

1 **Haplotype differences in common bean accessions confer the capacity to flower**
2 **under Scandinavian summer conditions.**

3 Rendón-Anaya M^{1*}, Buinovskaja G¹, Yu L¹, Ingvarsson PK¹.

4 ¹ Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter,
5 Swedish University of Agricultural Sciences, Uppsala, Sweden.

6 * Corresponding author: martha.rendon@slu.se

7

8 **Abstract**

9 The capacity to flower under long days has been a major pre-requisite for the
10 adaptation of the common bean to European climates. The complexity of such
11 adaptation has been studied, mostly under the optics of QTL mapping, but still the
12 genetic basis of the trait remains elusive. In the current study we sequenced a
13 collection of >200 accessions of *P. vulgaris* of Mesoamerican, Andean and European
14 origin, for which the flowering capacity under long days during the summer season in
15 Sweden was evaluated. Our variant calling strategy allowed us to identify 16.9e⁶ SNPs
16 and 38.6e³ long structural variants. Furthermore, we observed gene-pool specific
17 selective sweeps that correspond to the independent domestication events in the
18 Americas. GWAS and haplotype structure tests identified single nucleotide and
19 structural variants strongly associated to the capacity to flower under long days,
20 particularly in chromosome 1.

21

22 **Introduction**

23 Many aspects of plant growth and development show fine-tuned local adaptation,
24 and this is particularly true for the transition from vegetative growth to flowering (Roux,
25 et al. 2006). In many plant species, flowering requires exposure to specific
26 photoperiods and/or temperatures and flowering may be delayed or prevented when
27 these requirements are not met. As plants encounter environments that subject them
28 to novel conditions, genetic adaptations that modify, relax or eliminate existing
29 constraints on flowering can enable expansion across environmental gradients and/or
30 climatic regimes. Although flowering time can be seen from one perspective as a
31 relatively simple trait, the transition from vegetative to reproductive stages is

32 accompanied by significant changes to a wide range of other developmental traits,
33 including stem elongation, apical dominance, lateral branching, and resource
34 allocation. Thus, a large number of genes that contribute to the control of flowering
35 time have been identified in *Arabidopsis* and other model plant species (Huang and
36 Nusinow 2016; Huang, et al. 2017), and it has been observed that genetic networks
37 regulating flowering and the transitions between vegetative and reproductive stages
38 are largely conserved across Angiosperms (Pin and Nilsson 2012).

39 Crops domesticated in the Americas span a spectrum of genetic relatedness, have
40 been domesticated for diverse purposes, and have responded to human selection by
41 changes in many different traits. While these crops provide examples of both parallel
42 and convergent evolution at various levels, data are still insufficient to provide
43 quantitative or conclusive assessments of the relative roles of these two processes in
44 domestication and diversification. The common bean (*Phaseolus vulgaris* L) as a
45 species originated in Mesoamerica, which is also the centre of origin for the entire
46 genus *Phaseolus*. *P. vulgaris* is a herbaceous annual plant that mainly reproduces
47 through selfing. Two *P. vulgaris* gene-pools have been recognized, one in
48 Mesoamerica and the second in the southern Andean region in South America, and
49 these gene pools diverged around 165,000 YA (Schmutz, et al. 2014; Ariani, et al.
50 2018). Common bean was then independently domesticated in these two locations
51 around 8,000 YA (Kwak and Gepts 2009), leading to two distinct populations that share
52 similar morphological traits as a consequence of artificial selection. Following the
53 arrival of Spain and Portugal to the Americas, the common bean was introduced to
54 Europe where it rapidly adapted to grow at both higher latitudes and lower
55 temperatures over the last 500 years. The European cultivars of *P. vulgaris* have a
56 predominant Andean genetic background (Angioi, et al. 2010).

57 Populations of *P. vulgaris* comprise either short-day plants that flower under short-
58 day photoperiods (day length less than 12hrs) that allow seed production to be
59 completed before the onset of the dry season, or day-neutral plants that flower
60 independently of photoperiod cues. Following the introduction to Europe, common
61 bean has been under selection for altered photoperiod sensitivity in favour of flowering
62 under long day conditions (day lengths >14 hrs) which coincides with the growing
63 season across much of Europe (latitudes 35°N and higher). Today, European
64 landraces show clear signs of adaptation to local photoperiod (Rodriguez, et al. 2013).

65 However, such a rapid response to the European local conditions could also be
66 mediated by pre-existing adaptations to cooler climates and differences in photoperiod
67 sensitivity in the introduced genotypes.

68 Genetic analyses of flowering in legumes, e.g., soybean, pea and alfalfa, have
69 associated dozens of relevant genes to photoperiod sensitivity, including genes
70 involved in light perception, the circadian clock or signal integration for inflorescence
71 development [reviewed by (Weller and Ortega 2015)]. In common bean, recombinant
72 inbred lines (RIL) based analyses have associated several loci to photoperiod
73 response, e.g., PHYTOCHROME A (Weller, et al. 2019) on chromosome 1, a locus in
74 chromosome 4 encoding a CONSTANS-like and a gene encoding an AGAMOUS-like
75 8 on chromosome 9 (Gonzalez, et al. 2021).

76 In this report we sequenced the full genome of a large collection of 232 *P. vulgaris*
77 accessions from different geographic origins, including wild individuals, landraces and
78 elite cultivars. We dissected the signatures of domestication and adaptation through
79 scans of positive selection and studied the genomic background of the flowering
80 capacity during long days by means of GWAS and haplotype structure analyses. The
81 resolution of our comparisons allowed us to identify genomic signals specific to each
82 gene-pool and to identify different haplotype structures that allow common bean
83 cultivars to flower under long days, typical of the Scandinavian summer season.

84

85 **Materials and methods**

86

87 *Plant material and growing conditions*

88 We collected a diverse panel of 232 *Phaseolus vulgaris* accessions of
89 Mesoamerican, Andean and European origin, that include commercial accessions,
90 land races and wild-collected individuals from the centres of origin (Supplementary
91 table 1). These accessions are publicly available at the International Centre for
92 Tropical Agriculture in Cali, Colombia; the Nordic Genetic Resource Center and the
93 European Search Catalogue for Plant Genetic Resources at Gatersleben, Germany.

94 We evaluated our panel of *Phaseolus* accessions as follows: the 232 accessions
95 were sown in medium pots (10 cm of diameter) with 750 gr of sterile soil. Plants were

96 grown in green-house conditions during the summer at the Plant Cultivation Facility at
97 the BioCentre, Swedish University of Agricultural Sciences, Uppsala, which means that
98 plants were exposed to very long days (>16hrs of light) and temperatures as high as
99 >28°C. The capacity to flower under these conditions was coded as a binary trait (0,
100 non-flowering; 1, flowering) for the association analyses.

101

102 ***Genome re-sequencing, mapping and SNP calling***

103 Total genomic DNA was extracted from frozen leaf tissue for all individuals using the
104 DNeasy plant mini prep kit (QIAGEN, Valencia, CA, USA). Briefly, 1 µg of high-quality
105 DNA was used for paired-end libraries construction. The libraries (TruSeq, PCR-free,
106 350bp) were subjected to paired-end sequencing (2x150) at the National Genomics
107 Infrastructure at Science for Life Laboratory, Stockholm, on an Illumina NovaSeq 6000
108 to a mean per-sample depth of approximately 15X.

