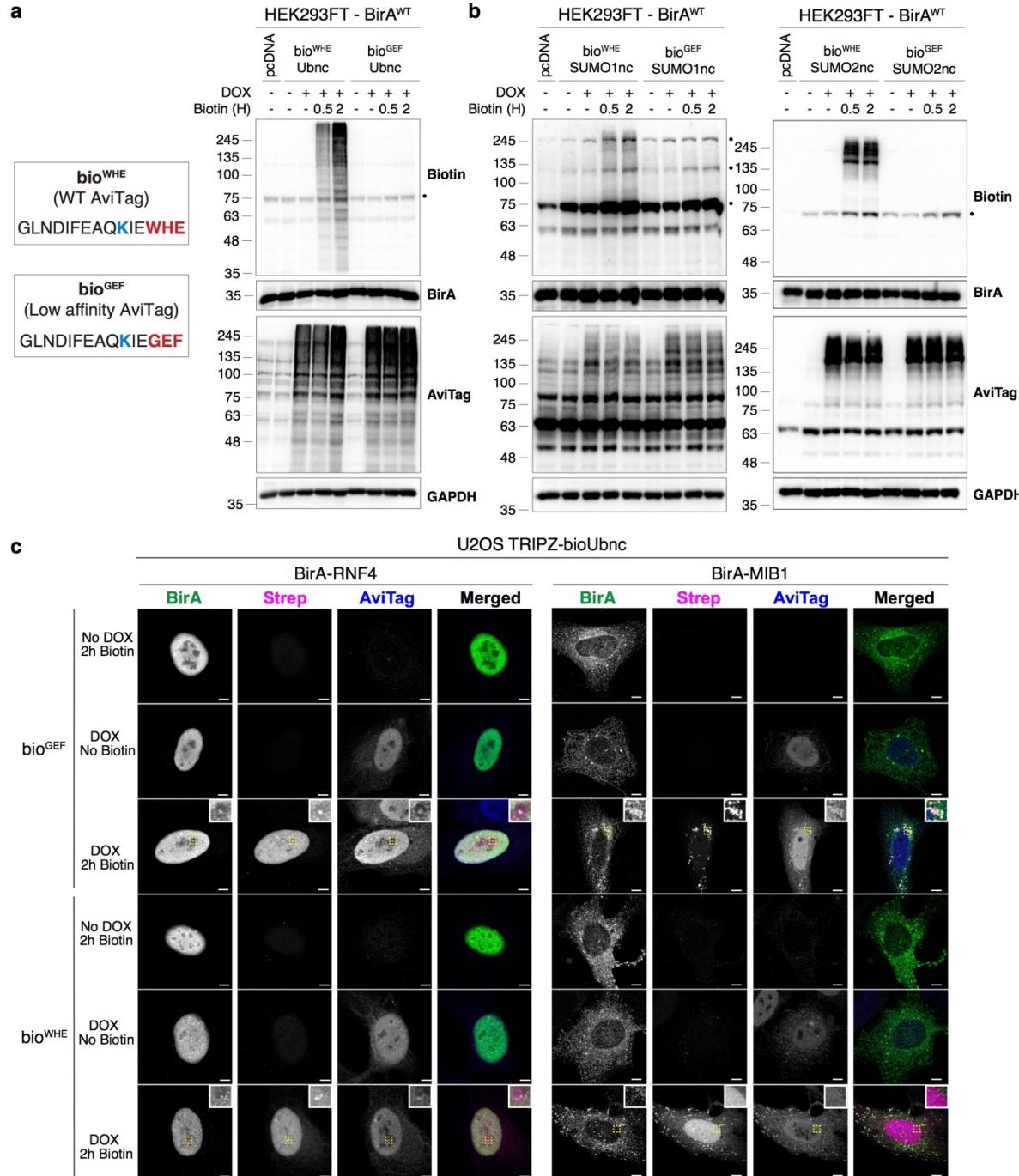
921 **Fig. 1: Identification of substrates of E3 ligases: the BioE3 strategy.** Schematic
922 representation of the BioE3 strategy and the constructs used. bio^{GEF}, low-affinity AviTag (see
923 text); DOX, doxycycline; EFS, elongation factor 1 α short promoter; GSQ, Gly-Ser-Gln flexi-
924 rigid linker; PURO^R, puromycin resistant cassette; Tet^{ON}, tetracycline inducible promoter;
925 TRIPZ, all-in-one inducible lentiviral vector; Ub, Ubiquitin.

