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Summary 

Enhancing our understanding of how the brain constructs conscious emotional experiences within 

dynamic real-life contexts necessitates ecologically valid neural models. Here, we present evidence 

delineating the constraints of current fMRI activation models in capturing naturalistic fear dynamics. To 

address this challenge, we fuse naturalistic fMRI with predictive modeling techniques to develop an 

ecologically valid fear signature that integrates activation and connectivity profiles, allowing for accurate 

prediction of subjective fear experience under highly dynamic close-to-real-life conditions. This signature 

arises from insights into the crucial role of distributed brain networks and their interactions in emotion 

modulation, and the potential of network-level information to improve predictions in dynamic contexts. 

Across a series of investigations, we demonstrate that this signature predicts stable and dynamic fear 

experiences across naturalistic scenarios with heightened sensitivity and specificity, surpassing traditional 

activation- and connectivity-based signatures. Notably, the integration of affective connectivity profiles 

enables accurate real-time predictions of fear fluctuations in naturalistic settings. Additionally, we unearth 

a distributed yet redundant brain-wide representation of fear experiences. Subjective fear is encoded not 

only by distributed cortical and subcortical regions but also by their interactions, with no single brain 

system conveying substantial unique information. Our study establishes a comprehensive and 

ecologically valid functional brain architecture for subjective fear in dynamic environments and bridges 

the gap between experimental neuroscience and real-life emotional experience. 

 

Keywords 
Subjective fear, fear fluctuations, naturalistic, activation, functional connectivity, MVPA 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2024. ; https://doi.org/10.1101/2023.08.18.553808doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.18.553808
http://creativecommons.org/licenses/by-nd/4.0/


 

Introduction  
Contemporary neuroscience models propose that emotions promote survival in dynamic environments 

and that the corresponding emotional state is mediated by the interplay between distributed cortical and 

subcortical brain networks(1-4). Although translational animal models have effectively identified brain 

regions and neural circuits involved in regulating fear responses in naturalistic contexts(5-9), emerging 

evidence indicates that the neural mechanisms underlying conscious fear differ from those governing 

hard-wired behavioral and physiological fear responses(10, 11). This distinction is crucial as animal 

studies cannot provide insights into the conscious and highly subjective emotional experience that 

essentially characterizes typical and pathological fear in humans(12-14). 

Our understanding of the conscious experience of fear mainly relies on conventional functional 

Magnetic Resonance Imaging (fMRI) studies in humans. These studies usually employ univariate analysis 

to localize regional brain activation or connectivity changes elicited by sparse presentations of affective 

stimuli (e.g., pictures of fearful faces or threatening animals) in laboratory settings. However, the 

limitations of this localization approach, including moderate effect sizes in brain-outcome associations, 

have become clear(15-17). To overcome these limitations, fMRI has been combined with multivariate 

pattern-recognition techniques to establish activation-based brain models for complex subjective 

experiences including pain(18, 19), negative affect(20, 21) and fear(10, 11). While these models have 

enabled the development of more precise and comprehensive neural models for emotional 

experiences(10, 11, 20-25), their capacity for ecologically valid prediction of dynamic emotional 

experiences in real-world settings remains unexplored. Given the significant differences between 

laboratory settings and natural environments where fear naturally arises(26), it is imperative to evaluate 

the sensitivity, specificity, and generalizability of fear-related signatures in predicting dynamic emotional 

experiences in everyday life, and to establish an ecologically valid neural model for subjective fear in 

natural environments(2-4, 21, 27). Furthermore, although the network perspective of brain organization 

has proposed that mental processes arise not from isolated brain regions but from the interplay among 

multiple areas(3, 28), little is known about the role of brain pathways in encoding subjective experiences. 

Utilizing naturalistic stimuli, such as movies, has recently allowed to test experimental brain models 

under more ecologically valid conditions. This has facilitated the translation of laboratory neuroimaging 

research into more generalizable brain mechanisms and promoted the exploration of dynamic interactions 

between brain systems during mental processes(29-32). Movies offer a multisensory experience that can – 

to a certain extent – simulate the processing of real-life sensory input and embed threat encounters into 

dynamic and immersive scenarios. This renders movies a more naturalistic and emotionally engaging 

form of experimental paradigms compared to the conventional presentation of isolated stimuli such as 
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affective pictures. Moreover, evidence suggests that predictive models utilizing network-level 

information, such as functional connectivity, may better capture attentional and affective changes in 

dynamic naturalistic environments(33-36), aligning with the importance of dynamic brain system 

interactions in animal models(1-5, 37). 

The present study thus encompasses four main objectives: (1) to test whether previously established 

fear-related activation-based signatures can predict dynamic fear in naturalistic environments, (2) to 

develop a sensitive, specific and generalizable fMRI-based signature predictive of stable fear experience 

in naturalistic contexts while simultaneously capitalizing on whole-brain connectivity and activity (i.e., a 

synergistic signature), (3) to test whether the synergistic signature can accurately capture fear in dynamic 

naturalistic environments, and (4) to determine how the subjective experience of fear in naturalistic 

contexts is represented in brain systems and pathways (Fig. 1). 

To investigate the predictive capabilities of established activation-based fear signatures (animal fear 

schema signature, AFSS(11); visually induced fear signature, VIFS(10)) and negative affect signatures 

(picture-induced negative emotion signature, PINES(20); generalized negative affect signature, 

GNAS(21)) in capturing dynamic subjective fear experience we conducted two independent fMRI 

studies. Study 1 (n = 76) involved watching a full-length short horror movie (“Don’t Look Away”; 7 min 

28 s), while study 2 (n = 36) focused on a segment from the movie “The Conjuring 2” (11 min 18 s). It's 

noteworthy that while the AFSS, VIFS and PINES were originally designed for visual stimuli, the GNAS 

was developed using a variety of aversive stimuli, including painful heat, painful pressure, aversive 

images, and aversive sounds, and has previously demonstrated accurate predictions of negative emotions 

elicited by diverse types of stimuli(21).   

In order to enhance the accuracy of predicting both short-term homogeneous and long-term dynamic 

fear experiences in naturalistic contexts and gain comprehensive insights into the underlying brain regions 

and pathways of subjective fear, we developed a whole-brain parcel-wise connectivity- and activity-based 

fear signature (CAFE). This signature was established using a naturalistic fMRI dataset incorporating 

subjective fear experience reports from study 1 during which participants immersed in 38 video clips of 

approximately 40 seconds each. We evaluated the predictive performance of the CAFE across studies 1 

and 2 and compared it with whole-brain voxel-wise activity and parcel-wise functional connectivity 

signatures. In study 3 (n = 31), we evaluated the predictive capacity of the CAFE's activation features, 

which constitute a small fraction of total features. Furthermore, we examined the generalizability of 

CAFE and the contributions of arousal and non-specific negative affect in an independent fMRI study 

(study 4, n = 63) during which subjects rated their arousal while watching 40 naturalistic movie clips (~30 

s) depicting neutral, high arousing negative (fearful, disgusting), or positive events. Finally, through a 
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series of analyses, we elucidated the brain regions and pathways involved in encoding ecologically valid 

fear experiences in dynamic contexts (Fig. 1). 

Overall, the current study allowed us to determine a comprehensive functional brain architecture for 

subjective fear in naturalistic contexts and provide an ecologically valid brain-based biomarker predictive 

of subjective fear intensity with high sensitivity and specificity.  

 

 
Fig. 1. Key research questions, naturalistic paradigms, and synergistic neural decoding of 
subjective fear experience. We first determined whether the established activation-based fMRI models 
for fear-related emotions (fear: AFSS and VIFS; general negative affect: PINES and GNAS) could 
capture dynamic fear under naturalistic conditions (i.e., while watching a full-length horror movie “Don’t 
look away” and a segment from the horror movie “The Conjuring 2”) (Q1). Next, we combined data from 
fear induction via immersive movie clips with multivariate predictive modeling to develop a synergistic 
signature capitalizing on distributed activation and connectivity features to predict fear during a stable 
emotional experience with higher accuracy than conventional activation and connectivity signatures (Q2). 
We tested whether the synergistic decoder could track fear variations in the highly dynamic context of 
watching horror movies (Q3) and further determined which and how brain regions and circuits contribute 
to the conscious experience of fear in naturalistic contexts (Q4). The examples of the fear-evoking movie 
clips include pictures only for display purposes and were not included in the original stimulus set. The 
pictures have been obtained from pixabay.com under the Pixabay License and are free for commercial 
and noncommercial use across print and digital. AFSS, animal fear schema signature; VIFS, visually 
induced fear signature; PINES, picture-induced negative emotion signature; GNAS, generalized negative 
affect signature. 
 
Results 
Previously developed fear-related signatures hardly predict dynamic fear experience during 

viewing horror movies. We initially tested whether the established activation-based signatures for fear 
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(AFSS(11) and VIFS(10)) and negative affect (PINES(20) and GANS(21)) that were developed on 

sparsely presented visual(10, 11, 20) or multimodal (visual, somatic and auditory)(21) stimuli could 

effectively capture dynamic fear experiences during naturalistic movie viewing (Fig. 1). 