109 Raw reads were mapped to the reference genome of *P. vulgaris* ([https://phytozome-
110 next.jgi.doe.gov/info/Pvulgaris_v2_1](https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1)) using BWA-mem version 2.2.3 (Li and Durbin
111 2009). Aligned reads were flagged for duplicates using the MarkDuplicates program in
112 Picard tools version 1.119 (<http://broadinstitute.github.io/picard/>). Multi-sample single
113 nucleotide polymorphism (SNP) calling was performed using the Genome Analysis
114 Toolkit (GATK) version 3.8. For GATK, SNPs were called using the tools
115 HaplotypeCaller and GenotypeGVCF. SNPs were only retained if they matched the
116 following criteria: QualByDepth > 20 (a measure of alternative allele quality
117 independent of read depth), MQ > 30 (the minimum phred-scaled mapping quality of
118 the reads supporting the alternative allele), FisherStrand < 10 (whether an alternative
119 allele was predominantly supported by one read orientation only),
120 -2 < BaseQualityRankSumTest < 2 (a test statistic to assess whether the base quality
121 of reads supporting the alternative allele was significantly worse than reads supporting
122 the reference allele), -2 < ReadPosRankSumTest < 2 (a test statistic to assess
123 whether the base position in a read supporting the alternative allele was significantly
124 different than the base position in a read supporting the reference allele),
125 -2 < MappingQualityRankSumTest < 2 (a test statistic to assess whether the mapping
126 quality of reads supporting the alternative allele was significantly worse than reads

127 supporting the reference allele), and RMSMappingQuality > 30 (an estimation of the
128 overall mapping quality of reads supporting an alternative allele).

129 We calculated genome-wide breadth and depth of coverage using samtools (Li, et al.
130 2009). After obtaining the average coverage in our collection, we set a minimum and
131 maximum number of reads per site to filter out very low/high depth sites. For
132 downstream analyses we kept only biallelic sites with no more than 30% missingness
133 in the vcf file, which were obtained with BCFtools (Li 2011).

134

135 *Population genomics*

136 To calculate standard population genomics estimators, such as pi, F_{ST} and dxy we
137 used the python package *genomics_general*
138 (https://github.com/simonhmartin/genomics_general). Linkage-disequilibrium (LD)
139 decay was plotted with PopLDdecay (Zhang, et al. 2019). In order to remove potentially
140 duplicated samples between genebanks and closely related individuals we calculated
141 identity by descent (IBD) with PLINK v1.9 (Purcell, et al. 2007). Samples with a PI_HAT
142 > 0.4 were removed. SNP-based PCAs were constructed using plink –pca on pruned,
143 unlinked sites with a minimum MAF exceeding 0.05.

144 We used two methods to assign the ancestral allelic state to each polymorphic site.
145 We used est-sfs (Keightley and Jackson 2018), that estimates the unfolded site
146 frequency spectrum, allowing for several outgroups and nucleotide substitutions
147 models. To use this method, we selected two *P. coccineus* genotypes as outgroups,
148 one of them domesticated (G35406) and a wild, Mesoamerican (G35856); we ran est-
149 sfs using the rate-6 model. However, mapping *P. coccineus* on the reference *P.*
150 *vulgaris* genome results in a reduced breadth of coverage (~70% of *P. coccineus* vs
151 92% of *P. vulgaris*). For this reason, we also produced a consensus genome based on
152 the most represented variants in the wild Mesoamerican *P. vulgaris* samples using
153 ANGSD -doFasta 2 that outputs a fasta file taking the most common base per site
154 given a series of bam infiles mapped to the reference genome (Korneliussen, et al.
155 2014). With this, we could extrapolate the ancestral allele in the vcf files for further
156 selective sweep analyses.

157

158 ***Structural variant identification***

159 We combined three different software to detect structural variants in the samples,
160 DELLY (Rausch, et al. 2012), dysgu (Cleal and Baird 2022) and Manta (Chen, et al.
161 2015). Our in-house pipeline finds SVs supported (flagged PASS) by the three
162 software with minimum 80% reciprocal overlap, and produces a single VCF file with
163 the filtered, high-quality SVs (https://github.com/buinovsg/SV_detection_pipeline/).
164 Because of the amount of memory required by each software prevented analyses of
165 large numbers of samples, we called SVs in four batches, MW, AW, MD+AD and EU,
166 and then combined them in one single VCF file assuming genotypes at missing types
167 as reference with bcftools merge -0 (Li 2011). We searched for gene-pool specific SVs
168 assuming a minor allele frequency greater than 0.05 to avoid spurious signals.
169

170 ***Positive selection scans***

171 Scans for selective sweeps were performed using both a cross-population composite
172 likelihood ratio method (XP-CLR, implemented in python (Chen, et al. 2010)), and the
173 cross-population extended haplotype homozygosity test (XP-EHH, implemented in the
174 rehh package version 2.0.2 in R (Gautier and Vitalis 2012)) on subsamples identified
175 with our PCA analysis and using only SNPs that were polymorphic within the genetic
176 cluster. The pre-defined subpopulations correspond to Mesoamerican wild (MW),
177 Mesoamerican domesticated (MD), Andean wild (AW), Andean domesticated (AD),
178 European (EU) that can be subdivided in European with Mesoamerican background
179 (Eu-M) or European with an Andean background (Eu-A). These populations will be
180 referred to using their respective abbreviated names. We used pairwise comparisons
181 as follows: wild vs domesticated (MW-MD; AW-AD) and domesticated vs introduced
182 (MD-EuM; AD-EuA), in order to differentiate the effects of the domestication process
183 from recent adaptation to the European environment. XP-EHH assesses haplotype
184 differences between two populations and is designed to detect alleles that have
185 increased in frequency to the point of fixation or near fixation in one of the two
186 populations being compared. XP-CLR, on the other hand, is based on the linked allele
187 frequency difference between two populations and is a unidirectional method to find
188 the pattern with regional allelic frequency difference in-between population. We
189 combined the top 5% of Fst and top 5% XP-CLR as outliers in each pairwise
190 comparisons for a more stringent identification of windows with signatures of positive

191 selection. For XP-EHH, significant SNPs with p-value < 0.05 were considered
192 significant. We used default options for all analyses, setting the window size to 10kb
193 with a minimum of 100 polymorphic sites per window, given that the SNP density per
194 KB is close to 10 in all populations but the MW. Because of the slow decay of LD in
195 the domesticated clusters we next binned chromosomes in 500kb windows and
196 calculated the occurrence of XP-CLR-Fst outliers in each bin. Based on the distribution
197 of windows, we extended windows if the neighbouring bin had at least 5 outlier
198 windows.

199 ***Genome wide associations and haplotype differentiation***

200 We coded the phenotypic data as binary matrices, i.e. flowering accessions were
201 coded with 1, whereas non-flowering were coded with a 0. We used SNP panels of
202 pruned sites (filtered with plink -maf 0.05 -indep-pairwise 100 10 0.2 -geno 0.1) to run
203 genome-wide association analyses. We produced three different sets of pruned SNPs,
204 one for the entire collection of *P. vulgaris* accessions, and two more for the gene-pool
205 specific association analyses. We converted each vcf file to a matrix of 0,1 and 2 values
206 for homozygous (ref/alt) or heterozygous genotypes with vcftools (vcftools –012). As
207 we allowed 10% of missingness in this genotype filtering step, we had to impute the
208 missing genotype information to avoid numeric biases in the GWAS calculations. For
209 each column in the matrix representing individual positions, we calculated the mean
210 genotype value (not including missing genotypes coded as -1) that we used to fill the
211 missing genotypes. This numeric matrix was the input for GWAS analyses.

