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18 ABSTRACT

19  Human-induced climate change has intensified negative impacts on socioeconomic factors,
20  the environment, and biodiversity, including changes in rainfall patterns and an increase in
21 global average temperatures. Drylands are particularly at risk, with projections suggesting

22 they will become hotter, drier, and less suitable for a significant portion of their species,

23 potentially leading to mammal defaunation. We use ecological niche modelling and

24 community ecology biodiversity metrics to examine potential geographical range shifts of

25  non-volant mammal species in the largest Neotropical dryland, the Caatinga, and evaluate
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26 impacts of climate change on mammal assemblages. According to projections, 85% of the

27 mammal species will lose suitable habitats, with one quarter of species projected to

28  completely lose suitable habitats by 2060. This will result in a decrease in species richness for
29  more than 90% of assemblages and an increase in compositional similarity to nearby

30 assemblages (i.e., reduction in spatial beta diversity) for 70% of the assemblages. Small-sized
31 mammals will be the most impacted and lose most of their suitable habitats, especially in

32 highlands. The scenario is even worse in the eastern half of Caatinga where habitat

33 destruction already prevails, compounding the threats faced by species there. While species-
34  specific responses can vary with respect to dispersal, behaviour, and energy requirements, our
35 findings indicate that climate change can drive mammal assemblages to biotic

36 homogenisation and species loss, with drastic changes in assemblage trophic structure. For

37  successful long-term socioenvironmental policy and conservation planning, it is critical that
38 findings from biodiversity forecasts are considered.

39
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42 INTRODUCTION

43 Defaunation typically refers to the depletion of fauna caused by overexploitation, habitat
44  destruction, and invasive species (Dirzo et al., 2014; Redford, 1992). At large spatial scales,
45  defaunation may generate complex spatial patterns rather than a simple reduction in species
46  richness, which depend on species-specific responses to defaunation drivers and landscape
47  configuration (Bogoni et al., 2020) Climate change adds another layer of complexity to the
48  spatial consequences of defaunation, since, besides posing an additional threat to wildlife, it is
49  expected to reshape species distribution patterns. In response to a changing the climate,
50 species can be displaced to regions with more favourable conditions, experiencing either
51  geographic range contraction or expansion (Lenoir & Svenning, 2015). Species with higher
52 tolerance to environmental change (e.g., disturbance-adapted, habitat generalists, wide-
53  ranging, and synanthropic species) are less likely to be affected and may even expand their
54  occurrence to novel habitats. In contrast, more sensitive species (e.g., habitat specialists,
55 narrow-ranging species) may lose suitable areas and eventually becoming locally extinct
56  (Filgueiras et al., 2021). These differences in species responses have the potential to change
57  richness and composition of local assemblages, ultimately affecting biodiversity patterns.

58 The widespread loss of specialist species reduces local species richness (alpha
59  diversity) and may increase the similarity in species composition across space, decreasing
60  beta diversity, a phenomenon termed biotic homogenisation (Mckinney & Lockwood, 1999).
61  Most often, biotic homogenization also result from increases in local richness due to the
62  colonization of species assemblages by generalists (Filgueiras et al., 2021; Socolar et al.,
63  2016). However, species redistribution may also increase the spatial heterogeneity in
64  assemblage composition, either due to the gain of disturbance-adapted species or to the loss of
65  widespread species (Socolar et al., 2016). Although studies on the effects of climate change

66  over biodiversity patterns often emphasize the biotic homogenization due to species loss
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67 (Clavel et al., 2011; Hidasi-Neto et al., 2019; Moura et al., 2023), the prevalence each of
68  those process is likely context dependent, and spatial patterns will vary according to species
69  composition, the level of spatial heterogeneity in environmental conditions and the severity of
70  climate changes.

71 The potential effects of biotic homogenization have been studied mostly in tropical
72 rainforests (Sales et al., 2020), leaving other types of systems highly subject to climate change
73 understudied. Because future climate projections also include changes in the volume,
74  frequency, and geography of rainfalls (IPCC, 2021), climate change is particularly worrying
75  for regions already facing scarcity of water. For instance, drylands are expected to become
76  hotter, drier, and less suitable for a significant portion of their species (Aguirre-Gutiérrez et
77 al., 2020). If these projections are confirmed, it is likely that drylands will gradually become
78  impoverished, homogenised, and driven towards desertification (Moura et al., 2023; Torres et
79 al., 2017). One of Earth’s most vulnerable drylands, the Caatinga, is also the largest tropical
80  dry forest in South America (Banda-R et al., 2016; Hoekstra et al., 2004; Silva et al., 2017). In
81  addition to being affected by chronic disturbances (Antongiovanni et al., 2020), this semiarid
82  region underwent a high degree of defaunation associated with habitat loss and poaching in
83  the past five centuries (Alves et al., 2012; Barboza et al., 2016; Bogoni et al., 2020), showing
84  a high proportion of locally threatened species, including endemic ones (Leal et al., 2005)
85  Besides being an ideal study system to the consequences of climate change on biodiversity
86  distribution patterns, investigating the response of tropical dry forest mammals to climate
87  change can help elucidate impacts of environmental change on dryland biodiversity.

