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10 Abstract

11 Since environments are constantly in flux, the brain’s ability to identify novel stimuli that fall outside
12 its own internal representation of the world is crucial for an organism’s survival. Within the mammalian
13 neocortex, inhibitory microcircuits are proposed to regulate activity in an experience-dependent manner
14 and different inhibitory neuron subtypes exhibit distinct novelty responses. Discerning the function of
15 diverse neural circuits and their modulation by experience can be daunting unless one has a biologically
16 plausible mechanism to detect and learn from novel experiences that is both understandable and flexible.
17 Here we introduce a learning mechanism, familiarity modulated synapses (FMSs), through which a
18 network response that encodes novelty emerges from unsupervised multiplicative synaptic modifications
19 depending only on the presynaptic or both the pre- and postsynaptic activity. FMSs stand apart from
20 other familiarity mechanisms in their simplicity: they operate under continual learning, do not require
21 specialized architecture, and can distinguish novelty rapidly without requiring feedback. Implementing
22 FMSs within an experimentally-constrained model of a visual cortical circuit, we demonstrate the
23 generalizability of FMSs by reproducing three distinct novelty effects recently observed in experiments:
2 absolute, contextual (or oddball), and omission novelty. Additionally, our model reproduces functional
25 diversity within cell subpopulations, leading to experimentally testable predictions about connectivity and
2% synaptic dynamics that can produce both population-level novelty responses and heterogeneous individual
27 neuron signals. Altogether, our findings demonstrate how simple plasticity mechanisms within the cortical
2 circuit structure can give rise to qualitatively distinct novelty responses. The flexibility of FMSs opens
29 the door to computationally and theoretically investigating how distinct synapse modulations can lead to
30 a variety of experience-dependent responses in a simple, understandable, and biologically plausible setup.

+ 1 Introduction

» Brains of complex organisms contain internal representations of the world that are shaped by stimuli they
33 have become familiar with over time. Since their environment can change rapidly, an organism’s survival
s can be dependent upon its ability to quickly identify novel stimuli. Indeed, over decades of study, effects of
55 stimulus novelty have been found throughout the brain and are known to occur over many timescales [1H5]
3 These effects vary from internal changes such as promoting learning and memory to behavioral adjustments
w» including changes to perception, attention, and exploration [2-4]. Across sensory modalities and species,
s novel stimuli are generally associated with an increased response relative to their familiar counterparts |2, |3].
% Such novelty-responses (or their inverse, familiarity-responses) have been observed in cortical, subcortical,
w0 and neuromodulatory areas of the brain at both an individual cell level [6-9] and across macroscopic cell
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a populations [10H12]. Additionally, studies have distinguished responses to distinct types of novelty. For
» example, absolute novelty, when an organism is exposed to a previously unobserved stimulus [10, [13], is
s distinguished from conteztual (or oddball) novelty, where a previously observed stimulus is novel only in the
« context of recently observed stimuli that may also occur from the omission of an expected stimulus [14{16].
5 The mammalian neocortex is believed to play an especially important role in modeling the world around
s us and thus how it responds to these various types of novel stimuli is of great interest |3]. Within the cortex,
«  what is believed to be a general purpose disinhibitory circuit is repeated across different brain regions and
s species, and many recent experimental studies have elucidated the properties of the cells within this circuit
s [17H20]. Specifically, the structure of this cortical circuit is defined by connectivity between somatostatin (SST)
so and vasoactive/intestinal peptide (VIP) expressing inhibitory interneurons as well as pyramidal excitatory
si neurons [21]. This circuit is thought to facilitate novelty responses through mutual inhibition between the
2 VIP and SST populations that provides a disinhibitory pathway from VIP to excitatory cells [22]. Recent
53 experimental studies have found that novelty responses vary significantly across these distinct cell populations
se |23L [24]. These studies suggest that the enhanced response of VIP cells to novel stimuli suppresses the SST
s population’s response, releasing the local excitatory population from inhibition and leading to an increased
ss  excitatory novelty response.

57 Although broad cell classes are a useful simplification to understand the function of the cortical circuit,
ss each class can be further divided into subclasses or types that differ in gene expression patterns, synaptic
s connectivity, electrical properties, and morphology |19} [25H28]. Indeed, within the excitatory, SST, and VIP
6 cell populations, subpopulations that have distinct feature-coding across familiar and novel stimuli have been
s recently identified |23, [24]. Given these recent results, an open question is what biological mechanisms might
e allow populations to have such diversity in experience-dependent coding, and how this coding diversity relates
63 to changes in the population’s macroscopic response to novel stimuli.

64 Since the observation of the brain’s ability to rapidly detect novel stimuli, computational models have
6 been used to investigate how the brain might distinguish familiar representations and evoke distinct responses
s to unfamiliar stimuli |16} [29, [30]. Many of these models rely on modifications of synaptic connections to
e encode stimuli. For example, Hopfield networks can encode familiar stimuli via lateral connections and are
s capable of recalling said stimuli using recurrent activity [31]. However, many of these computational models
o require carefully placed synaptic connections to encode distinct memories [32 [33] or strict training and
w0 testing phases that do not reflect an organism’s natural behavior |32} |34], both of which limit their ability
n  to be implemented into more general models. Additionally, some models rely on complex non-local credit
2 assignment mechanisms that are biologically unrealistic to develop their novelty-responses |35} 36].

