
ClairS: a deep-learning method for long-1 

read somatic small variant calling 2 

 3 
Zhenxian Zheng#, Junhao Su#, Lei Chen#, Yan-Lam Lee, Tak-Wah Lam, Ruibang Luo* 4 
 5 
Department of Computer Science, The University of Hong Kong, Hong Kong, China 6 
 7 
# These authors contributed equally to this work 8 
* To whom correspondence should be addressed. Email: rbluo@cs.hku.hk 9 
 10 
 11 

Abstract 12 

IdenYfying somaYc variants in tumor samples is a crucial task, which is oZen performed using 13 
staYsYcal methods and heurisYc filters applied to short-read data. However, with the increasing 14 
demand for long-read somaYc variant calling, exisYng methods have fallen short. To address this 15 
gap, we present ClairS, the first deep-learning-based, long-read somaYc small variant caller. 16 
ClairS was trained on massive syntheYc somaYc variants with diverse coverages and variant 17 
allele frequencies (VAF), enabling it to accurately detect a wide range of somaYc variants from 18 
paired tumor and normal samples. We evaluated ClairS using the latest Nanopore Q20+ 19 
HCC1395-HCC1395BL dataset. With 50-fold/25-fold tumor/normal, ClairS achieved a 20 
93.01%/86.86% precision/recall rate for Single NucleoYde VariaYon (SNVs), and 66.54%/66.89% 21 
for somaYc inserYons and deleYons (Indels). Applying ClairS to short-read datasets from 22 
mulYple sources showed comparable or beger performance than Strelka2 and Mutect2. Our 23 
findings suggest that improved read phasing enabled by long-read sequencing is key to accurate 24 
long-read SNV calling, especially for variants with low VAF. Through experiments across various 25 
coverage, purity, and contaminaYon sejngs, we demonstrated that ClairS is a reliable somaYc 26 
variant caller. ClairS is open-source at hgps://github.com/HKU-BAL/ClairS. 27 
 28 
 29 

Introduc.on 30 

Analysis of cancer genomes that idenYfy and characterize somaYc variants has enabled a beger 31 
understanding of tumor progression1 and led to precision oncology2. IdenYfying somaYc 32 
variants, however, remains challenging due to intra- and inter-tumor heterogeneity, which oZen 33 
leads to low VAF, and confounding factors, including sequencing arYfacts, inadequate 34 
sequencing coverage, and normal contaminaYon3. Endeavors were made to address these 35 
challenges and maximize sensiYvity and accuracy in idenYfying somaYc variants using next-36 
generaYon sequencing (NGS) short-reads4-13. However, constrained by read length, short reads 37 
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have limited variant discovery capability in hard-to-map genomic regions, such as 38 
homopolymers and segmental duplicaYons. This problem is expected to be alleviated through 39 
long-read sequencing14. Oxford Nanopore Technologies (ONT) is among the leading long-read 40 
sequencing technologies and offers miniaturized sequencing devices and fast sample-to-data 41 
turnaround, which is a credible step towards democraYzing sequencing by drasYcally reducing 42 
the cost of carrying out sequencing experiments. ONT raw reads were reported to have an error 43 
rate of 3-15% in the past15. This was reduced to 1% or lower using ONT’s latest Q20+ 44 
chemistry16. The gap is sYll significant, however, compared with NGS short-reads, which have an 45 
average error rate at 0.1%17, making the somaYc variant callers once designed for short reads 46 
pracYcally unworkable for ONT long-reads. 47 
 48 
Germline variants are oZen considered to be easier to correctly idenYfy than somaYc variant 49 
calling. The first agempt to call germline small variants using noisy ONT long-reads was made by 50 
Clairvoyante in 201818. The work was enabled using 1) a deep neural network, which was first 51 
used for variant calling by DeepVariant19; and 2) the high-quality known truth variants in GIAB 52 
reference samples for neural network model training20. Subsequent works by Clairvoyante 53 
including Clair21 and Clair322, introduced opYmized network input, network output, network 54 
architecture, and workflow designs to make the best out of noisy ONT data for germline small 55 
variant calling. Both Clair3 and a pipeline named PEPPER-Margin-DeepVariant23 (DeepVariant), 56 
which is also designed for ONT long-read germline small-variant calling, have demonstrated 57 
beger single nucleoYde polymorphism (SNP)-calling performance than using the same coverage 58 
of Illumina short reads. However, while soluYons are ready for ONT long-read germline small-59 
variant calling, there has been no caller available for ONT long-read somaYc small-variant 60 
calling. We note that ONT long-read somaYc SV (structural variant) callers, including Sniffles224 61 
and Nanomonsv25, which were developed in the past year called for the development of a small 62 
variant caller to complete the ONT long-read somaYc variant-calling workflow. 63 
 64 
Unfortunately, some designs criYcal to ONT long-read germline variant calling are not applicable 65 
to somaYc variant calling. First, in their network output, both Clair3 and DeepVariant apply a 66 
strong diploid genome assumpYon. Clair3 uses a 21-genotype output, which is a two-67 
combinaYon of A, C, G, T, inserYon, and deleYon22. DeepVariant uses a three-category output 68 
that includes hom-ref (homozygous reference), het (heterozygous), and hom-alt (homozygous 69 
alternaYve)23. Both Clair3 and DeepVariant are classificaYon models that use observed allele 70 
frequency of alternaYve alleles as network input, and output the category that represents the 71 
expected allele frequency of a variant (e.g., allele frequency 0, 0.5, 1, and 0.5/0.5 for genotype 72 
0/0, 0/1, 1/1, and 1/2, respecYvely). However, somaYc variants have VAF ranging conYnuously 73 
from 0 to 1. Without a certain ploidy, somaYc variant candidates have no expected allele 74 
frequency for a model to test against. Thus, a new design is required. As an example, a new 75 
design could use a regression model to derive VAF directly, or a classificaYon model to simply 76 
determine whether a candidate is a somaYc variant or not and infer VAF subsequently. Second, 77 
the seven standard GIAB reference samples HG001–HG007 provide approximately 25 million 78 
truth germline variants20, which are criYcal for the model training of any state-of-the-art, deep-79 
learning-based germline variant callers. However, in terms of known truth somaYc variants, only 80 
the HCC1395–HCC1395BL (a human triple-negaYve breast cancer cell line and a normal cell line 81 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.17.553778doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553778
http://creativecommons.org/licenses/by-nd/4.0/


derived from the B lymphocytes of the same donor, hereaZer referred to as HCC1395/BL) 82 
tumor-normal pair was published by the SomaYc MutaYon Working Group of the SEQC2 83 
(Sequencing Quality Control Phase II) consorYum3. It contains only 39,560 SNVs and 1,922 84 
Indels, which is orders of magnitude fewer than the available truth germline variants, and far 85 
from enough for deep neural-network model training. In the absence of adequate real tumor-86 
normal samples, one could think of syntheYc data as a soluYon. Bamsurgeon spiked somaYc 87 
variants into sequencing reads to mimic a tumor26. This was a successful method for short 88 
reads, but it doesn’t work for long reads for two reasons: 1) Illumina short reads are read one 89 
base at a Yme, whereas ONT long reads are read as the signals of a sliding 5-mer or 6-mer 90 
window. That is, a spike-in variant also changes the signals of the adjacent bases. Bases can be 91 
base-called from signals but cannot be authenYcally turned back into signals, so the spike-in 92 
method cannot be applied to long reads; and 2) Bamsurgeon does not apply the point that a 93 
somaYc variant is usually found in only one haplotype (either maternal or paternal) but is 94 
missing in another. The use of long reads over short reads for somaYc variant calling makes 95 
sense only if the long-read advantage of haplotyping (also called phasing) is uYlized. All things 96 
considered, a new method for synthesizing long-read data to contain abundant plausible 97 
somaYc variants is needed. 98 
 99 
In this study, we present Clair-SomaYc (ClairS), the first somaYc small variant caller for ONT long 100 
reads, which is named aZer its germline variant caller predecessors. ClairS draws on the 101 
successful experience of the Clair series, and uses a new network output and a new workflow 102 
design to address the conYnuous VAF space of somaYc variants. By considering two different 103 
samples, A and B, as tumor and normal, respecYvely, and deeming a germline variant specific to 104 
A as a somaYc variant against B, we devised a data syntheYc strategy that uses only the real 105 
long reads of GIAB reference samples with known germline variants, but can simulate somaYc 106 
variants of any tumor purity, sequencing coverage (lower than the data source), and level of 107 
normal contaminaYon. The strategy can theoreYcally produce an infinite number of somaYc 108 
variants for model training. We show results to highlight how phasing improves somaYc variant-109 
calling performance on long reads. To leverage more remote alignment informaYon that is 110 
computaYonally impracYcal to include in the network input, we devised a post-processing step 111 
that searches for ancestral haplotype support for any somaYc variant candidates. This step 112 
removed a considerable amount of false posiYve calls in our experiments. For benchmarking, 113 
we sequenced in total 75-fold HCC1395 and 45-fold HCC1395BL ONT Q20+ long-reads (data 114 
deposited to NCBI SRA), and used the truth somaYc variants provided by the SEQC2 115 
consorYum3. With 50-fold/25-fold tumor/normal, ClairS achieved 86.86%/93.01% 116 
recall/precision rate SNVs, and 66.89%/66.54% for somaYc Indels when targeYng VAF ≥0.05. For 117 
variants with VAF ≥0.2, the numbers go up to 94.65%/96.63% for SNVs, and 73.22%/77.35% for 118 
somaYc Indels. We also show the performance of ClairS at different tumor/normal coverages, 119 
tumor purity and normal contaminaYon. ClairS is designed for ONT long reads, but the whole 120 
method is also applicable to Illumina short reads. This versaYlity allowed us to benchmark ClairS 121 
against state-of-the-art short-read somaYc variant callers considering that there is no other 122 
long-read somaYc variant caller to benchmark against. The results show that ClairS performed 123 
comparably or slightly beger than the current heurisYc-based and deep-learning-based callers 124 
on short reads. 125 
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 126 
 127 