88 In the Caatinga drylands, about half of the mammal species are non-volant
89  (Carmignotto & Astla, 2018). Although many of these species are shared with neighbouring
90 biomes (Carmignotto et al., 2012), the composition of Caatinga mammals reflects a complex

91  hiogeographic history that has involved periodical expansions and retractions of tropical dry
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92  forests across different mountain ranges along the Pleistocene (Silva et al., 2017). On the one
93  hand, Caatinga species have historically experienced high climatic variation (Costa et al.,
94  2018), which may have selected organisms able to keep pace with climate change (Riddell et
95 al., 2021; Schloss et al., 2012). If so, future climate change would have limited influence on
96  species richness and composition of mammal assemblages. However, if Caatinga species are
97 already near their physiological limits (Aradgjo et al., 2013) or have relied on highland humid
98 enclaves as refuges over evolutionary time (Werneck et al., 2011), further increases in arid
99  conditions could trigger a range shift in these species with consequences for assemblage
100  structure.

101 Herein, we used ecological niche modelling and community ecology biodiversity
102  metrics to examine potential geographical range shifts of non-volant mammal species in the
103  Caatinga and evaluate impacts of climate change on mammal assemblages. We combined data
104 on species distribution and body mass to investigate projected changes in geographical
105 patterns of mammal richness and spatial dissimilarity across different future climate
106  scenarios. Specifically, we sought to determine whether the balance between potential range
107  contraction or expansion may increase or decrease species richness (alpha diversity) and how
108 those changes in distribution may impact homogenisation or heterogenisation of faunal
109  composition (beta diversity) across space. Because ecological losses are often non-random,
110  with large-sized and longer-lived non-volant mammals disappearing first (Carmona et al.,
111 2021; Cooke et al., 2019), we also examined how changes in average body mass per
112 assemblage (if any) was linked to species loss and biotic homogenisation. Because the
113 elevational gradient around highlands appears to sustain more favourable conditions for non-
114  volant mammals (Becker et al., 2007), we expected relatively lower changes in species
115  richness and composition of mammal assemblages at higher elevations, with overall decline

116 inrichness and biotic homogenization associated with a reduction in average body mass.
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117

118 METHODS

119  Species Data

120  We compiled occurrence data of Caatinga non-volant mammals searching for different term
121 combinations: “mamiferos”, “caatinga”, “nordeste”, “dataset”, “northeast”, “dryland”, and
122 “mammals” in Google Scholar, identifying 185 mammal species known to occur in the
123 Caatinga. We then used 19 published studies to extracted occurrence records collected
124  between 1957 and 2021 (Asfora et al., 2011; Brennand et al., 2013; Culot et al., 2019; Feijo &
125  Langguth, 2013; Freitas, 1957; Gardner, 2008; Geise et al., 2010; Gurgel-Filho et al., 2015;
126 Limaetal., 2017; Malcher et al., 2017; Mares et al., 1981; Mendonga et al., 2018; Nagy[Reis
127 et al., 2020; Nascimento & Feijo, 2017; Oliveira et al., 2003; Patton et al., 2015; Pires &
128  Wied, 1965; Santos et al., 2019; Souza et al., 2019). We also incorporated data from the
129  mastozoological collection of Universidade Federal da Paraiba (the largest mammal collection
130  of Northeastern Brazil) and other collections included in the Global Biodiversity Information
131 Facility (GBIF, 2023). We included species occurrence records if information was available
132 on coordinates, collection year, and species taxonomy in agreement with specialized literature
133 (Carmignotto & Astua, 2018; Feijo et al., 2016; Feijo0 & Langguth, 2013; Gardner, 2008;
134  Gurgel-Filho et al., 2015; Nascimento & Feijd, 2017; Oliveira & Langguth, 2004; Patton et
135  al., 2015; Quintela et al., 2020). After excluding the bat species, our database summed 39,459
136  occurrence records for 93 species of non-volant mammals.

