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Highlights

Data-Driven Modeling and Analysis of Fatty Acid Desaturase in
Plants

Andrew D. McNaughton, John Shanklin, Simone Raugei*, Neeraj Kumar*

• Developed pipeline to predict function from protein sequence

• Modeled two fatty acid desaturases and predicted their structure and
functions

• Leveraged docking simulations and molecular dynamics to confirm pro-
tein function
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Abstract

Fatty acids and their derivatives continue to garner attention as sustainable
alternatives to petrochemically derived materials. Towards this goal, we ex-
amine the plant membrane-bound fatty acid desaturases (FADs) and develop
an overview of their 3D structure and phylogenic relationships. Through this
effort we developed two plant fatty acid desaturase homology models that
we analyzed with substrate docking and molecular dynamics simulations to
better understand the diiron binding pocket that is characteristic of these
proteins. The comparison between the Omega6 and Delta12 homology mod-
els specifically in regards to the binding affinity as a function of carbon chain
length indicates that there is a dip in binding affinity near the 18:2 car-
bon chain length but the rest maintain a rather consistent binding affinity
throughout. Furthermore, MD analysis highlights the importance of regions
within the cytosolic cap domain on the binding pocket.
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1. Introduction

Fatty Acid Desaturases (FADs) are a complex family of enzymes found
within both prokaryotes and eukaryotes that catalyze the regiospecific dehy-
drogenation of fatty acids (FAs), creating a carbon–carbon double bond with
the concomitant reduction of dioxygen to water [1, 2, 3]. FADs show a wide
range of lipid substrate preferences that includes acyl-CoAs, sphingolipids,
phospholipids, and galactolipids [4, 5, 6]. Their primary role is to preserve
the structure and function of cellular membranes by utilizing the desatura-
tion of glycerolipids that form the lipid bilayer, which typically maintains
membrane fluidity [7, 8]. FADs have been explored for use in commercially
relevant and sustainable green technologies, as a replacement for petroleum-
derived chemicals. In addition, FAs and their derivatives have applications in
the production of detergents, soaps, lubricants, cosmetics, pharmaceuticals,
and biofuels [9, 10, 11, 12, 13, 14]. However, further development of these en-
zymes and a better understanding of their functional role is necessary before
biologically produced oils can become primary chemical feedstocks.

There are two observed classes of FADs present in nature: soluble and
integral membrane-bound desaturases. The soluble FADs are found primar-
ily in the plastidial stroma of higher plants and are responsible for creating
double bonds in FAs that are esterified to acyl carrier protein (ACP). Solu-
ble FADs are not overly diverse and have many experimentally determined
structures which have enabled a mechanistic understanding of regioselectiv-
ity [15, 16]. Integral membrane FADs, on the other hand, show a much
greater variation in occurrence, protein sequence, biochemical function, and
substrate binding range [17, 18, 19, 4], but are lacking comprehensive struc-
tural information for more accurate characterization. They are primarily lo-
cated in the endomembrane system [20] or the inner chloroplastic membrane
[21]. These membrane-bound desaturases bind iron ions with conserved his-
tidine residues that comprise three conserved histidine boxes: [H(X)3–4H],
[H(X)2-3HH] and [H/Q(X)2–3HH] (H, histidine; X, variable amino acid; Q ,
glutamine)[20, 22].

Currently, we have a limited understanding of the range of activity and
substrate specificity for membrane-bound FADs, which makes their system-
atic functional characterization challenging[6]. A significant problem for
computational approaches is the lack of reliable tertiary (3D) structures,
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which prevents, for instance, the study of protein-ligand [23] or protein-
protein interactions [24], and consequently, drawing conclusions about pro-
tein structure-function relationships. Databases of protein sequences avail-
able through UniProt[25] and the Protein Data Bank[26] offer accurate pro-
tein sequences, but do not contain accurate tertiary structures for all pro-
teins. These structures can be resolved experimentally with a wide range
of techniques [27, 28, 29, 30, 31, 32], but are relatively expensive, time con-
suming, and often plagued by a number of difficulties, and it is unrealistic
to experimentally determine every possible protein structure. To address
this problem, we can leverage computational methods and tools used to pre-
dict 3D-structure from the primary protein sequence. Once a structure is
predicted it can be further analyzed by methods such as physics-based sim-
ulations and data science tools to better understand enzyme motions while
also helping to predict protein function.

Figure 1: The chemical structure of common natural lipid compounds. There are two
common glycerol moieties at the top where X represents the phospholipid headgroup and
R represents the five most commonly occurring fatty acid side chains. Adapted from
Nachtschatt et al. [17]
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In FADs, substrate specificity and regioselectivity (the position the dou-
ble bond is placed) is essentially determined by the interaction of the enzyme
and lipid head-group (Fig 1). Recent results [28, 33] from human and mouse
stearoyl-CoA desaturase structures revealed that the hydrophilic CoA head-
group from the substrate will form an electrostatic interaction and hydro-
gen bond with residues in the cytoplasmic domain and transmembrane helix
(TM) 1 of the desaturase [6]. This then causes the acyl group to orient itself
into the long hydrophobic tunnel leading to the diiron active site.

