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Abstract

One view of the neocortical architecture is that every region functions based on a
universal computational principle. Contrary to this, we postulated that each cortical
region has its own specific algorithm and functional properties. This idea led us to
hypothesize that unique temporal patterns should be associated with each region, with
the functional commonalities and variances among regions reflecting in the temporal
structure of their neural signals. To investigate these hypotheses, we employed deep
learning to predict electrodes locations in the macaque brain using single-channel ECoG
signals. To do this, we first divided the brain into seven regions based on anatomical
landmarks, and trained a deep learning model to predict the electrode location from the
ECoG signals. Remarkably, the model achieved an average accuracy of 33.6%,
significantly above the chance level of 14.3%. All seven regions exhibited above-chance
prediction accuracy. The model’s feature vectors identified two main clusters: one
including higher visual areas and temporal cortex, and another encompassing the
remaining other regions.These results bolster the argument for unique regional
dynamics within the cortex, highlighting the diverse functional specializations present
across cortical areas.

Introduction 1

While the mammalian neocortex has been thought to be composed of repetition of a 2

canonical microcircuit [1], the diversity of the cytoarchitecture across cortical regions 3

suggest functional specialization. For instance,the absolute receptor concentration 4

throughout the cortical depth is different across the cortex [2],neuron density and the 5

ratio of neurons to nonneuroncells (mainly glia) varied greatly across cortical areas and 6

regions [3], the frontal lobe contains large stellate cells in layer 4 [4], while the parietal 7

lobe’s layer 5 is characterized by large pyramidal cells [5]. Synaptic excitation and 8

inhibition display systematic macroscopic gradients across the entire cortex [6]. Since 9

electrophysiological activities result from the synchronous activity of neurons in the 10

brain [7–10], we hypothesize that cytoarchitectural diversity is also manifested in 11

electrophysiological properties of neuronal signals, such as electrocorticalgraphy (ECoG). 12

In previous research, it has been reported that different brain regions exhibit distinct 13

electrophysiological characteristics. For Example, the spiking regularity of neurons 14

increases as information flows from the input to the output regions of the brain [11]. 15

Furthermore, studies utilizing ECoG and single-neuron recordings have revealed that 16
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the intrinsic timescales, derived from the autocorrelation of neural activity, become 17

progressively longer as the cortical hierarchy goes higher. This phenomenon has been 18

observed in both local field potentials (LFP) captured by ECoG and the spiking 19

patterns of individual neurons [12]. Notably, distinct variations in spike patterns have 20

been identified across different brain regions, including V1, V2, MT, vlPFC, PMd, and 21

SNr [13].Besides, it has been investigated that there are cortical functional 22

heteroginity [14–16]. Besides, there are gradients in cortical thickness across the 23

cortex [17–19]. Notably, the dominant peak frequency in a brain area significantly 24

decreases along the posterior-anterior axis, aligning with the global hierarchy from early 25

sensory to higher-order areas. This spatial gradient of peak frequency is inversely 26

correlated with cortical thickness, which serves as an indicator of the cortical 27

hierarchical level [20]. 28

In this study, we aimed to determine whether the functional heterogeneities of 29

cortical regions are reflected in the temporal patterns of the local electrophysiological 30

signals as measured by ECoG. To this end, we trained a deep learning model on ECoG 31

data to identify similarities and differences between brain regions and extracted latent 32

ECoG features. If cytoarchitectural diversity is reflected in each region’s ECoG, we 33

expect to observe distinct temporal patterns. We hypothesize that the model can learn 34

these patterns and predict the corresponding cortical region. Additionally, we predicted 35

that regions with similar cytoarchitecture would display similar latent ECoG features, 36

while regions with distinct cytoarchitecture would exhibit more divergent ECoG 37

characteristics. We divided the cortical regions into seven areas based on the atlas (see 38

Materials and Methods for details), and used the feature vectors obtained from the 39

trained deep learning models to analyze the similarities among those areas. 40

Materials and Methods 41

Experiment Condition of the datasets 42

In this study, we used ECoG signals measured by electrodes covering most of the lateral 43

cortex in four macaque monkeys during awake conditions from public database. [21, 22]. 44

