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Abstract 

Linking the developing brain with individual differences in clinical and demographic traits is 

challenging due to the substantial interindividual heterogeneity of brain anatomy and 

organization. Here we employ a novel approach that parses individual differences in both 

cortical thickness and common genetic variants, and assess their effects on a wide set of 

childhood traits. The approach uses a linear mixed model framework to obtain the unique 

effects of each type of similarity, as well as their covariance, with the assumption that 

similarity in cortical thickness may in part be driven by similarity in genetic variants. We 

employ this approach in a sample of 7760 unrelated children in the ABCD cohort baseline 

sample (mean age 9.9, 46.8% female). In general, significant associations between cortical 

thickness similarity and traits were limited to anthropometrics such as height (r2 = 0.11, SE = 

0.01), weight (r2 = 0.12, SE = 0.01), and birth weight (r2 = 0.19, SE = 0.01), as well as 

markers of socioeconomic status such as local area deprivation (r2 = 0.06, SE = 0.01) . 

Analyses of the contribution from common genetic variants to traits revealed contributions 

across included outcomes, albeit somewhat lower than previous reports, possibly due to the 

young age of the sample. No significant covariance of the effects of genetic and cortical 

thickness similarity was found. The present findings highlight the connection between 

anthropometrics as well as socioeconomic factors and the developing brain, which appear to 

be independent from individual differences in common genetic variants in this population-

based sample. The approach provides a promising framework for analyses of neuroimaging 

genetics cohorts, which can be further expanded by including imaging derived phenotypes 

beyond cortical thickness.  
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Introduction 

Mapping individual differences in brain morphology and their associations with relevant 

clinical and demographic traits has been described as one of the fundamental challenges of 

neuroscience (Giedd and Rapoport 2010; Lashley 1947). This task is particularly challenging 

in young individuals, as the structure of the brain changes rapidly when they progress through 

different stages of development (Mills et al. 2021). A morphological measure that has 

received extensive attention is the thickness of the cortex, both due to its potential sensitivity 

to age (Frangou et al. 2022) and clinical conditions (Hettwer et al. 2022). Cortical thickness 

can be estimated from magnetic resonance imaging (MRI) data with reasonable accuracy 

(Fuhrmann et al. 2022). However, reported associations between apparent cortical thickness 

and observable traits in children and adolescents have largely been inconclusive (Marek et al. 

2022). This lack of robustness may in part be attributed to a methodological reliance on 

average effects that inadequately accounts for the individual heterogeneity of cortical 

structure and development, instigating a call for new approaches that better capture this 

variability (Foulkes and Blakemore 2018; Westlin et al. 2023). 

 In the field of genetics, leveraging the inherent genetic similarity among individuals 

to explore the relationship between their genetic make-up and observable traits has revealed 

novel insight into the associations between genetic factors and human traits (Tam et al. 2019). 

For this, a genomic relatedness matrix (GRM) can be constructed (J. Yu et al. 2006) by 

estimating the pairwise resemblance of individuals in a sample based on genome-wide single 

nucleotide polymorphisms (SNPs; Yang et al. 2010). This GRM can then be integrated into 

linear mixed models (LMMs) along with phenotypic traits, enabling the estimation of the 

proportion of phenotypic variance attributed to genetics (commonly known as SNP-based 

heritability). This approach, often referred to as genome-based restricted maximum likelihood 

(GREML), has been successfully applied to large cohorts of young individuals to estimate 

SNP-based heritability for complex behavioral traits, such as academic performance, 

psychological distress, and externalizing behavior (Cheesman et al. 2020; Donati et al. 2021; 

Eilertsen et al. 2022; Jami et al. 2022). The application of GREML in neuroscience has been 

limited compared to other fields (Trzaskowski et al. 2014), and between-subject variability is 

commonly considered as error. There is a growing recognition of the potential benefits of 

incorporating individual variability caused by genetics to enhance our understanding of the 

relationship between the developing cortex and observable traits (Z. Yu et al. 2022).  
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Applying a similar approach to GREML, Sabuncu et al. (2016) reported that the 

phenotypic variance of both clinical (e.g., diagnosis of mental illness) and non-clinical traits 

(e.g., cognition) could be significantly explained by whole-brain morphology, specifically a 

composite of multiple gray- and white matter measures in adults. This approach has been 

termed morphometricity (Sabuncu et al. 2016), or trait morphometricity (Fürtjes et al.(2023). 