Toward reliable structure-function relationships of membrane bound FADs,
we collected a list of FADs with unknown structures from the higher plant
Arabidopsis thaliana, compared their sequences and phylogeny, and selected
two proteins to generate homology models, whose structure was used for sub-
strate docking and subsequent molecular dynamics simulations. Altogether
these methods allow us to gather a better understanding of the underlying
fatty acid side chain binding motifs and energy states in these FADs.

2. Results and Discussion

2.1. Data Curation of Membrane-Bound Desaturases

In order to characterize correlations between sequence and function of
the membrane-bound FADs, sequences from the PFAM/InterPro [34, 35]
FAD family PF00487/IPR005804 were selected using the criteria laid out in
previous studies Li et al. [6]. We selected only reviewed seed sequence clusters
with a length range between 350 aa and 550 aa. In total, we obtained 71 total
Arabidopsis sequences from PFAM/InterPro, which reduced to 10 when
accounting for the length restriction and similarity scores. This selection
includes ∆12 desaturase (P46313)(FAD2) and Ω6 chloroplastic desaturase
(P46312)(FAD6), which are the target of the present study.

We took the 10 Arabidopsis enzymes (Table 1) and compared their se-
quence alignment to identify key regions that may affect their structure-
function relationship. From these 10 enzymes, we ran a multi-sequence align-
ment to visualize similar regions in the sequence of the different enzymes
(Shown in Fig 2. We wanted to be able to compare the histidine motifs of
these proteins to see if they share key similarities common to the plant FAD
family. We discovered that between these 10 enzymes, the 3-histidine box
motif is conserved throughout, giving us confidence that these sequences are
characteristic FAD enzymes. We also noticed the occasional replacement of
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the first histidine (Figure 3, Box 3) with a glutamate amino acid in several
of the sequences.

Table 1: A full list of Arabidopsis fatty acid desaturase proteins and their individual
sequence lengths, gathered from the PFAM class PF00487. C represents chloroplastic-
bound desaturases and ER represents endoplasmic reticulum-bound desautrases.

Description Sequence Length
Delta(8)-fatty-acid desaturase 2 449
Palmitoyl-monogalactosyldiacylglycerol delta-7 desaturase C 371
Probable lipid desaturase ADS3.2 C 361
Delta(8)-fatty-acid desaturase 1 449
Fatty acid desaturase 8 382
sn-2 acyl-lipid omega-3 desaturase (ferredoxin) C. 446
Omega-6 fatty acid desaturase C 448
Delta(12)-fatty-acid desaturase 383
Temperature-sensitive sn-2 acyl-lipid omega-3 desaturase (ferredoxin) C. 435
Acyl-lipid omega-3 desaturase (cytochrome b5) ER. 386

Figure 2: Snapshot of multiple sequence alignment of 10 Arabidopsis enzymes observed.
Sequences maintain alignment with the 3 histidine box motif. Box 3 contains 2 proteins
that show the ability of glutamate (Q) to replace the first histidine (H) in the motif.

Figure 3 also shows the close phylogenic relationship between these 10
Arabidopsis enzymes. Additionally, the comparison of these phylogenic re-
lationships with the aligned sequences above showed that the two enzymes
displaying the glutamate substitution in the histidine Figure 3, Box 3 are
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Figure 3: Phylogenic Tree analysis of the 10 Arabidopsis enzymes looked at in this study.

much more closely related phylogenically then those with the standard his-
tidine motif.

2.2. Homology Model of FAD2 and FAD6

The first step toward a better characterization of FADs is the construc-
tion of 3D models for use in molecular docking simulations. To this end, we
modeled the two proteins of interest: FAD2 and FAD6. No published crystal
structures for FAD2 or FAD6 currently exist, so we utilized a homology-based
modeling approach using PHYRE2 [36] to create a representative structural
model from an existing desaturase template. The chosen 3D structure tem-
plate was the crystal structure of human integral membrane stearoyl-CoA
desaturase (hSCD, PDB: 4ZYO) [33], an integral membrane-bound desat-
urase embedded in the endoplasmic reticulum, which shares key aspects of
the FAD2 and FAD6 proteins. such as a diiron core, a transmembrane region,
and a central binding pocket.

The models, labeled as AtFAD2 and AtFAD6 to represent their host
organism as well as the reaction they catalyze, are shown in Fig 4. AtFAD6
has a homology confidence level of is 99.8% and sequence similarity is 9%.
AtFAD2 has a homology confidence of 99.9% and sequence similarity as 14%.

Following the results of section 2.1, we know that the AtFAD2 and At-
FAD6 proteins should contain the consistent histidine region surrounding the
diiron core. Modeling is not able to approximate non-protein features such as
iron, but the histidine motifs should still surround the location in the binding
pocket where the diiron center resides. By overlaying the diiron centers from
4ZYO, we can visualize if the histidine motifs surround the correct region
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Figure 4: The resulting homology models for AtFAD6 (middle, green) and AtFAD2 (right,
cyan). These hold a consistent mushroom shape with 4 helix transmembrane region to
the template model of hSCD (PDB: 4ZYO) (left, magenta).

(shown in Fig 5). From this snapshot we can tell that AtFAD6 is consistent
with the 8-histidine motif expected of a desaturase that utilizes the diiron
core as the electron donor in the ω-desaturase reaction. AtFAD2 also con-
tains 8-histidines bound to the diiron center even though it also utilizes cytb5
as the electron donor for ∆-desaturation.

