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Summary

Motivation: Although transcriptomics data is typically used to analyse mature spliced mRNA, recent
attention has focused on jointly investigating spliced and unspliced (or precursor-) mRNA, which can be
used to study gene regulation and changes in gene expression production. Nonetheless, most methods for
spliced/unspliced inference (such as RNA velocity tools) focus on individual samples, and rarely allow
comparisons between groups of samples (e.g., healthy vs. diseased). Furthermore, this kind of inference
is challenging, because spliced and unspliced mRNA abundance is characterized by a high degree of
quantification uncertainty, due to the prevalence of multi-mapping reads, i.e., reads compatible with
multiple transcripts (or genes), and/or with both their spliced and unspliced versions.
Results: Here, we present DifferentialRegulation, a Bayesian hierarchical method to discover changes
between experimental conditions with respect to the relative abundance of unspliced mRNA (over the
total mRNA). We model the quantification uncertainty via a latent variable approach, where reads are
allocated to their gene/transcript of origin, and to the respective splice version. We designed several
benchmarks where our approach shows good performance, in terms of sensitivity and error control, versus
state-of-the-art competitors. Importantly, our tool is flexible, and works with both bulk and single-cell
RNA-sequencing data.
Availability and implementation: DifferentialRegulation is distributed as a Bioconductor R package.
keywords: Bayesian hierarchical model; Bayesian inference; Bioinformatics; Latent variables; RNA-
sequencing data; Statistical software tool; Transcriptomics.

1 Introduction

Bulk and single-cell RNA-sequencing (RNA-seq) data enable estimating the abundance of both (mature)
spliced (s) and unspliced (u) (or precursor) mRNA. These splicing dynamics have been previously studied
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Figure 1: Splicing dynamics (Weiler et al., 2022): unspliced mRNA (u), containing both introns and exons, is transcribed from DNA
(at rate α); then, splicing (at rate β) leads to spliced mRNA (s), which is eventually degraded (at rate γ).

