

1
2 **Bioengineering of a human innervated cardiac muscle model**
3

4 Lennart Valentin Schneider^{1,2,5}, Bao Guobin^{1,2}, Aditi Methi⁴, Ole Jensen³, Kea Aline
5 Schmoll^{1,5}, Michael Gani Setya¹, Sadman Sakib⁴, Aminath Luveysa Fahud¹, Jürgen
6 Brockmöller³, André Fischer^{4,5}, Norman Y. Liaw^{1,2}, Wolfram-Hubertus
7 Zimmermann^{1,2,4,5,6*}, Maria-Patapia Zafeiriou^{1,2,5*}

8 ¹Institute of Pharmacology and Toxicology, University Medical Center, Georg-August-University, Göttingen, Germany

9 ²DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany

10 ³Departement of Clinical Pharmacology, University Medical Center, Georg-August-University, Göttingen, Germany

11 ⁴German Center for Neurodegenerative Diseases, Göttingen, Germany

12 ⁵MBExC (Multi-Scale Bioimaging Excellence Cluster), Göttingen, Germany

13 ⁶Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany

14

15
16 ***Corresponding authors:**

17 Maria-Patapia Zafeiriou, PhD - patapia.zafeiriou@med.uni-goettingen.de

18 Institute of Pharmacology and Toxicology

19 University Medical Center Göttingen

20 Robert-Koch-Str. 40

21 37075 Göttingen

22 Germany

23 Tel: +49 551 39 5775

24 Tel: +49 551 39 65169

25 www.pharmacology.med.uni-goettingen.de

26 twitter: @mariapatapia @pharmaumg

27
28 Wolfram Hubertus Zimmermann, MD - w.zimmermann@med.uni-goettingen.de

29 Institute of Pharmacology and Toxicology

30 University Medical Center Göttingen

31 Robert-Koch-Str. 40

32 37075 Göttingen

33 Germany

34 Tel: +49 551 39 65781

35 Fax: +49 551 39 5775

36 www.pharmacology.med.uni-goettingen.de

37 twitter: @pharmaumg

38
39
40 **Keywords:** human induced pluripotent stem cells, sympathetic neural organoid, cardiac tissue
41 engineering, neurocardiac innervation, neuro-cardiac junction, optogenetics.

43 **Abstract**

44 Cardiac autonomic neurons control cardiac contractility. Dysregulation of the autonomic nervous
45 system can lead to sympathetic overdrive resulting in heart failure and an increased incidence of
46 fatal arrhythmias. Here, we introduce innervated engineered human myocardium (iEHM), a novel
47 model of neuro-cardiac junctions, constructed by fusion of a bioengineered neural organoid
48 (BENO) patterned to autonomic nervous system and engineered human myocardium (EHM).
49 Projections of sympathetic neurons into engineered human myocardium formed presynaptic
50 terminals in close proximity to cardiomyocytes and an extensive vascular network co-developing
51 in the tissues. Contractile responses to optogenetic stimulation of the accordingly engineered
52 neuronal component demonstrated functionality of neuro-cardiac junctions in iEHM. This model
53 will serve as a human surrogate system to delineate neuron and cardiac cell contribution to brain
54 and heart diseases and is an important step towards engineering a human brain to heart axis in
55 a dish.

56 **Introduction**

57 Under physiologic conditions, sympathetic neurons (SN) arise from trunk neural crest ¹ under the
58 influence of morphogens such as retinoic acid, bone morphogenetic protein 4 (BMP4) and
59 canonical Wnt activation ¹⁻³. SN release noradrenaline, which binds to beta-adrenoreceptors
60 present on cardiac cells (pacemaker or cardiomyocytes) to modulate contractility ⁴. In contrast
61 parasympathetic neurons arising from cardiac neural crest release acetylcholine (ACh) and
62 reduce beating rate ⁴.

63 Imbalance of autonomic neuronal regulation is a hallmark of brain and heart diseases (i.e. sudden
64 cardiac death under epilepsy ⁵, catecholaminergic polymorphic ventricular tachycardia ⁶) as well
65 as heart failure. Despite the importance of SN under physiologic and pathophysiologic conditions,
66 their interaction with cardiomyocytes and other cells in the healthy and diseased heart is not well
67 understood.

68 Human tissue engineering in combination with induced pluripotent stem cell (iPSC) ushered in a
69 new era in human disease modeling. A number of tissue-engineered and organoid models of
70 brain ⁷⁻⁹ or heart ¹⁰⁻¹² have been developed and proved to efficiently model human diseases ^{9,10,13}.
71 A design principle in heart models is the co-culture of cardiomyocytes with non-myocytes, such
72 as fibroblasts and endothelial cells ^{10,14}. Similarly, in brain organoids neurons co-develop with glial
73 cells ⁷⁻⁹. Co-culture experiments of cardiomyocytes and neurons have been performed with a
74 demonstration of cell-cell interactions^{2,3,15-17}. However, such models have not been advanced to
75 the human tissue level, which has clear advantages in assessing cardiac muscle chronotropy or
76 inotropy and deciphering neurocardiac interactions at the 3D syncytium level. Moreover, these
77 models lack cellular complexity which may play a significant role in different pathomechanisms.
78 For example, in the developing embryo sympathetic axons are chemoattracted towards the heart
79 by nerve growth factor (NGF) released from perivascular cells and thus are located close to
80 vessels ¹⁸. NGF is a key player in neuronal homeostasis in the heart ¹⁹ and its dysregulation after
81 myocardial infarction is believed to underlie neuronal remodeling and sympathetic overdrive ²⁰.

82 Aiming to generate a 3D neurocardiac interface, we patterned our previously established
83 bioengineered neural organoid (BENO) ⁷ model to exhibit primarily SN activity. We then fused the
84 resulting sympathetic neural organoid (SNO) with engineered human myocardium (EHM) ¹⁰ to
85 allow SN to innervate and functionally interact with the cardiac cells.