To this end, we asked subjects in study 1 to watch a short horror movie (7 min 28 s) during fMRI. To 

approach a naturalistic and ecologically valid dynamic fear experience and associated brain responses no 

response was required from the subjects during the movie. An additional independent group (n = 30) 

provided ongoing subjective fear ratings, and after confirming that the trajectory of subjective fear 

experience induced by the movie is similar across participants (mean ± S.E.M. r = 0.73 ± 0.05), we used 

the group-average fear rating as a proxy for dynamic fear experience across individuals. Intriguingly, the 

responses of AFSS, VIFS, PINES, and GNAS showed no significant correlation with (hemodynamic 

response function) convolved or unconvolved dynamic fear ratings (r ≤0.07, permutation P ≥0.097; r 

≤0.07, permutation P ≥0.092, respectively). This observation remained consistent (r ≤ 0.09, permutation P 

≥ 0.319) when applying these signatures to the naturalistic data using a tapered sliding window 

approach(35, 38) (see Fig. 1 for the schematic of this analysis). 

We validated these results, in an independent naturalistic fMRI experiment (study 2) during which 

participants watched a movie segment from another horror movie during fMRI (“The Conjuring 2”, 11 

min 18s; n = 36) or provided subjective fear ratings (n = 30), respectively. Similar to prior findings, the 

trajectory of subjective fear experiences induced by the movie was consistent across participants (r = 0.70 

± 0.05). Correspondingly, the convolved or unconvolved average fear ratings at the group level failed to 

significantly correlate with the responses of any of the established signatures (r ≤ 0.18, permutation P ≥ 

0.056). Taken together, these findings underscore the limitations of neuroaffective signatures solely 

relying on brain activation magnitude in accurately predicting the nuanced fluctuations in emotional 

experiences within complex real-world contexts.  

 
A synergistic brain connectivity- and activity-based signature for subjective fear (CAFE) in 

naturalistic contexts. Our study aimed to develop an innovative fMRI-based decoder that can accurately 

predict both short-term stable and long-term dynamic fear experiences. Specifically, we focused on 

predicting responses to short movie clips that reliably elicit consistent subjective fear, as well as responses 

to longer films that induce fluctuating fear encounters. By leveraging our understanding of the 

involvement of distributed brain networks and their interplay in emotional modulation(1-4) and the 

potential of network-level information (functional connectivity) to enhance predictions in dynamic 

environments(33-36), we hypothesized that combining whole-brain activity and functional connectivity 

profiles would improve prediction accuracy in both stable and dynamic fear experiences within 

naturalistic contexts. 
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To this end, n = 76 participants in study 1 were shown a total of 38 immersive movie clips lasting 

30-50 s and reported their level of subjective fear on a scale ranging from 1 to 9 during fMRI. 

Importantly, the movie clips effectively induced a wide range of subjective fear levels, while maintaining 

consistent emotional intensity throughout each video. This allowed us to capture reliable mean activation 

and functional connectivity for each fear intensity level. Participants were split into training (n = 51) and 

test (n = 25) datasets. Subsequently, we employed the linear support vector regression (SVR) algorithm 

and developed a synergistic brain connectivity- and activity-based signature for subjective fear (i.e., the 

CAFE), which incorporated both parcel-mean activation and functional connectivity between all pairs of 

regions as its constituent features, using the training data alone. Considering evidence from prior 

investigations suggesting that the human neocortex can be segregated into 300-400 functionally separable 

areas(39, 40), we developed the CAFE using a parcellation scheme comprising a total of 463 parcels, 

encompassing cerebral, subcortical, and cerebellar regions (see Methods for details).  

To assess the efficacy of the CAFE we employed 10 repeats of 10-fold cross-validation on the 

training data, followed by out-of-sample predictions on the test data. As shown in Fig. 2a, the CAFE 
accurately predicted the stable subjective fear experience elicited by movie clips, both in the training 

dataset (cross-validated prediction-outcome correlation r = 0.64, R2 = 0.40, both permutation P < 1 × 10-4) 

and the test dataset (r = 0.67, R2 = 0.43, both permutation P < 1 × 10-4). The synergistic fear model, 

CAFE, surpassed the conventional whole-brain voxel-wise activation-based signature (training data: r = 

0.60, R2 = 0.33; test data: r = 0.62, R2 = 0.36) to a varying degree, with the differences of R2 achieving 

(marginal) significance (training data: permutation P = 0.006; test data: permutation P = 0.085). 

Importantly, the CAFE statistically outperformed the connectivity-based signature (training data: r = 0.58, 

R2 = 0.33; test data: r = 0.60, R2 = 0.34) in both training and test datasets (all permutation P ≤ 0.010). We 

further compared the prediction performance of the CAFE with those of previously established activation-

based signatures (AFSS, VIFS, PINES, and GNAS).  The CAFE was developed on the training data and 

to facilitate a fair comparison we therefore focused on the hold-out test dataset (for predictions on the 

whole sample see Supplementary Fig. 1). We found that the CAFE exhibited superior performance 

compared to these activation-based signatures (all permutation P < 1 × 10-4; see Supplementary Results 

for details). Notably, the prediction performance of the synergistic signature remained robust when we 

randomly split the training and test data 100 times, and when we applied a different parcellation method 

(see Supplementary Results for details).  

Interestingly, despite comprising a small fraction (~0.4%) of total features, the incorporation of 

activation features bolstered the CAFE’s predictive capability in comparison to connectivity-based 

signature. However, the extent to which the activation pattern of the CAFE can predict subjective fear 

experiences remains uncertain. To address this issue, we applied the activation pattern of the CAFE to an 
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independent fMRI dataset consisting of n = 31 participants who underwent fMRI scanning while viewing 

animal and object pictures. Before the fMRI procedure, subjective fear ratings were obtained for each 

animal category without presenting any stimuli(11). Our results revealed a significant predictive 

relationship between the response of CAFE’s activation pattern and the subjective fear ratings for animal 

categories (n = 163 brain images, r = 0.35, P = 6 × 10-6; Supplementary Fig. 2). These findings suggest 

that the activity features play a significant role in the synergistic fear model, contributing to the superior 

performance of the CAFE model when compared to the connectivity-based model. 

 

 
Fig. 2. Sensitivity and specificity of the CAFE. a, the CAFE accurately predicts subjective fear 
experience induced by movie clips (overall prediction-outcome r ≥ 0.64, R2 ≥ 0.40, permutation P < 1×10-
4). Each colored line represents prediction within each individual participant. Black line indicates the 
overall (i.e., within and between participants) prediction. Raincloud plots show the distribution of within-
participant predictions. b, the CAFE accurately distinguishes fear from disgust, happiness and neutral in 
naturalistic contexts (study 4; accuracies > 86.77%, P < 1.05 × 10-5, d > 1.76). Representational (c) and 
network and clustering (d) analyses show that the fear predictions by the CAFE are distinct from those 
based on arousal ratings. Correlation between the two matrices were performed by the Mantel test, and P 
value was obtained with 10,000 permutations. e, the CAFE captures a small extent of arousal, but not 
negative valence, information. High arousing disgust- and happiness-inducing movie clips exhibit 
stronger CAFE responses as compared to low arousing neutral clips (accuracy = 75.83%, P = 1 × 10-8, d = 
1.04; accuracy = 75.83%, P = 1 × 10-8, d = 1.24, respectively). However, the CAFE predicts fear vs. 
neutral (accuracy = 97.50%, P < 1 × 10-20, d = 2.97) considerably more accurate as reflected by effect 
sizes 2.39-2.85 times larger than those for predicting disgust or happiness vs. neutral. Moreover, the 
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CAFE can accurately classify fear from arousal-matched disgust (accuracy = 84.17%, P = 1 × 10-14, d = 
1.68) and (close-to) matched happiness (accuracy = 88.33%, P = 1 × 10-20, d = 1.79). Each colored line 
between dots represents each individual participant’s paired data (red line indicates correct classification 
whereas blue line indicates incorrect classification based on the forced two-choice test). F, fear; D, 
disgust; H, happiness; N, neutral.  
 

The CAFE generalizes across contexts and depends to a small extent on arousal, but not non-

specific negative affect. One of the main challenges in predictive modeling of emotional signatures is 

determining whether the signature specifically captures discrete emotional states such as fear, as opposed 

to general and nonspecific emotional processes like salience, valence, or arousal, which are inherently 

related to the emotional process of interest(27, 41, 42). To address this critical issue and examine the 

generalizability of the CAFE, we applied the CAFE to fMRI data collected in study 4 showing short 

movie clips to elicit a range of positive and negative arousing and non-arousing experiences.  

To assess the influence of arousal on the classification performance of the CAFE, we conducted a 

series of analyses. We employed exploratory representational similarity analysis, network analysis, and 

hierarchical clustering(43) to compare classification accuracies between pairs of emotions based on the 

CAFE signature response and arousal rating separately. Our initial findings demonstrated that the CAFE 

model exhibited a significant performance to accurately differentiate fear from other emotions (accuracies 

≥ 84.17%, P < 1 × 10-14; Fig. 2b). Furthermore, as evidenced in Fig. 2c and 2d, the predictions derived 

from the CAFE model and those rooted in arousal-based assessments manifested discernible patterns. 

This suggests that the predictive capability of the CAFE model is not exclusively reliant on arousal. 

Nonetheless, it is noteworthy that the CAFE responses for disgust and happiness surpassed those for 

neutral stimuli, implying a certain degree of association between the CAFE model and arousal.  