ECoG singnals were recorded from most of the lateral cortex in four macaques during 45

awake (eyes-opened, eyes-closed), anesthetic and sleeping conditions. During the 46

recordings, monkeys were seated in a primate chair with both arms and head movement 47

restricted. The awake condition had eyes-opened and eyes-closed conditions. In 48

eyes-opened condition, the monkey’s eyes were open and the monkey sat calmly. In 49

eyes-closed condition, the monkey’s eyes were covered by an eye-mask to refrain from 50

evoking visual response. We used ECoG data from the eye-opened condition. The 51

sampling rate was 1kHz. 52

To prevent sample imbalances from different regions in the process of prediction by 53

machine learning, we standardized the number of electrodes across the seven regions for 54

each animal, adjusting to match the region with the fewest electrodes. During this 55

modification, electrodes near the boundaries of cortical regions were removed to 56

eliminate potential ambiguity regarding their regional affiliation. The following table1 57

shows the number of electrodes for each region, and table2 shows the length of the data 58

for each electrode for each individual. 59

Deep Learning Model 60

In this study, we used a transformer-based model called TERA [23] known for its high 61

accuracy in time-series analysis. While there are various analysis methods available for 62

ECoG [24–27], our research employs this transformer-based model due to its proven 63
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Table 1. Number of channels in each region

Monkey LPFC PMC MSC PC TC HVC LVC
M1 12 12 12 12 12 12 12
M2 11 11 11 11 11 11 11
M3 14 14 14 14 14 14 14
M4 12 12 12 12 12 12 12

LPFC - Lateral Prefrontal Cortex, PMC - Premotor Cortex, MSC - Motor and So-
matosensory Cortex, PC - Parietal Cortex, TC - Temporal Cortex, HVC - Higher Visual
Cortex, LVC - Lower Visual Cortex

Table 2. Length of data

Monkey Time (min)
M1 15
M2 15
M3 20
M4 20

effectiveness in handling temporal data. Originally developed for speaker identification 64

in speech recognition research, TERA shares a similar objective, as we aimed to identify 65

the “speaker” of cortical signals from time series data. TERA, an acronym 66

for“Transformer Encoder Representations from Alteration”, utilizes the encoder part of 67

the transformer architecture. In this study, we trained TERA from scratch to predict 68

which electrode corresponds to which brain region using only single channel ECoG 69

signals. 70

TERA acquires the latent features of waveform data in a self-supervised manner by 71

reconstructing the original spectrogram through a one-to-one correspondence between 72

the input data converted into a spectrogram and the data partially masked from the 73

spectrogram. The following is the method used in this study to train TERA to acquire 74

the latent space of ECoG and the corresponding feature vectors.(Figure1) 75

1. Electrode labeling according to an atlas 76

First, the electrodes were labelled according to which region they were attached to 77

as designated by an atlas [28] of the cerebral cortex. The placement of electrodes 78

is depicted in Figure1.A. As described earlier, we standardized the number of 79

electrodes across the seven regions for each animal, adjusting to match the region 80

with the fewest electrodes 1. For each electrode, ECoG data was collected in 81

distinct, non-overlapping segments, with each segment spanning 20 seconds. After 82

that, the data, which was originally sampled at 1 kHz, was downsampled to 250 83

Hz. 84

2. Preprocessing Subsequently, we implemented the Common Average Reference 85

method by averaging all channels and then subtracting the resultant signal from 86

each individual channel. As outlined in the original TERA paper by [23], we 87

converted the data into a log Mel spectrogram with a dimension of 80. Feature 88

extraction was executed using a window of 25 ms and a stride of 10 ms. Following 89

this, we applied CMVN (cepstral mean and variance normalization) to the 90

extracted features. 91

3. Training the deep learning model In the final stage, we utilized the preprocessed 92

spectrograms for model training, which consisted of two phases: Pre-training and 93

Downstream. During the pre-training phase, the spectrograms were masked along 94

both time and frequency dimensions. The model then learned latent spaces by 95
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attempting to reconstruct these masked spectrograms. The L1 Loss served as the 96

loss function for this reconstruction phase.For the Downstream phase, we added a 97

classifier to the final layer of the model using the parameters of the pre-trained 98

model. The model was trained by supervised learning with correct labels of the 99

regions corresponding to the input ECoG data. The model was trained to predict 100

the electrode location from the input spectrogram. (Figure1.B) 101

We used 80% of the data for training and 20% for the test. The same training 102

data were used both for pre-training and the downstream task, and the test data 103

for validation were carefully separated from this. In pre-training, we used all the 104

training data from all the four macaques, whereas the downstream fine-tuning was 105

done for each macaque separately. We used the data of four macaques in order to 106