from bulk data (Zeisel et al., 2011; Gaidatzis et al., 2015); furthermore, in single-cell RNA-seq (scRNA-
seq) data, they have been further exploited by RNA velocity tools, that infer the time derivative of the
gene expression state of cells (La Manno et al., 2018; Bergen et al., 2020). In these approaches, s and
u abundances are compared to their (estimated) equilibrium values. Intuitively, if a gene has a higher
relative abundance of u reads than at steady-state, in the near future the s mRNA will increase because
we expect a higher abundance of newly spliced mRNA, compared to the amount of s mRNA that is going
to be degraded (Figure 1). Therefore, gene expression (i.e., s) is currently increasing, and we can think
of this gene as being up-regulated. Conversely, if the relative abundance of u reads is lower than at its
equilibrium, in the near future, the amount of s mRNA will decrease, because the newly spliced mRNA
will not fully compensate for the degraded mRNA (Figure 1). In this case, gene expression is currently
decreasing; hence, we can conclude that the gene is being down-regulated.
Here, following a similar rationale, we aim at identifying differences in gene regulation between experi-
mental conditions (e.g., treatments), by comparing the relative abundance of u reads, denoted by πU . In
particular, for a given gene, if πU is higher in condition A than B, we speculate that the gene is being
up-regulated in A, compared to B. Note that this is different from canonical differential gene expression
tests, which focus on differences in the overall abundance of s reads. Instead, our goal is to identify
differences in the direction that gene expression is currently undergoing. In particular, it was found that
unspliced mRNA peaks, on average, 15 minutes before spliced mRNA, and can be taken as a proxy for
nascent transcription (Hendriks et al., 2014). Furthermore, changes in unspliced mRNA are thought to
be indicative of changes in post-transcriptional regulation (Gaidatzis et al., 2015). Therefore, identifying
variations in πU can provide valuable insight into gene regulation changes between conditions.
From a technical point of view, RNA-seq data is characterized by a large degree of quantification uncer-
tainty due to multi-mapping reads, i.e., reads compatible with multiple transcripts or genes (McDermaid
et al., 2018; Dharshini et al., 2020). Furthermore, when analyzing splicing dynamics, we consider both
splice versions of each gene/transcript; this doubles the number of transcripts (bulk data) or genes (single-
cell data) in the reference, and increases even more mapping ambiguity.
Two approaches, namely eisaR (Gaidatzis et al., 2015) and BRIE2 (Huang and Sanguinetti, 2021), have
been proposed to compare splicing dynamics between groups of samples from bulk and scRNA-seq data,
respectively. The first approach uses the edgeR (Robinson et al., 2009) differential pipeline, based on a
negative binomial distribution, where samples and groups are used as covariates for the mean parameter.
The second method, instead, implements a Bayesian regression approach on percent spliced-in values,
with samples and groups modelled as covariates; however, this approach was found to be extremely
computationally intensive.
Additionally, other tools, originally designed to detect differences in alternative splicing patterns, could
also be employed to discover changes among s and u reads. Notably, DRIMSeq (Nowicka and Robinson,
2016), satuRn (which has two variants: one for bulk and one for single-cell data) (Gilis et al., 2022),
SUPPA2 (Trincado et al., 2018), and DEXSeq (Anders et al., 2012) performed well in recent benchmarks
(Love et al., 2018; Tiberi and Robinson, 2020; Gilis et al., 2022). In particular, DEXSeq, for the purpose of
our analyses, could be applied to transcript estimated abundance (Love et al., 2018) (referred to throughout
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as DEXSeq_TECs), or to equivalence classes counts (Cmero et al., 2019) (denoted by DEXSeq_ECs),
where equivalence classes (ECs) are collections of reads compatible with the same set of transcripts
(including splicing status). Such ECs, and their multiplicities, are typically used to model the variability of
multi-mapping reads. The majority of differential methods, in our case, eisaR, DRIMSeq, satuRn, SUPPA2
and DEXSeq_TECs, input estimated counts, and thus fail to account for the noise in those estimates.
Conversely, DEXSeq_ECs avoids this issue by performing differential testing directly on equivalence
classes. However, while this approach accounts for reads mapping between s and u versions of a transcript,
it does not handle reads mapping to multiple transcripts, which are discarded, hence resulting in a loss
of data. Moreover, while most methods presented above can test genes or transcripts directly, SUPPA2
and DEXSeq_ECs perform differential testing on exon junctions and ECs, respectively, which results
in multiple statistical tests for each transcript, that are then aggregated to the transcript level. When
applied to scRNA-seq data, BRIE2, DRIMSeq, satuRn, and DEXSeq_TECs can partially account for
the quantification uncertainty, by treating separately ambiguously mapping reads (i.e., those mapping to
both s and u versions of a transcript); such reads are denoted by a. However, the ambiguity in multi-gene
mapping reads cannot be modelled.
To overcome these challenges, we propose a Bayesian approach that accounts for the quantification uncer-
tainty via a latent variable model, and allocates reads to their transcript or gene of origin, and correspond-
ing splice version. Our approach also allows for sharing of information across samples, via a hierarchical
framework, and genes, via informative priors. We designed a double analysis framework, based on two
distinct ad hoc algorithms to analyze bulk and single-cell RNA-seq data, accounting for the specifics of
each type of data. In particular, bulk protocols enable studying transcript-level signals across all cells,
while single-cell data offer high cellular resolution but do not allow accurate transcript-level inference.
Here, we take advantage of the information that each offers: our bulk approach targets changes at the
transcript level (across all cells), while our single-cell method identifies cell-type specific changes (at the
gene level), e.g., genes that are differential in a cell type but not in others. Below, we illustrate both
approaches (Section 2), describe our benchmarks (Section 3), and discuss results (Section 4).

2 Methods

2.1 Model for bulk data

DifferentialRegulation takes as input the equivalence classes counts derived from RNA-seq reads, and
recovers the overall abundance of each transcript. Assume that, for a given experimental condition, we
collect RNA-seq data for N samples (i.e., biological replicates), with a total of T transcripts; we define
by X

(t)
i =

(
X

(t)
Si , X

(t)
Ui

)
the vector indicating the overall abundance of spliced and unspliced reads coming

from transcript t in sample i, with t = 1, . . . , T , and i = 1, . . . , N . Our approach is built around two
models.
The first one is a multinomial model for the abundance of reads across the T transcripts:(

Y
(1)
i , . . . , Y

(T )
i

)∣∣∣ ρi ∼ MN
(
ρi =

(
ρ
(1)
i , . . . , ρ

(T )
i

))
(1)

where Y
(t)
i = X

(t)
Si +X

(t)
Ui is the overall abundance (aggregated across both splice versions) of transcript

t in sample i, and ρ
(t)
i indicates the relative abundance for the t-th transcript in the i-th sample, with∑T

t=1 ρ
(t)
i = 1.

The second model is a hierarchical beta-binomial distribution for the abundance of reads within the s and

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2023.08.17.553679doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553679
http://creativecommons.org/licenses/by/4.0/


u versions of each transcript:

X
(t)
Si

∣∣∣π(t)
Si ∼ Bin

(
π
(t)
Si , n = X

(t)
Si +X

(t)
Ui

)
, (2)

π
(t)
Si

∣∣∣ δ(t) ∼ Beta
(
δ
(t)
S , δ

(t)
U

)
(3)

for t = 1, . . . , T , and i = 1, . . . , N,

where π
(t)
Si represents the relative abundance of spliced reads for transcript t in the i-th sample, δ(t) =(

