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Abstract 

Polysomnography (PSG) is the gold standard for recording sleep. However, the standard PSG systems are 

bulky, expensive, and often confined to lab environments. These systems are also time-consuming  in 

electrode placement and sleep scoring. Such limitations render standard PSG systems less suitable for 

large-scale or longitudinal studies of sleep. Recent advances in electronics and artificial intelligence 

enabled ‘wearable’ PSG systems. Here, we present a study aimed at validating the performance of ZMax, 

a widely-used wearable PSG that includes frontal electroencephalography (EEG) and actigraphy but no 

submental electromyography (EMG). We analyzed 135 nights with simultaneous ZMax and standard PSG 

recordings amounting to over 900 hours from four different datasets, and evaluated the performance of 

the headband’s proprietary automatic sleep scoring (ZLab) alongside our open-source algorithm 

(DreamentoScorer) in comparison with human sleep scoring. ZLab and DreamentoScorer compared to 

human scorers with moderate and substantial agreement and Cohen’s kappa scores of 59.61% and 

72.18%, respectively. We further analyzed the competence of these algorithms in determining sleep 

assessment metrics, as well as shedding more lights on the bandpower computation, and morphological 

analysis of sleep microstructural features between ZMax and standard PSG. Relative bandpower 

computed by ZMax implied an error of 5.5% (delta), 4.5% (theta), 1.6% (alpha), 0.5% (sigma), 0.8% (beta), 

and 0.2% (gamma), compared to standard PSG. In addition, the microstructural features detected in ZMax 

did not represent exactly the same characteristics as in standard PSG. Besides similarities and 

discrepancies between ZMax and standard PSG, we measured and discussed the technology acceptance 

rate, feasibility of data collection with ZMax, and highlighted essential factors for utilizing ZMax as a 

reliable tool for both monitoring and modulating sleep. 
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1. Introduction  

Polysomnography (PSG) is the gold standard process of collecting various physiological signals for studying 

human sleep. Nevertheless, PSG measurement is encumbered by several constraints. A ‘standard’ PSG 

comprises at least electroencephalography (EEG, ideally from frontal, central and occipital areas), 

electromyography (EMG, typically submental), and electrooculography (EOG) for scoring sleep stages. The 

American Academy of Sleep Medicine (AASM, Iber et al., 2007) also recommends including supplementary 

measurements, e.g., electrocardiography (ECG), blood oxygen saturation level, and body position, while 

having a standard PSG recording. Most standard PSG systems are costly and cumbersome, confining the 

majority of sleep studies to the laboratory environment. Furthermore, the process of attaching all 

standard PSG electrodes is time-consuming and labor-intensive, and the comfort for sleepers wearing 

multi-channel systems is often poor. Of note, an accurate diagnosis of most chronic sleep abnormalities 

preferably requires a prolonged period of observation rather than a single night’s examination. However, 

given standard PSG constraints, it is poorly suited for longitudinal sleep studies. Additionally, apart from 

the measurement modality itself, the conventional way of scoring sleep data by human experts is also 

laborious and has an inter-scorer agreement that rarely exceeds 80% (Danker-Hopfe et al., 2009; 

Rosenberg et al, 2013).  

Recent developments in electronics and artificial intelligence (AI) have led to the emergence of various 

wearable sleep-tracking devices in the consumer market, enabling an alternative to overcome the efforts 

and discomfort associated with standard PSG procedures. These wearable systems comprise actigraphy 

(e.g., Ancoli-Israel et al., 2003; Lichstein et al., 2006; Martin et al., 2011;  Morgenthaler et al., 2007; Sadeh 

2011), smartwatches that fuse data from actigraphy, photoplethysmogram (PPG), and pulse oximeter 

(e.g., Alfeo et al., 2018; Chang et al., 2018; De Zambotti et al., 2018; Phan et al., 2015; Sun et al., 2017), 

smart rings with a relatively similar architecture to smartwatches (Altini et al., 2021; Chaudhry et al., 2020; 

Malakhatka et al., 2021; Mehrabadi et al., 2020; Koskimäki et al., 2018) and importantly, EEG wearables 

such as headbands that, together with the above mentioned signals, also record scalp EEG (Arnal et al., 

2020; Koushik et al., 2019; Mota-Rolim et al., 2019; Onton et al., 2016). Among wearable systems, EEG 

headbands are the most appropriate candidates to replace standard PSG for longitudinal sleep 

assessment, given that EEG is needed to provide a direct readout of neural activity including 

electrophysiological microevents that characterize different sleep stages and are involved in the different 

biological functions of sleep. 
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Numerous wearable systems are readily available in the market (see Esfahani et al., 2023 for an 

overview), despite a paucity of scientific research validating their performance in comparison to standard 

PSG. Any substitution of the standard PSG with wearables such as EEG headbands first requires validation 

of their performance. The limited number of EEG channels and the absence of EMG (and occasionally 

EOG) signals in various wearable headbands pose a challenge for sleep scoring, as these signals are vital 

for accurate human scoring based on visual inspection of data. Thus, the ‘scorability’ of a wearable is 

translated into evaluating the robustness of automatic sleep scoring (autoscoring) algorithms. Validation 

studies should also focus on determining subjective and objective sleep quality parameters and 

encompass comprehensive assessments such as analyzing signal power across different frequency bands 

and determining the characteristics of microstructural features within different stages of sleep. 

In recent years, several (commercial) EEG wearables have been referenced in the literature, including 

Dreem (Dreem, Paris, France), SleepLoop (Mobile Health Systems Lab, Zurich, Switzerland), and ZMax 

(Hypnodyne Corp., Sofia, Bulgaria). The Dreem headband is an example of an ambulatory sleep tracker 

that employs five EEG channels (F7, FpZ, F8, O1, O2), an accelerometer, and a pulse oximeter, and its 

performance has been scientifically validated. Arnal et al. (2020) evaluated the performance of the Dreem 

headband compared with a standard PSG in terms of EEG signal quality, accuracy of the heart rate and 

breathing rate estimation, and the performance of the autoscoring. In this study, the researchers found 

slight differences in the relative spectral power estimation of EEG signals between the Dreem headband 

and PSG, i.e., mean percentage error of 15 ± 3.5%, 16 ± 4.3%, 16 ± 6.1%, and 10 ± 1.4% for α, β, λ, and θ 

bands, respectively. The automatic sleep scoring algorithm of Dreem indicated acceptable outcomes 

when compared to the consensus of five professional human scorers (F1-score: 83.8 ± 6.3 % in autoscoring 

vs. 86.3 ± 7.4 % in the consensus of human scorers). 

SleepLoop is a portable sleep-tracking system that offers eight configurable ExG channels which might 

be used as EEG, EOG, and EMG. This headband was shown to have a comparable signal quality with 

respect to standard PSG, reaching correlation values of 0.98 and 0.99 for the delta and sigma frequency 

bands, respectively (Ferster et al., 2019). The evaluation of SleepLoop has not been limited to sleep 

tracking only; the researchers also investigated its performance in real-time to apply closed-loop auditory 

stimulation (CLAS) in healthy elderly and Parkinson’s disease patients and attained comparable outcomes 

with intensive in-lab systems (Ferster et al., 2022).  

Another EEG wearable that has been widely used in sleep studies is the ZMax EEG headband. Despite 

the broad utilization of ZMax for sleep monitoring, non-rapid eye movement (non-REM) sleep modulation 
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through CLAS and targeted memory reactivation (TMR), and rapid eye movement (REM) sleep modulation 

(Berger, 2022; Bradshaw 2019; Esfahani et al., 2022b; Mota-Rolim 2018; Stocks et al., 2020; Talamini et 

al., 2022; Van Trigt et al., 2022), scientific validation and benchmarking of ZMax with respect to standard 

PSG (further denoted as PSG) has yet to be performed. 

Among the available EEG wearables are some such as Dreem that utilize dry electrodes, whereas 

SleepLoop and ZMax use disposable wet electrodes. Wet electrodes typically exhibit lower impedance 

and thus an enhanced signal quality; however, they come at the cost of replacing the electrode patch after 

a few uses, incurring extra costs. Furthermore, while the dry electrodes generally have a static positioning, 

wet electrodes may be repositioned to a different spot based on the research goals. Also, the wet 

electrodes generally represent superior skin contact when compared to the dry electrodes, which 

decreases the likelihood of electrode detachment during the night. Headbands which provide ExG 

channels are highly advantageous as they enable customization of the required montage according to 

research objectives, e.g., employing a few EMG channels when studying REM sleep. SleepLoop is one of 

the few headbands with this feature, whereas the majority of the headbands do not contain EMG 

recording. Enabling cloud computing or real-time data transmission to a computer as in ZMax is another 

intriguing feature of the wearables that provide extensive computational power through pc resources. 

This feature assists with developing desired software for various purposes, such as for online detection of 

a specific sleep oscillation and subsequently modulating it. We believe that ZMax stands among the 

wearables which employ a reasonable number of the above mentioned features, rendering it a proper 

option for longitudinal sleep monitoring and modulation. 

In this study, we investigated five different datasets, four of which were collected with 

simultaneous ZMax-PSG recordings from healthy participants either at home or in a laboratory setting. 