73 In this work, we introduce a mechanism that implements simple plasticity rules via synaptic modulations
= and is capable of adapting to stimuli through biologically-realistic local, unsupervised learning. Broadly, it
7 relies on modulating the synapses that play a role in producing the output responses of familiar stimuli, and
7 as such we refer to the mechanism as familiarity modulated synapses (FMSs). A strength of FMSs is their
77 simplicity and thus generality; we show FMSs can broadly represent various synaptic plasticity effects that
7 occur over different timescales. We focused on parameterizing the FMSs such that they represent biologically
7w realistic plasticity mechanisms such as long-term potentiation/depression (LTP/D) (37, |38] or short-term
s synaptic plasticity (STSP) [39]. FMSs can be implemented on a set of excitatory or inhibitory synapses
a1 feeding from one cell population to another whose strengths and connections are randomly drawn, meaning it
& requires essentially no specialized architecture and is thus straightforward to implement into more complex
s neural network models. The mechanism also requires no specific training regimen, simply becoming adapted
s to stimuli it has seen in recent history under continuous learning, similar to how biological organisms learn.
8 We first establish properties of the FMSs in the simplest possible feedforward setting. Afterwards, we
s incorporate several distinct FMS mechanisms into a model of the visual cortical circuit, with connectivity
& properties constrained from multi-patch synaptic physiology studies |20], relative cell counts from in situ
s hybridization experiments [17] (18], and additional cell properties from electrophysiology recordings [19]. We
s demonstrate the generalizability of the FMSs by modelling three distinct novelty effects: absolute [10, [13],
o contextual (oddball) [14, [15], and omission novelty [16]. Although each of these novelty effects has been
o studied in isolation, recent studies in the visual cortical circuit of mice investigate how distinct cell populations
e respond to all three types of novelty [23,|24]. The flexibility of FMSs allows for us to simultaneously capture
o3 the three novelty effects within our experimentally-constrained model of the cortical circuit, while also
o reproducing the diverse subpopulation coding seen in the same experiments [24].
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Figure 1: Familiarity modulated synapses. (a) On the left, an exemple feedforward firing-rate network, where a
population of (firing-rate) input neurons, x**¢, influences a population of output neurons, y*°**, through a set of fixed
synaptic connections, W. On the right, the fixed synaptic connections are modified to become familiarity modulated
synapses (FMSs), i.e. W — W + W @ My, allowing each synapse’s strength to be modulated over time via the matrix
M;. (b) The two types of modulations we consider in this work: (1) associative and (2) pre-only dependent. See
Eq. for explicit expressions. For an associative update rule, examples of how the behavior of neurons influences
the way their synapses are modulated (see Fig. for equivalent pre-only diagram). In short, the modulations will
either strengthen (1 > 0) or weaken (1 < 0) the neuron connections if both the pre- and postsynaptic neuron are
firing and a synaptic connection already exists between said neurons.

s Related works. Many existing models of novelty detection rely on modifications of synaptic connections
o6 in order to encode familiar stimuli, but often require specialized connection architectures in order to encode
o distinct memories |32, [33], do not operate under a continual learning setting |22} (32, |34, |40} |41], or rely
¢ on complex non-local credit assignment [35] 36| 42|, all of which the FMSs avoid. Refs. [40} 41] consider
% how a firing-rate dependent learning rule, directly derived from passive and dimming-detection experiments,
w0 can match time-averaged and time-dependent responses. Feedforward adaptation as a means of repetition
1 suppression has been previously studied previously [22, 29| [35| [42H44] and is advantageous because it does
102 1ot require convergence to a steady state or feedback-dependent activity to distinguish stimuli [45]. Novelty
03 responses on an image change detection task were reproduced using STSP-like synaptic modulations [29}
s 42]. The specific form of the synaptic modulations used in this work are an unsupervised version of those
s described in Refs. |35, 36] that originated in the learning-how-to-learn machine learning literature [46].

106 Many other computational models of the visual cortical circuit have been built to understand the individual
w7 cell population effects of disinhibition and how the circuit’s activity might change over learning |18} 22} [47H54].
s While many models of cortical circuits treat inhibitory interneurons as a unitary population [47 |54, more
10 recent models have incorporated the diversity of interneuron populations, including the VIP-SST-Excitatory
uo disinhibitory circuit |18} |22} 48453]. Ref. [52] studies and models the VIP-SST-Exc. disinhibitory circuit
u in L2/3 of mice in the setting of visual context modulation and finds contextual modulation is unlikely to
12 be inherited from L4 and thus may rely on local circuitry. A computational model of the cortical circuit
u3  constrained by electrophysiological studies that incorporates population diversity and inhibitory plasticity
us  was recently used to study prediction errors in Ref. [48] |53]. Although they also investigate how connectivity
us influences the development of neuron subpopulations, the training/testing stimulus sequences are different
ue from the ones we investigate here.

u7 Setup: familiarity modulated synapses

us In this work we consider networks of firing-rate, point-like excitatory and inhibitory neurons that can influence
ue one another through synapses that we represent using weight matrices. Let W represent a set of fized
120 Synapses that connects a presynaptic population of neurons to a postsynaptic population, with firing-rates at
1 time ¢ represented by the vectors xP™® and yP**", respectively (Fig. [lh, left). For example the postsynaptic
12 population’s firing-rates may be related to the presynaptic populatlon s act1v1ty via yPo" = ¢ (WxP™) where
23 ¢ (-) > 0 is a non-linear function that accounts for the postsynaptic neurons’ properties such as their firing
124 threshold and maximum firing rate. We take W to be sparse and, for simplicity, take the nonzero weights to
125 be drawn from a normal distribution. Furthermore, the sign of the nonzero elements of W are fixed by the
16 cell-type of the presynaptic population: excitatory neurons only have positive-weight synapses so that they
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127 increase postsynaptic potentials and inhibitory neurons only have negative-weight synapses.
128 We modify the fixed weights to be familiarity modulated synapses (FMSs) by taking

W 5 W+WoM,, (1)

129 where M represents time-dependent modulations to the synapses represented by W and ‘®’ is the elementwise
1w product. In our exemplar network, the relation between pre- and postsynaptic activity would be y? ost —
wm (W + W oM,)xP™) (Fig. [T, right). We will investigate two distinct modulation mechanisms throughout