137 We used the CoordinateCleaner R package (Zizka et al., 2019) to remove duplicates
138  and geoprocessing errors (records distant less than 1 km from municipality, state, or country
139  centroids, or located over water), leading to 18,758 records. To reduce the potential effect of
140  sampling bias and spatial autocorrelation in the occurrence dataset, we randomly filtered one

141 occurrence record for each species within a radius of ~10 km (Kramer-Schadt et al., 2013). At
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142  this point, all species in the database had at least 5 occurrence records. Our final dataset
143 included 11,900 unique occurrence records of 93 species distributed across the Neotropical
144  realm (Fig. S1). Information on mammal body mass was extracted from the EltonTraits
145  (Wilman et al., 2014), Phylacine (Faurby et al., 2018) and Combine databases (Soria et al.,
146 2021) and complemented through specialised literature (see Data Availability for complete
147  sources on body mass data).

148

149  Current and future projections

150  We used 19 bioclimatic variables from the WorldClim v2.1 (Fick & Hijmans, 2017)71 in the
151  spatial resolution of 5 arc-min (~100 km? pixel) to represent the current climate. The global
152 bioclimatic layers were cropped to the extent of Neotropical realm (i.e., our model’s
153 background). To avoid problems with multicollinearity and reduce the dimensionality of
154  predictor layers, we conducted a principal component analysis on the bioclimatic layers and
155  retained the predictor axes that cumulatively explained 95% of data variation (De Marco &
156  Nobrega, 2018)[. We projected the linear relationships between raw predictors and principal
157  components onto new layers representing future climate scenarios using the PCA loading
158  coefficients derived from climatic data.

159 The future climate projections can vary according to different Shared Socioeconomic
160  Pathways (SSPs) that consider distinct paths to greenhouse gas emissions and the human
161  demographic growth (IPCC, 2021). We employed climate projections for the optimistic (SSP
162  245) and pessimistic (SSP 585) scenarios for the period of 2041-2060 (hereafter 2060) and for
163  the period 2081-2100 (hereafter 2100), both derived from the 6th IPCC Assessment Report
164 (IPCC, 2021). The SSPs were created in agreement with different Generalised Circulation
165 Models (GCMs) that simulate climatic alterations considering various atmospheric processes

166  (IPCC, 2021). To minimise uncertainties about the choice of a particular GCM (Diniz-Filho et
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167  al., 2009; Thuiller et al., 2019), we selected the five distinct GCMs, namely: BCC-CSM2-MR,
168 CNRM-CM6-1, IPSL-CM6A-LR, MIROCS6, and MRI-ESM2-0.

169

170  Ecological niche models

171 Recent investigations have showed that 17 occurrence records would be necessary to build
172  traditional ecological niche models (ENMs) for species in the Caatinga (Sampaio &
173 Cavalcante, 2023; van Proosdij et al., 2016). Because almost 20% of mammal species herein
174  considered did not reach this occurrence threshold, we separated our dataset into species with
175  either <20 presences (considered as ‘rare’) or >20 presences (considered as ‘common’). We
176  then applied the traditional ENM approach to model habitat suitability of common species
177  and used the Ensemble of Small Models (ESM) approach (Breiner et al., 2015) to model the
178  rare species. Before modelling, we established the calibration (accessible) area of each species
179  as a buffer around its occurrence records, with a width size equal to the maximum nearest
180  neighbour distance among pairs of occurrences (Barve et al., 2012). Within each species
181  calibration area, we computed pseudo-absences using the ratio of 0.5 presence-absence for
182 common species and 0.1 for rare species to avoid very unbalanced models while maximising
183  sampling units (Barbet-Massin et al., 2012; Liu et al., 2019). To increment discriminatory and
184  explanatory capacities of models, we allocated pseudoabsences following the environmentally
185  constrained method, based on the lowest suitable region predicted by a climate envelope
186  (Engler et al., 2004; Lobo & Tognelli, 2011).