212 We combined genotype and phenotypic data on photoperiod sensitivity through
213 genome-wide association mapping (GWAS). GWAS was performed using several
214 models: mixed linear model (MLM), multiple loci mixed model (MLMM), and Bayesian-
215 information and linkage-disequilibrium iteratively nested keyway (BLINK), all
216 implemented in GAPIT3 (Wang and Zhang 2021). We controlled for the effects of
217 population structure by setting the number of relevant PCs at 5; we used SNPs and
218 SVs with a minimum allele frequency of 0.05.

219 Finally, we conducted haplotype structure analyses around significant markers
220 associated to our target phenotype in the GWAS screenings, which represent a very
221 efficient method to identify differences in LD decay. For these small scale analysis we
222 polarized the variant sites using the est-sfs method. We performed haplotype furcation

223 analyses, where the root of each diagram is a selected marker – defined as a SNP
224 with significant p-values in our GWAS screenings. We also calculated the relative EHH,
225 i.e. the factor by which EHH decays at the focal SNP compared with the decay of EHH
226 on all other core haplotypes combined. EHH at a distance x from a core SNP is defined
227 as the probability that two random chromosomes carrying a tested core haplotype, are
228 homozygous at all variant sites for the entire interval from the core region to the
229 distance x. Then, the haplotype structure was evaluated in a bi-directional mode,
230 allowing us to estimate both proximal and distal LD. Moving in one direction, the
231 diagram might bifurcate if both or only one allele is present at the next marker. The
232 thickness of the lines corresponds to the number of samples with the long-distance
233 haplotype. EHH and bifurcation analyses were run with rehh (R; (Sabeti, et al. 2002;
234 Gautier and Vitalis 2012)). This level of resolution allowed us to see the structure of
235 derived and ancestral haplotypes in the tested populations in contrast to control
236 individuals, such as the wild samples from each species and gene pool.

237

238 **Results**

239 *Population structure*

240 We re-sequenced 232 *P. vulgaris* accessions of Mesoamerican, Andean and
241 European origin, that include commercial accessions, land races and wild-collected
242 individuals from the centres of origin (Table S1). The estimated average depth and
243 breadth of coverage were 13,7X and 90.2% across the samples. Due to strong
244 relatedness and to possible duplications of some accessions across seedbanks, we
245 retained 172 accessions for downstream analyses.

246 Based on 161,391 pruned SNPs out of a total of 16,907,953, we obtained a PCA
247 that grouped the accessions following their genetic background: PC1 separates the
248 accessions in the two dominant gene pools, Mesoamerican (MA) and Andean (AN),
249 while PC2 separates them according to their domesticated/wild state (Figure 1A). We
250 observe two divergent groups of wild accessions, two clusters of domesticated
251 accessions in proximity to their wild ancestors, which confirms both independent
252 domestication events, and finally, a large group of accessions grown in Europe that
253 can be separated according to their genomic background, but that also displays clear
254 signs of admixture following the introduction of the species in Europe. Based on this

255 result, we further separate the European collection according to their predominant
256 genomic background (Table S2).

257 Interestingly, when classified by flowering capacity (Figure 1B), we confirm the day
258 length sensitivity in the wild accessions. Furthermore, most accessions grown in
259 Europe had a predominant Andean background, which confirms previous observations
260 regarding the gene pools present in the continent (Gepts and Bliss 1988; Angioi, et al.
261 2010).

262

263 *Population genomics*

264 We ran several estimators of genetic diversity and differentiation in our panel of
265 accessions that confirmed previous observations in terms of diversity and linkage
266 disequilibrium decay between gene pools. First, clustering of the accessions based on
267 their *dxy* values produced two independent clades, one Mesoamerican and one
268 Andean, with longer branch lengths in the MA clade (Figure S1). We observed the
269 highest nucleotide diversity in the wild Mesoamerican population ($\pi[MW]=0.13$; Figure
270 S2A), which is expected given that MA is the centre of origin of the species (Alfonso
271 Delgado-Salinas 2006; Delgado-Salinas, et al. 2006). The lowest diversity was
272 observed in the Andean gene pool ($\pi[AW]=0.02$; $\pi[AD]=0.025$) while in European
273 samples we observed a recovery of diversity which is a likely indicator of the recent
274 admixture between MA and A gene pools following their introduction in Europe. The
275 calculated inbreeding coefficient (*F*) in each subpopulation followed the expected
276 gradient (from ~0.7 in MW up to ~0.96 in AD) given the preferred self-pollination
277 strategy of *P. vulgaris* and its demographic history (Figure S2B). In terms of linkage
278 disequilibrium, we observed a rapid LD decay in less than 50kb in wild MA samples
279 while LD extends several hundreds of Kbs in the domesticated populations and
280 particularly individuals with an Andean background (Figure S3A).

281

282 *Positive selection and sweep detection*

283 A selective sweep occurs when a beneficial variant arises and spreads in a
284 population and results in reduced sequence diversity both at the site of the
285 beneficial allele as well as at neutral markers linked to the selected site (Tiffin and
286 Ross-Ibarra 2014). Since selective sweeps result in reduced variation, a distorted site

287 frequency spectrum, high linkage disequilibrium and extended haplotype structure in
288 genomic regions surrounding the sites of fixed adaptive mutations, they are relatively
289 easy to detect using a number of statistical methods (Sabeti, et al. 2002; Ferrer-
290 Admetlla, et al. 2014; Vatsiou, et al. 2016). We used an array of selection statistics to
291 identify regions targeted by positive selection during domestication in the Americas
292 and adaptation to European conditions over the past five centuries. We used both site
293 frequency spectrum (XP-CLR) and linkage disequilibrium (XP-EHH) based
294 approaches on subsamples of Andean and Mesoamerican origin in a pairwise fashion:
295 wild vs domesticated (MW-MD; AW-AD) and domesticated vs introduced (MD-EuM;
296 AD-EuA).