Results 128 

The ClairS method 129 

The ClairS method is elaborated in the Method secYon. Texts in bold in this and the following 130 
two paragraphs can be found as subsecYon Ytles in the Method secYon. In the use of deep-131 
learning for long-read somaYc variant calling, ClairS has made breakthroughs in Training data 132 
synthesis and the ClairS workflow and design. 133 
 134 
Regarding training data synthesis, Figure 1a shows the workflow for Genera6ng synthe6c tumor 135 
and synthe6c normal. As we required sampling without replacement, and in view of the 136 
common pracYce that a tumor sample having higher coverage than its matching normal, we 137 
gave Coverage advice for the source data. Details of how homozygous and heterozygous 138 
germline variants in different samples are converted into somaYc variants are given in Deriving 139 
mul6ple categories of variants from a synthe6c tumor/normal pair. Setups to avoid pracYcal 140 
concerns and limitaYons of the data synthesis method are given in Other details about the 141 
variants selected for model training. Our data synthesis method is based on the observaYon 142 
that an authenYc somaYc variant is usually found in the reads of a single haplotype (depicted in 143 
Extended Data Figure 1a). Also, we found that Phasing informa6on enhances soma6c variant 144 
calling performance in ClairS. 145 
 146 
Regarding the ClairS workflow and design, Figure 2a shows an Overview of the ClairS workflow. 147 
Figure 2b shows Step 1: Germline variant calling, phasing and read haplotagging, and Figure 2c 148 
shows Step 2. Pileup-based and full-alignment based variant calling. For each sample, while 149 
only a fracYon of genome posiYons has alternaYve allele support and among them, only a few 150 
have the potenYal to be called somaYc variants, we used heurisYcs for Selec6ng variant 151 
candidates. Details of The design of pileup input and full-alignment input and The design of 152 
neural networks are shown in Figure 3. The ways in which ClairS differs from its predecessor, 153 
Clair3, are discussed in Method. Figure 2d shows Step 3. Search for ancestral haplotype 154 
support, which is a post-processing step that leverages more remote alignment informaYon to 155 
search for ancestral haplotype support to the somaYc variants called in step 2. To adapt to 156 
different usage scenarios, mulYple Output opYons are provided. 157 
 158 

