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Abstract

Identifying somatic variants in tumor samples is a crucial task, which is often performed using
statistical methods and heuristic filters applied to short-read data. However, with the increasing
demand for long-read somatic variant calling, existing methods have fallen short. To address this
gap, we present ClairS, the first deep-learning-based, long-read somatic small variant caller.
ClairS was trained on massive synthetic somatic variants with diverse coverages and variant
allele frequencies (VAF), enabling it to accurately detect a wide range of somatic variants from
paired tumor and normal samples. We evaluated ClairS using the latest Nanopore Q20+
HCC1395-HCC1395BL dataset. With 50-fold/25-fold tumor/normal, ClairS achieved a
93.01%/86.86% precision/recall rate for Single Nucleotide Variation (SNVs), and 66.54%/66.89%
for somatic insertions and deletions (Indels). Applying ClairS to short-read datasets from
multiple sources showed comparable or better performance than Strelka2 and Mutect2. Our
findings suggest that improved read phasing enabled by long-read sequencing is key to accurate
long-read SNV calling, especially for variants with low VAF. Through experiments across various
coverage, purity, and contamination settings, we demonstrated that ClairS is a reliable somatic
variant caller. ClairS is open-source at https://github.com/HKU-BAL/ClairS.

Introduction

Analysis of cancer genomes that identify and characterize somatic variants has enabled a better
understanding of tumor progression! and led to precision oncology?. Identifying somatic
variants, however, remains challenging due to intra- and inter-tumor heterogeneity, which often
leads to low VAF, and confounding factors, including sequencing artifacts, inadequate
sequencing coverage, and normal contamination®. Endeavors were made to address these
challenges and maximize sensitivity and accuracy in identifying somatic variants using next-
generation sequencing (NGS) short-reads**3. However, constrained by read length, short reads
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have limited variant discovery capability in hard-to-map genomic regions, such as
homopolymers and segmental duplications. This problem is expected to be alleviated through
long-read sequencing!*. Oxford Nanopore Technologies (ONT) is among the leading long-read
sequencing technologies and offers miniaturized sequencing devices and fast sample-to-data
turnaround, which is a credible step towards democratizing sequencing by drastically reducing
the cost of carrying out sequencing experiments. ONT raw reads were reported to have an error
rate of 3-15% in the past®®. This was reduced to 1% or lower using ONT’s latest Q20+
chemistry'®. The gap is still significant, however, compared with NGS short-reads, which have an
average error rate at 0.1%’, making the somatic variant callers once designed for short reads
practically unworkable for ONT long-reads.

Germline variants are often considered to be easier to correctly identify than somatic variant
calling. The first attempt to call germline small variants using noisy ONT long-reads was made by
Clairvoyante in 20188, The work was enabled using 1) a deep neural network, which was first
used for variant calling by DeepVariant!®; and 2) the high-quality known truth variants in GIAB
reference samples for neural network model training?°. Subsequent works by Clairvoyante
including Clair?! and Clair32?, introduced optimized network input, network output, network
architecture, and workflow designs to make the best out of noisy ONT data for germline small
variant calling. Both Clair3 and a pipeline named PEPPER-Margin-DeepVariant?® (DeepVariant),
which is also designed for ONT long-read germline small-variant calling, have demonstrated
better single nucleotide polymorphism (SNP)-calling performance than using the same coverage
of lllumina short reads. However, while solutions are ready for ONT long-read germline small-
variant calling, there has been no caller available for ONT long-read somatic small-variant
calling. We note that ONT long-read somatic SV (structural variant) callers, including Sniffles2?*
and Nanomonsv?>, which were developed in the past year called for the development of a small
variant caller to complete the ONT long-read somatic variant-calling workflow.

Unfortunately, some designs critical to ONT long-read germline variant calling are not applicable
to somatic variant calling. First, in their network output, both Clair3 and DeepVariant apply a
strong diploid genome assumption. Clair3 uses a 21-genotype output, which is a two-
combination of A, C, G, T, insertion, and deletion??. DeepVariant uses a three-category output
that includes hom-ref (homozygous reference), het (heterozygous), and hom-alt (homozygous
alternative)?3. Both Clair3 and DeepVariant are classification models that use observed allele
frequency of alternative alleles as network input, and output the category that represents the
expected allele frequency of a variant (e.g., allele frequency 0, 0.5, 1, and 0.5/0.5 for genotype
0/0,0/1, 1/1, and 1/2, respectively). However, somatic variants have VAF ranging continuously
from 0 to 1. Without a certain ploidy, somatic variant candidates have no expected allele
frequency for a model to test against. Thus, a new design is required. As an example, a new
design could use a regression model to derive VAF directly, or a classification model to simply
determine whether a candidate is a somatic variant or not and infer VAF subsequently. Second,
the seven standard GIAB reference samples HGO01-HGO0O07 provide approximately 25 million
truth germline variants?°, which are critical for the model training of any state-of-the-art, deep-
learning-based germline variant callers. However, in terms of known truth somatic variants, only
the HCC1395-HCC1395BL (a human triple-negative breast cancer cell line and a normal cell line
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derived from the B lymphocytes of the same donor, hereafter referred to as HCC1395/BL)
tumor-normal pair was published by the Somatic Mutation Working Group of the SEQC2
(Sequencing Quality Control Phase Il) consortium3. It contains only 39,560 SNVs and 1,922
Indels, which is orders of magnitude fewer than the available truth germline variants, and far
from enough for deep neural-network model training. In the absence of adequate real tumor-
normal samples, one could think of synthetic data as a solution. Bamsurgeon spiked somatic
variants into sequencing reads to mimic a tumor2®. This was a successful method for short
reads, but it doesn’t work for long reads for two reasons: 1) lllumina short reads are read one
base at a time, whereas ONT long reads are read as the signals of a sliding 5-mer or 6-mer
window. That is, a spike-in variant also changes the signals of the adjacent bases. Bases can be
base-called from signals but cannot be authentically turned back into signals, so the spike-in
method cannot be applied to long reads; and 2) Bamsurgeon does not apply the point that a
somatic variant is usually found in only one haplotype (either maternal or paternal) but is
missing in another. The use of long reads over short reads for somatic variant calling makes
sense only if the long-read advantage of haplotyping (also called phasing) is utilized. All things
considered, a new method for synthesizing long-read data to contain abundant plausible
somatic variants is needed.

In this study, we present Clair-Somatic (ClairS), the first somatic small variant caller for ONT long
reads, which is named after its germline variant caller predecessors. ClairS draws on the
successful experience of the Clair series, and uses a new network output and a new workflow
design to address the continuous VAF space of somatic variants. By considering two different
samples, A and B, as tumor and normal, respectively, and deeming a germline variant specific to
A as a somatic variant against B, we devised a data synthetic strategy that uses only the real
long reads of GIAB reference samples with known germline variants, but can simulate somatic
variants of any tumor purity, sequencing coverage (lower than the data source), and level of
normal contamination. The strategy can theoretically produce an infinite number of somatic
variants for model training. We show results to highlight how phasing improves somatic variant-
calling performance on long reads. To leverage more remote alignment information that is
computationally impractical to include in the network input, we devised a post-processing step
that searches for ancestral haplotype support for any somatic variant candidates. This step
removed a considerable amount of false positive calls in our experiments. For benchmarking,
we sequenced in total 75-fold HCC1395 and 45-fold HCC1395BL ONT Q20+ long-reads (data
deposited to NCBI SRA), and used the truth somatic variants provided by the SEQC2
consortium?. With 50-fold/25-fold tumor/normal, ClairS achieved 86.86%/93.01%
recall/precision rate SNVs, and 66.89%/66.54% for somatic Indels when targeting VAF >0.05. For
variants with VAF 20.2, the numbers go up to 94.65%/96.63% for SNVs, and 73.22%/77.35% for
somatic Indels. We also show the performance of ClairS at different tumor/normal coverages,
tumor purity and normal contamination. ClairS is designed for ONT long reads, but the whole
method is also applicable to lllumina short reads. This versatility allowed us to benchmark ClairS
against state-of-the-art short-read somatic variant callers considering that there is no other
long-read somatic variant caller to benchmark against. The results show that ClairS performed
comparably or slightly better than the current heuristic-based and deep-learning-based callers
on short reads.
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126
127

128 Results

129 The ClairS method

130 The ClairS method is elaborated in the Method section. Texts in bold in this and the following
131  two paragraphs can be found as subsection titles in the Method section. In the use of deep-
132 learning for long-read somatic variant calling, ClairS has made breakthroughs in Training data
133  synthesis and the ClairS workflow and design.