In simplified terms, this approach entails estimating one or more measures of brain 

morphology, such as cortical thickness and cortical surface area. Next, the pairwise 

resemblance across all vertices or regions of interest (ROIs) of one or more such 

morphological measures is calculated across all individuals, resulting in a brain-

morphological similarity matrix, analogous to a GRM. The resulting matrix is then used in 

LMMs, yielding an estimate of the proportion of phenotypic variance attributed to brain 

morphology. This approach has been expanded by Couvy-Duchesne et al. (2020) and Fürtjes 

et al. (2023), showing that similarity matrices based on morphological measures explain 

significant proportions of variance across different groups of traits, such as anthropometrics 

(e.g. BMI), cognition, markers of socioeconomic status (SES) and health behaviors (Couvy-

Duchesne et al. 2020). Importantly, comparisons have shown that similarity-based 

approaches consistently outperformed conventional univariate association analyses, both in 

terms of power to detect effects and in explained trait variability, in clinical and non-clinical 

traits (Sabuncu et al. 2016).  

The current study expands on this work by investigating both the morphometricity 

and SNP-based heritability of a wide array of traits in a large sample of US children from the 

ABCD cohort baseline sample. Our novel contribution will be threefold. First, we are not 

aware of any previous study investigating the morphometricity of traits in younger 

individuals. It is conceivable that this approach might manifest differently in children 

compared to adults. We will restrict our approach to cortical thickness, which shows marked 

changes during development (Fuhrmann et al. 2022), and is reasonably robust against 

confounds such as head size and total brain volume (Barnes et al. 2010). Second, by assessing 

both morphometricity and SNP-based heritability within the same LMM framework, we 

estimate the observed trait variance that can be explained by both genomic and 

morphological effects, i.e. a combined genome-morphometric analysis. Our approach also 

allows for the exploration of the covariance between the genomic and morphological effects, 

using the CORE GREML approach (Zhou et al., 2020). The purpose of this is twofold: 

Traditionally, REML estimation assumes independence between random effects. However, 

cortical morphology has been shown to be heritable in both adults and younger individuals 
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(Fernandez-Cabello et al. 2022; Shadrin et al. 2021; van der Meer et al. 2020), potentially 

biasing estimates. By utilizing the CORE GREML approach, we can account for potential 

dependencies between genomic and morphological random effects, resulting in a more 

accurate estimation of their respective contributions. In addition, the inclusion of a third term 

describing the covariance allows for the delineation of the unique contributions of genomic 

and morphological effects on the trait of interest. This allows us to assess if the potential 

covariance of their effects manifest differently depending on the trait under investigation 

 

Materials and Methods  

Participants  

The full sample for the main analysis following MRI and genetics quality control (QC; see 

below) consisted of data from 7760 individuals (mean age 9.9 years, 46.8% females) obtained 

from the Adolescent Brain Cognitive Development Study (ABCD) annual data release 3.0 

(http://dx.doi.org/10.15154/1523041). The ABCD study (https://abcdstudy.org/) is an 

ongoing longitudinal developmental study (Volkow et al. 2018) following participants from 

age ~10 to age ~20, with bi-annual collection of neuroimaging data. Only data from the 

baseline session was included in the current analyses.  

 

Ethical approval 

The review and approval of the ABCD research protocol was handled by a central 

Institutional Review Board at the University of California, San Diego (Auchter et al. 2018). 

Informed consent was given by parents or guardians and assent was given by children before 

participation. The present project is registered in the NIMH Data Archive as project number 

1467 (doi: 10.15154/1524691), available for registered and authorized users (Request #7474, 

PI: Westlye). The current project has also been approved by the Norwegian Regional 

Committee for Medical and Health Research Ethics (REC; #2019/943). 