generalize the model. 107

To discern which aspects of the spectrograms contribute the prediction of ECoG 108

electrodes, we took two approaches. First, to investigate to what extent frequency 109

profile contains the information about the electrode location, we tested how 110

prediction accuracy degrades by averaging the power over time prior to model 111

input. Second, to gauge the contribution of temporal patterns, we randomized 112

shuffled all the time points in a randomized order before feeding them to the 113

model. These analyses are expected to provide a hint as to which aspects of the 114

spectrograms contain the characteristics of brain regions that contributed to 115

successful predictions. 116

In order to quantify to what extent the model managed to predict the region of 117

the target ECoG electrode, we calculated F1 value for each region. F1 value is the 118

harmonic mean of two other metrics, precision and recall. The formula is as 119

follows; 120

F1 =
2Recall · Precision
Recall + Precision

(1)

Precision represents the proportion of correct predictions made by the model 121

among all the predictions it made. Recall, on the other hand, represents the 122

proportion of correct predictions made by the model among all the actual positive 123

cases. 124

4. Saliency Map 125

To investigate which parts of the spectrogram the model relied on, we computed 126

saliency maps. Saliency maps are widely used in deep learning as a technique to 127

understand the importance or relevance of different regions within an input image 128

or data. They provide a visual representation that highlights the most significant 129

areas or features that contribute to a model’s prediction. 130

In this study, saliency maps were generated using gradient backpropagation. 131

These methods exploit the gradients of the model’s output with respect to the 132

input features to determine the importance of each feature. The gradients were 133

computed by backpropagating the model’s output through its layers, attributing 134

relevance to the input features based on their impact on the final prediction. This 135

process allows the identification of the most influential features that contribute 136

positively or negatively to the model’s decision. 137

Once the gradients were obtained, they were visualized as a saliency map, which is 138

a heatmap overlayed on the input image. The heatmap assigned different 139

intensities of colors to different regions, with the most salient areas represented by 140
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brighter colors or higher intensities. These salient regions correspond to the areas 141

that strongly influence the model’s prediction. 142

5. Extraction of latent feature 143

After training the model, the output of the one before the last layer of the model 144

was extracted for each input. The layer is circled in the Figure1.B. This output 145

essentially serves as a feature vector within the resultant latent space. Based on 146

this feature vector, we gauged the similarity amongst regions. That is, small 147

distances between feature vectors indicated higher similarities (Figure1.C). The 148

feature vectors were added together for each region, and those added vectors were 149

used as the concatenated vectors in that region. We calculated and compared the 150

distances of concatenated vectors for each of the seven regions, under the 151

assumption that the distance between concatenated vectors across regions reflects 152

inter-region similarity. 153

SVM 154

To evaluate whether the transformer-based model had any advantage over other simpler 155

methods, we obtained a simple baseline performance using Support Vector Machine 156

(SVM). We used the same spectrograms as input for training a linear SVM. The data 157

preprocessing technique used for the TERA model was applied to preprocess the 158

spectrogram in the same way. This involved performing the common average referencing 159

(CAR) and cepstral mean and variance normalization (CMVM) subtraction as 160

preprocessing steps. For each individual, an SVM was trained using the labeled 161

electrode regions as the target labels, with the preprocessed data serving as input. After 162

the preprocessing, the spectrograms were transformed into one-dimensional vectors of 163

(feature length)×(time length). The training data consisted of 80% of the overall data, 164

while the remaining 20% was used as the test data. The data were standardized before 165

training the model. 166
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Figure 1. The panels in this figure show the preprocessing of ECoG data and the model
trained to predict the region where the electrode belonged. (A) The cortex was divided
into seven regions based on the atlas. ECoGs were cut every 20 seconds from electrodes
belonging to each region and transformed into spectrograms after preprocessing. Four
macaque data were used to generalize the model. (B) Model architecture. The model is
trained to predict the region which input spectrogram belongs to. The model is divided
into two parts, Pre-training and Downstream, with Pre-training on the left side of the
architecture and Downstream on the right side. In pretraining, first, we masked the
contiguous segments to zero in spectrogram along both time and frequency axis. Second,
we trained the model by reconstruction the masked spectrogram. In Downstream, we
fine-tuned the model so that the model predict the region the input spectrogram belongs
to by supervised learning. (C) After training the model, we used the test data to extract
the activation patterns of the layer before the final output layer for each input, and used
those patterns as feature vectors. For each region, the feature vector was concatenated
to create a concatenate vector for that region.