86

87

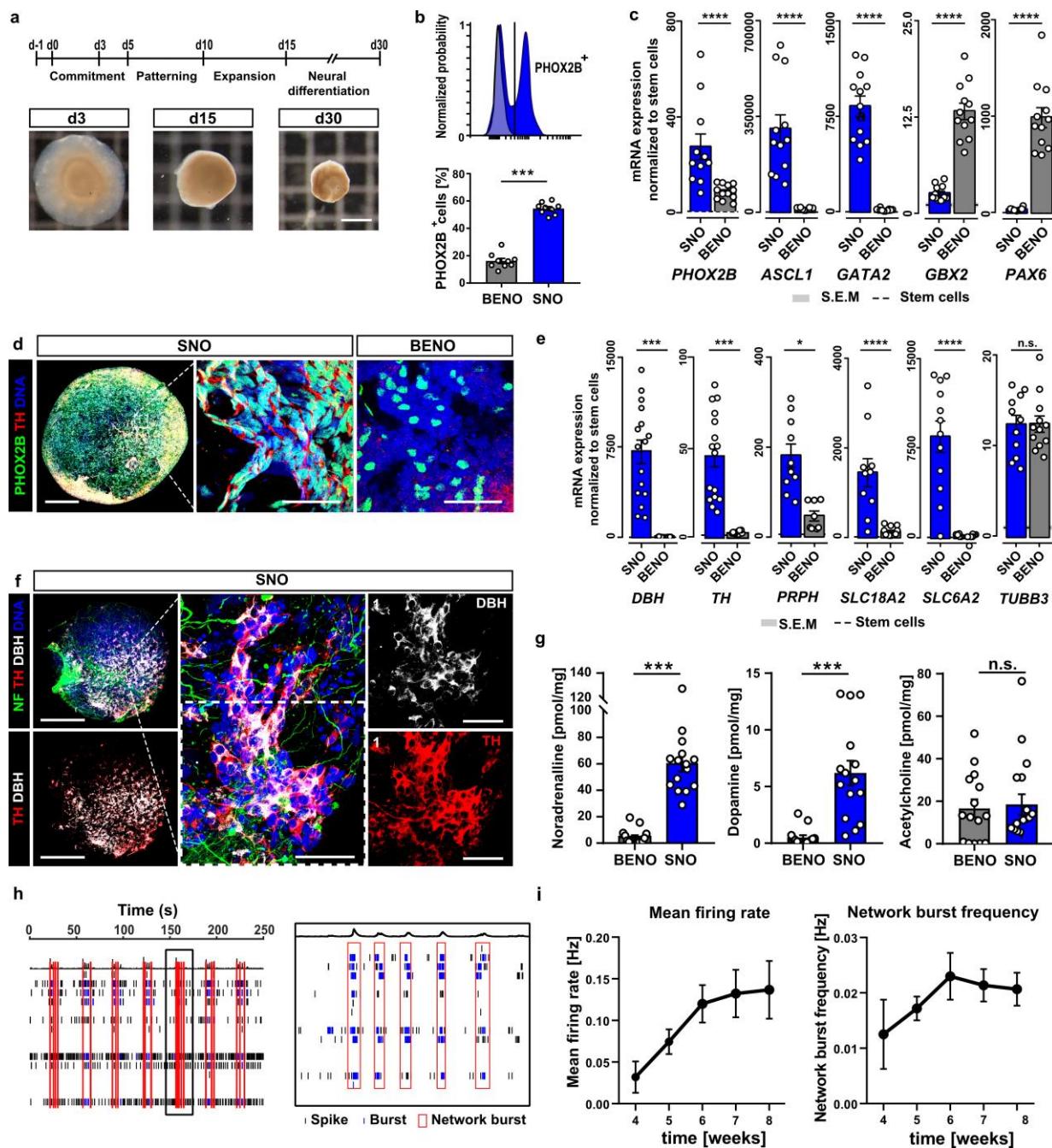
88

89

90

91

92


93

94 **Results**

95 **Generation of a sympathetic neural organoid (SNO)**

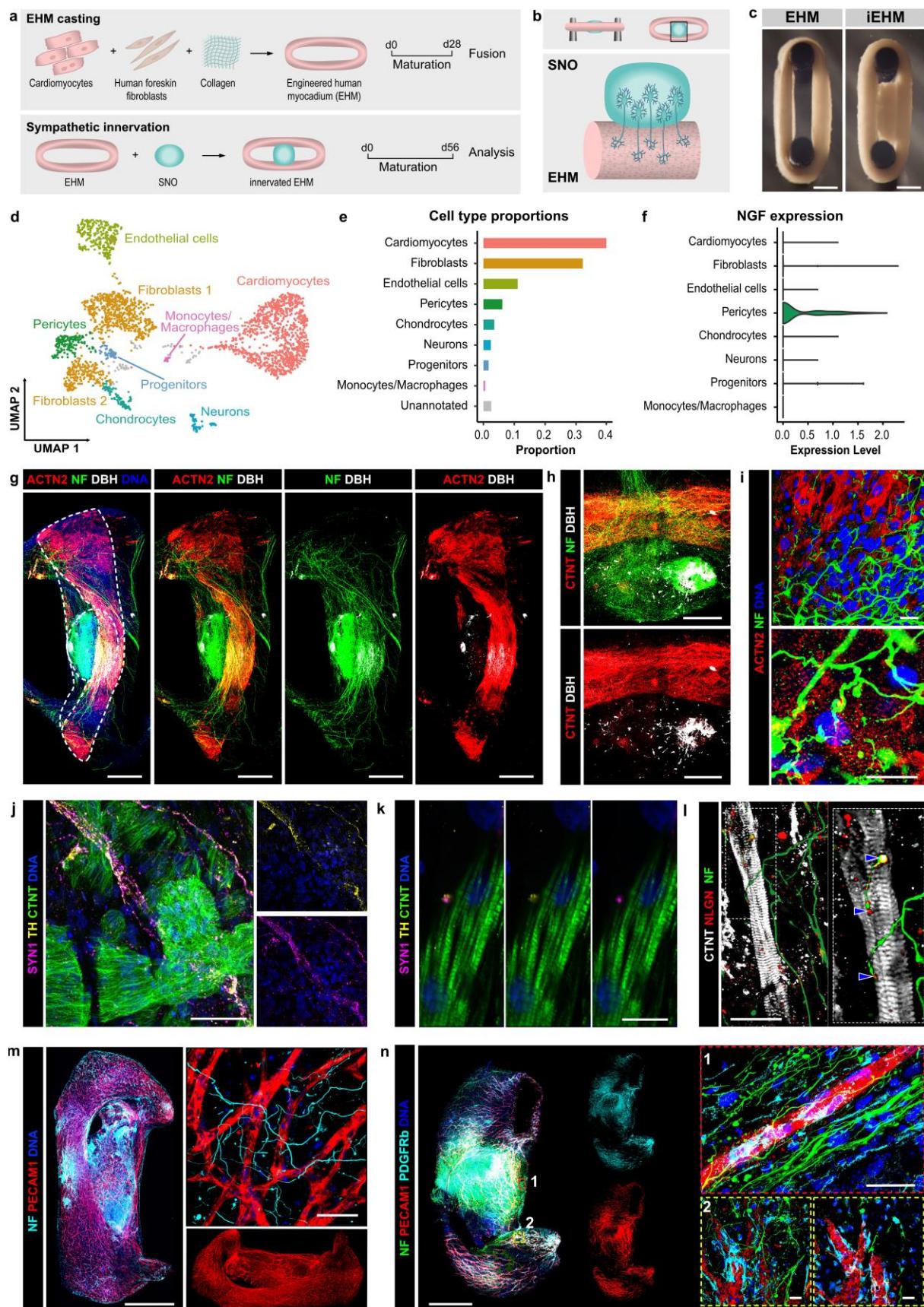
96 SNO generation was achieved by patterning our previously established brain organoid model,
97 BENO⁷, towards sympathetic trunk fate^{2,3}. Embedded in a 3D collagen environment, human
98 iPSC were committed to SN progenitors by modulation of pathways faithful to *in vivo*
99 development. For the identification of an optimal protocol for derivation of SNO (**Figure 1A**)
100 morphogen concentration, treatment window and cell number had to be fine-tuned. Optimized
101 SNO comprised of 55±1% PHOX2B positive cells 15 days after initiation of directed differentiation
102 (**Figure 1B, Supplementary Figure 1A**). When compared to BENO, SNO showed significantly
103 greater levels of neural crest markers (*PHOX2B*, *ASCL1*, *GATA2*) and diminished expression of
104 forebrain and hindbrain markers (*PAX6*, *GBX2* respectively, **Figure 1C, D**,
105 **Supplementary Figure 1B**). By day 30, trunk neural crest cells differentiated into peripheral
106 (PRPH) noradrenergic neurons expressing transcripts encoding for critical proteins for
107 catecholamine synthesis and reuptake, such as dopamine beta hydroxylase and tyrosine
108 hydroxylase (DBH, TH) as well as dopamine and noradrenaline transporters (*SLC18A2*, *SLC6A2*)
109 (**Figure 1E-F, Supplementary Figure 2**). Both SNO and BENO contained similar levels of the
110 pan-neural marker *TUBB3* (**Figure 1E**) confirming that the enhanced expression of noradrenergic
111 markers in SNO reflected patterning to a sympathetic neural fate. Furthermore, transcript and
112 immunofluorescence analyses revealed the presence of cholinergic neurons (*CHAT*, *SLC18A3*),
113 glutamatergic neurons (*SLC17A6*), sensory neurons (*BRN3A*), and glia (*SLC1A3*), but absence
114 of motor (*MNX1*) and GABAergic (*GAD1*) neurons (**Supplementary Figure 3**).

115 On day 40, liquid chromatography analysis of SNO vs BENO, showed significantly higher levels
116 of sympathetic neurotransmitters noradrenaline (60.4±6.2 vs 4.4±1.5 pmol/mg) and its precursor
117 dopamine (6.18±1.09 vs 0.51±0.20 pmol/mg), but no enrichment for acetylcholine (18.41±4.91 vs
118 16.73±4.19 pmol/mg), confirming a predominantly sympathetic nature of the neurons in SNO
119 (**Figure 1G, Supplementary Figure 4**). SNO developed functional neuronal networks of
120 increasing spontaneous activity (mean firing rate) and complexity (network burst frequency) that
121 reached a plateau by 6 weeks of differentiation (**Figure 1H-I**) and demonstrated a concentration
122 dependent response to nicotine (EC50 29.4±15.4 µM; **Supplementary Figure 5**). The latter is a
123 hallmark for postganglionic neurons of the sympathetic nerve system and together with evidence
124 for ACh synthesis, which is restricted to preganglionic neurons, suggests the formation of
125 sympathetic ganglia in SNOs. Transcript and whole mount immunofluorescence analysis of SNO
126 generated from three different iPSC lines indicated a highly reproducible protocol leading to
127 similar levels of predominantly SN markers (**Supplementary Figure 6**).