 

Genetic data - genomic relatedness matrix 

Genotyped data was provided by the ABCD consortium, specifically from the Genomics 

sample_03 (https://nda.nih.gov/study.html?id=1299). A full description of the collection and 

handling of genotyped data can be found at 

https://nda.nih.gov/experimentView.html?experimentId=1194. QC was performed by the 

ABCD consortium using the RICOPILI pipeline (Lam et al. 2020). Robust relatedness 

estimates were generated from genotyped SNPs using the pcrelate function from GENESIS 
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version 2.24.0 (10.18129/B9.bioc.GENESIS; Conomos et al. 2016), and converted into a 

GRM using the pcrelateToMatrix function from the same package. A GRM describes an 

estimate of the additive genetic relationship between individuals, where each off-diagonal 

entry denotes the estimated relatedness for a pair of individuals. It can be expressed as  

 

Where   is the resulting genomic relatedness matrix,  are columns of allele counts 

standardized to have a mean zero and a standard deviation of one, and  is the number of 

SNPs. Before the final analysis, for pairs with a familial or cryptic relatedness of 0.05 and 

above, one individual was removed using the grm-cutoff function from GCTA version 1.93.0 

(Yang et al. 2011), leaving the maximum possible sample size of non-related individuals.  

 

MRI QC and processing 

 A full description of ABCD MRI collection and acquisition parameters is given in Casey et 

al. (2018). Participants that did not pass the recommended image inclusion criteria provided 

by the ABCD consortium were removed from the sample (imgincl_t1w_include == 0; see 

http://dx.doi.org/10.15154/1523041 for full details of the QC procedure). T1-weighted MRI 

data from participants that passed the QC were processed using FreeSurfer 7.1 

(surfer.nmr.mgh.harvard.edu). Cortical thickness was computed vertex-wise, as coarser atlas-

based ROIs may carry insufficient spatial information for reliable estimates of the 

morphometricity of traits (Fürtjes et al. 2023). Individual cortical thickness surfaces were 

registered to a common template (fsaverage) and smoothed using a 15 mm full width at half 

maximum (FWHM) gaussian kernel. Non-cortical vertices belonging to the medial wall were 

excluded, leaving a total of 299 879 vertices across both hemispheres for each participant. 

To account for scanner-related confounds, a ComBat harmonization procedure was 

implemented in neuroCombat version 1.0.13 in R 

(https://github.com/Jfortin1/neuroCombat_Rpackage), using an empirical Bayes location-

shift model for all 28 scanners (see supplementary figure 1). All outcome measures were 

added as covariates for the harmonization procedure to preserve the presumed biological 

variability of trait outcomes. The resulting harmonized cortical thickness measures are a 

linear combination of the variables of interest and a scanner-specific residuals modulated by 

both additive and multiplicative scaling factors (Fortin et al. 2018).  

 

Brain similarity  
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To determine morphological similarity based on cortical thickness, we calculated the cross-

product of the transpose of a matrix containing all vertices of all participants. The formula is 

equivalent to the calculation of GRM, i.e. 

 

Where   is the resulting brain relatedness matrix (BRM), with each off-diagonal 

element describing the degree of similarity in  morphology between two individuals,  is a 

matrix.containing centered and scaled measures of cortical thickness for all vertices, 

standardized to have mean zero and standard deviation of one and  is the total number of 

voxels.  

 

Covariance between the effects of genomic relatedness and brain relatedness 

To investigate the covariance of the effects of brain measures and genomic data, we used the 

CORE GREML approach developed by Zhou et al. (2020). CORE GREML extends the 

concept of genome-based restricted maximum likelihood (GREML) by enabling the 

estimation of the covariance between two random effects through the product of the Cholesky 

decomposition of the two relatedness matrices. The detailed procedure can be found in Zhou 

et al. (2020). Briefly, the GRM and BRM matrices were transformed to be positive-definite 

and subjected to Cholesky decomposition. Subsequently, the product matrix of the Cholesky 

decompositions of the GRM and BRM was calculated. All the necessary steps of this 

procedure were implemented in MTG2 version 2.22 (Lee and van der Werf 2016). Estimates 

of model parameters for the covariance were obtained by fitting the product matrix, along 

with the GRM and the BRM, in an LMM (see Model 2 below). 