A key takeaway from this modeling is the similarity in 3D structure main-
tained throughout the 2 proteins from the template. The proteins all exhibit
a similar folding pattern and the catalytic cap domain on the cytosolic side of
the membrane. The overall shape is quite similar as expected from the high
homology confidence. Differences within the model are due to differences in
the primary/secondary structure that result in a different tertiary structures.
We also observe that the trans-membrane region of each protein consists of
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Figure 5: Graphic overlay of the histidine regions present in the homolgoy models. The top
left model is the histidine boxes present in AtFAD6 and the top right is that of AtFAD6.
The bottom is an overlay of both AtFAD2 and AtFAD6 to show the structural similarities
in the histidine motif.

four primary helices which is consistent with the template. There is a consis-
tent closed conformation between the homology models, showing that that
each maintains the substrate entry into the binding pocket of the hSCD1
protein. The key differences amongst these structures are particularly fo-
cused in the catalytic cap domain for each protein. These differences suggest
that alternative binding modes and electron transfer mechanisms may affect
how the protein carries out desaturation. AtFAD6 has a catalytic domain
that is primed more for dealing with 16:1 and 18:1 fatty acid desaturation
whitout requiring the binding of cytb5 for electron donation. AtFAD2 on the
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other hand requires the input of electrons from cytb5, so its cap domain is
more open to binding these structures to its surface. AtFAD2 also primar-
ily accommodates the desaturation of 18:1 fatty acid, so the binding pocket
may be optimized for this process. Each protein has a similarly located di-
iron center off of the cytosolic plane, without much variation between them.
One limitation with the homology modeling process, however, is that it does
not seem to account for residues 158-179 of AtFAD2 and attempts to bridge
residue 157 to residue 180 directly. This abridged segment of the structure
could be why the caps of each modeled protein appear different.

2.3. Substrate Docking

A key follow up to homology modeling is how the model accepts and
binds substrates to the structure. In this capacity, we utilized docking of
various carbon chain length fatty acid substrates from the range of C12 to
C26 in both a blind docking configuration and in the vicinity of the models
binding pocket. To ensure we best modeled the structure of the target FAs,
we utilized DFT calculations as implemented in NWChem [37] to obtain
quantum mechanically optimal features for the docking.

A key result we want to visualize is the location of the docked proteins
once the allowed docking region was refined. Fig 6 below highlights the
results of docking in the binding pocket around the diiron center of AtFAD6
and AtFAD2. This allows us to see that the FAs are in fact binding in the
expected binding pocket within the protein surface.

An important result of this is the effect of carbon chain length on the
binding affinity. We plot this effect to visualize this relationship in Figure 7.

2.4. Molecular Dynamics

Once the process of docking fatty acids of varying carbon length was
completed, we proceeded to run molecular dynamics (MD) simulations on
the protein as well as the docked protein-ligand complex. This process allows
us to visualize which domains of the protein fluctuate over a given period of
time. MD simulations afford us opportunities to better understand how not
only the protein, but a specific protein-ligand pair evolves over time. More
specifically, MD provides us information on protein allostery and protein
docking [38]. This work is based around detailing the structure-function
relationship of the FAD-class of proteins and is why a focus on docking and
MD Simulations are the most critical aspects of this study.
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Figure 6: Homology model of AtFAD6 (left) and AtFAD2 (right) with binding pocket
highlighted. These figures show where the expected desaturase substrates are binding
within the central active site surrounding the diiron core. Palmitoleic acid (16:1 fatty
acid) is shown as the substrate for AtFAD6 and Oleic acid (18:1 fatty acid) is shown as
the substrate for AtFAD2.

Following the docking procedures taken in Section 2.3, two sets of docking
experiments were set up and run for each model: 1. The protein without sub-
strate and 2.The protein docked with the highest observed binding affinity
ligand. Each of which were run for 100ns and motions were quantified with a
root mean square fluctuation (RMSF) calculation. By utilizing this method-
ology, we were able to calculate which regions of the proteins move naturally,
and which are most affected by the binding of a ligand within the binding
pocket. As molecular dynamics solutions are computationally expensive, we
selected one protein-ligand complex from the docking solutions for each pro-
tein model. We selected the palmitoleic acid (16:1)-AtFAD6 complex and
oleic acid (18:1)-AtFAD2 complex. These FAs were chosen since they are the
predominant binding candidates for their respective proteins. This selection
gives us specifics into how the protein evolves over time when carrying out
it’s fundamental application in the cell.

We plotted the resulting RMSF plots for all the cases run and overlaid
them into a concise plot. Figure 8 shows the color coded RMSF plots for
AtFAD6 and AtFAD2 with and without the docked protein included. It is
apparent that when the docked FA is included, the overall RMSF increases,
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Figure 7: A comparison between the Omega6 and Delta12 homology models specifically
in regards to the binding affinity (kcal/mol) as a function of carbon chain length. We
see that there is a dip in binding affinity near the 18:2 carbon chain length but the rest
maintain a rather consistent binding affinity throughout. Chain lengths are given in the
form X:D, where X is the chain length and D is the position of the double bond. The
more negative the binding affinity, the more likely the chain is to bind.

but in specific regions, the increase is much more pronounced. For example,
in AtFAD6 there is a major overall increase in the RMSF of the yellow region
associated with a large portion of the cytosolic cap. This could indicate
that the docking of a FA within that region alters the space available in
the binding pocket. Another observation is that the links between trans-
membrane helices contribute to much of the motion within the protein. The
helices themselves are rather stationary over time which would make sense
considering they are embedded into the lipid bi-layer. The same type of
motion can be seen within the AtFAD2 protein as well. The inclusion of the
docked FA increases the overall RMSF of the regions included in the cytosolic
cap region of the protein and remain more static in the trans-membrane
region.
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Figure 8: Root mean square fluctuation (RMSF) of backbone of AtFAD6 (top) and atFAD2
(bottom) without the substrate (solid line) and with the substrate (colored profile coding
different structural regions). Palmitoleic Acid is the substrate for AtFAD6 and oleic acid
is the substrate for AtFAD2. The red line in the AtFAD2 plot is at the break in residues
not included in the homology model.