128

129 **Fig. 1 | Generation and characterization of sympathetic neural organoids (SNO).** **a, (Top)** Schematic of SNO
 130 differentiation protocol. **(bottom)** Brightfield images showing SNO at day (d) 3, 15 and 30 of development. Scale
 131 bar, 1 mm. **b**, Flow cytometry analysis of autonomic (PHOX2B^{pos}) progenitor cells dissociated from SNO and
 132 BENO at d15. 3 independent differentiations, 3 biological replicates per differentiation ($n=9$). **c**, Expression
 133 analysis of autonomic progenitor marker (PHOX2B, ASCL1, GATA2) and cortical marker (GBX2, PAX6) for SNO
 134 and BENO (general brain organoid) at d15 normalized to GAPDH expression. SNO and BENO were normalized
 135 to expression in undifferentiated stem cells. 3 independent differentiations, 3-4 biological replicates per
 136 differentiation ($n=11-12$). **d**, Wholemount immunofluorescence analysis of d15 SNO and BENO stained for
 137 sympathetic progenitor marker PHOX2B (green) and TH (red). Scale bar, 500 μ m. **(Right)** Close-up view of
 138 PHOX2B expression in SNO vs BENO. Scale bar, 50 μ m. **e**, Expression analysis of pan-neural marker TUBB3,
 139 sympathetic markers (DBH, TH, SLC18A2, SLC6A2) and peripheral neuron marker peripherin (PRPH) for SNO

140 and BENO at d41 normalized to GAPDH expression. SNO and BENO were normalized to expression in
141 undifferentiated stem cells (dashed line). 3-4 independent differentiations, 3-4 biological replicates per
142 differentiation ($n=11-16$). **f, (Left)** Wholemount immunofluorescence analysis of d41 SNO and BENO stained for
143 sympathetic neuron marker DBH (grey), TH (red) and NF (green). Scale bar, 1 mm. **(Center)** Close-up view
144 depicting sympathetic neurons co-expressing TH and DBH in SNO. Scale bar, 25 μ m. **g**, LC-MS/MS analysis of
145 BENO and SNO lysates at d41 normalized to wet weight of the tissues. 3 independent differentiations, 5 biological
146 replicates per differentiation ($n=15$). **h, (Left)** Representative raster plot of SNO spontaneous activity at 8 weeks.
147 **(Right)** Detail of a cluster of network bursts from the same recording (boxed in left panel). **i**, Timecourse of SNO
148 mean firing rate and network burst frequency from weeks 4-8. $n=46-48$ SNO from 3 independent differentiations.
149 All data is presented as mean \pm s.e.m., Mann-Whitney test or unpaired, two-tailed Student's t-test were
150 performed, depending on normality of the data set. $p \leq 0.05$, $p^{***} \leq 0.001$, $p^{****} \leq 0.0001$.


151

152 **Generation and characterization of innervated human cardiac muscle (iEHM)**

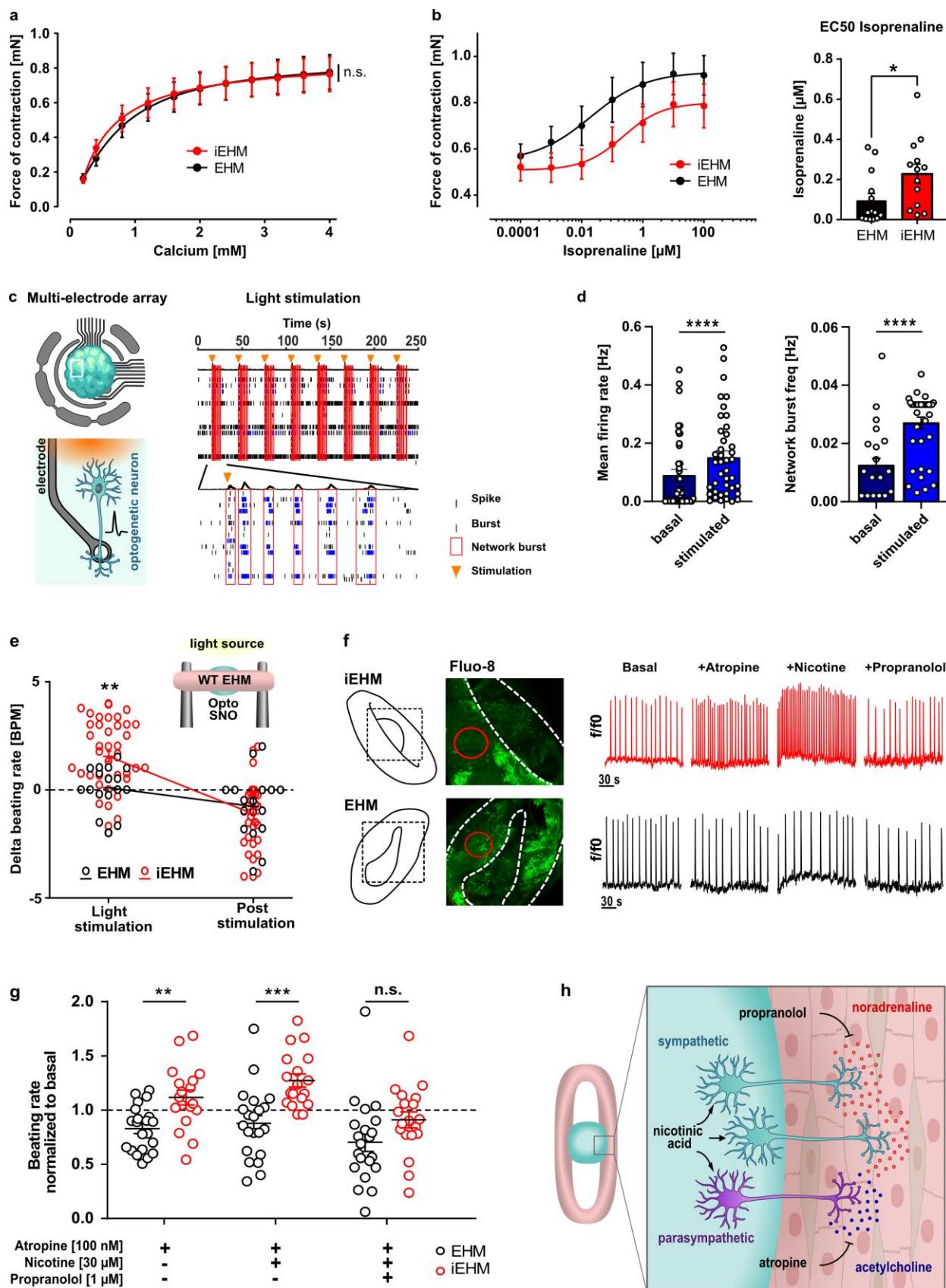
153 For the generation of the neurocardiac interface, 4-week old SNO were placed between the two
154 arms of 4-week old EHM and the two tissues were allowed to fuse (**Figure 2A-C**). Innervated
155 EHM (iEHM) exhibited spontaneous synchronous contractions from 2 days after fusion
156 suggesting no inhibition of SNO to EHM function (**Supplementary video 1**).

157 To define iEHM cell composition, we performed single nuclei RNA sequencing in one
158 representative iEHM 6 weeks after fusion. Leiden clustering revealed 9 distinct populations
159 (**Figure 2D, Supplementary Figure 8**). iEHM consisted of 40% cardiomyocytes, 32% fibroblasts,
160 11% endothelial cells, 6% pericytes, 4% chondrocytes, 3% neurons, 2% progenitors and 1%
161 monocytes/ macrophages (**Figure 2E**). Cell identity was further substantiated by the detection of
162 cell-type characteristic sodium, potassium and calcium channels (**Supplementary Figure 9**).
163 Cardiomyocytes could be subclustered in ventricular-like (55%) and atrial-like cluster (22%) while
164 23% of the cells presented a mixed identity (**Supplementary Figure 10A-B**). Expression of
165 SHOX2, CACNA1D, GJA5 within the atrial cardiomyocytes suggested the presence of
166 pacemaker-like cells. Moreover, one of the two fibroblast populations (COL1A1, COL1A2,
167 COL3A1 and TBX18) in iEHM stemmed from SNO-derived neural crest cells and was
168 characterized by PAX3, ZIC1 and HOXB3 expression (**Supplementary Figure 10C-D**).
169 Interestingly, similar to the native heart ¹⁸, pericytes were identified as the primary source in iEHM
170 for nerve growth factor (NGF), a neurotrophin responsible for chemoattracting SN in the heart
171 (**Figure 2F**).

172 6 weeks after fusion, immunofluorescence analysis showed an extensive axonal network marked
173 by Neurofilament (NF) extending towards cardiac muscle expressing alpha-actinin; higher
174 magnification images showed neurons interlacing cardiomyocytes (**Figure 2G-I, Supplementary**
175 **Figure 11A, Supplementary video 2**). To visualize axonal synaptic boutons / varicosities in close
176 proximity with cardiomyocytes we stained for the pre-synaptic marker Synapsin (SYN), while TH
177 served as a marker for noradrenergic neurons. SYN^{pos}-TH^{pos} noradrenergic varicosities were
178 found in close proximity to cardiomyocytes (**Figure 2J-K, Supplementary video 3-7**), suggesting
179 potential for neurocardiac communication. Furthermore, neuroligin 1, a postsynaptic marker
180 expressed also by cardiomyocytes (**Supplementary Figure 11B-C**) was found on
181 cardiomyocytes co-localized with varicosities as has been shown in the native heart ²² (**Figure**
182 **2I**).