We compared the performance of the autoscoring algorithm of the ZMax headband, i.e., ZLab, and a new 

open-source autoscoring algorithm, dubbed DreamentoScorer, with the consensus of human scorers 

based on PSG as the ground truth. The sleep assessment metrics were computed by each autoscoring 

approach and compared with the results derived from the ground truth scorings. We analyzed the relative 

bandpower of the signals to evaluate the agreement between the measurement modalities. The 

possibility of detecting microstructural features such as SOs and spindles during non-rapid eye movement 

(non-REM) and rapid eye movement (REM) events during REM sleep has been explored, demonstrating 

the corresponding agreement between measurement modalities using Bland-Altman plots. We also 

examined the influence of wearing ZMax EEG headband on subjective outcomes such as sleep quality, 
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morning mood, number of awakenings, as well as its comfort and disturbance level. The feasibility of data 

collection with ZMax has been estimated as the percentage of useful data. Additionally, an assessment of 

the feasibility of gathering and analyzing extensive longitudinal data using ZMax within a 'patient' target 

group was conducted. Finally, we discussed the findings regarding the discrepancies and similarities of 

ZMax outcome with respect to PSG, as well as potential future directions. 
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2. Methods 

An overview of the analysis pipeline of this study is provided in Figure 1. All the PSG data from different 

datasets (datasets 1-4) were manually scored by human experts according to the AASM protocols and 

then the consensus was made for datasets comprising more than one scorer to serve as the ground truth. 

Our behavioral analysis was focused on dataset 2, which was specifically designed for the validation of 

ZMax EEG headband and thus included relevant questionnaires. For our analysis, we applied pre-

processing steps such as bandpass filtering in the primary sleep frequency range of 0.3 - 30 Hz, resampling 

the PSG data to the same sampling frequency as ZMax, and then aligning the PSG and ZMax epochs based 

on predefined tasks, e.g., eye movements prior to sleep. Following the pre-processing steps, the main 

analysis was conducted, including training and evaluating the performance of our open-source 

autoscoring model, i.e., DreamentoScorer, as well as testing the ZLab autoscoring algorithm, comparing 

sleep statistics determined using different methods, time-frequency representation (TFR) comparison, 

bandpower assessment, and an in-depth analysis on determining the characteristics of sleep 

microstructural features using ZMax and PSG.  
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Figure 1 - Analysis pipeline of the study. Datasets 1-4 encompassed simultaneous ZMax-PSG recordings, whereas dataset 5 only 
included ZMax recordings. fs_PSG: sampling frequency of PSG (Hz), fs_ZMax: sampling frequency of ZMax (Hz), PSG: 
polysomnography, REM: rapid eye movement, SO: slow-oscillation, TFR: time-frequency representation. 

2.1. Analysis layers 

Datasets 1-4 have all undergone three different analysis layers, namely: (1) (auto-)scoring and sleep 

metrics assessment, (2) signal quality and non-REM features analysis, and (3) REM features analysis. 

Therefore, different inclusion criteria have been established, as analysis layers two and three required 

specific EEG montage. For the (auto-)scoring assessment (layer 1), the criteria required a minimum of 

~75% ‘scorable’ data from both ZMax and PSG, with the overall recording duration being at least 

(approximately) 5.5 hours. This means that there was no specific requirement for the quality of individual 

channels from the PSG; instead, the combined data from all available channels needed to be acceptable 

for the human scorer to score at least 75% of the data. On the other hand, for the assessment of signal 
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quality and non-REM features analysis (analysis layer 2), which relied on the closest channel from PSG in 

relation to ZMax, different conditions were applied. In addition to data scorability (layer 1 criteria), layer 

2 mandated that the F3 and F4 channels from the PSG had to meet acceptable quality standards (see also 

section 2.5. Preprocessing). For the third analysis layer, in addition to layer 1 criteria, we considered the 

quality of horizontal EOG channels from the PSG, while no specific requirements were imposed on the 

other channels. Consequently, the number of included data for each analysis layer may not be identical 

(see Table 1 for an overview). 

 The aim of the analysis layers 2 and 3 was to compare the signal quality between ZMax and PSG. 

Thus, to remove the impact of autoscoring performance (analysis layer 1) on these layers, we employed 

human scoring from the PSG and aligned it with ZMax, rather than using the autoscoring results. This way, 

we have ensured the consistency in the scoring across measurement modalities, which allowed us to 

solely compare the signals and evaluate their similarities as well as differences in terms of the outcome 

measures. 

2.2. Measurement modalities  

The Lite version of ZMax EEG headband comprises two frontal EEG channels (F7-Fpz, F8-Fpz), a tri-axial 

accelerometer, and a PPG sensor, all with a sampling frequency of 256 Hz. The advanced version in 

addition includes an ambient light sensor, a microphone (to measure ambient noise), a thermometer, and 

nasal/SpO2 sensors. Intermediate versions with different kinds of sleep modulation functionalities are 

also available. The sleep EEG recording functionality tested in the present study is the same for all versions 

of the headband. For any version, a hydrogel electrode patch has to be mounted on the ZMax headband 

for EEG recordings. The disposable patches can be used for multiple nights.  

The PSG system in datasets 1, 2, and 4, was SOMNOscreen™ (Somnomedics GmbH, Randersacker, 

Germany), whereas dataset 3 used the Vitaport system (TEMEC Instruments, Kerkrade, Netherlands). 

SOMNOscreen is a portable PSG system comprising six EEG channels (F3, F4, C3, C4, O1, O2) with a mutual 

reference to Cz and a ground on Fz and can be further referenced to the Mastoid channels. It also includes 

two horizontal EOG, three chin EMG, and ECG channels. Recordings through the Vitaport system involve 

four EEG channels (F4, C3, C4, O2) with a mutual reference to Cz and a ground on Fz and can be referenced 

to the Mastoid channels. Recordings also include two horizontal EOG, a single chin EMG and ECG signals. 
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2.3. Datasets 

This study encompasses five datasets. The first four datasets include (1) Donders 2018, (2) Donders 2022, 

(3) Stockholm University, and (4) Quantified self (QS) and comprise participants’ nocturnal sleep 

simultaneously recorded using ZMax and PSG from healthy populations either at home or in lab 

environments, whereas dataset (5) MindIBD includes nocturnal sleep recordings only through ZMax  from 

patients with inflammatory bowel disease (IBD) in home settings.  

1. Donders 2018: This dataset comprised two cohorts, cohort 1 with N = 11 (4 females, mean age 

21.1 ± 3.4 years std) and cohort 2 including N = 12 participants (9 females, mean age 23.8 years  

± 3.6 std). Both groups underwent three nights of nocturnal data collection using ZMax in a home 

setting. The first group experienced a single night of PSG recording in parallel with ZMax, whereas 

in the second group, there were two nights of data collection with both systems, one while ZMax 

was bridged to be recorded through PSG and the other with parallel recording. For analysis in the 

current investigation, only the parallel recordings were considered. Out of 34 simultaneous ZMax-

PSG data 23 included ‘parallel’ recordings, among which 9, 6, and 8 recordings met the inclusion 

criteria for analysis layers 1, 2, and 3, respectively. 

2. Donders 2022: a total of N = 37 healthy young participants were included in the study; of which 

N = 32 completed the study (22 females, mean age 21.59 years ± 3.78 std). The overall duration 

of the study was six weeks (see Figure 2), starting with an intake session, followed by the pre-

experimental period (weeks 1 and 2), continuing towards the experimental period (weeks 3, and 

4), and ending with the post-experimental period (weeks 5, and 6). Participants completed 

baseline questionnaires at the intake and then for the following 43 consecutive days completed 

daily dream diaries and questionnaires regarding sleep quality. During the experimental period, 

nocturnal sleep was recorded every night with ZMax and during the first, 8th, and 15th nights 

simultaneously with the PSG. Before the first experimental night, participants received a video 

together with a brochure containing the instructions on how to wear, maintain, and record data 

with ZMax and the PSG. The PSG systems was placed in the lab, and the participants started 

recording themselves at home. The participants practiced this procedure with the experimenters 

on the first experimental night, before receiving the PSG and leaving the lab to sleep at home. 

From the 97 simultaneous ZMax and PSG recordings, 66, 61, and 63 met the inclusion criteria of 

analysis layers 1, 2, and 3, respectively. 
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Figure 2 – Longitudinal ZMax validation study design (dataset 2). This study was essentially designed for the validation 
of ZMax EEG headband concerning the PSG. Nocturnal sleep data were recorded during the middle two weeks (15 nights) 
using ZMax. There was a parallel PSG recording on the first, middle, and the last night of the middle two weeks. 

3. Stockholm University: N = 23 participants (14 females, mean age 27.82 years ± 6.07 participated 

in the study. Participants spent three non-consecutive nights in the sleep lab, i.e., a habituation 

night and two experimental nights. Each night, participants went to bed at their habitual bedtime 

(ranging from 21:30 to 00:00) and awoke at their habitual wake time (ranging from 04:00 to 

07:30). On one of the experimental nights, participants snoozed in bed the last 30 minutes before 

their habitual wake time. Each night, participants wore several actigraphy monitors on their body, 

along with the ZMax headband and PSG (Vitaport system). Participants also completed a 

motivation questionnaire each evening before bed. Upon awakening, participants also produced 

two saliva samples, completed a sleep questionnaire and completed a cognitive test battery on a 

smartphone. Participants completed three more cognitive test batteries throughout the day 

(directly upon awakening; 40 minutes after awakening, around 12:30 pm and around 3:30 pm). 