134

135  Regarding training data synthesis, Figure 1a shows the workflow for Generating synthetic tumor
136  and synthetic normal. As we required sampling without replacement, and in view of the

137 common practice that a tumor sample having higher coverage than its matching normal, we
138 gave Coverage advice for the source data. Details of how homozygous and heterozygous

139  germline variants in different samples are converted into somatic variants are given in Deriving
140  multiple categories of variants from a synthetic tumor/normal pair. Setups to avoid practical
141  concerns and limitations of the data synthesis method are given in Other details about the

142  variants selected for model training. Our data synthesis method is based on the observation
143  that an authentic somatic variant is usually found in the reads of a single haplotype (depicted in
144  Extended Data Figure 1a). Also, we found that Phasing information enhances somatic variant
145 calling performance in ClairS.

146

147  Regarding the ClairS workflow and design, Figure 2a shows an Overview of the ClairS workflow.
148  Figure 2b shows Step 1: Germline variant calling, phasing and read haplotagging, and Figure 2c
149  shows Step 2. Pileup-based and full-alignment based variant calling. For each sample, while
150 only a fraction of genome positions has alternative allele support and among them, only a few
151  have the potential to be called somatic variants, we used heuristics for Selecting variant

152  candidates. Details of The design of pileup input and full-alignment input and The design of
153  neural networks are shown in Figure 3. The ways in which ClairS differs from its predecessor,
154  Clair3, are discussed in Method. Figure 2d shows Step 3. Search for ancestral haplotype

155  support, which is a post-processing step that leverages more remote alignment information to
156  search for ancestral haplotype support to the somatic variants called in step 2. To adapt to

157  different usage scenarios, multiple Output options are provided.

158

159  ClairS performance on ONT data

160 A summary of the ONT data used for model training and benchmarking is shown in

161  Supplementary Table 1. We trained the ClairS ONT model using synthetic data generated from
162  two GIAB samples: HG001 and HG002%°. We used both HG001/HG002 and HG002/HGO01 as
163  tumor/normal samples for data synthesis. The HG002 sample has 76.29-fold coverage and was
164 made available by Nanopore through EPI2ME Labs. The HG001 sample has 48.44-fold coverage
165 and was sequenced at HKU, with details given in the Method — ONT library preparation and
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166  sequencing section. Following the convention of the state-of-the-art deep-learning-based

167  variant callers, we excluded reads and variants from Chromosome 20 from model training.

168

169  For benchmarking, we used the HCC1395/BL tumor-normal pair, with known truth variants

170  provided by the SEQC2 consortium3. The HCC1395 sample has 75.97-fold coverage. The

171  HCC1395BL sample has 45.55-fold coverage. Both samples were sequenced at two sequencing
172  centers (HKU and Novogene) for quality control purposes. The yield of the two centers is shown
173  in Supplementary Table 2. Only SEQC2 truth variants labeled “HighConf” (high confidence) and
174  “MedConf” (medium confidence) were used for benchmarking. While there are ~40k SNVs but
175 only ~2k Indels in the truth set, the big difference in the number of truth variants results in

176  different analytical power between the two variant types. So we first benchmarked multiple
177  coverages, tumor purity and normal contamination with only SNVs, and then benchmarked and
178  discuss somatic Indel-calling performance in a separate section. We used lllumina’s Haplotype
179  Comparison Tools?’ to generate the performance figures, including F1-Score, Precision, and
180  Recall, and cross-validated them with the “compare_vcf” submodule in ClairS. More

181 clarifications and parameters are shown in the Method — Benchmarking section.

182

183  For both model training and benchmarking, we used GRCh38, which is the newest reference
184  genome version on which both GIAB and SEQC2 truth variants are based. All ONT sequencing
185  data were base-called using Guppy version 6.1.5 and aligned to GRCh38 using minimap2 version
186  2.17-r941. The command line used is given in the Supplementary Notes — Command lines used
187  section. All data mentioned above, including ONT sequencing data, GIAB truth variants, SEQC2
188  truth variants, and reference genomes, are publicly accessible via links or SRA accession IDs
189 listed in the Supplementary Notes — Data availability section.

190

191  Performance with different tumor combinations and normal coverage. We assessed the ClairS
192  performance with different combinations of tumors and normal coverage. We tested three

193  tumor coverage rates: 25-, 50-, and 75-fold. We applied 25-fold as the first step as it represents
194  a conservative throughput estimation of an R10.4.1 PromethION flowcell. We also tested three
195 normal coverages: 20-, 25-, and 30-fold. The 25-fold step resembles the throughput variance of
196  asingle flowcell. Our experiments aimed to imitate a practical setting for clinical cancer

197  diagnosis, with the tumor sample coverage increased one flowcell at a time to seek higher

198 discovery power, but the normal sample coverage is fixed at a single flowcell for cost-

199  effectiveness.

200

201  The results are shown as Precision-Recall curves in Figure 4a. The evaluation metrics at two
202  variant quality cutoffs (8 and 15) are shown in Supplementary Table 3. Quality cutoff 15

203  (hereafter referred to as “prioritize-f1 mode”) filters more variants and aims for balanced

204  precision and recall. Quality cutoff 8 (“prioritize-recall mode”) retains more variants and aims
205 for higher recall. In the prioritize-f1 mode, with normal coverage fixed at 25-fold, ClairS achieved
206  95.03%/78.71%/86.11%, 93.01%/86.86%/89.83%, and 92.94%/86.92%/89.83%

207  precision/recall/fl1-score at 25-, 50-, and 75-fold tumor coverage, respectively. From 25- to 50-
208  fold, the recall increased from 78.11% to 86.86% (+8.75%), with a 2.02% precision drop (from
209  95.03% to 93.01%). From 50- to 75-fold, however, no improvement was observed. In the
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prioritize-recall mode, also with normal coverage fixed at 25-fold, ClairS achieved
82.66%/91.55%/86.88%, 70.21%/96.10%/81.14%, and 63.80%/96.60%/76.85%
precision/recall/fl1-score at 25-, 50-, and 75-fold tumor coverage, respectively. Compared to
prioritize-f1, the prioritize-recall mode reached 91.55% recall at 25-fold (against 78.71%,
+12.84%), and 96.10% at 50-fold (against 86.86%, +9.24%). Although Clair3 is not designed for
somatic variants, to give a reference point, we conducted experiments with it using the same
datasets by considering the germline variants found in tumor but not in normal as somatic
variants. At 25-fold normal, Clair3 had a 19.27%/72.10%/30.42%, 29.82%/68.32%/41.52%, and
36.21%/64.56%/46.40% precision/recall/f1-score at 25-, 50-, and 75-fold tumor coverage. The
results highlight the inappropriateness of using a germline variant caller for somatic variant
calling.

In both prioritize-f1 and prioritize-recall modes, raising the normal coverage consistently
increased somatic variant-calling performance. With tumor coverage fixed at 50-fold and using
the prioritize-f1 mode, ClairS achieved a 91.86%/83.77%/87.63%, 93.01%/86.86%/89.83%, and
92.06%/88.51%/90.25% precision/recall/f1-score at 20-, 25-, and 30-fold normal coverage. The
numbers were 68.36%/95.69%/79.75%, 70.21%/96.10%/81.14%, and 70.56%/96.43%/81.49%
in the prioritize-recall mode.

