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Abstract

Linking the developing brain with individual differences in clinical and demographic traits is
challenging due to the substantial interindividual heterogeneity of brain anatomy and
organization. Here we employ a novel approach that parses individual differences in both
cortical thickness and common genetic variants, and assess their effects on a wide set of
childhood traits. The approach uses a linear mixed model framework to obtain the unique
effects of each type of similarity, as well as their covariance, with the assumption that
similarity in cortical thickness may in part be driven by similarity in genetic variants. We
employ this approach in a sample of 7760 unrelated children in the ABCD cohort baseline
sample (mean age 9.9, 46.8% female). In general, significant associations between cortical
thickness similarity and traits were limited to anthropometrics such as height (r> = 0.11, SE =
0.01), weight (r> = 0.12, SE = 0.01), and birth weight (r> = 0.19, SE = 0.01), as well as
markers of socioeconomic status such as local area deprivation (r> = 0.06, SE = 0.01) .
Analyses of the contribution from common genetic variants to traits revealed contributions
across included outcomes, albeit somewhat lower than previous reports, possibly due to the
young age of the sample. No significant covariance of the effects of genetic and cortical
thickness similarity was found. The present findings highlight the connection between
anthropometrics as well as socioeconomic factors and the developing brain, which appear to
be independent from individual differences in common genetic variants in this population-
based sample. The approach provides a promising framework for analyses of neuroimaging
genetics cohorts, which can be further expanded by including imaging derived phenotypes

beyond cortical thickness.
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Introduction

Mapping individual differences in brain morphology and their associations with relevant
clinical and demographic traits has been described as one of the fundamental challenges of
neuroscience (Giedd and Rapoport 2010; Lashley 1947). This task is particularly challenging
in young individuals, as the structure of the brain changes rapidly when they progress through
different stages of development (Mills et al. 2021). A morphological measure that has
received extensive attention is the thickness of the cortex, both due to its potential sensitivity
to age (Frangou et al. 2022) and clinical conditions (Hettwer et al. 2022). Cortical thickness
can be estimated from magnetic resonance imaging (MRI) data with reasonable accuracy
(Fuhrmann et al. 2022). However, reported associations between apparent cortical thickness
and observable traits in children and adolescents have largely been inconclusive (Marek et al.
2022). This lack of robustness may in part be attributed to a methodological reliance on
average effects that inadequately accounts for the individual heterogeneity of cortical
structure and development, instigating a call for new approaches that better capture this
variability (Foulkes and Blakemore 2018; Westlin et al. 2023).

In the field of genetics, leveraging the inherent genetic similarity among individuals
to explore the relationship between their genetic make-up and observable traits has revealed
novel insight into the associations between genetic factors and human traits (Tam et al. 2019).
For this, a genomic relatedness matrix (GRM) can be constructed (J. Yu et al. 2006) by
estimating the pairwise resemblance of individuals in a sample based on genome-wide single
nucleotide polymorphisms (SNPs; Yang et al. 2010). This GRM can then be integrated into
linear mixed models (LMMs) along with phenotypic traits, enabling the estimation of the
proportion of phenotypic variance attributed to genetics (commonly known as SNP-based
heritability). This approach, often referred to as genome-based restricted maximum likelihood
(GREML), has been successfully applied to large cohorts of young individuals to estimate
SNP-based heritability for complex behavioral traits, such as academic performance,
psychological distress, and externalizing behavior (Cheesman et al. 2020; Donati et al. 2021;
Eilertsen et al. 2022; Jami et al. 2022). The application of GREML in neuroscience has been
limited compared to other fields (Trzaskowski et al. 2014), and between-subject variability is
commonly considered as error. There is a growing recognition of the potential benefits of
incorporating individual variability caused by genetics to enhance our understanding of the