From the 23 participants, 17, 13, and 14 recordings were included for analysis layers 1, 2, and 3, 

respectively. 

4. QS: the QS dataset consists of various physiological measurements from a citizen neuroscientist 

(N = 1, male, aged 35 years) over the course of 34 months (Sikder et al, 2022; ter Horst & Dresler 

2022). Nocturnal sleep was recorded every night with ZMax, whereas an additional PSG was 

mounted on the subject once per week to record nocturnal sleep simultaneously. From the 96 

nights with simultaneous ZMax and PSG recordings, 43, 38, and 41 were included in analysis layers 

1,2 and 3, respectively. 
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5. MindIBD: The MindIBD trial is a multicenter randomized controlled trial that investigates the 

effectiveness of Mindfulness-Based Cognitive Therapy (MBCT) in patients with IBD (ter Avest et 

al., 2023). The trial primarily focuses on the effectiveness of MBCT in reducing psychological 

distress in IBD patients, but the effects on sleep quality, fatigue, disease activity and -control, and 

quality of life are also outcomes of interest. Within this trial, a targeted number of 136 patients 

from four Dutch hospitals with a confirmed IBD diagnosis in remission and suffering from 

psychological distress (Hospital Anxiety and Depression Scale total score ≥ 11) are allocated 1:1 

to MBCT + treatment as usual or treatment as usual alone. Participants were asked to sleep with 

ZMax EEG headband for three consecutive nights, at both baseline and post-intervention. 

As an indication of the lights-out time, the participants were instructed to follow a set of 

predefined tasks such as closing their eyes for one minute to relax, performing a series of teeth clenches, 

left-right-left-right (LRLR) eye movements, and several consecutive blinks. These events were also used to 

synchronize the data epochs recorded by the PSG and ZMax. In instances where a subject failed to perform 

the predefined tasks, alternative events (e.g., slow eye rollings during N1 sleep or movement arousals) 

were used for synchronization purposes. 
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 Dataset 1: 
Donders 2018 

Dataset 2: 
Donders 2022 

Dataset 3: 
Stockholm Uni. 

Dataset 4: QS Dataset 5: 
MindIBD 

N recruited  
Participants 

Cohort 1: 11 

Cohort 2: 12 

37  26  1 142 

Age (mean ± SD) 
years 

Cohort 1: 21.1 ± 
3.4 

Cohort 2: 23.8 ± 
3.6 

21.5 ± 3.7 27.8 ± 6.1 35  48.62 ± 13.96  

Gender  Cohort 1: 4/11  
(36 %) females 

Cohort 2: 9/12  
(75 %) females 

25/37 females 
 (68 %) 

14/23 females 
(54 %) 

1 male 91 females 
(64 %) 

N available 
parallel 
recordings 

23 97 57 68 N/A 

N inclusion for 
analysis layer 1  

9 / 34 (26 %) 66 / 96 (69 %) 17  / 57   (30 %) 43 / 68 (63 %) 280 / 512 (55%)* 

N inclusion for 
analysis layer 2 

6 / 23 (26 %) 61 / 96 (64 %) 13 / 57 (23 %) 38 / 68 (56 %) N/A 

N inclusion for 
analysis layer 3 

8 / 23 (35 %) 63 / 96 (66 %) 14 / 57 (25 %) 41 / 68 (60 %) N/A 

Main reason for 
exclusion  

- Entirely noisy 
ZMax: 3 
- Entirely noisy 
PSG: 3 
- <75% useful 
data: 18 
- < 5.5 hours, but 
clean: 1 

- Entirely noisy 
ZMax: 1 
- Entirely noisy 
PSG: 3** 
- <75% useful 
data: 19 
- < 5.5 hours, but 
clean: 2 

- Entirely noisy 
ZMax: 17 
- Entirely noisy 
PSG: 0 
- <75% useful 
data: 22 
- < 5.5 hours, but 
clean: 1 

- Entirely noisy 
ZMax: 3 
- Entirely noisy 
PSG: 2 
- <75% useful 
data: 20 *** 
- < 5.5 hours, but 
clean: 0 

N/A 

Study 
environment 

Home Home Lab Home Home 

Research Institute  Donders 🕆 

Institute for Brain, 
Behaviour and 
Cognition – 
research team 1 

Donders Institute 
for Brain, 
Behaviour and 
Cognition – 
research  team 2 

Stockholm 
University 

Donders Institute 
for Brain, 
Behaviour and 
Cognition – 
research team 3 

Four Dutch 
hospitals in 
Nijmegen (2), 
Arnhem and  ‘s-
Hertogenbosch  

PSG system SOMNOscreen SOMNOscreen Vitaport SOMNOscreen N/A 

Available EEG 
channels 

Frontal (F3, F4), 
Central (C3, C4), 
Occipital (O1, O2) 

Frontal (F3, F4), 
Central (C3, C4), 
Occipital (O1, O2) 

Frontal (F4),  
Central (C3, C4), 
Occipital (O2) 

Frontal (F3, F4), 
Central (C3, C4), 
Occipital (O1, O2) 

N/A 

Table 1 - Dataset overview.  Analysis layer 1: (auto-) scoring and sleep metrics assessment. Analysis layer 2: signal quality 
assessment in addition to non-REM features analysis based on frontal channels (F3 and F4 from the PSG). Analysis layer 3: REM 
features analysis using dedicated EOG channels from the PSG. Exclusion criteria correspond to analysis layer 1 as the primary step. 
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Slight differences in exclusion rates of analysis layer 1 with respect to both 2 and 3 are related to data quality of F3 and F4, and 

EOG channels of PSG, respectively. 🕆: Datasets 1, 2, and 4 have been collected in Donders institute, however, with completely 
different researchers and experimental teams as well as instruction procedure for participants. *: In dataset 5, 366/512 (71%) met 
the inclusion for analysis layer 1, i.e, at least 5.5 hours in duration while including at least 75% scorable data , but given the 
absence of PSG, we only used completely clean data which did not require any specific artifact rejection step which resulted in an 
inclusion rate of 280 / 512 (55%).**: The first three nights collected from the first participant showed irregular sleep 
microstructural patterns (probably due to electrodes misplacement/software configuration and despite having clean signal quality 
throughout the recording, the data were excluded based on human scorer suggestion.  ***: 17/25 data with poor quality were 
collected during the last 18 measurements indicating an internal issue with the headband. 

2.4. Behavioral analysis 

The behavioral analyses were conducted based on dataset 2 in which daily questionnaires were 

administered during pre-experimental, experimental, and post-experimental periods. Our analysis 

examined the influence of wearing the ZMax EEG headband on subjective sleep quality (on a scale from 

0: very badly to 5: very well), number of awakenings, and mood (on a scale from 0: sad to 10: happy). In 

addition, the technology acceptance rate was evaluated through questions regarding the comfortability 

(on a scale from 0: very uncomfortable to 10: very comfortable) and sleep disturbance of the headband 

(on a scale from 0: not at all to 10: very much) during the experimental period. 

 We used JASP statistical software (Love et al., 2019) to conduct statistical analyses. A repeated 

measures ANOVA test with a post-hoc Holm correction was employed to detect significant differences 

between sleep quality, morning mood, and the number of awakenings during different study phases. For 

the remaining behavioral analyses, correlation values were calculated and plotted using JASP. 

 

2.5. Preprocessing  

Sleep scoring is the most fundamental step in performing any analysis of sleep data. Datasets 1-3 

were scored by a single experienced professional, whereas dataset 4 was scored redundantly by a group 

of five university researchers with the most experienced scorer reviewing epochs with a lack of consensus 

and making a final decision on the basis of the 5 different scores and the respective data from those 

epochs. Datasets 1-3 were scored using Domino (SOMNOscreen ltd, Germany), whereas dataset 4 was 

scored using SpiSOP (https://www.spisop.org), all according to AASM protocols. Non-scorable PSG and 

their corresponding ZMax recordings were excluded from further analysis. A thorough examination of the 

simultaneous ZMax recordings was performed on the remaining scorable data. This process included the 

determination of artifacts that were present on the ZMax but not on the simultaneous PSG recording. 

During this process, the TFR of the ZMax EEG channels within the primary sleep frequency range of 0.3–

30 Hz was initially investigated to detect three types of issues: (1) ‘noisy epochs’, characterized by high 

power across a broad frequency range obscuring the identification of sleep microstructures such as 12–

15 Hz spindle or 0.5–4 Hz slow-oscillation (SO) activity, (2) ‘epochs of data loss’ indicated by the absence 
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of power throughout the frequency range, and (3) ‘fragmented data’ containing several noisy or data loss 

epochs next to each other (see also Supplemental Figure 1). Subsequently, if the overall duration of 

artefactual and non-scorable epochs exceeded approximately 25% of a complete recording that consisted 

of a minimum 5.5 hours (as an estimate of a normal duration of nocturnal sleep), the data from that night 

were excluded from subsequent processing (see also Section 2.1). Otherwise, SpiSOP software was 

utilized to accurately mark the ‘noisy’ and ‘data loss’ epochs in the time domain. The remaining ‘clean’ 

epochs were retained for post-processing if a clear distinction between various sleep stages could be 

made, including high SO and spindle band power as an indication of N2 and slow-wave sleep (SWS), low 

spindle and mixed-frequency band power as an indication of restful wake, N1 or REM sleep, and brief 

bursts of high-power mixed-frequency activity as an indication of movement arousals  (see also 

Supplemental Figure 1). 