Figure 4b shows the performance of ClairS in prioritize-recall mode, broken down to four VAF
ranges: 0.5-1, 0.2-0.5, 0.1-0.2, and 0.05-0.1. At different coverages, the performance of ClairS at
range 0.2-0.5 (low-mid) was found to be as good as 0.5-1 (mid-high). For example, at 50/25-fold
tumor/normal coverage, ClairS achieved a 94.7%/99.3%/96.9% precision/recall/f1-score at 0.5-
1, and 95.2%/98.1%/96.7% at 0.2-0.5. At range 0.1-0.2, precision was reduced to ~60%, while
recalls plateaued at ~90%. At range 0.05-0.1, precision was further reduced to below 10%
(11.8%, 5.7%, and 4.6% at 25-, 50-, and 75-fold tumor coverage), while recalls were raised with
increasing tumor coverage (16.5%, 32.8%, and 46.1%). The reason for the drop in precision was
that the higher coverage led to a drastic increase in the number of variant candidates at very
low VAF. At range 0.05-0.1, the number of candidates was about 131k, 310k, and 419k at 25-,
50-, and 75-fold tumor coverage.

Performance at different tumor purities and normal contamination. We assessed the
performance of ClairS at different combinations of tumor purity (1.0, 0.8, 0.6, 0.4, and 0.2) and
normal purity (1.0, 0.95, and 0.90). All the experiments in this section used 50-fold tumor and
25-fold normal coverage. The results are shown in Figure 4c and Supplementary Table 4. The
two modes (prioritize-f1 and prioritize-recall) behaved differently with varying purity. With
normal purity fixed at 1.0, in prioritize-f1 mode, precision remained above 90% (93.01%,
96.25%, 97.79%, 98.68%, and 98.99% at tumor purity 1.0, 0.8, 0.6, 0.4, and 0.2), while recall
dropped (86.86%, 81.63%, 71.08%, 52.94%, and 22.43%) with decreasing tumor purity. In the
prioritize-recall model, precision varied (70.21%, 80.11%, 88.14%, 93.81%, and 97.54%), while
recall was boosted, especially at lower tumor purity (96.10%, 94.45%, 90.51%, 80.81%, and
53.06%). According to these results, generally, we suggest using prioritize-f1 mode at higher
tumor purity and prioritize-recall mode at lower tumor purity.
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254  Our results also showed that lower normal purity harmed somatic variant-calling performance,
255  especially on recall. With tumor purity fixed at 1.0, in prioritize-f1 mode, the recalls were

256  86.86%, 70.35%, and 51.74% at normal purity 1.0, 0.95, and 0.90. In prioritize-recall mode, the
257  recalls were 96.10%, 85.36%, and 69.42%. Accordingly, we suggest using a high-purity normal
258  sample with ClairS for somatic variant discovery. Lastly, we showed the results using 0.8/0.95
259  tumor/normal purity. In prioritize-recall mode, ClairS achieved a 79.68%/81.13%/80.40%

260 precision/recall/f1-score, demonstrating ClairS’ reliability in challenging sample conditions.

261

262  Analysis of False Positive and False Negative calls. Using 50-fold tumor and 25-fold normal

263  coverage, we manually analyzed 300 false positive and 300 false negative calls randomly picked
264  from all variant calls. Each FP and FN was assigned with the most obvious limitation as the

265  reason why the call was false. The reasons for the 600 false calls are listed in Supplementary
266 Table 5. A distribution of the reasons is given in Figure 4 as a pie chart.

267

268  Among the false positive calls, 39% had no matching truth but were with tumor 0.05<VAF<0.1,
269  22% were with tumor 0.1<VAF<0.15, and 9% were with tumor VAF>0.15. As the Method section
270 elaborates, these calls are with tumor and normal coverage 24, and normal VAF below 0.05.
271  One possible explanation is that ClairS was unable to pick up more hints and tell these calls from
272  the true ones. Some of these cases might be correctly called again with higher tumor coverage,
273 which reduces the statistical bias in VAF. It is also possible that since the SEQC2 truth set is still
274  under active development, its incompleteness caused a few variants that are actually true to be
275 misclassified as false positives. Another major category of false positive calls is likely to be

276  caused by alighnment artifacts because of a repetitive or imperfect genome reference sequence.
277  ltincludes 6% “One or more deletions in flanking 50bp”, 5% “In low complexity region”, 4%

278  “Excessive mismatches in alignment”, 3% “One or more insertions in flanking 50bp”, and in

279  total, another 10% in repetitive regions of different types. Also, we found 1% false positive calls,
280  possibly because of insufficient normal coverage.

281

282  Among the false negative calls, 40% truth variants that were not called were with tumor

283  VAF<0.1, 10% were with “Normal VAF >0.05, but tumor VAF <6 times larger than normal VAF”,
284  and 3% were with <3 reads supporting the variant allele in a tumor. These missed variants might
285  be called again if higher tumor coverage is given. False negative calls are more likely to be

286  caused by alignment artifacts, as we observed 10% false negative calls in the homopolymer

287  region, 10% in the low complexity region, 7% in the tandem repeat region, and in total, another
288 9% that were also likely to have been caused by alignment. We also observed 4% false negative
289  calls caused by extreme strand bias (i.e., reads observed in only one strand); and 1% with base
290 quality of all supporting bases <20.

291

292  Somatic Indel-calling performance. The SEQC2 truth set provides ~40k SNVs but only ~2k Indels.
293  Owing to the scarcity of truth somatic Indels that could educe statistical biases, we

294  benchmarked somatic Indel-calling separately. The results of different combinations of tumor
295  coverage (25-, 50-, and 75-fold) and normal coverage (20-, 25-, and 30-fold) are shown in

296  Supplementary Table 6. With normal coverage fixed at 25-fold, in prioritize-f1 mode (variant
297  quality cutoff at 12) ClairS achieved 76.91%/49.36%/60.13%, 66.54%/66.89%/66.72%, and
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57.79%/71.48%/63.91% of precision/recall/f1-score at 25-, 50-, and 75-fold tumor coverage. In
prioritize-recall mode (cutoff at 8), ClairS achieved 53.05%/65.46%/58.61%,
38.63%/76.15%/51.25%, and 37.55%/76.60%/50.40%. As in our conclusion for SNV calling,
generally, we suggest using prioritize-recall mode for calling somatic Indels at lower tumor
coverage.

Performance after adding phasing information to the input in step 2. The reconstruction of
haplotypes, also known as haplotype-resolved assembly or phasing, greatly improved the
performance of long-read germline variant calling in previous practice?? 23, In the Method
section, we elaborate how phasing information can be used to enhance somatic variant-calling
performance. Using 50/25-fold HCC1395/BL and prioritize-recall mode for benchmarking, we
show in Extended Figure 1b that phasable somatic variants performed better than unphasable
ones, especially at lower VAF. At VAF 0.1-0.15, phasable somatic variants had a
43.8%/85.6%/57.9% precision/recall/f1-score, but unphasable somatic variants had only
16.4%/81.2%/27.3%. At VAF 0.05-0.1, phasable somatic variants had 5.8%/46.6%/10.3%, but
unphasable somatic variants had only 2.3%/27.2%/4.3%. We tried disabling phasing in ClairS
and fed no phasing information to the calling networks. As shown in Supplementary Table 7, the
overall F1-score dropped from 81.14% to 78.66% (-2.48%).

Performance of the two respective networks in step 2. In contrast to Clair3, in which the pileup
network handles all the variant candidates, and the full-alignment network processes only the
undecided candidates using the pileup network, ClairS uses both networks equally to make
collective decisions. The rationale and details are elaborated in the Method section. We tested
the performance using both the pileup network only and the full-alignment network only, with
50/25-fold of HCC1395/BL and prioritize-recall mode. The results are shown in Supplementary
Table 7. When we used only the pileup network, the F1-score dropped from 81.14% to 73.27%
(-7.87%). When we used only the full-alignment network, the F1-score dropped from 81.14% to
79.14% (-2.00%).