ClairS performance on ONT data 159 

A summary of the ONT data used for model training and benchmarking is shown in 160 
Supplementary Table 1. We trained the ClairS ONT model using syntheYc data generated from 161 
two GIAB samples: HG001 and HG00220. We used both HG001/HG002 and HG002/HG001 as 162 
tumor/normal samples for data synthesis. The HG002 sample has 76.29-fold coverage and was 163 
made available by Nanopore through EPI2ME Labs. The HG001 sample has 48.44-fold coverage 164 
and was sequenced at HKU, with details given in the Method – ONT library preparaYon and 165 
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sequencing secYon. Following the convenYon of the state-of-the-art deep-learning-based 166 
variant callers, we excluded reads and variants from Chromosome 20 from model training.  167 
 168 
For benchmarking, we used the HCC1395/BL tumor-normal pair, with known truth variants 169 
provided by the SEQC2 consorYum3. The HCC1395 sample has 75.97-fold coverage. The 170 
HCC1395BL sample has 45.55-fold coverage. Both samples were sequenced at two sequencing 171 
centers (HKU and Novogene) for quality control purposes. The yield of the two centers is shown 172 
in Supplementary Table 2. Only SEQC2 truth variants labeled “HighConf” (high confidence) and 173 
“MedConf” (medium confidence) were used for benchmarking. While there are ~40k SNVs but 174 
only ~2k Indels in the truth set, the big difference in the number of truth variants results in 175 
different analyYcal power between the two variant types. So we first benchmarked mulYple 176 
coverages, tumor purity and normal contaminaYon with only SNVs, and then benchmarked and 177 
discuss somaYc Indel-calling performance in a separate secYon. We used Illumina’s Haplotype 178 
Comparison Tools27 to generate the performance figures, including F1-Score, Precision, and 179 
Recall, and cross-validated them with the “compare_vcf” submodule in ClairS. More 180 
clarificaYons and parameters are shown in the Method – Benchmarking secYon.  181 
 182 
For both model training and benchmarking, we used GRCh38, which is the newest reference 183 
genome version on which both GIAB and SEQC2 truth variants are based. All ONT sequencing 184 
data were base-called using Guppy version 6.1.5 and aligned to GRCh38 using minimap2 version 185 
2.17-r941. The command line used is given in the Supplementary Notes – Command lines used 186 
secYon. All data menYoned above, including ONT sequencing data, GIAB truth variants, SEQC2 187 
truth variants, and reference genomes, are publicly accessible via links or SRA accession IDs 188 
listed in the Supplementary Notes – Data availability secYon. 189 
 190 
Performance with different tumor combina3ons and normal coverage. We assessed the ClairS 191 
performance with different combinaYons of tumors and normal coverage. We tested three 192 
tumor coverage rates: 25-, 50-, and 75-fold. We applied 25-fold as the first step as it represents 193 
a conservaYve throughput esYmaYon of an R10.4.1 PromethION flowcell. We also tested three 194 
normal coverages: 20-, 25-, and 30-fold. The 25-fold step resembles the throughput variance of 195 
a single flowcell. Our experiments aimed to imitate a pracYcal sejng for clinical cancer 196 
diagnosis, with the tumor sample coverage increased one flowcell at a Yme to seek higher 197 
discovery power, but the normal sample coverage is fixed at a single flowcell for cost-198 
effecYveness.  199 
 200 
The results are shown as Precision-Recall curves in Figure 4a. The evaluaYon metrics at two 201 
variant quality cutoffs (8 and 15) are shown in Supplementary Table 3. Quality cutoff 15 202 
(hereaZer referred to as “prioriYze-f1 mode”) filters more variants and aims for balanced 203 
precision and recall. Quality cutoff 8 (“prioriYze-recall mode”) retains more variants and aims 204 
for higher recall. In the prioriYze-f1 mode, with normal coverage fixed at 25-fold, ClairS achieved 205 
95.03%/78.71%/86.11%, 93.01%/86.86%/89.83%, and 92.94%/86.92%/89.83% 206 
precision/recall/f1-score at 25-, 50-, and 75-fold tumor coverage, respecYvely. From 25- to 50-207 
fold, the recall increased from 78.11% to 86.86% (+8.75%), with a 2.02% precision drop (from 208 
95.03% to 93.01%). From 50- to 75-fold, however, no improvement was observed. In the 209 
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prioriYze-recall mode, also with normal coverage fixed at 25-fold, ClairS achieved 210 
82.66%/91.55%/86.88%, 70.21%/96.10%/81.14%, and 63.80%/96.60%/76.85% 211 
precision/recall/f1-score at 25-, 50-, and 75-fold tumor coverage, respecYvely. Compared to 212 
prioriYze-f1, the prioriYze-recall mode reached 91.55% recall at 25-fold (against 78.71%, 213 
+12.84%), and 96.10% at 50-fold (against 86.86%, +9.24%). Although Clair3 is not designed for 214 
somaYc variants, to give a reference point, we conducted experiments with it using the same 215 
datasets by considering the germline variants found in tumor but not in normal as somaYc 216 
variants. At 25-fold normal, Clair3 had a 19.27%/72.10%/30.42%, 29.82%/68.32%/41.52%, and 217 
36.21%/64.56%/46.40% precision/recall/f1-score at 25-, 50-, and 75-fold tumor coverage. The 218 
results highlight the inappropriateness of using a germline variant caller for somaYc variant 219 
calling. 220 
 221 
In both prioriYze-f1 and prioriYze-recall modes, raising the normal coverage consistently 222 
increased somaYc variant-calling performance. With tumor coverage fixed at 50-fold and using 223 
the prioriYze-f1 mode, ClairS achieved a 91.86%/83.77%/87.63%, 93.01%/86.86%/89.83%, and 224 
92.06%/88.51%/90.25% precision/recall/f1-score at 20-, 25-, and 30-fold normal coverage. The 225 
numbers were 68.36%/95.69%/79.75%, 70.21%/96.10%/81.14%, and 70.56%/96.43%/81.49% 226 
in the prioriYze-recall mode. 227 
 228 
Figure 4b shows the performance of ClairS in prioriYze-recall mode, broken down to four VAF 229 
ranges: 0.5-1, 0.2-0.5, 0.1-0.2, and 0.05-0.1. At different coverages, the performance of ClairS at 230 
range 0.2-0.5 (low-mid) was found to be as good as 0.5-1 (mid-high). For example, at 50/25-fold 231 
tumor/normal coverage, ClairS achieved a 94.7%/99.3%/96.9% precision/recall/f1-score at 0.5-232 
1, and 95.2%/98.1%/96.7% at 0.2-0.5. At range 0.1-0.2, precision was reduced to ~60%, while 233 
recalls plateaued at ~90%. At range 0.05-0.1, precision was further reduced to below 10% 234 
(11.8%, 5.7%, and 4.6% at 25-, 50-, and 75-fold tumor coverage), while recalls were raised with 235 
increasing tumor coverage (16.5%, 32.8%, and 46.1%). The reason for the drop in precision was 236 
that the higher coverage led to a drasYc increase in the number of variant candidates at very 237 
low VAF. At range 0.05-0.1, the number of candidates was about 131k, 310k, and 419k at 25-, 238 
50-, and 75-fold tumor coverage. 239 
 240 
Performance at different tumor puri3es and normal contamina3on. We assessed the 241 
performance of ClairS at different combinaYons of tumor purity (1.0, 0.8, 0.6, 0.4, and 0.2) and 242 
normal purity (1.0, 0.95, and 0.90). All the experiments in this secYon used 50-fold tumor and 243 
25-fold normal coverage. The results are shown in Figure 4c and Supplementary Table 4. The 244 
two modes (prioriYze-f1 and prioriYze-recall) behaved differently with varying purity. With 245 
normal purity fixed at 1.0, in prioriYze-f1 mode, precision remained above 90% (93.01%, 246 
96.25%, 97.79%, 98.68%, and 98.99% at tumor purity 1.0, 0.8, 0.6, 0.4, and 0.2), while recall 247 
dropped (86.86%, 81.63%, 71.08%, 52.94%, and 22.43%) with decreasing tumor purity. In the 248 
prioriYze-recall model, precision varied (70.21%, 80.11%, 88.14%, 93.81%, and 97.54%), while 249 
recall was boosted, especially at lower tumor purity (96.10%, 94.45%, 90.51%, 80.81%, and 250 
53.06%). According to these results, generally, we suggest using prioriYze-f1 mode at higher 251 
tumor purity and prioriYze-recall mode at lower tumor purity.  252 
 253 
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Our results also showed that lower normal purity harmed somaYc variant-calling performance, 254 
especially on recall. With tumor purity fixed at 1.0, in prioriYze-f1 mode, the recalls were 255 
86.86%, 70.35%, and 51.74% at normal purity 1.0, 0.95, and 0.90. In prioriYze-recall mode, the 256 
recalls were 96.10%, 85.36%, and 69.42%. Accordingly, we suggest using a high-purity normal 257 
sample with ClairS for somaYc variant discovery. Lastly, we showed the results using 0.8/0.95 258 
tumor/normal purity. In prioriYze-recall mode, ClairS achieved a 79.68%/81.13%/80.40% 259 
precision/recall/f1-score, demonstraYng ClairS’ reliability in challenging sample condiYons. 260 
 261 
Analysis of False Posi3ve and False Nega3ve calls. Using 50-fold tumor and 25-fold normal 262 
coverage, we manually analyzed 300 false posiYve and 300 false negaYve calls randomly picked 263 
from all variant calls. Each FP and FN was assigned with the most obvious limitaYon as the 264 
reason why the call was false. The reasons for the 600 false calls are listed in Supplementary 265 
Table 5. A distribuYon of the reasons is given in Figure 4 as a pie chart. 266 
 267 
Among the false posiYve calls, 39% had no matching truth but were with tumor 0.05≤VAF<0.1, 268 
22% were with tumor 0.1≤VAF<0.15, and 9% were with tumor VAF≥0.15. As the Method secYon 269 
elaborates, these calls are with tumor and normal coverage ≥4, and normal VAF below 0.05. 270 
One possible explanaYon is that ClairS was unable to pick up more hints and tell these calls from 271 
the true ones. Some of these cases might be correctly called again with higher tumor coverage, 272 
which reduces the staYsYcal bias in VAF. It is also possible that since the SEQC2 truth set is sYll 273 
under acYve development, its incompleteness caused a few variants that are actually true to be 274 
misclassified as false posiYves. Another major category of false posiYve calls is likely to be 275 
caused by alignment arYfacts because of a repeYYve or imperfect genome reference sequence. 276 
It includes 6% “One or more deleYons in flanking 50bp”, 5% “In low complexity region”, 4% 277 
“Excessive mismatches in alignment”, 3% “One or more inserYons in flanking 50bp”, and in 278 
total, another 10% in repeYYve regions of different types. Also, we found 1% false posiYve calls, 279 
possibly because of insufficient normal coverage. 280 
 281 
Among the false negaYve calls, 40% truth variants that were not called were with tumor 282 
VAF<0.1, 10% were with “Normal VAF ≥0.05, but tumor VAF <6 Ymes larger than normal VAF”, 283 
and 3% were with <3 reads supporYng the variant allele in a tumor. These missed variants might 284 
be called again if higher tumor coverage is given. False negaYve calls are more likely to be 285 
caused by alignment arYfacts, as we observed 10% false negaYve calls in the homopolymer 286 
region, 10% in the low complexity region, 7% in the tandem repeat region, and in total, another 287 
9% that were also likely to have been caused by alignment. We also observed 4% false negaYve 288 
calls caused by extreme strand bias (i.e., reads observed in only one strand); and 1% with base 289 
quality of all supporYng bases <20. 290 
 291 
Soma3c Indel-calling performance. The SEQC2 truth set provides ~40k SNVs but only ~2k Indels. 292 
Owing to the scarcity of truth somaYc Indels that could educe staYsYcal biases, we 293 
benchmarked somaYc Indel-calling separately. The results of different combinaYons of tumor 294 
coverage (25-, 50-, and 75-fold) and normal coverage (20-, 25-, and 30-fold) are shown in 295 
Supplementary Table 6. With normal coverage fixed at 25-fold, in prioriYze-f1 mode (variant 296 
quality cutoff at 12) ClairS achieved 76.91%/49.36%/60.13%, 66.54%/66.89%/66.72%, and 297 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.17.553778doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553778
http://creativecommons.org/licenses/by-nd/4.0/


