
The effects of skin tone on photoacoustic imaging and
oximetry

Thomas R. Elsea, b, Lina Hackera, b, c, Janek Gröhla, b, Ellie V. Buncea, b, Ran Taoa, b,
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ABSTRACT

Significance: Photoacoustic imaging (PAI) provides contrast based on the concentration of optical

absorbers in tissue, enabling the assessment of functional physiological parameters such as blood oxygen

saturation (sO2). Recent evidence suggests that variation in melanin levels in the epidermis leads to mea-

surement biases in optical technologies, which could potentially limit the application of these biomarkers

in diverse populations.

Aim: To examine the effects of skin melanin pigmentation on photoacoustic imaging and oximetry.

Approach: We evaluated the effects of skin tone in PAI using a computational skin model, two-layer

melanin-containing tissue-mimicking phantoms, and mice of a consistent genetic background with varying

pigmentations. The computational skin model was validated by simulating the diffuse reflectance spec-

trum using the adding-doubling method, allowing us to assign our simulation parameters to approximate

Fitzpatrick skin types. Monte Carlo simulations and acoustic simulations were run to obtain idealised

photoacoustic images of our skin model. Photoacoustic images of the phantoms and mice were acquired

using a commercial instrument. Reconstructed images were processed with linear spectral unmixing to

estimate blood oxygenation. Linear unmixing results were compared with a learned unmixing approach

based on gradient-boosted regression.

Results: Our computational skin model was consistent with representative literature for in vivo skin

reflectance measurements. We observed consistent spectral colouring effects across all model systems,

with an overestimation of sO2 and more image artefacts observed with increasing melanin concentration.

The learned unmixing approach reduced the measurement bias, but predictions made at lower blood sO2

still suffered from a skin tone-dependent effect.

1

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.17.553653doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553653
http://creativecommons.org/licenses/by/4.0/


Conclusion: PAI demonstrates measurement bias, including an overestimation of blood sO2, in higher

Fitzpatrick skin types. Future research should aim to characterise this effect in humans to ensure

equitable application of the technology.

Keywords: photoacoustic imaging; spectral unmixing; racial bias; Fitzpatrick skin types; melanin.
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1. INTRODUCTION

Photoacoustic imaging (PAI) is an emerging molecular imaging modality that provides contrast based

on the absorption of light by different molecules (chromophores) in tissue. These molecules may be

endogenous, such as haemoglobin, melanin, lipids and water, or exogenous, covering a range of contrast

agents.1,2 PAI has the potential to recover the concentration of each of these chromophores based

on their unique optical absorption spectra, by acquiring data at multiple wavelengths and subjecting

the reconstructed images to multispectral processing methods.3 For example, the recovery of relative

concentrations of oxy- and deoxy-haemoglobin is commonly used to derive oxygenation maps from PAI

with linear spectral unmixing.4 Obtaining accurate maps of chromophore concentrations, however, is

limited by spatial variations in light fluence, which are significant at depth and are highly dependent on

the surrounding distribution of optical absorbers and scatterers.3 This is often referred to as ‘spectral

colouring’. Several factors can affect tissue optical properties, including age,5 low blood perfusion6 or

skin tone,7 which consequently affect the ability to extract quantitative information from photoacoustic

imaging.

Measurement biases introduced by the differential absorption of melanin in darker skin tones have

been identified in several technologies where light passes through the skin before making a quantitative

measurement, including pulse oximeters,8–18 bilirubinometers,19,20 wearable technologies,21–24 cerebral

oximeters25 and optical reflectance measurements.26 These biases can have significant implications for

patient management, an issue that came to the fore in the management of COVID-19 patients, where the

over-estimation of blood oxygenation by pulse oximetry in black patients may have led to under-diagnosis

of hypoxaemia compared to white patients.17 Photoacoustic imaging also relies on the transmission of

light through the skin and is thus also expected to be subject to similar limitations.

Skin tone is typically defined according to the Fitzpatrick scale, which provides a ranking based on

the response of the skin to ultraviolet light determined by a questionnaire, from type I (always burns,
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never tans) to type VI (never burns, pigmented skin). A few studies have begun to emerge that examine

skin tone measurement bias in PAI.27–30 Higher Fitzpatrick skin type grading was shown to reduce PAI

signal-to-noise ratio deep in the tissue and introduced biases in the estimated blood oxygenation.27–30 An

empirical calibration scheme has been proposed to correct these biases.29 These early studies highlight

the key challenges associated with varying skin tones in PAI, how we measure skin tone, and how we

develop fluence compensation schemes. The first of these key challenges could be tackled using more

quantitative measures of skin tone, for example, measurements based on colourimeters. The second

may be improved by data-driven approaches, which improve on standard linear unmixing schemes for

photoacoustic oximetry, but have not been tested in cases of varying skin tone.4,31–35

Here, we undertook a systematic evaluation of the effects of skin melanin concentration on PAI, using

a combination of simulation, phantom, and animal models to examine the highlighted challenges. We

illustrate that linear spectral unmixing is highly dependent on skin tone and introduces biases in pho-

toacoustic oximetry. These biases mirror observations made in pulse oximetry.17 We demonstrate that

learned spectral decolouring can partially compensate for this bias, recovering less biased oxygenation

values. We underscore these findings in animal studies, showing a systematic overestimation of blood

oxygenation with increasing skin pigmentation. Our results provide a theoretical basis upon which we

can interpret future studies in patients with different skin tones.