 

Outcome measures 

All outcome measures were taken from ABCD data release 3.0. and handled in R version 

4.0.0 (https://cran.r-project.org). We included outcome measures from four different 

domains: anthropometric, parental / residential, cognitive, and clinical (e.g. potential early 

markers of mental illness). Detailed descriptions of included instruments are given in Table 1. 

Pearson correlations of all included outcomes are given in Figure 2. Anthropometrics such as 

height and weight are highly heritable (Momin et al. 2023), and previously shown 

considerable levels of morphometricity in adults, with cortical morphology accounting for 

approximately 20% of the variation in body mass index (Fürtjes et al. 2023). However, 

heritability estimates of anthropometric measures tend to be lower during childhood and 
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adolescence (Jelenkovic et al. 2016). It remains uncertain if estimates of morphometricity 

would be equally reduced. As a growing body of evidence demonstrates associations between 

perinatal and early-life factors and later brain development (Alnæs et al. 2020; Walhovd et al. 

2023), we also included weight at birth.  

Measures of cognition and general intelligence were included due to their clinical and 

functional relevance and links to both cortical development and genetics (Estrada et al. 2019). 

For the remaining included measures, we attempted to capture the associations between 

morphology, genetic influences, and the family and local environment. This includes markers 

of socioeconomic status, which have previously been associated with brain imaging derived 

phenotypes in the ABCD sample (Alnæs et al. 2020). Lastly, we included measures of early 

signs of mental illness, including externalizing and internalizing symptoms.  

Outcome scores more than four median absolute deviations from the median were set 

to missing (Leys et al. 2013). Following this, histograms of outcome distributions were 

inspected manually, resulting in four weight measurements, all below 40lbs/18kg., being set 

to missing. For each outcome variable missing data was removed before being ordered-

quantile-normalized using the bestNormalize package version 1.8.2. in R (https://cran.r-

project.org/package=bestNormalize).  

 

Table 1. Included outcome variables. n equals the final number of available data following genetic and MRI QC 

and outlier removal.  

* Average of three measurements 

†  Maximum education of either parent 

‡ Sum of 26 item Likert scale items 
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Figure 1. Correlations of all included outcome variables. The upper and lower triangular represent 

the same values, numerically (upper) and color coded (lower). 

 

Data analysis 

First, we calculated the overall Pearson’s correlation between the off-diagonal elements of 

the GRM and the BRM. This correlation provided insights into the similarity or dissimilarity 

between the two matrices, irrespective of their associations with specific traits. Due to the 

extensive number of elements, we report descriptive statistics only.  

Second, morphometricity and SNP-based heritability estimates were obtained using 

two separate restricted likelihood random-effects (REML) models for each of the 19 

phenotypes (Fig 2.). The first model is 

               

where  is the trait of interest,  is an incident matrix for the fixed effects ; age, sex, 

genotype batch, and the first 20 principal components of the GRM and four genetic ancestry 

factors (GAFs) to account for population stratification and ancestry (East Asian, African, 

American, European).  is the random genomic effects and  is the random effects of 

morphological measures. Then, the variance and covariance of  can be written as  
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The second model (i.e. CORE GREML), denoted as Model 2, is the same as in Model 1 

except for the addition of the covariance term in the variance and covariance of , which can 

be written as  

  

where  is the product of the Cholesky decomposition of the GRM and the BRM, and 

 is the covariance between genomic and morphological effects.  