297 Using a stringent significance threshold (top 5% XP-CLR values on 10Kb windows
298 with at least 100 variants per window given the SNP density per Kb; Figure S3B) we
299 obtained 891 and 224 outlier windows for the MD and AD gene pools, respectively. To
300 achieve an even more stringent filter of selective sweep regions we combined the top
301 5% XP-CLR signals with the top 5% F_{ST} outliers from each pairwise comparison. The
302 intersection of XP-CLR and F_{ST} outliers resulted in 248 and 100 windows as potential
303 domestication targeted regions in the MA and AD gene pools, respectively (Figure 2A,
304 highlighted in green). Interestingly, we found only four overlapping regions between
305 these MA and AD domestication related regions, in chromosomes 8, 9 and 11
306 containing the gene models Phvul.008G246000 (homologous to CRF4 cytokinin
307 response factor 4), Phvul.009G057700 (homologous to the DUF21 domain-containing
308 protein At1g47330), Phvul.011G065400 (homologous to a ubiquitin-conjugating
309 enzyme E2 7) and Phvul.011G065500 (homologous to ATDSI-1VOC, a dessication-
310 induced 1VOC superfamily protein). The same filters were applied to the clusters of
311 European accessions (separated by genetic background), obtaining 58 and 13 outlier
312 windows in the EU-MD and EU-AD, respectively (Figure 2B). Because of the slow
313 decay of LD in domesticated samples, we grouped significant windows identified as
314 XP-CLR outliers in bins of 500kB across all chromosomes. In the case of the MA
315 domestication event, we observed a high number of XP-CLR outliers (≥ 10
316 windows/500Kb; average number of outliers/500Kb=0.9) in chromosomes 1 between
317 47.5-48Mb, 12 outliers; chromosome 3, 50.5-51Mb; chromosome 4, 10-10.5Mb;
318 chromosome 7, 2-2.5Mb; chromosome 8, 4.5-5Mb, 58.5-60Mb (25 outliers in total in
319 these 1.5Mb), and chromosome 9, 10.5-11 Mb, 13-13.5Mb and 30.5-31Mb. Such

320 signal was weaker for the AD domestication event (average number of
321 outliers/500Kb=0.2) presumably because of lower power to detect selective sweeps
322 due to the substantially reduced diversity seen across the genomes of plants with an
323 Andean origin.

324 Using an LD-based approach of cross-population extended haplotype
325 homozygosity we obtained a different set of signals of domestication and adaptation.
326 This pairwise comparison had a low performance when contrasting domesticated
327 accessions from the Americas against their wild relatives, detecting only 10 and 34
328 significant sites in AD and MA respectively, at a p-value <0.05 for $|XP-EHH|$. However,
329 this method detected 277 significant sites when contrasting EUMD against the MA
330 domesticated subsample. Of these, only 2 sites on chromosome 2 overlapped with an
331 XP-CLR outlier in the MA gene pool, but there was no intersection in the AD gene pool
332 cross-comparisons.

333 We then used the gene models predicted within the outlier windows of our selection
334 scans and evaluated functional categories that were over-represented among them
335 using F_{ST} and XP-CLR outliers separately as the stringent intersection of both statistics
336 did not produce any significant enrichment categories. We observed interesting GO
337 terms significantly enriched in the MA domestication event such as those related to
338 carbohydrate and amino acid metabolic processes. In the AD pool, terms related to
339 lipid metabolic process, photosynthesis/light harvesting, and generation of precursor
340 metabolites and energy were detected. Interestingly, in both domesticated gene pools,
341 DNA repair and cellular response to DNA damage stimulus, as well as protein
342 dephosphorylation were significantly enriched (Figure 2C). In the outliers associated
343 with adaptation to Europe, we observed similar categories such as carbohydrate,
344 nitrogen and sulfur compound metabolic processes (Figure 2D). Only accessions with
345 an MD background were enriched for protein phosphorylation at XP-CLR outliers.

346

347 *Structural variation in the domesticated gene-pools*

348 Structural variation (SV) is defined as large genomic differences (> 50 bp) between
349 individuals which arise from changes in DNA sequence length, copy number,
350 orientation, or chromosomal location. They can be classified into deletions (DELs),
351 duplications (DUPs), insertions (INSs), inversions (INVs) and translocations (TRAs).

352 Most SVs are formed from single events but different combinations of SV types have
353 been known to occur together (Yi and Ju 2018). SVs are usually considered separately
354 from single nucleotide polymorphisms (SNPs) and small indels (insertions and
355 deletions) due to their larger size, greater impact on gene function and different
356 mutational origin (Chiang, et al. 2017). Based on the intersection of three software
357 designed to detect SVs from short read data, we identified 38,591 variants in our panel
358 of accessions. A PCA analysis based on SVs (filtered by MAF>0.05) recovered the
359 population structure we detected previously with SNP data (Figure 3A). As expected,
360 given the Andean origin of the reference genome (Schmutz, et al. 2014), we detected
361 the highest number of unique SVs in the MW pool followed by AW and MD (Figure 3B).
362 To further understand the role of SVs in the domestication and adaptation processes
363 we looked for gene models that overlap with gene pool specific predictions of SVs and
364 searched for functional enrichments among those genes. We identified 655, 339 and
365 255 gene models that overlapped with SVs in the MD, AD and EU pools, respectively,
366 and observed interesting functional categories that were enriched among them (Figure
367 3C). In the MD pool genes overlapping with SVs were enriched for sulphur compound
368 and carbohydrate metabolism, while the AD and EU gene pools showed enrichments
369 for cell wall modifications and stress response, respectively. Finally, a GWAS based
370 on the SVs identified two variants located on chromosome 1 that were associated with
371 the capacity to flower during Scandinavian summers: an insertion of 66bp at
372 44,731,098 bp and a deletion of 5064bp at 44,783,344 (figure 3D). These variants are
373 located in the vicinity of *TFL1*.

374

375 *Flowering associated haplotypes*

376 We ran genome wide association analyses using both multi-locus models, MLMM
377 and Blink, as well as single locus model, MLM, all implemented in GAPIT3; the
378 advantages of these models in terms of statistical power vs computational cost have
379 been discussed elsewhere (Wang and Zhang 2021). All methods detected a significant
380 signal (Bonferroni correction alpha=0.05, *p*-value<3-1e-7) around 44.8Mb on
381 chromosome 1 (Figure 4A) that matches the previously identified *Fin* locus (Kwak, et
382 al. 2008; Kwak, et al. 2012). At this locus, the highest scoring SNP (SNP
383 Chr01_44852374_G_A, MLMM *p*-value of 2.8e-8) explains 43% of the phenotypic

384 variance and is located in close proximity (less than 4Kb) to *Terminal Flower 1 (TFL1,*
385 Phvul.001G189200 located between 44,856,139 and 44,857,862bp), which has
386 previously shown to be responsible for the indeterminate phenotype in *Phaseolus*
387 *vulgaris* (Koinange, et al. 1996). Using extended haplotype homozygosity (EHH) and
388 haplotype length, we observed in flowering accessions an extended EHH (>0.4 after
389 44.9Mb), whereas accessions that could not flower in long days had a very rapid decay
390 of EHH and most of them carried the ancestral allele.

391

392 **Discussion**

393 The capacity to flower under long days is a fundamental trait for bean cultivation in
394 Scandinavia. During the spring and summer seasons, daylength rapidly transitions
395 from approximately 10 to 17hrs between the months of March and July. Due to the risk
396 of frost damage during early developmental stages, common bean cultivation launches
397 late in the spring and thus, the transition from vegetative to reproductive stages occurs
398 at non-neutral daylengths. For this reason, we evaluated the flower capacity on a large
399 collection of common bean accessions during the summer months in Sweden (at a
400 latitude of 59.8°N). We observed strong GWAS signals (SNPs and SVs) and
401 differences in the extended haplotype homozygosity around a key regulator of
402 photoperiod sensitivity, *TERMINAL FLOWER 1 (TFL1)*, on chromosome 1. *TFL1* is a
403 floral repressor which is closely related to the florigen gene *FLOWERING LOCUS T*
404 (*FT*, (Corbesier, et al. 2007)). Both *TFL1* and *FT* are mobile proteins, but while *FT*
405 moves from the leaves to the shoot apical meristem (SAM), *TFL1* moves within the
406 SAM, regulating flowering time and shoot indeterminacy. *TFL1* is also involved in
407 maintaining the SAM, allowing indeterminate growth of the inflorescence. During the
408 vegetative phase, *TFL1* is expressed in low levels in the centre of SAM, but during the
409 switch to reproductive phase, *TFL1* is strongly up-regulated in axillary meristems and
410 then in the SAM which then converts into an inflorescence meristem. This locus has
411 been repeatedly associated to indeterminacy in *P. vulgaris* in both the Mesoamerican
412 and Andean gene pools (Kwak, et al. 2008; Kwak, et al. 2012). Furthermore, using
413 QTL mapping on a RIL population derived from Andean x Mesoamerican crosses with
414 determinate and indeterminate genotypes, Gonzalez and collaborators (Gonzalez, et
415 al. 2016) suggested that *TFL1* might be also involved in the flowering response and
416 not only defining the indeterminacy of the plants, as the identified QTL around *TFL1*

417 explained up to 32% of phenotypic variation for time to flowering, 66% for vegetative
418 growth, and 19% for rate of plant production.