Results 167

Prediction accuracy 168

The prediction accuracy as indexed by the F value per region for each individual is 169

shown in Figure2.A along with the average across four animals per region. As shown, 170

the transformer-based architecture successfully classified the region based on a single 171

channel ECoG signal over 20 seconds for almost all region for all the four animals. The 172

prediction accuracy of the HVC and LVC regions were relatively high, while the 173

accuracy for the PMC region was lower than in the other regions. These results support 174

our hypothesis that the temporal patterns in single channel ECoG signals contain some 175

information about the recorded region. 176

However, the specific attributes of the signals that contributed to the predictions are 177
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not clear. To address this, we hypothesized that the frequency profiles of the regions 178

might play a role. To evaluate this, we calculated the average power for each frequency 179

by compressing the spectrogram over its temporal dimension, and then assessed the 180

trained model to determine any degradation in prediction accuracy. If the model relies 181

on primarily frequency information only, it is expected that even if the temporal 182

information is removed by averaging, prediction accuracy would remain high. On the 183

other hand, if the model relies on the combination of both frequency and temporal 184

information, then the averaging would degrade the accuracy. 185

The results of this analysis are shown in Figure2.B. Contrary to our expectation, the 186

prediction accuracy was at chance levels. This implies that the predictions were not 187

solely reliant on the frequency power profile. Instead, the model seems to be attuned to 188

more intricate features within the time-frequency data. 189

To further understand the contributing features, we shuffled the time of the input 190

spectrogram to see how much the model relied on temporal features. Figure2.C shows 191

the F value between individuals in each region using spectrogram, of which temporal 192

component was shuffled. It is observed that the F-values did not change significantly 193

compared to Figure2.A. This suggests that the temporal structure in the spectrogram 194

plays little role in the prediction of the region. The combined results from these two 195

additional analyses may be somehow perplexing because powerspectrum alone is not 196

sufficient for successful prediction, suggesting the relevance of temporal information, 197

whereas shuffling the temporal order did not harm the performance. Possible 198

interpretations of these results will be discussed in the discussion section. 199

Finally, we show the results from our baseline performance obtained with linear 200

SVM. Figure2.D shows the F value between individuals in each region using SVM. From 201

this figure, it appears that the F-values are close to the chance level. This suggests that 202

when using the simple baseline model SVM, as compared to TERA, it was not able to 203

capture the ECoG features effectively in each region. 204

In addition to those attempts to reveal contributing features by degrading the input 205

data, we also applied methods to visualize which portion of the data the model paid 206

attention to for making predictions. Figure3 visualizes the saliency map of the model 207

using the gradient of the model. The horizontal axis is time and the vertical axis is 208

frequency, and the Saliency Map visualizes the features that the model pays attention 209

to. The trial average, the average of correct cases, and the average of incorrect cases 210

were calculated for each region for each individual. The highlighted horizontal bands in 211

those figures suggest that the model focuses mainly on frequency components. The 212

appearance of temporal changes at a certain moments may suggest that the model may 213

be capturing a temporal feature. On a single trial basis, we often observed temporally 214

specific attention that appeared as brief vertical lines that overlapped with high gamma 215

activities. Such brief events may have also made contributions to the prediction 216

accuracy. 217
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Figure 2. These figures show the F-values for each region in each individual when
trained with models TERA and SVM. M1 to M4 correspond to each individual, and
”Average” indicates the average F-values across the four individuals for each region.The
dashed lines in the figures represent the chance level(1/7). (A)This figure shows the F
value between individuals in each region using TERA. (B)This figure shows the F value
between individuals in each region using spectrogram averaged the frequency components.
(C)This figure shows the F value between individuals in each region using spectrogram,
of which temporal component was shuffled. (D)This figure shows the F value between
individuals in each region using SVM.
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Figure 3. These figures represents saliency map of each regions (A)This figure represents
the averaged spectrograms when the prediction was True. (B)This figure represents the
averaged spectrograms when the prediction was False.