2. METHODS

2.1 Computational models

To assess the effects of skin tone on photoacoustic imaging in a controlled setting, we developed a com-

putational forearm model imitating the structure and physical properties of the skin. The model was

constructed in Python using absorption and reduced scattering spectra obtained from the literature.36

Three variations of the model were used: a layer-only model for calibration with adding-doubling re-

flectance simulations, a varying blood oxygenation model for optical modelling, and a realistic model for

full photoacoustic simulation. These distinctions were made to allow thorough characterisation of the

models under computational constraints. To bridge the gap between simulation and experiment, we also

simulated optical absorption in the agarose phantom model described in Section 2.5.

The first model consisted of three parallel layers. The first layer represented the epidermis, modelled
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as 60µm thick, with optical absorption from a varying concentration of melanosomes. The melanosome

volume fraction was chosen by first simulating diffuse reflectance (Section 2.2) over a range previously

identified in the literature (1.3% to 43%37), and adjusting the simulation range to align as closely as

possible with individual typology angle (ITA) values associated with different Fitzpatrick types.38 The

resulting parameters were then qualitatively verified using a publicly available integrating sphere forearm

skin reflectance dataset (Figure S1).39 We settled on six logarithmically-spaced values of melanosome

concentration between 2% v/v and 40% v/v, representing the six Fitzpatrick skin types. The second

layer, representing the dermis, was 1mm thick, containing blood (0.2% v/v, 70% oxygenation), water

(65% v/v) and lipid (20% v/v).36 The third layer, representing generic tissue, filled the rest of the

simulation volume. It consisted of blood (2.5% v/v, 70% oxygenation), water (65% v/v) and lipid (20%

v/v). The absorption spectra for these three layers are shown in Figure 1 A. Scattering properties were

defined by a combination of Rayleigh and Mie scattering, assuming a constant scattering anisotropy of

0.9. These values are representative of typical values in each region.36 This simplified layer model was

used for validation purposes, using adding-doubling simulations of diffuse reflectance. The structure

formed the basis of all simulations, with blood vessels added for Monte-Carlo simulations.

To model the effects of changing blood oxygenation in a blood vessel on the photoacoustic initial

pressure, Monte-Carlo simulations were run with the varying blood oxygenation model, giving the optical

absorption distribution. This model was based on the layer structure described above with the addition

of a cylinder of radius 1.25mm, at a depth of 2.5mm below the epidermis, representing a blood vessel

of varying oxygenation (between 0% and 100%).

To evaluate the effects of a more realistic tissue model, a third model, the realistic forearm model, was

subjected to both optical and acoustic simulations, giving full photoacoustic data that was processed

using normal reconstruction and analysis procedures. Two cylinders were added to the layer model,

one representing an artery (100%-oxygenated blood, radius 1.25mm at a depth of 2.5mm below the

epidermis) and one representing a vein (70% oxygenated blood, radius 0.625mm at a depth of 2.5mm).

We also ran optical simulations of the cylindrical phantoms (Section 2.5), with approximately iden-

tical optical absorption and scattering properties as the agarose phantoms. We defined the model in

Python, with a grid size of 100µm in an array of size (220 × 220 × 220). The tube in the centre of

the phantom was modelled as a cylindrical absorber of radius 0.75mm containing blood. Concentric
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absorbers were added representing the inner part of the phantom (23mm diameter, water absorption

and intralipid scattering) and the outer layer of the phantom (1mm thick, varying melanosome volume

fraction, intralipid scatterer). The absorption coefficients of the melanin layer were defined by finding

the melanosome volume fraction that gave the same optical absorption coefficient at 700 nm as measured

in the double integrating sphere system (Supplementary Table S1, Section 2.6).

2.2 Adding-doubling simulations

The layer-only skin model was validated using the adding-doubling model of diffuse reflectance40 to allow

for fast evaluation of the reflectance spectra at several wavelengths (450 nm to 900 nm in 20 nm steps) in

the visible and near-infrared ranges. We additionally calculated the reflectance at 685 nm to enable direct

comparison with literature values.41 The reflectance spectra were converted into an RGB image and an

individual typology angle (ITA) metric using a D65 standard light source and a 10-degree standard

observer in the Python colour-science library.42 ITA has been proposed as a quantitative measure of

skin tone and can be obtained from low-cost colourimeters. ITA was calculated from skin reflectance

spectra using the following equation:

ITA = arctan

(
L∗ − 50

b∗

)
× 180

π
(1)

where L∗ and b∗ are taken from the CIELAB colour space, representing luminance (ranging from black

(0) to white (100)) and the range from yellow to blue respectively.