132 this work that determine how M; evolves in time,
M, =AM, + 7y (x8)" (associative) (2a)
M, =AM, + 11 (x]")" /v/n. (pre-only) (2b)

133 Both rules are completely unsupervised and modulate based on only information locally available to the
134 synapse. The associative update, Eq. , is the more general modulation rule dependent upon both the
135 post- and presynaptic neuron firing rates at time ¢ (Fig. ) The parameter 0 < A < 1 controls how quickly
s the modulations return to their baseline values, while || determines the size of the updates. Importantly, the
137 sign of 1 controls the sign of M and thus whether synapses are strengthened or weakened by the modulations,
s 1.e. if their magnitude increases or decreases, respectively. The pre-only modulation update expression,
1w Eq. (2D), is only dependent on the presynaptic firing rate, in which case the dependence on y}°* is replaced
u with 1, the all 1’s vector, and normalized by the square root of the number of output neurons n.

11 Throughout this work, all W are fixed and thus the total synapse strength is only modified through
w2 the My term. “Training” will refer to the time period where a network is exposed to certain stimuli and
13 its synapses are modified solely via the unsupervised FMSs described above. Crucially, we do not allow the
1 modulations to change whether a synapse is excitatory or inhibitory, i.e. if W;; > 0 then W;; + W;; My ;; > 0
us for all time. For simplicity, we also do not allow for new synapses to form, i.e. a synapse that doesn’t exist at
s initialization cannot be modulated.

17 Biologically, we envision the modulations as various mechanisms leading to changes in the synapses that
us occur over varied timescales and biological mechanisms. The associative mechanism, Eq. , could broadly
1o represent long timescale synaptic changes resulting from LTP/D mechanisms. Long term potentiation or
150 depression of said synapses can be implemented by changing the sign of the learning rate, . Meanwhile, the
151 modulations that are only presynapse-dependent, Eq. , could represent faster modulation mechanisms
12 such as STSP. With these biological mechanisms in mind, we limit the size of the modulations such that they
153 do not exceed synaptic changes that have been observed in experiment (see Methods for additional details).

s 2 Results

s 2.1 A simple, unsupervised, feedforward novelty-detector

156 To explore some basic properties of the FMSs, we first investigate their effect in a simple feedforward network
157 that we show develops distinct responses to stimuli it has been exposed to before, what we refer to as familiar
158 stimuli throughout this work. Many of the results we establish in the simple network with a single FMS
159 mechanism generalize to the visual cortical circuit model we discuss afterwards in Sec. with several distinct
1o FMS mechanisms.

161 We represent the neuronal encodings of stimuli using distinct sparse random binary vectors (Fig. ,
12 Methods). Prior to training, we draw two sets of 8 stimuli from this distribution. During training, the stimuli
163 from what becomes the familiar set will be exposed to the network while its weights undergo unsupervised
s updates via an FMS mechanism. After training, we will compare the network’s response to the familiar set
s and the other set that was held out during training, what we refer to as the novel set. Noise is added to all
166 input stimuli throughout this work (Methods).

167 The simple network consists of only two populations of neurons, an excitatory input population and an
s arbitrary output populationE that are sparsely connected by synapses represented by the weight matrix W

Mn this setup, cell-type (excitatory versus inhibitory) only influences the sign of weights leaving a population. Since the
activity of the output neuron population is directly measured, results here hold for either excitatory or inhibitory output neurons.
An excitatory input population was chosen for simplicity, see the SM for the equivalent setup with inhibitory neurons as well.
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Figure 2: Familiar modulated synapses in a simple network. [a-c] Schematic of network behavior and exposure
to familiar set. (a) The familiar (red) and novel (blue) sets of stimuli that excite the input neuron population are
drawn from the same distribution, random sparse binary vectors with added noise. (b) We consider a simple two-layer
network with FMSs connecting an excitatory input population to an output neuron population. At each time step a
randomly chosen familiar stimulus excites the input population and, through the modulated synapses, causes the
output population to fire in some pattern. For the example considered in this figure, the associative modulations
weaken any synapses that connects a pre- and postsynaptic neuron that both fired for the given familiar stimulus,
e.g. an effect that could arise from LTD. (c) After training, many of the network’s synapses have been modulated,
changing its output behavior. The familiar set’s mean output activity is reduced relative to their pre-training activity.
The post-training mean output activity of the novel set is relatively unchanged. [d-g] Results from example network
and training. In this example, there are 8 familiar and 8 novel stimuli. Each familiar stimulus has been input into the
network 10 times (shuffled order) for 80 training steps total. (d) Example raw output response activity for a familiar
(red) and novel (blue) stimulus pre- and post-training. (e) Change in mean output activity of the familiar and novel
sets over training. Mean output activity across each stimulus set (dark) and individual stimuli (light) shown. (f)
Normalized mean row magnitude of the modulation term, W © M, (purple), the unmodulated weight matrix, W
(green), and total synaptic strength (green and purple) over training. Mean (dark) and individual rows (light) shown.
(g) Change in important synapse magnitude for familiar and novel inputs as a function of training time (Methods).

10 and with non-linearity ¢ () providing the output population activity (Fig. ) For brevity, we will refer to
wo this network as the familiar modulated synapse network (FMSN). Before training, the synapse strengths are
m randomly initialized, but they are subject to modulations via an FMS mechanism, represented by the matrix
12 M;. The two modulation types of Eq. and the possibility of strengthening or weakening synapses (i.e.
s the sign of 1) gives four qualitatively distinct FMSs. For the example we explicitly consider here, we take the
e FMS’s modulations to be associative and weakening, meaning a synapse/weight is weakened if both its pre-
s and postsynaptic neuron are firing, e.g. it is LTD-like (Fig. ) This corresponds to updates via Eq.
we  with n < 0. Equivalent plots for the pre-only rule, e.g. STSP-like, and synapses that are strengthened by the
w7 modulations, e.g. LTP-like, are provided in the SM (Fig. . We will later return to how these choices affect
s the results presented here.