relationship between the developing cortex and observable traits (Z. Yu et al. 2022).
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Applying a similar approach to GREML, Sabuncu et al. (2016) reported that the
phenotypic variance of both clinical (e.g., diagnosis of mental illness) and non-clinical traits
(e.g., cognition) could be significantly explained by whole-brain morphology, specifically a
composite of multiple gray- and white matter measures in adults. This approach has been
termed morphometricity (Sabuncu et al. 2016), or trait morphometricity (Furtjes et al.(2023).
In simplified terms, this approach entails estimating one or more measures of brain
morphology, such as cortical thickness and cortical surface area. Next, the pairwise
resemblance across all vertices or regions of interest (ROIs) of one or more such
morphological measures is calculated across all individuals, resulting in a brain-
morphological similarity matrix, analogous to a GRM. The resulting matrix is then used in
LMMs, yielding an estimate of the proportion of phenotypic variance attributed to brain
morphology. This approach has been expanded by Couvy-Duchesne et al. (2020) and Firtjes
et al. (2023), showing that similarity matrices based on morphological measures explain
significant proportions of variance across different groups of traits, such as anthropometrics
(e.g. BMI), cognition, markers of socioeconomic status (SES) and health behaviors (Couvy-
Duchesne et al. 2020). Importantly, comparisons have shown that similarity-based
approaches consistently outperformed conventional univariate association analyses, both in
terms of power to detect effects and in explained trait variability, in clinical and non-clinical
traits (Sabuncu et al. 2016).

The current study expands on this work by investigating both the morphometricity
and SNP-based heritability of a wide array of traits in a large sample of US children from the
ABCD cohort baseline sample. Our novel contribution will be threefold. First, we are not
aware of any previous study investigating the morphometricity of traits in younger
individuals. It is conceivable that this approach might manifest differently in children
compared to adults. We will restrict our approach to cortical thickness, which shows marked
changes during development (Fuhrmann et al. 2022), and is reasonably robust against
confounds such as head size and total brain volume (Barnes et al. 2010). Second, by assessing
both morphometricity and SNP-based heritability within the same LMM framework, we
estimate the observed trait variance that can be explained by both genomic and
morphological effects, i.e. a combined genome-morphometric analysis. Our approach also
allows for the exploration of the covariance between the genomic and morphological effects,
using the CORE GREML approach (Zhou et al., 2020). The purpose of this is twofold:
Traditionally, REML estimation assumes independence between random effects. However,
cortical morphology has been shown to be heritable in both adults and younger individuals
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(Fernandez-Cabello et al. 2022; Shadrin et al. 2021; van der Meer et al. 2020), potentially
biasing estimates. By utilizing the CORE GREML approach, we can account for potential
dependencies between genomic and morphological random effects, resulting in a more
accurate estimation of their respective contributions. In addition, the inclusion of a third term
describing the covariance allows for the delineation of the unique contributions of genomic
and morphological effects on the trait of interest. This allows us to assess if the potential

covariance of their effects manifest differently depending on the trait under investigation

Materials and Methods

Participants

The full sample for the main analysis following MRI and genetics quality control (QC; see
below) consisted of data from 7760 individuals (mean age 9.9 years, 46.8% females) obtained
from the Adolescent Brain Cognitive Development Study (ABCD) annual data release 3.0
(http://dx.doi.org/10.15154/1523041). The ABCD study (https://abcdstudy.org/) is an

ongoing longitudinal developmental study (Volkow et al. 2018) following participants from

age ~10 to age ~20, with bi-annual collection of neuroimaging data. Only data from the

baseline session was included in the current analyses.

Ethical approval

The review and approval of the ABCD research protocol was handled by a central
Institutional Review Board at the University of California, San Diego (Auchter et al. 2018).
Informed consent was given by parents or guardians and assent was given by children before
participation. The present project is registered in the NIMH Data Archive as project number
1467 (doi: 10.15154/1524691), available for registered and authorized users (Request #7474,
Pl: Westlye). The current project has also been approved by the Norwegian Regional
Committee for Medical and Health Research Ethics (REC; #2019/943).