2.3 Monte-Carlo simulations

We simulated the PAI optical forward model using the varying blood oxygenation model described

above using a custom version of MCX (https://github.com/IMSY-DKFZ/mcx), giving initial pressure

distributions that correspond to an idealised photoacoustic image. The model was defined on a grid with

a pixel size of 60 µm, which allowed the simulation to run in a sufficiently short time while ensuring that

the simulations were sufficiently detailed. The light transport through the model was simulated with 107

photons per simulation, at 21 equally-spaced wavelengths between 700 nm and 900 nm inclusive.43

We used an illumination geometry which approximates a clinical PAI system (MSOT Acuity, iThera

Medical GmbH, Munich, Germany), consisting of a single optical fibre with a beam divergence of 8.66◦,

5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.17.553653doi: bioRxiv preprint 

https://github.com/IMSY-DKFZ/mcx
https://doi.org/10.1101/2023.08.17.553653
http://creativecommons.org/licenses/by/4.0/


43.2mm above the surface of the probe, directed at an angle of 22.4◦ from the imaging plane, intersecting

the imaging plane 2.8mm outside of the probe.44 Optical simulations of the agarose phantoms were

run using the same customised version of MCX with an illumination geometry approximating a pre-

clinical photoacoustic system (iThera MSOT inVision 256-TF, iThera Medical GmbH, Munich Germany),

defined on a grid of size 100µm. The illumination geometry consisted of five radially-distributed fibre

bundle pairs.44 The version of MCX used in these experiments is available on GitHub: https://github.

com/BohndiekLab/melanin-phantom-simulation-paper. 107 photons were simulated per fibre bundle,

for a total of 108 photons. All simulations were run on a computer with 2 NVIDIA Quadro 8000 GPUs

(48GB GPU RAM each), Intel Xeon Gold 6230 CPU at 2.10GHz (40 cores), and 256GB RAM.

2.4 Acoustic simulations

To determine the impact of acoustic modelling, we ran the forward acoustic model in j-Wave45 to calculate

the pressure time series detected by the ultrasound transducer array for the initial pressure distributions.

Simulations were run in three dimensions, with a grid size of 240µm, and a speed of sound of 1500m s−1.

Three-dimensional initial pressure distributions were taken from Monte-Carlo simulations and down-

sampled by a factor of four, and their propagation was simulated. The resulting pressure distributions

were evaluated using band-limited interpolation sensors in the position of the sensors in the photoacoustic

system. The pressure time series were recorded and processed in the same way as the experimental data.

2.5 Phantom design

Phantoms were used to validate the simulations in a real photoacoustic system. A custom-made 3D-

printed polylactic acid (PLA) mould was constructed to fabricate a two-layer cylindrical phantom with

an inner scattering compartment and an outer compartment containing melanin to model the epidermis.

The mould consisted of two cylindrical compartments, one of radius 9mm and one of radius 10mm.

A polyvinyl chloride (PVC) tube (inner diameter 1.5mm, outer diameter 2.1mm; VWR 228-3857) was

placed in the centre of the phantom mould to enable blood flow through the phantom.

Agarose-based phantoms were fabricated using standard methods.46 The inner phantom mixture

consisted of a mixture of agarose for mechanical robustness and intralipid for scattering. 1.5% (w/v)

agarose (Sigma-Aldrich 05039) was added to Milli-Q water and heated until it dissolved. Once the

mixture had cooled to approximately 40 °C, 2.08% (v/v) of pre-warmed intralipid (20% emulsion, Sigma-
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Aldrich I141) was added and mixed, before being poured into the inner compartment of the phantom

mould and allowed to set, constituting the inner 9mm radius of the phantom. Synthetic melanin (Sigma,

M8631, 2.5mgmL−1 stock in dimethyl sulfoxide) was added to a separate batch of the base mixture at

the desired concentrations (Supplementary Table S1). Once the inner compartment was set, the outer

layer mixture was added and again allowed to set at room temperature (Supplementary Figure S2).

2.6 Phantom characterisation

A custom double integrating sphere (DIS) system was used to characterise the optical absorption and

reduced scattering coefficients of the phantom material. Samples were placed between two integrating

spheres (Avantes, AvaSphere-50, 50mm internal diameter), both of which were connected to a spec-

trometer (Avantes, Starline Avaspec-2048) via an optical fibre. The reflectance integrating sphere was

connected to a broadband light source (Avantes, Avalight-HAL-s-mini) via an optical fibre. Circular

samples (approximate diameter: 5 cm) of the agarose mixture with and without melanin were prepared

with a thickness of approximately 3mm. Sample thickness was measured using vernier callipers. Each

agarose sample was placed between the two spheres and the transmittance and reflectance were mea-

sured. Optical scattering and absorption coefficients were calculated using the inverse adding doubling

(IAD) method,47 assuming a scattering anisotropy factor of 0.89 and refractive index of 1.34.48 These

measurements were made on three replicates of each sample, over a wavelength range of 450 nm to 900 nm

at 1 nm steps.

2.7 Blood-flow circuit

A blood-flow circuit was used to control the oxygenation of blood flowing through the tube centred in

the two-layer cylindrical phantom, enabling photoacoustic measurements of blood with known ground-

truth blood oxygenation as described previously.49,50 Briefly, we measured the oxygen partial pressure

(pO2) and the photoacoustic spectrum of the blood simultaneously. We used fresh whole blood from

Wistar rats (6 to 9 months, Charles River Laboratories). All blood samples were anti-coagulated in

ethylenediaminetetraacetic acid (EDTA), stored at 4 ◦C, and processed within 48 h. The blood was

pumped around the circuit using a peristaltic pump (Fisher Scientific CTP100), and the oxygenation was

controlled by initially oxygenating the blood using hydrogen peroxide (30% (w/w) in deionized water,

Sigma-Aldrich 7722-84-1) and then slowly injecting 0.03% w/v sodium dithionite (ACROS Organics
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7775-14-6, in PBS) using a syringe pump (10µLmin−1, Harvard, MKCB2159V). To measure the blood

pO2, two oxygen fluorescence quenching needle probes (Oxford Optronix, NX-BF/O/E) were placed

before and after the phantom; the average of these measurements was taken as the ground-truth pO2 in

the phantom. pO2 was converted to blood oxygenation (sO2) using the Severinghaus equation.51 The

values were extracted using custom code on an Arduino UNO and fed to a computer over USB where

they were read and stored using custom code in MATLAB. Experiments were conducted at 37 ◦C.