1w The FMSN develops distinct responses to familiar and novel stimuli. We use a training schedule
180 where the FMSN is sequentially passed stimuli from the familiar training set several times in a random order.
11 That is, at each time step, a stimulus is randomly drawn from the familiar set, noise is added to it, and it is
12 input into the network. After each pass through the network, the FMSs are updated according to Eq. .
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13 For the example considered here, each familiar stimulus is presented to the network 10 times, for a total
1« of 80 training steps. Post-training, we observe that the familiar output activity is significantly suppressed
185 relative to its pre-training activity (Fig. ) Comparatively, the novel output activity changes little from
15 the modulations, and so post-training its activity is large relative to the familiar setE| We can understand
17 how the network’s response changes during training by comparing the output activity of the familiar and
188 novel sets had we stopped training after a certain number of familiar stimulus exposures. Over the course of
189 training, we see the network’s response to all 8 familiar stimuli quickly weakens while its response to the 8
100 stimuli of the novel set remains relatively unchanged (Fig. ) This happens concurrently with a growth in
1 the size of the synaptic modulations and, since the modulations in this example are weakening, a smaller
192 total synaptic magnitude (Fig. |2f). Eventually, the changes to the network stabilize as additional examples
13 continue to be presented. The reduction of output activity for the familiar stimuli occurs concurrently with
14 a sparser response to the familiar stimuli over time as well as decreased decodability of stimulus identity,
195 consistent with experimental results of familiarization (Methods, Figs. [S2[a-c]) [23] [24].

s Distinct ‘important synapses’ lead to distinct responses. What about the pattern of synapse
17 modulation is causing this significant change in response for stimuli in the familiar set? Although almost all
103 of synapses undergo some modulation during training (a byproduct of the noise added to inputs), only a small
190 percentage are modulated significantly (Fig. ) Intuitively, a reason for the distinct output behavior could
20 be that different synapses have large contributions to the output activity for members of the familiar and
20 mnovel sets, so changing a subset of them only affects certain stimuli (Fig. ) For a given stimulus, we define
22 its important synapses as those synapses that would be modulated according to Eq. from passing the
203 stimulus through the network, before any training has occurred (Methods). With this definition, for the setup
2¢  we consider here, each (nonzero) synapse has an approximately 2.5% chance of being an important synapse
25 for a given stimulus. Prior to training, we can check that the important synapses of distinct stimuli have
26 little overlap: a familiar and novel stimulus share on average only 0.14% of their important synapses. We
207 can then track how the update rule of Eq. affects the important synapses of the familiar and novel sets
s differently. The total strength of the important synapses of the familiar set changes drastically, while those of
20 the novel set remain relatively unchanged because of the small overlap of important synapses (Fig. ) It is
a0 the greater weakening of important synapses associated to the familiar stimuli, often bringing the neurons’
an activity below firing thresholds, that leads to their significantly smaller responses relative to the novel stimuli.
212 The idea of targeted synaptic modulations as a means of encoding familiarity has been known for quite
213 some time, most famously in Hopfield networks [31]. In the SM, we argue the FMSN can be approximately
aa viewed as a feedforward Hopfield network, i.e. the weight modulations that encode the memory of the familiar
215 inputs are on feedforward synapses and not lateral connections. A stimulus forward pass through the FMSN
26 is similar to measuring its energy in the equivalent Hopfield network. Thus, familiar stimuli having a low
217 mean response is similar to them being low-energy states.

2 Synapse modulations change responses to stimuli in the subspace spanned by familiar stimuli.
29 Since we draw the familiar and novel stimuli from the same distribution, between-stimulus correlations are
20 relatively uniform across all stimuli. How would the FMSN respond to a stimulus that is more correlated
o with a familiar stimulus than the novel stimuli? More generally, one may consider what characteristics of
2 stimuli determine how much they are suppressed by the learned modulations.

23 In the SM, we argue that the approximate M learned over the FMSN training causes any stimulus that
24 lies in the subspace spanned by the familiar set to have a decreased response relative to its pre-training
25 magnitudeﬂ This includes the familiar stimuli themselves but also their linear combinations (Fig. )
»s  Furthermore, since any stimulus can be decomposed into parts that lie within and perpendicular to said
27 subspace, the less any stimulus lies within this familiar subspace the less its response will be suppressed by
28 modulations (Figs. , ) In other words, the more a stimulus is correlated with the familiar inputs, the

2To evaluate the novel activity pre-training without it becoming “familiar” to the network, we treat as we would a test set
and do not modulate the synapses from its activity via Eq. . The FMSN then has no memory of being exposed to it. We
emphasize this is done solely for the sake of comparison to the familiar set and is not a necessary step in training.

3For this approximation, we have assumed that all familiar inputs are presented roughly the same number of times in a
randomized order, as is done for the FMSN training. For cases where familiar stimuli are presented in an uneven manner, the
network will respond most weakly to inputs it has been exposed to the most and those most recently presented, see the SM.
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Figure 3: Additional properties of familiarity modulated synapses. (a) Cosine distance of stimuli to the
subspace spanned by the familiar stimuli (‘familiar subspace’) versus mean output from the FMSN. Grey dots show
sparse random binary vectors (Methods). Familiar stimuli (light red), their linear combinations (dark red), and the
novel stimuli (blue) are highlighted. Grey line shows linear regression fit. (b) Growth of modulation magnitude while
being repeatedly exposed to a single familiar stimulus as a function of Tqecay = 1/(1 — A), in units of time steps, and 7.
Dashed grey line shows maximum modulation strength imposed by biological constraints (Methods). (c¢) Decay of
modulation magnitude after a single familiar stimulus exposure as function of A and 7. (d) Ability to distinguish
output magnitude distributions of familiar and novel sets (KS-test p-value) as a function of learning rate, n, and the
number of times each familiar stimulus has been exposed. [e-h] KS-test to distinguish post-training output magnitude
distributions of familiar and novel sets for the four types of modulations as a function of Tiecay and n. () FMSN with
associative weakening modulations. The grey vertical line shows the timescale of the task, 80 time steps. (f) Same
as (e), for pre-only weakening modulations. (g) Associative strengthening modulations. (h) Pre-only strengthening
modulations.