57.79%/71.48%/63.91% of precision/recall/f1-score at 25-, 50-, and 75-fold tumor coverage. In 298 
prioriYze-recall mode (cutoff at 8), ClairS achieved 53.05%/65.46%/58.61%, 299 
38.63%/76.15%/51.25%, and 37.55%/76.60%/50.40%. As in our conclusion for SNV calling, 300 
generally, we suggest using prioriYze-recall mode for calling somaYc Indels at lower tumor 301 
coverage.  302 
 303 
Performance aAer adding phasing informa3on to the input in step 2. The reconstrucYon of 304 
haplotypes, also known as haplotype-resolved assembly or phasing, greatly improved the 305 
performance of long-read germline variant calling in previous pracYce22, 23. In the Method 306 
secYon, we elaborate how phasing informaYon can be used to enhance somaYc variant-calling 307 
performance. Using 50/25-fold HCC1395/BL and prioriYze-recall mode for benchmarking, we 308 
show in Extended Figure 1b that phasable somaYc variants performed beger than unphasable 309 
ones, especially at lower VAF. At VAF 0.1-0.15, phasable somaYc variants had a 310 
43.8%/85.6%/57.9% precision/recall/f1-score, but unphasable somaYc variants had only 311 
16.4%/81.2%/27.3%. At VAF 0.05-0.1, phasable somaYc variants had 5.8%/46.6%/10.3%, but 312 
unphasable somaYc variants had only 2.3%/27.2%/4.3%. We tried disabling phasing in ClairS 313 
and fed no phasing informaYon to the calling networks. As shown in Supplementary Table 7, the 314 
overall F1-score dropped from 81.14% to 78.66% (-2.48%). 315 
 316 
Performance of the two respec3ve networks in step 2. In contrast to Clair3, in which the pileup 317 
network handles all the variant candidates, and the full-alignment network processes only the 318 
undecided candidates using the pileup network, ClairS uses both networks equally to make 319 
collecYve decisions. The raYonale and details are elaborated in the Method secYon. We tested 320 
the performance using both the pileup network only and the full-alignment network only, with 321 
50/25-fold of HCC1395/BL and prioriYze-recall mode. The results are shown in Supplementary 322 
Table 7. When we used only the pileup network, the F1-score dropped from 81.14% to 73.27% 323 
(-7.87%). When we used only the full-alignment network, the F1-score dropped from 81.14% to 324 
79.14% (-2.00%). 325 
 326 
Performance of Step3: Searching for ancestral haplotype support. As elaborated in the Method 327 
secYon, step 3 uYlizes remote alignment signals that could not be included in the network 328 
inputs due to computaYonal limitaYons to improve the precision of the called somaYc variants. 329 
As shown in Supplementary Table 7, without this step, the precision dropped from 70.21% to 330 
67.14% (-3.07%, using 50/25-fold HCC1395/BL and prioriYze-recall mode). 331 
 332 

ClairS performance on Illumina data 333 

Short-read somaYc small-variant calling has been intensively studied. A non-exhausYve list of 334 
state-of-the-art methods include Strelka210, Mutect28, Lancet6, NeusomaYc5, Octopus12, 335 
SomaYcSniper9, and Varnet4. ClairS was designed primarily for long-read somaYc small-variant 336 
calling. However, its poses no limitaYons to small reads, and we expect a variant-calling method 337 
that works for long reads to perform as well as or even beger than exisYng short-read methods. 338 
Also, benchmarking against other short-read somaYc small-variant callers provides insights on 339 
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how ClairS performs against exisYng methods, since no other long-read callers are available for 340 
comparison. 341 
 342 
A summary of the Illumina data used for model training and benchmarking is shown in 343 
Supplementary Table 1. We used both HG003/HG004 and HG004/HG003 as tumor/normal 344 
samples for data synthesis. The HG003 and HG004 samples had 91.15- and 88.49-fold coverage, 345 
and were publicly shared by Google Health Center. For benchmarking, we also used the 346 
HCC1395/BL tumor-normal pair, but with data from six sequencing centers, made available by 347 
the SEQC2 consorYum – NS: NovaSeq at Illumina; NC: HiSeq at the NaYonal Cancer InsYtute, IL; 348 
HiSeq at Ilumina, EA; HiSeq at European Infrastructure for TranslaYonal Medicine, FD; HiSeq at 349 
Fudan University, NV; HiSeq at NovarYs – with coverage ranging from 37.93- to 87.54-fold. The 350 
six mulY-center replicates enabled us to verify ClairS’ performance consistency. If not 351 
specifically menYoned, other training and benchmarking details are the same as those of the 352 
ONT data experiments, and we benchmarked only SNVs for all callers. Like the ONT data 353 
experiments, the command lines and links to the data used for both model training and 354 
benchmarking are listed in the Supplementary Notes. 355 
 356 
The evaluaYon metrics of the eight callers on the six datasets are shown in Supplementary Table 357 
8. Figure 6a shows the precision-recall curves, and figure 6b shows a histogram of the F1-scores. 358 
ClairS consistently performed comparably or slightly beger than the two top-performing callers, 359 
Strelka2 and Mutect2. On the six datasets, ClairS achieved a 97.88%, 97.82%, 97.46%, 97.53%, 360 
97.03%, and 96.41% F1-score. Strelka2 achieved a 96.16%, 96.18%, 97.03%, 97.35%, 96.32%, 361 
and 95.47%. Mutect2 achieved 95.21%, 95.75%, 95.33%, 96.24%, 96.46%, and 94.35%. Broken 362 
down into different VAF ranges, the ClairS performance was also consistently comparable to or 363 
beger than that of other callers, as shown in Figure 6c. Figure 6d shows Venn diagrams of the 364 
overlaps of false posiYve calls between Strelka2, Mutect2, and ClairS. The diagrams show that 365 
although rare, there are 30 to 41 false posiYve calls in the six datasets that were called by all 366 
three callers. Owing to the possible incompleteness of the truth set, a false posiYve variant can 367 
be either a wrong call or a true variant missing from the truth set. These false posiYve variant 368 
calls called by all three callers are worth conducYng further verificaYon and might further 369 
contribute to the completeness of the truth set. 370 
 371 

Discussion 372 

In this study, we present ClairS, the first somaYc small variant caller for ONT long-reads. In our 373 
benchmarks, we showed that it is reliable at different sample coverages, tumor puriYes and 374 
normal contaminaYons. With the training data synthesis method we devised, ClairS can be 375 
trained for somaYc small-variant calling for any sequencing pla}orm. We demonstrated that 376 
ClairS performed as well as or even beger than the top-performing somaYc variant callers for 377 
Illumina short reads. ClairS draws on its germline variant caller predecessors’ experience, while 378 
using a redesigned workflow, network architecture, network output, and post-processing 379 
procedure for the more challenging somaYc variant-calling tasks. 380 
 381 
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The use of long reads for somaYc SV discovery has unraveled complex somaYc SVs that were 382 
previous hampered by short reads28. With the unprecedented power of long reads to cover 383 
repeYYve genome regions, we expect the use of long reads for somaYc small variant calling to 384 
reveal more somaYc variants that were previously inaccessible by short reads, and lead to a 385 
beger understanding of the mutaYonal processes and funcYonal consequences of the somaYc 386 
variants in different cancer types. To allow more researchers to achieve these goals, ClairS was 387 
included as the small variant caller in ONT’s somaYc variant-calling workflow29. 388 
 389 
Despite using ONT’s latest Q20+ data, the F1-score for somaYc indels was only ~60%. Although 390 
the performance looks beger when considering only the somaYc indels in the coding 391 
sequences, the promise of beger whole genome somaYc indel-calling performance lies in the 392 
conYnuous advancement of ONT’s sequencing chemistry and base-calling algorithm. 393 
 394 

Method 395 

Training data synthesis 396 

Genera3ng synthe3c tumors and synthe3c normal. A tumor comprises normal cells and tumor 397 
cells; the lager are regarded as foreign. Similarly, the normal cells of an individual are 398 
considered foreign to the normal cells of another individual, and vice versa. The germline 399 
variants unique to an individual can mimic a somaYc variant when mixed with another 400 
individual. With insufficient known truth somaYc variants and standard tumor-normal sample 401 
pairs available, this observaYon lays the foundaYon for generaYng ample syntheYc somaYc 402 
variants from known truth germline variants in the GIAB reference samples with real 403 
sequencing data for deep-learning model training. The detailed workflow is shown in Figure 1a. 404 
Using 80-fold GIAB HG002 of ONT WGS alignments as the source of the tumor (hereaZer 405 
referred to as A) and 50-fold of HG001 as the source of normal (B) as an example, we first split 406 
the alignments of both samples into smaller chunks, each with 4-fold coverage. The smaller 407 
chunks from both samples can be combined to simulate 1) different allele frequencies, such as 408 
combining 40-fold A, i.e., 10 4-fold chunks of A with 20-fold B, i.e., 5 4-fold chunks of B, to 409 
simulate a syntheYc tumor sample with an ideal 67% allele frequency, i.e., 40-fold of A against 410 
60-fold of A+B; 2) different coverage of both tumor and normal, e.g. increase or decrease the 411 
number of chunks as needed; and 3) different levels of contaminaYon in normal, e.g., instead of 412 
using 100% A as normal, adding one or more chunks of B in normal. 413 
 414 
Coverage advice for the source data. We applied two restricYons to tumor and normal 415 
synthesis. First, to avoid any biases caused by reusing individual reads, we used sampling 416 
without replacement in tumor and normal synthesis. That is, a chunk that was used could not 417 
be used again. Second, we required the syntheYc tumor to have equal or higher coverage than 418 
the syntheYc normal to align with common pracYce. Using the previous example, i.e., 80-fold A 419 
as the source of a tumor, and 50-fold B as the source of normal, if 20-fold B is reserved to mix 420 
with A for the tumor, then 30-fold B is leZ for normal, but we can achieve tumor purity only 421 
between 33% (10-fold A + 20-fold B) and 100% (80-fold A + no B). However, if 30-fold B is 422 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.17.553778doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553778
http://creativecommons.org/licenses/by-nd/4.0/