δ
(t)
S , δ

(t)
U

)
represent the hyper-parameters of the hierarchical model, and Beta(a, b) indicates the beta

distribution with mean a
a+b and variance ab

(a+b)2(a+b+1)
. Note that, for easier interpretation, the hyper-

parameters can be reparametrized as δ
(t)
+ = δ

(t)
S + δ

(t)
U , usually referred to as the precision parameter,

which indicates the sample-to-sample variability, and π̄
(t)
S =

δ
(t)
S

δ
(t)
+

(
or π̄

(t)
U =

δ
(t)
U

δ
(t)
+

)
, denoting the group-

level relative abundance of s (or u) reads for transcript t, respectively. Note that we chose not to use a
hierarchical prior for ρ for two main reasons: i) overall transcript abundances are easier to infer (hence the
benefit of sharing information across samples is smaller), and ii) we wanted to limit the model complexity,
and its computational cost.
Since the values of X (and hence Y ) are not observed, they are treated as latent states and are sampled
from their conditional distribution (see Section 2.3). In particular, we allocate multi-mapping reads
among the transcript(s) and respective splice version(s) they are compatible with. For instance, in sample
i, consider a read compatible with the s version of transcript w, and the u version of transcript z; this read
will be allocated to the former and latter cases with probability proportional to ρ

(w)
i ∗ π̃(w)

Si , and ρ
(z)
i ∗ π̃(z)

Ui ,
respectively, where π̃

(w)
Si = π

(w)
Si /l(w)

S and π̃
(z)
Ui = π

(z)
Ui/l(z)U , with l

(w)
S and l

(z)
U being the effective lengths of the

s version of transcript w and the u version of transcript z, respectively. Normalizing for the transcript
effective lengths ensures that the probability of allocating multi-mapping reads does not depend on how
long transcripts are, and was previously found to improve model accuracy (Soneson et al., 2015; Tiberi
and Robinson, 2020).

2.2 Model for single-cell data

Our framework for single-cell data is similar to the bulk approach, but presents four key differences, as
summarized below. First, droplet scRNA-seq data have little resolution at the transcript level; therefore,
analyses are performed on genes instead of transcripts. Second, cells are typically clustered (usually in cell
types): when cell clusters are available, we separately analyze each cluster, and identify cluster-specific
changes in regulation. Third, data refer to individual cells: after clustering them, we use a pseudo-bulk
approach and, for each sample, compute the total s and u counts across all cells in a given cluster. Fourth,
reads ambiguously mapping to both s and u versions of a gene (i.e., a reads) cannot easily be allocated
to their splice version of origin. This is because the allocation step requires the estimated probability
that an ambiguous read is spliced, which cannot be accurately computed, because it depends on unknown
factors (Supplementary Details). Therefore, we only use a latent variable approach for reads mapping to
multiple genes; instead, a reads are treated separately from s and u.
Consider one experimental condition and a single cell cluster, with scRNA-seq data available for N samples
and G genes; we denote by X

(g)
i =

(
X

(g)
Si , X

(g)
Ui , X

(g)
Ai

)
the vector with the overall abundance of spliced,

unspliced and ambiguous reads (across all cells in the cluster) coming from gene g in sample i, with
g = 1, . . . , G, and i = 1, . . . , N . Again, we use two models; the first one is a multinomial distribution for
the abundance of reads across the G genes:(

Y
(1)
i , . . . , Y

(G)
i

)∣∣∣ ρi ∼ MN
(
ρi =

(
ρ
(1)
i , . . . , ρ

(G)
i

))
(4)
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where Y
(g)
i = X

(g)
Si +X

(g)
Ui +X

(g)
Ai is the overall abundance (across all splice versions) of gene g in sample

i, and ρ
(g)
i is the relative abundance for gene g in the i-th sample, with

∑G
g=1 ρ

(g)
i = 1.

The second model is a hierarchical Dirichlet-multinomial, which is a generalization of the beta-binomial
model in (3)-(6), for the abundance of s, u and a reads within each gene:

X
(g)
i

∣∣∣π(g)
i ∼ MN

(
π
(g)
i , n = X

(g)
Si +X

(g)
Ui +X

(g)
Ai

)
, (5)

π
(g)
i

∣∣∣ δ(g) ∼ Dir
(
δ
(g)
S , δ

(g)
U , δ

(g)
A

)
(6)

for t = 1, . . . , T , and i = 1, . . . , N,

where π
(g)
i =

(
π
(g)
Si , π

(g)
Ui , π

(g)
Ai

)
is the vector with the relative abundance of spliced, unspliced and am-

biguous reads for gene g in the i-th sample, and δ(g) =
(
δ
(g)
S , δ

(g)
U , δ

(g)
A

)
represent the hyper-parameters

of the hierarchical model; Again, from the hyper-parameters, we can obtain the precision parameter
δ
(g)
+ = δ

(g)
S + δ

(g)
U + δ

(g)
A , governing the sample-to-sample variability, and the group-level relative abun-

dances of s, u and a reads for transcript t: π̄
(g)
S =

δ
(g)
S

δ
(g)
+

, π̄(g)
U =

δ
(g)
U

δ
(g)
+

, π̄(g)
A =

δ
(g)
A

δ
(g)
+

, respectively.