187 Considering that the algorithm choice can affect the habitat suitability estimation
188  (Diniz-Filho et al., 2009; Rangel & Loyola, 2012), we computed an ensemble of projections
189  using four algorithms. For the species modelled using the traditional ENM approach, we used
190 the following algorithms: Generalised Linear Models (using linear and quadratic terms),

191  Generalised Additive Models (using smooth terms with three dimensions), Maximum Entropy


https://doi.org/10.1101/2023.08.17.553094
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.17.553094; this version posted August 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

192 (using 10,000 background points and default features based on MaxNet package; Phillips et
193  al., 2017), and Random Forests (with the mtry parameter automatically tuned by growing
194 1000 trees through tuneRF function in randomForest package; Breiman, 2001; Liaw &
195  Wiener, 2002). For the species modelled using the ESM approach, we used the Generalised
196  Linear Models, Generalised Additive Models (using smooth terms with two dimensions), and
197  Gradient Boosting Models (using learning rate of 0.1 and 100 trees), and Neural Networks
198  (with 2 hidden layers, and decay parameters of O; Breiner et al., 2018). For each method and
199  rare species, we obtained the ESM by averaging the habitat suitability of bivariate models
200 weighted by their respective model Somers’ D [D = 2 x (AUC - 0.5)] (Breiner et al., 2015).
201 The ESMs computed for the four abovementioned methods were then used to build an
202  ensemble of projections for each rare species.

203 When projecting ENMs to new regions or time periods, it is possible to project habitat
204  suitability for conditions outside the range represented by the training data (Elith et al., 2010).
205  To account for the impact of model extrapolation on each species projection, we computed
206  the Mobility-Oriented Parity (MOP) metric (Owens et al., 2013) within the calibration area of
207  each species. We calculated the MOP metric by measuring the Euclidean distance between
208  environmental conditions of the projected pixel and the nearest 10% training data
209  observations (Montti et al., 2021). The MOP metric was further normalized to 1 and
210  subtracted from 1 to reflect environmental similarity (Owens et al., 2013). We filtered habitat
211 suitability estimates for projected pixels showing very high (MOP values > 0.9), high (MOP >
212 0.8), and moderate (MOP > 0.7) environmental similarity with the training data. To minimise
213 issues with unlimited dispersal, we restricted all projections to the respective calibration area
214 defined for each species.

215 We calibrated the models using 5-folds cross-validation, with 80% of randomly

216 selected observations (presences and pseudo-absences) used for training, and the remaining
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217  20% used for testing at each iteration (Roberts et al.,, 2017). Model performance was
218  evaluated through computation of Sorensen similarity index (ranging from 0 to 1) between
219  observations and binary predictions (Leroy et al., 2018)71. The habitat suitability threshold
220 selected to make predictions binary was chosen to maximise the Sorensen index. We also
221 computed complementary metrics of model performance, True Skill Statistic (TSS, ranging
222 from -1 to 1) and Area Under Curve (AUC, ranging from 0 to 1) (Liu et al., 2011), to
223 facilitate comparisons across literature. For the current climate, and for each combination of
224  GCM, SSP, and year, we computed the ensemble model as the average weighted habitat
225  suitability across algorithms, with the Sorensen index used as weight (Andrade et al., 2020).
226 The ensemble model was then made binary using average weighted binarization threshold,
227  with weights given by the Sorensen’s index of the respective algorithm (Andrade et al., 2020;
228  Thuiller et al., 2019). We used the standard deviation of habitat suitability across the GCMs as
229  a measure of future model uncertainty.

230 Lastly, we applied spatial constraints a posteriori to minimise overprediction issues
231 associated with species binary maps derived from ENMs. We used the occurrence-based
232 threshold method (OBR) to exclude unreachable patches of current suitable habitats for each
233 species (Mendes et al., 2020). This approach assumes that suitable patches are reachable if
234  they either overlap with species presence records (occupied patch) or are within an edge-edge
235  distance threshold of an occupied suitable patch (Mendes et al., 2020). We defined the
236  distance threshold as the maximum nearest neighbour distance among pairs of occurrences of
237 each species. All computations were performed in R 4.2.0 (R Core Team, 2022) using the
238  ENMTML package (Andrade et al., 2020) to build the traditional ENMs and the flexsdm
239  package (Velazco et al., 2022) to compute the ESMs.

240

241  Assemblage-level biodiversity metrics

10
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242  We divided the Caatinga using an equal-area projection grid cell of 10 x 10 km. We overlaid
243 our grid cells (i.e., species assemblages) with binary maps to build presence-absence matrices
244  for the current time and each future scenario (2060 SSP245, 2100 SSP245, 2060 SSP585, and
245 2100 SSP585). To represent the aggregate model uncertainty in future scenarios, we used the
246  average standard deviation of habitat suitability for species in each grid cell (species
247  assemblage). More specifically, we initially averaged the variances (i.e., the squared
248  deviations) for species habitat suitability in each cell, and then square rooted the outcome to
249  get the average standard deviation (AvgSD) for each future year—-SSP scenario combination
250 (2060 SSP245, 2060 SSP585, 2100 SSP245, and 2100 SSP585).