reserved to mix with A for the tumor, tumor purity between 0% (no A + 30-fold B) and 100% 423 
(80-fold A + no B) can be achieved, but only 20-fold B is leZ for normal. Thus, we suggest using 424 
the sample with higher coverage as the source of normal to achieve both higher normal 425 
coverage and full-spectrum tumor purity for model training. This is counterintuiYve because 426 
higher tumor coverage of common in cancer studies. 427 
 428 
Deriving mul3ple categories of variants from a synthe3c tumor/normal pair. Four categories of 429 
variants, namely “SomaYc”, “Germline”, “ArYfact”, and “Normal-only”, were derived from a 430 
syntheYc tumor/normal pair, as explained in detail in Figure 1a. We used GIAB truth variants in 431 
the syntheYc tumor and syntheYc normal, and we defined any truth variants (including both 432 
homozygous and heterozygous) as “callable-variant”. Basically, somaYc variants are callable 433 
variants in the syntheYc tumor but not in the syntheYc normal, which are also known as truth 434 
germline variants in the tumor source, but not in the normal source. Germline variants are 435 
callable variants in both the syntheYc tumor and syntheYc normal, which are also known as 436 
truth germline variants in both the tumor source and normal source. ArYfact variants are 437 
callable variants only in the syntheYc tumor. They are not known as truth in either the tumor 438 
source or the normal source. Normal-only variants are callable-variants found only in the 439 
syntheYc normal. Three of the four categories, SomaYc, Germline and ArYfact, are used for 440 
model training. Only the variants located in the overlapping GIAB-defined high-confidence 441 
regions of both the tumor and normal sources were used for training to ensure the quality of 442 
the training variants. Because of the sub-sampling process, some variants might have few 443 
supporYng reads in the syntheYc tumor, especially for low AF somaYc variants. These variants 444 
were excluded from model training to avoid confusing the neural network. More exclusion 445 
details are given in the following paragraph. Our sample synthesis method supports generaYng 446 
syntheYc tumors at any purity level, so we can use as many puriYes as possible to achieve fine 447 
coverage of VAF from 0 to 1, but for pracYcality, we used three tumor puriYes (25%, 50%, and 448 
100%), and applied subsampling to all variants from the three puriYes to achieve acceptable 449 
VAF distribuYon. This is feasible because 1) the innate variance of the AF of the germline 450 
variants from the tumor and normal sources enables a pool of somaYc variants fully covering 451 
VAF from 0 to 1, even with just three puriYes, and 2) applying subsampling to the pool enables 452 
us to enrich difficult somaYc variants and reduce the number of less common somaYc variants 453 
for model training. In terms of subsampling, the VAFs of chosen somaYc variants were randomly 454 
selected from a beta distribuYon with shape parameters α=2 and β=5. The same distribuYon 455 
was used by the SEQC2 consorYum for spike-in somaYc variants in Sahraeian et al30. Our 456 
experiment showed that subsampling itself resulted in a ~1.8% increase in the F1-score using 457 
50x/25x of HCC1395/BL. The resulYng VAF distribuYon of SNVs is shown in Figure 1b. We tried 458 
adding one more tumor purity at 12.5%, but apart from longer model training Yme, no 459 
performance gain was observed.  460 
 461 
Other details about the variants selected for model training. For the somaYc variants used for 462 
model training, a minimum coverage of four, and a minimum of three reads supporYng the 463 
somaYc variant allele are required. SomaYc variants with VAF > 0.03 in the syntheYc normal 464 
were excluded from training to avoid confusing the model with a very noisy normal. For the 465 
arYfacts, the non-reference AF was capped at 0.05 to avoid using a large number of obvious 466 
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arYfacts for training. For germline variants, minimum coverage of four reads and a minimum of 467 
three reads supporYng the germline variant allele, were required in both syntheYc tumor and 468 
normal. Germline variants with a difference in AF larger than 0.1 between the syntheYc tumor 469 
and normal were excluded from training. To prevent the model from inferring a somaYc variant 470 
from its co-existence with two or more adjacent germline variants, which is a confounding 471 
factor that can be easily learned by the model, germlines variants that were less than 33bp (the 472 
window size of our model design) from each other were excluded from training. Our experiment 473 
showed that this exclusion alone increased somaYc variant calling precision by ~1%. With three 474 
tumor puriYes and the exclusions explained above, 12,489,342 training samples were leZ. The 475 
breakdown is shown in Figure 1c.  476 
 477 
Phasing informa3on enhances soma3c variant-calling performance. An authenYc somaYc 478 
variant usually originates from either the maternal or paternal haplotypes, while a random error 479 
usually has a fair chance happening in both (Extended Data Figure 1a). Thus, somaYc variants 480 
that have a single ancestral haplotype (either maternal or paternal) should be considered more 481 
reliable than those with two ancestral haplotypes, except for somaYc variants with high VAF 482 
that might be a result of copy number alteraYon or clonal duplicaYon31. ClairS uses phasing 483 
informaYon for both model training and inference. Clair3 and LongPhase are used for phasing 484 
and read haplotagging. More details are given in the “ClairS input and output” secYon. ClairS 485 
uses phasing informaYon during full-alignment-based variant calling, in which a channel named 486 
“Tumor/Normal/Phasing Info” is used. In this channel, the alignments are grouped into 487 
haplotype-unknown, haplotype 1, and haplotype 2, each using the read order of the 488 
alignments. Although long-read sequencing enables outstanding phasing performance, some 489 
somaYc variants in difficult genomic regions or without a heterozygous germline in their vicinity 490 
sYll cannot be covered by any phased reads. Thus, during model training, for each variant that 491 
has a heterozygous origin from the tumor source, if one or more reads can be phased, both a 492 
version of input with reads aZer phasing and a version before phasing were used. 493 
 494 

ClairS workflow and design 495 

Overview. Figure 2 shows an overview of the ClairS somaYc variant-calling workflow. StarYng 496 
from the alignments in the BAM/CRAM format of a tumor/normal sample pair, ClairS follows 497 
three steps to derive the somaYc variants in a tumor and outputs them to a VCF file. In step 1, 498 
ClairS uses Clair3 and LongPhase for germline variant calling, phasing and read haplotagging. 499 
The processed alignments are then used for both pileup and full-alignment-based somaYc 500 
variant calling in step 2. Step 3 involves post-processing filters that eliminate somaYc variant 501 
calling if an ancestral haplotype (either maternal or paternal) from which the somaYc variant 502 
could originate cannot be found. 503 
 504 
Step 1: Germline variant calling, phasing and read haplotagging. Step 1 is depicted in Figure 2b. 505 
Clair322 is integrated into ClairS for calling high-quality heterozygous germline variants in both 506 
tumor and normal to maximize the performance of the subsequent phasing task. Unlike Clair3’s 507 
default, AF≥0.2 and coverage≥10 were applied to ensure the quality of the called variants and 508 
reduce computaYonal overhead. Only the heterozygous germline variants found in both tumor 509 
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and normal were chosen for phasing. For phasing and haplotagging the tumor alignments, both 510 
LongPhase32 and WhatsHap33are allowed in ClairS. We chose LongPhase over WhatsHap as the 511 
default because LongPhase runs ~15 Ymes faster while delivering similar or longer phase sets 512 
on human samples. Notably, ClairS does not phase and haplotag the normal alignments. Our 513 
experiment showed phasing the normal alignments doubled the processing Yme but did not 514 
result in any improvement in calling performance. 515 
 516 
Step 2. Pileup-based and full-alignment-based variant calling. Step 2 is depicted in Figure 2c. For 517 
a variant candidate (explained in “SelecYng variant candidates”), a pileup input and a full-518 
alignment input are generated (explained in “The design of pileup input and full-alignment 519 
input”). Then the inputs are sent to a Bi-GRU-based pileup-calling neural network and a ResNet-520 
based full-alignment-calling neural network (explained in “The design of neural networks”) for 521 
inference. Both networks have the same output – a single task with three categories, “SomaYc”, 522 
“Germline”, and “ArYfact”, which match exactly the three categories defined in the syntheYc 523 
training data. In contrast to Clair3, in which the faster pileup-based calling cleans up most 524 
variant candidates that are obvious variants, and the more computaYonal-demanding full-525 
alignment-based calling handles the tricky and less obvious candidates, ClairS considers the 526 
power of the two neural networks equal. We observed that full-alignment-based calling is 527 
performant at mid-range VAFs. However, pileup-based calling requires less evidence than full-528 
alignment calling to draw the same conclusion. When VAF goes under 0.1, pileup-based calling 529 
becomes increasingly more sensiYve and usually outperforms full-alignment-based calling. This 530 
observaYon makes pileup-based calling more important for somaYc variant calling than its role 531 
in Clair3 for germline variant calling, especially in mulYple clinical usage scenarios when 532 
sensiYvity is emphasized. In ClairS, a somaYc variant is called when both networks give somaYc 533 
the highest probability. The variant quality (QUAL) is Phred-like and is calculated as 534 

max	(−10𝑙𝑜𝑔!" ,
!#$
$
- + 2, 0), where 𝑝 = %!"#$%&'