Genetic data - genomic relatedness matrix
Genotyped data was provided by the ABCD consortium, specifically from the Genomics

sample_03 (https://nda.nih.gov/study.html?id=1299). A full description of the collection and

handling of genotyped data can be found at
https://nda.nih.gov/experimentView.html?experimentld=1194. QC was performed by the
ABCD consortium using the RICOPILI pipeline (Lam et al. 2020). Robust relatedness

estimates were generated from genotyped SNPs using the pcrelate function from GENESIS
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version 2.24.0 (10.18129/B9.bioc.GENESIS; Conomos et al. 2016), and converted into a
GRM using the pcrelateToMatrix function from the same package. A GRM describes an
estimate of the additive genetic relationship between individuals, where each off-diagonal
entry denotes the estimated relatedness for a pair of individuals. It can be expressed as

T
Where GG R M is the resulting genomic relatedness matrix, G are columns of allele counts
standardized to have a mean zero and a standard deviation of one, and » is the number of
SNPs. Before the final analysis, for pairs with a familial or cryptic relatedness of 0.05 and
above, one individual was removed using the grm-cutoff function from GCTA version 1.93.0
(Yang et al. 2011), leaving the maximum possible sample size of non-related individuals.

MRI QC and processing

A full description of ABCD MRI collection and acquisition parameters is given in Casey et
al. (2018). Participants that did not pass the recommended image inclusion criteria provided
by the ABCD consortium were removed from the sample (imgincl_tlw_include == 0; see
http://dx.doi.org/10.15154/1523041 for full details of the QC procedure). T1-weighted MRI

data from participants that passed the QC were processed using FreeSurfer 7.1

(surfer.nmr.mgh.harvard.edu). Cortical thickness was computed vertex-wise, as coarser atlas-
based ROIs may carry insufficient spatial information for reliable estimates of the
morphometricity of traits (Furtjes et al. 2023). Individual cortical thickness surfaces were
registered to a common template (fsaverage) and smoothed using a 15 mm full width at half
maximum (FWHM) gaussian kernel. Non-cortical vertices belonging to the medial wall were
excluded, leaving a total of 299 879 vertices across both hemispheres for each participant.

To account for scanner-related confounds, a ComBat harmonization procedure was
implemented in neuroCombat version 1.0.13 in R

(https://github.com/Jfortinl/neuroCombat_Rpackage), using an empirical Bayes location-

shift model for all 28 scanners (see supplementary figure 1). All outcome measures were
added as covariates for the harmonization procedure to preserve the presumed biological
variability of trait outcomes. The resulting harmonized cortical thickness measures are a
linear combination of the variables of interest and a scanner-specific residuals modulated by

both additive and multiplicative scaling factors (Fortin et al. 2018).

Brain similarity
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To determine morphological similarity based on cortical thickness, we calculated the cross-
product of the transpose of a matrix containing all vertices of all participants. The formula is

equivalent to the calculation of GRM, i.e.

T
Where B 1M is the resulting brain relatedness matrix (BRM), with each off-diagonal
element describing the degree of similarity in morphology between two individuals, 5 is a
matrix.containing centered and scaled measures of cortical thickness for all vertices,
standardized to have mean zero and standard deviation of one and » is the total number of

voxels.

Covariance between the effects of genomic relatedness and brain relatedness

To investigate the covariance of the effects of brain measures and genomic data, we used the
CORE GREML approach developed by Zhou et al. (2020). CORE GREML extends the
concept of genome-based restricted maximum likelihood (GREML) by enabling the
estimation of the covariance between two random effects through the product of the Cholesky
decomposition of the two relatedness matrices. The detailed procedure can be found in Zhou
et al. (2020). Briefly, the GRM and BRM matrices were transformed to be positive-definite
and subjected to Cholesky decomposition. Subsequently, the product matrix of the Cholesky
decompositions of the GRM and BRM was calculated. All the necessary steps of this
procedure were implemented in MTG2 version 2.22 (Lee and van der Werf 2016). Estimates
of model parameters for the covariance were obtained by fitting the product matrix, along
with the GRM and the BRM, in an LMM (see Model 2 below).