To further quantify the extent to which arousal contributed to the CAFE prediction we matched 

arousal ratings across emotional categories by excluding data from non-neutral movie clips that induced 

only low-to-medium levels of subjective arousal. This resulted in a dataset with comparable levels of high 

arousal induction for fear and disgust, although fear clips still induced slightly higher arousal than 

happiness clips (see Methods for details). As shown in Fig. 2e, heightened CAFE responses were 

observed for disgust and happiness compared to neutral (75.83%, P = 1 × 10-8, d = 1.04 and 75.83%, P = 

1 × 10-8, d = 1.24, respectively). However, contrasting these accuracies with fear vs. neutral predictions 

(accuracy = 97.50%, P < 1 × 10-20, d = 2.97) highlighted the CAFE's superior prediction for fear, with 

effect sizes (Cohen's d) 2.39-2.85 times larger than predicting disgust or happiness. Crucially, the CAFE 

effectively differentiated fear from arousal-matched disgust (accuracy = 84.17%, P = 1 × 10-14, d = 1.68) 

and near-matched happiness (accuracy = 88.33%, P = 1 × 10-20, d = 1.79), effect sizes 1.44-1.61 times 

larger than predicting disgust and happiness vs. neutral. Notably, findings remained consistent when 
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analyzing the complete dataset with all video clips. These results suggest that while the CAFE captures 

arousal information inherent to fear, arousal's impact on prediction performance remains modest. 

To explore the dependence of the CAFE on non-specific negative affect, we compared its signature 

response during non-fear negative (disgust) and positive (happiness) emotional experiences. We 

hypothesized that if the CAFE captured non-specific negative valence, it would exhibit a higher signature 

response for disgust compared to happiness. However, the CAFE failed to classify disgust from happiness 

accurately in either the full dataset (accuracy = 57.94%, P = 0.090, d = 0.13) or the high arousal dataset 

(accuracy = 58.33%, P = 0.082, d = -0.02). Furthermore, direct comparisons of the signature responses 

indicated no significant differences between disgust and happiness (P = 0.475, BF01 = 5.66 and P = 0.909, 

BF01 = 7.20, respectively; paired t-test). 

Additionally, we compared the sensitivity and specificity of the CAFE with connectivity- and 

activation-based signatures developed in Study 1, as well as established fear-related signatures. Our 

results demonstrated that the CAFE exhibited significantly higher sensitivity and specificity (see Table 1 

for details). For example, while the connectivity-based signature showed comparable accuracy in 

predicting dynamic fear compared to the CAFE model (see below for details), it had lower prediction 

rates for distinguishing stable fear from neutral conditions when compared to the CAFE (80.00% vs. 

97.50%). Moreover, the connectivity-based signature captured non-specific valence, with significantly 

stronger activation for disgust clips compared to happiness clips (paired t-test P = 0.005, BF10 = 6.79 and 

P = 0.003, BF10 = 10.90 in full and high arousal datasets, respectively). In summary, our findings suggest 

that the CAFE exhibits a high level of specificity compared to other fear-related signatures, effectively 

capturing a greater degree of fear-specific information while moderately considering arousal-related 

factors, without capturing non-specific negative affect. 

 

The synergistic signature predicts dynamic subjective fear in naturalistic contexts. In everyday life 

fear evolves in interaction with dynamic environmental changes and the translational potential of an 

ecologically valid neural signature critically depends on its capacity to track these variations. We thus 

explored the potential of the CAFE to capture moment-to-moment variations in subjective fear 

experiences during the full-length horror movies acquired in studies 1 and 2. Using a tapered sliding 

window approach, we applied CAFE to the naturalistic movie data collected in study 1, followed by 

prediction evaluations on both training dataset (cross-validated) and hold-out test dataset. Leveraging the 

movie's consistent impact on subjective fear experiences across participants (Fig. 3a), we employed 

group-average fear ratings as proxies for dynamic fear variations across individuals. We then quantified 

prediction accuracy by calculating average Fisher’s z-transformed Pearson’s correlations between 

individually predicted fear dynamics and observed group-level fear ratings(35). As depicted in Figure 3b, 
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the CAFE model accurately predicted subjective fear experience above chance level in both the training 

dataset (r = 0.37 ± 0.05, permutation P = 2 × 10-4) and test dataset (r = 0.44 ± 0.06, permutation P = 4 × 

10-4). Notably, a robust positive correlation was discovered between the average neural response spanning 

the duration of the movie and the group-average fear ratings (r = 0.80, permutation P = 0.004 and r = 

0.85, permutation P = 0.002, for training and test dataset respectively). Comparatively, the predictive 

performance of the CAFE model slightly surpassed the connectivity-based model (training data: within-

participant prediction-outcome r = 0.34 ± 0.05, permutation P = 0.002, group-average prediction-outcome 

r = 0.78, permutation P = 0.014; test dataset: within-participant prediction-outcome r = 0.42 ± 0.06, 

permutation P = 0.001, group-average prediction-outcome r = 0.85, permutation P = 0.006). Significantly, 

the CAFE model exhibited substantially improved predictive capabilities compared to the activation-

based model (training data: within-participant prediction-outcome r = 0.12 ± 0.02, permutation P = 0.061, 

group-level prediction-outcome r = 0.26, permutation P = 0.0564; test dataset: within-participant 

prediction-outcome r = 0.20 ± 0.04, permutation P = 0.015, group-average prediction-outcome r = 0.36, 

permutation P = 0.023).  

These findings were successfully replicated in study 2, further corroborating our initial observations. 

Specifically, the CAFE predictions exhibited significant correlations with the group-average fear ratings 

(r = 0.36 ± 0.05, permutation P = 0.003). Additionally, we found a strong positive correlation between the 

group-average signature response and the group-average fear rating throughout the movie (r = 0.78, 

permutation P = 0.015). Consistent with our previous results, the prediction performances of the CAFE 

model were comparable to those of the connectivity-based model (within-participant prediction-outcome r 

= 0.36 ± 0.05, permutation P = 0.005; group-average prediction-outcome r = 0.77, permutation P = 

0.019). Moreover, the CAFE model outperformed the activation-based model substantially (within-

participant prediction-outcome r = 0.13 ± 0.03, permutation P = 0.077; group-average prediction-outcome 

r = 0.27, permutation P = 0.088).  

Importantly, the prediction of the fear experience with the CAFE remained robust across different 

sliding window lengths (Supplementary Fig. 3). In contrast, activation-based fear signature developed 

using naturalistic stimuli demonstrated better prediction of dynamic fear experiences compared to those 

developed using static pictures. However, it still exhibited limitations in capturing moment-to-moment 

changes in subjective fear, thus highlighting the restricted efficacy of neural signatures that solely rely on 

activation features in capturing the dynamic nature of emotional experiences. Additionally, predicting fear 

dynamics using the connectivity and activity patterns of the CAFE separately further confirmed that 

connectivity, but not activity, profiles considerably contributing to the predictive accuracy. Our results 

emphasize the significance of integrating affective connectivity profiles to enable precise and real-time 

predictions of fear fluctuations within naturalistic settings.  
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Fig. 3. The CAFE predicts group-average dynamic states of subjective fear experience. a, continuous 
real-time ratings of subjective fearing were collected while participants watched two horror movies 
(“Don’t look away” and “The Conjuring 2”) in an independent behavioral experiment. The left panel 
depicts ratings across time for each participant and the right panel depicts histograms of pairwise 
participants’ response similarities. Mean r values were computed by averaging Fisher’s z – transformed 
Pearson’s correlation coefficients and transforming the mean Fisher’s z value back to r. b, testing whether 
the CAFE can accurately predict the dynamic moment-to-moment changes in subjective fear during 
naturalistic movie viewing on the group level revealed significant associations in both study 1 (training 
data: r = 0.80, permutation P = 0.004; test data: r = 0.85, permutation P = 0.002) and study 2 (r = 0.78, 
permutation P = 0.015). Lines represent mean values and shaded areas represent the standard error of 
mean. Moreover, the lower-right panel shows that the CAFE exhibits significant within-participant 
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predictions in both study 1 (r = 0.37 ± 0.05, permutation P = 2 × 10-4 and r = 0.44 ± 0.06, permutation P = 
4 × 10-4 for training and test datasets, respectively) and study 2 (r = 0.36 ± 0.05, permutation P = 0.003). 

 

 
Fear experience in natural contexts is represented in distributed brain regions and pathways. In our 

previous study(10), we identified brain regions associated with and predictive of subjective fear but did 

not account for dynamic interactions between the systems. Analyzing consistent predictive weights in the 

synergistic model and examining the encoding map(44) (Supplementary Fig. 4) allowed us to gain 

insights into specific brain regions and pathways contributing to subjective fear, with or without 

considering the effects of other regions and circuits, respectively. To identify key brain features 

underlying fear experience, we focused on features significant in both predictive weights and encoding 

map (i.e., their conjunction after thresholding at FDR P < 0.05)(10, 21, 44).  

Consistent with our prior findings(10), we observed positive weights and associations in distributed 

cortical and subcortical regions involved in fear reactivity and emotional awareness(14), including the 

(hypo)thalamus, periaqueductal gray (PAG), brainstem, anterior insula, and midcingulate cortex (MCC). 

Conversely, regions commonly associated with implicit emotion regulation, interoception, and 

somatomotor processing(37, 45), such as the ventromedial prefrontal cortex (vmPFC), anterior lateral 

prefrontal cortex (alPFC), middle temporal gyrus, inferior parietal lobule (IPL), posterior 

insula/operculum, and somatomotor cortex, exhibited negative weights and associations (Fig. 4a). 

Moreover, our findings revealed significant connections in both the weights and structure coefficients 

among all brain parcels, suggesting the involvement of distributed neural pathways in fear experience. 

Increased functional connectivity with cerebellar and visual cortices, including the PAG and brainstem, 

primarily predicts heightened fear experience, indicating the involvement of circuits related to threat 

detection and initial threat reactivity(14). Conversely, connectivity with somatomotor regions strongly 

predicts decreased subjective fear, potentially reflecting processes involving somatic representation, 

affective experience, or emotion regulation. At the node level, the MCC displays the highest positive 

weighted degree, implying that connectivity with this region is indicative of heightened fear. Conversely, 

connectivity with the dorsal posterior insula (dpINS) predicted lower subjective fear (Fig. 4b). 