  

The final calculation of morphometricity ( ) is equivalent to conventional 

heritability  ( ) calculation, e.g.  is the same as  

 

Estimates of standard error of  and  were obtained using the Delta method (Oehlert 

1992)). Reported p-values are based on Wald tests with one degree of freedom under the null 

hypothesis that the variance component is zero, implemented in MTG2. Likelihood ratio tests 

with 1 degree of freedom were performed to determine if the addition of the covariance term 

significantly improved model fit for a given trait (CORE GREML). This was done only on 

traits where both the GRM and BRM contributed significantly to trait variance. It gives that if 

the contribution of two random effects to variation in a trait is negligible, their covariance 

would also be negligible. The correlation estimates reported in Table 2 is the correlation of 

the two random effects  and , obtained as in Zhou et al. (2020) by scaling the covariance by 

the square root of the product of the variance of the two random effects, i.e.  

 

The sampling variance of the correlation estimates was obtained using the Delta method with 

variance and covariance terms from Model 2 (CORE GREML).  

All reported p-values for variance components, likelihood ratio tests and correlations 

were adjusted for multiple tests by using false discovery rate (FDR; Benjamini and Hochberg 

1995).  
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Fig 2. Illustration of random effects included in Model 1 and Model 2. A: Genomic relatedness 

matrix. B: Brain relatedness matrix. C: Covariance of effects of A and B. 

 

 

Results 

Gross association of GRM and BRM elements 

Correlation analyses revealed a near-zero association between the off-diagonal elements of 

the GRM and the BRM (r = 0.0015; 95% confidence interval [CI] = 0.0012, 0.0019), 

indicating that similarity in cortical morphology in children is not associated with genomic 

similarity (Figure 3).  
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Fig. 3. Pearson correlation of the off-diagonal elements of the GRM and the GRM. Scatter shows a random 

selection of 1 000 000 associations, values indicate the overall r and CI for all 30 104 920 associations. 

 

Model 1:  

The full results of Model 1 analyses are presented in Fig. 4 and Supplementary Table 1. The 

estimates of SNP-based h2 were significantly different from zero for the majority of included 

traits. However, it should be noted that the contribution of genetic factors was generally 

modest and estimated SNP-based h2 did not exceed 0.30 for any trait. The highest estimates 

were found for the NIH Toolbox crystallized intelligence composite score (h2 = 0.23), the 

NIH Toolbox reading task (h2 = 0.20), and height (h2 = 0.19). Genomic similarity was not 

significantly associated with birth weight, mother's age at pregnancy, the NIH Toolbox 

flanker task, internalizing and externalizing symptoms or sleep disturbance (all h2 < 0.1).  

The morphometricity analyses revealed associations between morphology and 

multiple traits of interest. Among these traits, the highest estimates of morphometricity (m2) 

were found for anthropomorphic traits, including birth weight (m2 = 0.19), current weight (m2 

= 0.12) and height (m2 = 0.11). Significant m2 was also found for ten other traits of interest. 

However, it is important to note that the effects of these estimates were marginal, all below 
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5%, except for the area deprivation index (m2 = 0.06), and mothers' age at pregnancy (m2 = 

0.05).  

 

 

Fig. 4: Outcomes of main analysis. (a) estimates and SE for all included traits, either with or without the 

covariance (CORE GREML)-term included in the LMM. (b) estimates and SE for all included traits, either 

with or without the covariance term included in the LMM. 

 

Model 2:  

 

Table 2: Outcome of log likelihood comparisons of Model 1 and Model 2 and correlations of random effects.  

 

As evidenced by Figure 4, estimates of  and  did not show noticeable changes whether 

using GREML or CORE GREML. To further assess the significance of covariance, 
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likelihood ratio tests were conducted with one degree of freedom for the ten traits where both 

genomic and morphological effects contributed significantly to variation in traits of interest 

(Table 2). The likelihood-ratio tests indicated that the addition of a third component 

describing the covariance between the genomic and morphological effects did not result in a 

significant change in the goodness of fit for any of the traits. 

 

Discussion 

Investigations of associations between observable traits and brain structure among rapidly 

maturing children and adolescents often yield inconsistent results. In the present paper, we 

adopted methods from genetics and assessed the proportion of observable trait variance in 

children that can be explained by both similarity in common genetic variants and similarity in 

cortical thickness. Most included traits showed moderate heritability. However, beyond 

anthropomorphic traits, our analyses revealed generally weak associations between cortical 

thickness and included traits. Further, a novel approach to assessing the covariance between 

genomic and morphological effects revealed no strong interdependence, suggesting that their 

contributions were unique. 