2.5. Machine Learning Methods Used in Protein Classification and Function
Prediction

Machine learning introduces an effective way to classify proteins and fur-
ther predict function. In this section we will examine some of the available
options and how they can be useful for the analysis of Arabidopsis FADs.

There are many acceptable current options for protein sequence/structure
alignment and homology modeling. It is beneficial to be able to predict a
protein’s structure from its amino acid sequence therefore protein structure
prediction has been a major focus in the community. The primary means
is by aligning the target sequence with a number of homologous protein se-
quences, for some of which the structures (templates) are known, and thereby
predicting the resulting three-dimensional structure of the target sequence.

More recently, there have been large strides taken in the domain of ma-
chine learning for use in building relationships between protein sequences
and their final characterized secondary, tertiary, and quaternary structures.
The benefit to having a comprehensive machine learning model, is that sim-
ple single sequences can be quickly and more accurately characterized due
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to the detailed nature of machine learning models. These models are able
to be trained on very comprehensive and well understood structure-function
relationships and can precisely draw the necessary relationships required for
alignment.

Notable examples of machine learning applications towards protein struc-
ture prediction is that of AlphaFold [39] and RoseTTAFold [40]. The Al-
phaFold team constructed a neural network trained on the three-dimensional
distances between amino acid residues with a ground-breaking level of accu-
racy. The RoseTTAFold team implements a three-track network in which
information at the one-dimensional (1D) sequence level, the 2D distance
map level, and the 3D coordinate level is successively transformed and inte-
grated. The application of these workflows pertaining to the current work
was considered but ultimately not used as our existing structures shared a
high enough structural similarity with AlphaFold/RoseTTAFold that we re-
mained with our homology structure. Those comparisons can be found in
the Supplemental Information.

3. Conclusion

Fatty acid desaturates are of great interest for basic understanding of how
proteins act catalytically but also, for translational uses in helping develop
agricultural crops that are used for either biofuels or as chemical feedstocks.
Our current work is exclusively using computational approaches to predict
the structure and motion of the desaturases using software as the pipeline and
the great number of sequences available from many organisms.Predictions
from such approaches can be empirically tested by designing and producing
mutant proteins for analysis [41, 42].

FADs present a critical research target within the area of sustainable
platform chemical production due to the substrate and product diversity.
Because lipid synthesis is highly demanding for both energy and reducing
power, there is great interest in developing fundamental understanding of
functionality regarding substrate specificity, regioselectivity, oxidation chem-
istry, and cofactors.

Activities of membrane-bound FADs in plants (and many organisms) are
modulated by temperature perhaps by directly sensing their membrane lipid
environments. Future experiments will extend these studies to investigate
the effects of temperature and the membrane environment as factors that
might influence FAD activity. This is a minor criticism perhaps, but in the
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context of understanding all aspects of catalysis, these two parameters are
important for many membrane-bound FADs.

Future vision and Outlook– Characterize
Our present research is focused on the development of workflows that

will be able to combine substrate docking and molecular dynamics for the
characterization of fatty acid desaturase (FAD) enzymes. By being able to
analyze how fatty acids of varying lengths bind within the diiron enzyme
active sites of FADs, we can find ways to elucidate binding specificity and
overall activity. Informed computational analysis reduces the time spent
experimentally identifying and testing combinations of FADs with fatty acids
and allows for more application-focused work.

4. Methods

4.1. FAD Curation

The phylogenic tree diagram and multiple sequence alignment of the 10
Arabidopsis FADs displayed in Section 2.1 were generated using ClustalΩ
[43]. It is a web-based server with the only input being a file containing each
FASTA format sequence from each protein.

4.2. Homology Modeling

The PHYRE2 [36] application was used to generate an optimized ho-
mology model from a variety of known template structures. We selected
pdb:4ZYO as the template model and the primary sequence FASTA files of
the two target proteins (AtFAD6, AtFAD2). This application was utilized
with it’s web-based server.

4.3. Docking

Docking simulations were run through QVINA [44] with a selection of
substrates. The docking region was refined from a blind dock to a targeted
dock in the region surrounding the diiron core and inside the binding pocket
using AutoDockTools.