251 Species richness corresponded to the number of species (S) present in each grid cell.
252 The spatial beta-diversity was represented by the multisite Simpson dissimilarity index — Bsim
253  (Baselga, 2010), which is recommended for macroecological investigations given its
254  independence of richness differences (Kreft & Jetz, 2010). We computed Bs;m between each
255  focal cell and its immediate neighbouring cells. However, the number neighbouring cells is a
256  proxy to area and can therefore affect the Bsm via species-area relationship (Baselga, 2013).
257  To circumvent this issue, we randomly selected four neighbouring cells around each focal cell
258  to compute Bsim. We repeated this procedure 100 times and extracted the average Bsim across
259  iterations to obtain the per cell Bs;m. Computations were performed in R using the betapart
260  package (Baselga & Orme, 2012).

261 For each grid cell, we also computed the geometric mean of log;o body mass across its
262  member species (Avgmass) as a proxy for the structure of mammal assemblages (Bogoni et al.,
263 2020). We calculated the richness difference between future and current period (AS = Stytre —
264 Scurent) @and change in spatial beta-diversity (ABsim = Psim.future — Psim.current) tO identify species
265 assemblages subject to biotic homogenization (ABsiw < 0) or heterogenization (ABsim > 0).

266 Similarly, we computed the ratio of average body mass of future to current projections

11


https://doi.org/10.1101/2023.08.17.553094
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.17.553094; this version posted August 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

267 (MassRatio = AVOmassfuure / AVOmass.curent) t0 quantify relative changes in mammal
268  assemblages. MassRatio < 1 indicated future assemblage with lower average body mass than
269  today, while MassRatio > 1 indicated the opposite.

270 To assess the influence of potential topographical refuges in shaping assemblage-level
271 biodiversity metrics in Caatinga, we also categorised grid cells between lowlands (i.e., areas
272 <500 m elevation) and highlands (i.e., areas >500 m elevation). The threshold of 500 meters
273 allowed the detection of the five major Caatinga mountain ranges (e.g., Chapada Diamantina,
274  Planalto da Borborema, Chapada do Araripe, Serra da Ibiapaba, and the highest parts of the
275  Serra da Capivara and Serra das Confusdes, see Fig. S2). We used Kruskal-Wallis tests to
276  assess whether the medians of (i) Current species richness, (ii) AS, (iii) AVQmass.currents and (iv)
277  MassRatio differed between assemblages subject to biotic homogenisation (Apsiv < 0) or
278  heterogenisation (ABsim > 0) or located in lowlands versus highlands. Linear relationships
279  between projected changes in species richness (AS), changes in spatial beta-diversity (ABsiv),
280 relative changes in average body mass (MassRatio), and aggregated model uncertainty
281  (AvgSD) were verified through a modified t-test (Dutilleul, 1993) to spatially correct the
282  degrees of freedom of correlation coefficients. Computations were performed in R using the
283  package Spatial Pack (Osorio et al., 2014).

284

285 RESULTS

286  Across all non-volant mammal species in the Caatinga, the ensemble models showed
287 moderate to high predictive performance using either the traditional Ecological Niche
288  Modelling approach (median Sgrensen similarity index = 0.68, range = 0.52-0.98; median
289  TSS = 0.52, range = 0.12-0.97; median AUC 0.78, range=0.52-0.99) or the Ensemble of
290  Small Models approach (median Sgrensen similarity index = 0.60, range = 0.24-0.89; median

291  TSS = 0.6, range = 0.19-0.98; median AUC 0.85, range=0.43-0.99; Fig. S3). Although

12
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292  quantitative differences emerged between the SSP scenarios (SSP245 and SSP585) and year
293 (2060 and 2100), results were qualitatively similar. Therefore, we focused here on projections
294  for 2060 and SSP245, and based on highly similar environmental conditions (MOP values >
295  0.9), but see the Supporting Information for results on complementary projections.