(&)*+, &%!"#$%&'
-+)).$)&/0#*0%

'
. Also in contrast to Clair3, 535 

which uses the same network for both SNP and Indel calling, ClairS uses two different networks 536 
respecYvely trained for SNV and Indel calling. This means that ClairS runs on four networks in 537 
total: pileup for SNV, pileup for Indel, full-alignment for SNV, and full-alignment for Indel. The 538 
raYonale behind the new design is that unlike germline variants that are commonly diploid, 539 
somaYc variants have no ploidy assumpYon, meaning that the existence of SNVs and Indels in 540 
the same posiYon are independent events. Our tests found that using separated networks led to 541 
a 1.5% increase in SNV recall. The use of separated networks also allowed the use of different 542 
variant quality cutoffs for SNV and Indel, which is useful for somaYc variant calling, especially 543 
when the sample condiYon is not ideal. 544 
 545 
Selec3ng variant candidates. Sending every genome posiYon as a variant candidate to the 546 
neural networks guarantees maximum sensiYvity. However, it is not only computaYonally 547 
infeasible, but also unreasonable to work on nonstarter posiYons, such as those without any 548 
non-reference allele support. A good variant candidate selecYon strategy is essenYal to achieve 549 
a balance between sensiYvity and running Yme. In ClairS, the selecYon criteria are as follows. 550 
Let r∈K=(A, C, G, T) be the reference base of a genome posiYon, and m∈ K-r be the alternaYve 551 
bases. DX

m denotes the coverage of m at the posiYon in sample X∈{T, N}, where T and N 552 
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represent the tumor and normal sample. Cm defines the selecYon criteria of each alternaYve 553 
base in m, as: 554 
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 555 

where α sets the minimum VAF, and β sets the minimum tumor VAF to normal VAF raYo for a 556 
candidate to be selected. IntuiYvely, the first equaYon means disregarding variant candidates 557 
with < 3 reads in tumor supporYng the variant allele, or with VAF in tumor < α. The second 558 
equaYon means selecYng a variant candidate if its VAF is <α in normal, but ≥α in tumor. The 559 
third equaYon means selecYng a variant candidate, even if its VAF in normal is ≥α, the VAF in 560 
tumor is ≥β Ymes larger than the VAF in normal. In ClairS, α and β are configurable and default 561 
to 0.05 and 6, respecYvely. Like model training data preparaYon, coverage ≥4 is required in both 562 
tumor and normal for a candidate to be selected for variant calling. 563 
 564 
The design of pileup input and full-alignment input. ClairS pileup input comprises 1,122 integers 565 
– 33 posiYons wide with 34 features at each posiYon (an example is given in Extended Data 566 
Figure 2a). A detailed explanaYon of each feature is given in Supplementary Methods under 567 
“DescripYon of pileup input features”. ClairS has 18 pileup features in common with Clair3, and 568 
16 addiYonal features. The 16 new features are read counts NLMQ+, NLMQ-, NLBQ+, and NLBQ-, 569 
where N is either of the nucleoYdes A, C, G, and T, LMQ subscript means mapping quality lower 570 
than 20 (MQ<20), LBQ means base quality lower than 30 (BQ<30), and + and - mean the 571 
forward and reverse strand, respecYvely. The raYonale behind the new features is that in ClairS, 572 
the results of pileup-based calling and full-alignment-based calling are trusted equally, so the 573 
mapping quality and base quality informaYon that used to be exclusive to full-alignment calling 574 
need to be added to pileup-based calling. Our experiment showed that removing the 16 new 575 
features reduced precision by ~2% using 50x/25x of HCC1395/BL. ClairS full-alignment input 576 
comprises 30,030 integers – seven channels, each with 33 posiYons and 130 rows to support at 577 
most 76 tumor reads, 52 normal reads, and 2 empty rows as space between tumor and normal 578 
(an example is given in Extended Data Figure 2b). Like Clair3, random subsampling down to the 579 
maximum supported coverage is used at excessive coverages. A detailed explanaYon of each 580 
channel is given in Supplementary Methods under “DescripYon of full-alignment input 581 
channels”. In both inputs, the candidate variant is centered at the 16th posiYon. PosiYons 582 
uncovered by any base in full-alignment input are filled with zero. 583 
 584 
Design of neural networks. The pileup and full-alignment network architecture and important 585 
parameters are shown in Figure 3. The pileup network uses two bidirecYonal gate recurrent unit 586 
(Bi-GRU) layers, each with 128 and 192 units. Compared to the Clair3 pileup network, the use of 587 
Bi-GRU instead of bidirecYonal long short-term memory (Bi-LSTM) architecture reduced 588 
trainable parameters from 2,532,995 to 2,309,507 and matrix computaYons from 3.11 to 2.38 589 
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billion, but improved performance in our experiment. The full-alignment network is a residual 590 
neural network (ResNet) comprising three standard residual blocks. A convoluYonal layer is 591 
added immediately before each residual block to expand the number of channels. In both 592 
networks, a dropout rate at 0.3 is set for the flagened layer and dense layer to prevent 593 
overfijng. 594 
 595 
Step 3. Search for ancestral haplotype support. Step 3 is depicted in Figure 2d. The neural 596 
networks exhibited good power in disYnguishing real variants from false posiYve candidates. 597 
However, useful signals remote to a variant candidate are not covered by the current neural 598 
network designs in ClairS, which considers only the flanking 16bp of a candidate. Notably, even 599 
if the flanking window is extended to 50bp, it is sYll too short for an accurate inference of which 600 
haplotype a variant candidate belongs to using only the networks, but the networks would 601 
already be computaYonally infeasible for somaYc variant calling. In ClairS, post-processing step 602 
3 is designed to reduce false posiYve calling mistakes made by the networks by leveraging 603 
relaYvely remote germline variants to find the correct ancestral haplotype for a somaYc variant. 604 
Any somaYc variant calls that cannot be found with ancestral haplotype support are switched to 605 
an arYfact and are excluded from the output. The haplotagged reads produced in step 1 are 606 
used in this step. For a somaYc variant that covers any haplotagged reads, we required the 607 
somaYc variant to coexist with the heterozygous germline variants less than 100 bp away on its 608 
leZ and right in the reads in the haplotype group the somaYc variant supporYng reads were in. 609 
An example of a false posiYve somaYc variant filtered by this rule is given in Extended Data 610 
Figure 3a. A somaYc variant at chr4:38,012,942 was called by the two networks. A phased 611 
heterozygous germline variant was found 61 bp leZ of the somaYc call. Three reads in haplotype 612 
2 that supported the somaYc variant were found not to have the heterozygous germline variant. 613 
Thus, the somaYc variant was considered unsupported by an ancestral haplotype. For a somaYc 614 
variant that covers no haplotagged read, it is probably because there are no germline variants 615 
or only homozygous variants in the vicinity. In this case, we required the somaYc variant to be 616 
coexisYng with the homozygous germline variants less than 100 bp away on its leZ and right in 617 
all somaYc variant supporYng reads. An example of this is given in Extended Data Figure 3b. A 618 
somaYc variant at chr1:100,632,158 was called by the two networks. A homozygous germline 619 
variant was found 39 bp leZ of the somaYc call. MulYple reads that support the somaYc variant 620 
were found not to have the homozygous germline variant. Thus, the somaYc variant was not 621 
considered to be supported by an ancestral haplotype. SomaYc variants that do not have any 622 
germline variants less than 100 bp away on their leZ or right are not applicable in this step. 623 
 624 
Output. ClairS supports VCF format output. SomaYc variants are marked “PASS” or “LowQual” if 625 
the variant quality is low (i.e., QUAL<8, configurable by opYon), or they are filtered in step 3. For 626 
each variant, the allele frequency and supporYng coverage of the reference allele and all 627 
alternaYve alleles are shown. The opYons “--print_germline_calls” and “--print_ref_calls” 628 
enable outpujng germline variants and arYfacts, respecYvely. 629 
 630 
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ONT library preparation and sequencing 631 