The optimization of the pre-docked FA chains was done using NWChem
6.8.1.30 [37]. Partial charges of the FA chains were obtained based on the
restrained electrostatic potential atomic partial charge (RESP) method [45]
at the HF/6-31G* level.
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4.4. Molecular Dynamics

Molecular dynamics simulations were carried out using a GROMACS
[46, 47, 48] workflow with the homology models AtFAD2 and AtFAD6. The
top docking candidates for each protein were taken and used as the initial
poses for the protein-ligand complex simulations. The Amber FF14SB force
field [49] was used for the protein along with the general AMBER force field
(GAFF) [50]. The TIP3P water model [51] with Joung and Cheatham ion
parameters [52] were used for establishing a cubic box of water and neutral-
izing monovalent ions in the system. The initial system was minimized by
the conjugated gradient algorithms up to a maximum residual force of 10.0
KJ/mol. The system was then equilibrated at 300K for 500 ps under NVT
ensemble using the modified Berendsen thermostat velocity rescaling method
[53], followed by 500ps with NPT ensemble using the Berendsen pressure cou-
pling method [54]. Harmonic restraints with force constant of 1,000 KJ/mol
were applied on the protein and substrate during equilibration steps. After
the equilibrations, we performed production runs for 100 ns at 300 K and 1
atm using the Parrinello-Rahman pressure coupling method [55, 56]. All of
the restraints were released during this step. The timestep adopted in all of
the simulations are 2 fs and a particle mesh Ewald algorithm [57] was used
to evaluate long-range electrostatic interactions. RMSF calculations on the
results were also carried out using the GROMACS rmsf calculation tool.

4.5. Visualizations

All the protein-ligand visualizations done within this work were made
using PyMOL [58].
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Appendix A. AlphaFold Similarities

To compare our two homology models with the newly released AlphaFold
structures, we compare the structural and sequence similarity between the
proteins. We primarily look at the high confidence regions that are predicted
by AlphaFold. The tools used for comparing structures was the PDB Struc-
tural Alignment Tool with jFATCAT [59, 60] & JCE [61] and the DALI pro-
tein structure comparison server [62]. Overall the AtFAD6 protein contained
more similarities to the AlphaFold structure than AtFAD2. The specific
numbers can be found in the Appendix A. We concluded that even though
the homology models don’t perfectly align with the AlphaFold structures,
they are similar enough to utilize in this work.

Appendix A.1. Sequence Similarity

The first comparisons we can make are between the sequence similari-
ties. By visualizing the overlapping region between the homology model and
the AlphaFold structure, we look at which sequences are conserved between
the two. Represented in A.9 obtained from the DALI server. The over-
all sequence similarity is relatively consistent between our models, and each
structure has similarities in key regions of the protein transmembrane region
and cytosolic cap. The AtFAD6 protein has a higher sequence similarity than
AtFAD2 overall between the different methods outlined in A.9.

Appendix A.2. Structure Similarity

The next comparison to make between the homology models and Al-
phaFold is the structural similarity. This is an important analysis to make
as it can have a significant impact on the molecular dynamics simulation.
The sequence similarity visual representation provided by DALI is shown in
A.10.
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Table A.2: A full collection of comparison metrics explored in comparing the homology
models with the AlphaFold and RoseTTAFold structures. In each case the protein listed is
compared to the homology model. AF-FAD is the AlphaFold modeled protein compared
to the homology model and RF-FAD is the RoseTTAFold modeled protein compared to
the homology model.

DALI
Protein rmsd Z-Score Length %id
AF-FAD2 4.2 8.8 181 43
AF-FAD6 4.3 7.8 183 49
RF-FAD2 5.0 7.4 189 38
RF-FAD6 4.2 8.7 191 50

FATCAT
rmsd Score Length SI% SS%

AF-FAD2 4.17 328.95 227 33 38
AF-FAD6 3.29 327.83 217 60 66
RF-FAD2 4.3 317.04 215 48 53
RF-FAD6 3.5 325.17 229 61 66

JCE
rmsd Score Length SI% SS%

AF-FAD2 4.26 502.85 190 37 43
AF-FAD6 3.98 597.53 176 49 57
RF-FAD2 4.52 449.33 191 29 37
RF-FAD6 4.37 448.89 206 48 54

Appendix B. FAD Reaction Mechanism

To better understand how different FADs chemically add a double bond to
a fatty acid chain, we need to understand the processes involved as well as the
different types of mechanisms. Each desaturase pathway starts with reduced
nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), followed by an
electron transfer by a flavin adenine dinucleotide containing reductase either
to cytochrome b5 (cytb5) or ferredoxin (Fd), which bind with the desaturase
for further use in the activation of the diiron core [20]. From here, the process
is similar in that desaturation of the fatty acid occurs, but the location in
which it occurs is separate and where the desaturase obtains its electrons is
specific to ∆ / ω-desaturases.
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Figure A.9: Sequence similarity between homology models and AlphaFold structures. The
left figure represents the conserved sequence region within the AtFAD6 and AlphaFold
protein and the right figure represents the AtFAD2 and it’s AlphaFold structure. The
blue regions are the regions with perfect alignment while the green and yellow represent
lessining similarity.

Figure A.10: Caption

Appendix B.1. ∆-desaturases

The ∆-desaturases work by appending a double bond to a fatty acid
from the front-end or carboxyl end. Figure B.12 shows the FAD2 reaction
in the linoleate biosynthesis I pathway (Complete pathway shown as Fig
B.11). It is a major enzyme responsible for the synthesis of 18:2 fatty acids
in the endoplasmic reticulum. It contains His-rich motifs, which contribute
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Figure B.11: Overview of the linoleate biosynthesis I pathway in Arabidopsis thaliana
(AraCyc). This pathway illustrates the desaturation of a C18:1 fatty acid (oleic acid)
into a C18:2 fatty acid (linoleic acid). Plant FAD tend to act on glycerolipids over acyl-
CoA structures, so the beginning and end of the pathway contain some lipid transferase
to convert an acyl-CoA with a fatty acid sidechain to a glycerolipid with a fatty acid
sidechain and vice versa.

to the interaction with the electron donor cytb5 [63]. FAD2 introduces a
second double bond in linoleate in linoleate-containing phosphatidylcholine,
an important extra-plastidial membrane lipid [64, 1, 65].