29 more its response will be suppressed in the FMSN. Part of the success of the FMSN we investigate here relies
20 on the fact that the familiar subspace is small relative to the full space of possible stimuli. Stimuli randomly
2 drawn from the distribution that are not exposed to the network, e.g. the novel inputs, are likely to lie
23 approximately perpendicular to this subspace and thus have their response relatively unchanged by training.

23 Learning and decay rates strongly influence magnitude of modulation effects. For training, we
24 have assumed that one stimulus is presented at each time step and time steps are separated by some At that
25 could be a characteristic timescale of the input stimulus sequence. Of course, biological effects such as STSP
26 and LTP/D can affect synapses over significantly different timescales. How can the FMSs be adjusted to
257 account for such effects? To investigate this, it is useful to recast the FMS’s decay rate, A, as decay timescale,
238 Tdecay = At/(1 — A). Modifying Tgecay affects the time to saturation of the modulations, allowing one to tune
239 both the number of stimuli and time it takes to see the modulations stabilize as well as their steady-state
20  magnitude (Fig. ) Varying the size of the FMS’s other parameter, the learning rate 7, affects the size of
an the modulations and thus the speed and magnitude of the FMSN’s change in response. For large enough 7,
22 the modulations encounter the biological bounds, which limit their growth in size (Fig. ) Relatedly, how
23 long a given input influences the modulations, or, how long the FMSN “remembers” a past stimulus, is also
x4 affected by the decay timescale and learning rate (Fig. ) A single familiar input can influence responses for
s only a few time steps or thousands, a fact that will play an important role later on when we model novelty
s effects of significantly different timescales.

207 The modulation learning rate can also influence how many exposures to the familiar set are needed in
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xus order for the network to develop distinct responses relative to the novel set. The larger the modulations, the
29 greater the change to the FMSN from a single input stimulus, leading to distinct responses in a fewer number
»0  of stimulus presentations (Fig. ) Notably, in the setup we consider here, distinct responses can develop
1 after just one exposure to each familiar stimulus. Although large learning rates can lead to quicker response
»2  changes, when one has noisy input stimuli, a large learning rate causes the modulations to also fit the noise.
»3  Indeed, for fixed training time, there exists optimal learning rates for distinguishing the familiar and novel
»s sets that balance this trade-off between modulations that quickly capture the stimulus signal but not the
s noise (Fig. [3g).

»s  What FMSN properties lead to significant differences in familiar and novel responses? So far,
»7 - we have specifically considered the case of an FMS that has associative updates that weaken the network’s
»s  excitatory synapses. Of course, this covers a small subset of biological mechanisms — there are synapse
0 modulations that strengthen connections, are only presynaptic dependent, and/or act on inhibitory synapses.
%0 The FMSs of Eq. are general enough to model all these cases.

261 Much of what we discussed above also holds for the presynapse-only update mechanism of Eq. that
%2 also weakens the excitatory synapses of the FMSN (Fig. [S1)). However, because of its lack of postsynaptic
»3  dependence to pinpoint which synapses to update, the pre-only weakening mechanism is much more susceptible
s to noise. Too large of a learning rate can overfit the noise and quickly cause all inputs to be suppressed
s (Fig. ) Surprisingly, we observe that distinguishing the familiar and novel outputs using modulations that
%6 strengthen the excitatory connections of the FMSN is significantly less effective for both associative and
sr  pre-only dependent FMSs (Figs. ,h). Note that the strengthening of excitatory synapses enhances the
xs  response of familiar stimuli relative to their pre-training magnitudes (Fig. ) We investigate what causes
x%0  the differences between the strengthening and weakening FMSs in more detail in the SM (Figs. [b—j]). In
a0 short, we find two major contributions to the relatively poorer performance of the strengthening mechanisms:
o (1) tighter modulation bounds for strengthening imposed by experiment and (2) neurons’ non-linear behavior
a2 that causes firing to cutoff below certain potentials and saturate at higher potentials, built into ¢(-). The
a3 latter of these effects can be partially overcome by considering an FMS that strengthens inhibitory synapses
ze  |22]. Stronger inhibition causes the output neurons’ responses to get smaller, a similar effect as the weakening
x5 of excitation we found to be the most effective above (SM, Fig. [S3[b-j]).

276 There are many other properties of the FMSN that can be explored that we only briefly touch upon
s here. For example, allowing modulations to further weaken or strengthen synapses beyond the bounds
xs  imposed by associating these modulations with LTP/D and STSP leads to even larger differences between
2o the FMSN’s response to familiar and novel stimuli (Figs. ,f). Increasing the noise makes it harder for the
20 FMS mechanism to isolate the signal, making it more difficult to distinguish novel and familiar responses
a (Fig. ) However, effects from noise can be overcome by exposing the network to the familiar stimuli more
22 times, giving it more observations to isolate the signal. Increasing both the number of input and output
23 neurons also increases the distinguishability between the familiar and novel sets (Fig. ) Though we leave
s a full investigation of FMS capacity for future work, we also see the FMSN is capable of becoming familiar
25 with much more than 8 stimuli while still having a distinct response to novel stimuli (Figs. ,1). Lastly, we
26 can use the FMSN to predict the most efficient coding of the sparse binary input vectors for distinguishing
257 the familiar and novel sets. Lower sparsity reduces the variance in neuronal responses, and thus makes it
28 easier to distinguish familiar and novel inputs, but also increases the similarity of any two stimuli because
20 each one has more nonzero components. Thus, optimal sparsity is not too high or low (Fig. [S2j).

w0 2.2 Cortical microcircuit novelty response in a stimulus change task

20 We now implement the FMSs in a visual cortical circuit model to capture three distinct novelty responses
22 recently observed in mice while they perform an image change detection task [23, [24]. We note that the
23 primary purpose of this model is to demonstrate the flexibility of FMSs and their ability to simultaneously
24 produce three novelty effects observed in the VIP population recordings |23, 24], but do not attempt to
25 constrain this as the only types of plasticity that could lead to the experimentally observed results.