184 **Fig. 2| Innervated heart muscle (iEHM) generation and characterization.** **a**, Schematic of iEHM generation
185 workflow. **b**, Schematic of sympathetic innervation from the SNO projecting towards the EHM. **c**, Brightfield
186 images of EHM and iEHM at 2 weeks of fusion. Scale bar, 1 mm. **d**, UMAP embedding and clustering of pooled
187 snRNA-seq profiles from 8-week iEHM. Representative uniquely per cluster expressed genes are provided in
188 **Supplementary Figure 8**. **e**, Proportions of the eight major cell types identified in iEHM by snRNA-seq analysis.
189 **f**, Contribution of iEHM cell types to neural growth factor (NGF) expression. **g**, WhIF images of 8-week iEHM
190 stained for neural marker NF (green), cardiomyocyte marker ACTN2 (red), SN-marker DBH (grey) and DNA
191 (blue). Scale bar, 1 mm. **h**, Detail of the iEHM mid-section showing a cluster of DBH (grey) and NF (green)-
192 positive SN in close proximity to the myocardium (CTNT, red). Scale bar, 500 μ m. **i**, Close-up view of axons (NF,
193 green) densely innervating cardiomyocytes (ACTN2, red). Scale bar, (Top) 20 μ m, (Bottom) 10 μ m. **j**, IF-staining
194 of sympathetic (TH, yellow) presynaptic structures (SYN1, magenta) distributed throughout the myocardium
195 (CTNT, green). Scale bar, 50 μ m. **k**, Close-up view shows co-localization of SYN1 and TH on cardiomyocytes
196 (green). Scale bar, 5 μ m. **l**, (Left) IF-staining of iEHM for CTNT (grey), post-synaptic marker NLGN1 (red) and
197 NF (green). Scalebar, 20 μ m. (Right) Close-up view showing synaptic bouton-like varicosities co-stained with
198 NLGN1 on the surface of cardiomyocytes, indicated by blue arrowheads. **m**, WhIF of 8 week iEHM stained for
199 endothelial cell marker PECAM1 (red) and NF (cyan). Scale bar, 1 mm. (Top right) Close-up view of capillary
200 structures interlaced by neuronal axons. Scale bar, 50 μ m. **n**, WhIF of 8 week iEHM stained for DNA (blue),
201 PECAM1 (red), NF (green) and PDGFRb (cyan). Scale bar, 1 mm. **ROI 1**: Close-up view illustrates the presence
202 of PDGFRb-positive pericytes co-localizing with capillary tube-like structures as well as axons extending
203 alongside. Scale bar, 20 μ m. **ROI 2**: Representative image of pericytes (cyan) lining vascular structures (red),
204 (Left) Maximum intensity projection, (Right) Single plane. Scale bar, 20 μ m.

205


206 Since superficial layers of the tissue displayed SYN^{pos}-TH^{pos} noradrenergic axonal boutons that
207 were not close to cardiomyocytes (**Supplementary video 8**) we reasoned that neurons may
208 interact with other cell populations found in iEHM such as vascular cells. Indeed,
209 immunofluorescence analysis of iEHM in week 6 after fusion, validated the presence of an
210 extensive vascular network consisting of PECAM1 positive endothelial cells surrounded by
211 PDGFRbeta positive pericytes (**Supplementary Figure 12A-B**), interlaced by neurons that
212 seemed to follow the vessels recapitulating cardiac innervation during development (**Figure**
213 **2M-N, Supplementary videos 9-11**). Although superficial layers contained capillary like
214 structures (diameter 5-10 μ m) in deeper regions of the iEHM, vessels with diameter between 20-
215 40 μ m were apparent (**Supplementary Figure 12 C**). Note that the origin of the vascular network
216 is both from the SNO and the EHM component; the latter deriving from cardiomyocyte-enriched
217 directed differentiations from iPSC¹⁰. Such populations comprise approx. 2% CD31-positive
218 endothelial cells, which if not selected out by for example metabolic selection²³ can form capillary
219 like-structures (**Supplementary Figure 12 B**) under standard EHM culture conditions¹⁰. Although
220 SNO contained sparse endothelial cells, only one out of four tissues developed a vascular network
221 when tissues were maintained in SNO media. Culturing SNO in the iEHM media, that contains
222 vascular endothelial growth factor, increased the frequency of capillary network development as
223 well as their amount (**Supplementary Figure 12 D**), suggesting that as expected iEHM
224 vascularization is supported by VEGF.

225 **Autonomic neurons functionally connect with cardiomyocytes in iEHM**

226 Since iEHM contained noradrenergic axonal bouton-like structures in close proximity to
227 cardiomyocytes, we reasoned that the SN have an impact on tissue function and may form
228 functionally relevant neuro-cardiac junctions. First, we investigated the contractile performance of

229 iEHM vs EHM, 6 weeks after fusion. Isometric force measurements under electrical stimulation at
230 1.5 Hz showed no difference in iEHM and EHM contractile performance (**Figure 3A**), suggesting
231 no effect of autonomic neurons in tissue contractility. However, when stimulated with inotropic
232 agent isoprenaline, iEHM presented beta adrenoreceptor desensitization in comparison to EHM
233 with significantly higher EC₅₀ value (0.23±0.05 μM vs 0.10±0.03 μM respectively) (**Figure 3B**).
234 Beta adrenoreceptors sensitivity to isoprenaline is inversely correlated with the presence of
235 autonomic neurons ²⁴ and noradrenaline *in vivo* ²⁵, indicating that cardiomyocytes sense
236 noradrenaline secreted in iEHM. Next, we investigated the effect of autonomic neurons on iEHM
237 chronotropy by optogenetic means. We utilized a neuronal specific optogenetic iPSC line in which
238 the red-shifted variant of channel rhodopsin f-Chrimson ²⁶ was integrated in the AAVS1 locus
239 under the human synapsin promoter (SYN_fChrimson). Opto-SNO showed higher firing rate and
240 network burst frequency under light stimulation by week 8 of culture (**Figure 3C-D**). We next
241 generated iEHM by fusing opto-SNO with wildtype EHM and compared them to standard EHM,
242 to rule out unspecific activation of cardiomyocytes by light or heat (**Figure 3E**). Light stimulation
243 of optogenetic iEHM evoked a positive chronotropic response up to two-fold of baseline
244 (**Supplementary video 12**). Beating rate analysis of 42 iEHM (N=3) showed a mean beating rate
245 increase of 24±4% in iEHM vs 1±3% in EHM, providing proof for functional connectivity between
246 the autonomic neurons and pacemaker-like cells (**Figure 3F**). Pacemaker-like cells co-expressing
247 SHOX2/HCN4, markers essential for pacemaker activity in the embryonic heart ²⁷, were identified
248 by snRNAseq (**Supplementary Figure 13A**) and immunofluorescence (**Supplementary Figure**
249 **13B**).

250 Furthermore, to delineate the contribution of the sympathetic and a potential parasympathetic
251 component to iEHM beating response, we utilized classical pharmacological interventions (**Figure**
252 **3G**): (1) to block muscarinic receptors and thus ACh released by parasympathetic neurons
253 (100 nM atropine), (2) to activate postganglionic nicotinergic receptors on sympathetic or
254 parasympathetic neurons (30 μM nicotine) and (3) to block postsynaptic beta-adrenoreceptors
255 (10 μM propranolol) expressed on pacemaker-like cells. The lack of a response to atropine in
256 control EHM tissues showed that in the absence of autonomic neurons atropine does not directly
257 affect cardiac muscle beating rate. In contrast, iEHM, showed a slight positive chronotropic
258 response to atropine suggesting the blockade of parasympathetic neurocardiac junction (NCJ).
259 Since nicotine would stimulate both sympathetic and parasympathetic neurons, we reasoned that
260 pre-incubation with atropine would block the action of ACh and allow us to evaluate the absolute
261 effect of SN activation only. Indeed, addition of nicotine in the presence of atropine, significantly
262 increased beating rate by 38±13% of baseline (n=19, N=5). In the native tissue, postganglionic
263 SN upon nicotine stimulation would release noradrenaline that would modulate chronotropy by
264 binding to beta-adrenoreceptors in pacemaker-like cells. Blockade of beta-adrenoreceptors by
265 propranolol abrogated the chronotropic effects of nicotine, providing further evidence for a
266 functional NCJ in iEHM. 19 out of 27 iEHM responded to these stimulations, while 8 iEHM showed
267 no response (**Supplementary Figure 14**), suggesting that catecholamine release and tissue level
268 diffusion was insufficient to reach spontaneously beating cardiomyocytes or pacemaker-like cells
269 in iEHM.