2.8 Animal procedures

All animal procedures were conducted under personal and project licences issued under the United

Kingdom Animals (Scientific Procedures) Act, 1986 and reviewed by the Animal Welfare and Ethical

Review Board at the CRUK Cambridge Institute. The protocols were approved locally under compliance

forms CFSB2317 and CFSB2348.

To understand the effects of skin pigmentation in a model in vivo setting, we compared non-pigmented

albino mice (n = 9, C57BL/6 albino, Janvier Labs, France, 10 to 13 weeks old) to pigmented “B6” mice

(n = 10, C57BL/6J, Charles River, 10 to 13 weeks old). The B6 mice were further subdivided qualitatively

based on the visual appearance of pigmentation patches in colour photographs (Supplementary Figure

S3) into a non-pigmented group (n = 8 scans) and a pigmented group (n = 11 scans). Albino mice were

imaged once and B6 mice were imaged twice (2 weeks apart) to allow the development of pigmentation

after hair removal. Repeat measurements of the same mouse were treated as independent measurements

for statistical analysis given the time lapse between measurements.

2.9 Photoacoustic imaging

Phantoms and mice were imaged using a pre-clinical multispectral photoacoustic tomography system

(MSOT inVision-256TF, iThera Medical GmbH).46 Briefly, excitation pulses were provided by a tunable

optical parametric oscillator, pumped by a nanosecond Nd:YAG laser (10Hz repetition rate up to 7 ns

pulse duration). A custom optical fibre assembly creates a diffuse ring of uniform illumination over the

imaging plane within the sample. The sample is coupled to the transducers using a water bath. For

ultrasound detection, an array of 256 toroidally focussed ultrasound transducers covering a 270◦ circular

arc and radius of 4 cm was used with a centre frequency of 5MHz and 60% bandwidth.
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For phantom imaging, a single cross-sectional slice of the phantom was imaged continuously during

the blood deoxygenation procedure until the blood was completely deoxygenated. Phantoms were placed

in a custom animal holder (iThera Medical GmbH, Munich, Germany), wrapped in a thin polyethylene

membrane, with water used to couple the phantom to the membrane. Imaging was performed at wave-

lengths from 700 nm to 900 nm inclusive with 10 nm steps and frame averaging was enabled (10 averages)

to improve the signal-to-noise ratio.

Mice were prepared for imaging according to our standard operating procedure.46 Briefly, the mice

were shaved and depilatory cream was used to remove excess hair. The mice were anaesthetised using

<3% isoflurane in a 50% pure oxygen/medical air mixture and placed in a custom animal holder (iThera

Medical GmbH, Munich, Germany), wrapped in a thin polyethylene membrane, with ultrasound gel

(Aquasonic Clear, Parker Labs) used to couple the skin to the membrane. The holder was then placed

within the PAI system and immersed in deionised water maintained at 36 ◦C for Hb and HbO2 imaging

acquisition. The animal respiratory rate was maintained in the range 70–80 b.p.m. with 1.5% isoflurane

concentration for the entire scan. A single cross-sectional slice through the kidneys and spleen was

imaged. Frame averaging was enabled (4 averages) to minimise the effects of breathing motion artefacts.

10 repeat scans were taken at each of the following wavelengths 700 nm, 730 nm, 750 nm, 760 nm, 770 nm,

800 nm, 820 nm, 840 nm, 850 nm and 880 nm.

2.10 Image reconstruction and processing

Simulated, phantom and in vivo photoacoustic data were processed using the Python photoacoustic

tomography analysis toolkit (PATATO, https://github.com/bohndieklab/patato).

Acoustic simulation images were reconstructed by filtered backprojection with a grid spacing of

60µm and a field of view of 18mm× 40mm. Phantom and in vivo images were reconstructed by filtered

backprojection with a grid spacing of 75µm and a field of view of 25mm. A band-pass filter was applied

to all of the time series data, with a bandpass range of 5 kHz to 7MHz.

Linear spectral unmixing was applied to all simulated, phantom and in vivo data sets using the

matrix pseudo-inverse function in NumPy52 and literature values for the optical absorption spectra

of oxy- and deoxy-haemoglobin.36 Photoacoustic estimates of the blood oxygenation (denoted with a

superscript EST sOEST
2 to differentiate it from the true blood oxygenation, sO2) were made pixel-wise
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from the unmixing components as the ratio of the oxyhaemoglobin to the total haemoglobin. To evaluate

the potential for a machine-learning approach to improve photoacoustic oximetry in the presence of

melanin, a learned spectral decolouring31 algorithm was trained on a numerical tissue model containing

varying levels of melanin in the epidermis layer (0.1% - 5% melanosome v/v). We simulated 500 unique

volumes 19.2mm3 in volume with a resolution of 0.3mm that contained up to nine blood vessels with

a random radius and blood oxygenation. The tissue background contained a blood concentration of

1% (v/v) and an oxygenation of 70%. These design parameters were developed independently of this

study and simulations were obtained using the SIMPA framework.44 From the simulated initial pressure

distributions, we used a histogram-based gradient boosting regression tree as the inversion algorithm

with a maximum depth of 16 and otherwise default hyperparameters as implemented in the scikit-learn

(version 1.2.1) Python package.