926

927

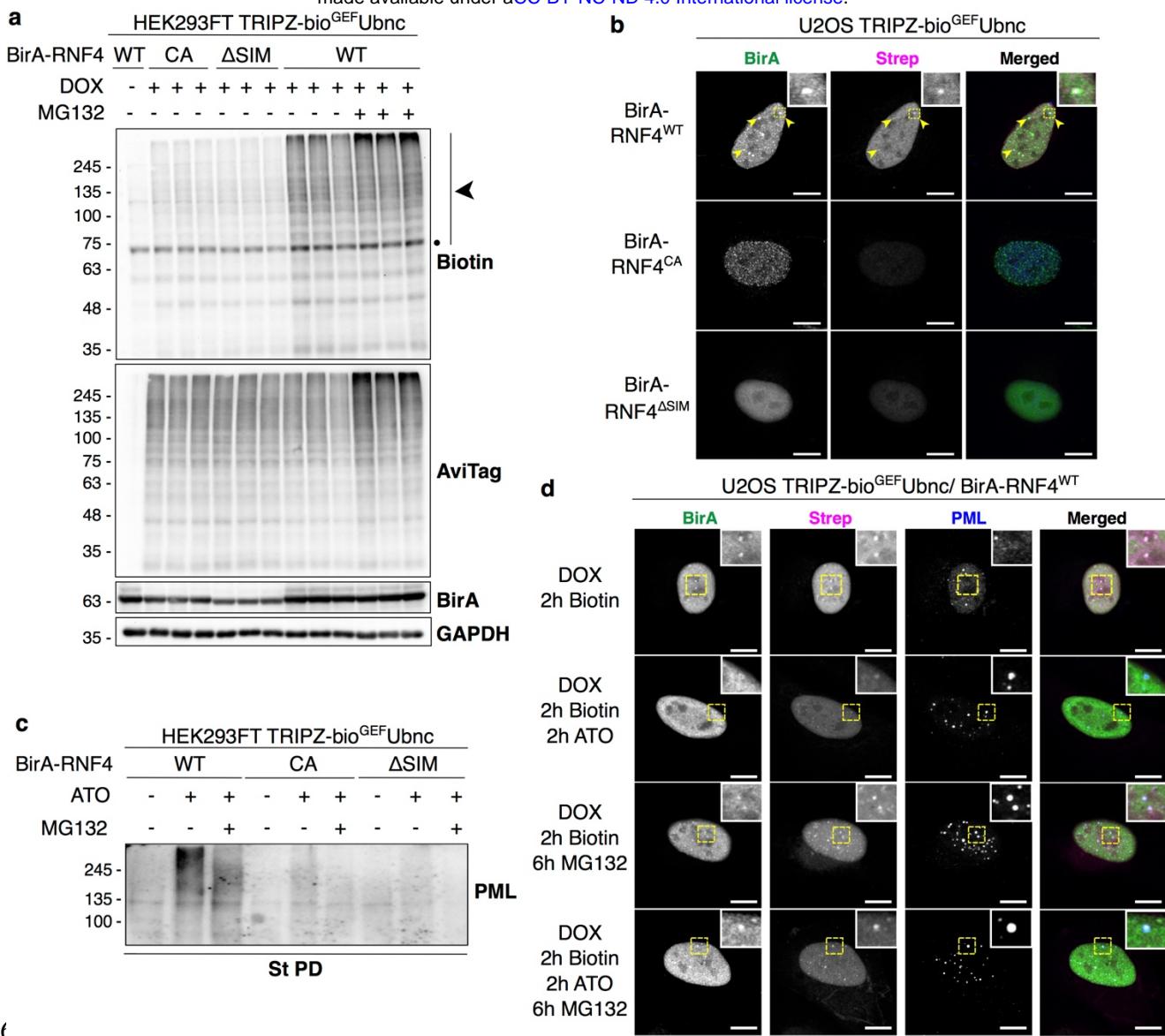
928

929


930

931

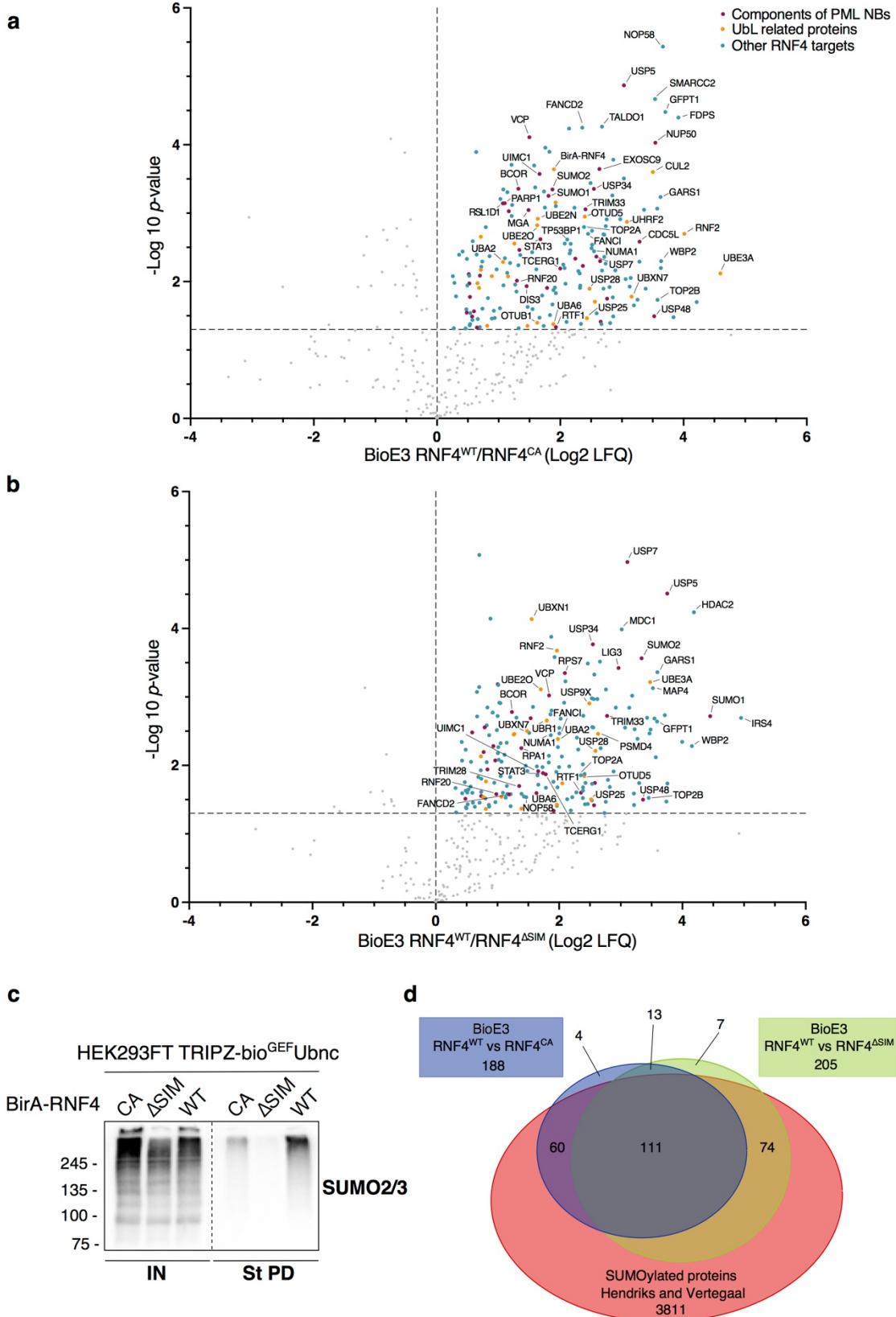