Performance of Step3: Searching for ancestral haplotype support. As elaborated in the Method
section, step 3 utilizes remote alignment signals that could not be included in the network
inputs due to computational limitations to improve the precision of the called somatic variants.
As shown in Supplementary Table 7, without this step, the precision dropped from 70.21% to
67.14% (-3.07%, using 50/25-fold HCC1395/BL and prioritize-recall mode).

ClairS performance on Illumina data

Short-read somatic small-variant calling has been intensively studied. A non-exhaustive list of
state-of-the-art methods include Strelka2®, Mutect28, Lancet®, Neusomatic®, Octopus'?,
SomaticSniper®, and Varnet?. ClairS was designed primarily for long-read somatic small-variant
calling. However, its poses no limitations to small reads, and we expect a variant-calling method
that works for long reads to perform as well as or even better than existing short-read methods.
Also, benchmarking against other short-read somatic small-variant callers provides insights on
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340 how ClairS performs against existing methods, since no other long-read callers are available for
341  comparison.

342

343 A summary of the lllumina data used for model training and benchmarking is shown in

344  Supplementary Table 1. We used both HG003/HG004 and HG004/HGO003 as tumor/normal

345  samples for data synthesis. The HG0O03 and HG004 samples had 91.15- and 88.49-fold coverage,
346  and were publicly shared by Google Health Center. For benchmarking, we also used the

347  HCC1395/BL tumor-normal pair, but with data from six sequencing centers, made available by
348 the SEQC2 consortium — NS: NovaSeq at lllumina; NC: HiSeq at the National Cancer Institute, IL;
349  HiSeq at llumina, EA; HiSeq at European Infrastructure for Translational Medicine, FD; HiSeq at
350 Fudan University, NV; HiSeq at Novartis — with coverage ranging from 37.93- to 87.54-fold. The
351  six multi-center replicates enabled us to verify ClairS’ performance consistency. If not

352  specifically mentioned, other training and benchmarking details are the same as those of the
353  ONT data experiments, and we benchmarked only SNVs for all callers. Like the ONT data

354  experiments, the command lines and links to the data used for both model training and

355  benchmarking are listed in the Supplementary Notes.

356

357  The evaluation metrics of the eight callers on the six datasets are shown in Supplementary Table
358 8. Figure 6a shows the precision-recall curves, and figure 6b shows a histogram of the F1-scores.
359  ClairS consistently performed comparably or slightly better than the two top-performing callers,
360 Strelka2 and Mutect2. On the six datasets, ClairS achieved a 97.88%, 97.82%, 97.46%, 97.53%,
361 97.03%, and 96.41% F1-score. Strelka2 achieved a 96.16%, 96.18%, 97.03%, 97.35%, 96.32%,
362 and 95.47%. Mutect2 achieved 95.21%, 95.75%, 95.33%, 96.24%, 96.46%, and 94.35%. Broken
363 down into different VAF ranges, the ClairS performance was also consistently comparable to or
364  better than that of other callers, as shown in Figure 6c. Figure 6d shows Venn diagrams of the
365  overlaps of false positive calls between Strelka2, Mutect2, and ClairS. The diagrams show that
366 although rare, there are 30 to 41 false positive calls in the six datasets that were called by all
367 three callers. Owing to the possible incompleteness of the truth set, a false positive variant can
368 be either a wrong call or a true variant missing from the truth set. These false positive variant
369 calls called by all three callers are worth conducting further verification and might further

370 contribute to the completeness of the truth set.

371

372  Discussion

373  In this study, we present ClairS, the first somatic small variant caller for ONT long-reads. In our
374  benchmarks, we showed that it is reliable at different sample coverages, tumor purities and
375 normal contaminations. With the training data synthesis method we devised, ClairS can be
376 trained for somatic small-variant calling for any sequencing platform. We demonstrated that
377  ClairS performed as well as or even better than the top-performing somatic variant callers for
378  lllumina short reads. ClairS draws on its germline variant caller predecessors’ experience, while
379 using a redesigned workflow, network architecture, network output, and post-processing

380 procedure for the more challenging somatic variant-calling tasks.

381
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382 The use of long reads for somatic SV discovery has unraveled complex somatic SVs that were
383  previous hampered by short reads?®. With the unprecedented power of long reads to cover
384  repetitive genome regions, we expect the use of long reads for somatic small variant calling to
385 reveal more somatic variants that were previously inaccessible by short reads, and lead to a
386  better understanding of the mutational processes and functional consequences of the somatic
387 variants in different cancer types. To allow more researchers to achieve these goals, ClairS was
388 included as the small variant caller in ONT’s somatic variant-calling workflow?.

389

390 Despite using ONT'’s latest Q20+ data, the F1-score for somatic indels was only ~60%. Although
391 the performance looks better when considering only the somatic indels in the coding

392 sequences, the promise of better whole genome somatic indel-calling performance lies in the
393  continuous advancement of ONT’s sequencing chemistry and base-calling algorithm.

394

395 Method

396 Training data synthesis

397  Generating synthetic tumors and synthetic normal. A tumor comprises normal cells and tumor
398 cells; the latter are regarded as foreign. Similarly, the normal cells of an individual are

399 considered foreign to the normal cells of another individual, and vice versa. The germline

400 variants unique to an individual can mimic a somatic variant when mixed with another

401  individual. With insufficient known truth somatic variants and standard tumor-normal sample
402  pairs available, this observation lays the foundation for generating ample synthetic somatic
403  variants from known truth germline variants in the GIAB reference samples with real

404  sequencing data for deep-learning model training. The detailed workflow is shown in Figure 1a.
405  Using 80-fold GIAB HG002 of ONT WGS alignments as the source of the tumor (hereafter

406 referred to as A) and 50-fold of HG0O1 as the source of normal (B) as an example, we first split
407  the alignments of both samples into smaller chunks, each with 4-fold coverage. The smaller
408 chunks from both samples can be combined to simulate 1) different allele frequencies, such as
409 combining 40-fold A, i.e., 10 4-fold chunks of A with 20-fold B, i.e., 5 4-fold chunks of B, to

410 simulate a synthetic tumor sample with an ideal 67% allele frequency, i.e., 40-fold of A against
411 60-fold of A+B; 2) different coverage of both tumor and normal, e.g. increase or decrease the
412  number of chunks as needed; and 3) different levels of contamination in normal, e.g., instead of
413  using 100% A as normal, adding one or more chunks of B in normal.

414

415  Coverage advice for the source data. We applied two restrictions to tumor and normal

416  synthesis. First, to avoid any biases caused by reusing individual reads, we used sampling

417  without replacement in tumor and normal synthesis. That is, a chunk that was used could not
418  be used again. Second, we required the synthetic tumor to have equal or higher coverage than
419  the synthetic normal to align with common practice. Using the previous example, i.e., 80-fold A
420  as the source of a tumor, and 50-fold B as the source of normal, if 20-fold B is reserved to mix
421  with A for the tumor, then 30-fold B is left for normal, but we can achieve tumor purity only
422  between 33% (10-fold A + 20-fold B) and 100% (80-fold A + no B). However, if 30-fold B is


https://doi.org/10.1101/2023.08.17.553778
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.17.553778; this version posted August 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

423  reserved to mix with A for the tumor, tumor purity between 0% (no A + 30-fold B) and 100%
424  (80-fold A + no B) can be achieved, but only 20-fold B is left for normal. Thus, we suggest using
425  the sample with higher coverage as the source of normal to achieve both higher normal

426  coverage and full-spectrum tumor purity for model training. This is counterintuitive because
427  higher tumor coverage of common in cancer studies.