Outcome measures
All outcome measures were taken from ABCD data release 3.0. and handled in R version

4.0.0 (https://cran.r-project.org). We included outcome measures from four different

domains: anthropometric, parental / residential, cognitive, and clinical (e.g. potential early
markers of mental illness). Detailed descriptions of included instruments are given in Table 1.
Pearson correlations of all included outcomes are given in Figure 2. Anthropometrics such as
height and weight are highly heritable (Momin et al. 2023), and previously shown
considerable levels of morphometricity in adults, with cortical morphology accounting for
approximately 20% of the variation in body mass index (Firtjes et al. 2023). However,

heritability estimates of anthropometric measures tend to be lower during childhood and


https://paperpile.com/c/3aEG7K/IhXXF/?noauthor=1
https://paperpile.com/c/3aEG7K/PIDwk
https://cran.r-project.org/
https://paperpile.com/c/3aEG7K/APdp9
https://paperpile.com/c/3aEG7K/NaYWN
https://doi.org/10.1101/2023.08.18.553837
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.18.553837; this version posted August 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

adolescence (Jelenkovic et al. 2016). It remains uncertain if estimates of morphometricity
would be equally reduced. As a growing body of evidence demonstrates associations between
perinatal and early-life factors and later brain development (Alnas et al. 2020; Walhovd et al.
2023), we also included weight at birth.

Measures of cognition and general intelligence were included due to their clinical and
functional relevance and links to both cortical development and genetics (Estrada et al. 2019).
For the remaining included measures, we attempted to capture the associations between
morphology, genetic influences, and the family and local environment. This includes markers
of socioeconomic status, which have previously been associated with brain imaging derived
phenotypes in the ABCD sample (Alnas et al. 2020). Lastly, we included measures of early
signs of mental illness, including externalizing and internalizing symptoms.

Outcome scores more than four median absolute deviations from the median were set
to missing (Leys et al. 2013). Following this, histograms of outcome distributions were
inspected manually, resulting in four weight measurements, all below 401bs/18kg., being set
to missing. For each outcome variable missing data was removed before being ordered-
quantile-normalized using the bestNormalize package version 1.8.2. in R (https://cran.r-

project.org/package=bestNormalize).

Measure ABCD element name n Range Mean
[~ Height anthroheightcalc 7163 44" -67" 55"
Youth Anthropometrics PhenX —
L Weight anthroweight1-3lb* 7745 401b-1481b 81lb
[~ Birthweight birth_weight_lbs 7053 2lb-121b 6.7 b
D P | History Questionnaire  —
L Age at pregnancy devhx_3_p 7606 13y/o-52y/o 29.5y/0
Parent Demographics Survey Parent education parent1-2_edu* 7657 13 years - 21 years 17.6 years
Area deprivation index reshist_addr1_adi_wsum 7458 40.64 - 125.75 97.2
Residental history derived scores — ]
L Child opportunity index reshist_addr1_coi_r_ed_nat 7082 1-100 60.7
~  Picture vocabulary nihtbx_picvocab_uncorrected 7620 57-112 849
Flanker task nihtbx_flanker_uncorrected 7580 67-116 94.4
Working memory nihtbx_list_uncorrected 7615 55-136 97.2
Card sorting nihtbx_cardsort_uncorrected 7592 65-120 93.1
NIH Toolbox —
Pattern recognition nihtbx_pattern_uncorrected 7619 36-140 88.0
Reading nihtbx_reading_uncorrected 7758 69-113 91.0
Fluid intelligence nihtbx_fluidcomp_uncorrected 7656 52-131 91.8
| Crystallized intelligence  nihtbx_cryst_uncorrected 7626 64-108 87.0
~ Internalizing cbel_scr_syn_internal_t 7584 33-88 488
Child behavior checklist (CBCL) —
L Externalizing cbel_scr_syn_external_t 7732 33-84 459
Prodromal Questionnaire (PQ-B) Pre-psychosis pps_y_ss_number 7759 0-6 14
Sleep Disturb Scale for Children (SDSC) Sleep di pdisturb1-26p* 6750 26-126 36.9
Table 1. Included outcome variables. n equals the final number of available data following genetic and MRI QC

and outlier removal.