932


933

934

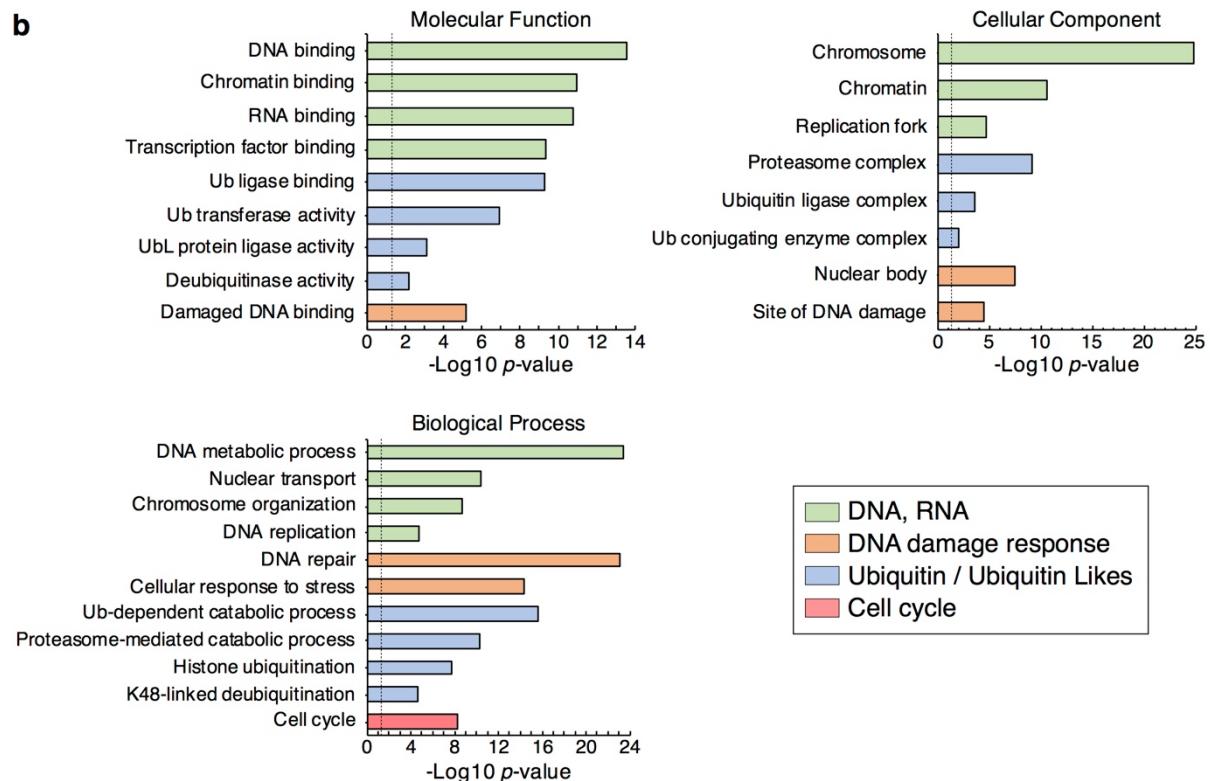
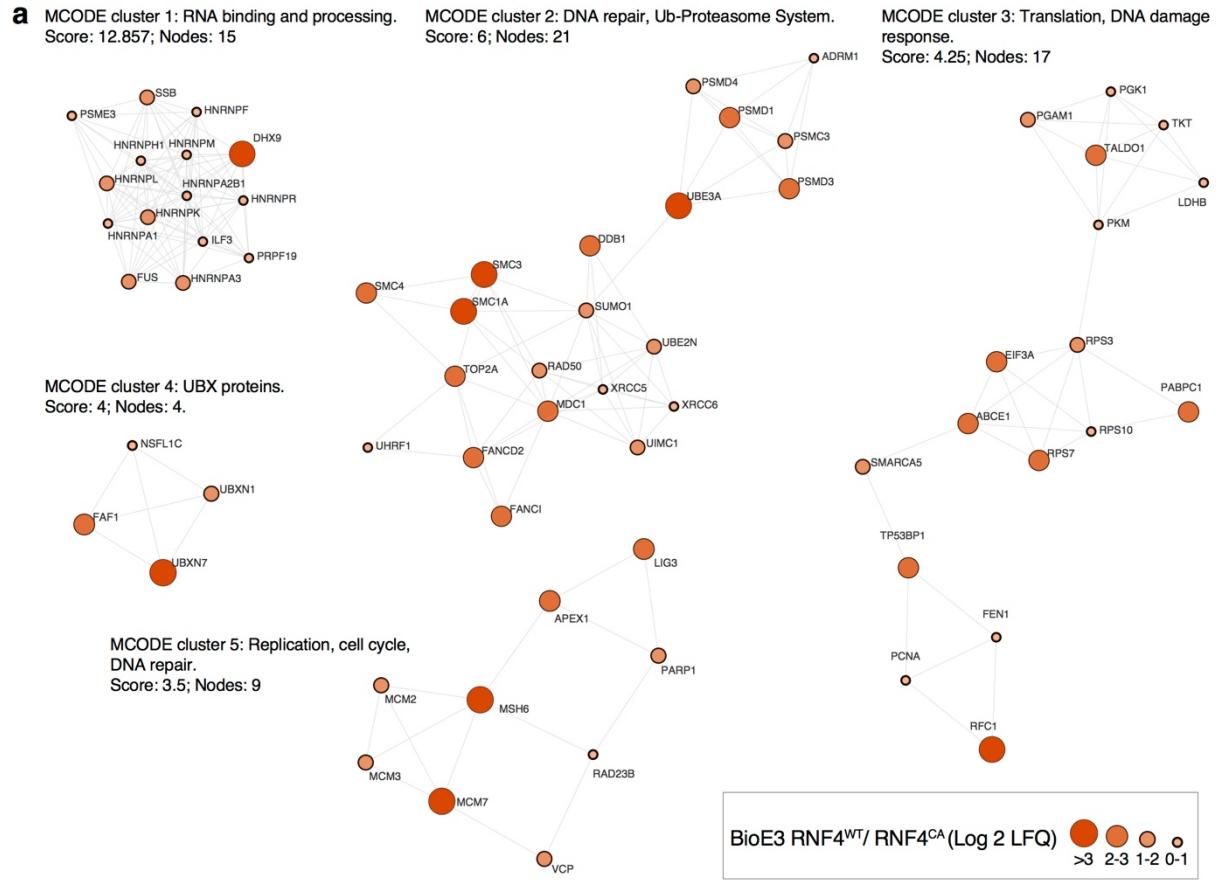
935