419 ***Functional convergence during domestication and adaptation***

420 We observe a remarkable parallelism at the functional level in terms of the gene
421 ontology categories that were significantly enriched in both domestication events and
422 during the adaptation of the common bean to European conditions. Given the drastic
423 changes in terms of seed traits, as varieties have been selected for increasing their
424 nutritional value, it was not surprising to find carbohydrate metabolism related
425 categories enriched for both events of artificial selection. However, more unexpected
426 GO terms, such as DNA repair related categories and protein phosphorylation, were
427 also enriched in positive selection outliers in both Andean and Mesoamerican gene
428 pools, suggesting parallel targets of artificial selection during both domestication
429 events. The role of such categories behind domestication has only recently been
430 addressed by Wang and collaborators (Wang, et al. 2019), who suggest that if the
431 accumulation of polymorphisms in DNA repair related genes predates domestication,
432 they could have facilitated the emergence of domestication syndrome traits. In
433 addition, enrichment of protein (de)phosphorylation, the other functional category
434 present for both domestication events, could easily occur due to the important role of
435 post-translational modifications in plant development and, most importantly, in
436 response to different sources of stress (reviewed by (Damaris and Yang 2021)).

437

438 ***Structural variants behind domestication and adaptation***

439 Improving methods of SV detection has led to an increasing amount of evidence
440 supporting their effect on a wide variety of plant traits. SVs have, for example, been
441 shown to play a role in plant resistance and immunity such as copy number variation
442 (CNV) in the aluminium-resistance gene *MATE1* that affects aluminium tolerance in
443 maize (Maron, et al. 2013), an increase in VRN-A1 locus copy number in wheat that
444 has been associated with frost tolerance (Zhu, et al. 2014) and presence/absence
445 variation (PAV) that has been linked to resistance against *Verticillium longisporum*
446 fungal infection in rapeseed, *Brassica napus* (Gabur, et al. 2019). SVs have also been
447 shown to affect phenotypic plant traits. Fruit shape and flesh colouring have been
448 shown to be associated with a 487 bp DEL and a 1.67 Mb INV respectively in peach
449 (Guo, et al. 2020). Yang and collaborators (Yang, et al. 2019) found DELs and INVs

450 that were significantly associated to oil concentration and long-chain fatty acid
451 composition in maize. Ecotypic differentiation resulting from SV formation has been
452 observed in wild sunflower where divergent haploblocks have further been associated
453 with seed size and flowering time (Todesco, et al. 2020). Also, it was demonstrated
454 that changes in gene dosage and expression levels resulting from SVs in tomato can
455 affect traits such as fruit flavour, size and production (Alonge, et al. 2020).

456 Here we are able for the first time to associate structural variants to traits that have
457 been important during the domestication process by identifying pool-specific SVs in
458 the common bean. We produced a high-quality catalogue of structural variants that
459 were supported by three independent tools, and this allowed us to evaluate both the
460 proximity of SVs to gene models as well as their implication for the phenotypic traits
461 we have dissected in this report. The functional enrichments of gene models identified
462 as overlapping with SVs and the strong association of two particular SVs to
463 photoperiod sensitivity are compelling arguments that support the relevance of SVs in
464 phenotypic evolution in the common bean. While analyses of gene expression
465 differences could provide even further details about the regulatory role of SVs in the
466 common bean, the associations reported herein provide important cues about the
467 multi-layered genomic landscape of *P. vulgaris*, from its domestication to its recent
468 introduction and adaptation to Europe.

469

470 **Acknowledgements**

471 The common bean collection was phenotyped at the Plant Cultivation
472 Facility in Biocentrum, SLU campus Ultuna. We want to thank the team in charge of
473 the phytotrons and green-house, Urban Pettersson, Per Linden, Fredric Hedlund
474 and Kathrin Hesse. This research was financed by the Swedish Research Council
475 (VR), under the grant no. 2018-03780 to PKI. We acknowledge support from the
476 National Genomics Infrastructure in Stockholm funded by Science for Life
477 Laboratory, the Knut and Alice Wallenberg Foundation and the Swedish Research
478 Council for assistance with massively parallel sequencing. All computational
479 analyses and data handling were enabled by resources provided by the Swedish
480 National Infrastructure for Computing (SNIC) at Uppsala Multidisciplinary Centre for

481 Advanced Computational Science (UPPMAX) under the computing projects 2019/3-
482 597, 2020/5-621 and storage project sllstore2017050.

483 **Data accessibility**

484 Raw read data have been uploaded to NCBI and can be found under the
485 SRA Bioproject PRJNA1004188.

486 **Author contributions**

487 MR-A and PKI planned and designed the research. MR-A, GB and LY
488 performed experiments and analyzed data. MR-A and PKI wrote the manuscript. All
489 authors read and approved of the final version of the manuscript.

490
491
492
493

494

Cited literature

495 Alfonso Delgado-Salinas RB, Matt Lavin. 2006. Phylogeny of the Genus *Phaseolus*
496 (Leguminosae): A Recent Diversification in an Ancient Landscape.

497 Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S,
498 Maumus F, Ciren D, et al. 2020. Major Impacts of Widespread Structural Variation on Gene
499 Expression and Crop Improvement in Tomato. *Cell* 182:145-161.e123.

500 Angioi SA, Rau D, Attene G, Nanni L, Bellucci E, Logozzo G, Negri V, Spagnoletti Zeuli
501 PL, Papa R. 2010. Beans in Europe: origin and structure of the European landraces of
502 *Phaseolus vulgaris* L. *Theoretical and Applied Genetics* 121:829-843.

503 Ariani A, Berny Mier YTJC, Gepts P. 2018. Spatial and Temporal Scales of Range Expansion
504 in Wild *Phaseolus vulgaris*. *Mol Biol Evol* 35:119-131.

505 Chen H, Patterson N, Reich D. 2010. Population differentiation as a test for selective sweeps.
506 *Genome Res* 20:393-402.

507 Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, Cox AJ,
508 Kruglyak S, Saunders CT. 2015. Manta: rapid detection of structural variants and indels for
509 germline and cancer sequencing applications. *Bioinformatics* 32:1220-1222.

510 Chiang C, Scott AJ, Davis JR, Tsang EK, Li X, Kim Y, Hadzic T, Damani FN, Ganel L,
511 Consortium GT, et al. 2017. The impact of structural variation on human gene expression. *Nat*
512 *Genet* 49:692-699.