To elucidate the impact of the synergistic approach on the identification of core brain features, we 

compared the core connectivity features of the CAFE and the connectivity (only) signature. We focused 

on this comparison because these signatures share over 99% common features, which could provide 

significant insights into how the inclusion of different brain features (activation), even in a limited 

number, can impact the identification of core brain pathways underlying the subjective fear experience. 

We found that while the unthresholded weight map and the encoding map of the CAFE pathways were 

highly correlated with those of the connectivity signature (r > 0.80), the synergistic CAFE model is more 
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conservative in identifying core pathways (thresholded) underlying the subjective fear experience. That is, 

although most core pathways (over 91%) identified in the CAFE remained significant in the connectivity 

signature the activity features could partially “suppress” the contribution of some pathways in the 

synergistic model (i.e., only 67% of those core pathways identified in the connectivity model retained 

their significance in the synergistic model). This “suppression” is particularly noteworthy, considering 

that the activation features represented only 0.43% of the entire features of the CAFE, and it might reflect 

the complex interactions between regional activation and cross-regional communication underlying the 

subjective fear experience (see Supplementary Fig. 5 for details). 

To better understand the neurobiological foundations of subjective fear, we conducted further 

analysis to determine which brain region could predict fear experience based on its activation and 

connectivity with all other regions. Rather than using statistical inference to test hypotheses about the 

weights in the comprehensive predictive model, this analysis summarized the evidence using local 

multivariate statistics (i.e., prediction performance). This approach, similar to traditional univariate brain 

mapping analysis, allows for interpretability as each region is independently subjected to the same 

analysis(46). As shown in Fig. 4c, widely distributed cortical and subcortical regions (321 out of 463 

parcels), including the vmPFC, MCC, PAG, insula and amygdala, could predict subjective fear in both 

training (cross-validated) and test data (i.e., their conjunction; each thresholded at FDR P < 0.05 based on 

permutation tests), further supporting the distributed nature of the neural basis underlying subjective fear.  
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Fig. 4. Core brain regions and pathways underlying subjective fear experience in naturalistic 
contexts. a, core brain regions for the subjective fear experience; defined as the conjunction (FDR P < 
0.05) of the synergistic signature weight map and the model encoding map. b, circular plot visualization 
of core pathways for the subjective fear experience; defined as the conjunction (FDR P < 0.05) of the 
synergistic signature weight map and the model encoding map. We group brain regions into 9 networks 
for display purpose. VN, visual network; SMN, somatomotor network; DAN, dorsal attention network; 
VAN, ventral attention network; LN, limbic network; FPN, frontoparietal network; DMN, default mode 
network; SCT, subcortical network; B/C, brainstem, and cerebellum; MCC, middle cingulate cortex; 
dpINS, dorsal posterior insula. c, brain regions which can significantly predict subjective fear ratings in 
both training (cross-validated) and test datasets by regional activity and connectivity with other regions 
(FDR P < 0.05).   
 
Subjective fear experience is encoded and represented in a redundant fashion  

To assess the necessity and uniqueness of each brain system in subjective fear, we partitioned the whole-

brain into nine large-scale networks, encompassing cortical, subcortical, and cerebellar regions. 

Subsequently, we randomly selected parcels ranging from 40 to 400 within these networks and utilized 

their connectivity and activity features to train new predictive models for subjective fear. Fig. 5a displays 

an improvement in prediction performance as the number of selected parcels increased, particularly when 

including parcels from a greater number of networks. Statistical analysis using linear regression models 
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confirmed these observations. The number of selected parcels, the number of networks from which they 

were drawn, and their interaction significantly influenced prediction performances (all P value < 4.76 × 

10-6, partial η2 > 0.53). Remarkably, the prediction performance remained stable when using half or more 

of the parcels to train the models. 

Based on these findings, we hypothesized that subjective fear experience might be redundantly 

encoded, with each network providing limited unique information. To investigate this, we conducted a 

comprehensive analysis. Firstly, we employed a “virtual lesion” analysis(20) and demonstrated that 

removing individual networks had minimal impact on model performance (training data: r = [0.62, 0.66], 

R2 = [0.37, 0.43]; test data: r = [0.61, 0.65], R2 = [0.35, 0.42]) (Fig. 5b). In this analysis we re-trained the 

model when each network was removed. Moreover, our finding was evident even when using a partial 

pattern of the CAFE without re-training the model (training data: r = [0.55, 0.64]; test data: r = [0.58, 

0.65]). Next, we performed a variance partitioning analysis to quantify the contribution of each network 

in predicting subjective fear experience. Synergistic signatures were developed using eight out of nine 

networks as well as the remaining single network, separately. Subsequently, we fitted a series of linear 

models to predict fear ratings using signature responses from the two models. For this analysis, we trained 

the model using data from randomly selected 51 participants and tested it using data from the remaining 

25 participants (repeated 10,000 times). We found that each single network showed modest prediction 

capability (R2 = [0.15 0.30]), but no significant differences were found between them (FDR P > 0.5). 
Notably, the unique contributions of single networks were minimal (accounting for 2.89 ± 0.72% of the 

total R2; Supplementary Table 1). In summary, our results confirm the redundancy hypothesis, illustrating 

that subjective fear is encoded in a redundant manner, with no specific subsystem playing a crucial role in 

predicting fear. 
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Fig. 5. Subjective fear experience is encoded and represented in a redundant fashion. a, predictions 
based on randomly selected regions show that model performance increases as a function of the numbers 
of selected parcels and for a given number of selected parcels model performance increases as a function 
of parcels spanning more networks. Dot indicates the mean prediction performance across 1,000 random 
samples. However, the prediction performance does not strongly change when only half or more parcels 
were used to train the models. b, “virtual lesion” analysis illustrates that no single subnetwork is 
necessary for accurately predicting the intensity of subjective fear. VN, visual network; SMN, 
somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; LN, limbic 
network; FPN, frontoparietal network; DMN, default mode network; SCT, subcortical network; B/C, 
brainstem, and cerebellum; WB, whole brain.  
 
Discussion 
Contemporary neuroscience models of conscious emotional experience emphasize a mental state-

dependent recruitment and interaction between brain systems. However, these integrative brain models 

have not been empirically tested under naturalistic conditions. Here we developed a fMRI-based whole-

brain model for the subjective experience of fear that capitalizes on synergistic contributions from activity 

and connectivity features (i.e., the CAFE). While conventional fMRI activation-based signatures failed to 

precisely predict fear in naturalistic contexts fusing immersive naturalistic stimuli with multivariate 

predictive modeling of connectivity and activity profiles allowed for the first time an accurate tracking of 
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stable and dynamic fear experiences across naturalistic contexts, thus providing critical support for the 

validity of synergistic brain models under ecologically valid conditions. We further demonstrated that the 

CAFE – to a large extent – captures fear-specific experiences which suggests that subjective fear or the 

reappraisal of fear may have idiosyncratic neural representations that generalize across naturalistic 

contexts. Finally, we showed that subjective fear experience was represented redundantly in the whole-

brain such that distributed brain regions and pathways were fear-predictive, but no system or circuit 

provided much unique information.  

Recent studies have capitalized on multivariate pattern analysis to develop brain activation-based 

biomarkers for non-specific negative affect(20, 21) or fear(10, 11). These models hold the potential to 

advance the understanding of the brain mechanisms that establish conscious emotional experiences as 

well as to promote biomarker and treatment development for mental disorders characterized by 

exaggerated negative emotional experience(12, 14, 47, 48). However, while animal studies have 

demonstrated that the behavioral and physiological responses of fear are mediated by dynamic 

interactions between subcortical and cortical systems(5, 49-51) and that the corresponding circuit level 

models generalize to fear in naturalistic contexts(5, 6, 8), it remains unclear whether and how emotional 

experiences are represented in brain pathways and whether the neuroimaging-based brain models 

developed in laboratory settings are valid in real-world contexts(26).  

Here, we tested for the first time the predictive capacity of these activation-based signatures on 

naturalistic and immersive emotional stimuli in a close-to-real-life setting(29-32). We found that the 

established activation-based signatures (AFSS(11), VIFS(10), PINES(20) and GNAS(21)) exhibited poor 

predictions across naturalistic contexts, especially for dynamic fear experience. These findings challenge 

the generalizability of the current and probably most precise fMRI-based brain models to conscious 

emotional experiences in everyday life. Against this background we developed a synergistic fMRI-based 

signature (CAFE) to predict fear across naturalistic contexts. The CAFE accurately predicted fear in 

stable as well as highly dynamic naturalistic environments which may have been facilitated by two 

innovations: (1) based on recent findings suggesting that neural signatures developed on functional 

connectivity profiles in naturalistic contexts may capture attention changes in the same naturalistic 

environment(35, 36) the CAFE capitalized on both, activity and connectivity features, and (2) given that 

the generalizability of the previous connectivity signature to novel contexts (i.e., new movies) remained 

limited(35), probably due to the lack of sufficient prototypical training examples or overfitting that may 

occur in the excessively dependent training data, the CAFE was developed on immersive video clips 

presenting a range of different but prototypical fear-inducting situations. Importantly, the connectivity 

profiles but not activation patterns critically facilitated the successful decoding of subjective fear 
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experience in dynamic naturalistic contexts, indicating that the conscious experience of fear in everyday 

life may be mediated by adaptive interactions between distributed brain systems.  