Fig. 2: Low affinity bio^{GEF} enables BioE3 studies. (a-b) Left, sequence of the WT (WHE) and the low affinity (GEF) AviTags. Biotin-targeted lysine is shown in blue, mutated amino acids in red. Western blot of HEK293FT stable cell lines expressing EFS-BirA, transfected with (a) TRIPZ-bio^{WHE}Ubnc or the low affinity version bio^{GEF}Ubnc and (b) bio^{WHE}SUMO1nc, bio^{WHE}SUMO2nc or the low affinity versions bio^{GEF}SUMO1nc, bio^{GEF}SUMO2nc. Cells were preincubated in biotin-free dialyzed FBS-containing media prior to transfections. Doxycycline (DOX) induction was performed at 1 μ g/ml for 24 hours and biotin supplementation at 50 μ M for the indicated time-points. General unspecific biotinylation was observed for bio^{WHE} tagged UbLs, while no biotinylation was observed in the case of the low-affinity bio^{GEF} versions. Dots indicate endogenous carboxylases that are biotinylated constitutively by the cell. Molecular weight markers are shown to the left of the blots in kDa. (c) Confocal microscopy of U2OS stable cell lines expressing TRIPZ-bio^{WHE}Ubnc or bio^{GEF}Ubnc transfected with EFS-BirA-RNF4 or EFS-BirA-MIB1. All BioE3 experiments were performed by pre-incubating the cells in dialyzed FBS-containing media prior to transfections, DOX induction at 1 μ g/ml for 24 hours and biotin supplementation at 50 μ M for 2 hours, unless otherwise specified. Colocalization of streptavidin and BirA-RNF4/MIB1 signals was observed when using bio^{GEF}Ubnc, while general unspecific labelling was detected for bio^{WHE}Ubnc. Yellow dotted-line squares show the selected area for digital zooming. Biotinylated material was stained with fluorescent streptavidin (Strep, magenta), and BirA (green) and AviTag (blue) with specific antibodies. Black and white panels show the green, magenta and blue channels alone. Scale bar: 5 μ m for RNF4 panels and 8 μ m for MIB1 panels. (a-c) Data are representative of 3 independent transfection experiments with similar results. Source data are provided in the Source Data file.