271 **Fig. 3/ Functional analysis and connectivity between neurons and cardiac cells in iEHM.** **a**, Force of
272 contraction (FOC) recorded under increasing calcium concentrations and electric pacing at 1.5 Hz 57 days after
273 fusion in EHM and iEHM. Three independent differentiations, 6-8 biological replicates per differentiation (n=22),
274 ^{ns}P=0.9278 by 2-way ANOVA. **b, (Left)** FOC response of EHM and iEHM to escalating concentrations of
275 isoprenaline recorded at the EC50 of calcium and electrical stimulation at 1.5 Hz 57 days after fusion. **(Right)**
276 Comparison of the EC50 of isoprenaline between EHM (n=13) and iEHM (n=14) from the same experiment. Two
277 independent differentiations, 6-7 biological replicates per differentiation, *P=0.0125 by Mann-Whitney test. **c,**
278 **(Left)** Schematic of optogenetic SNO mounted to multi electrode array (MEA), (below) schematic of red-light
279 stimulation of optogenetic neuron in proximity to electrode. **(Right)** Example raster plot showing light-induced
280 activity of SNO at 8 weeks of culture. Light stimulation pulses are indicated with orange triangles. **d, (Left)**
281 Endpoint (8 weeks) measurement of basal and light-stimulated mean firing rate in optogenetic SNO. 3
282 independent differentiations, 12-15 biological replicates per differentiation (n=41), ***P<0.0001 by Wilcoxon test.
283 **(Right)** Measurement of basal and light-stimulated network burst frequency in optogenetic SNO at the same
284 date. n(stimulated)=36, n(unstimulated)=17, 3 independent differentiations, ***P<0.0001 by Mann-Whitney test.
285 **e**, Schematic: Light stimulation of optogenetic SNO (opto SNO) leads to stimulation of the wildtype EHM in iEHM.
286 Measurement of differences in beating rate of EHM and iEHM upon light stimulation. n(EHM)=15, n(iEHM)=39,
287 3 independent differentiations, age=5-10 weeks of fusion, **P=0.0022 by 2-way ANOVA with Sidak's multiple
288 comparisons post hoc test. **f, (left)** Representative confocal image of live recording of EHM and iEHM stained
289 with calcium-sensitive dye Fluo-8 (green) including regions of interest (red). **(Right)** Traces of mean fluorescence
290 intensity of Ca⁺⁺-indicator dye Fluo-8 of iEHM and EHM upon pharmacological stimulation (more details in
291 **Supplementary Figure 14B-C**). **g**, Quantification of EHM and iEHM beating rate during sequential treatment
292 with 100 nM atropine, 30 μ M nicotine and 1 μ M propranolol. n(EHM)=21, n(iEHM)=19 (8 out of 27 iEHM were
293 not responding, more details in **Supplementary Figure 14B**), 4 independent differentiations, age=8-10 weeks
294 of fusion, Beating rate of the groups is normalized to the individual basal beating rate (indicated by dashed line).
295 **P=0.0058 by Mann-Whitney test, ***P=0.0002, ^{ns}P=0.0764 by unpaired t-test. Data are displayed as bar
296 graphs with mean \pm s.e.m. as well as all individual data points. BPM=beats per minute, EHM=engineered human
297 myocardium, f/f₀=ratio of fluorescence intensity, iEHM=innervated EHM, SNO=sympathetic neural organoid. **h,**
298 Schematic of pharmacological stimulation of iEHM: nicotinic acid stimulates neurotransmitter release from
299 sympathetic and parasympathetic neurons in the iEHM. Effect of acetylcholine is inhibited by atropine
300 administration and effect of noradrenaline is inhibited by non-specific beta adrenoreceptor blocker propranolol.

301

302 **Discussion**

303 The brain communicates with the heart via the autonomic nervous system. Although increasing
304 evidence suggests that channelopathies or miscommunication between brain and heart underlie
305 a number of diseases ^{5,6,28} including heart failure, our understanding of human neuro-cardiac cell
306 interaction and cardiac neuron plasticity is limited.

307 To study the functional interaction between autonomic neurons and cardiac cells, monolayer
308 coculture systems ^{2,3,17} as well as microfabricated devices ^{15,16} have been employed. As a cell
309 source, isolated primary cells were co-cultured with human iPSC-derived cells while only recently
310 human derived co-cultures were developed ^{15,17}. These systems allow cell-to-cell interaction, but
311 provide limited information about developmental processes, cell organization in 3D as well as
312 tissue dynamics. Three-dimensional cultures as organoids and engineered tissues have been
313 shown to present higher cellular complexity, self-organization as well as enhanced maturation
314 resembling the native tissue ^{29,30}.

315 In this study, we bioengineered a human innervated cardiac muscle (iEHM) with functional neuro-
316 cardiac junctions that emulates the cellular complexity of the native heart. Single nuclei
317 sequencing showed that similar to adult heart data ³¹, iEHM consisted of cardiomyocytes,
318 fibroblasts, endothelial cells, pericytes, neurons and monocytes. In addition, iEHM contained a
319 small chondrocyte-like population that has not been reported in the adult human heart.
320 Interestingly, neural crest-derived chondrocytes ³² have been reported in avian and mammalian
321 embryonic heart ^{33,34} close to cardiac valves.

322 Resembling the epicardial innervation pattern of the native heart, iEHM innervation density
323 showed an inverse correlation to the tissue depth. Interestingly, neuronal axons and presynaptic
324 axonal boutons in iEHM were found in close proximity to capillary-like structures, which is in line
325 with *in vivo* observations ¹⁸. The vascular network observed in iEHM, consisted of capillary-like
326 (diameter 5-10 μ m) and arteriole-like (diameter 20-40 μ m) structures. The vascular cells
327 originated from both the EHM component, which contained endothelial cells as a byproduct of
328 mesoderm/cardiac differentiation and the SNO component. The development of endothelial cells
329 in the SNO is not surprising since cKIT positive endothelial cells have been shown to emerge
330 during cardiac neural crest development *in vivo* due to the transient BMP4 expression ³⁵. Similarly,
331 SNO are submitted to transient BMP4 exposure during the commitment phase. Another
332 interesting point about the co-development of vessels and neurons is that during development,
333 mural cells such as pericytes and smooth muscle cells produce and secrete NGF, which
334 chemoattracts noradrenergic axons and guide sympathetic innervation of the heart ¹⁸. Similarly,
335 in iEHM pericytes surrounding the dense capillary network were found to be the main source of
336 NGF. Interestingly, NGF is considered one of the key factors orchestrating neuronal homeostasis
337 in the adult heart. After myocardial infarction, NGF dysregulation is hypothesized to significantly
338 contribute to neuronal remodeling, leading to sympathetic overdrive and arrhythmias ³⁶.

339 As SN innervated the deeper layers of the EHM, TH positive synaptic varicosities were found in
340 close proximity to cardiomyocytes or pacemaker-like cells, as previously observed in human
341 postmortem heart samples and co-cultured cells ²².

342 Since morphological analysis suggested the presence of NCJ, we next investigated the functional
343 connectivity between SN and cardiac cells. 6 weeks after fusion, iEHM demonstrated high
344 contractile performance similar to EHM, suggesting that the presence of the neuronal component
345 or media do not negatively impact cardiomyocyte function. Beta-adrenoreceptor desensitization
346 to isoprenaline stimulation, typically observed *in vivo* in the presence of chronic NE treatment
347 suggested that cardiomyocyte sense the NE released by sympathetic terminals.

348 From 6 weeks after fusion, optogenetic stimulation and pharmacological interventions resulted in
349 a significant modulation of iEHM beating rate, demonstrating evidence for functionally relevant
350 NCJ. Further, we observed responses to atropine, a known muscarinic receptor 2 blocker,
351 suggesting the presence of cholinergic neurons. The lack of *MNX1* expression in SNO, a definite
352 marker of spinal motor neurons, indicates that these cholinergic neurons cannot be motor
353 neurons. One possibility is that these cells are post-ganglionic parasympathetic neurons that
354 derive from cardiac neural crest, a region of the spine developing dorsally to the trunk neural crest
355 from which SN arise. This data suggest that other relevant spine identities may co-develop during
356 the caudalization of the progenitor cells which would also explain the co-development of sensory

357 cells in SNO. Moreover, we cannot exclude that the cholinergic neurons we observe maybe pre-
358 ganglionic SN, since no definite markers exist to our knowledge that would allow us to discriminate
359 the two populations. Nevertheless, irrespective to their origin, both populations would release ACh
360 that would stimulate muscarinic receptors in cardiac pacemakers and reduce tissue beating rate.
361 Of note, 8 out of 27 iEHM did not respond, suggesting that the NCJ were underdeveloped. The
362 primary reason for this observation may be that the pacemaker-like cell component in EHM is low
363 (<10%)¹⁰ or that SN axons may not in all cases be developed into sufficiently close proximity to
364 mediate a change in the pacemaker I_f current (mediated via HCN4 channels).

365 In conclusion, iEHM is a novel neuro-cardiac interface that presents three major advantages to
366 current state of the art. First, it allows the study of electrically excitable networks of human
367 autonomic neurons, vascular cells, and cardiomyocytes in a 3D environment; second, it allows
368 the quantification of chronotropic responses of cardiac muscle induced by optogenetic / chemical
369 manipulations of neurons; finally, since tissues are generated separately and are fused into one,
370 “mix&match” of wild type and mutant iPSC-derived tissues can be used in the future to delineate
371 the cell type/organoid contribution to specific pathologies (SN, vascular cells or cardiomyocytes)
372 and furthermore delineate how diseased cardiomyocytes affect healthy neurons and *vice versa*.