* Average of three measurements

7 Maximum education of either parent

7Sum of 26 item Likert scale items
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cor NN -
-1 -0.5 0 0.5 1
Height 062 007 001 001 -000 001 012 011 006 010 011 010 013 013 -002 003 -0.01 -0.01
Weight - 009 007 -016 012 -0.18 -0.02 002 -005 -000 003 002 -001 -002 002 003 003 006
Birth weight 002 004 -005 001 008 004 009 002 000 009 006 010 003 002 -002 004
Age at pregnancy 036 -031 031 023 007 012 010 003 014 012 022 -007 -0.11 006 -0.07
Parent education 034 046 036 014 025 017 009 028 025 037 -005 012 012 -0.11
Area deprivation 063 -023 -013 018 013 -0.10 -0.18 -019 -024 004 009 007 0.09
>hild opportunity index - 032 014 022 017 012 022 024 031 -002 -009 -0.10 -0.08
Picture vocabulary 020 036 025 017 050 036 089 002 -007 -0.13 -0.02 Type
Flanker task 023 043 038 022 062 024 -002 -005 001 -0.03 Anthropometrics
Working memory 026 019 035 062 041 -001 009 -0.09 -0.04 Parental / Residental
Card sorting 045 023 068 028 -003 -006 -0.06 -0.04 Cognitive
Pattern recognition 018 072 020 -0.02 005 -005 -0.05 Clinical
Reading 036 083 -000 -0.09 -009 -0.04
Fluid intelligence ---- 041 004 011 -009 -0.07
rystallized intelligence - - 002 -009 -0.13 -0.04
CBCL Internalizing 058 007 051
CBCL Externalizing - 007 047
Pre-psychosis 0.08
Sleep disturbance
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Figure 1. Correlations of all included outcome variables. The upper and lower triangular represent
the same values, numerically (upper) and color coded (lower).

Data analysis
First, we calculated the overall Pearson’s correlation between the off-diagonal elements of
the GRM and the BRM. This correlation provided insights into the similarity or dissimilarity
between the two matrices, irrespective of their associations with specific traits. Due to the
extensive number of elements, we report descriptive statistics only.

Second, morphometricity and SNP-based heritability estimates were obtained using
two separate restricted likelihood random-effects (REML) models for each of the 19
phenotypes (Fig 2.). The first model is

y=XB+g+b+e
where ¥ is the trait of interest, X is an incident matrix for the fixed effects J; age, sex,
genotype batch, and the first 20 principal components of the GRM and four genetic ancestry
factors (GAFs) to account for population stratification and ancestry (East Asian, African,
American, European). 9 is the random genomic effects and b is the random effects of
morphological measures. Then, the variance and covariance of ¥ can be written as

var(y) = GRM %0} + BRM %o} + [ * ¢
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The second model (i.e. CORE GREML), denoted as Model 2, is the same as in Model 1
except for the addition of the covariance term in the variance and covariance of ¥, which can
be written as

var(y) = GRM x 0] + BRM % o} + I x £ + CORE % cov(g,b)
where C'O RE is the product of the Cholesky decomposition of the GRM and the BRM, and

cov(g,b) is the covariance between genomic and morphological effects.

The final calculation of morphometricity (mm?) is equivalent to conventional

2 2
2 _ O B2 — g

m 5
2 2
o5+ 07

L . . 2 2.
heritability (%% calculation, e.g. Ty + ¢ is the same as

Estimates of standard error of /% and /° were obtained using the Delta method (Oehlert
1992)). Reported p-values are based on Wald tests with one degree of freedom under the null
hypothesis that the variance component is zero, implemented in MTG2. Likelihood ratio tests
with 1 degree of freedom were performed to determine if the addition of the covariance term
significantly improved model fit for a given trait (CORE GREML). This was done only on
traits where both the GRM and BRM contributed significantly to trait variance. It gives that if
the contribution of two random effects to variation in a trait is negligible, their covariance
would also be negligible. The correlation estimates reported in Table 2 is the correlation of
the two random effects J and b, obtained as in Zhou et al. (2020) by scaling the covariance by

the square root of the product of the variance of the two random effects, i.e.

Obg
Tbg =
oi - o2
The sampling variance of the correlation estimates was obtained using the Delta method with
variance and covariance terms from Model 2 (CORE GREML).
All reported p-values for variance components, likelihood ratio tests and correlations
were adjusted for multiple tests by using false discovery rate (FDR; Benjamini and Hochberg

1995).
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Fig 2. lllustration of random effects included in Model 1 and Model 2. A: Genomic relatedness

matrix. B: Brain relatedness matrix. C: Covariance of effects of A and B.