Similarities of cortical regions 218

In order to assess the similarity between regions, we extracted the activation patterns 219

from the layer just before the last layer of the trained model. This vector was used as 220

the feature vector of the region to which the input ECoG data belonged, and this 221

feature vector was used to examine the similarity between the regions. The similarity 222

between regions was quantified using Cosine Similarity. For each region, the feature 223

vectors were extracted for each 20-second segment and then concatenated to make a 224

long vector spanning over the entire period. Similarities between regions were computed 225
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based on those concatenated vectors obtained for each region (Figure1.C) as follows. Let 226

a and b be two representative vectors, the distance between vectors can be obtained as 227

cos θ =
a · b

∥a∥∥b∥
(2)

The Cosine Similarity diagram (Figure4) shows that both HVC and TC were 228

independent of other regions and the other regions forms one cluster. Within the big 229

cluster, MSC and PMC, and LVC and PC, respectively formed subclusters. These 230

results suggest that ECoG signals derived from the temporal cortex exhibit more 231

distinct characteristics compared to other regions. 232

Figure 4. This is the Similarity matrix between the regions. Concatenated Vectors
were created by adding the Feature Vectors for each region, and the distance between
the concatenated Vectors for each region was calculated using cosine similarity.

Discussion 233

The purpose of this study was to test whether different cortical regions exhibit distinct 234

electrophysiological characteristics. We used ECoG signals obtained from each electrode 235

for classifying the corresponding electrode’s region into one of seven categories, as 236

delineated by anatomical criteria. Our anticipation was grounded in the notion that the 237

diversity in cytoarchitecture and distinct connectivities across regions would manifest as 238

discernible temporal patterns in their respective ECoG signals. Thus we hypothesized 239

that deep learning models would be able to learn those distinct temporal patterns and 240

determine which region the ECoG belonged to. 241
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Our results showed that a deep learning model called TERA can indeed predict the 242

region of an electrode based on the spectrogram computed from a 20 seconds of single 243

channel ECoG signals. While this indicates that the temporal patterns of ECoG signals 244

contain the characteristics pertinent to the target region, it was not clear what patterns 245

actually enabled the prediction. It was perplexing that while simple frequency profiles 246

were not sufficient for successful prediction, shuffling the spectrograms in the temporal 247

domain did not substantially impair the prediction accuracy. The results of our saliency 248

mapping did not provide unequivocal insights as to the underlying contributing features. 249

A plausible interpretation for these results is that our model identified transient 250

events specific to each region. For instance, upon examining the saliency maps for 251

individual time segments, we sporadically noticed fleeting highly salient moments across 252

all frequencies coinciding with high gamma activation. These transient events coupled 253

with other subtle attributes may have played a role in making predictions. However, we 254

were not able to pinpoint definitive patterns that consistently served as hallmark 255

features for regional classification. This remains a significant constraint of our present 256

study and a more in-depth exploration is required to comprehensively grasp these 257

underlying characteristics. 258

In addition to showing the possibility of predicting the region of the electrode, we 259

explored the similarities and differences in the ECoG signatures across brain regions. To 260

this end, we used the trained neural network models as a way to create feature vectors 261

for each region and constructed a similarity matrix across the seven brain regions. The 262

results shown in Figure.4 show that brain regions are split into two clusters: the HVC 263

and TC formed one cluster while others made another. This suggests that ECoG signals 264

in the temporal cortex are distinct from the rest of the cortex. Those regions in the 265

temporal cortex belonged to the so-called ventral visual pathway associated with 266

high-level vision [29–31]. Additionally, we observed subtler subclusters, denoting 267

similarities between the early visual cortex and parietal cortex, as well as between 268

somatomotor and premotor areas. These cortical configurations hint at a division of 269

dynamics into the ventral pathway, dorsal pathway, and motor-related clusters. 270

Such demarcations might reflect diverse characteristics of the inherent neuron 271

populations. For example, the contrasts between the ventral and dorsal pathway 272

clusters might originate from variations in their connectivity and functions. The ventral 273

and dorsal pathways are known for their distinct architectures, topographies, and 274

connections [32]. Neurons in the frontal lobe are markedly more spinous than their 275

counterparts in other lobes. [33]. Differences manifest in the spine count of the basal 276

dendritic trees of pyramidal cells across V1, V2, and PFC, as well as in their dendritic 277

tree sizes [34]. Moreover, distinctions in spine size, cell count, and size between the 278

dorsal and ventral stream areas have been documented [35,36]. According to 279

quantitative cytoarchitectonics, it is observed that dorsal and ventral pathways are 280

separated in the clusters [37]. Any of these variations may contribute to the unique 281

temporal dynamics in ECoG signals that allowed for the classification of the region of 282

origin. 283

In summary, our study aimed to determine whether distinct cortical areas exhibit 284

unique electrophysiological markers. Utilizing ECoG signals and the capabilities of the 285