428

429  Deriving multiple categories of variants from a synthetic tumor/normal pair. Four categories of
430 variants, namely “Somatic”, “Germline”, “Artifact”, and “Normal-only”, were derived from a
431  synthetic tumor/normal pair, as explained in detail in Figure 1a. We used GIAB truth variants in
432  the synthetic tumor and synthetic normal, and we defined any truth variants (including both
433  homozygous and heterozygous) as “callable-variant”. Basically, somatic variants are callable
434  variants in the synthetic tumor but not in the synthetic normal, which are also known as truth
435  germline variants in the tumor source, but not in the normal source. Germline variants are
436  callable variants in both the synthetic tumor and synthetic normal, which are also known as
437  truth germline variants in both the tumor source and normal source. Artifact variants are

438  callable variants only in the synthetic tumor. They are not known as truth in either the tumor
439  source or the normal source. Normal-only variants are callable-variants found only in the

440 synthetic normal. Three of the four categories, Somatic, Germline and Artifact, are used for
441  model training. Only the variants located in the overlapping GIAB-defined high-confidence
442  regions of both the tumor and normal sources were used for training to ensure the quality of
443  the training variants. Because of the sub-sampling process, some variants might have few

444  supporting reads in the synthetic tumor, especially for low AF somatic variants. These variants
445  were excluded from model training to avoid confusing the neural network. More exclusion
446  details are given in the following paragraph. Our sample synthesis method supports generating
447  synthetic tumors at any purity level, so we can use as many purities as possible to achieve fine
448  coverage of VAF from 0 to 1, but for practicality, we used three tumor purities (25%, 50%, and
449  100%), and applied subsampling to all variants from the three purities to achieve acceptable
450  VAF distribution. This is feasible because 1) the innate variance of the AF of the germline

451  variants from the tumor and normal sources enables a pool of somatic variants fully covering
452  VAF from 0 to 1, even with just three purities, and 2) applying subsampling to the pool enables
453  usto enrich difficult somatic variants and reduce the number of less common somatic variants
454  for model training. In terms of subsampling, the VAFs of chosen somatic variants were randomly
455  selected from a beta distribution with shape parameters a=2 and B=5. The same distribution
456  was used by the SEQC2 consortium for spike-in somatic variants in Sahraeian et al*°. Our

457  experiment showed that subsampling itself resulted in a ~1.8% increase in the F1-score using
458  50x/25x of HCC1395/BL. The resulting VAF distribution of SNVs is shown in Figure 1b. We tried
459  adding one more tumor purity at 12.5%, but apart from longer model training time, no

460 performance gain was observed.

461

462  Other details about the variants selected for model training. For the somatic variants used for
463  model training, a minimum coverage of four, and a minimum of three reads supporting the
464  somatic variant allele are required. Somatic variants with VAF > 0.03 in the synthetic normal
465  were excluded from training to avoid confusing the model with a very noisy normal. For the
466  artifacts, the non-reference AF was capped at 0.05 to avoid using a large number of obvious
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467  artifacts for training. For germline variants, minimum coverage of four reads and a minimum of
468  three reads supporting the germline variant allele, were required in both synthetic tumor and
469 normal. Germline variants with a difference in AF larger than 0.1 between the synthetic tumor
470  and normal were excluded from training. To prevent the model from inferring a somatic variant
471  from its co-existence with two or more adjacent germline variants, which is a confounding

472  factor that can be easily learned by the model, germlines variants that were less than 33bp (the
473  window size of our model design) from each other were excluded from training. Our experiment
474  showed that this exclusion alone increased somatic variant calling precision by ~1%. With three
475  tumor purities and the exclusions explained above, 12,489,342 training samples were left. The
476  breakdown is shown in Figure 1c.

477

478  Phasing information enhances somatic variant-calling performance. An authentic somatic

479  variant usually originates from either the maternal or paternal haplotypes, while a random error
480 usually has a fair chance happening in both (Extended Data Figure 1a). Thus, somatic variants
481 that have a single ancestral haplotype (either maternal or paternal) should be considered more
482 reliable than those with two ancestral haplotypes, except for somatic variants with high VAF
483  that might be a result of copy number alteration or clonal duplication3!. ClairS uses phasing

484  information for both model training and inference. Clair3 and LongPhase are used for phasing
485 and read haplotagging. More details are given in the “ClairS input and output” section. ClairS
486  uses phasing information during full-alignment-based variant calling, in which a channel named
487  “Tumor/Normal/Phasing Info” is used. In this channel, the alignments are grouped into

488  haplotype-unknown, haplotype 1, and haplotype 2, each using the read order of the

489  alignments. Although long-read sequencing enables outstanding phasing performance, some
490 somatic variants in difficult genomic regions or without a heterozygous germline in their vicinity
491  still cannot be covered by any phased reads. Thus, during model training, for each variant that
492  has a heterozygous origin from the tumor source, if one or more reads can be phased, both a
493  version of input with reads after phasing and a version before phasing were used.

494

495  ClairS workflow and design

496  Overview. Figure 2 shows an overview of the ClairS somatic variant-calling workflow. Starting
497  from the alignments in the BAM/CRAM format of a tumor/normal sample pair, ClairS follows
498  three steps to derive the somatic variants in a tumor and outputs them to a VCF file. In step 1,
499  ClairS uses Clair3 and LongPhase for germline variant calling, phasing and read haplotagging.
500 The processed alignments are then used for both pileup and full-alignment-based somatic

501 variant calling in step 2. Step 3 involves post-processing filters that eliminate somatic variant
502 calling if an ancestral haplotype (either maternal or paternal) from which the somatic variant
503 could originate cannot be found.

504

505 Step 1: Germline variant calling, phasing and read haplotagging. Step 1 is depicted in Figure 2b.
506  Clair3%?is integrated into ClairS for calling high-quality heterozygous germline variants in both
507 tumor and normal to maximize the performance of the subsequent phasing task. Unlike Clair3’s
508 default, AF20.2 and coverage>10 were applied to ensure the quality of the called variants and
509 reduce computational overhead. Only the heterozygous germline variants found in both tumor
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510 and normal were chosen for phasing. For phasing and haplotagging the tumor alignments, both
511 LongPhase3? and WhatsHap33are allowed in ClairS. We chose LongPhase over WhatsHap as the
512  default because LongPhase runs ~15 times faster while delivering similar or longer phase sets
513  on human samples. Notably, ClairS does not phase and haplotag the normal alighnments. Our
514  experiment showed phasing the normal alignments doubled the processing time but did not
515 resultin any improvement in calling performance.

516

517  Step 2. Pileup-based and full-alignment-based variant calling. Step 2 is depicted in Figure 2c. For
518 avariant candidate (explained in “Selecting variant candidates”), a pileup input and a full-

519 alignment input are generated (explained in “The design of pileup input and full-alignment

520 input”). Then the inputs are sent to a Bi-GRU-based pileup-calling neural network and a ResNet-
521  based full-alignment-calling neural network (explained in “The design of neural networks”) for
522 inference. Both networks have the same output — a single task with three categories, “Somatic”,
523  “Germline”, and “Artifact”, which match exactly the three categories defined in the synthetic
524  training data. In contrast to Clair3, in which the faster pileup-based calling cleans up most

525  variant candidates that are obvious variants, and the more computational-demanding full-

526 alignment-based calling handles the tricky and less obvious candidates, ClairS considers the

527  power of the two neural networks equal. We observed that full-alignment-based calling is

528 performant at mid-range VAFs. However, pileup-based calling requires less evidence than full-
529 alignment calling to draw the same conclusion. When VAF goes under 0.1, pileup-based calling
530 becomes increasingly more sensitive and usually outperforms full-alignment-based calling. This
531 observation makes pileup-based calling more important for somatic variant calling than its role
532  in Clair3 for germline variant calling, especially in multiple clinical usage scenarios when

533  sensitivity is emphasized. In ClairS, a somatic variant is called when both networks give somatic
534  the highest probability. The variant quality (QUAL) is Phred-like and is calculated as

Pileup Full-alignment

535 max (~10l0g;y (S£) +2,0), where p = “Sematic®Somatic — Also in contrast to Clair3,

536  which uses the same network for both SNP and Indel calling, ClairS uses two different networks
537 respectively trained for SNV and Indel calling. This means that ClairS runs on four networks in
538 total: pileup for SNV, pileup for Indel, full-alignment for SNV, and full-alignment for Indel. The
539 rationale behind the new design is that unlike germline variants that are commonly diploid,
540 somatic variants have no ploidy assumption, meaning that the existence of SNVs and Indels in
541 the same position are independent events. Our tests found that using separated networks led to
542  a1.5% increase in SNV recall. The use of separated networks also allowed the use of different
543  variant quality cutoffs for SNV and Indel, which is useful for somatic variant calling, especially
544  when the sample condition is not ideal.