In case of different sampling rates between ZMax and standard PSG recordings, we resampled the 

data pairs to the one with a lower sampling frequency, i.e., 256 Hz in ZMax. To compare the analytic 

results derived from the data collected by ZMax and standard PSG, it was necessary to align the ground 

truth hypnograms (human scoring of the PSG data) with the corresponding ZMax recordings. This 

alignment was achieved by identifying a mutual event present in both sets of data, such as predefined eye 

movements. Depending on which device was started earlier, some epochs were either removed from the 

beginning of the hypnogram or added to the end (marked as non-scorable). The length of the hypnogram 

was then adjusted to match the number of epochs in ZMax recording, by either removing additional 

epochs or adding fake non-scorable epochs as needed.  

 

2.6. Autoscoring 

We compared the performance of two autoscoring approaches with the human scoring as the 

ground truth. The autoscoring algorithms encompass: (1) ZLab, which is the autoscoring service provided 

by ZMax Hypnodyne, and (2) the DreamentoScorer (Figure 3) from our open-source dream engineering 

toolbox (Esfahani et al., 2022a; https://github.com/dreamento/dreamento). To receive the results from 

ZLab, all the available ZMax data from datasets 1-4 were pseudonymized and then shared with Hypnodyne 

for autoscoring. While the proprietary architecture of ZLab remained undisclosed to us, it reportedly 

integrates various sources of information obtained by ZMax, including EEG, tri-axial accelerometer, and 

PPG data.  
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Figure 3 – DreamentoScorer schematic representation. DreamentoScorer takes the temporal dependence between epochs into 
consideration. This means that, to score the current epoch, it extracts the features not only from the current epoch but also from 
3 epochs back and forth. This allows for more accurate autoscoring using a simpler machine-learning model. 

DreamentoScorer operates based on a  LightGBM  (Ke et al., 2017) machine learning model to 

automatically predict sleep stages. Initially, DreamentoScorer extracts a variety of time, frequency, and 

time-frequency domain features from each 30-second epoch data of both ZMax  EEG channels (a full list 

of features can be found on Dreamento’s GitHub page). In light of importance of the temporal 

dependence for sleep scoring according to AASM protocols, DreamentoScorer extracts features from 

three epochs back and forth to provide an autoscoring result of the current epoch (see Figure 3). The 

Boruta algorithm (Kursa & Rudnicki, 2010) is then used to select the most relevant features to be used as 

inputs to the LightGBM classifier. The optimal list of DreamentoScorer hyperparameters were found 

through a random grid search (see Supplemental Table 1) and can be found on Dreamento GitHub page: 

https://github.com/dreamento/dreamento.  

In this study, we applied a 10-fold cross-validation on datasets 2-4  (for dataset 1, due to the 

limited number of data we had to use 5-fold cross-validation), separately, and then across the pooled 

dataset. To assess the performance of autoscoring on dataset 5, due to the absence of PSG and thus 

human scoring, we visually investigated all the resulting hypnograms by DreamentoScorer and evaluated 

the alignment of the corresponding TFR events with the output scoring (see also the criteria for ‘clean’ 

data in Section 2.5. Preprocessing as well as Supplemental Figure 1.A). 
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2.7. Sleep assessment metrics 

Objective sleep assessment metrics proposed by AASM, including sleep period time (SPT), total sleep time 

(TST), sleep efficiency (SE), sleep maintenance efficiency (SME), sleep onset latency (SOL), wake after sleep 

onset (WASO), and the duration, percentage and latency of each sleep stage were derived based on the 

human scoring of the PSG to serve as the ground truth. These measures were then compared with the 

results obtained from the ZLab and DreamentoScorer autoscoring algorithms. 

 

2.8. Bandpower analysis  

We compared the power of the signals obtained from ZMax and PSG using the YASA toolbox (Vallat et al., 

2021) across different frequency ranges, including SO (0.5–1 Hz), delta (1–4 Hz), theta (4–8 Hz), alpha (8–

12 Hz), and sigma (13–16 Hz) within different stages of sleep. The power of the signal was computed and 

averaged over F7-Fpz and F8-Fpz channels for ZMax and over EEG channels of the PSG in the proximity of 

ZMax i.e., F3:A2  and F4:A1 in datasets 1,2, 4, and F3 only (due to absence of F4) in dataset 3. 

 To further investigate the concordance of the power estimates between the measurement 

modalities, we employed Bland-Altman plots (Bland  & Altman, 1986). Bland-Altman plots are suited to 

indicate the presence of systematic error (fixed bias) between the measurements as well as highlighting 

the outliers. Correlation analysis represents the degree to which two measurements are ‘associated’ (not 

the difference among measurements), whereas Bland-Altman plots demonstrate the level of ‘agreement’ 

between the measures (Giavarina et al., 2015). 

 

2.9. Sleep microstructural analysis 

Non-REM sleep microstructural features such as SOs and spindles and REM sleep microstructural features 

such as rapid eye movements were automatically detected in both ZMax and PSG signals using the 

algorithm proposed by Mölle et al. (2002) and Ngo et al., (2015), implemented in the SleepTrip toolbox 

(RRID: SCR_017318, https://github.com/Frederik-D-Weber/sleeptrip). For non-REM features, the events 

were detected using the closest channels of the PSG in the proximity of ZMax, namely F3:A2 and F4:A1 

channels. To detect REM features, a derivation of the dedicated EOG channels of the PSG, i.e., horizontal 

EOG left - EOG right was compared with ZMax F7 - F8.  The results were then averaged across channels 

for each system. The specific configuration and variables used for detecting these events can be found in 

the Supplemental Table 2. Raincloud plots (Allen et al., 2019) were employed to demonstrate the 

agreement between the measures from ZMax vs. PSG signal. 
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 We have also compared the morphology of the detected events in ZMax vs PSG by illustrating the 

event-related potential (ERP). To create the ERP of the SOs and spindles, the detected events were time-

locked to the maximum absolute trough and then averaged across trials. The characteristics of 

microstructural features such as counts, density, duration, and amplitude were then analyzed and the 

correlation between ZMax and the PSG outputs was determined. Additionally, Bland-Altman plots were 

employed to depict the measurement agreement between the PSG and ZMax. 
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3. Results 

The behavioral analyses were performed on 441, 462, and 403 nights during pre-experimental, 

experimental, and post-experimental phases, respectively, which accounted for an average of 13.78 ± 

0.97, 14.44 ± 1.08, 12.59 ± 1.04 nights per participant. We found no striking difference in subjective sleep 

quality when comparing the pre-experimental and experimental phases (t = 1.80, p = 0.076), whereas 

sleep quality improved during the post-experimental phase, both in comparison with the experimental (d 

= -0.51 , p < 0.001) and pre-experimental phase (d = -0.29, p = 0.04) (Figure 4-A, Supplemental Table 3). 

Nevertheless, the average sleep quality during all phases remained between the ‘fairly well’ and ‘well’ 

grades (3.29 ± 0.66, 3.15 ± 0.66, 3.48 ± 0.64 for pre-experimental, experimental, and post-experimental 

phases, respectively, where 3 represents 'fairly well' and 4 is ‘well’). Furthermore, morning mood did not 

differ across the different phases of the study between pre-, post-, and experimental phases (ppre- vs. exp. = 

0.86, ppre- vs. post-exp = 0.19, ppost- vs. exp= 0.19) as demonstrated in Figure 4-B and Supplemental Table 3. In the 

post-experimental period the number of awakenings were reduced compared to both the pre-

experimental (d = 0.44, p = 0.005) and experimental phases (d = 0.54, p < 0.001). Although this difference 

is statistically significant, there was only a slight difference in average number of awakenings observed: 

1.39 ± 1.00, 1.49 ± 0.05, and 0.98 ± 0.83, during the pre-experimental, experimental, and post-

experimental phases, respectively (Figure 4-C). Focusing on the experimental period in particular, 

regressional trends were mainly absent for sleep quality (r = 0.09, p = 0.053, Figure 4-D), morning mood 

(r = 0.02, p = 0.724, Figure 4-E), number of awakenings (r = -0.06, p = 0.223, Figure 4-F), ZMax disturbance 

(r = -0.03, p = 0.54, Figure 4-G), and ZMax comfort (r = 0.05, p = 0.32, Figure 4-H)  over the course of 15-

night experimental period. 
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Figure 4 – Results of behavioral analysis based on dataset 2. (A) subjective sleep quality, (B) morning mood, and (C) number of 
awakenings across different phases of the study. Panels (D) - (H), focus on the experimental period only, i.e., from nights 15 - 29. 
(D) subjective sleep quality, (E) morning mood (n.s.), (F) the number of awakenings (n.s.), (G) ZMax disturbance (n.s.), and (H) 
ZMax comfort (n.s.) trends during the experimental period. The bars on the right of  x- and top of y-axes of panels (D) - (H) represent 
the histograms. n.s. : not significant, pre-exp: pre-experimental phase, exp: experimental phase, post-exp: post-experimental 
phase. ***: p-value < .001, **: p-value < .01. 