 

Morphometricity 

Our findings indicate the contribution of similarity in cortical morphology to the included 

traits were generally limited. This adds to recent literature suggesting that interindividual 

differences in cortical morphology share limited associations with behavioral differences 

among populations of normally developing children and adolescents (Genon, Eickhoff, and 

Kharabian 2022). This may also extend to adults, where previous estimates of strong brain-

behavior associations from small-scale studies have proved difficult to replicate in large-scale 

population-based samples (Botvinik-Nezer and Wager 2022). Overall, our findings indicate 

that morphometricity is, as previously shown (Couvy-Duchesne et al. 2020; Fürtjes et al. 

2023), reasonable for traits that are anthropometric in nature, such as height and weight, but 

this does not extend to psychopathology or cognitive functions in this young population 

based sample. Couvy-Duchesne et al. (2020) specifically probed the association between 

anthropometrics and morphometricity and found that the morphometricity of traits from 

multiple different categories, such as symptoms of mental disorders, were in part attributable 

to body size. Birth weight, however, appeared in our sample to be unrelated to current height 

or weight. This indicates that birth weight may have associations with cortical morphology 

that are independent of later body size. Although we cannot determine the directionality of 
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effects in the present study, previous studies indicate that low birth weight is associated with 

an enduring pattern of accelerated brain maturation (Alnæs et al. 2020; Knickmeyer et al. 

2017). In another recent study, Gilmore et al. (2020) showed that later heterogeneity of 

cortical thickness is largely present at 1 year of age, highlighting the lasting importance of 

neonatal characteristics on later brain development. 

The finding that neighborhood socioeconomic conditions (as measured by the ADI) 

show significant, albeit somewhat limited, associations with cortical thickness supports 

previous research demonstrating that socioeconomic status is recognized in the child brain 

(Alnæs et al. 2020; Norbom et al. 2023). This association appears to go beyond population 

stratification and genetic ancestry, which were included as fixed effects in our models. The 

cause of this association is not known, but recent papers based on material from the ABCD 

study suggest that the association between SES and brain morphology is partly mediated by a 

lack of supportive stimulation and a lack of healthy food options more frequently found in 

lower compared to higher SES strata (Dennis, Manza, and Volkow 2022; Tomasi and 

Volkow 2021). We also observed that interindividual differences in cortical thickness was 

associated with maternal age at pregnancy. While our analysis does not inform us about the 

directionality of this effect, lower maternal age has previously been linked to lower SES 

strata (Moore et al. 1993; Restrepo-Méndez et al. 2015). It is possible that this association is 

confounded by birth weight, which showed moderate association with cortical morphology in 

our sample, and has previously been linked to both SES and maternal age (Restrepo-Méndez 

et al. 2015). However, in the present sample, the correlations between birth weight and SES 

markers were virtually non-existent, indicating that SES may have links to cortical 

morphology beyond gestational factors. 

 

Heritability analyses 

We found that the majority of traits included were moderately heritable, which can be used as 

a reference for future investigations of SNP-based heritability in the ABCD study. However, 

we would like to acknowledge that some estimates are at the lower end compared to what is 

commonly reported. This is particularly true for height, with our estimate being 

approximately one third of what is typically found in adult populations (Yengo et al. 2022). 

The comparatively lower estimates of heritability may possibly be attributed to the age of the 

sample, as the heritability of many traits tends to be lower during childhood before increasing 

throughout adolescence (Bergen, Gardner, and Kendler 2007). This is also the case for 

height, with heritability estimates increasing dramatically from 11-12 years onwards 
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(Jelenkovic et al. 2016). Another possible issue explaining the somewhat lower estimates of 

SNP-based heritability is the transethnic nature of the ABCD sample. Significant 

heterogeneity in either the genotype or the trait across different ethnic populations may cause 

a deflation of global SNP-heritability. This effect may be present even as population 

stratification and ancestry scores are added as covariates in LMMs (Li and Keating 2014). 