It was suggested and shown that cytochrome b5 is involved in the de-
saturation of fatty acids in the endoplasmic reticulum as an electron donor
[66, 67]. This process subverts the need for the activation of the diiron core,
as the electrons are donated from cytb5.

Appendix B.2. ω-desaturases

In contrast to the microsomal ∆-desaturases, FADs in chloroplasts in-
volve Ferredoxin (Fd), Fd-NADP+ oxidoreductase, and NADPH, and which
suggests that Fd is the potential candidate for being the donor of electrons
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Figure B.12: Overview of the FAD2 ∆12 desaturase reaction (E.C 1.14.19.22). This reac-
tion takes a fatty acid side chain oleic acid attached to a glycerophospholipid moiety and
acts to increase its chain length by one to a linoleic acid sidechain with a glycerophos-
pholipid moiety. This reaction requires the donation of electrons from a cytochrome b5
molecule along with molecular oxygen.

Figure B.13: Overview of the FAD6 catalyzed omega 6 fatty acid desaturation reaction
(E.C. 1.14.19.23). Similar to the ∆12 desaturation reaction, this pathway transfers a
C18:1 oleic acid to a C18:2 linoleic acid. The main difference is the source of the donated
electrons coming from a ferredoxin diiron core at the active site with molecular oxygen for
activation instead of binding with cytb5.
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to chloroplast desaturases [68, 69]. This type of desaturase is also referred
to as an ω-desaturase, as it works to append the double bond on the methyl
end of the fatty acid chain. This ω-desaturase pathway is shown on Fig X as
E.C. 1.14.19.23 which represents the Omega-6 fatty acid desaturase found in
the chloroplast. Fig B.13 shows a more detailed view of the FAD6 reaction.
This plastidial enzyme is able to insert a cis double bond in monounsaturated
fatty acids incorporated into glycerolipids. The enzyme introduces the new
bond at a position 3 carbons away from the existing double bond, towards
the methyl end of the fatty acid [70, 71]. It is primarily responsible for the
synthesis of 16:2 and 18:2 fatty acids from galactolipids, sulpholipids and
phosphatidylglycerol[63].

References

[1] G. A. Petrini, S. G. Altabe, A. D. Uttaro, Trypanosoma brucei oleate
desaturase may use a cytochrome b5 -like domain in another desaturase
as an electron donor, European Journal of Biochemistry 271 (2004)
1079–1086. doi:10.1111/j.1432-1033.2004.04005.x.

[2] P. Stumpf, Biosynthesis of Saturated and Unsaturated Fatty Acids,
Lipids: Structure and Function (1980) 177–204. doi:10.1016/B978-0-12-
675404-9.50013-8.

[3] J. Harwood, 1 - plant acyl lipids: Structure, distribution, and analysis,
in: P. Stumpf (Ed.), Lipids: Structure and Function, Academic Press,
1980, pp. 1–55. doi:10.1016/B978-0-12-675404-9.50007-2.

[4] P. Sperling, P. Ternes, T. K. Zank, E. Heinz, The evolution of desat-
urases, Prostaglandins Leukotrienes and Essential Fatty Acids 68 (2003)
73–95. doi:10.1016/S0952-3278(02)00258-2.

[5] D. Meesapyodsuk, X. Qiu, The front-end desaturase: Structure, func-
tion, evolution and biotechnological use, 2012. doi:10.1007/s11745-011-
3617-2.

[6] D. Li, R. Moorman, T. Vanhercke, J. Petrie, S. Singh, C. J. Jackson,
Classification and substrate head-group specificity of membrane fatty
acid desaturases, Computational and Structural Biotechnology Journal
14 (2016) 341–349. doi:10.1016/j.csbj.2016.08.003.

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.17.553759doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553759
http://creativecommons.org/licenses/by/4.0/


[7] C. D. Stubbs, A. D. Smith, The modification of mammalian membrane
polyunsaturated fatty acid composition in relation to membrane fluid-
ity and function, Biochimica et Biophysica Acta (BBA) - Reviews on
Biomembranes 779 (1984) 89–137. doi:10.1016/0304-4157(84)90005-4.

[8] D. A. Los, N. Murata, Structure and expression of fatty acid desaturases,
Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism
1394 (1998) 3–15. doi:10.1016/S0005-2760(98)00091-5.

[9] R. M. Lennen, B. F. Pfleger, Microbial production of fatty acid-derived
fuels and chemicals, Current Opinion in Biotechnology 24 (2013) 1044–
1053. doi:10.1016/j.copbio.2013.02.028.

[10] H. Liu, T. Cheng, M. Xian, Y. Cao, F. Fang, H. Zou, Fatty acid from the
renewable sources: A promising feedstock for the production of biofuels
and biobased chemicals, Biotechnology Advances 32 (2014) 382–389.
doi:10.1016/j.biotechadv.2013.12.003.