373

374 **Acknowledgements**

375 The authors would like to especially thank Bastian Bues, Davide Ibatici, Petra Tucholla, Daria
376 Reher and Iris Quentin for the excellent technical assistance. The authors would like to thank
377 Tobias Moser and Thomas Mager for providing the pSYN-f-Chrimson plasmid and Laura
378 Zelarayan for the AAVS1 locus donor plasmid. The authors would also like to especially thank
379 Susanne Lutz for the interesting scientific discussions. This project was financially enabled by
380 support of the German research foundation (DFG ZA 1217/3-1), by the German Center for
381 Cardiovascular Research (DZHK) granted to M.P.Z. and by the Multiscale Bioimaging Cluster of
382 Excellence (MBExC) granted to M.P.Z. and W.H.Z. W.H.Z. is supported by the DZHK (German
383 Center for Cardiovascular Research), the German Federal Ministry for Science and Education
384 (BMBF FKZ 161L0250A), the German Research Foundation (DFG SFB 1002 C04/S01, IRTG
385 1816, EXC 2067-1), and the Foundation Leducq (20CVD04). Generation of the GMP line LiPSC-
386 GR1.1 (also referred to as TC1133 or RUCDRi002-A; lot number 50-001-21) was supported by
387 the NIH Common Fund Regenerative Medicine Program, and reported in Stem Cell Reports.³⁵
388 The NIH Common Fund and the National Center for Advancing Translational Sciences (NCATS)
389 are joint stewards of the LiPSC-GR1.1 resource. A derivative from a GMP post-production
390 working cell bank of the TC1133-line was made available to the Institute of Pharmacology and
391 Toxicology at the University Medical Center by Repairon GmbH. The BIHi001-A-2 iPSC-line was
392 kindly provided by Sebastian Diecke, Max Delbrück Center, Berlin.

393

394

395

396

397 **Author contributions**

398 **L.V.S.** contributed to the design of the work; the acquisition and analysis of data; drafted and
399 revised the manuscript. **G.B.** contributed to the design of the work; the acquisition,
400 analysis, interpretation of functional data and revised the manuscript. **A.M.** Analyzed the
401 snRNASeq data and drafted the associated method section. **O.J.** Established, performed and
402 analyzed the neurotransmitter quantifications by LCMS. **K. A. S.** Generated and validated the
403 optogenetic iPSC line (hSyn_Chrimson_ RUCDRi002-A). **S.S.** Performed the single nuclei
404 isolation. **M.G.S.** contributed to the acquisition and analysis of quantitative PCR. **A.L.F.** performed
405 WhIF stainings. **J. B.** contributed to the LCMS analysis and revised the manuscript **A.F.**
406 contributed to the transcriptome analysis and revised the manuscript **N.L.** Contributed to the
407 scientific know-how for engineered human myocardium technology, acquisition and analysis of
408 data. **W.H.Z.** interpreted data and revised the manuscript. **M.P.Z.** contributed to the conception,
409 the design of the work; the acquisition, analysis, interpretation of data; drafted and revised the
410 manuscript.

411

412 **All authors** have approved the submitted version and agreed both to be personally accountable
413 for the author's own contributions and to ensure that questions related to the accuracy or integrity
414 of any part of the work, even ones in which the author was not personally involved, are
415 appropriately investigated, resolved, and the resolution documented in the literature.

416

417 **Competing interests.** The University Medical Center Göttingen has filed a patent covering
418 production and applications of the BENO technology. M.P.Z. and W.H.Z are listed as inventors of
419 the BENO technology. myriamed GmbH has licensed the BENO technology for applications in
420 drug iscovery and development. W.H.Z. is co-founder and equity holder of myriamed GmbH.

421 **References**

422

423 1. Le Douarin, N. M. & Teillet, M.-A. M. Experimental analysis of the migration and differentiation of
424 neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives,
425 using a biological cell marking technique. *Developmental Biology* 41, 162–184 (1974).

426 2. Oh, Y. *et al.* Functional Coupling with Cardiac Muscle Promotes Maturation of hPSC-Derived
427 Sympathetic Neurons. *Cell Stem Cell* 19, 95–106 (2016).

428 3. Kirino, K., Nakahata, T., Taguchi, T. & Saito, M. K. Efficient derivation of sympathetic neurons
429 from human pluripotent stem cells with a defined condition. *Sci Rep* 8, 12865 (2018).

430 4. Gordan, R., Gwathmey, J. K. & Xie, L.-H. Autonomic and endocrine control of cardiovascular
431 function. *World J Cardiol* 7, 204–214 (2015).

432 5. Thijs, R. D., Ryvlin, P. & Surges, R. Autonomic manifestations of epilepsy: emerging pathways to
433 sudden death? *Nat Rev Neurol* 17, 774–788 (2021).

434 6. Shen, M. J. & Zipes, D. P. Role of the Autonomic Nervous System in Modulating Cardiac
435 Arrhythmias. *Circulation Research* 114, 1004–1021 (2014).

436 7. Zafeiriou, M.-P. *et al.* Developmental GABA polarity switch and neuronal plasticity in
437 Bioengineered Neuronal Organoids. *Nat Commun* 11, 3791 (2020).

438 8. Paşa, A. M. *et al.* Functional cortical neurons and astrocytes from human pluripotent stem cells
439 in 3D culture. *Nat Methods* 12, 671–678 (2015).

440 9. Lancaster, M. A. *et al.* Cerebral organoids model human brain development and microcephaly.
441 *Nature* 501, 373–379 (2013).

442 10. Tiburcy, M. *et al.* Defined Engineered Human Myocardium With Advanced Maturation for
443 Applications in Heart Failure Modeling and Repair. *Circulation* 135, 1832–1847 (2017).

444 11. Mills, R. J. *et al.* Functional screening in human cardiac organoids reveals a metabolic
445 mechanism for cardiomyocyte cell cycle arrest. *Proceedings of the National Academy of Sciences*
446 114, E8372–E8381 (2017).

447 12. Drakhlis, L. *et al.* Human heart-forming organoids recapitulate early heart and foregut
448 development. *Nat Biotechnol* 39, 737–746 (2021).

449 13. Lewis-Israeli, Y. R. *et al.* Self-assembling human heart organoids for the modeling of cardiac
450 development and congenital heart disease. *Nat Commun* 12, 5142 (2021).

451 14. Giacomelli, E. *et al.* Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D
452 Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. *Cell Stem
453 Cell* 26, 862-879.e11 (2020).

454 15. Häkli, M. *et al.* Human Neurons Form Axon-Mediated Functional Connections with Human
455 Cardiomyocytes in Compartmentalized Microfluidic Chip. *International Journal of Molecular
456 Sciences* 23, 3148 (2022).

457 16. Takeuchi, A. *et al.* Microfabricated device for co-culture of sympathetic neuron and iPS-derived
458 cardiomyocytes. in *2013 35th Annual International Conference of the IEEE Engineering in
459 Medicine and Biology Society (EMBC)* 3817–3820 (2013). doi:10.1109/EMBC.2013.6610376.

460 17. Takayama, Y. *et al.* Selective Induction of Human Autonomic Neurons Enables Precise Control of
461 Cardiomyocyte Beating. *Sci Rep* 10, 9464 (2020).

462 18. Nam, J. *et al.* Coronary veins determine the pattern of sympathetic innervation in the developing
463 heart. *Development* 140, 1475–1485 (2013).

464 19. Dokshokova, L. *et al.* Nerve growth factor transfer from cardiomyocytes to innervating
465 sympathetic neurons activates TrkA receptors at the neuro-cardiac junction. *J Physiol* 600, 2853–
466 2875 (2022).

467 20. Zhou, S. *et al.* Mechanisms of Cardiac Nerve Sprouting After Myocardial Infarction in Dogs.
468 *Circulation Research* 95, 76–83 (2004).

469 21. Liu, W. *et al.* Bmp4 signaling is required for outflow-tract septation and branchial-arch artery
470 remodeling. *Proceedings of the National Academy of Sciences* 101, 4489–4494 (2004).

471 22. Prando, V. *et al.* Dynamics of neuroeffector coupling at cardiac sympathetic synapses. *The*
472 *Journal of Physiology* 596, 2055–2075 (2018).

473 23. Tohyama, S. *et al.* Distinct metabolic flow enables large-scale purification of mouse and human
474 pluripotent stem cell-derived cardiomyocytes. *Cell Stem Cell* 12, 127–137 (2013).

475 24. Yusuf, S. *et al.* Increased sensitivity of the denervated transplanted human heart to isoprenaline
476 both before and after beta-adrenergic blockade. *Circulation* 75, 696–704 (1987).

477 25. Jones, S. M., Hunt, N. A., Del Monte, F. & Harding, S. E. Contraction of cardiac myocytes from
478 noradrenaline-treated rats in response to isoprenaline, forskolin and dibutyryl cAMP. *European*
479 *Journal of Pharmacology* 191, 129–140 (1990).