However, due to sample size constraints we did not consider it possible to run separate 

analyses for different ethnic ancestries.  

 

Covariance 

We show that the covariance between the genomic and morphological effects on the trait of 

interest is not significantly different from zero, and these effects are largely independent. This 

finding has two implications. Firstly, it indicates that our estimates of heritability and 

morphometricity may not be affected by the covariance between these factors. Secondly, it 

suggests that while cortical morphology has been shown to be highly heritable (van der Meer 

and Kaufmann 2022), this does not necessarily translate into similar cortical thickness 

between individuals who share genomic similarity, at least not conditioned on the traits 

included in the present study. Conceivably, the covariance of the effects of genomic and 

cortical thickness similarity might present itself with age, as the influence of genetic factors 

on cortical morphology becomes stronger throughout adolescence (Schmitt et al. 2014). 

However, the lack of relationship between SNP-based and cortical thickness-based similarity, 

as evidenced by Figure 3, could also indicate that the genetic units contributing to genetic 

similarity are not the same as the genetic units that contribute to similarity in cortical 

thickness (Boyle, Li, and Pritchard 2017). Some care should be taken with this interpretation, 

however, due to the highly complex time- and location (i.e. region)-specific influence of 

genetic factors on cortical thickness (Kang et al. 2011; Strike et al. 2019; van der Meer and 

Kaufmann 2022), which might not be captured well by a coarse similarity in cortical 

thickness across all vertices. The power to detect covariances in the present study might also 

be low due to the overall small estimates of morphometricity. In the original CORE GREML 

paper by Zhou et al. (2020), ten traits with high heritability were selected to maximize the 

power to detect genome-transcriptome covariance. A recent paper by Owens et al. (2021) 

showed that small effect sizes are generally expected in the ABCD study, which might make 

sound inference regarding gene-morphology covariance complicated in this sample.  

 

Limitations 
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The present paper has three limitations of particular importance. First, treating morphological 

and genetic effects as random avoids the issue of exhausting statistical power on hypothesis 

testing corrections for individual SNPs or vertices, but comes at the cost of spatial resolution, 

i.e. we cannot decipher which parts of the brain that contributed to variation in a trait.  

Second, the present study is cross-sectional, representing only a snapshot of the child 

brain at a single point in time. It is possible that the link between individual similarity in 

cortical thickness and individual differences in traits is better understood looking at change 

over time (Foulkes and Blakemore 2018; Rakesh et al. 2023), or that the sensitivity of 

cortical thickness to relevant outcome variables increases as individuals age (Mewton et al. 

2022). A promising avenue might involve the calculation of separate BRMs for multiple 

timepoints and look for changes in interindividual differences in cortical thickness or other 

morphological measures across time, and how these changes relate to both changes in the 

influence of genetic factors and in observable traits.  

Third, any type of neuroimaging measure can be expressed as a relatedness matrix. In 

the present paper, we limited our approach to cortical thickness. To better capture the strength 

afforded by the multimodal approach of large-scale imaging studies, future studies should 

seek to integrate the information afforded by multiple imaging derived phenotypes.  

 

Concluding remarks 

Here, we employed methods from statistical genetics to capture the association between 

cortical morphology and traits spanning the child phenome. Within the same linear mixed 

model framework, we assessed the effects of genetic similarity and its potential association 

with morphological similarity. Overall, associations with morphology were mostly limited to 

anthropometric traits, although some associations with socioeconomic status were also 

observed. The estimated contribution of genetic effects to trait variance was at the lower end 

of what is commonly found, possibly attributable to the age and ethnic makeup of the sample. 

No significant covariance between the effects of cortical morphology and genetic effects was 

found. Future studies should seek to better integrate information from different imaging 

derived measures beyond cortical thickness.  
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The ABCD data repository grows and changes over time. The ABCD data used in this report 

came from ABCD release 3.0 (NDA Study 901, DOI 10.15154/1519007). 
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