545

546  Selecting variant candidates. Sending every genome position as a variant candidate to the

547  neural networks guarantees maximum sensitivity. However, it is not only computationally

548 infeasible, but also unreasonable to work on nonstarter positions, such as those without any
549  non-reference allele support. A good variant candidate selection strategy is essential to achieve
550 a balance between sensitivity and running time. In ClairS, the selection criteria are as follows.
551 Letrek=(A, C, G, T) be the reference base of a genome position, and me K-r be the alternative
552  bases. D*,, denotes the coverage of m at the position in sample XE{T, N}, where Tand N
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553  represent the tumor and normal sample. Cy, defines the selection criteria of each alternative
554  basein m, as:

> "
555 Co = 3 YK DT DT 2 SK DN

KpT N

True if > f and

\ z{(D{.\’

556  where a sets the minimum VAF, and B sets the minimum tumor VAF to normal VAF ratio for a
557 candidate to be selected. Intuitively, the first equation means disregarding variant candidates
558  with < 3 reads in tumor supporting the variant allele, or with VAF in tumor < a. The second

559  equation means selecting a variant candidate if its VAF is <a in normal, but 2a in tumor. The
560 third equation means selecting a variant candidate, even if its VAF in normal is 2a, the VAF in
561 tumoris 2B times larger than the VAF in normal. In ClairS, a and B are configurable and default
562 to 0.05 and 6, respectively. Like model training data preparation, coverage 24 is required in both
563 tumor and normal for a candidate to be selected for variant calling.

E:KDNZ(I

564
565  The design of pileup input and full-alignment input. ClairS pileup input comprises 1,122 integers
566 — 33 positions wide with 34 features at each position (an example is given in Extended Data

567  Figure 2a). A detailed explanation of each feature is given in Supplementary Methods under
568  “Description of pileup input features”. ClairS has 18 pileup features in common with Clair3, and
569 16 additional features. The 16 new features are read counts Nima+, Niva-, Nisa+, and Nisq-,

570 where N is either of the nucleotides A, C, G, and T, LMQ subscript means mapping quality lower
571 than 20 (MQ<20), LBQ means base quality lower than 30 (BQ<30), and + and - mean the

572  forward and reverse strand, respectively. The rationale behind the new features is that in ClairS,
573  the results of pileup-based calling and full-alignment-based calling are trusted equally, so the
574  mapping quality and base quality information that used to be exclusive to full-alignment calling
575 need to be added to pileup-based calling. Our experiment showed that removing the 16 new
576  features reduced precision by ~2% using 50x/25x of HCC1395/BL. ClairS full-alignment input
577  comprises 30,030 integers — seven channels, each with 33 positions and 130 rows to support at
578 most 76 tumor reads, 52 normal reads, and 2 empty rows as space between tumor and normal
579 (an example is given in Extended Data Figure 2b). Like Clair3, random subsampling down to the
580 maximum supported coverage is used at excessive coverages. A detailed explanation of each
581 channelis given in Supplementary Methods under “Description of full-alignment input

582  channels”. In both inputs, the candidate variant is centered at the 16 position. Positions

583  uncovered by any base in full-alignment input are filled with zero.

584

585  Design of neural networks. The pileup and full-alignment network architecture and important
586  parameters are shown in Figure 3. The pileup network uses two bidirectional gate recurrent unit
587  (Bi-GRU) layers, each with 128 and 192 units. Compared to the Clair3 pileup network, the use of
588  Bi-GRU instead of bidirectional long short-term memory (Bi-LSTM) architecture reduced

589 trainable parameters from 2,532,995 to 2,309,507 and matrix computations from 3.11 to 2.38
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590 billion, but improved performance in our experiment. The full-alignment network is a residual
591 neural network (ResNet) comprising three standard residual blocks. A convolutional layer is

592 added immediately before each residual block to expand the number of channels. In both

593  networks, a dropout rate at 0.3 is set for the flattened layer and dense layer to prevent

594  overfitting.

595

596  Step 3. Search for ancestral haplotype support. Step 3 is depicted in Figure 2d. The neural

597 networks exhibited good power in distinguishing real variants from false positive candidates.
598 However, useful signals remote to a variant candidate are not covered by the current neural
599  network designs in ClairS, which considers only the flanking 16bp of a candidate. Notably, even
600 if the flanking window is extended to 50bp, it is still too short for an accurate inference of which
601 haplotype a variant candidate belongs to using only the networks, but the networks would

602  already be computationally infeasible for somatic variant calling. In ClairS, post-processing step
603 3 is designed to reduce false positive calling mistakes made by the networks by leveraging

604  relatively remote germline variants to find the correct ancestral haplotype for a somatic variant.
605  Any somatic variant calls that cannot be found with ancestral haplotype support are switched to
606 an artifact and are excluded from the output. The haplotagged reads produced in step 1 are
607 used in this step. For a somatic variant that covers any haplotagged reads, we required the

608 somatic variant to coexist with the heterozygous germline variants less than 100 bp away on its
609 left and right in the reads in the haplotype group the somatic variant supporting reads were in.
610 An example of a false positive somatic variant filtered by this rule is given in Extended Data

611  Figure 3a. A somatic variant at chr4:38,012,942 was called by the two networks. A phased

612  heterozygous germline variant was found 61 bp left of the somatic call. Three reads in haplotype
613 2 that supported the somatic variant were found not to have the heterozygous germline variant.
614  Thus, the somatic variant was considered unsupported by an ancestral haplotype. For a somatic
615 variant that covers no haplotagged read, it is probably because there are no germline variants
616  or only homozygous variants in the vicinity. In this case, we required the somatic variant to be
617  coexisting with the homozygous germline variants less than 100 bp away on its left and right in
618  all somatic variant supporting reads. An example of this is given in Extended Data Figure 3b. A
619 somatic variant at chr1:100,632,158 was called by the two networks. A homozygous germline
620 variant was found 39 bp left of the somatic call. Multiple reads that support the somatic variant
621  were found not to have the homozygous germline variant. Thus, the somatic variant was not
622  considered to be supported by an ancestral haplotype. Somatic variants that do not have any
623  germline variants less than 100 bp away on their left or right are not applicable in this step.

624

625  Output. ClairS supports VCF format output. Somatic variants are marked “PASS” or “LowQual” if
626  the variant quality is low (i.e., QUAL<S, configurable by option), or they are filtered in step 3. For
627  each variant, the allele frequency and supporting coverage of the reference allele and all

628 alternative alleles are shown. The options “--print_germline_calls” and “--print_ref calls”

629 enable outputting germline variants and artifacts, respectively.

630
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ONT library preparation and sequencing

Genomic DNA (gDNA) of a triple-negative breast cancer (TNBC) cell line (HCC1395) and a B
lymphocyte-derived normal cell line (HCC1395BL) from the same donor were purchased from
the American Type Culture Collection (ATCC). Genomic DNA (gDNA) of HG001 was purchased
from the Coriell Institute. The high-molecular-weight gDNA was examined by Nanodrop, Qubit,
and 0.35% agarose electrophoresis for its concentration, purity, and integrity. The gDNA was
then fragmented with gTube to generate DNA fragments approximately 20 kb in length. These
fragments were then being sequenced at two sequencing centers: HKU and Novogene. At HKU,
the fragments of HCC1395, HCC1395BL, and HGOO01 were prepared and ligated with a
sequencing adapter using ONT's ligation sequencing kit V14 SQK-LSK114. The ligated samples
were sequenced on R10.4.1 PromethlON flowcells using a PromethION 2 Solo device and
MinKNOW software version 1.18.02, for 96 h. At Novogene, the fragments of HCC1395 and
HCC1395BL were prepared and ligated with a sequencing adapter using ONT’s ligation
sequencing kit V12 SQK-LSK112. The ligated samples were sequenced on R10.4 PromethION
flowcells using PromethlON 48, for 96 h.