TERA deep learning model, we successfully classified electrodes into one of seven 286

regions. This classification underscores the potential variations within the cortex. 287

However, the specific patterns responsible for this accurate classification remain less 288

clear, especially given the unexpected results from our frequency profile and time 289

domain experiments. We speculated that transient events and other subtle features that 290

might play crucial roles in predicting the region from ECoG signals. In examining 291

similarities and differences in latent features across regions, we found evidence 292

suggesting that ECoG dynamics could be segmented into distinct clusters. These 293
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observations might reflect underlying neuronal properties, ranging from dendritic 294

structures to cytoarchitectural differences. Our findings have added to the existing body 295

of knowledge on the cortex’s electrophysiological properties, and we anticipate further 296

research will continue to clarify these complex relationships. 297
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25. Maciej Śliwowski, Matthieu Martin, Antoine Souloumiac, Pierre Blanchart, and
Tetiana Aksenova. Deep learning for ECoG brain-computer interface: end-to-end
vs. hand-crafted features. 2022. Publisher: arXiv Version Number: 2.

26. Harish RaviPrakash, Milena Korostenskaja, Eduardo M. Castillo, Ki H. Lee,
Christine M. Salinas, James Baumgartner, Syed M. Anwar, Concetto Spampinato,
and Ulas Bagci. Deep Learning Provides Exceptional Accuracy to ECoG-Based

13/14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.16.553638doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.16.553638
http://creativecommons.org/licenses/by-nc-nd/4.0/


Functional Language Mapping for Epilepsy Surgery. Frontiers in Neuroscience,
14:409, May 2020.

27. Shuji Komeiji, Kai Shigemi, Takumi Mitsuhashi, Yasushi Iimura, Hiroharu Suzuki,
Hidenori Sugano, Koichi Shinoda, and Toshihisa Tanaka. Transformer-Based
Estimation of Spoken Sentences Using Electrocorticography. In ICASSP 2022 -
2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1311–1315, Singapore, Singapore, May 2022. IEEE.

28. Satohiro Tajima, Toru Yanagawa, Naotaka Fujii, and Taro Toyoizumi.
Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding. PLOS
Computational Biology, 11(11):e1004537, November 2015.

29. Leslie G. Ungerleider and Mortimer Mishikin. Ungerleider, L. G., & Mishkin, M.
(1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W.
Mansfield (Eds.), Analysis of visual behavior (pp. 549-586). Cambridge: MIT
Press. The MIT Press, 1982.

30. Melvyn A. Goodale and A.David Milner. Separate visual pathways for perception
and action. Trends in Neurosciences, 15(1):20–25, January 1992.

31. Melvyn A. Goodale. Transforming vision into action. Vision Research,
51(13):1567–1587, July 2011.

32. Quanxin Wang, Enquan Gao, and Andreas Burkhalter. Gateways of Ventral and
Dorsal Streams in Mouse Visual Cortex. The Journal of Neuroscience,
31(5):1905–1918, February 2011.

33. Guy N. Elston. Pyramidal Cells of the Frontal Lobe: All the More Spinous to
Think With. The Journal of Neuroscience, 20(18):RC95–RC95, September 2000.

34. Guy N. Elston, Ruth Benavides-Piccione, Alejandra Elston, Bendan Zietsch,
Javier Defelipe, Paul Manger, Vivien Casagrande, and Jon H. Kaas.
Specializations of the granular prefrontal cortex of primates: Implications for
cognitive processing. The Anatomical Record Part A: Discoveries in Molecular,
Cellular, and Evolutionary Biology, 288A(1):26–35, January 2006.

35. Guy N. Elston, Rowan Tweedale, and Marcello G.P. Rosa. Cellular heterogeneity
in cerebral cortex: A study of the morphology of pyramidal neurones in visual
areas of the marmoset monkey. The Journal of Comparative Neurology,
415(1):33–51, December 1999.

36. Guy N. Elston. [No title found]. Journal of Neurocytology, 31(3/5):317–335, 2002.

37. K. Amunts, A. Schleicher, and K. Zilles. Cytoarchitecture of the cerebral
cortex—More than localization. NeuroImage, 37(4):1061–1065, October 2007.

14/14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.16.553638doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.16.553638
http://creativecommons.org/licenses/by-nc-nd/4.0/