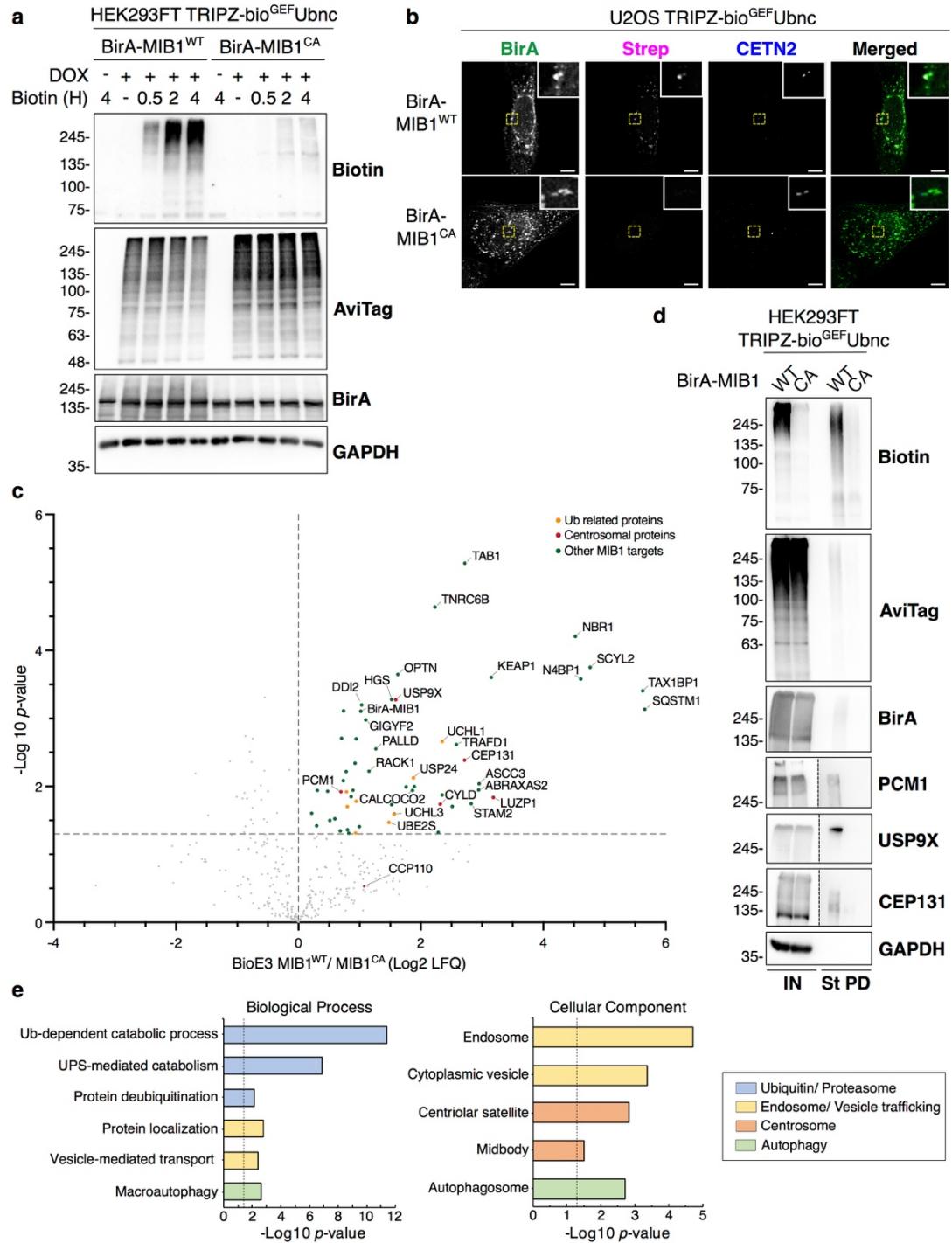

956

957

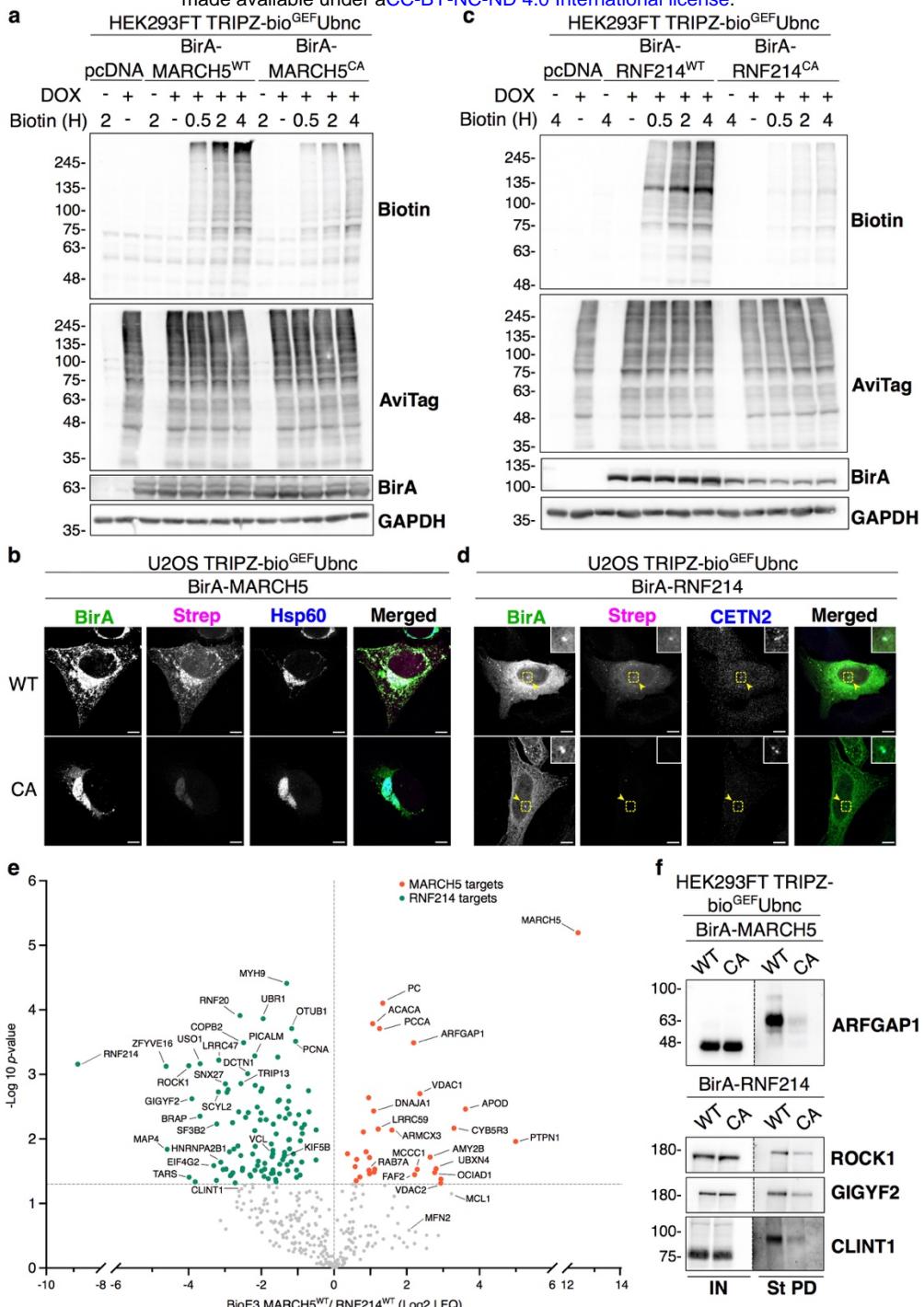
958 **Fig. 3: BioE3 specifically labels substrates of RNF4.** (a) Western blot of BioE3 experiment in triplicates
959 performed on HEK293FT stable cell line expressing TRIPZ-bio^{GEF}Ubnc and transfected with EFS-BirA-
960 RNF4^{WT}, BirA-RNF4^{CA} or BirA-RNF4 Δ SIM. MG132 was used at 10 μ M for 4 hours. Specific biotinylation
961 of RNF4 targets, which were accumulated upon MG132 treatment (black arrowheads), was observed. Dot
962 indicates endogenously biotinylated carboxylases. (b, d) Confocal microscopy of BioE3 experiment
963 performed on U2OS stable cell line expressing TRIPZ-bio^{GEF}Ubnc transfected with EFS-BirA-RNF4^{WT},
964 BirA-RNF4^{CA} or BirA-RNF4 Δ SIM. Yellow dotted-line squares show the selected colocalization event for
965 digital zooming. Biotinylated material is stained with fluorescent streptavidin (Strep, magenta), and BirA
966 with specific antibody (green). In blue, nuclei are labelled with DAPI (b) or PML is labelled with specific
967 antibody (d). Black and white panels show the green and magenta channels individually. Scale bar: 10 μ m.
968 Colocalization of streptavidin and BirA-RNF4^{WT} signals was observed in the nucleus (yellow arrowheads)
969 (b). Indicated samples were also treated with 1 μ M ATO for 2 hours and 10 μ M MG132 for 6 hours (d). (c)
970 Western blot showing the effect of ATO and MG132 treatments in PML ubiquitylation by RNF4. BioE3
971 experiment was performed on HEK293FT stable cell line expressing TRIPZ-bio^{GEF}Ubnc transfected with
972 EFS-BirA-RNF4^{WT}, BirA-RNF4^{CA} or BirA-RNF4 Δ SIM. Indicated samples were also treated with 1 μ M ATO
973 for 2 hours and 10 μ M MG132 for 6 hours. St PD, streptavidin pull-down. (a, c) Molecular weight markers
974 are shown to the left of the blots in kDa, antibodies used are indicated to the right. (a-d) Data are
975 representative of 3 independent transfection experiments with similar results. Source data are provided in
976 the Source Data file.