296 About 87% of non-volant mammal species were projected to lose suitable areas by
297 2060, with substantial reductions of suitable areas (i.e., >50% of geographic range loss)
298  occurring mainly inside the Caatinga (Fig. S4). For at least 12 modelled species (12.8%),
299  suitable habitats within the Caatinga were projected to be completely absent by 2060 under
300 the SSP245 scenario (Fig. 1), with this number reaching 28 species (30%) under the
301  pessimistic scenario (SSP585) by 2100 (Figs S5-S6). Our ensemble models projected that
302  four species would currently show suitable habitats only outside the Caatinga, suggesting
303  potential source-sink dynamics for these species (Fig. 1). However, it is worth noting that four
304 out of the five species without projected suitable habitats (Dasyprocta azarae, Gracilinanus
305 microtarsus, Mirmecophaga tridactyla, and Priodontes maximus, ) lacked occurrence records

306 inthe Caatinga, despite being listed in regional checklists (Carmignotto & Astla, 2018).
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308 Figure 1. Projected range shift for non-volant mammals in the Caatinga. The four species below the red
309  dashed line showed no current suitable habitats within the Caatinga, although they are projected to occur
310  elsewhere in the Neotropical realm. Species labelled in red elsewhere indicate taxa without projected suitable
311 habitats for 2060 according to the scenario SSP245. Symbol colour on the left panel indicate if species body
312 mass is < 1 kg (green, small-sized) or not (pink, large-sized). Symbol shape follow the taxonomic order indicated

313 in the top-left inset plot. See Figs S4-S6 for results on complementary projections.
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315 Species loss was projected for 91.6% of species assemblages, with an average richness
316 difference of -4.7 species (range AS = -23-8) across all assemblages, whereas 69.9% of
317  assemblages showed projected biotic homogenisation (Fig. 2). Median current species
318  richness is higher in regions projected to become more heterogeneous (x2 = 1167.7,d.f. =7, p
319 < 0.001, Fig. 3a). Similarly, future assemblages projected to be more heterogeneous in the
320 future showed the most pronounced species loss (Fig. S11, Table S1), particularly those in
321 northern Caatinga (Fig. 2), with model uncertainty increasing with richness difference (Fig.
322 S20). Notably, model projections showed low uncertainty across regions subject either to
323  biotic homogenisation or heterogenization (Fig. S21). Assemblages located in lowlands or
324  highlands showed similar changes in species richness and spatial-beta diversity (Figs S12 and
325  S17-18).

326 Average body mass in current assemblages was generally higher in lowlands than in
327  highlands (x2 = 435.6, d. f. = 7, p < 0.001, Fig. 3c). Surprisingly, 87.7% of assemblages were
328 projected to experience an increase in average body mass of their member species,
329  particularly in the southern and northwestern portions of Caatinga (Fig. 2). The relative
330 change in average body mass was not associated with changes in either species richness (Figs
331  4c and S14d) or biotic change (Figs 4e and S15d), but tended to slightly increase with
332 elevation (Fig. S12i-1). Across most the SSP scenarios, time periods, and levels of
333  extrapolation constraints, our findings indicated no relationship between changes in average

334  body mass and aggregated model uncertainty (Fig. S22).
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Figure 2. Geographical patterns of species richness, spatial beta-diversity, and average body mass for
mammalsin the Caatinga. (a) Current species richness, (b) Spatial beta-diversity (Bsiv), (c) Average log;o body
mass (g), (d) Projected richness difference (AS), (e) Projected change in spatial beta-diversity (ABsiv), (f)
Projected relative change in average body mass. All geographical patterns were derived from species projections
holding at least 90% of environmental similarity with training data. The contour lines denote the assemblages
(cells) in the upper and lower 10% of the mapped pattern. Plots are shown for the scenario SSP245 at the year

2060. See Figs S7-S10 for results on complementary projections and mapped uncertainty.
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345 Figure 3. Species richness and aver age body mass across mammal assemblages at different elevations and

344

346  levels of biotic change. (a-b) Species richness and (c-d) average body mass. Each box denotes the median
347 (horizontal line), the 25th and 75th percentiles, the 95% confidence intervals (vertical line), and outliers (black
348  dots). Boxplots in darker greenish or pinkish colours denote were computed using the upper and lower 10%
349 assemblages (cells) in terms of biotic change (a, ) and elevation (b, d). Small capital letters denote the results of
350  the Kruskal-Wallis tests for the difference in medians across assemblages subject to different levels of biotic
351 homogenisation or located in lowlands or highlands (boxplots holding the same letter show statistically similar
352 median values under p = 0.05, using Bonferroni correction). Plots are shown for the scenario SSP245 at the year

353  2060. See Figs S11-S12 and Tables S1-S2 for complementary projections.
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geographical patterns were derived from species projections holding at least 90% of environmental similarity
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freedom. Plots are shown for the scenario SSP245 at the year 2060. See Figs S13-S22 for results on

complementary projections.
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362 DISCUSSION