Results

Gross association of GRM and BRM elements

Correlation analyses revealed a near-zero association between the off-diagonal elements of
the GRM and the BRM (r = 0.0015; 95% confidence interval [CI] = 0.0012, 0.0019),
indicating that similarity in cortical morphology in children is not associated with genomic

similarity (Figure 3).
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Fig. 3. Pearson correlation of the off-diagonal elements of the GRM and the GRM. Scatter shows a random

selection of 1 000 000 associations, values indicate the overall r and CI for all 30 104 920 associations.

Model 1:
The full results of Model 1 analyses are presented in Fig. 4 and Supplementary Table 1. The
estimates of SNP-based h? were significantly different from zero for the majority of included
traits. However, it should be noted that the contribution of genetic factors was generally
modest and estimated SNP-based h? did not exceed 0.30 for any trait. The highest estimates
were found for the NIH Toolbox crystallized intelligence composite score (h?= 0.23), the
NIH Toolbox reading task (h?= 0.20), and height (h? = 0.19). Genomic similarity was not
significantly associated with birth weight, mother's age at pregnancy, the NIH Toolbox
flanker task, internalizing and externalizing symptoms or sleep disturbance (all h?< 0.1).
The morphometricity analyses revealed associations between morphology and
multiple traits of interest. Among these traits, the highest estimates of morphometricity (m?)
were found for anthropomorphic traits, including birth weight (m? = 0.19), current weight (m?
=0.12) and height (m?= 0.11). Significant m? was also found for ten other traits of interest.

However, it is important to note that the effects of these estimates were marginal, all below
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5%, except for the area deprivation index (m?= 0.06), and mothers' age at pregnancy (m? =
0.05).
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Fig. 4: Outcomes of main analysis. (a) rn estimates and SE for all included traits, either with or without the
covariance (CORE GREML)-term included in the LMM. (b) /”estimates and SE for all included traits, either

with or without the covariance term included in the LMM.

Model 2:
]I2 CORE GREML le CORE GREML Log likelihood Correlation of random effects
) ' ) w/o CORE p-value
Trait Estimate SE p-value Estimate SE p-value CORE GREML diff. Corr. SE p-value

GREML (df=1)
Height 0.188 0.045 <0.001* 0.110 0.014 <0.001* -2710.69 -2710.69 0.968 0.005 0.132 0.968
Weight 0.134 0.043 0.005* 0.116 0.014 <0.001* -3057.03 -3056.38 0.254 0171 0.154 0.956
Parent education 0.138 0.049 0.009* 0.026 0.008 0.002* -2329.61 -2328.44 0.125 0.407 0.292 0.956
Area deprivation 0.145 0.049 0.007* 0.059 0.011 <0.001* -274315 -2742.56 0.276 0.203 0.197 0.956
Child opportunity index 0.163 0.050 0.004* 0.020 0.007 0.009* -2150.07 -2149.77 0.445 0.206 0.281 0.956
Picture vocabulary 0.191 0.050 <0.001* 0.016 0.006 0.013* -2749.55 -2749.19 0.395 -0.226 0.260 0.956
Working memory 0.120 0.049 0.022* 0.025 0.007 0.002* -3287.35 -3287.33 0.827 -0.063 0.286 0.956
Pattern recognition 0.119 0.049 0.022* 0.018 0.006 0.009* -3529.75 -3529.62 0.604 -0.182 0.329 0.956
Reading 0.205 0.050 <0.001* 0.017 0.006 0.009* -3206.03 -3205.93 0.663 -0.109 0.247 0.956
Fluid intelligence 0.180 0.048 <0.001* 0.033 0.008 <0.001* -3091.11  -3091.09 0.857 0.038 0.211 0.956
Crystallized intelligence 0.237 0.050 <0.001* 0.022 0.007 0.003* -274579 -274556 0.496 -0.143 0.207 0.956

Table 2: Outcome of log likelihood comparisons of Model 1 and Model 2 and correlations of random effects.