513 Cleal K, Baird DM. 2022. Dysgu: efficient structural variant calling using short or long reads.
514 *Nucleic Acids Res* 50:e53.

515 Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot
516 L, Turnbull C, et al. 2007. FT Protein Movement Contributes to Long-Distance Signaling in
517 Floral Induction of *Arabidopsis*. *Science* 316:1030-1033.

518 Damaris RN, Yang P. 2021. Protein Phosphorylation Response to Abiotic Stress in Plants. In:
519 Wu XN, editor. *Plant Phosphoproteomics: Methods and Protocols*. New York, NY: Springer
520 US. p. 17-43.

521 Delgado-Salinas A, Bibler R, Lavin M. 2006. Phylogeny of the Genus *Phaseolus* (Leguminosae): A Recent Diversification in an Ancient
522 Landscape. *Systematic Botany* 31:779-791, 713.

523 Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. 2014. On detecting incomplete soft
524 or hard selective sweeps using haplotype structure. *Mol Biol Evol* 31:1275-1291.

525 Gabur I, Chawla HS, Snowdon RJ, Parkin IAP. 2019. Connecting genome structural variation
526 with complex traits in crop plants. *Theor Appl Genet* 132:733-750.

527 Gautier M, Vitalis R. 2012. rehh: an R package to detect footprints of selection in genome-
528 wide SNP data from haplotype structure. *Bioinformatics* 28:1176-1177.

529 Gepts P, Bliss FA. 1988. Dissemination pathways of common bean (*Phaseolus vulgaris*,
530 Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa.
531 *Economic Botany* 42:86-104.

532 Gonzalez AM, Vander Schoor JK, Fang C, Kong F, Wu J, Weller JL, Santalla M. 2021.
533 Ancient relaxation of an obligate short-day requirement in common bean through loss of
534 CONSTANS-like gene function. *Curr Biol* 31:1643-1652 e1642.

535 Gonzalez AM, Yuste-Lisbona FJ, Saburido S, Bretones S, De Ron AM, Lozano R, Santalla
536 M. 2016. Major Contribution of Flowering Time and Vegetative Growth to Plant Production
537 in Common Bean As Deduced from a Comparative Genetic Mapping. *Front Plant Sci* 7:1940.

538 Guo J, Cao K, Deng C, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Guan L, et al. 2020.
539 An integrated peach genome structural variation map uncovers genes associated with fruit
540 traits. *Genome Biol* 21:258.

541 Huang H, Gehan MA, Huss SE, Alvarez S, Lizarraga C, Gruebbling EL, Gierer J, Naldrett
542 MJ, Bindbeutel RK, Evans BS, et al. 2017. Cross-species complementation reveals conserved

544 functions for EARLY FLOWERING 3 between monocots and dicots. *Plant Direct* 1:e00018-
545 e00018.

546 Huang H, Nusinow DA. 2016. Into the Evening: Complex Interactions in the *Arabidopsis*
547 Circadian Clock. *Trends Genet* 32:674-686.

548 Keightley PD, Jackson BC. 2018. Inferring the Probability of the Derived vs. the Ancestral
549 Allelic State at a Polymorphic Site. *Genetics* 209:897-906.

550 Koinange EMK, Singh SP, Gepts P. 1996. Genetic Control of the Domestication Syndrome in
551 Common Bean. *Crop Science* 36:cropsci1996.0011183X003600040037x.

552 Korneliussen TS, Albrechtsen A, Nielsen R. 2014. ANGSD: Analysis of Next Generation
553 Sequencing Data. *BMC Bioinformatics* 15:356.

554 Kwak M, Gepts P. 2009. Structure of genetic diversity in the two major gene pools of
555 common bean (*Phaseolus vulgaris* L., Fabaceae). *Theor Appl Genet* 118:979-992.

556 Kwak M, Toro O, Debouck DG, Gepts P. 2012. Multiple origins of the determinate growth
557 habit in domesticated common bean (*Phaseolus vulgaris*). *Ann Bot* 110:1573-1580.

558 Kwak M, Velasco D, Gepts P. 2008. Mapping homologous sequences for determinacy and
559 photoperiod sensitivity in common bean (*Phaseolus vulgaris*). *J Hered* 99:283-291.

560 Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping
561 and population genetical parameter estimation from sequencing data. *Bioinformatics* 27:2987-
562 2993.

563 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler
564 transform. *Bioinformatics* 25:1754-1760.

565 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin
566 R, Genome Project Data Processing S. 2009. The Sequence Alignment/Map format and
567 SAMtools. *Bioinformatics* 25:2078-2079.

568 Maron LG, Guimaraes CT, Kirst M, Albert PS, Birchler JA, Bradbury PJ, Buckler ES,
569 Coluccio AE, Danilova TV, Kudrna D, et al. 2013. Aluminum tolerance in maize is
570 associated with higher MATE1 gene copy number. *Proc Natl Acad Sci U S A* 110:5241-5246.

571 Pin PA, Nilsson O. 2012. The multifaceted roles of FLOWERING LOCUS T in plant
572 development. *Plant Cell Environ* 35:1742-1755.

573 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de
574 Bakker PI, Daly MJ, et al. 2007. PLINK: a tool set for whole-genome association and
575 population-based linkage analyses. *Am J Hum Genet* 81:559-575.

576 Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. 2012. DELLY: structural
577 variant discovery by integrated paired-end and split-read analysis. *Bioinformatics* 28:i333-
578 i339.

579 Rodriguez M, Rau D, Angioi SA, Bellucci E, Bitocchi E, Nanni L, Knupffer H, Negri V, Papa
580 R, Attene G. 2013. European *Phaseolus coccineus* L. landraces: population structure and
581 adaptation, as revealed by cpSSRs and phenotypic analyses. *PLoS One* 8:e57337.

582 Roux F, Touzet P, Cuguen J, Le Corre V. 2006. How to be early flowering: an evolutionary
583 perspective. *Trends in Plant Science* 11:375-381.

584 Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF, Gabriel SB, Platko
585 JV, Patterson NJ, McDonald GJ, et al. 2002. Detecting recent positive selection in the human
586 genome from haplotype structure. *Nature* 419:832-837.

587 Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S,
588 Song Q, Chavarro C, et al. 2014. A reference genome for common bean and genome-wide
589 analysis of dual domestications. *Nat Genet* 46:707-713.

590 Tiffin P, Ross-Ibarra J. 2014. Advances and limits of using population genetics to understand
591 local adaptation. *Trends Ecol Evol* 29:673-680.

592 Todesco M, Owens GL, Bercovich N, Legare JS, Soudi S, Burge DO, Huang K, Ostevik KL,
593 Drummond EBM, Imerovski I, et al. 2020. Massive haplotypes underlie ecotypic
594 differentiation in sunflowers. *Nature* 584:602-607.

595 Vatsiou AI, Bazin E, Gaggiotti OE. 2016. Changes in selective pressures associated with
596 human population expansion may explain metabolic and immune related pathways enriched
597 for signatures of positive selection. *BMC Genomics* 17:504-504.

598 Wang J, Li X, Do Kim K, Scanlon MJ, Jackson SA, Springer NM, Yu J. 2019. Genome-wide
599 nucleotide patterns and potential mechanisms of genome divergence following domestication
600 in maize and soybean. *Genome Biol* 20:74.