977

978


979

980 **Fig. 4: BioE3 identifies SUMO-dependent Ub targets of RNF4.** (a, b) Volcano plots of LC-MS analysis
 981 comparing streptavidin pull-downs of BioE3 experiments performed on HEK293FT stable cell line expressing
 982 TRIPZ-bio^{GEF}Ubnc transfected with EFS-BirA-RNF4^{WT}, BirA-RNF4^{CA} or BirA-RNF4^{ASIM}, with 3 biological
 983 replicates per condition performed. Proteins significantly enriched (Log 2 RNF4^{WT}/RNF4^{CA} (a) or RNF4^{ASIM} (b)
 984 > 0 and p -value < 0.05) were considered as RNF4 targets. Statistical analyses were done using two-sided Student's
 985 *t*-test. Data are provided as Supplementary Data 1. (c) Western blot of SUMOylated RNF4 targets from samples
 986 described in (a, b). IN: input; St PD: streptavidin pull-down. Molecular weight markers are shown to the left of
 987 the blots in kDa. (d) Venn diagram showing the SUMO-dependent targets of RNF4 (comparison of the BioE3
 988 RNF4^{WT}/RNF4^{CA} targets in (a) versus the BioE3 RNF4^{WT}/RNF4^{ASIM} targets in (b)) and the SUMOylated targets
 989 (SUMOylome from Hendriks and Vertegaal²⁶). Comparison data are provided as Supplementary Data 1.
 990



991

992 **Fig. 5: RNF4 Ub targets participate in essential nuclear and UPS related processes.** (a) STRING
993 network analysis of the RNF4 targets defined in Fig. 4a (BioE3 RNF4^{WT}/ RNF4^{CA}). Highly interconnected
994 sub-clusters were derived from the core-cluster in Supplementary Fig. 5 using MCODE. Color, transparency
995 and size of the nodes were discretely mapped to the Log2 enrichment value as described. (b) Gene ontology
996 analysis of the RNF4 targets defined in Fig. 4a (BioE3 RNF4^{WT}/ RNF4^{CA}). Depicted biological processes,
997 molecular functions and cellular components were significantly enriched. Dotted line represents the
998 threshold of the *p*-value (0.05). Data are provided as Supplementary Data 2.
999