From the perspective of developing affective brain signatures, it is critical to control for the 

contribution of non-specific emotional processes such as arousal and valence which are inherently 

associated with the emotional experience(27, 42). In study 4 we provided evidence that the prediction 

performance of CAFE was generalizable across naturalistic stimuli and MRI systems and that the CAFE 

captured to a large extent fear-specific information. These findings suggest that the conscious experience 

of basic emotions such as fear is characterized by idiosyncratic neural representations or at least 

idiosyncratic interpretations.  

This synergistic model additionally allowed us to uncover two principles underlying the architecture 

of subjective fear experience in naturalistic contexts. First, in contrast to prior research indicating that the 

behavioral or physiological response to threatening stimuli, whether conscious or unconscious, is linked 

to subcortical regions (for discussions see e.g., refs. 26, 52), our study found that the encoding of 

conscious fear experience involved the engagement of a broad set of cortical and subcortical regions as 

well as their interactions. This result aligns with recent appraisal(53) and constructionist(2) theories of 

emotion proposing that emotional experiences emerge from intricate interactions among multiple systems 

including core affect, sensory, memory, motor, and cognitive systems (for supporting evidence from 

neural decoding approaches see also refs. (10, 20, 54, 55)) as well as with recent studies on 

consciousness, which emphasize that conscious processing emergences from a network of interconnected 

brain areas distributed throughout the brain (56-58). Our findings bridge the gap between animal models 

that traditionally aim at translating neural circuit mechanisms of behavioral and physiological fear 

responses into ecologically valid contexts(5, 6, 8) and human theoretical models hypothesizing that 

conscious emotional experience is mediated by interactions between brain systems(1-4). Second, brain 

regions and pathways encoded subjective fear in a redundant fashion such that activity and connectivity 

characteristics of regions or large-scale networks conveyed very little unique information about subjective 

fear experience. Given that fear is essential for survival(59) the redundant representations may allow 

appropriate reactions to danger even after damage to the neural system or under suboptimal conditions. In 

support of this view, patients with damage to the bilateral amygdala which is traditionally considered as 

the ‘center’ of behavioral and physiological fear(14) can experience fear and panic in response to 

breathing CO2- enriched air(60).  

We capitalized on recent progress in naturalistic neuroimaging and employed movies to induce and 

measure subjective fear under more naturalistic conditions. Movies allow a rich, multisensory and 

immersive experience that can model certain aspects of fear in a more naturalistic fashion than the 

conventional neuroimaging paradigms using isolated static stimuli. Nevertheless, this strategy cannot 
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encompass all essential aspects of fear processing in naturalistic contexts, such as the self-relevance of the 

danger or active interaction with the situation. While this approach represents a substantial progression in 

facilitating ecologically valid neural decoders, future research should improve the approximation of real-

life fear experiences, possibly through the utilization of first-person virtual reality environments or mobile 

neuroimaging technologies. In the current study, we identified the neural basis underlying conscious fear 

experience. However, the extent to which the CAFE tracks hard-wired and not necessarily conscious 

aspects of the fear response (e.g., behavioral activation and physiological reactivity towards subliminally 

presented threatening stimuli) and how conscious appraisal may itself affect the CAFE prediction will 

require further exploration. Moreover, it is important to note that the functional connectivity approach that 

used in this study can only represent un-directed associations between brain regions. How causal 

interactions between distributed brain regions contribute to the subjective fear experience will be an 

interesting avenue for future research.  

In conclusion, we developed a fMRI-based synergistic signature, which capitalizes on brain activity 

and connectivity features and captures to a large extent fear-specific information, that accurately predicts 

stable and dynamic fear experience in naturalistic environments. In contrast, conventional activation-

based signatures have limited ability to capture dynamic emotional experiences. Our findings further 

demonstrate that the neurobiology underlying subjective fear is represented by not only a broad set of 

brain regions but also distributed pathways in a redundant fashion. Overall, this study reveals a 

comprehensive functional brain architecture for subjective fear and provides an ecologically valid brain-

based biomarker predictive of subjective fear intensity with high sensitivity and specificity. 
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STAR Methods 
Participants. Eighty healthy, right-handed participants were recruited from Southwest University (China) 

for study 1. Exclusion criteria included color blindness, current or regular substance or medication use, 

current or history of medical or psychiatric disorders, and any contraindications for MRI. The 

experiments were aborted for two participants due to excessive fear, and data from another two 

participants were excluded from analysis due to a lack of fear experience (i.e., participants reported no 

fear experience during any of the videos). This resulted in a final sample of n = 76 participants (44 

females; mean ± SD age = 20.21 ± 1.42).  

Thirty-six participants (17 females; age = 21.03 ± 2.22) from the University of Electronic Science 

and Technology of China participated in study 2. Exclusion criteria included color blindness, current or 

regular substance or medication use, current or history of medical or psychiatric disorders, and any 

contraindications for MRI. 

Details of the study 3 cohort were reported in previous studies(10, 11). Briefly, 31 participants (15 

females; age = 23.29 ± 4.21) underwent a 1-hour fMRI session at the Institutional Review Board of 

Advanced Telecommunications Research Institute International (ATR), Japan.  

For Study 4, a total of 80 healthy, right-handed participants from the University of Electronic 

Science and Technology of China were initially screened, and 63 individuals (25 females; age = 19.87 ± 

2.01) were enrolled. Exclusion criteria included low arousal responses to positive or negative videos 

during a behavioral pre-test, color blindness, current or regular substance or medication use, current or 

history of medical or psychiatric disorders, and any contraindications for MRI.  

In addition, a total of thirty independent participants (10 females; age = 20.87 ± 2.26) from the 

University of Electronic Science and Technology of China took part in the behavioral rating study for the 

naturalistic horror movies. 

All participants provided written informed consent, and the studies were approved by the local ethics 

committees at Southwest University (Study 1), University of Electronic Science and Technology of China 

(Studies 2, 4, and the behavioral study), and the Institutional Review Board of Advanced 

Telecommunications Research Institute International (ATR), Japan (Study 3). The experiments were 

conducted in accordance with the most recent revision of the Declaration of Helsinki, and participants 

were compensated after the completion of the experiment. 

 

Naturalistic movie clips and fear rating paradigm in study 1. During the fear rating fMRI paradigm 38 

short fear-inducing video clips were presented over 4 runs with each run encompassing 9 or 10 videos 

(including content covering humans, animals, and scenes, e.g., first view of being attacked by a snake or 

doing an extreme sport). Participants were instructed to attentively watch the videos and rate their level of 
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fear experience following each video. The videos lasted 30 - 50 s followed by a 1 - 1.5 s jittered fixation-

cross separating the stimuli from the rating period. During the subsequent 5 s period participants reported 

the level of fear they experienced for each stimulus using a 9-point Likert scale with 1 indicating no fear 

and 9 indicating very strong fear followed by a jittered 10 - 12 s inter-trial-interval (fixation-cross) (Fig. 

1). The movie clips for the fear rating paradigm were selected from a larger database of potentially 

suitable video clips and selected by pre-study ratings in an independent sample (n = 30; 15 females; age = 

23.23 ± 2.03). Key exclusion criteria for the movie clips were (1) a lack of fear-specificity as 

operationalized by more than 2 participants (~5%) reporting an induction of non-fear negative (e.g., 

disgust and sad) or positive (e.g., happiness and joy) emotions during the movie, and (2) low emotional 

consistency over the duration of the clip, operationalized as a mean consistency rating ≤ 6.5 on a 9-point 

Likert scale with 1 indicating that the intensity of the elicited emotion was very inconsistent throughout 

the video clip and 9 indicating that the intensity of the elicited emotion was very consistent throughout the 

video clip.  

 

Naturalistic movie watching paradigm in studies 1 and 2. Following the fear rating paradigm 

participants in study 1 were shown a full-length short horror movie (“Don’t Look Away” by Christopher 

Cox, duration 7min 28 s, adapted version) with concomitant fMRI recordings. Similarly, participants in 

study 2 watched a segment from the horror movie “The Conjuring 2” (starting at 30 min 12 s, with a total 

duration of 11 min 18 s) during fMRI after they underwent a fMRI rating paradigm (data were not used in 

the current study). To facilitate a naturalistic and ecologically valid emotional experience no response was 

required from the subjects during the movie.  

 

Paradigm study 3. Participants were presented with 3600 images consisting of 30 animal categories and 

10 object categories (90 different images per category). The stimuli were grouped in blocks of 2, 3, 4 or 6 

images of the same category with each stimulus presented for 1 s (no inter-block or inter-stimulus 

interval). Subjective fear ratings (0 = ‘no fear’ to 5 = ‘very high fear’) for each category were established 

before the fMRI procedure without presenting any fearful stimuli. See also ref.(11) for the details of the 

paradigm. 