601 Wang J, Zhang Z. 2021. GAPIT Version 3: Boosting Power and Accuracy for Genomic
602 Association and Prediction. *Genomics Proteomics Bioinformatics* 19:629-640.

603 Weller JL, Ortega R. 2015. Genetic control of flowering time in legumes. *Front Plant Sci*
604 6:207.

605 Weller JL, Vander Schoor JK, Perez-Wright EC, Hecht V, Gonzalez AM, Capel C, Yuste-
606 Lisbona FJ, Lozano R, Santalla M. 2019. Parallel origins of photoperiod adaptation following
607 dual domestications of common bean. *J Exp Bot* 70:1209-1219.

608 Yang N, Liu J, Gao Q, Gui S, Chen L, Yang L, Huang J, Deng T, Luo J, He L, et al. 2019.
609 Genome assembly of a tropical maize inbred line provides insights into structural variation
610 and crop improvement. *Nat Genet* 51:1052-1059.

611 Yi K, Ju YS. 2018. Patterns and mechanisms of structural variations in human cancer. *Exp
612 Mol Med* 50:1-11.

613 Zhang C, Dong SS, Xu JY, He WM, Yang TL. 2019. PopLDdecay: a fast and effective tool
614 for linkage disequilibrium decay analysis based on variant call format files. *Bioinformatics*
615 35:1786-1788.

616 Zhu J, Pearce S, Burke A, See DR, Skinner DZ, Dubcovsky J, Garland-Campbell K. 2014.
617 Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated
618 with frost tolerance in hexaploid wheat. *Theoretical and Applied Genetics* 127:1183-1197.

619

620

621

622

623

624

625 **Figure legends.**

626

627 **Figure 1.** Population structure. SNP-based PCAs were constructed using non-rare,
628 unlinked variants across the 11 chromosomes. The accessions are labeled according
629 to their genetic background (A) or their sensitivity to photoperiod (B).

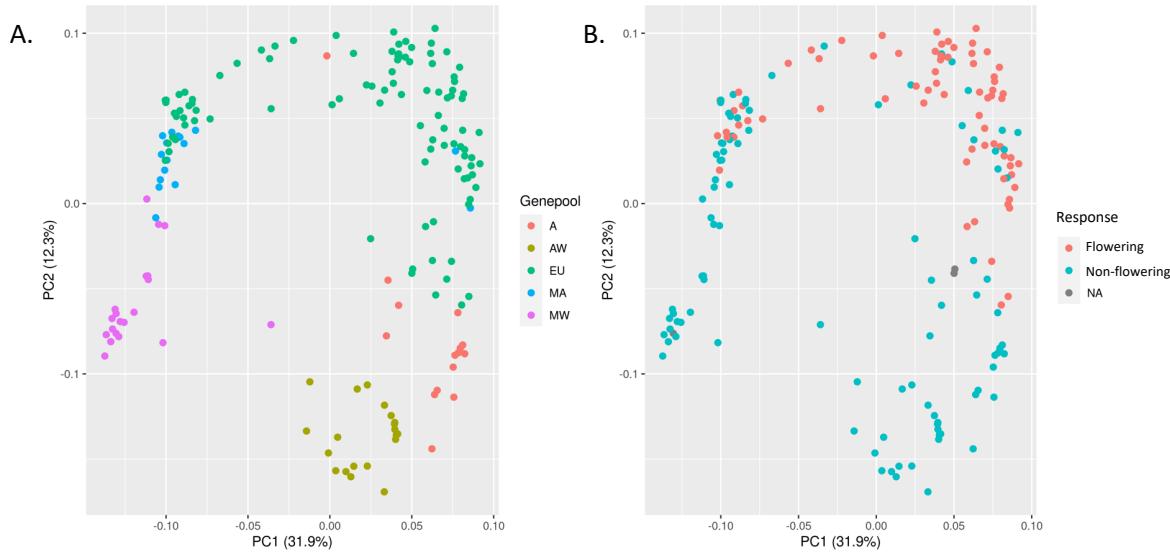
630

631 **Figure 2.** Scans of positive selection during domestication and adaptation. A. XP-CLR
632 screening of positive selection associated to domestication events in Mesoamerica
633 (MW-MD) and the Andes (AW-AD). B. XP-CLR screening of selection associated to
634 the adaptation to Europe. The overlaps of XP-CLR and Fst outliers are highlighted in
635 green. C and D. Functional enrichments in Fst (left) and XP-CLR (right) outlier
636 windows.

637

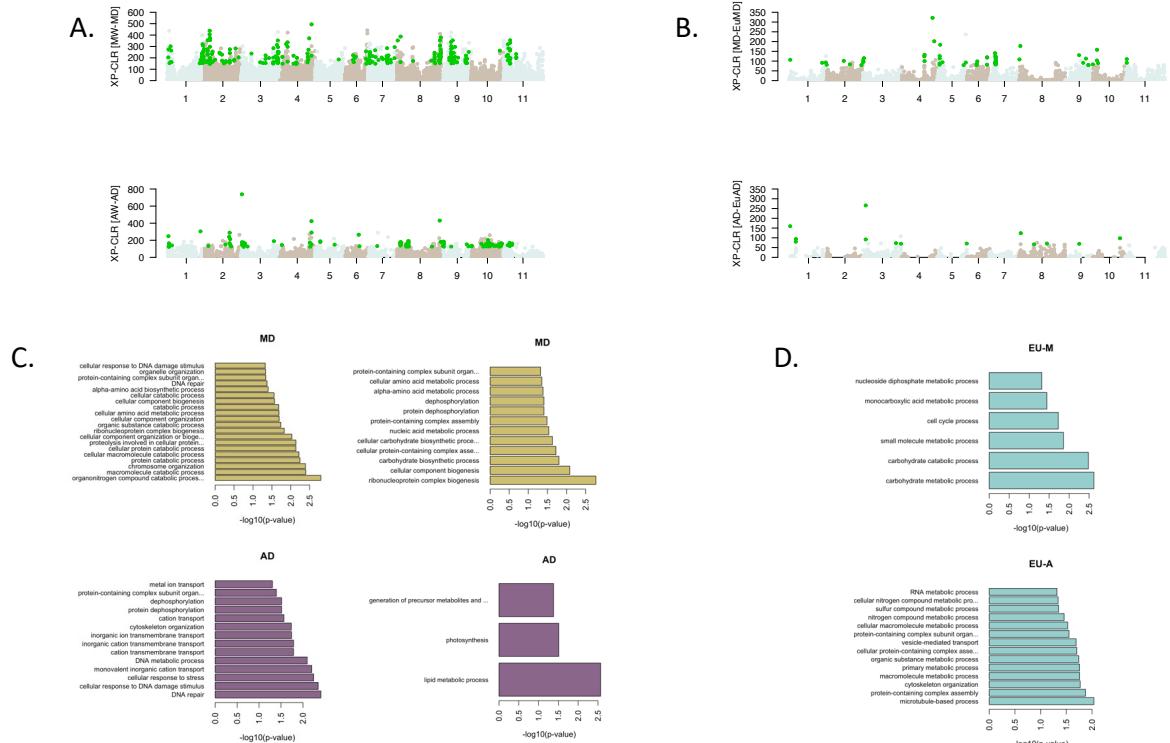
638 **Figure 3.** Structural variants. A. PCA based on SVs. B. Overlap of SVs between
639 genepools. C. Functional categories enriched among genes overlapping pool-specific
640 SVs. D. Manhattan plots showing the association of SVs to photoperiod sensitivity.