25 Review of image change detection task and measurement. The stimuli used in the experimental task
207 counsist of a set of 8 familiar training images and a held out set of 8 novel images (Fig. [4p). The task consists
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Figure 4: Image change task and visual cortical circuit: experiment and model setup. [a-c] Ezperimental
stimulus details. (a) Example familiar and novel image sets (reproduced, with permissions from Ref. [24]). (b) Sample
stimulus sequences showing an image change (top) and omission (bottom). (c¢) Typical training/imaging schedule.
Boxes represent sessions that occur on different days, each lasting an hour or two. (d) Diagram of a subset of the
visual cortical circuit showing the cell populations that were recorded in experiment. (e) Diagram of the cortical
circuit model we study in this work. The SST, VIP, and Exc. circles each represent populations of neurons connected
by weights fixed from experimental data . Three FMS mechanisms (purple); FMSa, FMSp, and FMSau;
are added to the network to model novelty responses. At each time step, the network receives inputs representing an
encoding of the ‘present stimulus’ being shown (blue) as well as ‘stimulus history’ information (red) in the form of an
encoding of the time since the last image presentation (Methods). (f) Many features of the cortical circuit model
are fixed by experimental literature . (g) Mean inter-population connection strengths. Values from an
exemplar model (top) and analytically computed values (bottom) are shown (Methods). [h-j] Model stimulus details.
(h) Exemplar familiar and novel stimuli sets, drawn from a sparse random binary vector distribution. (i) Sample
present stimulus sequences showing a stimulus change (top) and omission (bottom, Methods). (j) Model training
scheduling consisting of training session on familiar stimuli, familiar ‘imaging’ session, and then novel/novel-plus
‘imaging’ sessions. At all points of training and imaging, all FMSs are continuously updated via their unsupervised
rules as stimuli are passed through the network.

28 of image presentations from these sets at quick, regular intervals that are separated by a grey screen (Fig. )
20 The same image is presented several times in a row before switching to another image within the set and
0 mice are rewarded for responding to the image change by licking a water spout. During this time, neuronal
s responses from the visual cortex are recorded in hour-long sessions using two-photon calcium imaging. Mice
a2 are trained on what becomes a familiar set of eight images and their neuronal responses are recorded in a
w03 ‘familiar’ imaging session after achieving a performance threshold (Fig. ) Shortly after, neuronal responses
s are also gathered over multiple sessions when the mice are exposed to the same task using the novel set of
s eight images. The mice’s initial exposure and exposure after at least one session to this novel set of images
s are referred to as the ‘novel’ and ‘novel-plus’ imaging sessions. Additionally, only during the imaging sessions,
s image omissions can occur, i.e. grey screen is displayed in place of a single image presentation (Fig. )

308 The response to various novelty effects are recorded across several transgenic lines to capture excitatory,
w0 SST, and VIP population responses in the visual cortex. These cell populations form the cortical microcircuit
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a0 discussed in the introduction whose connection probabilities and strengths have been carefully studied
au (Fig. ) Experimental analyses show that the effects of novelty give rise to significantly different responses
sz in these three populations [23} 24|, which we discuss in more detail below.

a3 Cortical microcircuit model. Given that we have observed the FMS mechanism yields distinct responses
s to familiar and novel stimuli, we built a model of the cortical microcircuit to study if it can develop the several
a5 experimentally observed novelty responses when exposed to stimulus sequences similar to that of experiment.
as Our firing-rate model consists of three groups of neurons, representing the SST, VIP, and excitatory neuron
ar  populations (Fig. )E| The excitatory population receives inputs representing the bottom-up encoding
as of the raw stimulus sequence while the VIP population receives inputs representing top-down information
s about the history of the sequence (specifically the ‘timing’ of recent stimuli and not image identity, see
20 below for additional details). We estimate connection properties between populations by aggregating results
s from several recent experimental studies. Relative cell counts are estimated from in situ hybridization
s experiments [17}, 18] (Methods). An estimation of inter-population connection probabilities comes from
23 multi-patch synaptic physiology [20] and the relative strength of neuron connections between populations is
s estimated from the same study, supplemented with additional cell dynamical properties from electrophysiology
»s  recordings [19] (Figs. , g; Methods). In particular, fits of measured postsynaptic potentials are used to
2 estimate unmodulated, individual synapse strengths as a function of the pre- and postsynaptic cell type
2 (Fig.[S4). Due to the unprecedented detail of recent experiments [17-20], coupled with necessary corrections
s from the experimental to the in-vivo setting, we believe the ’skeleton’ of the cortical circuit model represents
39 one of the most accurate estimates of this system to date.