As before, the counts in X are not observed and treated as latent variables, which are sampled based on
ρ’s and π’s, by allocating reads to their gene of origin and respective splice version (i.e., s, u or a) (see
Section 2.3). As an example, assume that, in sample i, a read is compatible with the s version of gene w,
the u version of gene z, and the a version of gene q; this read will be allocated to the one of three cases
with probability proportional to ρ

(w)
i ∗ π(w)

Si , ρ(z)i ∗ π(z)
Ui , and ρ

(q)
i ∗ π(q)

Ai , respectively. Note that, unlike in
the bulk model, here we do not normalize for the effective lengths of genes; this is primarily due to two
reasons. First, the effective length of genes is defined as a weighted average of the effective lengths of
transcripts, weighted by transcript relative abundance, which is not known. Second, normalizing for the
effective length of transcripts in the bulk model is based on the assumption that, given the same mRNA
abundance, longer transcripts will produce more RNA-seq reads; however, this assumption is not always
valid in scRNA-seq protocols.

2.3 Parameter inference

In both models, our hierarchical framework allows sharing of information between samples; we further
share information across transcripts (bulk model) and genes (single-cell model) via an empirical Bayes
approach. In particular, our hyper-parameters δ, in (3) and (6), are initially estimated from a random
selection of 1,000 genes/transcripts, via DRIMSeq (Nowicka and Robinson, 2016); these estimates are
used to formulate informative priors for all hyper-parameters (Supplementary Details). Note that, our
empirical Bayes approach is very mild because each gene/transcript contributes in a tiny fraction to the
prior formulation. Additionally, we assume a weakly informative conjugate Dirichlet prior distribution for
ρ, which results in a conjugate Dirichlet posterior distribution (Supplementary Details).
If the values of X (and hence of Y ) were observed, it would be straightforward to formulate the likelihood
of the model in terms of the multinomial and binomial densities in (1)-(2) (bulk model), and in (4)-(5)
(single-cell model). However, since X is not observed, in both models the likelihood of the data is defined
with respect to the actual observations, which, in our case, are the number of counts in each equivalence
class. In general terms, we define θ, X and Z as the objects containing all model parameters, all latent
variables, and the data from all equivalence classes, respectively. The likelihood of the model, L(θ|Z),
can be expressed as the integral over the latent states: L(θ|Z) =

∫
X p(Z,X = x|θ)dx. Here, we use a

Bayesian data augmentation approach (Tanner and Wong, 1987; Gelfand and Smith, 1990) which, instead
of working with this integral, alternately samples parameters and latent states from their conditional
distributions: p(θ|Z,X), and p(X|Z, θ). In particular, our sampling scheme follows a Metropolis-within-
Gibbs Markov chain Monte Carlo (MCMC) algorithm where parameters are updated, in four steps, from
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the following conditional distributions: δ|π, π|X, δ, ρ|X, and X|Z, π. Importantly, although our approach
involves many parameters, the vast majority of them are updated using a Gibbs sampler, which results
in better mixing and convergence; only the hyper-parameters δ are sampled according to a Metropolis
step, where values are proposed based on an adaptive random walk (Haario et al., 2001). Supplementary
Details report, for each parameter, the prior and conditional distributions, and the sampling scheme used.
Since the sampling of the latent variables is the most computationally intensive step of our algorithms,
we employ an undersampling scheme where latent variables are updated every 10 iterations (users can
decrease this parameter). In our benchmarks, this led to a reduction of the runtime of our full pipeline
of 74% and 35%, for the bulk and single-cell models, respectively. By default, the MCMC is run for
2,000 iterations, with a burn-in of 500 iterations (parameters can be increased by users). To ensure
convergence, a Heidelberger and Welch stationarity test (Heidelberger and Welch, 1983) is performed on
the marginal log-posterior density of the hyper-parameters, i.e., log(p(δ|π)). If the test fails, the burn-
in is automatically increased up to half of the chain length; if convergence is still not reached, a new
chain is run, with doubled burn-in and number of iterations. Additionally, our software allows users to
visually investigate convergence and mixing, by plotting (via the plot_traceplot function), in each group,
the posterior distribution of π̃U , which is the key parameter of the model (see Section 2.4).