363  Drylands in northern South America are expected to face temperature rise of up to 2.7°C by
364 2060, with changes in the number of consecutive dry days increasing by as much as 21 days
365 (IPCC, 2021). Our study reveals the potential for such changes to drastically erode the
366  diversity of non-volant mammals in the Caatinga. Our projections indicate that most species
367  will lose suitable environmental conditions within the Caatinga, while a few will expand their
368 distribution, which will result in lower species richness and increased compositional similarity
369  to nearby assemblages. Our results show that the biotic homogenisation and species loss are
370 projected in opposite directions, with species gain occurring mostly in regions that are
371 currently species-poor. Although the current beta-diversity is higher in highlands than
372 lowlands, projected changes in biotic composition are only weakly or not at all associated
373 with elevation. Most assemblages are expected to lose small-sized mammals, while large-
374  sized species are projected to colonise neighbouring assemblages. Overall, we reveal how
375 climate change strengthen the defaunation of non-volant mammals and produce complex
376  spatial patterns in the largest tropical dry forest of South America.

377 Despite mammal adaptations to survive in drylands (e.g., insectivorous diet, night
378  activity, and subterranean shelters), climate change can restrict their physiology and fitness by
379 increasing dehydration, overheating, starvation, and reducing reproduction (Fuller et al.,
380 2021). The projected loss of suitable habitat for almost 90% of all non-volant mammals of
381  Caatinga suggests that these species will have to cope with extreme climate conditions for
382  their dispersion across the biome. Among the main climatic “losers”— species with greatest
383  suitable habitat loss — are primates and the Brazilian cottontail rabbit, but several species from
384  the orders Didelphimorphia and Rodentia also emerge, such as the agile gracile opossum
385 (Gracilinanus agilis), the long-tailed climbing mouse (Rhipidomys mastacalis), and the white-

386  spined Atlantic spiny-rat (Trinomys albispinus). These animals are typically small-sized and
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387  occupy lower trophic levels, usually producing a greater number of offspring when compared
388  with large-sized mammals (Carmignotto & Astla, 2018; Feijo & Langguth, 2013; Santini et
389 al., 2013). The few “winner” species include the brown brocket (Mazama gouazoubira), the
390 black-rumped agouti (Dasyprocta prymnolopha), which have a wide-ranging distribution and
391 a large body size (Carmignotto & Astla, 2018; Hetem et al., 2014; Santini et al., 2013), and
392  different species of armadillos, which generally have wide tolerance to warm-dry climates
393  (Soibelzon, 2019). These examples illustrate how animals with low vagility can be
394  disproportionally impacted by climate change, which is supported by our findings on the
395 decrease in the relative contribution of small-sized species across mammal assemblages.

396 The drastic species loss projected for the assemblages of non-volant mammals can be
397 attributed to changes in dispersal, behaviour, and resource availability due to increasing
398 aridity (Marengo et al., 2017; Torres et al., 2017). Firstly, increased aridity can shorten the
399  optimal period for foraging and breeding (Hetem et al., 2014), and ultimately impact the
400 ecological fitness and maintenance of mammal populations (Fuller et al., 2021). Secondly,
401  geographical barriers may further restrict dispersal and hinder access to suitable habitats
402  (Fuller et al., 2021). Thirdly, hotter and dryer conditions can reduce aboveground biomass
403  (Rito et al., 2017; Souza et al., 2019) and alter floristic composition (Rito et al., 2017; Vieira
404  etal., 2022), thereby impacting competition for food resources not only to herbivores, but also
405  to omnivores and carnivores (Marinho et al., 2020; Oliveira & Diniz-Filho, 2010)[ (. Since
406 mammals can exhibit size-dependent variation in vagility, behaviour, and energy needs
407  (Ramesh et al., 2015; Santini et al., 2013; Shipley et al., 1994), prolonged periods of heat and
408 droughts can trigger heterogeneous species responses and enhance negative biotic
409  interactions, ultimately leading to the depletion of faunal assemblages.

410 The predominance of highly-vagile large-sized species across lowland assemblages

411 and the faster turnover of small-sized species in highlands help to explain the increase in
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412 mammal beta-diversity along elevational gradients in the Caatingal (Lopez et al., 2016; Melo
413 etal., 2009). While small-sized mammals certainly occur across Caatinga lowlands, the future
414  homogenisation is expected to be primarily driven by the loss of suitable habitats for typically
415  small-sized mammals — adults weighting < 1 kg, sensu Chiarello (2000) — which constitute
416  54% of species in the region (Fig. 1). The current predominance of small-sized mammals
417  across highlands can be related to species persistence through elevational range shift across
418  time (Chen et al., 2011)77, which is especially important in the Caatinga due to its climate
419 instability when compared with other regions in South America (Costa et al., 2018)C.
420  Therefore, the impoverished and compositionally similar mammal assemblages in the
421  lowlands may have resulted from the historic accumulation of local extinctions in the
422  Caatinga, particularly of small-sized species with low vagility (Schloss et al., 2012).