330 We allow the connections in our microcircuit model to change by introducing several FMS mechanisms
s into the synapses connecting the various populations of the network. Since it is observed that the VIP cells
s drastically change their response across all three types of novelty in the experiment [24], in this work we
a3 focus on adding FMS mechanisms to capture their specific novelty responses. The purpose of focusing only
s on the VIP response is to demonstrate how several FMS mechanisms may collectively model distinct novelty
35 responses within a single population. We leave a complete modelling of the distinct cell type responses and
3 related plasticity mechanisms for future work. To capture the VIP novelty responses, we add three separate
s FMS mechanisms to the synapses onto the VIP neurons: FMSy, FMSp, and FMSay (Fig. )

18 1. FMSa (Associative, Exc. — VIP) is added on the synapses going from the excitatory to the VIP cells.
a0 Its learning and decay rate (n and \) are tuned to learn and retain familiarity over a timescale of hours
o to days. Since it operates on a slow timescale and is pre- and postsynaptic dependent, FMSa could model
s LTD-like effects on said synapses.

w2 2. FMSp (Pre-only, Exc. — VIP) is also added to the set of synapses between the excitatory and VIP
a3 populations, but unlike FMS, it is tuned to learn and forget on a timescale of seconds. The fast timescale
s over which it operates and its presynaptic dependence makes FMSp a natural model for STSP-like effects on
us  the synapses.

us 3. FMSag (Associative, Stimulus history — VIP) is added to the synapses feeding into the VIP
s population from the stimulus history input neurons (see below). Its learning and decay rate are tuned to
us operate over long timescales, similar to the LTD-like FMSa, .

us  Motivations for adding these particular modulations within the circuit are discussed below.

0 Model ‘image’ change stimulus. As we saw in the FMSN, modulations are entirely driven by the
1 stimuli being passed to the network, so we reproduce the pattern of stimuli from the image change detection
2 experiment. To represent neuronal encodings of the images used in the experiment, we again use random
33 sparse binary vectors as the distinct stimuli (Fig. ) An ‘image’ presentation is represented by a stimulus

4Parvalbumin (PV) expressing inhibitory neurons are not included in our cortical circuit model directly, though the inhibition
they provide to the other populations is partially accounted for from the threshold adjustments at the model’s initialization
(Methods). This important simplification is driven by the desire to build a minimal model of the data from |24], where excitatory,
VIP, and SST neurons were recorded and furthermore from the fact that VIP cells do not receive strong input from the PV
population (Fig. [S4h). The blanket inhibition in our model is in part supported by the general lack of specificity of PV to
excitatory connections [55|, though more recent evidence points to some levels of specificity [56].
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s« encoding being passed to the network for several time steps along with time-varying noise (Fig. 4i). The
s image presentation is followed by a proportional number of grey screen time steps, where the network
6 receives only noisy input (Fig. [4i). This pattern repeats with a similar distribution of image change times
s used in experiment (Fig. [S5h). Stimulus omissions are represented by additional grey screen time steps
s (Fig. ) We assume the excitatory population receives this bottom-up present stimulus input and drives the
30 other populations (Fig. ) Additionally, we assume the microcircuit receives top-down inputs representing
w0 information about the recent history of the stimulus (Methods, Fig. ). In particular, the stimulus history
1 input is an encoding of the time since the last stimulus presentation, with encodings of similar times more
2 correlated than disparate timesﬂ This information is passed directly to the VIP cells, which are known to
w3 receive feedback inputs from higher cortical areas [8} |20]. Finally, time-correlated noise is injected into all
s neuron populations to represent activity from sources neglected in this model, e.g. activity from behavior
s (Methods, Fig. [S5(d).

366 Similar to the training schedule used in experiment, we first expose the network to the familiar stimuli
7 over a long training session, then gather cell responses to the task using the familiar set in what we continue
s to call an ‘imaging’ session. Immediately afterwards, we gather responses to the stimulus change task using
%0 the novel stimulus set, and, after additional exposure to the novel image set, gather the novel-plus responses
sz (Fig. , Methods). The familiar, novel, and novel-plus imaging session stimulus sequences are statistically
sn  identical. Importantly, the neuronal response presented here are gathered in a continuous learning setting,
sz i.e. the network continues to modulate its weights via FMSa, FMSp, and FMSay at all steps of training
w3 and imaging. We scan over three parameters, the learning rates for all three FMS mechanisms, to determine
se - modulation rates that best match experimental observations (Methods, Fig. ) We emphasize that, other
a5 than minor adjustments to the network at initialization to ensure realistic responses, the cortical circuit
s model only undergoes unsupervised adjustments via the various FMS mechanisms from exposure to stimulus
s sequences that closely match the stimuli on which the mice were trained (Methods).

378 For the purposes of comparing our model to experiment, we first focus on three distinct novelty responses
s that our model captures seen in mean VIP population responses of the experimental data [24]: (1) absolute,
s (2) contextual, and (3) omission novelty (see Fig. [S6| for SST and Exc.).

1 1. Absolute novelty: familiar modulation occurs despite irregular stimulus sequence. The
2 change between the familiar and novel image sets represents absolute novelty — up until the novel imaging
33 session the mice have never observed the set of images now used in the image change task. In both experiment
s and our model, the VIP cells respond weakly to image presentations in the session that uses the familiar set
s relative to image presentations in the session that uses the novel set (Fig. ) As we confirm below, for the
s cortical circuit model, the change in response is caused by FMSy, the slow-learning FMS mechanism on the
w7 excitatory to VIP synapses. FMS, functions almost identically to the FMSN discussed earlier: over training,
s exposure to the familiar stimuli causes the network to develop a suppressed response to them relative to
0 the novel stimuli (Fig. ) The stimulus sequence here is quite different from that of the FMSN: a single
w0 stimulus is repeatedly input to the network and is often separated by noisy grey screen. Additionally, the
a1 postsynaptic population of FMSy, the VIP cells, receive input from several additional sources such as the SST
.2 population and the recurrent VIP connections. Nevertheless, over the long familiar training period, FMSp
33 gradually modulates the important synapses of the familiar set more than the novel set, leading to a distinct
3¢ response across sessions (Fig. ) Notably, the additional synaptic inputs and noise make modulating only
a5 those synapses important for the familiar set more difficult, leading to a fair amount of suppression to novel
s inputs as well. However, after these changes stabilize, we still observe distinct responses to the familiar and
so7  novel stimuli. Just like the FMSN, the change in stimulus response occurs concurrently with a growth in the
ws modulations of FMSy over training and, since the modulation are once again weakening, an overall decrease
s in the strength of the synapses connecting the excitatory population to the VIP population (Fig. )