To demonstrate the similarity of the recorded signals by ZMax and the PSG, a sample 30-second 

epoch from each sleep stage is illustrated in Figure 5. During wakefulness, signals recorded during restful 

wake with eyes closed, while performing predefined eye signaling, and during the events of jaw clenching 

exhibited relatively similar patterns. This is important as these signals could be used to synchronize ZMax 

output signals with simultaneous recording from another measurement modality. For instance, 
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predefined eye movements are useful for synchronization with another EEG system, whereas jaw 

clenching events might be employed to synchronize with a simultaneous EMG recording. During N1 sleep, 

particularly during a period of slow eye-rolling, ZMax signal displays a combination of the EOG (manifested 

as the slow/low-frequency baseline activity) in addition to the EEG (evidenced by the low-amplitude 

mixed-frequency activity). Furthermore, microstructural features characterizing non-REM sleep, such as 

sleep spindles and K-Complexes during N2 sleep as well as SOs during SWS and rapid eye movement 

events during REM sleep are also discernible within the ZMax signal. 

 

Figure 5 - Sample representation of a simultaneous PSG and ZMax recording during different stages of sleep from a single 
participant. During wakefulness, comparison between the ZMax and PSG signals were made while (1) resting with the eyes closed, 
(2) performing pre-defined left-right-left-right (LRLR) eye signaling as an event to synchronize signals between the PSG and ZMax, 
and (3) performing jaw clenching as an alternative event for synchronization between the measurement modalities. The ZMax vs. 
PSG signals were also compared within N1 sleep, N2 sleep, N3/SWS, and REM sleep. The F3 - F4 derivation from the PSG (blue), 
was compared with the F7 - F8 derivation from ZMax (purple). An additional EOG derivation, i.e., EOG left - EOG right (green) was 
also depicted to compare slow eye rolling during N1 and rapid eye movement during REM sleep. All illustrations show a 30-s epoch 
of data. The y- xes show  m litu es in μV. 

In an early stage of this study, when we only had datasets 2 and 3 manually scored by our human 

experts, we tested the performance of one of the well-known algorithms on our wearable system data. 

We applied U-sleep v1.0 (Perslev et al., 2021) as one of the most comprehensive autoscoring algorithms 

including flexibility in terms of the chosen EEG montage, to 69 pre-processed ZMax recordings. Our results 

indicated that if U-sleep is employed ‘out of the box’, without any fine tuning (e.g., training partially based 

on wearable data) and using a double EEG input in place of the typical EEG+EOG it would result in an 

overall accuracy = 6 .3%, mF1 = 0.63%, and a Cohen’s kappa score = 57.3%, which is lower than both the 
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human inter-rater agreements as well as its performance on PSG data. As expected, fine-tuning through 

applying a 10-fold cross-validation (similarly, using double EEG inputs) improved the results, achieving 

overall accuracy = 7 .6%, mF1 = 72.7%, Cohen’s kappa score = 71%. 

We also evaluated the performance of Zlab and DreamentoScorer as wearable-specific 

autoscoring algorithms for our four datasets, including 135 data comprising over 900 hours of night sleep 

(108064 epochs, after artifactual epochs rejection). The performance of the algorithms for sleep 

autoscoring was analyzed and compared across various datasets, as detailed in Table 2. We established 

the feasibility of developing an autoscoring model (DreamentoScorer) based on ZMax data which may  

also be utilized by future ZMax studies. When compared to the ground truth scoring, DreamentoScorer 

consistently outperforms Zlab across all datasets. More specifically, DrementoScorer achieved a Cohen’s 

kappa score of 64.84%, 71.60%, 64.39%, 83.00%, and 72.18% for datasets 1, 2, 3, 4, and the pooled 

dataset, surpassing the Cohen’s kappa scores of 59.40%, 57. 9%, 61.4 %, 61.34%, and 59.61% obtained 

from ZLab. Furthermore, when delving into the sleep stage classification of the pooled dataset, 

Dreamento yielded higher F1-scores compared to ZLab. Specifically, for wake, N1, N2, SWS, and REM 

sleep, Dreamento achieved F1-scores of 77.36%, 39.73%, 81.23%, 82.28%, 83.01%, whereas ZLab 

obtained 74.67%, 24.67%, 73.59%, 69.05%, and 76.30%, respectively.  
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 Dataset 
 

Wake N1 N2 SWS REM 

ZLab Dreamento Zlab Dreamento Zlab Dreamento Zlab Dreamento Zlab Dreamento 

Recall (%)  
 
 
 

Dataset 1 
(N =9) 

70.39 80.33 26.31 44.63 76.63 81.22 80.90 64.83 77.45 84.38 

Precision 
(%) 

41.78 61.44 45.30 51.57 84.10 84.18 56.95 67.24 79.89 77.71 

F1-score (%) 52.44 69.63 33.29 47.85 80.19 82.67 66.84 66.01 78.65 80.91 

Overall 
Accuracy (%) 

ZLab: 71.10 , Dreamento: 75.27 

Overall 
mf1(%) 

ZLab:  62.28, Dreamento: 69.41 

Overall 
Kappa (%) 

ZLab:  59.40, Dreamento: 64.84 

Recall (%)  
 
 
 
Dataset 2 

(N = 66) 

75.22 78.45 29.12 33.73 75.16 75.33 59.42 83.63 75.14 85.60 

Precision 
(%) 

79.73 75.07 14.69 39.37 63.72 76.98 86.23 88.20 68.18 76.29 

F1-score (%) 77.41 76.72 19.53 36.33 68.97 76.15 70.36 85.86 71.49 80.68 

Overall 
Accuracy (%) 

ZLab: 68.21 , Dreamento: 78.87 

Overall 
mf1(%) 

ZLab: 61.55 , Dreamento:  71.15 

Overall 
Kappa (%) 

ZLab:  57.89, Dreamento: 71.60 

Recall (%)  
 
 
 

Dataset 3 
(N = 17) 

64.61 76.58 16.92 22.05 82.09 72.93 73.66 83.73 73.90 73.10 

Precision 
(%) 

85.61 70.49 22.76 35.53 67.63 78.10 80.71 76.43 70.17 69.98 

F1-score (%) 73.64 73.40 19.41 27.21 74.16 75.43 77.03 79.91 71.99 71.50 

Overall 
Accuracy (%) 

ZLab: 71.46 , Dreamento:  73.18 

Overall 
mf1(%) 

ZLab: 63.25 , Dreamento: 65.49 

Overall 
Kappa (%) 

ZLab: 61.48  , Dreamento: 64.39 

Recall (%)  
 
 
 

Dataset 4 
(N = 43) 

84.40 86.87 41.48 57.49 66.75 89.65 92.79 90.02 82.34 94.02 

Precision 
(%) 

61.68 85.76 33.72 64.07 91.56 94.28 47.41 81.44 89.12 87.93 

F1-score (%) 71.42 86.31 37.20 60.61 77.21 91.91 62.75 85.52 85.60 90.87 

Overall 
Accuracy (%) 

ZLab:  73.90, Dreamento: 89.49 

Overall 
mf1(%) 

ZLab:  66.83, Dreamento: 83.04 

Overall 
Kappa (%) 

ZLab:  61.34, Dreamento: 83.00 

Recall (%)  
 
 

Pooled 
data 

(N = 135) 

73.73 79.13 28.86 37.10 72.86 78.33 67.74 83.54 77.28 87.65 

Precision 
(%) 

75.63 75.66 21.54 42.77 74.32 84.35 70.41 81.06 75.35 78.84 

F1-score (%) 74.67 77.36 24.67 39.73 73.59 81.23 69.05 82.28 76.30 83.01 

Overall 
Accuracy (%) 

ZLab: 70.50 , Dreamento: 79.67 

Overall 
mf1(%) 

ZLab: 63.65 , Dreamento: 72.72 

Overall 
Kappa (%) 

ZLab: 59.61 , Dreamento: 72.18 

Table 2 - Comparison between the ZLab and DreamentoScorer autoscoring algorithms concerning the human scoring results as the ground 
truth. Recall = tp / (tp + fn), Precision = tp / (tp + fp), F1-score = 2 * (precision * recall) / (precision + recall) , Accuracy =(tp + tn) / (tp + fp + tn + 
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fn), macro-F1 (mF1) = the mean of F1-score,  ohen’s k     score  κ  =  Po - Pe) / (1 - Pe) where: Po is the observed, and Pe is the expected 
agreement. The values are reported as percentages. The bolded values show the higher outcome derived from either ZLab or DreamentoScorer. 

Additionally, the ground truth hypnogram (Figure 6-A, top) was schematically compared for a 

sample data with the hypnograms resulting from ZLab  (Figure 6-A, middle) and DreamentoScorer (Figure 

6-A, bottom). To gauge more details about the performance of DreamentoScorer in classifying each 30-

second epoch of data, the classifier's probability diagram (hypodensity) is shown in Figure 6–B 

(hypodensity was not provided for ZLab autoscoring) and the TFRs from both ZMax EEG channels were 

demonstrated in Figure 6-C. 

 

 
Figure 6 - Comparison between the performance of autoscoring algorithms with the ground truth based on human scoring of 
the PSG. (A) ground truth hypnogram (top), ZLab hypnogram (middle), and Dreamento hypnogram (bottom). (B) Hypnodensity 
diagram of Dreamento representing probability of each sleep stage while predicting each epoch of data by DreamentoScorer, with 
different colors representing different stages of sleep, black: Wake, green: N1, light blue: N2, purple: SWS, red: REM. (C) the time-
frequency representation of the F7-Fpz, and F8-Fpz channels from ZMax. 