[11] Y. J. Zhou, N. A. Buijs, V. Siewers, J. Nielsen, Fatty Acid-
Derived Biofuels and Chemicals Production in Saccharomyces cere-
visiae, Frontiers in Bioengineering and Biotechnology 0 (2014) 32.
doi:10.3389/FBIOE.2014.00032.

[12] A.-Q. Yu, N. K. Pratomo Juwono, S. S. J. Leong, M. W. Chang, Pro-
duction of Fatty Acid-Derived Valuable Chemicals in Synthetic Mi-
crobes, Frontiers in Bioengineering and Biotechnology 0 (2014) 78.
doi:10.3389/FBIOE.2014.00078.

[13] T. W. Tee, A. Chowdhury, C. D. Maranas, J. V. Shanks, Systems
metabolic engineering design: Fatty acid production as an emerging
case study, Biotechnology and Bioengineering 111 (2014) 849–857.
doi:10.1002/bit.25205.

[14] W. Runguphan, J. D. Keasling, Metabolic engineering of Sac-
charomyces cerevisiae for production of fatty acid-derived biofu-
els and chemicals, Metabolic Engineering 21 (2014) 103–113.
doi:10.1016/j.ymben.2013.07.003.

[15] Y. Lindqvist, W. Huang, G. Schneider, J. Shanklin, Crystal structure
of delta9 stearoyl-acyl carrier protein desaturase from castor seed and

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.17.553759doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553759
http://creativecommons.org/licenses/by/4.0/


its relationship to other di-iron proteins., The EMBO journal 15 (1996)
4081–92. doi:8861937.

[16] D. H. Dyer, K. S. Lyle, I. Rayment, B. G. Fox, X-ray structure of
putative acyl-ACP desaturase DesA2 from Mycobacterium tuberculosis
H37Rv., Protein science : a publication of the Protein Society 14 (2005)
1508–17. doi:10.1110/ps.041288005.

[17] M. Nachtschatt, S. Okada, R. Speight, Integral Membrane Fatty Acid
Desaturases: A Review of Biochemical, Structural, and Biotechnological
Advances, European Journal of Lipid Science and Technology 122 (2020)
2000181. doi:10.1002/ejlt.202000181.

[18] P. H. Buist, Fatty acid desaturases: selecting the dehydrogenation chan-
nel, Natural Product Reports 21 (2004) 249. doi:10.1039/b302094k.

[19] P. Sperling, E. Heinz, Desaturases fused to their electron donor, Eu-
ropean Journal of Lipid Science and Technology 103 (2001) 158–180.
doi:10.1002/1438-9312(200103)103:3¡158::AID-EJLT158¿3.0.CO;2-1.

[20] J. Shanklin, E. B. Cahoon, DESATURATION AND RE-
LATED MODIFICATIONS OF FATTY ACIDS, Annual Review of
Plant Physiology and Plant Molecular Biology 49 (1998) 611–641.
doi:10.1146/annurev.arplant.49.1.611.

[21] M. Ferro, D. Salvi, S. Brugière, S. Miras, S. Kowalski,
M. Louwagie, J. Garin, J. Joyard, N. Rolland, Proteomics of
the Chloroplast Envelope Membranes from Arabidopsis thaliana,
Molecular & Cellular Proteomics 2 (2003) 325–345. URL:
https://linkinghub.elsevier.com/retrieve/pii/S1535947620348611.
doi:10.1074/mcp.M300030-MCP200.

[22] J. Shanklin, E. Whittle, B. G. Fox, Eight Histidine Residues
Are Catalytically Essential in a Membrane-Associated Iron Enzyme,
Stearoyl-CoA Desaturase, and Are Conserved in Alkane Hydroxylase
and Xylene Monooxygenase, Biochemistry 33 (1994) 12787–12794.
doi:10.1021/bi00209a009.

[23] L. Garba, M. A. Mohamad Yussoff, K. B. Abd Halim, S. N. H. Ishak,
M. S. Mohamad Ali, S. N. Oslan, R. N. Z. Raja Abd. Rahman, Ho-
mology modeling and docking studies of a ∆9-fatty acid desaturase

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.17.553759doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553759
http://creativecommons.org/licenses/by/4.0/


from a Cold-tolerant Pseudomonas sp. AMS8, PeerJ 6 (2018) e4347.
doi:10.7717/peerj.4347.

[24] Y. Lou, J. Schwender, J. Shanklin, FAD2 and FAD3 Desat-
urases Form Heterodimers That Facilitate Metabolic Channeling in
Vivo, Journal of Biological Chemistry 289 (2014) 17996–18007.
doi:10.1074/jbc.M114.572883.

[25] T. U. Consortium, UniProt: a worldwide hub of protein knowledge,
Nucleic Acids Research 47 (2019) D506–D515. doi:10.1093/nar/gky1049.

[26] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weis-
sig, I. N. Shindyalov, P. E. Bourne, The Protein Data Bank, Nucleic
Acids Research 28 (2000) 235–242. doi:10.1093/nar/28.1.235.

[27] G. Klebe, Experimental methods of structure determination, Drug
Design (2013) 265–290. doi:10.1007/978-3-642-17907-5 13.