Unless otherwise specified, manual polygon regions of interest (ROIs) were drawn and average spectra

or unmixed components were calculated by masking the defined regions. In phantoms, the ROIs were

taken around the blood tube and the melanin compartment. The melanin compartment was defined

by drawing an ROI around the whole phantom and eroding the polygon by 1mm. The difference mask

between the drawn and eroded polygons was applied to the photoacoustic images, giving the multispectral

data within the melanin region. Mean photoacoustic and unmixed component values were extracted. In

mice, ROIs were drawn around the whole mouse body. The body ROI was eroded by 1mm to subdivide

it into a “skin” region (outer 1mm) and a “body” region (inner region). Negative pixel values were

included in the median spectra calculation to illustrate image reconstruction artefacts. For unmixed

sOEST
2 calculation, pixels were excluded if either of the unmixed oxy- or deoxy-haemoglobin coefficients

were negative. Pixels near the open region of the detector were manually excluded from the analysis as

the image reconstruction is less well-posed in that region, leading to artefacts.

Line plots of the photoacoustic signal through the mice were generated by constructing a line through

the kidneys and vena cava of the mice. To ensure constant placement of this line, it was constructed to

be 6.5mm from the surface of the mouse closest to the spline, and perpendicular to an axis through the

spine and aorta. This construction was observed to pass through the kidneys and vena cava in albino

and non-pigmented mice. The same construction was applied to the heavily pigmented mice, where

the kidneys and spleen were not visible, to give a direct comparison. The values of the reconstructed
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image, total haemoglobin map and blood oxygenation were calculated along this line using the interpnd

function of SciPy.52

2.11 Statistics

Statistical analyses were conducted in Python using the statsmodels library. The relationship between

continuous variables was quantified by linear regression. A log transformation was applied where spec-

ified to ensure that the residual normality assumption is upheld in each linear model. The residual

normality assumption was tested using the Shapiro-Wilk test (p > 0.1 for all models). For the in vivo

data, the relationship between each response variable and the mouse pigmentation was assessed using a

linear model, with both mouse strain (Albino or B6) and pigmentation (not pigmented or pigmented) as

independent variables. The model related the response variable (sO2 or photoacoustic signal) to a sum

of the effect due to mouse strain and pigmentation with no interaction term.

3. RESULTS

3.1 The computational model of skin shows good agreement with literature based

on adding-doubling reflectance measurements.

We first validated our computational model of human skin, with the assigned optical absorption spectra in

the epidermis (Figure 1 A), by calculating diffuse reflectance spectra using the adding-doubling method.

We chose six values of melanosome concentration to represent the typical physiological range observed

in the population. The calculated spectra show decreasing reflectance with increasing melanosome con-

centration and broadly increasing reflectance with wavelength, as one would expect given the profile of

optical absorption of melanin (Figure 1 A, B). We then calculated the individual typology angle (ITA) for

each reflectance spectrum, allowing direct comparison with in vivo measurements from skin colourime-

ters. These ITA values (67◦ to −47◦) are consistent with previous observations made in vivo using the

Fitzpatrick skin type (Table 1).53 Reflectance at 685 nm was evaluated for each tissue model, giving a

range of reflection coefficients from 0.20 to 0.72 over our simulated range of melanosome concentrations

(Figure 1 C, Table 1) again consistent with previous literature.41 To enable qualitative evaluation of

our skin model, the reflection coefficients were converted into red, green and blue (RGB) images (Figure

1 D, Table 1). Our results align closely with literature values made of skin reflectance using a single

integrating sphere (Supplementary Figure S1).39 For the remainder of the paper, results from different
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Fitzpatrick skin types are colour coded according to the calculated RGB values for consistency (Figure

1 D).
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Figure 1. Diffuse reflectance simulations validate Monte-Carlo simulation parameters and enable
the assignment of simulations to equivalent Fitzpatrick skin types. (A) Optical absorption spectra in
the tissue model were assigned according to the desired melanosome concentration (2% to 40% v/v, gradations of
brown) in the skin layer, dermis below (grey) and background absorber (blue). (B) Diffuse reflectance spectra were
calculated using the adding-doubling method. (C) Reflectance values simulated at 685 nm cover the physiological
range of skin reflectance. (D) Red, green and blue images were simulated from the reflectance spectra and the
six models were assigned to the six Fitzpatrick skin types (shown by inset label I - VI).