Genomic DNA (gDNA) of a triple-negaYve breast cancer (TNBC) cell line (HCC1395) and a B 632 
lymphocyte-derived normal cell line (HCC1395BL) from the same donor were purchased from 633 
the American Type Culture CollecYon (ATCC). Genomic DNA (gDNA) of HG001 was purchased 634 
from the Coriell InsYtute. The high-molecular-weight gDNA was examined by Nanodrop, Qubit, 635 
and 0.35% agarose electrophoresis for its concentraYon, purity, and integrity. The gDNA was 636 
then fragmented with gTube to generate DNA fragments approximately 20 kb in length. These 637 
fragments were then being sequenced at two sequencing centers: HKU and Novogene. At HKU, 638 
the fragments of HCC1395, HCC1395BL, and HG001 were prepared and ligated with a 639 
sequencing adapter using ONT's ligaYon sequencing kit V14 SQK-LSK114. The ligated samples 640 
were sequenced on R10.4.1 PromethION flowcells using a PromethION 2 Solo device and 641 
MinKNOW soZware version 1.18.02, for 96 h. At Novogene, the fragments of HCC1395 and 642 
HCC1395BL were prepared and ligated with a sequencing adapter using ONT’s ligaYon 643 
sequencing kit V12 SQK-LSK112. The ligated samples were sequenced on R10.4 PromethION 644 
flowcells using PromethION 48, for 96 h. 645 
 646 

Benchmarking 647 

We used the truth set of somaYc variants in HCC1395/BL generated and maintained by the 648 
SEQC2 consorYum. The truth set was orthogonally validated with mulYple sequencing replicates 649 
from mulYple sequencing centers that comprise over 1,500-fold sequencing data in total. We 650 
used only the somaYc variants labeled “HighConf” (High Confidence) or “MedConf” (Medium 651 
Confidence) as truth. SomaYc variants labeled “LowConf” (Low Confidence, VAF ≤0.05, not a 652 
part of the truth set as defined by SEQC2) were not used for benchmarking. In total, there were 653 
39,560 truth SNVs and 1,922 truth Indels; 39,447 of the SNVs and 1,602 of the Indels were 654 
within the high-confidence regions defined in a BED file provided by SEQC2. A variant call was 655 
considered correct only if it matched both the genome posiYon and variant allele of the truth. 656 
For both the ONT and Illumina benchmarks, some truth variants were excluded for the following 657 
reasons. First, even with the high sequencing coverage, such as 75.97-fold HCC1395 we 658 
generated for the ONT benchmarks, some truth variants sYll had very low or no coverage, or 659 
had no read supporYng the variant allele. These truth variants would fail all the benchmarks, so 660 
they should be excluded. Second, some benchmarks tested mulYple sequencing coverages and 661 
required sequencing read subsampling from the full dataset. The subsampling process might 662 
remove reads supporYng a truth variant to an extent that few or no supporYng reads are leZ. 663 
This affects especially the somaYc variants that already have a low VAF. For example, a VAF 0.05 664 
somaYc variant with 20-fold coverage and one read supporYng the variant allele can be reduced 665 
to VAF 0 by removing just one read during subsampling. This reduces the quality of the 666 
benchmarking results, especially for low VAF truth variants when subsampled datasets are used. 667 
To alleviate the problem, any truth variants that have very low VAF (<0.05) observed in the full 668 
dataset before subsampling should be excluded. Summing up the two reasons above, for each 669 
of the full datasets we used in both the ONT and Illumina benchmarks, we excluded truth 670 
variants that matched any of the following criteria from benchmarking: 1) VAF ≤0.05, 2) reads 671 
supporYng the variant allele <3, 3) tumor coverage <4, and 4) normal coverage <4. For 672 
standardizaYon, we used som.py, provided in Illumina’s Haplotype Comparison Tools27 (version 673 
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v0.3.12) to generate evaluaYon metrics, including F1-Score, Precision, and Recall against the 674 
truth variants. The “compare_vcf” submodule in ClairS produces idenYcal results to som.py, but 675 
automates the exclusion of unqualifying truth variants. The truth set materials are publicly 676 
available to the community. All tools, their version, and command lines used are given in the 677 
“Command lines used” secYon in Supplementary Notes. 678 
 679 

Computational performance 680 

ClairS was wrigen in Python and C++. The Python parts leveraged PyPy for speed up. The neural 681 
network implementaYons used PyTorch. Training ClairS neural networks requires a high-end 682 
GPU, but using ClairS for somaYc variant calling requires only a CPU. For the 50x/25x 683 
HCC1395/BL pair, ClairS finished running in ~5 hours for ONT data and ~2 hours for Illumina data 684 
(30% slower than Strelka2, but faster than all other short-read somaYc variant callers), using 685 
two 12-core Intel Xeon Silver 4116 processors. The memory footprint is low and is controlled at 686 
lower than 1GB per CPU. For model training, we tested Nvidia GeForce RTX 2080 Ti, 3090, and 687 
4090, and found each new model provided a ~35% speed increase from the previous 688 
generaYon. 689 
 690 
 691 

Code availability 692 

ClairS is open source and available at hgps://github.com/HKU-BAL/ClairS under the BSD 3-693 
Clause license. The results in this paper were based on the ClairS iniYal release (version 0.0.1). 694 
MulYple installaYon opYons are available for ClairS, including Docker and Singularity. ClairS has 695 
also been included as the small variant caller in ONT’s somaYc variant calling workflow29 since 696 
version 0.1.0. 697 
 698 

Data availability 699 

The links to the reference genomes, truth somaYc variants, benchmarking materials, ONT, and 700 
Illumina data are given in the “Data availability” secYon in Supplementary Notes. All analysis 701 
output, including the VCFs and running logs, is available at 702 
hgp://www.bio8.cs.hku.hk/clairs/analysis_result. The HCC1395/BL sequencing data generated 703 
in this study was deposited in the NCBI short-read archive with accession ID PRJNA986292. 704 
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 806 
 807 

Figure 1. Overview of ClairS training data synthesis workflow.  808 

(a) The workflow demonstrates how to produce syntheYc somaYc variants using two biologically 809 
unrelated samples with known truth germline variants for ClairS model training. In this study, 810 
specifically, we used 80x ONT WGS data of GIAB HG002 as sample A, and 50x HG001 as sample 811 
B. First, germline variants GA and GB were defined as known truth germline variants in sample A 812 
and B given by GIAB. GA and GB include both homozygous and heterozygous germline variants of 813 
a sample. To generate syntheYc tumor variants T and syntheYc normal variants NA/NB for each 814 
sample, the alignments were split into smaller chunks with 4x coverage each. Then, the chunks 815 
from both samples were combined and the variants called from them were defined as T. With 816 
the flexibility of combining any number of chunks from both samples, T effecYvely covered 817 
variants called at different coverages and VAF. Similarly, the chunks from a sample were 818 
combined at mulYple coverages for calling syntheYc normal variants NA and NB. With a small 819 
number of chunks from another sample combined into a syntheYc normal, NA and NB effecYvely 820 
covered different contaminaYon levels. The variants GA, GB, T, NA and NB were then used to 821 
generate four categories of variants – “SomaYc”, “Germline, “ArYfact”, and “Normal-only” – 822 
with different rules. SomaYc, Germline, and ArYfact match the three categories in the inference 823 
task of the ClairS network architecture. The variants of the three categories were used for 824 
model training. When using sample B as tumor and A as normal, SomaYc is defined as “(T-NA) ⋂ 825 
(GB-GA)”, i.e., variants that were 1) found in syntheYc tumor T; 2) not found in syntheYc normal 826 
NA; 3) found as a germline variant in GB; or 4) not found in GA. Germline is defined as “T ⋂ NA ⋂ 827 
GA ⋂ GB”, i.e., variants that were found in all T, NA, GA, and GB. ArYfact is defined as “T-NA-GA-828 
GB”, which signifies the variants found only in T and not in the germlines or syntheYc normal. 829 
When using sample A as tumor and B as normal, the definiYons remain the same except for 830 
switching the subscripts.  831 
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(b) The VAF distribuYon of the syntheYc somaYc SNVs at three different simulated tumor 832 
puriYes (100%, 50%, and 25%), using either HG001/HG002 or HG002/HG001 as tumor/normal. 833 
Since both heterozygous and homozygous variants were used in synthesis, at 100% tumor 834 
purity, the variants were gathered at 0.5 and 1.0 VAF. The distribuYon showed good coverage of 835 
typical somaYc SNV VAF by the syntheYc SNVs.  836 
 837 
(c) The breakdown of the number of syntheYc variants for training. The numbers 1) using either 838 
HG002/HG001 or HG001/HG002 as tumor/normal, and 2) of the three categories SomaYc, 839 
Germline, and ArYfact, as defined in subfigure a, are shown. The number of SomaYc categories 840 
is further divided into those synthesized from either homozygous SNPs or heterozygous SNPs. 841 
These numbers explain why including heterozygous SNPs in the synthesis is essenYal to ensure a 842 
sufficient number of syntheYc somaYc variants for model training.  843 
 844 
 845 
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 846 
 847 