423 Ecological niches of large-sized species may have been underestimated due to past
424 hunting and overexploitation (Sales et al., 2022), which could further increase in the relative
425  contribution of large-sized species in shaping mammal assemblage. However, our data entries
426  may have missed species entirely if past defaunation resulted in the extinction of large-sized
427  species in the Caatinga. Ungulates like the tapir, peccaries, and different deer species that had
428  wider ranges before European colonization are considered locally extinct across most regions
429  within the biome limits (Barboza et al., 2016). The largest extant mammal in most sites, and
430  the ones projected to increase in range are armadillos, which can be very resilient and often
431  thrive in human-modified landscapes (Bovo et al., 2018; Magalhdes et al., 2023), with most
432 small mammals including rodents and marsupials projected to undergo range contractions
433 while the potential range of some of the larger-bodied extant species are projected to increase,
434  the average body mass increases as well. In that sense the pattern we found of increasing
435  mean average body mass is the consequence of the expansion of opportunistic species as well

436  as a legacy of past defaunation. It is worth noting that while the geographical pattern of
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437  average body mass indicates a general increase in the relative contribution of large-sized
438  species, intraspecific responses may cause mammal body size to decrease in response to a
439  warming climate (Gardner et al., 2011; Villar & Naya, 2018).

440 While methodical choices and theoretical limitations like climate uncertainty, dispersal
441 limitations, niche conservatism and model transferability (Barve et al., 2012; Diniz-Filho et
442  al., 2009; Guisan & Thuiller, 2005; Owens et al., 2013; Thuiller et al., 2019) may have
443  affected our projections, wee minimized these issues by offering an ensemble of projections
444  across various modelling algorithms (Aradjo & New, 2007). We also implemented an
445  ensemble of future projections across different generalized circulation models and future
446  scenarios of climate change (Diniz-Filho et al., 2009; Thuiller et al., 2019). We also applied
447  species-specific spatial restrictions to remove unreachable patches of projected suitable
448  habitats and minimise overprediction issues related to unlimited dispersal by constraining
449  projections to species-specific calibration areas (Mendes et al., 2020). In addition,
450  assumptions of niche conservatism are likely applicable to mammals in the Caatinga, as the
451 upper limits of mammal thermal tolerance are highly conserved in tropical species (Araujo et
452  al., 2013; Khaliq et al., 2015). To minimise model transferability issues, we constrained
453  habitat suitability estimates to environmental conditions similar to those in the training data
454  (Owens et al., 2013). Although the models used in this study varied quantitatively, the
455  projected changes consistently pointed in the same direction, conveying a unified message.
456 Our findings indicate a higher species loss for mammal assemblages in the eastern half
457  of Caatinga, which is also affected by chronic disturbances (Antongiovanni et al., 2020). The
458  highly fragmented and diminished vegetation cover of eastern Caatinga (Castanho et al.,
459  2020) impose additional challenges for non-volant mammals to track suitable habitats (Alves
460 et al., 2020), further contributing to depauperate the trophic structure of species assemblages

461 (Mendoza & Araujo, 2019). Although mammal assemblages subject to high species loss
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462  exhibit more future uncertainty, a more optimistic outlook is unlikely as these regions also
463  overlap with heavily settled human-modified landscapes in the Caatinga (Antongiovanni et
464  al., 2018, 2020) and regions projected to vegetation complexity and diversity (Moura et al.,
465  2023). Therefore, the severe defaunation of Caatinga mammal assemblages is a probable
466  outcome, with small-sized species loss driven by climate change — at least partially — and the
467  depauperating of large-sized mammal further exacerbated by overexploitation and habitat
468  destruction (Alves et al., 2023; Bogoni et al.,, 2020). In the long-term, this drastic
469  simplification of mammal assemblages can disrupt biotic interactions and impact ecosystem
470  services in tropical dry forests, by reducing the potential for vegetation regeneration and
471  carbon storage (Bello et al., 2015; Fricke et al., 2022; Gardner et al., 2019). The success of
472  long-term socioenvironmental policy and biodiversity conservation planning necessitates that
473  findings derived from biodiversity forecasts are considered.

474
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