Benchmarking

We used the truth set of somatic variants in HCC1395/BL generated and maintained by the
SEQC2 consortium. The truth set was orthogonally validated with multiple sequencing replicates
from multiple sequencing centers that comprise over 1,500-fold sequencing data in total. We
used only the somatic variants labeled “HighConf” (High Confidence) or “MedConf” (Medium
Confidence) as truth. Somatic variants labeled “LowConf” (Low Confidence, VAF <0.05, not a
part of the truth set as defined by SEQC2) were not used for benchmarking. In total, there were
39,560 truth SNVs and 1,922 truth Indels; 39,447 of the SNVs and 1,602 of the Indels were
within the high-confidence regions defined in a BED file provided by SEQC2. A variant call was
considered correct only if it matched both the genome position and variant allele of the truth.
For both the ONT and lllumina benchmarks, some truth variants were excluded for the following
reasons. First, even with the high sequencing coverage, such as 75.97-fold HCC1395 we
generated for the ONT benchmarks, some truth variants still had very low or no coverage, or
had no read supporting the variant allele. These truth variants would fail all the benchmarks, so
they should be excluded. Second, some benchmarks tested multiple sequencing coverages and
required sequencing read subsampling from the full dataset. The subsampling process might
remove reads supporting a truth variant to an extent that few or no supporting reads are left.
This affects especially the somatic variants that already have a low VAF. For example, a VAF 0.05
somatic variant with 20-fold coverage and one read supporting the variant allele can be reduced
to VAF 0 by removing just one read during subsampling. This reduces the quality of the
benchmarking results, especially for low VAF truth variants when subsampled datasets are used.
To alleviate the problem, any truth variants that have very low VAF (<0.05) observed in the full
dataset before subsampling should be excluded. Summing up the two reasons above, for each
of the full datasets we used in both the ONT and Illumina benchmarks, we excluded truth
variants that matched any of the following criteria from benchmarking: 1) VAF <0.05, 2) reads
supporting the variant allele <3, 3) tumor coverage <4, and 4) normal coverage <4. For
standardization, we used som.py, provided in Illumina’s Haplotype Comparison Tools?’ (version
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674  v0.3.12) to generate evaluation metrics, including F1-Score, Precision, and Recall against the
675  truth variants. The “compare_vcf” submodule in ClairS produces identical results to som.py, but
676  automates the exclusion of unqualifying truth variants. The truth set materials are publicly

677  available to the community. All tools, their version, and command lines used are given in the
678 “Command lines used” section in Supplementary Notes.

679

680 Computational performance

681  ClairS was written in Python and C++. The Python parts leveraged PyPy for speed up. The neural
682  network implementations used PyTorch. Training ClairS neural networks requires a high-end
683  GPU, but using ClairS for somatic variant calling requires only a CPU. For the 50x/25x

684  HCC1395/BL pair, ClairS finished running in ~5 hours for ONT data and ~2 hours for lllumina data
685  (30% slower than Strelka2, but faster than all other short-read somatic variant callers), using
686  two 12-core Intel Xeon Silver 4116 processors. The memory footprint is low and is controlled at
687  lower than 1GB per CPU. For model training, we tested Nvidia GeForce RTX 2080 Ti, 3090, and
688 4090, and found each new model provided a ~35% speed increase from the previous

689  generation.

690

691

692 Code availability

693  ClairS is open source and available at https://github.com/HKU-BAL/ClairS under the BSD 3-
694  Clause license. The results in this paper were based on the ClairS initial release (version 0.0.1).
695  Multiple installation options are available for ClairS, including Docker and Singularity. ClairS has
696  also been included as the small variant caller in ONT’s somatic variant calling workflow?° since
697  version 0.1.0.

698

699 Data availability

700 The links to the reference genomes, truth somatic variants, benchmarking materials, ONT, and
701  lllumina data are given in the “Data availability” section in Supplementary Notes. All analysis
702  output, including the VCFs and running logs, is available at

703  http://www.bio8.cs.hku.hk/clairs/analysis result. The HCC1395/BL sequencing data generated
704  in this study was deposited in the NCBI short-read archive with accession ID PRINA986292.
705
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807
808 Figure 1. Overview of ClairS training data synthesis workflow.

809 (a) The workflow demonstrates how to produce synthetic somatic variants using two biologically
810  unrelated samples with known truth germline variants for ClairS model training. In this study,
811  specifically, we used 80x ONT WGS data of GIAB HG002 as sample A, and 50x HG001 as sample
812  B. First, germline variants Ga and Gg were defined as known truth germline variants in sample A
813  and B given by GIAB. Ga and Gs include both homozygous and heterozygous germline variants of
814  asample. To generate synthetic tumor variants T and synthetic normal variants Na/Ng for each
815 sample, the alignments were split into smaller chunks with 4x coverage each. Then, the chunks
816  from both samples were combined and the variants called from them were defined as T. With
817  the flexibility of combining any number of chunks from both samples, T effectively covered

818  variants called at different coverages and VAF. Similarly, the chunks from a sample were

819 combined at multiple coverages for calling synthetic normal variants Ns and Ng. With a small
820  number of chunks from another sample combined into a synthetic normal, Na and N5 effectively
821 covered different contamination levels. The variants Ga, Gs, T, Na and Ng were then used to

822  generate four categories of variants — “Somatic”, “Germline, “Artifact”, and “Normal-only” —

823  with different rules. Somatic, Germline, and Artifact match the three categories in the inference
824  task of the ClairS network architecture. The variants of the three categories were used for

825  model training. When using sample B as tumor and A as normal, Somatic is defined as “(T-Na) N
826  (Gp-Ga)”, i.e., variants that were 1) found in synthetic tumor T; 2) not found in synthetic normal
827  Nj; 3) found as a germline variant in Gg; or 4) not found in Ga. Germline is defined as “T N Na N
828 Gal Gg”, i.e., variants that were found in all T, Na, Ga, and Gs. Artifact is defined as “T-Na-Ga-
829  Gg”, which signifies the variants found only in T and not in the germlines or synthetic normal.
830 When using sample A as tumor and B as normal, the definitions remain the same except for

831  switching the subscripts.
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(b) The VAF distribution of the synthetic somatic SNVs at three different simulated tumor
purities (100%, 50%, and 25%), using either HGO01/HG002 or HG002/HGOO01 as tumor/normal.
Since both heterozygous and homozygous variants were used in synthesis, at 100% tumor
purity, the variants were gathered at 0.5 and 1.0 VAF. The distribution showed good coverage of
typical somatic SNV VAF by the synthetic SNVs.

(c) The breakdown of the number of synthetic variants for training. The numbers 1) using either
HG002/HGO001 or HG001/HGO002 as tumor/normal, and 2) of the three categories Somatic,
Germline, and Artifact, as defined in subfigure a, are shown. The number of Somatic categories
is further divided into those synthesized from either homozygous SNPs or heterozygous SNPs.
These numbers explain why including heterozygous SNPs in the synthesis is essential to ensure a
sufficient number of synthetic somatic variants for model training.
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848  Figure 2. Overview of the ClairS somatic variant calling workflow.