Figure 2. Overview of the ClairS somatic variant calling workflow.  848 

(a) The workflow illustrates the three steps of ClairS. In step 1, ClairS uses Clair3 and LongPhase 849 
for germline variant calling, phasing and read haplotagging. The processed alignments are then 850 
used for both pileup- and full-alignment-based somaYc variant calling in step 2. Step 3 involves 851 
post-processing filters that eliminate somaYc variant callings if an ancestral haplotype (maternal 852 
or paternal) from which the somaYc variant could originate cannot be found. The details of 853 
steps 1, 2, and 3 are shown in subfigures b, c, and d. (b) Step 1 details. Clair3 is applied to both 854 
tumor and normal samples for germline variant calling. High-quality heterozygous germline 855 
variants shared by both samples are selected and used by LongPhase to phase the germline 856 
variants found in the tumor sample. Using the phased germline variants, the tumor reads are 857 
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then haplotagged to belong to either haplotype 1, 2, or unknown. (c) Step 2 details. The 858 
processed alignments from step 1 are fed into both the pileup-based variant-calling neural 859 
network and the full-alignment based variant-calling neural network. On a single somaYc variant 860 
candidate, both networks give respecYve predicYons on the probability of three categories: 861 
“SomaYc”, “Germline”, and “ArYfact”. The predicYons are then merged according to a set of 862 
rules introduced in the Method secYon. (d) Step 3 details. The somaYc variants called in step 2 863 
are examined to determine if they are supported by an ancestral haplotype. Ancestral 864 
haplotypes, which can be either maternal or paternal, are derived using germline variants. A 865 
somaYc variant is considered supported by an ancestral haplotype if the haplotype containing 866 
the somaYc variant is believed to originate from one of the ancestral haplotypes. 867 
 868 
 869 

 870 
 871 

Figure 3. The ClairS neural network architecture.  872 

Both (a) the pileup network and (b) full-alignment network use alignments of both the tumor 873 
and normal samples as input. Tensors are created from both samples using methods detailed in 874 
the Method secYon, and are then concatenated. The tensors are then processed by their 875 
respecYve neural network for inference. Both networks output the probability of three 876 
categories: “Germline”, “SomaYc”, and “ArYfact”. The sequence of layers and layer 877 
configuraYons are shown. The legers c, s, and k, represent channel, stride, and kernel, 878 
respecYvely. 879 
 880 
a 881 
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 889 
 890 

Figure 4. ONT HCC1395/BL dataset benchmarking results.  891 

(a) The precision-recall curve of different combinaYons of tumor and normal coverage. The dot 892 
on each dashed line shows where the best F1-score was achieved. (b) The performance of ClairS 893 
at mulYple VAF ranges benchmarked on the ONT HCC1395/BL dataset. In the first row, 25, 50x, 894 
and 75x tumor were tested, with the normal coverage fixed at 25x. In the second row, 20x, 25x, 895 
and 30x of normal were tested, with tumor coverage fixed at 50x. Variant quality cutoff 8 896 
(prioriYze-recall mode) was used. (c) The precision-recall curve of different tumor/normal purity 897 
combinaYons with tumor coverage fixed at 50x and normal coverage fixed at 25x. 898 
 899 
 900 

 901 
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Figure 5. Categorizing the FPs and FNs in ClairS 903 

The pie charts show the distribuYon of reasons for the FPs and FNs in ClairS. A 50x/25x ONT 904 
HCC1395/BL dataset was used for calling. 300 FPs and 300 FNs were randomly chosen from the 905 
results and analyzed. The tandem repeat, low complexity, homopolymer, and segmental 906 
duplicaYon regions were defined using GIAB v3.0 Genome StraYficaYon. Among the categories, 907 
“excessive mismatches in alignment” and “insufficient normal coverage” were decided 908 
manually, i.e., without certain cut-offs. “Excessive mismatches in alignment” was given if an eye 909 
check of the alignments revealed excessive inconsistent mismatches than usual alignments with 910 
a true somaYc variant. “Insufficient normal coverage” was given when a germline variant signal 911 
existed in both tumor and normal, but the coverage of normal was low, so the germline variant 912 
signal in normal was obviously weaker than in tumor. 913 
 914 
 915 
a 916 
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 926 
 927 

Figure 6. Ilumina HCC1395/BL dataset benchmarking results.  928 

(a) The precision-recall curve of HCC1395/BL short-read datasets from six SEQC2 sources (NS: 929 
NovaSeq at Illumina, NC: HiSeq at NaYonal Cancer InsYtute, IL: HiSeq at Ilumina, EA: HiSeq at 930 
European Infrastructure for TranslaYonal Medicine, FD: HiSeq at Fudan University, NV: HiSeq at 931 
NovarYs) using eight tools (Strelka2, Lancet, Mutect2, NeusomaYc, Octopus, SomaYcSniper, 932 
Varnet, ClairS). Variants were ranked by Strelka2 – SomaYcEVS, Mutect2 – TLOD, VarNet – Score, 933 
SomaYcSniper – SSC, and other callers – QUAL. The dot on each line shows where the best F1-934 
score was. (b) The overall F1-score of the experiments shown in subfigure a. (c) The F1-score at 935 
different VAFs of the experiments shown in subfigure a. (d) Venn diagrams showing the overlap 936 
of false posiYve variant calls between Strelka2, Mutect2, and ClairS. 937 
 938 
  939 
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Extended Data Figures 940 

a 941 

 942 
 943 
b 944 

 945 
 946 

Extended Data Figure 1. Performance differences between phasable and not-phasable 947 
SNVs 948 

(a) The figure shows that a somaYc variant usually originates in a single somaYc cell and then 949 
spreads to more cells through cell division, resulYng in a clonal carrying the same variant. It also 950 
shows how the mismatches in the tumor sample and normal sample are different from each 951 
other. A somaYc variant is more likely to be assigned to a haplotype through phasing, while a 952 
variant caused by random sequencing errors is less likely to be successfully phased. (b) A 953 
performance comparison of somaYc variants where “P”: can be phased, and “NP”: cannot. The 954 
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figure shows a higher performance in somaYc variants that can be phased, especially at lower 955 
VAFs. We used 50/25-fold HCC1395/BL and prioriYze-recall mode. 956 
 957 
 958 
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Extended Data Figure 2. Visualization of neural network inputs. 964 

(a) Pileup-based calling input visualizaYon. The candidate site is centered and marked by two 965 
dashed lines. (b) Full-alignment-based calling input visualizaYon. In b, the top and bogom are 966 
padded with zero when the total coverage of tumor and normal samples does not reach the 967 
input limit. The normal read alignments and tumor read alignments in all channels are 968 
separated by two rows filled with zeros. The two demonstraYons involved truth variants 969 
randomly picked from the HCC1395/BL dataset. 970 
 971 
 972 
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Extended Data Figure 3. Two examples of haplotype inconsistency that signifies a false 975 
somatic call. 976 

(a) Example of a false somaYc call with a haplotype inconsistent with the haplotype derived 977 
from a heterozygous germline variant nearby. (b) Example of a false somaYc call with a 978 
haplotype inconsistent with the haplotypes derived from a homozygous germline variant 979 
nearby. The bases A, C, G, and T are depicted in green, blue, yellow, and red, respecYvely. The 980 
background in gray, purple, and pink represents an unknown haplotype, haplotype 1, and 981 
haplotype 2, respecYvely. GT is an abbreviaYon of genotype. 982 
 983 
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