2.4 Comparing groups

Until now, we have shown how we infer model parameters, separately, in each group of samples; in
what follows, we will describe how results across conditions are compared. To this aim, we introduce
a new parameter, π̃U : in the bulk model, we set π̃U = π̄U , while in the single-cell approach we also
account for 50% of ambiguous reads, and define π̃U = π̄U + 0.5 ∗ π̄A. Note that, for simplicity, we have
dropped gene and transcript indices from the notation. Given two groups of samples, A and B, to identify
differentially regulated genes/transcripts, we compare π̃U between A and B, that we call Aπ̃U and Bπ̃U ,
respectively. We therefore define the probability that group B is up-regulated, compared to group A, as
p = Pr (Bπ̃U > Aπ̃U ), which can be easily estimated from the posterior chains. In the Results Section,
we used this probability to rank genes/transcripts for DifferentialRegulation; in particular, we rank them
according to max(p, 1− p). In other words, results with p close to 0 or 1 are ranked first (i.e., π̃U differs
between groups), while results with p ≃ 0.5 are ranked last (i.e., π̃U similar across groups).
In the single-cell model, we acknowledge that setting π̃U as π̄U +0.5 ∗ π̄A is based on the arbitrary choice
of equally assigning 50% of ambiguous reads to s and u. Therefore, we also provide an alternative way to
rank genes, which does not require assigning ambiguous reads. In particular, we approximate the posterior
distribution of the original (πS , πU ) with a bivariate normal around its posterior mode, and perform a
bivariate Wald test (Li et al., 1991) to verify if s and u proportions are equivalent across groups (Supple-
mentary Details); note that πA is not considered, because it is uniquely defined by πS and πU . Genes are
then ranked based on the p-value of this test. Below, results based on the probability p are referred to as
DifferentialRegulation, while those based on the Wald test are called DifferentialRegulation_Wald.

2.5 Simulation design

We designed several simulation studies to benchmark our method and competing approaches. To generate
realistic simulations, we started with real datasets as anchor data. In the bulk simulation, which is an
extension of the human simulation framework used in Soneson et al. (2016), we used a sample from
Trapnell et al. (2013) (SRR493366) to infer the relative abundance of each transcript and splice version.
Estimates of sample-to-sample variability were obtained using data from Cheung et al. (2010) and Pickrell
et al. (2010), as previously described (Soneson and Delorenzi, 2013). We then used these parameters to
simulate counts for each transcript (and splice version) for 6 samples, which were randomly separated
in two groups. We randomly selected 2,000 transcripts as differentially regulated (DR); for each one,
we inverted their s and u abundances in one of the two groups. In order to introduce quantification

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2023.08.17.553679doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553679
http://creativecommons.org/licenses/by/4.0/


uncertainty in our simulation, we provided the vectors with desired transcript per million values for each
transcript to RSEM (Li and Dewey, 2011) to simulate reads, and then mapped these reads to a reference
transcriptome with salmon (Patro et al., 2017).
In the single-cell simulation, we started from the mouse data from Park et al. (2018), consisting of
four biological replicates; in this case, however, we did not simulate counts: instead, we used estimated
spliced and unspliced counts directly. We annotated cell types via SingleR (Aran et al., 2019), and
kept the three most abundant ones. As above, we separated samples in two groups, and introduced a
DR effect, separately for each cell-type, in 20% of genes, by inverting s and u counts in one of the two
groups (selected at random). In order to generate cell-type-specific changes, we randomly selected distinct
differential genes in each cell type. To introduce quantification uncertainty, we provided the count matrices
(generated above) to a read-level simulator, minnow (Sarkar et al., 2019), and aligned the simulated reads
via alevin-fry (He et al., 2022).
In both bulk and single-cell analyses, we designed several additional simulations to investigate robustness
of resutls across various scenarios. First, we generated three simulations, where we added differential gene
expression (DGE) between groups, with an average fold change of 3, 6 or 9. Second, in the bulk analyses
only, we simulated differential alternative splicing (DAS) across conditions; DAS was not simulated in
single-cell data, because it requires transcript-level resolution, which is not available in scRNA-seq pro-
tocols. Here, our aim is to identify DR genes, while DGE and DAS are nuisance effects, that we do not
wish to detect. Below, we refer to DR, DR + DGE (average fold change of 3), and DR + DAS as our
main simulations. Third, in the single-cell analyses only, we simulated three datasets (with DR only)
varying the number of cells with zero expression (90, 95 and 99%), while keeping the overall gene abun-
dance unchanged. Fourth, we investigated the impact of batch effects on inference. For what concerns
our analyses, batch effects could potentially introduce differences in overall gene expression (DGE), in
alternative splicing (DAS), or in the relative abundance of spliced reads within genes/transcripts (DR).
While the impact of DGE and DAS on results can be assessed from the simulations described above,
we designed a further simulation where DR is introduced across 2 batches (for the design of batches and
groups, see Supplementary Tables 1-2). In methods that allow for covariates (namely, DEXSeq, DRIMSeq,
satuRn, and BRIE2 ), we explicitly modelled the batch effect. Fifth, in order to investigate false positive
detections, we generated null simulated datasets, where no differential effect is introduced between groups.
In all simulations, we performed basic filtering and analyzed genes/transcripts with at least 10 counts per
group. For further details about the simulation design, see Supplementary Details.