480 26. Mager, T. *et al.* High frequency neural spiking and auditory signaling by ultrafast red-shifted
481 optogenetics. *Nat Commun* 9, 1750 (2018).

482 27. Stieber, J. *et al.* The hyperpolarization-activated channel HCN4 is required for the generation of
483 pacemaker action potentials in the embryonic heart. *Proceedings of the National Academy of*
484 *Sciences* 100, 15235–15240 (2003).

485 28. Templin, C. *et al.* Altered limbic and autonomic processing supports brain-heart axis in Takotsubo
486 syndrome. *European Heart Journal* 40, 1183–1187 (2019).

487 29. Jensen, C. & Teng, Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? *Frontiers in*
488 *Molecular Biosciences* 7, (2020).

489 30. Trujillo, C. A. *et al.* Complex Oscillatory Waves Emerging from Cortical Organoids Model Early
490 Human Brain Network Development. *Cell Stem Cell* 25, 558-569.e7 (2019).

491 31. Litviňuková, M. *et al.* Cells of the adult human heart. *Nature* 588, 466–472 (2020).

492 32. Sumida, H., Akimoto, N. & Nakamura, H. Distribution of the neural crest cells in the heart of birds:
493 a three dimensional analysis. *Anat Embryol* 180, 29–35 (1989).

494 33. Palmquist-Gomes, P. *et al.* In Vivo and In Vitro Cartilage Differentiation from Embryonic
495 Epicardial Progenitor Cells. *Int J Mol Sci* 23, 3614 (2022).

496 34. Durán, A. C. *et al.* Formation of cartilaginous foci in the central fibrous body of the heart in Syrian
497 hamsters (*Mesocricetus auratus*). *Journal of Anatomy* 205, 219–227 (2004).

498 35. Hatzistergos, K. E. *et al.* cKit+ cardiac progenitors of neural crest origin. *Proceedings of the*
499 *National Academy of Sciences* 112, 13051–13056 (2015).

500 36. Fukuda, K., Kanazawa, H., Aizawa, Y., Ardell, J. L. & Shivkumar, K. Cardiac Innervation and
501 Sudden Cardiac Death. *Circulation Research* 116, 2005–2019 (2015).

502 37. Sakib, M. S., Sokpor, G., Nguyen, H. P., Fischer, A. & Tuoc, T. Intranuclear immunostaining-
503 based FACS protocol from embryonic cortical tissue. *STAR Protocols* 2, 100318 (2021).

504 38. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data
505 using regularized negative binomial regression. *Genome Biology* 20, 296 (2019).

506 39. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* 184, 3573-3587.e29 (2021).

507 40. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in Single-Cell
508 RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Systems* 8, 329-337.e4 (2019).

509 41. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected
510 communities. *Sci Rep* 9, 5233 (2019).

511 42. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for
512 Dimension Reduction. Preprint at <http://arxiv.org/abs/1802.03426> (2020).

513

514 **Materials and Methods**

515

516 **Pluripotent stem cell culture**

517 The hiPSC lines (1) RUCDRi002-A, (2) hSyn_Chrimson_RUCDRi002-A, (3) UMGi093-A, and (4)
518 BIHi001-A-2 were maintained in StemMACS™ iPS-Brew XF (Brew, Miltenyi, #130-104-368)
519 containing 100 U/mL penicillin and 100 µg/mL streptomycin (Thermo Fisher, #15140-122). iPSC
520 were detached and singularised using EDTA solution (0.5 M EDTA/PBS) and replated on Matrigel
521 (1:120, BD Bioscience, #354230) at a density of 8,000-12,000 cells/cm², passaged twice weekly
522 in the presence of ROCK inhibitor (Y-27632, 5 µM, Stemgent, #04-0012).

523 **Cardiomyocyte differentiation and purification**

524 At a confluence of 80-90%, cells were submitted to cardiac differentiation as previously reported
525 ¹⁰. d0-d3, cells were supplemented daily with Basal Serum Free Medium (BSFM: RPMI 1940
526 (Thermo Fisher, #61870-044), 2% B27 Supplement (Thermo Fisher, #17504-044), 200 µM L-
527 ascorbic acid-2-phosphate sesquimagnesium salt hydrate and 100 U/mL penicillin, 100 µg/mL
528 streptomycin (Thermo Fisher, #15070063)) containing 9 ng/mL Activin A (R&D systems, #338-
529 AC), 5 ng/mL BMP4 (R&D systems, #314-BP), 1 µM CHIR99021 (Stemgent, #04-0004) and
530 5 ng/mL bFGF (Miltenyi Biotech, #130-093-841). D3-d13, the cells were cultured in BSFM
531 supplemented with 5 µM IWP4 (Stemgent, #04-0036) and d13-d17, cells were cultured in
532 unsupplemented BSFM, which was changed every other day. For metabolic selection,
533 cardiomyocytes were cultured in RPMI without glucose and glutamine (Thermo Fisher,
534 #11879020) containing 2.2 mM sodium lactate (Sigma, #71723), 100 µM β-mercaptoethanol
535 (Invitrogen, #31350-010), 100 U/mL penicillin, and 100 µg/mL streptomycin (Thermo Fisher,
536 #15070063)) for 5 days.

537 **EHM generation**

538 EHM were generated as previously described ¹⁰.

539 **BENO and SNO generation**

540 BENO were generated as previously described ⁷. SNO differentiation was based on the BENO
541 protocol and was optimized by testing concentrations and treatment windows for various
542 morphogens.

543 **Whole-mount immunofluorescence staining**

544 Tissues were fixed with 4% formaldehyde solution (Histofix, Carl Roth) for 2 h at 4 °C.
545 Subsequently, they were washed twice with PBS and blocked for 30 min at 4 °C with staining

546 buffer (StB; 5% FBS, 1% BSA, 0.5% Triton X-100 in PBS). Tissues were incubated with primary
547 antibodies diluted in StB for 2 days at 4 °C (100 µl/tissue). Upon washing with StB for 6–8 h,
548 tissues were incubated with secondary antibodies and Hoechst 33342 (Sigma) for another 2 days
549 at 4 °C. After StB washings for a total of 6–8 h BENOs were mounted on glass coverslips with
550 Moviol mounting medium (10% Fluoromount Mowiol 4-88 (Carlroth, #0713.1), 25% Glycerol
551 (Merck-Millipore, #56-81-5), 0.1 M Tris (ITW Reagents, #A1086), 0.2% n-propyl gallate (Sigma-
552 Aldrich, #P3130)). WmIF was visualized using confocal imaging performed on a Zeiss LSM 710
553 confocal microscope equipped with ZEN 2010 software and further analysed by ZEN and ImageJ.
554 An antibody list with respective dilutions is provided in Supplementary Table 3.

555 **Tissue digestion and flow cytometry**

556 For SNO and BENO digestion, d15 organoids were sequentially incubated for one hour with
557 collagenase solution (PBS +Ca/Mg, 0.25% Collagenase Type I (Sigma-Aldrich, #C0130), 20%
558 FBS (Thermo Fisher, #A4766801)) and Accutase dissociation reagent (97% StemPro®
559 Accutase® Cell Dissociation Reagent (Merck-Millipore, #SCR005), 0.025% Trypsin
560 (Thermo Fisher, #15090-046), 20 µg/mL DNasel (Calbiochem, #260913). The digested cells were
561 fixed in 4% formaldehyde at room temperature (RT) for 15 min and subsequently labelled with
562 anti-PHOX2B primary antibody (Santa Cruz, #sc-376997, 1:250) and Hoechst 33342 in StB for
563 45 minutes at 4 °C. To remove the primary antibody, the cells were centrifuged at 3,000 xg,
564 supernatant was discarded and the cells were resuspended and incubated in StB for five minutes
565 at 4 °C. This step was repeated three times. Subsequently, cells were incubated with secondary
566 antibody Alexa Fluor 488 (Invitrogen, #A32723, 1:1000) for 30 minutes at 4 °C under the
567 exclusion of light. Following another 3x 5 minutes washing step, the cells were analysed using a
568 BD LSR II flow cytometer (BD Biosciences) and FACSDiva (BD Biosciences) as well as FLOWJO
569 software.

570 **Liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS)**

571 SNO were lysed in 500 µl precipitating agent (80% acetonitrile and 20% water) including
572 noradrealine-d6, choline-d9 and buformin as internal standard for noradrenaline, acetylcholine
573 and dopamine respectively. Following 15 minute incubation at RT, 400 µL of the liquid phase were
574 evaporated under a nitrogen stream. The residues were reconstituted in 400 µl of 0.1% (v/v)
575 formic acid and 10 µl were injected into the LC-MS/MS system. Noradrenaline, dopamine and
576 acetylcholine (ACh) content of SNO were analyzed by high-performance liquid chromatography
577 (HPLC)-MS/MS using a Shimadzu Nexera HPLC system with a LC-30AD pump, a SIL-30AC
578 autosampler, a CTO-20AC column oven, and a CBM-20A controller (Shimadzu, Kyoto, Japan).