 

Dynamic arousal stimuli and arousal rating paradigm in study 4. Participants were presented with 

positive, negative, and neutral movie clips to induce high arousal and rated their arousal experience 

during each clip. A total of 40 short videos was presented over 3 runs with each run encompassing 13 or 

14 videos (including content depicting humans, animals, and scenes). Stimulus presentation and 

subjective emotional experience reports were similar to study 1 except that participants were asked to 
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report their arousal during each video using a 9-point Likert scale with 1 indicating very low arousal and 

9 indicating very high arousal. Importantly, to avoid confounding of the stimulus materials on the 

decoding performance the stimuli between the studies 1 and 4 did not overlap. Videos in study 4 were 

selected to induce a high negative or positive arousal while neutral (low arousing) video clips were 

included to serve as the reference condition. The videos were initially selected based on extensive pre-

study ratings (valence, arousal, and emotional category) with an independent sample (n = 26; 10 females, 

age = 21.62 ± 1.92) for a total of 80 videos. Valence and arousal were rated using 9-point Likert scales 

where 1 indicated extremely negative/very low arousal, 5 indicated neutral/medium arousal and 9 

indicated extremely positive/very high arousal. Emotion category was selected from sadness, happiness, 

fear, anger, surprise, disgust, neutral and ambiguous. In line with Study 1, the consistency of the 

emotional intensity was rated on a 9-point Likert scale. The final stimulus set for the fMRI experiment 

included 20 low-arousal (mean arousal < 3.50), 10 high-arousal positive (mean arousal > 6.50; mean 

valence > 6.84) and 10 high-arousal negative (mean arousal > 6.65; mean valence < 3.31) videos. We 

additionally labeled 14 videos from the low-arousal stimuli as neutral stimuli (> 80% participants selected 

neutral for these videos), 7 videos from the high-arousal positive stimuli as happiness stimuli (> 80% 

participants selected happiness for these videos), 5 videos from the high-arousal negative stimuli as 

disgust stimuli (> 80% participants selected disgust for these videos) and 5 videos from the high-arousal 

negative stimuli as fear stimuli (76% participants selected fear for 1 video and > 80% selected fear for the 

other 4 videos). In addition. the mean ratings of the consistency of the emotional intensity were all higher 

than 6.5. Stimulus presentation and behavioral data acquisition were controlled using MATLAB 2014a 

(Mathworks, Natick, MA) and Psychtoolbox (http://psychtoolbox.org/). 

 

Behavioral rating paradigms. A total of thirty independent participants (10 females; age = 20.87 ± 2.26) 

from the University of Electronic Science and Technology of China took part in a behavioral rating study. 

During the experiment, participants watched the horror movie “Don’t Look Away” and the segment from 

the horror movie “The Conjuring 2”. Throughout the viewing, participants continuously reported their 

subjective fear ratings using a mouse on an incremental scale ranging from 0 to 1. The scale was labeled 

with "No fear" at the bottom and "Extreme fear" at the top. Additionally, markers denoting "Low fear," 

"Medium fear," and "High fear" were strategically placed at ¼, ½, and ¾ intervals along the scale, 

respectively. The order of the movies was counterbalanced across participants, and a 10-minute break was 

provided between the two movies. Stimulus presentation and behavioral data acquisition were controlled 

using MATLAB 2014a (Mathworks, Natick, MA) and Psychtoolbox (http://psychtoolbox.org/). Upon 

completion of the experiment, participants received 40 RMB for their involvement. 
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MRI data acquisition and preprocessing. The details of MRI data acquisition, preprocessing, and 

denoising were shown in the Supplementary information. 

 

Predictions of previously developed activation-based signatures. We applied the AFSS, VIFS, PINES 

and GNAS to the naturalistic fMRI data collected in study 1 (“Don’t look away”) and study 2 (“The 

Conjuring 2”) to test whether these fear-related activation-based signatures could predict dynamic fear 

experience. Moreover, we also applied these signatures to movie clips collected in study 1 (fear 

experience) and study 4 (arousal experience) to test the sensitivity and specificity of the signatures on 

dynamic stimuli separately. In line with preprocessing pipelines used in refs. (10, 20) in these analyses we 

used SPM12 preprocessed data.  

 

Fear signature development. The sample in study 1 was split into training (n = 51; i.e., 2/3 of the total 

participants) and test (n = 25) datasets. Next, we developed multivariate fear signatures through whole-

brain activation-based (incorporating activation for each voxel; n = 228,022 features), functional 

connectivity-based (including connectivity between each pair of parcels; n = 106,953 features), and 

synergistic (integrating mean activation for each parcel and functional connectivity between each pair of 

parcels; n = 107,416 features) approaches using the training data only (n = 341 samples). Following our 

previous studies(10, 25), we applied the linear SVR algorithm with the cost parameter C = 1 and epsilon 

= 0.01 to develop the fear signatures. This algorithm was implemented in the CanlabCore toolbox 

(https://github.com/canlab/CanlabCore), which utilizes the Spider toolbox 

(http://people.kyb.tuebingen.mpg.de/spider). The parcellation used to develop connectivity-based and 

synergistic signatures included 400 cortical regions from the Schaefer atlas(40), 34 subcortical regions 

from the Melbourne subcortex atlas (n = 32)(61) and the reinforcement learning atlas (extended amygdala 

and hypothalamus)(62), and periaqueductal gray (PAG), brainstem and cerebellar regions from ref.(34) (n 

= 29), resulting in a total of 463 regions. Additionally, another parcellation consisting of 360 cortical 

regions, 63 subcortical and cerebellar regions, as well as PAG and brainstem regions(34), was used to 

validate our findings. 

To evaluate model performance, we assessed the prediction-outcome correlation and coefficient of 

determination (R2) within the training data using cross-validated analysis (10 repeats of 10-fold cross-

validation), as recommended by refs.(63, 64). R2 represents the percentage of fear rating variance 

accounted for by the prediction models, and it is calculated using the following formula:: 

𝑅! = 1 −
∑ (𝑦" − ŷ")!#
"$%
∑ (𝑦" − 𝑦*)!#
"$%

	

where yi is the true fear rating for the i-th sample, ŷi is the model predicted rating for the i-th sample, and 
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𝑦* is the mean of all fear ratings. To avoid the potential bias in train-test split, we re-ran this procedure 100 

times. 

In addition to cross-validated performance in the training data, we evaluated the performance of the 

synergistic signature (i.e., the CAFE) for predicting fear in the independent test data. Significance testing 

was conducted using one-tailed permutation test: P = (1+number of r/R2 >= empirical r/R2)/(1+number of 

permutations).  

 

Prediction of subjective fear during naturalistic contexts (movie). To test the ecological validity of the 

fear-related signatures under naturalistic conditions in terms of predicting subjective fear during 

naturalistic movie watching (without any response) we calculated signature response using a tapered 

sliding window approach, where the parcel mean activation and connectivity among parcels were 

computed and the dot product of the vectorized feature with signature weights was employed within the 

temporal window. We implemented a window size of 22 TR (= 44 s) for both “Don’t Look Away” and 

“The Conjuring 2” data, following the optimal window size suggested by previous literature, with a step 

size of 1 TR and a Gaussian kernel σ = 3 TR(35, 38). To better evaluate the prediction capabilities of the 

activation-based signatures, in addition to utilizing the sliding window approach, we also directly 

computed the signature response for each individual TR. Since we were interested in whether the model 

could predict temporal dynamics, unlike previous studies(35, 36), we did not convolve fear rating with the 

HRF or slid fear rating. Given that we were interested in whether the model captures temporal dynamics 

rather than the actual values of group-average fear ratings we employed correlation as a metric to assess 

the predictive performance of our model. P values were obtained from permutation tests, where observed 

correlation coefficient and R2 were compared with null distributions of correlation coefficient between 

signature response and 10,000 permuted, phase-randomized fear ratings (one-tailed).  

 

Sensitivity and specificity of the CAFE. We applied the CAFE to fMRI data collected in study 4 using a 

dot product of each vectorized feature with signature weights to determine how much the signature 

depend on arousal negative valence features separately. The signature response served as the basis for 

single-interval classification (e.g., fear vs. disgust) with a cutoff selected to maximize overall accuracy. 

To better match arousal ratings between the emotional categories, we excluded data from non-neutral 

movie clips that induced only low-to-medium levels of subjective arousal (i.e., arousal ≤ 6 on a 9-point 

Likert scale). This allowed to generate a dataset with comparably high arousal induction for fear and 

disgust (fear: 7.91 ± 0.57; disgust: 7.78 ± 0.54; P = 0.17, BF01 = 2.83), although the fear clips still induced 

slightly higher arousal than the happiness clips (7.56 ± 0.49) (P = 1.00 × 10-4).  Bayesian factor analyses 

(https://richarddmorey.github.io/BayesFactor/) were used to compare the likelihood of the data fitting 
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under the null hypothesis with the likelihood of fitting under the alternative hypothesis. BF01 represents 

the ratio that contrasts the likelihood of the data fitting under the null hypothesis with the likelihood of 

fitting under the alternative hypothesis. In contrast, BF10 represents the ratio that contrasts the likelihood 

of the data fitting under the alternative hypothesis with the likelihood of fitting under the null hypothesis. 

 

Determining subjective fear representation. To test which brain regions and circuits reliably encode 

subjective fear information we constructed 10,000 randomly selected samples from study 1 consisting of 

paired brain (activation and connectivity features) and outcome data and ran SVR on each. Two-tailed, 

uncorrected P-values were calculated for each feature based on the proportion of SVR weights below or 

above zero and subjected to false discovery rate (FDR) correction. To further explore the neurobiology of 

subjective fear we ran parcel-based prediction analysis and calculated the model encoding maps using the 

following formula(44): A = cov(X) × W × cov(S)-1, where A is the reconstructed modeling encoding map, 

cov(X) is the covariance matrix of training data, W is the weights of the SVR model, and cov(S) is the 

covariance matrix of the latent factors (i.e., model predictions), which is defined as WT × X. All statistical 

maps were thresholded at FDR P < 0.05. 