3 Results

3.1 Bulk simulation study

We benchmarked DifferentialRegulation against eisaR, which was developed to identify changes in splicing
dynamics from bulk RNA-seq data, and various competitors that recently displayed good performance in
detecting DAS from bulk RNA-seq data: DRIMSeq, satuRn, SUPPA2, and DEXSeq (Anders et al., 2012),
which was used on both transcript estimated abundance (i.e., DEXSeq_TECs), and equivalence classes
counts (i.e., DEXSeq_ECs). Figure 2 reports the receiving operating characteristic (ROC) curve for the
main bulk simulations, and the number of false detections among the top-ranked transcripts, which is
particularly relevant because top discoveries are usually selected for subsequent analyses by life scientists.
In all simulated scenarios, DifferentialRegulation, eisaR and SUPPA2 display good performance, in terms
of sensitivity, specificity, and false positive detections among top-ranked transcripts. Of the three meth-
ods, SUPPA2 is the most affected by DGE and DAS confounding effects, while DifferentialRegulation’s
results are consistent also when increasing the strength of the DGE effect (Supplementary Figure 1).
DEXSeq_TECs and satuRn also perform well, yet with lower statistical power. Notably, DRIMSeq and
DEXSeq_ECs display a low TPR, because they fail to analyze several transcripts, and return multiple
NA’s. These results are consistent with what was previously observed in Love et al. (2018), Tiberi and
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Figure 2: Results from the main bulk simulations. Top row: ROC curves; i.e., false positive rate (FPR) vs. true positive rate (TPR).
Bottom row: false positive (FP) results among top detections (topN). Left panel (DR): simulation with differential regulation only;
middle panel (DR + DGE): simulation with differential regulation and DGE (average fold-change of 3); right panel (DR + DAS):
simulation with differential regulation and DAS.

Robinson (2020), and Gilis et al. (2022). When introducing batch effects, although the performance of all
approaches decreases, the relative ranking of methods remains stable (Supplementary Figure 2). Further-
more, DifferentialRegulation displays robust results, and leads to fewer false positive detections among
its top results than competitors. In addition, we investigated how overall transcript abundance affects
performance, and stratified the results of our main simulations into lowly, medium, and highly abundant
transcripts, corresponding to the first, second, and third tertile of abundance, respectively. In general,
higher abundance corresponds to increased statistical power, and brings the performance of all methods
closer; in all cases, the relative ranking of methods remains approximately stable (Supplementary Figures
3-4).
In the null simulated dataset, all methods control well false positive detections: Supplementary Table
3 reports, for each method, the percentage of (raw) p-values below 0.1, 0.05 and 0.01. Additionally,
DifferentialRegulation’s p, the estimated probability that group B is up-regulated (while 1 − p is the
probability that B is down-regulated), is centred around 0.5, as one would expect when two groups are
not differential (Supplementary Figure 5; left panel).
From a computational perspective, DifferentialRegulation is the most demanding method, which is un-
surprising given the high cost of full MCMC algorithms involving latent states (Figure 3, left panel);
nonetheless, the approach ran in about 1 hour on a single thread.
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Figure 3: Average runtime (in minutes), of each method, across three main bulk (left panel; DR, DR + DGE, and DR + DAS, as in
Figure 2), and the two single-cell main simulations (right panel; DR, and DR + DGE, as in Figure 4). All methods used 1 core, except
BRIE2, which used 6 because the number of threads cannot be controlled by users.