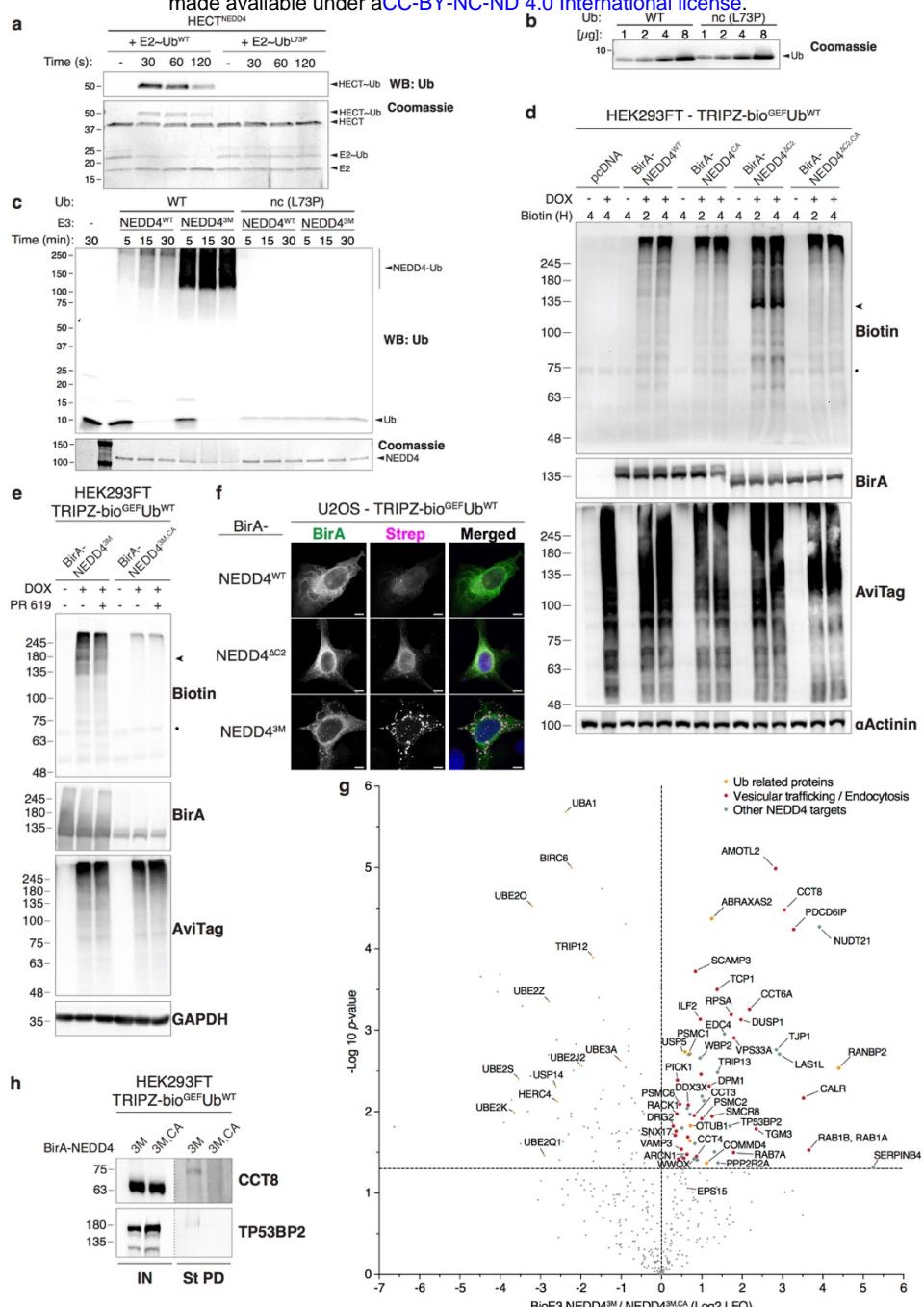


Fig. 6: BioE3 identifies targets of MIB1. (a) Western blot of BioE3 experiment performed on HEK293FT stable cell line expressing TRIPZ-bio^{GEF}Ubnc and transfected with EFS-BirA-MIB1^{WT} or BirA-MIB1^{CA}. Specific biotinylation of MIB1 targets was observed at different biotin timings. Molecular weight markers are shown to the left of the blots in kDa. (b) Confocal microscopy of BioE3 experiment performed on U2OS stable cell line expressing TRIPZ-bio^{GEF}Ubnc transfected with EFS-BirA-MIB1^{WT} or BirA-MIB1^{CA}. Colocalization of streptavidin (Strep, magenta), BirA-MIB1 (green) and Centrin-2 (CETN2, blue) was observed at the centrosomes and selected for digital zooming (yellow dotted-line squares). Black and white panels show the green, magenta and blue channels individually. Scale bar: 8 μ m. (c) Volcano plot of LC-MS analysis comparing streptavidin pull-downs of BioE3 experiments performed on HEK293FT stable cell line expressing TRIPZ-bio^{GEF}Ubnc and transfected with EFS-BirA-MIB1^{WT} or BirA-MIB1^{CA} (3 biological replicates per condition). Proteins significantly enriched ($\text{Log}_2 \text{MIB1}^{\text{WT}} / \text{MIB1}^{\text{CA}} > 0$ and $p\text{-value} < 0.05$) were considered as MIB1 targets. Statistical analyses were performed by two-sided Student's *t*-test. Data are provided as Supplementary Data 3. (d) Western blot validations of centrosomal MIB1 targets identified in (c): PCM1, USP9X and CEP131. IN: input; St PD: streptavidin pull-down. Molecular weight markers are shown to the left of the blots in kDa. (e) Gene ontology analysis of the MIB1 targets defined in (c). Depicted biological processes and cellular components were significantly enriched. Dotted line represents the threshold of the *p*-value (0.05). Data are provided as Supplementary Data 4. (a-d) Data are representative of 3 independent transfection experiments with similar results. Source data are provided in the Source Data file.