Table 1. Parameters of the skin simulations (melanosome concentration, absorption coefficient) and quantities
derived from adding-doubling simulations (reflectance, individual typology angle, HEX colour value). The equiv-
alent Fitzpatrick skin type was assigned based on literature values.53

Melanosome
concentra-
tion (v/v,
%)

Absorption
coefficient
at 685 nm
(cm−1)

Reflectance
at 685 nm

Individual
typology
angle (◦)

Assigned
Fitzpatrick
skin type

HEX colour

2.0 3.45 0.72 67 I #CBB9A8
3.6 6.28 0.65 56 II #C3AC95
6.6 11.43 0.57 41 III #B69A7F
12.1 20.81 0.46 20 IV #A28367
22.0 37.89 0.33 -6.9 V #8A6B54
40.0 68.98 0.20 -47 VI #6E574C

3.2 Photoacoustic simulations with the skin model show spectral colouring due to

skin pigmentation

Multispectral Monte-Carlo simulations using the computational skin model with an embedded blood

vessel showed how the optical absorption values are affected by melanosome concentration and hence

Fitzpatrick skin type (Figure 2 A). In simulations of fully oxygenated blood, we observed an increase

in the optical absorption within the skin at all wavelengths with increasing Fitzpatrick type (Figure
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2 B). The optical absorption in the epidermis increased more than 10-fold between Fitzpatrick I and

Fitzpatrick VI at 700 nm (379 a.u. in FP I, 4128 a.u. in FP VI, Figure 2 C). Spectral colouring is observed

within the blood vessel region, which manifests as a decrease in the mean-normalised absorption at lower

wavelengths and a corresponding increase at higher wavelengths (Figure 2 D). Absorption measurements

within the blood vessel region, however, decrease by a factor of 1.7 from Fitzpatrick I to Fitzpatrick VI

(44.6 a.u. in FP I, 26.7 a.u. in FP VI, Figure 2 E). Combined optical and acoustic simulations of a

realistic tissue model revealed additional image reconstruction artefacts associated with backprojection,

including negative pixels and streaking artefacts (Supplementary Figure S4). Quantitative results from

the blood and skin regions in the acoustic simulations were consistent with those made with solely

optical simulations, so the remainder of the simulation study was performed using the Monte-Carlo

optical simulation alone for computational practicality.
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Figure 2. Monte-Carlo simulations of light transport through the skin model show decreased signal
and increased spectral colouring in an underlying blood vessel with increasing Fitzpatrick skin
type. (A) Photoacoustic initial pressure (upper), unmixed total haemoglobin (THb, middle), and unmixed blood
oxygenation (sOEST

2 , lower) in representative examples for fully oxygenated blood in the vessel. (B) Epidermis PA
initial pressure as a function of wavelength for all Fitzpatrick types and (C) at 700 nm as a function of Fitzpatrick
type. (D) Normalised blood PA initial pressure as a function of wavelength for all Fitzpatrick types and (E)
at 700 nm as a function of Fitzpatrick (FP) type. Fitzpatrick types are denoted with graded brown colouration
according to the RGB definitions in Figure 2 D. Scale bar = 2mm applies to all images in (A).

Spectral colouring observed in the blood vessel biased the linear spectral unmixing blood oxygenation

estimate (Figure 3 A). Encouragingly, the bias can be somewhat overcome when using learned spectral

unmixing trained on independently generated numerical tissue models containing varying melanin con-
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centrations (Figure 3 B). Considering the spectral changes observed (Figure 2 D, E), it appears that

learned unmixing can better cope with the spectral corruption that presents as a reduction in nor-

malised optical absorption at low wavelengths and a relative increase at higher wavelengths for higher

Fitzpatrick skin types. With fully oxygenated blood, linear unmixing estimates of photoacoustic sOEST
2

reveal a non-linear relationship with Fitzpatrick skin type (Figure 3 B) and a linear relationship with

melanosome concentration (p < 0.001, gradient = 0.218, 95% CI [0.200, 0.235]). Blood oxygenation esti-

mated with learned unmixing also increases linearly with melanosome concentration, but with a smaller

gradient (p < 0.001, gradient = 0.150, 95% CI [0.117, 0.183]) (Figure 3 D).
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Figure 3. Estimation of blood oxygenation in simulated data using linear and learned spectral
unmixing. (A) sOEST

2 estimates increase with increasing Fitzpatrick type when using linear spectral unmixing,
while estimates are closer to the ground truth when using learned unmixing, particularly at high and low blood
oxygenation levels. (B) sOEST

2 estimates for fully oxygenated blood using both approaches are shown as a function
of Fitzpatrick type and melanosome volume fraction. The shaded area shows 95% confidence intervals.

3.3 Blood flow phantoms confirm melanin-associated bias in an experimental

photoacoustic system

Cylindrical phantoms were enclosed in a melanin-containing outer layer with concentrations equivalent to

Fitzpatrick types below I, II and IV (Figure 4 A). A blood flow circuit was connected to a tube through the

centre of the phantom, allowing continuous monitoring of the blood oxygenation. The optical properties

of the phantoms were confirmed using double integrating sphere measurements (Supplementary Figure

S5, Supplementary Table S1). By imaging the phantoms over time, as the blood was adjusted from

fully oxygenated to fully deoxygenated, the photoacoustic measurements were related to the known

blood oxygenation (Supplementary Figure S6). Images of these phantoms show strong absorption in the

melanin outer layer and blood flow tube, with image reconstruction artefacts visible around the blood
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inclusion and near the melanin layer, particularly visible with the higher concentrations of melanin

(Figure 4 B). The photoacoustic signal in the outer layer increases with melanin concentration (Figure