3.2 Single-cell simulation study

In the single-cell simulation, we benchmarked DifferentialRegulation against BRIE2 and satuRn_SC
(i.e., satuRn in its single-cell variant), and several approaches originally designed for bulk data: eisaR,
DEXSeq_TECs, DRIMSeq, and satuRn (bulk variant). Except BRIE2 and satuRn_SC, which use single-
cell observations, all methods worked with pseudo-bulk counts (i.e., aggregated counts across cells in
a cluster). Here, DEXSeq_ECs and SUPPA2 were excluded because they could not be adapted to
single-cell data: the former approach is bound to the output structure from salmon, which is a bulk
pseudo-aligner, and the latter requires transcript-level abundances, while single-cell aligners (e.g., alevin-
fry) return counts at the gene level. While eisaR was used on s and u reads, all remaining methods
were run on s, u and a estimated counts, hence accounting for the uncertainty in ambiguous reads.
Note that, however, only DifferentialRegulation accounts for the variability in reads mapping to multiple
genes. In our main simulations, DifferentialRegulation displays good sensitivity and specificity, although
its ROC curve is mainly below those of eisaR and DEXSeq_TECs (Figure 4). Nonetheless, our method
has fewer false discoveries than competitors among top-ranked genes, particularly when introducing DGE
as a nuisance effect (Supplementary Figure 6). Our approaches based on the posterior probability p
(DifferentialRegulation), and on a Wald test (DifferentialRegulation_Wald) perform similarly, although
the second one leads to (marginally) fewer false discoveries in top ranked genes (Figure 4). Results are
consistent also when varying the fraction of cells with zero abundance (Supplementary Figure 7), and
when dealing with batch effects (Supplementary Figure 8). In particular, while increasing zero abundance
cells has little impact on the results (which is reasonable in pseudo-bulk methods), batch effects lead to
a general deterioration in performance, particularly for DRIMSeq, satuRn, and satuRn_SC. Nonetheless,
DifferentialRegulation results are robust, especially when considering top detections. As in the bulk
simulation, we also stratified the results of our main simulations by overall gene expression, and found
a consistent ranking of methods across abundance level; as expected, higher gene expression (i.e., more
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Figure 4: Results from the main single-cell simulations. Top row: ROC curves; i.e., false positive rate (FPR) vs. true positive rate
(TPR). Bottom row: false positive (FP) results among top detections (topN). Left panel (DR): simulation with differential regulation
only; right panel (DR + DGE): simulation with differential regulation and DGE (average fold-change of 3).

data) is associated with higher statistical power (Supplementary Figures 9-10).
In the null simulation study, all methods (except satuRn and satuRn_SC ) display a good control of false
positives (Supplementary Table 4), and DifferentialRegulation’s p is again centred around 0.5, although
with more variability compared to the bulk simulation (Supplementary Figure 5; right panel).
Computationally, coherently with what previously observed, eisaR, satuRn and DEXSeq_TECs emerged
as the fastest methods, while DifferentialRegulation required significantly more time, yet approximately
35 times less than the other Bayesian approach, BRIE2 (Figure 3, right panel), despite BRIE2 using 6
times more cores than any other method.

3.3 Real data application

To compare methods on a real dataset, we considered the scRNA-seq data from Velasco et al. (2019),
containing a total of 21 brain organoids from the human cerebral cortex, which were grown in vitro,
for up to 6 months. Here we only considered a subset of 6 brain organoids from the PGP1 stem cell
line: 3 organoids were observed at three months of development, and 3 were collected at six months of
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Genes sat_SC DiffReg DiffReg_Wald BRIE2 eisaR sat DEX_TECs DRIM
brain
only 8 3 3 0 0 0 0 0

cerebral
cortex 8 7 7 0 0 1 0 0

excitatory
neurons 3 2 1 1 0 0 0 0
PGP1 0 2 2 0 1 0 0 0
overall 17 14 13 1 1 1 0 0

Table 1: Single-cell real data analysis. Number of interesting genes present among the top 200 results, of each cell-type, returned by
every method. Methods “sat”, “DiffReg”, and DEX refer to satuRn, DEXSeq, and DifferentialRegulation, respectively. “brain only”
denotes the 97 genes which were only detected in human brain; “cerebral cortex” indicates the 180 genes which display high expression in
the human cerebral cortex, compared to other regions of the brain; “excitatory neurons” represents the 30 genes associated to excitatory
neurons; “PGP1” refers to the 3 genes linked to PGP1; “overall” gathers all 299 genes belonging to any of the previous lists.