579 Separation was achieved on a Imtakt-Intrada Amino Acids Separation Column, 100 x 3.0 mm
580 (ChromTech, #WAA34) with a C-18 guard pre-column. The HPLC was run at a low speed of
581 600 μ L/min with an oven temperature of 37 °C. The mobile phase consisted of 29.85% 200 mM
582 ammonium formate, 0.15% (v/v) formic acid and 70% (v/v) methanol. The HPLC system was
583 coupled to an API 4000 tandem mass spectrometer (SCIEX, Darmstadt, Germany). Buformin
584 (internal standard), Noradrenaline-d6 (internal standard), choline-d9 (internal standard) were
585 quantified using the detection parameters given (Supplementary Table 1). Analysis was
586 performed using the Analyst software (version 1.6.2, SCIEX, Darmstadt, Germany) and standard
587 curves obtained by weighted linear regression. Representative spectra and standard curves are
588 provided in **Supplementary Figure 4**.

589 **Quantitative real-time (qRT) PCR**

590 Total RNA was extracted using the NucleoSpin RNA Mini kit (Macherey Nagel, #740955). 250 ng
591 to 1 μ g of RNA were reverse transcribed using M-MLV Reverse transcriptase (Promega,
592 #M1705) and oligo(dT) primer. qRT-PCR was performed using Takyon Blue dTTP Master Mix
593 (Eurogentec, #UF-NSMT-B0701). The primer sequences are provided in Supplementary Table 2.
594 Analysis was performed by 7900HT Real Time PCR System (Applied Biosystems) and the
595 Sequence Detection System (SDS) v2.4 software (Applied Biosystems).

596 **Calcium imaging**

597 The iEHM were stained with 1 μ g/ml Fluo-8-AM (ABCAM, #ab142773) in carbogenated artificial
598 cerebrospinal fluid (ACSF) buffer (26 mM NaHCO₃, 10 mM Glucose, 1 mM MgSO₄·7H₂O,
599 1.25 mM NaH₂PO₄, 2.5 mM KCl, 126 mM NaCl, 2 mM CaCl₂) at pH7.3 for 15–30 min. During
600 calcium imaging, iEHM were continuously perfused with ACSF at 37 °C. Fluorescence was
601 recorded at 2-5 Hz and measurements were performed using Zeiss LSM 780 confocal
602 microscope and ZEN 2010 software. The stimulation of ACh to muscarinic receptors was blocked
603 by addition of 10 nM Atropine (Sigma Aldrich). In the presence of Atropine, 30 μ M Nicotinic acid
604 was used to stimulate nicotinic receptors on autonomic neurons. Beta-adrenoreceptor blockade
605 was achieved by adding 10 μ M Propranolol. Analysis was performed using Matlab R2012a (The
606 Math Works, USA).

607 **Force of contraction analysis**

608 Isometric force measurements of EHM / iEHM were performed in an organ bath setup as described
609 previously ¹⁰. EHM and iEHM were mounted on two opposing hooks and submerged in normal
610 Tyrode's solution (120 mM NaCl, 5.36 mM KCl, 0.2 mM CaCl₂, 10.5 mM MgCl₂, 22.61 mM
611 NaHCO₃, 4.2 mM NaH₂PO₄, 5.55 mM Glucose, 0.57 mM L-Ascorbic Acid) at 37°C with a

612 continuous flow of carbogen from beneath. Force changes were measured by a linear isometric
613 force transducer mounted to the upper hook. The basal tension of the tissues was adjusted to
614 0.1 mN using a micromanipulator. On either side, a field electrode was placed for electrical pacing
615 of the tissues.

616 **Electrical field potential measurements by multielectrode-array (MEA)**

617 SNO were embedded in 3% low melting agarose and sectioned using Leica VT1000S vibratome
618 (Leica) into slices of 400 μ m diameter. SNO slices were mounted on Lumos MEA 48-well plates
619 (Axion BioSystems, #M768-tMEA-480PT) coated with 1:30 Matrigel. Gold grids for transmission
620 electron microscopy (Gilder, #G50HEX-G3) were used to stabilize the tissue. The measurements
621 of electrical field potentials were performed by Maestro Pro (Axion BioSystems) at 37 °C and 5%
622 CO₂. The Lumos system (Axion BioSystems) enabled optogenetic stimulation of the organoids
623 by delivering a pentaphasic light pulse with a central wavelength of 612 nm and an intensity of
624 1.54 mW/mm² every two minutes for one hour. Stimulation experiments were performed by
625 addition of increasing concentrations (1 μ M-1 mM) of nicotine diluted in pre-warmed Basal
626 medium, while the added volume never exceeded five percent of the wells' media volume.
627 Analysis was performed by the Neural Metrics and Plotting Tool software (Axion BioSystems).

628 **Single nuclei RNA sequencing**

629 Frozen iEHMs were used to isolate nuclei, adapted from Sakib *et al.*³⁷ with modifications. In brief,
630 500 μ L EZ prep nuclei lysis buffer (Sigma, #NUC101) were added to the frozen samples and
631 dounce homogenized for 40-60 strokes (until not big tissue chunks were seen) using plastic
632 pestles in a 1.5 mL DNA low bind tube. Lysates were transferred into a 2 mL DNA low bind tube
633 and additional lysis buffer were supplemented to fill up to 2 mL mark. Samples were incubated for
634 5 minutes on ice and later centrifuged for 500 xg for 5 minutes at 4 °C. Supernatants were
635 discarded and the nuclei pellets were resuspended into 2 mL lysis buffer, and incubated on ice
636 for 5 minutes. After centrifugation (500 xg, 5 minutes, 4 °C), the pellet was resuspended into
637 Nuclei Suspension buffer, NSB (0.5% OmniPur BSA (Merck Millipore, #2905), 1:200 RNasin®
638 Ribonuclease Inhibitor (Promega, #N2615), 1x cOmplete™, EDTA-free Protease Inhibitor
639 Cocktail (Roche, #04693132001), dissolved in 1x PBS (RNAse free, Invitrogen, #AM9624).
640 Filtered through 0.22 μ m Syringe Filter Unit (Millipore, #SLGVR33RB)). It was centrifuged again
641 for 500 xg, 5 minutes at 4 °C, and resuspended into 500 μ L NSB. The lysate was strained through
642 40 μ M Flowmi® Cell Strainers (Sigma, #BAH136800040) into a FACS tube. 1:500 of 7-AAD
643 (Invitrogen, #00-6993-50) nuclei staining solution was added and nuclei were gated from the
644 debris (**Supplementary Figure 7**) and sorted with a BD FACSaria III with 85 μ M Nozzle, in a

645 15 mL falcon tube, coated with and containing 1 mL NSB. Around 200,000 nuclei were sorted per
646 sample. Sorted iEHM nuclei were immediately taken to process for single nuclei barcoding using
647 10X Genomics Chromium Single Cell 3' Reagent Kits (v3 Chemistry). 5000 nuclei were subjected
648 to GEM generation and barcoding using Chromium Controller, according to the manufacturer's
649 protocol. For cDNA amplification, 14 PCR cycles were used. Indexed cDNA libraries were pooled
650 into a single pool and sequenced 4 times in Illumina NextSeq 550 to achieve
651 >50,000 reads/nuclei. Raw BCL files were demultiplexed, mapped and counts files were
652 generated using cellranger-4.0.0, using hg38 pre-mRNA reference genome.

653 **Single nuclei RNA-sequencing data analysis**

654 Cell Ranger (10x Genomics) was used for demultiplexing, alignment and generation of gene
655 counts. The dataset was filtered to remove nuclei where less than 200 genes were detected, as
656 well as genes that were expressed in less than 10 nuclei. Any nuclei expressing more than 1%
657 mitochondrial gene counts were also removed. The data were normalized using the sctransform³⁸
658 package (version 0.3.2) from the Seurat³⁹ (version 4.0.2) toolkit in R (version 4.0.1).
659 DoubletFinder⁴⁰ (version 2.0.3) was used to detect and remove any potential doublets. Leiden
660 clustering⁴¹ was performed using the FindClusters() function in Seurat and Uniform Manifold
661 Approximation and Projection (UMAP)⁴² was used for visualization of clusters. The top markers
662 for each cluster were detected using the FindAllMarkers() function in Seurat. Cell-type annotation
663 of clusters was done using the expression of selected marker genes as listed in **Supplementary**
664 **Figure 8**. The same analysis pipeline was followed for separate analyses of specific cell clusters
665 after subsetting the original dataset accordingly.

666 **Statistical analysis**

667 Statistical testing was performed in GraphPad Prism 9. All values are displayed as mean \pm s.e.m
668 Statistical tests were chosen depending on parametricity of the sample distribution, which was
669 determined by Shapiro-Wilk and F-test. The respective tests as well as sample size (n) and
670 number of independent experiments (N) are mentioned in the figure legends. Statistically
671 significant differences were assumed with a probability value of $P < 0.05$. Exact P -values are given
672 in the figure legends.