Datasets 1-4 were used in this study to benchmark ZMax performance across healthy young 

adults, whereas dataset 5 was included merely as a proof of concept to show the potential applicability 

of ZMax and DreamentoScorer over (1) an older population (2) with pathological conditions (see Table 1). 

While the detailed analysis for dataset 5 will be discussed elsewhere (ter Avest et al., paper in 

preparation), here we report that according to our data quality assessment protocols (Supplemental 
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Figure 1), out of 512 available nocturnal sleep recordings from IBD patients, 280 (55%) were deemed 

entirely useful, 366 (71%) contained at least 75% useful data, 83 (17%) included fragmented data, and 63 

(12%) only contained noise. Given the absence of ground truth PSG to assess autoscoring for dataset 5, 

we defined a shallow analysis as follows: we first autoscored the entirely useful portion of data and then 

visually inspected whether the autoscoring results are aligned with the sleep stage transition criteria 

through TFR (see Figure 6 and Supplemental Figure 1). Based on this shallow analysis, we observed that 

autoscoring using DreamentoScorer resulted in acceptable outcomes in 82% of cases. An explanation for 

the remaining poor autoscorings, could be the subjects’ age range (46. 7 ± 13.15 years of age for 

acceptable autoscoring results vs 54.19 ± 11.96 years of age for poor autoscoring results), underlying 

disease and potential comorbidities. 

Based on the manual scoring and autoscoring results, we calculated various sleep assessment 

metrics suggested by AASM. The results derived from the manual scoring served as the ground truth, and 

were compared with the outcomes from the autoscoring approaches (see Table 3). Overall, we observed 

acceptable outcomes for both ZLab and DreamentoScorer, when compared to manual scoring (see also 

the raincloud plot and statistical assessment in Supplemental Figure 2). 
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Dataset  

Dataset 1: Donders 2018 Dataset 2: Donders 2022 Dataset 3: Stockholm University Dataset 4: QS Pooled data 

 Ground 
truth 

ZLab Dreamento Ground 
truth 

ZLab Dreamento Ground 
truth 

ZLab Dreamento Ground 
truth 

ZLab Dreamento Ground 
truth 

ZLab Dreamento 

SPT 
(min) 

431.5±72.03 422.94±85.09 435.22±69.09 392.09±71.5 390.42±70.69 395.14±72.78 365.65±66.1 373.79±70.06 368.18±65.37 348.52±34.39 348.66±34.3 348.67±34.34 377.49±65.95 377.18±66.32 380.66±68.74 

TST 
(min) 

415.28±73.74 397.56±76.34 411.11±72.64 363.56±65.13 366.86±65.24 360.94±65.55 331.15±64.48 349.35±67.09 324.74±61.6 341.95±33.46 336.91±31.6
3 

341.78±34.12 356.04±61.00 357.15±60.37 354.30±61.37 

SE (%) 93.96±4.31 89.74±6.58 92.03±6.8 86.5±6.38 87.23±5.67 85.88±6.67  81.74±6.27 86.27±6.52 80.48±9.18 96.27±3.23 94.86±2.69 96.2±3.39 89.51±7.57 89.71±6.26 89.02±8.22 

SME (%) 96.12±3.41 94.2±1.57 94.37±5.89 93.0±5.63 94.06±3.29 91.58±5.53 90.52±5.23 93.48±3.04 88.33±7.27 98.18±3.08 96.71±2.45 98.07±3.24 94.55±5.51 94.84±3.19 93.39±6.39 

SOL 
(min) 

8.22±5.95 17.67±24.68 10.22±6.57 25.7±15.94 30.6±24.11 23.67±19.5 25.82±15.97 28.15±22.11 23.88±17.95 5.64±2.19 5.72±2.66 5.63±1.93 18.16±15.87 21.5±22.69 15.73±15.75 

WASO 
(min) 

16.22±13.36 25.39±10.66 24.11±25.32 28.53±27.01 23.57±15.31 34.2±26.88 34.5±20.39 24.44±11.79 43.44±30.19 6.57±11.59 11.76±9.35 6.9±11.76 21.45±24.11 20.03±14.11 26.36±27.98 

N1 (min) 51.94±26.78 30.17±12.04 46.11±27.59 15.92±12.56 31.55±21.84 13.64±13.12 25.21±14.32 18.74±13.1 15.65±8.32 11.33±6.46 13.93±7.38 10.16±7.2 18.09±16.28 24.23±18.65 15.72±12.01 

N1 (%) 12.21±5.62 7.52±2.45 10.88±5.73 4.34±3.41 8.46±5.27 3.75±3.51  7.68±4.34 5.41±3.86 4.74±2.6  3.28±1.83 4.1±2.08 2.98±2.06 4.96±4.10 6.62±4.60 4.37±3.07 

N2 (min) 208.22±48.99 189.72±34.38 201.22±53.56 128.58±42.93 151.66±55.62 125.83±41.55 141.56±36.39 171.82±52.7 132.18±50.82 201.76±27.71 147.08±51.5 191.84±28.69 158.38±5108 155.27±54.10 147.53±51.05 

N2 (%) 50.32±10.8 48.68±8.54 48.85±10.61 35.1±8.58 41.54±13.57 34.58±8.75 42.56±5.69 48.93±11.36 40.14±11.88 58.98±5.13 43.75±14.67 56.06±5.12 44.57±12.94 43.65±13.68 41.66±13.34 

SWS 
(min) 

60.5±19.03 85.94±36.09 58.33±31.73 139.92±33.64 96.42±46.52 132.67±37.07 101.94±24.92 93.03±35.92 111.68±43.99 54.99±11.4 107.63±48.9
3 

60.78±13.61 102.76±47.09 98.87±45.96 105.94±47.25 

SWS (%) 15.39±6.62 21.4±7.38 15.35±10.89 38.95±9.25 26.82±13.41 37.34±10.9 31.06±5.83 27.26±10.47 35.57±15.45 16.1±3.07 31.87±13.75 17.91±4.07 29.10±12.94 28.12±13.19 30.35±14.10 

REM 
(min) 

94.61±36.69 91.72±38.87 105.44±40.71 79.14±26.35 87.22±44.58  88.8±26.99 62.44±22.08 65.76±22.09 65.24±29.38 73.88±18.90 68.27±16.76 79.0±18.47 76.82±25.74 78.78±36.41 85.12±29.99 

REM (%) 22.08±6.21 22.4±6.63 24.91±6.69 21.6±5.63 23.19±9.65 24.33±5.43 18.7±4.78 18.4±4.03 19.55±7.47 21.64±5.08 20.28±4.58 23.05±4.46 21.37±5.41 21.6.±7.77 23.62±6.18 

N1 Lat 
(min) 

8.61±5.68 17.67±24.68 10.22±6.57 27.14±16.72 36.61±35.56 35.75±39.61 25.82±15.97 46.0±55.84 36.24±35.06 5.64±2.19 10.13±29.62 5.67±1.95 18.89±16.58 28.09±38.94 22.26±33.69 

N2 lat 
(min) 

23.61±25.5 23.72±25.64 15.83±4.87 33.79±23.38 35.88±25.59 35.24±25.05 31.35±19.42 31.94±20.66 33.35±19.78  8.7±2.64 8.3±2.58 9.21±2.65 24.81±22.09 25.79±23.92 24.59±20.93 

SWS lat 
(min) 

39.56±23.63 39.06±27.79 40.39±17.18 39.64±25.6 51.11±30.21 42.15±36.4 41.12±18.87 47.21±21.72 42.76±20.73 24.34±3.78 20.53±8.44 24.53±5.07 34.94±21.45 40.07±27.71 35.03±27.68 

REM lat 
(min) 

101.94±54.89 96.56±43.13 93.89±55.06 128.48±57.8 83.1±32.74 70.64±56.13 108.74±42.32 88.0±41.21 56.82±47.83 95.23±37.89 85.66±33.79 80.9±37.03 113.56±52.53 85.42±35.17 74.79±50.27 

Table 3 - Comparative sleep assessment metrics. SPT: sleep period time,  TST: total sleep time, SE: sleep efficiency, SME: Sleep maintenance efficiency, SOL: sleep onset latency, 

WASO: wake after sleep onset, Lat: latency. Values are represented in the form of mean ± standard deviation.
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 Our results from Table 3 as well as Supplemental Figure 2 demonstrate that the correlation 

between the ground truth and the results from ZLab and DreamentoScorer are rather close for measuring 

SPT (rZLab = 0.98 and r = 0.99, p-values < 0.001), TST (rZLab = 0.97 and rDreamento = 0.96, p-values < 0.001), SE 

(both r = 0.87, p-values < 0.001), SME (both r = 0.79, p-values < 0.001), SOL (rZLab = 0.86 and rDreamento = 

0.81, p-values < 0.001), and WASO (rZLab = 0.79 and rDreamento = 0.81, p-values < 0.001). Compared with ZLab, 

DreamentoScorer resulted in higher correlation to the ground truth for determining the majority of stage-

wise metrics, namely the duration of N1 (rZLab = 0.19, p-value < 0.05  rDreamento =  0.57, p-values < 0.001), 

N1 %  (rZLab = 0.09 [n.s.],  rDreamento =  0.51, p-values < 0.001), N2 (rZLab = 0.23, rDreamento =  0.79, p-values < 

0.001), N2 % (rZLab = 0.09 [n.s.], rDreamento =  0.65, p-values < 0.001), SWS (rZLab = 0.06 [n.s.], rDreamento =  0.69, 

p-values < 0.001), SWS % (rZLab = 0.04 [n.s.], rDreamento =  0.63, p-values < 0.001), whereas REM duration (rZLab 

= 0.59, rDreamento =  0.71, p-values < 0.001) and REM % (rZLab = 0.38, rDreamento = 0.53, p-values < 0.001) resulted 

in more similar outputs between the algorithms. Additionally, ZLab and DreamentoScororer exhibited 

similar level of correlation to the ground truth when measuring N1 latency (rZLab = 0.49 and rDreamento = 0.41, 

p-values < 0.001), N2 latency (rZLab = 0.93 and rDreamento = 0.89, p-values < 0.001), and  SWS latency (rZLab = 

0.83 and rDreamento = 0.84, p-values < 0.001), nonetheless, the resulting REM latency  (rZLab = 0.38,  p-values 

< 0.001, rDreamento = 0.20, p-values < 0.05) better correlated with ZLab outcome. 