As evidenced by Figure 4, estimates of m? and 22 did not show noticeable changes whether

using GREML or CORE GREML. To further assess the significance of covariance,
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likelihood ratio tests were conducted with one degree of freedom for the ten traits where both
genomic and morphological effects contributed significantly to variation in traits of interest
(Table 2). The likelihood-ratio tests indicated that the addition of a third component
describing the covariance between the genomic and morphological effects did not result in a

significant change in the goodness of fit for any of the traits.

Discussion

Investigations of associations between observable traits and brain structure among rapidly
maturing children and adolescents often yield inconsistent results. In the present paper, we
adopted methods from genetics and assessed the proportion of observable trait variance in
children that can be explained by both similarity in common genetic variants and similarity in
cortical thickness. Most included traits showed moderate heritability. However, beyond
anthropomorphic traits, our analyses revealed generally weak associations between cortical
thickness and included traits. Further, a novel approach to assessing the covariance between
genomic and morphological effects revealed no strong interdependence, suggesting that their

contributions were unique.

Morphometricity

Our findings indicate the contribution of similarity in cortical morphology to the included
traits were generally limited. This adds to recent literature suggesting that interindividual
differences in cortical morphology share limited associations with behavioral differences
among populations of normally developing children and adolescents (Genon, Eickhoff, and
Kharabian 2022). This may also extend to adults, where previous estimates of strong brain-
behavior associations from small-scale studies have proved difficult to replicate in large-scale
population-based samples (Botvinik-Nezer and Wager 2022). Overall, our findings indicate
that morphometricity is, as previously shown (Couvy-Duchesne et al. 2020; Furtjes et al.
2023), reasonable for traits that are anthropometric in nature, such as height and weight, but
this does not extend to psychopathology or cognitive functions in this young population
based sample. Couvy-Duchesne et al. (2020) specifically probed the association between
anthropometrics and morphometricity and found that the morphometricity of traits from
multiple different categories, such as symptoms of mental disorders, were in part attributable
to body size. Birth weight, however, appeared in our sample to be unrelated to current height
or weight. This indicates that birth weight may have associations with cortical morphology
that are independent of later body size. Although we cannot determine the directionality of
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effects in the present study, previous studies indicate that low birth weight is associated with
an enduring pattern of accelerated brain maturation (Alnas et al. 2020; Knickmeyer et al.
2017). In another recent study, Gilmore et al. (2020) showed that later heterogeneity of
cortical thickness is largely present at 1 year of age, highlighting the lasting importance of
neonatal characteristics on later brain development.

The finding that neighborhood socioeconomic conditions (as measured by the ADI)
show significant, albeit somewhat limited, associations with cortical thickness supports
previous research demonstrating that socioeconomic status is recognized in the child brain

(Alnees et al. 2020; Norbom et al. 2023). This association appears to go beyond population

stratification and genetic ancestry, which were included as fixed effects in our models. The
cause of this association is not known, but recent papers based on material from the ABCD
study suggest that the association between SES and brain morphology is partly mediated by a
lack of supportive stimulation and a lack of healthy food options more frequently found in
lower compared to higher SES strata (Dennis, Manza, and VVolkow 2022; Tomasi and
Volkow 2021). We also observed that interindividual differences in cortical thickness was
associated with maternal age at pregnancy. While our analysis does not inform us about the
directionality of this effect, lower maternal age has previously been linked to lower SES
strata (Moore et al. 1993; Restrepo-Méndez et al. 2015). It is possible that this association is
confounded by birth weight, which showed moderate association with cortical morphology in
our sample, and has previously been linked to both SES and maternal age (Restrepo-Méndez
et al. 2015). However, in the present sample, the correlations between birth weight and SES
markers were virtually non-existent, indicating that SES may have links to cortical

morphology beyond gestational factors.

Heritability analyses

We found that the majority of traits included were moderately heritable, which can be used as
a reference for future investigations of SNP-based heritability in the ABCD study. However,
we would like to acknowledge that some estimates are at the lower end compared to what is
commonly reported. This is particularly true for height, with our estimate being
approximately one third of what is typically found in adult populations (Yengo et al. 2022).
The comparatively lower estimates of heritability may possibly be attributed to the age of the
sample, as the heritability of many traits tends to be lower during childhood before increasing
throughout adolescence (Bergen, Gardner, and Kendler 2007). This is also the case for
height, with heritability estimates increasing dramatically from 11-12 years onwards
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(Jelenkovic et al. 2016). Another possible issue explaining the somewhat lower estimates of
SNP-based heritability is the transethnic nature of the ABCD sample. Significant
heterogeneity in either the genotype or the trait across different ethnic populations may cause
a deflation of global SNP-heritability. This effect may be present even as population
stratification and ancestry scores are added as covariates in LMMs (Li and Keating 2014).
However, due to sample size constraints we did not consider it possible to run separate

analyses for different ethnic ancestries.