To further test how fear intensity information is encoded in brain systems, we conducted a series of 

experiments. To this end we divided the brain into 9 networks, including 7 resting-state (65), 1 subcortical 

and 1 cerebellar (including PAG and brainstem)(34) network. We then trained models with a range of 

randomly selected regions (40-400) from various networks and evaluated their performances (repeated 

1,000 times). Next, we conducted “variance partitioning” and “virtual lesion” analyses. Specifically, 

synergistic signatures were developed using 8 out of 9 networks, which included the activation and 

connectivity among parcels in those networks, as well as the remaining single network, which included 

the mean activation of each parcel in the network and all functional connectivity with parcels within that 

network, separately. Subsequently, we fitted a series of linear models to predict fear using signature 

response from the two models. This analysis was repeated 9 times until each network being the remaining 

1 network once. We then performed a variance partitioning analysis to decompose the proportion of 

explained variance to the variance explained only by the 8-network-model predictions (ΔR28net), variance 

explained only by the 1-network-model predictions (ΔR21net), and variance explained by predictions from 

both model trained on both 8 networks and model trained on the remaining 1 network (R28net∩1net). For this 

analysis, we trained the model using data from 51 participants and tested it using data from the remaining 

25 participants. To mitigate potential bias in the train-test split, we repeated this procedure 10,000 times. 
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Table 1 Comparison of prediction performance between the CAFE and signatures developed on 
study 1 data, as well as previously established fear-related signatures  
 

Signatures 

Prediction performance 
Fear 
vs. 

neutral 

Disgust 
vs. 

neutral 

Happiness 
vs. 

neutral 

Fear 
vs. 

disgust 

Fear 
vs. 

happiness 

Disgust 
vs. 

happiness 

CAFE 97.50% 
(2.97) 

75.83% 
(1.04) 

75.83% 
(1.24) 

84.17% 
(1.68) 

88.33% 
(1.79) 

58.33% 
(-0.02) 

Activation 99.17% 
(3.40) 

90.00% 
(2.05) 

76.67% 
(1.24) 

77.50% 
(1.39) 

90.00% 
(2.07) 

72.50% 
(0.71) 

Connectivity 80.83% 
(1.56) 

74.17% 
(1.05) 

66.67% 
(0.51) 

64.17% 
(0.36) 

71.67% 
(0.96) 

61.67% 
(0.54) 

AFSS 50.00% 
(-2.22) 

70.83% 
(0.70) 

50.00% 
(-2.35) 

50.00% 
(-2.44) 

57.50% 
(0.23) 

93.33% 
(2.56) 

VIFS 90.83% 
(2.20) 

83.33% 
(1.52) 

71.67% 
(0.81) 

66.67% 
(0.51) 

73.33% 
(1.19) 

69.17% 
(0.64) 

PINES 96.67% 
(3.65) 

94.17% 
(2.63) 

98.33% 
(3.22) 

65.00% 
(0.45) 

56.67% 
(0.24) 

51.67% 
(-0.22) 

GNAS 89.17% 
(2.32 

79.17% 
(1.40) 

70.83% 
(0.98) 

65.00% 
(0.60) 

76.67% 
(1.23) 

62.50% 
(0.51) 

Note. We assessed the sensitivity and specificity of the CAFE as well as activation- and connectivity-
based signatures developed on data from study 1, along with previously established fear-related 
signatures, by applying them to the fMRI data collected in study 4. This comparison aimed to evaluate 
their performance in detecting and distinguishing fear-related emotions. Prediction performance are 
shown in accuracy (Cohen’s d). CAFE, whole-brain parcel-wise connectivity- and activity-based fear 
signature; AFSS, animal fear schema signature; VIFS, visually induced fear signature; PINES, picture-
induced negative emotion signature; GNAS, generalized negative affect signature. 
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Supplementary Methods 
MRI data acquisition in Study 1. MRI data were collected on a 3.0-T SIEMENS PRISMA Fit MRI 
system (Erlangen, Germany). Functional MRI data was acquired using a T2*-weighted echo-planar 
imaging (EPI) pulse sequence (repetition time = 2000 ms, echo time = 30 ms, flip angle = 90°, number of 
slices = 62, slice orientation = transversal, posterior to anterior phase encoding, voxel size = 2 mm 
isotropic, gap between slices = 0 mm, field of view = 224 × 224 mm, iPAT (GRAPPA) factor = 2, echo 
spacing = 0.54 ms). To improve spatial normalization and exclude participants with apparent brain 
pathologies high-resolution T1-weighted images were acquired using a three-dimension (3D) 
magnetization-prepared rapid gradient-echo (MP-RAGE) sequence (repetition time = 2530 ms, echo time 
= 2.98 ms, 1 × 0.5 × 0.5 mm voxels). 
 
MRI data acquisition in study 2. MRI data were collected on a 3.0-T GE Discovery MR750 system 
(General Electric Medical System, Milwaukee, WI, USA). Functional MRI data was acquired using a 
T2*-weighted echo-planar imaging (EPI) pulse sequence (repetition time = 2000 ms, echo time = 30 ms, 
36 slices, slice thickness = 3.8 mm, no gap, field of view = 200 × 200 mm, resolution = 64 × 64, flip 
angle = 90°, 3.125 × 3.125 × 3.8 mm voxels, posterior to anterior phase encoding). To improve spatial 
normalization and exclude participants with apparent brain pathologies a high-resolution T1-weighted 
image was acquired using a 3D spoiled gradient recalled (SPGR) sequence (176 slices, repetition time = 
8.22 ms, echo time = 3.15 ms, field of view = 256 × 256 mm, resolution = 256 × 256, flip angle = 8°, 1 × 
1 × 1 mm voxels). 
 
MRI data acquisition in study 3. Participants were scanned in two 3T MRI scanners (Prisma Siemens 
and Verio Siemens) at the ATR Brain Activation Imaging Center. Functional MRI data was acquired 
using an EPI pulse sequence (repetition time = 2000 ms, echo time = 30 ms, 33 slices, slice thickness = 
3.5 mm, no gap, field of view = 192 × 192 mm, resolution = 64 × 64, flip angle = 80°, voxel size = 3 × 3 
× 3.5 mm). T1-weighted image was acquired using a three-dimension (3D) magnetization-prepared rapid 
gradient-echo (MP-RAGE) sequence (256 slices, TR = 2250 ms, TE = 3.06 ms, voxel size = 1 × 1 × 1 
mm, field-of-view = 256 × 256 mm, matrix size = 256 × 256, slice thickness = 1 mm, 0 mm slice gap, TI 
= 900 ms, flip angle = 9°. The least-square separate single-trial analysis approach was employed to 
iteratively fit a GLM to estimate the brain response to the first image of each block and then the within-
subject beta images with the same fear ratings were averaged, which resulted in one beta map per rating 
for each subject (for paradigm, MRI acquisition and analysis details see ref.(1)). 
 
MRI data acquisition in study 4. MRI data were collected on a 3.0-T GE Discovery MR750 system 
(General Electric Medical System, Milwaukee, WI, USA). Functional MRI data was acquired using a 
T2*-weighted echo-planar imaging (EPI) pulse sequence (repetition time = 2000 ms, echo time = 30 ms, 
39 slices, slice thickness = 3mm, gap between slice = 1 mm, field of view = 240 × 240 mm, resolution = 
64 × 64, flip angle = 90°, 3.75 × 3.75 × 4 mm voxels, posterior to anterior phase encoding). To improve 
spatial normalization and exclude participants with apparent brain pathologies a high-resolution T1-
weighted image was acquired using a 3D spoiled gradient recalled (SPGR) sequence (repetition time = 
5.96 ms, echo time = 1.97 ms, 1 × 1 × 1 mm voxels). 
 
fMRI data preprocessing. Structural and functional MRI data in studies 1, 2 and 4 were preprocessed 
using FMRIPREP 21.0.0(2) (RRID: SCR_016216), a Nipype 1.6.1(3) based tool that integrates 
preprocessing routines from different software packages. Spatial normalization to the ICBM 152 
Nonlinear Asymmetrical template version 2009c was performed through nonlinear registration with the 
antsRegistration tool of ANTs v2.3.3(4), using brain-extracted versions of both T1w volume and 
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white matter (WM) and gray matter 
(GM) was performed on the brain-extracted T1w using FAST (FSL v6.0.5.1)(5). Before the automated 
preprocessing, 4 initial volumes of fMRI data were removed in order to allow for image intensity 
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stabilization. Next, functional data was slice time corrected using 3dTshift from AFNI(6) and motion 
corrected using mcflirt (FSL v6.0.5.1). This was followed by co-registration to the corresponding T1w 
using boundary-based registration(7) with six degrees of freedom, using FLIRT (FSL). Motion correcting 
transformations, BOLD-to-T1w transformation and T1w-to-template (MNI) warp (interpolated to 2 mm 
isotropic voxels) were concatenated and applied in a single step using ants ApplyTransforms (ANTs 
v2.3.3) using Lanczos interpolation. 
 To facilitate a fair comparison of the prediction performance between the developed synergistic 
signature and previous developed activation-based signatures(1, 8-10) we additionally preprocessed fMRI 
data using SPM 12 (v7771; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) following the 
preprocessing protocols in our previous study(8). Briefly, functional images were corrected for 
differences in the acquisition timing of each slice and spatially realigned to the first volume and unwarped 
to correct for nonlinear distortions related to head motion or magnetic field inhomogeneity. The 
anatomical image was segmented into grey matter, white matter, cerebrospinal fluid, bone, fat and air by 
registering tissue types to tissue probability maps. Next, the skull-stripped and bias corrected structural 
image was generated and the functional images were co-registered to this image. The functional images 
were subsequently normalized the MNI space (interpolated to 2 × 2 × 2mm voxel size) by applying the 
forward deformation parameters that were obtained from the segmentation procedure, and spatially 
smoothed using an 8-mm full-width at half maximum (FWHM) Gaussian kernel. 
 To perform denoising, we fit a voxel-wise general linear model (GLM) for each participant. 
Specifically, in line with ref. (11), we removed variance associated with the mean, linear and quadratic 
trends, the average signal within anatomically-derived CSF mask, the effects of motion estimated during 
the head-motion correction using an expanded set of 24 motion parameters (six realignment parameters, 
their squares, their derivatives, and their squared derivatives) and motion spikes (FMRIPREP default: 
FD > 0.5mm or standardized DVARS > 1.5)(12). For the fear and arousal rating data we additionally 
constructed a task-related regressor with the rating period convolved with the canonical hemodynamic 
response function (HRF).  