development. Comparing these two groups of samples should highlight changes that happen during brain
development. After filtering low quality cells, via the scater (McCarthy et al., 2017) R package, and lowly
abundant genes, with less than 10 non-zero cells, we were left with a total of 35,972 genes and 25,556 cells.
Using the cell-type annotation available from the original study (Velasco et al., 2019), we grouped cells
in six cell types (Supplementary Table 5). We applied differential methods and discovered differences,
for each cell type, across development time points. We then used The Human Protein Atlas website
(Pontén et al., 2008) to generate the following lists of potentially interesting genes: 97 genes which have
only been detected in the human brain; 180 genes that displayed significantly higher abundance in the
human cerebral cortex (i.e., the area the organoids are derived from), compared to other regions of the
brain; 30 genes associated to excitatory neurons, which play a key role in the development of the human
brain cortex (Costa and Müller, 2015); 3 genes linked to the PGP1 cell line (i.e., the cell line used to
generate the data). In absence of a ground truth, for each method, we investigated how often these genes
appear in the top 200 ranked genes from each cell type. Overall, satuRn_SC, DifferentialRegulation and
DifferentialRegulation_Wald top discoveries contain significantly more potentially interesting genes than
competitors (Table 1). DifferentialRegulation’s results are coherent with the fact that, in the simulation
studies, our approach, among its top ranked genes/transcripts, led to fewer false positives than other
methods.
We also considered a bulk (paired-end) RNA-seq real dataset from pancreatic β cells in mouse embryos,
collected during pancreas development (Osipovich et al., 2021). The dataset consists of 3 wild-type, and 3
Zfp800 knockout mice, where Zfp800 is a crucial protein for pancreas development. After removing lowly
abundant transcripts (less than 10 counts in at least one group), we analyzed 54,904 transcripts, associated
to a total of 16,347 distinct genes. Following a similar approach to the one outlined above, we built two
lists of potentially interesting genes, searching for terms “mouse pancreas development” (110 genes) and
“ZNF800” (3 genes) on The Human Protein Atlas. We then converted each transcript name to the name
of the corresponding gene, and counted how many of each method’s top 1,000 results belong to these two
lists. Compared to the single-cell real data, results are more homogeneous across methods (Supplementary
Table 6); nonetheless, DifferentialRegulation identifies slightly more interesting genes than competitors.
Finally, in both bulk and single-cell real data analyses, we visually checked convergence and mixing of the
posterior chains for π̃U (i.e., the key parameter of inference) for the 20 most significant results (traceplots
in Supplementary Figures 11-14). Additionally, we investigated how robust results are when running the
algorithm multiple times. To this aim, we analyzed each real dataset twice, using distinct seeds for the
random number generator (i.e., set.seed in R), and compared results: Wald test p-values across runs were
highly coherent, with a Pearson correlation of 0.987 and 0.996 in the bulk and single-cell application,
respectively.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2023.08.17.553679doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553679
http://creativecommons.org/licenses/by/4.0/


4 Discussion

We have introduced DifferentialRegulation, a Bayesian hierarchical approach to discover differentially
regulated genes and transcripts across conditions, by detecting changes in the relative abundance of
unspliced reads, which indicate differences in the future mRNA production. Our method works with both
bulk and single-cell RNA-seq data, and is based on two distinct models to adapt to the peculiar aspects
of the data being analyzed. Similarly, the outputs of the two frameworks differ, and take advantage of
the information that each data type provides: in bulk data, we target transcript-level changes (across all
cells), while in single-cell data, we aim at cluster (e.g., cell-type) specific changes, yet at the gene level.
Importantly, RNA-seq data is typically characterized by a high degree of quantification uncertainty: we
account for it via a latent variable approach where reads are allocated to their gene/transcript of origin,
and to the corresponding splice version.
Starting from real data as anchor data, we designed several benchmarks for bulk and single-cell RNA-seq
data, and compared DifferentialRegulation to state-of-the-art tools. Our method displays good sensitivity
and specificity, and shows fewer false discoveries than competitors among top ranked genes, that are
usually chosen by biologists for further investigations. Additionally, our approach appears to be robust
with respect to nuisance effects, such as differential gene expression, differential alternative splicing, and
batch effects, and shows good performance even in lowly abundant genes/transcripts. We also performed
two real data analyses, where our method can detect (among its top ranked genes) more potentially
interesting genes than most alternative approaches.
We distributed DifferentialRegulation, open-access, as an R package via the Bioconductor project, which
facilitates its integration with other bioinformatics tools and pipelines; furthermore, we provided an
example usage vignette, and plotting functions that simplify the visualization of results.
Finally, we would like to acknowledge some limitations of our framework. First, our method is amongst
the most computationally demanding tools we tested, although clever coding techniques (such as under-
sampling, and C++ coding) enabled us to run our approach in our benchmarks in approximately 40-60
minutes using a single core. Furthermore, note that, our single-cell approach can also benefit from parallel
coding, which can be particularly useful in large datasets. Second, covariates, such as batch effects, are not
modelled; nonetheless, such nuisance effects usually affect overall gene abundance, while our framework
focuses on relative abundance, and (as shown) is robust to DGE changes; therefore, such covariates are
unlikely to impact results.

Availability

DifferentialRegulation is freely available as a Bioconductor R package at https://bioconductor.org/packages/
DifferentialRegulation. The scripts used to run all analyses are available on GitHub (https://github.com/
SimoneTiberi/DifferentialRegulation_manuscript, release v2). R scripts were run with R version 4.3.0,
and Bioconductor packages from release 3.17. Raw data (fastq files) for the sample used to seed the bulk
simulation are available from https://www.ebi.ac.uk/ena/browser/view/SRR493366. The dataset used
as anchor for the single-cell simulation can be downloaded from Gene Expression Omnibus (accession
number GSE107585). The bulk data used in the real data analysis is available at the Gene Expression
Omnibus (accession number GSE129519). The single-cell data used in the real data analysis is available
at ArrayExpress (accession number E-MTAB-9538).
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