4 B, C). Wavelength-dependent spectral colouring is observed in the blood spectrum with increasing

melanin concentration, with normalised photoacoustic signals relatively lower at shorter wavelengths

and higher at longer wavelengths, consistent with the optical absorption properties of melanin (Figure 4

D) and simulation findings.
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Figure 4. Skin-mimicking blood-flow phantoms show spectral colouring. (A) Schematic diagram of the
agarose phantom setup, showing a 1mm-thick outer layer containing synthetic melanin and a blood inclusion
with varying oxygenation. (B) Reconstructed photoacoustic (PA) images at 800 nm (upper), linear unmixed total
haemoglobin (THb, middle), and linear unmixed blood oxygenation (sOEST

2 , lower) maps. Image reconstruction
artefacts can be observed near the blood inclusion and near the outer melanin layer (particularly clear in sOEST

2 ).
(C) The photoacoustic signal in the outer cylinder of the phantom shows an increase with increasing melanin
concentration. (D) Normalised photoacoustic spectra from the blood region show the effect of spectral colouring
over a range of blood oxygenation levels. Scale bar = 5mm.
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Furthermore, examining the unmixed sOEST
2 as a function of the reference blood sO2 measurements

reveals the effect of spectral colouring on PAI signal quantification (Figure 5 A, B), with higher melanin

concentrations giving higher photoacoustic estimates of blood oxygenation when using linear spectral

unmixing. Learned unmixing again reduces the disparity between low and high melanin concentrations,

particularly at higher blood oxygenation levels (Figure 5 B, C). Linear unmixing estimates of sOEST
2

increase with melanin concentration (p < 0.001; gradient = 0.162mLmg−1, 95% CI [0.161mLmg−1,

0.163mLmg−1]), where as learned estimates do not (p = 0.50; gradient = 0.051mLmg−1, 95% CI

[−0.603mLmg−1, 0.706mLmg−1]). Analysing simulations of digital twins of these phantoms in the

tomographic PAI system showed consistent trends (Supplementary Figures S7, S8).
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Figure 5. Comparison of linear unmixing and learned unmixing of blood oxygenation in skin-
mimicking phantoms. Linear unmixing and learned unmixing blood oxygenation estimates (sOEST

2 ) are
calculated and compared for varying melanin concentrations (A). Note that discontinuities in this plot arose
from the rapid decrease in blood oxygenation from around 0.5 in the 0.21mgmL−1. This is also shown as a
function of melanin concentration at a high blood oxygenation, 95% (B). The line of best fit from a linear model
is shown. Linear unmixing sOEST

2 increases significantly (p < 0.001) with melanin concentration, while learned
unmixing increases but not significantly (p = 0.50).

3.4 Mouse models underscore the severity of the impact of skin pigmentation on

photoacoustics in vivo

Two closely related mouse models showing differential pigmentation were used to observe the effects of

skin pigmentation on photoacoustic imaging in vivo (Supplementary Fig S3). Qualitative inspection of

the image data clearly shows the increase in photoacoustic signal from the skin region in the presence

of pigmentation and an associated decrease in photoacoustic signals measured from the body region in

those pigmented mice (Figure 6 A, B). The spectra extracted from the ROIs show spectral colouring is

clearly present in the pigmented mice. Spectra also demonstrate an increased presence of artefacts such
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as negative pixels (Figure 6 B). Line profiles across the mice (Figure 6 C-E) further emphasise these

findings, highlighting the high level of optical absorption in the skin of the pigmented mice, artefactual

increase in the total haemoglobin signals from the same region, and an increase in noise in the body of

the mouse in the sOEST
2 image.

Considering data from a single wavelength (700 nm, Supplementary Figure S9 A), the photoacoustic

signal in the skin region of pigmented mice is significantly higher than in non-pigmented and albino mice

(p = 0.010). Interestingly, there is also a significantly higher signal in the skin of non-pigmented B6 mice

than in albino mice (p < 0.001). There was no significant difference between the photoacoustic signal,

taken at 700 nm, in the body of the albino mice compared to the non-pigmented B6 mice (p = 0.95),

however, there is a significantly lower signal in the body of the pigmented B6 mice (p < 0.001) (Supple-

mentary Figure S9 B). The photoacoustic signal within the skin shows a negative correlation with the

photoacoustic signal in the body of the mouse (p < 0.001) (Figure 7 A). Unmixed estimates of blood

oxygen saturation are significantly higher (Figure 7 B) in pigmented mice compared to non-pigmented

(p = 0.025) and albino mice (p = 0.019). There is a strong positive correlation between the skin pho-

toacoustic signal and the sOEST
2 in the body of the mouse (Figure 7 C, p < 0.001), demonstrating that

a higher melanin pigmentation in the skin leads to an overestimation of the underlying sO2.

Learned spectral unmixing was applied to the mouse data, with fair performance in albino and non-

pigmented B6 mice. In pigmented mice, no clear improvement was observed over linear unmixing, with

reconstruction artefacts dominating the oxygenation maps (Supplementary Figure S10).