For the details of preprocessing and GLM analysis for study 3 please see ref. (1). 
 
Data averaging. To develop the signatures predictive of subjective fear we first generated subjective 
fear-related activation and functional connectivity features for each subject. To this end, for each 
participant, we concatenated the fMRI data with the same fear level rating during the video presentation 
period. Of note, the onset time for each video was shifted by 2-3 TRs because of the hemodynamic lag. 
To obtain relatively robust functional connectivity between regions for each fear level the concatenated 
data for a fear level with less than 25 time points (i.e., less than 2 videos) was excluded. We next 
calculated voxel-wise and parcel-wise mean activation as well as functional connectivity (Fisher z-
transformed Pearson correlation coefficient) among parcels for each fear level and each subject 
separately. For the fMRI data collected in study 2 we employed the same method to calculate parcel-wise 
mean activation as well as functional connectivity (Fisher z-transformed) among parcels for each emotion 
and each subject separately. 
 
Supplementary Results 
Previously developed activation-based affective signatures cannot capture fear changes during 
naturalistic movie watching 
Correlating the group mean signature responses of each TR with the group average fear rating (convolved 
with hemodynamic response function) revealed that neither AFSS (study 1: r = 0.02, permutation P = 
0.374; study 2: r = -0.05, permutation P = 0.845), VIFS (study 1: r = 0.07, permutation P = 0.097; study 2: 
r = 0.05, permutation P = 0.125), PINES (study 1: r = 0.01, permutation P = 0.523; study 2: -r = 0.04, 
permutation P = 0.858), nor GNAS (study 1: r = -0.09, permutation P = 0.983; study 2: r = 0.01, 
permutation P = 0.479) were able to predict changes in subjective fear under naturalistic conditions. 
Similar findings were observed when correlating the mean signature response with the mean unconvolved 
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fear rating (study 1: maximum r = 0.07, permutation P = 0.092 (VIFS); study 2: maximum r = 0.06, 
permutation P = 0.056 (VIFS)). 

We further investigated whether applying these activation-based affective signatures to the 
naturalistic data using the tapered sliding window approach (window size = 44 s) could predict dynamic 
fear ratings. However, neither AFSS (study 1: r = 0.06, permutation P = 0.428; study 2: r = -0.08, 
permutation P = 0.680), VIFS (study 1: r = 0.13, permutation P = 0.242; study 2: r = 0.18, permutation P 
= 0.114), PINES (study 1: r = -0.07, permutation P = 0.556; study 2: r = -0.14, permutation P = 0.904), 
nor GNAS (study 1: r = -0.23, permutation P = 0.927; study 2: r = -0.02, permutation P = 0.534) were 
able to predict convolved subjective fear ratings. Similarly, the mean signature response of the group did 
not correlate with the mean unconvolved fear rating (study 1: maximum r = 0.09, permutation P = 0.312 
(VIFS); study 2: maximum r = 0.18, permutation P = 0.115 (VIFS)). 
 
The novel synergistic signatures can better predict short-term stable fear experience 
To assess whether synergistic signatures (i.e., the CAFE) improves predictions of short-term 
homogeneous fear experiences compared to conventional activation and connectivity signatures, we 
randomly split participants in study 1 into a training sample (n = 51) and a test sample (n = 25) for 100 
iterations. Our findings reveal that when utilizing a parcellation of n = 425 brain regions, the performance 
of the synergistic signature slightly decreased (training data: mean ± standard deviation R2 = 0.36 ± 0.03; 
test data: R2 = 0.37 ± 0.06) compared to using a parcellation of n = 463 regions (training data: R2 = 0.40 ± 
0.03; test data: R2 = 0.41 ± 0.05). Nonetheless, both versions of the synergistic signature demonstrated 
superior prediction performance in comparison to activation-based (training data: R2 = 0.33 ± 0.03; test 
data: R2 = 0.33 ± 0.05) and connectivity-based (training data: R2 = 0.31 ± 0.04; test data: R2 = 0.33 ± 
0.07) signatures. These findings suggest that the CAFE method is more effective in capturing the stable 
subjective experience of fear. 
 
The VIFS and GNAS, but not the AFSS or PINES, predict video clip-induced short-term stable fear 
experience 
We found that the VIFS (r = 0.26, P = 2´10-9) and GNAS (r = 0.15, P = 5´10-4), but not AFSS (r = -0.06, 
P = 0.215) or PINES (r = 0.02, P = 0.706), significantly predicted movie clip-induced fear 
(Supplementary Fig. 1). 

Given that the CAFE was developed on the training data in study 1, we additionally applied these 
signatures to the hold-out test data in study 1 to facilitate a fair comparison. We found similar prediction 
performances (VIFS: r = 0.35, P = 5´10-11; GNAS: r = 0.18, P = 0.001; AFSS: r = -0.02, P = 0.676; 
PINES: r = 0.02, P = 0.774) as compared to the whole sample. Importantly, these prediction performances 
were substantially lower than that of the CAFE (r = 0.67; all permutation P of the differences were less 
than 1 × 10-4).   

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2024. ; https://doi.org/10.1101/2023.08.18.553808doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.18.553808
http://creativecommons.org/licenses/by-nd/4.0/


 
Supplementary Fig. 1. Predicting movie clip-watching induced subjective fear experiences (study 1) 
with previously established activation-based signatures. The VIFS (panel a; r = 0.26, P = 2´10-9) and 
GNAS (panel b; r = 0.15, P = 5´10-4) significantly predict movie clip-induced subjective feelings of fear 
whereas the AFSS (panel c; r = -0.06, P = 0.215)) and PINES (panel d; r = 0.02, P = 0.706) fail to predict 
movie-included subjective fear experience. VIFS, visually induced fear signature; GNAS, Generalized 
negative affect signature; AFSS, animal fear schema signature; PINES, picture-induced negative emotion 
signature. 
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Supplementary Fig. 2. Predicting picture-induced subjective fear experiences with the activation 
pattern of the CAFE. a, the activation pattern of the CAFE accurately predicts subjective fear experience 
induced by animal pictures (overall prediction-outcome r = 0.35, P = 6´10-6). Each colored line represents 
prediction within each individual participant. The black line indicates the overall (i.e., within and between 
participants) prediction. Raincloud plots show the distribution of within-participant predictions. b, the 
activation pattern of the CAFE can classify high fear (average of rating 4 and 5) from medium fear (average 
of rating 2 and 3; accuracy = 73%, P = 0.016, d = 0.74) and low fear (average of rating 0 and 1; accuracy = 
77%, P = 0.005, d = 0.89). In addition, the CAFE to some extent distinguishes medium fear vs. low fear (d 
= 0.56) although the accuracy is not significantly higher than chance level (accuracy = 66%, P = 0.136).  
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Supplementary Fig. 3. Results of group-average subjective fear prediction from the CAFE using 
different window sizes. The CAFE accurately tracks the dynamic fear changes using window sizes of 20 
and 24 TRs in study 1 training dataset (a) and test dataset (b) as well as study 2 (c). These results suggest 
that our findings remain robust across selection of window sizes.  
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Supplementary Fig. 4. Brain regions and pathways associated with and predictive of subjective fear 
rating. a, model weight maps showing brain regions and circuits reliably predictive of fear ratings (FDR 
P < 0.05). Circular plots represent the significant pathways. b, model encoding maps showing brain 
regions and circuits reliably associated with the outcomes of the multivariate model (FDR P < 0.05). 
Circular plots represent the significant pathways. 
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Supplementary Fig. 5. Core brain pathways for the CAFE and the connectivity signature. Circular 
plot visualizations of core pathways identified in the CAFE but not in the connectivity signature (panel a) 
and pathways identified in the connectivity signature but not in the CAFE (panel b); red line indicates 
positive weight and association and blue line indicates negative weight and association (all FDR P < 
0.05).  
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Supplementary Table 1 Predictive capacity of each large-scale brain network 
R2total R28net R21net R2shared ΔR28net ΔR21net Single network  
0.421 0.403 0.291 0.273 0.130 0.018 VN 
0.417 0.384 0.294 0.261 0.123 0.033 SMN 
0.420 0.414 0.300 0.294 0.120 0.006 DAN 
0.416 0.411 0.254 0.249 0.162 0.005 VAN 
0.419 0.408 0.148 0.137 0.271 0.011 LN 
0.416 0.410 0.240 0.234 0.176 0.006 FPN 
0.429 0.418 0.288 0.277 0.141 0.011 DMN 
0.419 0.409 0.168 0.157 0.251 0.010 SCT 
0.419 0.409 0.254 0.245 0.164 0.009 B/C 

Note. We performed a variance partitioning analysis to decompose the proportion of explained variance 
(R2total) to the variance explained only by the 8-network-model predictions (ΔR28net), variance explained 
only by the 1-network-model predictions (ΔR21net), and variance explained by predictions from both 
model trained on both 8 networks and model trained on the remaining 1 network (R2shared).  
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