Covariance

We show that the covariance between the genomic and morphological effects on the trait of
interest is not significantly different from zero, and these effects are largely independent. This
finding has two implications. Firstly, it indicates that our estimates of heritability and
morphometricity may not be affected by the covariance between these factors. Secondly, it
suggests that while cortical morphology has been shown to be highly heritable (van der Meer
and Kaufmann 2022), this does not necessarily translate into similar cortical thickness
between individuals who share genomic similarity, at least not conditioned on the traits
included in the present study. Conceivably, the covariance of the effects of genomic and
cortical thickness similarity might present itself with age, as the influence of genetic factors
on cortical morphology becomes stronger throughout adolescence (Schmitt et al. 2014).
However, the lack of relationship between SNP-based and cortical thickness-based similarity,
as evidenced by Figure 3, could also indicate that the genetic units contributing to genetic
similarity are not the same as the genetic units that contribute to similarity in cortical
thickness (Boyle, Li, and Pritchard 2017). Some care should be taken with this interpretation,
however, due to the highly complex time- and location (i.e. region)-specific influence of
genetic factors on cortical thickness (Kang et al. 2011; Strike et al. 2019; van der Meer and
Kaufmann 2022), which might not be captured well by a coarse similarity in cortical
thickness across all vertices. The power to detect covariances in the present study might also
be low due to the overall small estimates of morphometricity. In the original CORE GREML
paper by Zhou et al. (2020), ten traits with high heritability were selected to maximize the
power to detect genome-transcriptome covariance. A recent paper by Owens et al. (2021)
showed that small effect sizes are generally expected in the ABCD study, which might make

sound inference regarding gene-morphology covariance complicated in this sample.

Limitations
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The present paper has three limitations of particular importance. First, treating morphological
and genetic effects as random avoids the issue of exhausting statistical power on hypothesis
testing corrections for individual SNPs or vertices, but comes at the cost of spatial resolution,
I.e. we cannot decipher which parts of the brain that contributed to variation in a trait.

Second, the present study is cross-sectional, representing only a snapshot of the child
brain at a single point in time. It is possible that the link between individual similarity in
cortical thickness and individual differences in traits is better understood looking at change
over time (Foulkes and Blakemore 2018; Rakesh et al. 2023), or that the sensitivity of
cortical thickness to relevant outcome variables increases as individuals age (Mewton et al.
2022). A promising avenue might involve the calculation of separate BRMs for multiple
timepoints and look for changes in interindividual differences in cortical thickness or other
morphological measures across time, and how these changes relate to both changes in the
influence of genetic factors and in observable traits.

Third, any type of neuroimaging measure can be expressed as a relatedness matrix. In
the present paper, we limited our approach to cortical thickness. To better capture the strength
afforded by the multimodal approach of large-scale imaging studies, future studies should

seek to integrate the information afforded by multiple imaging derived phenotypes.

Concluding remarks

Here, we employed methods from statistical genetics to capture the association between
cortical morphology and traits spanning the child phenome. Within the same linear mixed
model framework, we assessed the effects of genetic similarity and its potential association
with morphological similarity. Overall, associations with morphology were mostly limited to
anthropometric traits, although some associations with socioeconomic status were also
observed. The estimated contribution of genetic effects to trait variance was at the lower end
of what is commonly found, possibly attributable to the age and ethnic makeup of the sample.
No significant covariance between the effects of cortical morphology and genetic effects was
found. Future studies should seek to better integrate information from different imaging

derived measures beyond cortical thickness.
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The ABCD data repository grows and changes over time. The ABCD data used in this report
came from ABCD release 3.0 (NDA Study 901, DOI 10.15154/1519007).
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