849  (a) The workflow illustrates the three steps of ClairS. In step 1, ClairS uses Clair3 and LongPhase
850 for germline variant calling, phasing and read haplotagging. The processed alignments are then
851 used for both pileup- and full-alignment-based somatic variant calling in step 2. Step 3 involves
852  post-processing filters that eliminate somatic variant callings if an ancestral haplotype (maternal
853  or paternal) from which the somatic variant could originate cannot be found. The details of

854  steps 1, 2, and 3 are shown in subfigures b, ¢, and d. (b) Step 1 details. Clair3 is applied to both
855  tumor and normal samples for germline variant calling. High-quality heterozygous germline

856  variants shared by both samples are selected and used by LongPhase to phase the germline

857  variants found in the tumor sample. Using the phased germline variants, the tumor reads are
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858 then haplotagged to belong to either haplotype 1, 2, or unknown. (c) Step 2 details. The

859  processed alignments from step 1 are fed into both the pileup-based variant-calling neural
860  network and the full-alignment based variant-calling neural network. On a single somatic variant
861 candidate, both networks give respective predictions on the probability of three categories:
862  “Somatic”, “Germline”, and “Artifact”. The predictions are then merged according to a set of
863  rules introduced in the Method section. (d) Step 3 details. The somatic variants called in step 2
864  are examined to determine if they are supported by an ancestral haplotype. Ancestral

865  haplotypes, which can be either maternal or paternal, are derived using germline variants. A
866  somatic variant is considered supported by an ancestral haplotype if the haplotype containing
867 the somatic variant is believed to originate from one of the ancestral haplotypes.
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872  Figure 3. The ClairS neural network architecture.

873  Both (a) the pileup network and (b) full-alignment network use alignments of both the tumor
874  and normal samples as input. Tensors are created from both samples using methods detailed in
875 the Method section, and are then concatenated. The tensors are then processed by their

876  respective neural network for inference. Both networks output the probability of three

877  categories: “Germline”, “Somatic”, and “Artifact”. The sequence of layers and layer

878  configurations are shown. The letters c, s, and k, represent channel, stride, and kernel,

879  respectively.
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Figure 4. ONT HCC1395/BL dataset benchmarking results.

(a) The precision-recall curve of different combinations of tumor and normal coverage. The dot
on each dashed line shows where the best F1-score was achieved. (b) The performance of ClairS
at multiple VAF ranges benchmarked on the ONT HCC1395/BL dataset. In the first row, 25, 50x,
and 75x tumor were tested, with the normal coverage fixed at 25x. In the second row, 20x, 25x,
and 30x of normal were tested, with tumor coverage fixed at 50x. Variant quality cutoff 8
(prioritize-recall mode) was used. (c) The precision-recall curve of different tumor/normal purity
combinations with tumor coverage fixed at 50x and normal coverage fixed at 25x.
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Figure 5. Categorizing the FPs and FNs in ClairS

The pie charts show the distribution of reasons for the FPs and FNs in ClairS. A 50x/25x ONT
HCC1395/BL dataset was used for calling. 300 FPs and 300 FNs were randomly chosen from the
results and analyzed. The tandem repeat, low complexity, homopolymer, and segmental
duplication regions were defined using GIAB v3.0 Genome Stratification. Among the categories,
“excessive mismatches in alignment” and “insufficient normal coverage” were decided
manually, i.e., without certain cut-offs. “Excessive mismatches in alignment” was given if an eye
check of the alighments revealed excessive inconsistent mismatches than usual alignments with
a true somatic variant. “Insufficient normal coverage” was given when a germline variant signal
existed in both tumor and normal, but the coverage of normal was low, so the germline variant
signal in normal was obviously weaker than in tumor.

]
NovaSeq 6000 (NS) HiSeq 4000 (NC) HiSeq 4000 (IL)
1.004 1 1
0.994
< 0.98
kel
(72}
2 0971
4
8 0.96-
0.95-
0.94 .
1.004
P s
0.99-
< 098
kel
[}
3 0971 :
o4 3
& 0.96 I 1 : 1 :
i [ I
0.95+ A . iR _ i
- i [
0.941, . .l . L . 2 . S . 1 . .
0.6 0.7 0.8 0.9 1.0 06 0.7 0.8 0.9 1.0 06 0.7 0.8 0.9 1.0
Recall Recall Recall
= Strelka2 = Lancet Mutect2 Neusomatic == Qctopus === SomaticSniper Varnet = == ClairS


https://doi.org/10.1101/2023.08.17.553778
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.17.553778; this version posted August 21, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

1.0
0.9
o 0.8
e}
o
P
o o07
0.6
0.5 NovaSeq 6000 HiSeq 4000 HiSeq 4000 HiSeq 4000 HiSeq 4000 HiSeq 4000
(NS) (NC) (IL) (EA) (FD) (NV)
920 mm Strelka2 - Mutect2 B |ancet mm Neusomatic B Octopus s SomaticSniper B Varnet mm ClairS
921
922 ¢
NovaSeq 6000 (NS) HiSeq 4000 (NC) HiSeq 4000 (IL)
1.00 , 1.00
ety ":""7‘-\' VA
AT RGTSREN N S
0.98 "ﬁlj/ I/‘)\' NP 7 0.98-
i H .
S 0.96] 0.96
@
o094 0.94-
0.92+ 0.92+
0.90 0.90,
0.0
VAF
1.00 1.001
0.98 0.98
£ 096 0.96 3 ‘
8 s .l
d J !
o 0944 0941 if ! \ g
é | VB
0.921 0.921 ¥ ! \&
H i \i !
"',’ i HZ: !
0.901, , . . . , 090, b i . g
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
VAF VAF
923 = = Strelka2 ====: Lancet ==+ Mutect2 === Neusomatic === QOctopus ===« SomaticSniper == Varnet = ClairS
924
925 d


https://doi.org/10.1101/2023.08.17.553778
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.17.553778; this version posted August 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Mutect2

926 EA FD
927

928 Figure 6. Ilumina HCC1395/BL dataset benchmarking results.

929 (a) The precision-recall curve of HCC1395/BL short-read datasets from six SEQC2 sources (NS:
930 NovaSeq at lllumina, NC: HiSeq at National Cancer Institute, IL: HiSeq at llumina, EA: HiSeq at
931  European Infrastructure for Translational Medicine, FD: HiSeq at Fudan University, NV: HiSeq at
932  Novartis) using eight tools (Strelka2, Lancet, Mutect2, Neusomatic, Octopus, SomaticSniper,
933  Varnet, ClairS). Variants were ranked by Strelka2 — SomaticEVS, Mutect2 — TLOD, VarNet — Score,
934  SomaticSniper — SSC, and other callers — QUAL. The dot on each line shows where the best F1-
935  score was. (b) The overall F1-score of the experiments shown in subfigure a. (c) The F1-score at
936  different VAFs of the experiments shown in subfigure a. (d) Venn diagrams showing the overlap
937  of false positive variant calls between Strelka2, Mutect2, and ClairS.
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Extended Data Figure 1. Performance differences between phasable and not-phasable

SNVs

(a) The figure shows that a somatic variant usually originates in a single somatic cell and then
spreads to more cells through cell division, resulting in a clonal carrying the same variant. It also
shows how the mismatches in the tumor sample and normal sample are different from each
other. A somatic variant is more likely to be assigned to a haplotype through phasing, while a
variant caused by random sequencing errors is less likely to be successfully phased. (b) A
performance comparison of somatic variants where “P”: can be phased, and “NP”: cannot. The
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955 figure shows a higher performance in somatic variants that can be phased, especially at lower
956  VAFs. We used 50/25-fold HCC1395/BL and prioritize-recall mode.
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Extended Data Figure 2. Visualization of neural network inputs.

(a) Pileup-based calling input visualization. The candidate site is centered and marked by two
dashed lines. (b) Full-alignment-based calling input visualization. In b, the top and bottom are
padded with zero when the total coverage of tumor and normal samples does not reach the
input limit. The normal read alignments and tumor read alignments in all channels are
separated by two rows filled with zeros. The two demonstrations involved truth variants
randomly picked from the HCC1395/BL dataset.
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975 Extended Data Figure 3. Two examples of haplotype inconsistency that signifies a false
976  somatic call.

977  (a) Example of a false somatic call with a haplotype inconsistent with the haplotype derived
978 from a heterozygous germline variant nearby. (b) Example of a false somatic call with a

979  haplotype inconsistent with the haplotypes derived from a homozygous germline variant

980 nearby. The bases A, C, G, and T are depicted in green, blue, yellow, and red, respectively. The
981 background in gray, purple, and pink represents an unknown haplotype, haplotype 1, and
982  haplotype 2, respectively. GT is an abbreviation of genotype.
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