641


642 **Figure 4.** Dissection of photoperiod response. A. GWAS to photoperiod sensitivity in
643 our collection of *P. vulgaris* (MLMM, significance threshold $-\log_{10}(p\text{-value})=6.5$). B.
644 Extended homozygosity around TFL1.

645

646

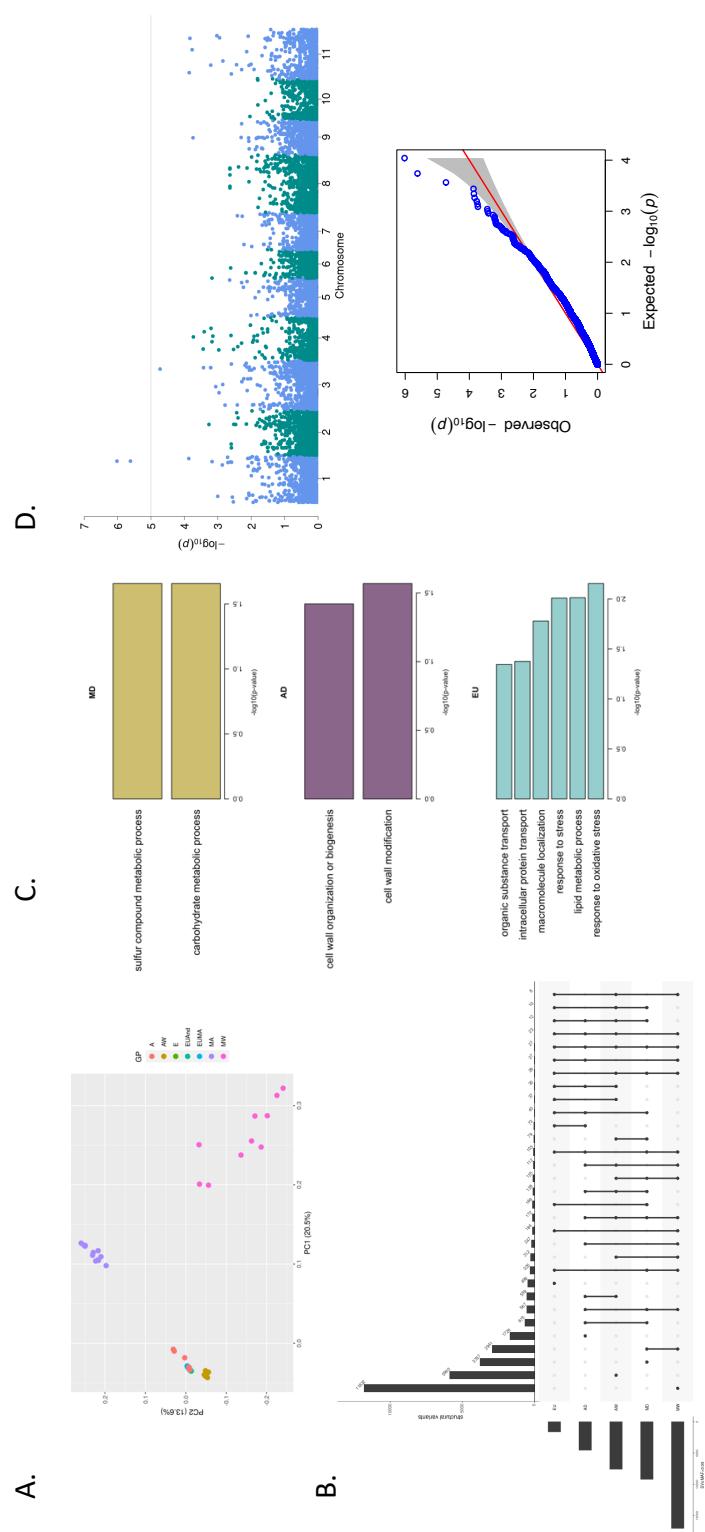

647

648

649

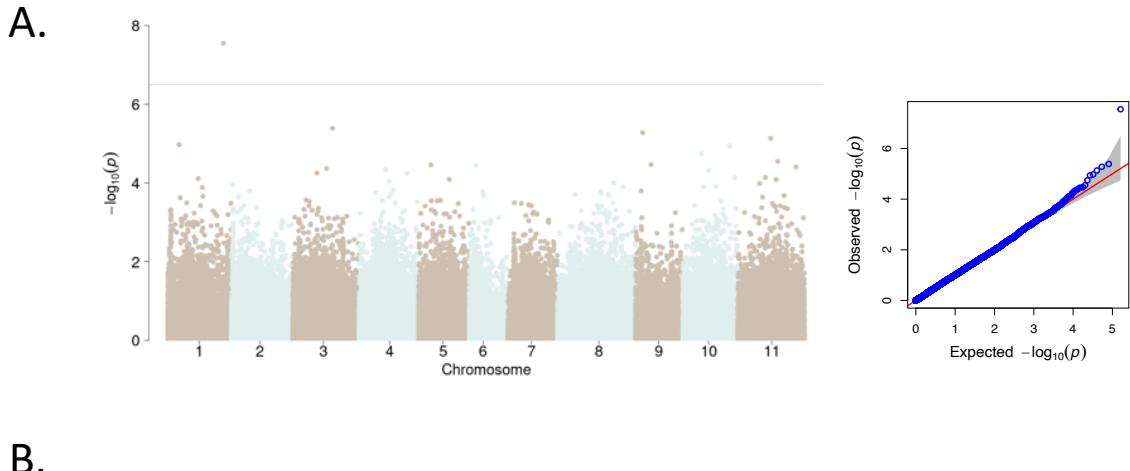
650 **Figure 1.**

651


652

653 **Figure 2.**

654


655

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

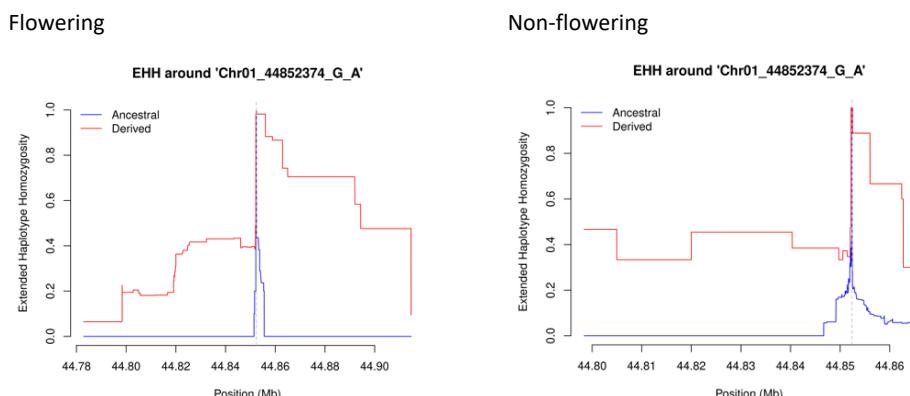


Figure 3.

682

B.

683

684

685 **Figure 4.**

686

687

688

689