 

Figure 7 - Bland-Altman plots representing the agreement between the relative bandpower between PSG and ZMax. The 
horizontal solid line in each figure represents the mean bias. The two dashed horizontal lines show the upper and lower limits of 
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agreement. The results are demonstrated based on the pool dataset. The difference between the measures was based on PSG 
outcome minus the ZMax-based measure. In each plot, the x-axis represents the average of the two measures, whereas the 
difference between measures is shown on the y-axis. 

 

By analyzing the agreement between ZMax and PSG in terms of bandpower computation using 

Bland-Altman plots, we found that ZMax exhibits a relatively low mean bias when compared to PSG. 

Overall, with respect to PSG relative bandpower, ZMax demonstrated the bias of -0.055 ± 0.085, 0.045 ± 

0.044, 0.016 ± 0.027, 0.005 ± 0.012, -0.008 ± 0.023, +0.002 ± 0.002, and 1.13e-10 ± 2.22e-10 for delta, 

theta, alpha, sigma, beta, gamma, and absolute overall power, respectively (see also Supplemental Table 

4 and 5). Nevertheless, the proportional bias of the ZMax concerning PSG for absolute power is clearly 

evident in Figure 7. Moreover, although a linear trend indicating a proportional bias was observed for 

higher frequencies such as the beta and gamma bands, this was limited to datasets 1 and 4, where the 

same headbands (earlier versions of ZMax) were utilized (see also Supplemental Figure 3). 

 Focusing on the number of detected events, ZMax consistently underestimated the number of 

detected SO and spindle counts compared to PSG (165.62 ± 92.00 vs. 404.43 ± 162.40, and 919.97 ± 357.53 

vs. 1008.7 ± 255.11, for SO and spindle counts over the pooled dataset, respectively). This can also be 

schematically represented alongside the hypnogram as in Supplemental Figure 4. Conversely, ZMax 

overestimated the number of detected REM events (831.57 ± 549.31 vs. 467.01 ± 511.6 over the pooled 

dataset). We further observed an underestimation of SO density, SO frequency, SO trough-to-peak 

amplitude and slope, spindle density, spindle duration, spindle trough-to-peak amplitude, spindle linear 

regression frequency, and REM mean speed. Conversely, the results derived from ZMax overestimated 

SO mean duration, SO zero-crossing slope, REM counts, REM density, and REM duration (see Figure 8 and 

Supplemental Table 6 for more details).  

Comparing the characteristics of non-REM and REM microstructural features (see Figure 9 and 

Supplemental Table 6) we observed a strong correlation between the outputs of ZMax and PSG across 

different datasets as well as the pooled dataset: SO counts (r=0.74, p<0.001), SO density per epoch 

(r=0.72, p<0.001), SO mean duration (0.41, p<0.001), SO mean frequency (r=0.44,  p<0.001), SO trough-

to-peak amplitude (r=0.55, p<0.001), SO zero-crossing slope (r=0.52, p<0.001), SO trough-to-peak lope 

(r=0.56, p<0.001), spindle counts (r=0.67, p<0.001), spindle density (r = 0.46, p<0.001), spindle duration 

(r=0.58, p<0.001), spindle trough-to-peak amplitude (r=0.44, p<0.001), spindle linear regression 

frequency slope (r=0.70, p<0.001), REM counts (r=0.66, p<0.001), and REM density (r=0.60, p<0.001). 

However, a few measures relating to REM events did not reach significant correlation level between the 
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PSG and ZMax outcome, namely REM mean duration (r = 0.12, p = 0.22) and REM mean speed (r=0.15, p 

= 0.10). 

 

 

 
Figure 8 - Comparison of the event-related potential (ERP) of the automatically detected slow-oscillation (SO) and spindle 
events in ZMax and PSG signals using SleepTrip toolbox. The results were derived by averaging the detected events over F7-Fpz 
and F8-Fpz for ZMax (red signal) and F3 and F4 referenced to contralateral mastoid for PSG (black). In dataset 3, due to the 
availability of only the F4 channel, the resulting ERP from PSG F4 were compared with the  averaged ZMax ERP across F7 and F8 
channels, which created a slightly different signal when compared with the other datasets. 
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Figure 9 - Rain-cloud plots representing the correlation between the characteristics of the microstructural features of non-REM 
(SO and spindles) and REM sleep (rapid eye movement events) derived from the PSG (blue) and ZMax (orange). The significant 
correlation values are indicated in the figure. *: p-value < 0.05, ** p-value < 0.01, ***: p-value < 0.001. T2p: trough-to-peak. 
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The mean difference (PSG measure vs ZMax) of sleep microstructural features was assessed using 

Bland-Altman plots. Our results indicate the presence of the following biases: 238.81 ± 113.91 for SO 

counts, 0.46 ± 0.18 counts per epoch for SO density, -0.22 ± 0.13 seconds for SO duration, 0.12 ± 0.06 Hz 

for SO frequency, 35.43 ± 37.26 uV for SO amplitude, -138.77 ± 82.56 uV/second for SO zero-crossing 

slope, 218.60 ± 153.39 uV/s for SO trough-to-peak slope, 88.72 ± 268.58 for spindle counts, 0.19 ± 0.55 

counts per epoch for spindle density, 13.75 ± 6.87 uV for spindle amplitude, 0.01 ± 0.04 seconds for spindle 

duration, 0.02 ± 0.17 uV/second for spindle linear regression frequency slope, -364.57 ± 442.80 for REM 

counts, -2.16 ± 2.33 counts per epoch for REM density, -0.01 ± 0.01 seconds for REM duration, and 172.62 

± 113.44 uV/seconds for REM speed (see Figure 10).  

 
Figure 10 - Bland-Altman plots representing the agreement of measurement of sleep microstructural features between ZMax 
and the PSG. (A) SO characteristics, (B) Spindle characteristics, and (C) REM events characteristics. The horizontal solid line in each 
figure represents the mean bias. The two dashed horizontal lines show the upper and lower limits of agreement. The results are 
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demonstrated based on the pool dataset. The difference between the measures was based on PSG outcome minus the ZMax-
based measure. In each plot, the x-axis represents the average of the two measures, whereas the difference between measures is 
shown on the y-axis. 

3. Discussion 

Due to advancements in the miniature electronics industry and the widespread implementation of AI in 

addition to the increased demand for health tracking, the consumer market offers an increasing number 

of wearable sleep sensing systems. Despite the accessibility, the extent to which wearable systems can 

accurately measure the intended variables is somewhat uncertain. To utilize wearables such as the ZMax 

EEG headband in scientific and clinical settings, it is necessary to validate their performance compared 

with a standard PSG system. We did this by analyzing four datasets collected by the varying research 

institutes in both laboratory and naturalistic home environments, resulting in a large and diverse sample. 

We also included a fifth dataset as a proof of concept for the applicability of ZMax headband in measuring 

longitudinal sleep data in clinical settings.  

When considering wearable systems for data collection, the initial inquiry pertains to their 

feasibility of data collection. This can be evaluated across different domains such as the technology 

acceptance rate by the users and the rate of resulting useful data. Our behavioral analysis indicated that 

the ZMax sleep disturbance rate and comfort level, as well as its influence on sleep quality, morning mood, 

and number of awakenings, all lay within an acceptable range (see Figure 4). While we observed different 

sleep quality scores in a post-experimental period compared with both pre-experimental and 

experimental phases, it is essential to note that the extent of differences were overall small. The same 

applies to the reported number of awakenings. Furthermore, no compelling evidence was found to 

establish an association (either positive or negative) between sleep quality, morning mood, number of 

awakenings, ZMax disturbance, and comfort as time progressed during the experimental period. These 

findings suggest that the ZMax headband does not have a considerable adverse effect on sleep or mood, 

and that longitudinal recordings with the headband do not lead to significant deterioration of these 

aspects over time. 

In the largest dataset of the present study (dataset 2, see Table 1), among the 37 recruited 

participants, we experienced only four dropouts (11% of the recruited participants) due to discomfort of 

the headband. Considering the extensive duration of the study, spanning 6 weeks with 15 nights of 

nocturnal sleep using the ZMax (including 3 nights of PSG) we deem this dropout rate to be rather 

moderate.  