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

Fig. 7: BioE3 identifies Ub targets of MARCH5 and RNF214. (a, c) Western blot of BioE3 experiment performed on HEK293FT stable cell line expressing TRIPZ-bio^{GEF}Ubnc and transfected with (a) EFS-BirA-MARCH5^{WT} or BirA-MARCH5^{CA} and (c) EFS-BirA-RNF214^{WT} or BirA-RNF214^{CA}. Molecular weight markers are shown to the left of the blots in kDa. (b, d) Confocal microscopy of BioE3 experiment performed in U2OS stable cell line expressing TRIPZ-bio^{GEF}Ubnc and transfected with EFS-BirA-MARCH5^{WT} or BirA-MARCH5^{CA} (b) and EFS-BirA-RNF214^{WT} or BirA-RNF214^{CA} (d). Colocalization of streptavidin (Strep, magenta) and BirA (BirA antibody, green) signals was observed at mitochondria (Hsp60, blue) (b) or at the centrosome (Centrin-2, CETN2, blue) (d). Black and white panels show the green, magenta and blue channels individually. Scale bar: 8 μ m. Yellow dotted-line squares show the selected colocalization event for digital zooming. (e) Volcano plot of LC-MS analysis comparing streptavidin pull-downs of BioE3 experiments performed on HEK293FT stable cell line expressing TRIPZ-bio^{GEF}Ubnc transfected with EFS-BirA-MARCH5^{WT} and BirA-RNF214^{WT} (3 biological replicates). Proteins significantly enriched (p -value < 0.05) were considered as targets. Statistical analyses were performed by two-sided Student's *t*-test. Data are provided as Supplementary Data 5. (f) Western blot validations of mitochondrial MARCH5 (ARFGAP1) or centrosomal RNF214 (ROCK1, GIGYF2 and CLINT1) targets identified in (e). IN: input; St PD: streptavidin pull-down. Molecular weight markers are shown to the left of the blots in kDa. (a-f) All BioE3 experiments were performed as above, with biotin supplementation at 50 μ M for 2 hours (or indicated time points). Data are representative of 3 independent transfection experiments with similar results. Source data are provided in the Source Data file.

Fig. 8: BioE3 using bio^{GEF}Ub^{WT} identifies targets of activated NEDD4. (a-c) Ubnc (L73P) mutation impairs NEDD4~Ub transthiolation and autoubiquitination. (a) Western blot (up, anti-Ub) and Coomassie staining of NEDD4 transthiolation assay, using Ub^{WT} loaded Ube2D3 (E2-Ub^{WT}) or Ubnc loaded Ube2D3 (E2-Ub^{L73P}). Although E2 was efficiently loaded, no transthiolation on HECT^{NEDD4} was observed when using Ubnc (L73P). (b) Coomassie staining showing that Ub^{WT} and Ubnc were at similar levels in the reaction. (c) Western blot (upper, anti-Ub) and Coomassie staining of NEDD4 autoubiquitination assay using 20 nM of purified Ube1 (E1), 250 nM of Ube2D3 (E2), 1.25 µM of Ub^{WT} or Ubnc (L73P) together with 250 nM of NEDD4^{WT} or NEDD4^{3M} (E3s). Ubiquitination reactions were stopped at indicated time-points. NEDD4^{WT} as well as NEDD4^{3M} autoubiquitination is impaired by L73P mutation on Ub (black arrowhead). Molecular weight markers are shown to the left of the blots in kDa. Data are representative of 2 independent experiments with similar results. (d, e) Western blot of BioE3 experiments performed on HEK293FT stable cell line expressing TRIPZ-bio^{GEF}Ub^{WT} transiently transfected with (d) EFS-BirA-NEDD4^{WT}, NEDD4^{CA}, NEDD4^{ΔC2} or NEDD4^{ΔC2,CA} and (e) EFS-BirA-NEDD4^{3M} or EFS-BirA-NEDD4^{3M,CA}. Active, auto-ubiquitinated and biotinylated BirA-NEDD4^{ΔC2} and BirA-NEDD4^{3M} are depicted with black arrowheads. Molecular weight markers are shown to the left of the blots in kDa. Dots indicate endogenous biotinylated carboxylases. Cells in (e) were also treated with the DUB inhibitor PR619 (20 µM for 2 hours) and showed no differences in labelling. (f) Confocal microscopy of BioE3 experiment performed on U2OS stable cell line for TRIPZ-bio^{GEF}Ub^{WT} transfected with EFS-BirA-NEDD4^{WT}, BirA-NEDD4^{ΔC2} or BirA-NEDD4^{3M}. Biotinylated material is stained with fluorescent streptavidin (Strep, magenta), and BirA with specific antibody (green). Black and white panels show the green and magenta channels individually. Scale bar: 8 µm. (g) Volcano plot of LC-MS analysis comparing streptavidin pull-downs of BioE3 experiments performed on HEK293FT stable cell line expressing TRIPZ-bio^{GEF}Ub^{WT} and transfected with EFS-BirA-NEDD4^{3M} or BirA-NEDD4^{3M,CA} (3 biological replicates). Proteins significantly enriched ($\text{Log}_2 \text{NEDD4}^{3M} / \text{NEDD4}^{3M,CA} > 0$ and $p\text{-value} < 0.05$) were considered as NEDD4 targets. Statistical analyses were performed by two-sided Student's *t*-test. Data are provided as Supplementary Data 7. (h) Western blot validations of NEDD4 targets identified in (g): CCT8 and TP53BP2. IN: input; St PD: Streptavidin pull-down. Molecular weight markers are shown to the left of the blots in kDa. (d-h) Data are representative of 3 independent transfection experiments with similar results. Source data are provided in the Source Data file.