[28] Y. Bai, J. G. McCoy, E. J. Levin, P. Sobrado, K. R. Rajashankar, B. G.
Fox, M. Zhou, X-ray structure of a mammalian stearoyl-CoA desaturase,
Nature 524 (2015) 252–256. doi:10.1038/nature14549.
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A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie,
B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Pe-
tersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pachol-
ska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,
K. Kavukcuoglu, P. Kohli, D. Hassabis, Highly accurate protein struc-
ture prediction with AlphaFold, Nature (2021). doi:10.1038/s41586-021-
03819-2.

[40] M. Baek, F. DiMaio, I. Anishchenko, J. Dauparas, S. Ovchinnikov,
G. R. Lee, J. Wang, Q. Cong, L. N. Kinch, R. D. Schaeffer, C. Millán,
H. Park, C. Adams, C. R. Glassman, A. DeGiovanni, J. H. Pereira, A. V.
Rodrigues, A. A. van Dijk, A. C. Ebrecht, D. J. Opperman, T. Sagmeis-
ter, C. Buhlheller, T. Pavkov-Keller, M. K. Rathinaswamy, U. Dalwadi,
C. K. Yip, J. E. Burke, K. C. Garcia, N. V. Grishin, P. D. Adams, R. J.
Read, D. Baker, Accurate prediction of protein structures and interac-
tions using a three-track neural network, Science (2021) eabj8754. URL:
https://www.sciencemag.org/lookup/doi/10.1126/science.abj8754.
doi:10.1126/science.abj8754.

[41] Y. Cai, X.-H. Yu, J. Chai, C.-J. Liu, J. Shanklin, A conserved evolution-
ary mechanism permits ∆9 desaturation of very-long-chain fatty acyl
lipids, Journal of Biological Chemistry 295 (2020) 11337–11345. URL:

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.17.553759doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553759
http://creativecommons.org/licenses/by/4.0/


https://linkinghub.elsevier.com/retrieve/pii/S0021925817492234.
doi:10.1074/jbc.RA120.014258.

[42] Y. Cai, X.-H. Yu, Q. Liu, C.-J. Liu, J. Shanklin, Two clusters
of residues contribute to the activity and substrate specificity of
Fm1, a bifunctional oleate and linoleate desaturase of fungal ori-
gin, Journal of Biological Chemistry 293 (2018) 19844–19853. URL:
https://linkinghub.elsevier.com/retrieve/pii/S0021925820311108.
doi:10.1074/jbc.RA118.005972.

[43] F. Madeira, Y. mi Park, J. Lee, N. Buso, T. Gur, N. Madhusoodanan,
P. Basutkar, A. R. N. Tivey, S. C. Potter, R. D. Finn, R. Lopez, The
EMBL-EBI search and sequence analysis tools APIs in 2019, Nucleic
Acids Research 47 (2019) W636–W641. doi:10.1093/nar/gkz268.

[44] N. M. Hassan, A. A. Alhossary, Y. Mu, C. K. Kwoh, Protein-Ligand
Blind Docking Using QuickVina-W with Inter-Process Spatio-Temporal
Integration, Scientific Reports 7 (2017) 1–13. doi:10.1038/s41598-017-
15571-7.

[45] C. I. Bayly, P. Cieplak, W. Cornell, P. A. Kollman, A well-behaved
electrostatic potential based method using charge restraints for deriving
atomic charges: the RESP model, The Journal of Physical Chemistry
97 (1993) 10269–10280. doi:10.1021/j100142a004.

[46] Lindahl, Abraham, Hess, van der Spoel, GROMACS 2021.2 Manual
(2021). doi:10.5281/ZENODO.4723561.

[47] B. Hess, P-LINCS: A Parallel Linear Constraint Solver for Molecular
Simulation, Journal of Chemical Theory and Computation 4 (2008)
116–122. doi:10.1021/ct700200b.

[48] S. Miyamoto, P. A. Kollman, Settle: An analytical version
of the SHAKE and RATTLE algorithm for rigid water mod-
els, Journal of Computational Chemistry 13 (1992) 952–962.
doi:10.1002/jcc.540130805.

[49] J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser,
C. Simmerling, ff14SB: Improving the Accuracy of Protein Side Chain
and Backbone Parameters from ff99SB, Journal of Chemical Theory
and Computation 11 (2015) 3696–3713. doi:10.1021/acs.jctc.5b00255.

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.17.553759doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553759
http://creativecommons.org/licenses/by/4.0/


[50] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case,
Development and testing of a general amber force field, Journal of
Computational Chemistry 25 (2004) 1157–1174. doi:10.1002/jcc.20035.

[51] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey,
M. L. Klein, Comparison of simple potential functions for simulat-
ing liquid water, The Journal of Chemical Physics 79 (1983) 926–935.
doi:10.1063/1.445869.

[52] I. S. Joung, T. E. Cheatham, Determination of Alkali and Halide Mono-
valent Ion Parameters for Use in Explicitly Solvated Biomolecular Sim-
ulations, The Journal of Physical Chemistry B 112 (2008) 9020–9041.
doi:10.1021/jp8001614.

[53] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through ve-
locity rescaling, The Journal of Chemical Physics 126 (2007) 014101.
doi:10.1063/1.2408420.

[54] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola,
J. R. Haak, Molecular dynamics with coupling to an external bath, The
Journal of Chemical Physics 81 (1984) 3684–3690. doi:10.1063/1.448118.

[55] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A
new molecular dynamics method, Journal of Applied Physics 52 (1981)
7182–7190. doi:10.1063/1.328693.
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