Regarding the usefulness rate of data, we observed both acceptable (e.g., 68% and 63% for 

datasets 2 and 4, respectively) and lower-than-expected (26% and 30% for datasets 1 and 3, respectively) 
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rates for simultaneous ZMax-PSG recordings among healthy populations. In dataset 2, which involved our 

largest sample size as well as the highest rate of useful data, we provided the participants with an 

information brochure, as well as an instruction and troubleshooting video. Our participants were informed 

at their first lab visit that electrophysiological studies with EEG might result in varying degrees of skin 

sensitivities due to alcohol usage and chemical reactions at the wet electrode sites. Thus, we instructed 

the participants to clean their foreheads not too intensely, and further to adjust the headband to a tight, 

but not too tight fight.  Furthermore, during each lab visit, the participants received feedback from the 

researcher regarding the quality of the collected data in addition to some strategies by which the data 

quality could be improved. These Goldilocks-principled instructions may have contributed to the overall 

acceptable tolerability of the headband even under repeated use. While we did not receive any reports 

on significant cases of skin irritation from participants in our studies, we also need to mention that we did 

not assess this aspect systematically. In dataset 4, encompassing several recordings conducted by a citizen 

neuroscientist, out of the 25 excluded recordings due to poor quality, 17 occurred during the last 18 

recordings. This suggests the possibility of a technical issue with the wearable at the end of the study; 

whereas a much higher success rate was observed in the earlier phase of the study. Accordingly, with 

proper instruction, training, and occasional follow-ups, longitudinal home-recordings appear to be 

possible with considerable reliability. Of note, in datasets 1 and such instructions had not been 

implemented yet, which may partly explain the lower rate of successful recordings. We thus urge other 

researchers to adopt those instructions or similar practices when utilizing the ZMax wearable. 

The analysis of sleep data is fundamentally dependent on the process of sleep scoring. Thus, when 

evaluating the performance of an investigational system for sleep measurement, the primary 

consideration should be the system's ability to produce data that can be accurately scored. We showed 

the feasibility of human scoring of ZMax data, even in real-time, elsewhere (Esfahani et al., 2022b). When 

it comes to autoscoring, the majority of the state-of-art algorithms have been trained on standard PSG 

data using virtual EEG montages, e.g., mainly a frontal channel referenced to a central (e.g., Hsu et al., 

2013; Supratak et al., 2020; Tsinalis et al., 2016). This is because such a montage provides information 

regarding rapid-/slow- eye movements through frontal channels which are useful for REM and N1 

detection, and facilitates spindle detection from central scalp regions which is useful for N2 vs N3 

distinction. Additionally the dominant alpha activity in the occipital regions during wake with the eyes 

closed may be more evident in central regions, when compared to frontal solely. Wearables such as ZMax, 

however, typically grant access to the frontal electrodes only, employ different electronics (e.g., amplifier) 

which influence the output signal, and record data with relatively higher impedance (when compared to 
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cup electrodes from PSG) due to the use of hydrogel disposable electrodes, making these data more 

challenging for the conventional PSG-evaluated autoscoring algorithms. Therefore, these algorithms may 

not perform ideally on wearable data, if utilized ‘out of the box’ and without further fine-tuning. 

Alternatively, annotated data from wearables could be included into the training sets of large cross-cohort 

and cross-PSG system sleep staging projects like U-Sleep (Perslev et al., 2021) or YASA (Vallat et al., 2021) 

to make these algorithms robust to score EEG data from wearables reliably.  

 While our results showed that DreamentoScorer outperformed ZLab by achieving a higher recall 

(true positive rate among all the actual positives), precision (true positive rate among all the positive 

detections), and F1-score (the harmonic mean of precision and recall) across all the sleep stages as well 

as higher overall accuracy, Cohen’s kappa score, and macro-F1 (the average of F1-scores) across the 

pooled dataset, it is essential to acknowledge that due to the utilization of a cross-validation in testing 

DreamentoScorer performance, a direct comparison of the results derived from DreamentoScorer and 

ZLab may not be applicable. This is because ZLab has been trained on a completely different dataset, 

where the number of trained data and any further details remain undisclosed due to its proprietary 

nature. Nevertheless, we have indicated the possibility of developing an accurate autoscoring system for 

ZMax EEG data that results in relatively acceptable outcomes as detailed in Tables 2 and 3. Further 

research could focus on development of an artifact rejection algorithm for DreamentoScorer (in progress). 

This algorithm would enable DreamentoScorer to assess the data quality, rejecting artifactual epochs, and 

then proceed to apply autoscoring exclusively on the data segments with acceptable quality. 

Considering the sleep micro- and macro-structural alterations with aging (Crowley et al., 2022; 

Nicolas et al., 2022; Van Cauter et al., 2000), it was found that our autoscoring algorithm, 

DreamentoScorer, which was trained on a relatively young population, would not work ideally for older 

age groups. We recommend future studies on older populations and patient groups to employ 

DreamentoScorer cautiously and apply a post-autoscoring step according to our data quality assessment 

procedure to ensure the alignment between the sleep stages and the TFR alterations (see Figure 6 and 

Supplemental Figure 1). Collecting simultaneous PSG-ZMax data from elderly is crucial to developing more 

personalized models tailored to their altered sleep stage characteristics. 

An important use case of wearables for longitudinal studies is their ability to derive sleep statistics. 

Based on our findings, both ZLab and DreamentoScorer have relatively acceptable results while 

determining SPT, TST, SE, SME, SOL, WASO, etcetcra. Of note, similar to other autoscoring approaches, 

we have observed the issue of early REM detections in DreamentoScorer which also influenced the lower 

estimations of REM latency that should be considered by the users. To overcome this issue, we proposed 
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a method to replace the REM episodes detected before the first N2 detection with N1. While this method 

was deactivated in evaluating datasets 1-4, we activated it to assess dataset 5. Future work may integrate 

innovative features as a potential solution to the problem of misidentifying N1 as early REM sleep.  

Wearable systems typically utilize electronics which are relatively different from the ones used in 

a PSG system (e.g., amplifiers and hardware filters configuration). Despite not anticipating a strong 

agreement between the measured relative bandpower in using ZMax and PSG, our findings revealed that 

the relative bandpower calculated using ZMax generally exhibited only a minor bias. These findings imply 

that ZMax can effectively capture a dependable EEG signal, allowing for the accurate detection of crucial 

frequencies required for sleep recording within the 0.3–30 Hz range. 

Beyond passive sleep assessment, another intriguing application of wearables is their capability 

to ‘modulate’ sleep. Sleep modulation is typically subdivided into (1) non-REM sleep modulation, e.g., to 

enhance deep sleep and memory consolidation using CLAS and TMR techniques, or (2) REM sleep 

modulation for studying (lucid) dreams. In our previous work, we have introduced Dreamento as an open-

source tool that allows conducting such studies with wearables (Esfahani et al., 2022a). In this work, we 

have deemed to address the similarities and differences between the characteristics of the oscillations 

such as SO, spindles, and REM events in ZMax with respect to PSG signal which have to be considered 

either for sleep modulation studies or to conduct post-processing of the microstructural features of sleep.  

While the overall characteristics of the ZMax ERPs resemble those from PSG, there were notable 

discrepancies that should be acknowledged (see Figure 8 and Supplemental Table 6). The ZMax signals 

yielded SO and spindle ERPs with consistently lower amplitude when compared to the PSG outcome (see 

Table 3 for detailed results). Nevertheless, this might have been expected due to the different montage 

configuration of the analysis. More specifically, while the channels used for PSG event detection were 

more spatially separated (F3 and F4 referenced to the mastoids), ZMax F7 and F8 channels were 

referenced to a relatively close channel (Fpz). This difference could contribute to the fact that the detected 

fluctuations in ZMax signal are typically attenuated when compared to the PSG. Moreover, the ZMax SO 

ERPs consistently exhibited wider trough-to-peak and peak-to-trough intervals when compared to the PSG 

signals. Nevertheless, our analysis based on different datasets indicated a clear association between the 

SO and spindle events in both ZMax and PSG across all datasets (see Figures 8 & 9). Notably, in the current 

study, we employed identical parameters for detecting SO, spindle, and REM events in both ZMax and 

PSG (Supplemental Table 2). The intention behind this approach was to standardize all the factors, 

allowing for a direct comparison of the actual signals recorded in ZMax vs PSG. We encourage future 

studies to consider the addressed discrepancies that are expected to be observed in ZMax signal to either 
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aim for a more precise real-time detection of the desired oscillation or to conduct a more accurate post-

processing of the desired microstructural events. This would then subsequently enhance the validity and 

reliability of the findings. 
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4. Conclusions  

In this study, we evaluated the performance of the sleep EEG wearable ZMax, compared to PSG as ground 

truth.  ehaviorally, ZMax does not appear to influence its wearer’s sleep and mood negatively, and we 

did not observe an accumulative deteriorative effect of wearing ZMax over time. Our analysis using four 

different datasets with simultaneous ZMax-PSG recordings showed that ZMax provides acceptable signal 

quality. ZMax signals can be fed to machine-learning algorithms such as ZLab and DreamentoScorer which 

both resulted in reliable sleep assessment metrics. Nevertheless, DreamentoScorer was more accurate in 

identifying sleep stages and its corresponding metrics except for REM latency. We have evaluated the 

agreement between the output measures of ZMax vs PSG for different purposes, containing bandpower, 

non-REM microstructural features such as SO and spindles, and REM features including rapid eye 

movement instances. Despite the discrepancies observed in the ZMax outcomes, if future studies take 

careful consideration of these findings, ZMax has the potential to serve as a dependable tool for both 

sleep monitoring and modulation. 
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