4. DISCUSSION

Measurement bias in optical oximetry due to the differential light absorption of melanin in darker skin

is widely acknowledged, yet the impact on PAI data has barely been tested. Tackling this challenge is

key to ensuring equity in the use of photoacoustic imaging, and in biomedical optics more generally. To

understand the underlying physics behind this phenomenon, we undertook a systematic study using a

computational skin model, a simple tissue-mimicking phantom, and animals with differential skin pig-

mentation on the same genetic background. We then applied two different spectral unmixing approaches,

linear unmixing and learned unmixing, revealing how spectral colouring caused by melanin can influence

quantitative photoacoustic imaging.
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Figure 6. Mouse spleen and kidneys in albino and pigmented mice show substantial variations in
photoacoustic imaging signal distribution. (A) Reconstructed photoacoustic images at 700 nm (upper),
linear unmixed total haemoglobin (THb, middle), and linear unmixed blood oxygenation (sOEST

2 , lower) maps.
ROIs and line profiles used for quantitative analysis are shown on the single wavelength image. (B) Median
photoacoustic spectra from the skin and body of albino mice (blue, n = 10), non-pigmented B6 mice (yellow,
n = 8) and pigmented B6 mice (orange, n = 11). Line profiles through the kidneys, taken 6.5mm from the
surface of the mouse nearest the spine, of the photoacoustic signal at 700 nm (C), THb (D) and sOEST

2 (E). The
shaded area shows the standard error. Scale bar = 5mm.
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Figure 7. Increased skin pigmentation reduces the photoacoustic signal in the body and linear
unmixing estimates of blood oxygenation are increased in pigmented mice. (A) Skin photoacoustic
signal negatively correlates with body photoacoustic signal (p < 0.001). (B) The body sOEST

2 of B6 mice is
significantly higher than that of albino mice (p = 0.025) and pigmentation is a significant factor in the linear
model (p = 0.019). (C) Body sOEST

2 correlates with skin photoacoustic signal (p < 0.001).

Our findings confirm the presence of a measurement bias in PAI, with increased spectral colouring

in the presence of melanin in all models. The spectral colouring trend is consistent with the optical

properties of melanin; the absorption coefficient of melanin decreases with wavelength, so light propaga-

tion through tissue is more greatly attenuated at shorter wavelengths, a phenomenon that becomes more

apparent as melanin concentration increases. Spectral colouring leads to a substantial overestimation of

unmixed sOEST
2 with increasing Fitzpatrick skin type. The difference in sOEST

2 quantification between

Fitzpatrick I and Fitzpatrick VI may be as large as 9 percentage points based on our simulations, which

is similar to typical differences observed between cancer models (for example54). It is, therefore, unlikely

that sO2 derived from linear spectral unmixing in its present form could be applied equitably when

translated into the clinic for cancer detection or staging. The measurement of relative changes may

be more robust to measurement biases, however, translation to the in vivo setting remains challenging,

given the need for paired measurements and ground-truth data.

Fortunately, we observed that fundamental limitations in linear spectral unmixing, which have been

characterised previously,4,49,50 may be partially mitigated using a learned spectral unmixing approach.

Learned spectral unmixing demonstrated improved quantification relative to the ground truth in simu-

lations and phantoms, and reduced the disparity between Fitzpatrick skin types, particularly in highly

oxygenated blood. Learned unmixing, however, could not overcome the fundamental limitations of

our backprojection-based reconstruction pipeline, which cannot accurately reconstruct the true initial-

pressure distribution, particularly in regions adjacent to strongly absorbing structures. Strong optical

absorbers lead to significant artefacts, such as streaking and negative pixels, as can be seen clearly in
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the centre of the images of heavily pigmented mice.55 Blood oxygen quantification was poor in negative

pixel regions both with linear and learned unmixing.

Our study showed consistent agreement between Monte-Carlo simulations, phantoms, and in vivo

studies, both in quantitative measures and image reconstructing artefacts. We expect our observations

to transfer well into human data, however, there are further features of in vivo imaging that were not

considered here and could further limit the use of photoacoustic imaging equitably in the clinic. In this

study, we did not consider the effects of high acoustic impedance structures, such as bones, which could

reflect the downward propagating photoacoustic wave from the epidermis, giving image reconstruction

artefacts. Additionally, the effects of noise were not considered in our simulations, which would dominate

in regions of low light fluence, such as deep in the tissue, particularly in the higher Fitzpatrick skin

types. Additional noise could adversely affect the spectral unmixing results, particularly as the energy

of different wavelengths will vary, and so affect the noise profiles. The presence of noise and acoustic

reflection artefacts may explain the disagreement between this study and recently published in vivo

data, which, contrary to this study, showed a decrease in linear spectral unmixing estimates of sO2

with increasing Fitzpatrick type.29 Future studies should explore ways to improve image reconstruction

in the presence of strong optical absorbers and acoustic heterogeneity, for example with model-based

reconstruction methods, and a substantial expansion of the available data from human subjects is required

to thoroughly characterise this phenomenon across a range of PAI systems and methods.

5. CONCLUSION

PAI demonstrates a clear measurement bias with the presence of melanin in the skin. Spectral unmixing

results were highly dependent on melanin concentration, which could introduce unintended biases into

future human photoacoustic studies. Reproducible and equitable application of quantitative PAI will

likely require a combination of physics-based, data-driven and empirical methods to account for varying

light fluence and tissue properties fairly across the population.
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Code, Data, and Materials Availability

All data and code used in the preparation of this paper and not otherwise referenced in-line will be made

available on the University of Cambridge Apollo repository (https://doi.org/10.17863/CAM.100220)

or GitHub (https://github.com/BohndiekLab/melanin-phantom-simulation-paper) respectively.
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