400 To confirm that it is the modulations from FMS, that cause the large difference in VIP response across
w1 the familiar and novel sessions, we can isolate its effect by training identical microcircuit models with different
w2 FMSa learning rates. Indeed we see that, as we decrease (or increase) FMSy’s learning rate and thus its

5The primary purpose of this input is to give the microcircuit information about the recent stimulus history. A simple
neuronal circuit that counts the time steps since the last stimulus presentation, e.g. an RNN, could represent the higher cortical
areas that may produce this additional input directly from the bottom-up present stimulus input.
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Figure 5: FMSs implement three distinct novelty effects in a cortical circuit model. (a) Mean VIP
responses to image changes of the cortical circuit model (solid colored line) and experiment (grey dotted line) [24].
Top shows mean response in the familiar imaging session and bottom in the novel imaging session. Green-shaded
background represents time where changed image is presented, yellow-shaded is pre-change image. [b-d] Absolute
novelty and FMSx. (b) Exemplar mean VIP image change responses to the familiar (red) and novel (blue) sets over
training (Methods). (c¢) Change in FMSa (purple solid) and FMSp (purple dashed) modulations over training. Green
dotted line shows fixed portion of excitatory to VIP synapses. (d) Same as top of (a), for different FMSa learning
rates (Methods). [e-g] Conteztual novelty and FMSp. (e) Normalized VIP responses around an image change event.
Yellow is pre-change image, green is changed image. (f) Same as (c), but zoomed in to show change in FMSp over an
example image change. (g) Same as bottom of (a), for different FMSp learning rates. (h) Same as (a), for mean VIP
response to image omission in a familiar session. Area between vertical dotted lines represents times where image
would normally be presented. [i-k] Omission novelty and FMSan. (i) Change in VIP response to various encoded
times over training. Red encoded times are seen during training, blue are times when omissions are present. (j)
Change in FMSanu (purple) modulations over training. Green dotted line shows fixed portion of stimulus history to
VIP synapses. (k) Same as (h), for different FMSan learning rates.

w3 modulation magnitude, the response of the VIP population in the familiar sessions grows (or shrinks) as the
ws overall strength of the excitatory to VIP synapses changes (Fig. , ) Once again there is a trade off
w5 between modulations with too large of a learning rate that suppresses all responses and those with too small
ws of a learning rate that suppresses none.

w7 2. Contextual novelty: fast familiarization and forgetting captures local oddball effects. In the
w8 experimental task, image changes represent contertual novelty — since images are repeatedly presented at
wo least 10 times, when the image identity changes it represents a local oddball and is contextually novel. In
a0 the novel session, we observe an increased response of VIP cells to image changes relative to the pre-change
a1 image in both our model and the experimental data (Fig. , bottom). Although smaller, the effect is
a2 also present in the familiar session (Fig. , top). Notably, this is a very different effect than the absolute
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a3 novelty we discussed above; it only takes seconds for mice to establish an image as their baseline and this
ae  information is quickly updated to the current image being presented [24]. To model a novelty effect that
as  learns and forgets quickly, FMSp is introduced. For FMSp, the presynaptic-dependent modulations make
a6 the most recent stimulus presentations become familiar, leading to smaller VIP response on repeats of the
a7 same stimulus. An image after a change is novel to FMSp, meaning the VIP response is larger because it
s is not familiarity suppressed (Fig. ) After the change occurs, FMSp begins suppressing the important
a9 synapses of the current stimulus, while those that were important for the pre-change image are gradually
a0 released from suppression. This rapid turnover is reflected in the significantly quicker growth and decay
a1 of the FMSp modulations relative to those of FMSy (Fig. [5f). Finally, as we did for FMSa, we see that
w22 varying the learning rate of FMSp isolates its effects on the cortical circuit response. A weaker learning rate
w23 changes the relative heights of the pre-change and post-change VIP responses because the image that has
a4 been presented several times in a row is less suppressed by modulations (Fig. 7 )

a5 The operation of both FMSs and FMSp on the excitatory to VIP synapses demonstrates a remarkable
w6 property of the FMSs: distinct types of modulations, e.g. slow and fast, can function on the same set of
«r synapses simultaneously. This matches biology, where effects of LTP/D and STSP can affect the same set
w8 of synapses. The distinct FMSs can encode different types of novelty present in stimuli, allowing them to
w29 model the various novelty responses that are observed in certain neuronal populations. This allows for a
a0 single synaptic population to affect the postsynaptic population’s response in a way that compounds the
a1 various novelty effects. For example, the largest responses of the VIP cells occur when both absolute and
a2 contextual novelty occurs, i.e. a novel image change, which is a result of the minimal suppression from FMSp
a3 and FMSp simultaneously.

s 3. Omission novelty: a decrease in familiar correlation causes omission ramping. Due to the
a5 temporal structure of the task during training, images are expected to be separated by 500 ms of grey screen.
as  Omission novelty occurs when, instead of an image, additional grey screen is displayed, representing a global
a7 oddball. We observe a ramping response in the VIP cells of both the model and experiment when images
«s  are omitted (Fig. ) In the model, this is a result of FMSay, the FMS mechanism on the stimulus history
a9 input synapses to the VIP cells. Recall that the stimulus history signal is a neuronal encoding of the time
w0 since the last stimulus presentation, where the encodings of similar times are more correlated than disparate
w  times (Fig. 7 Methods). Over training, FMSay becomes familiar with encoded times-since-last-image that
a2 occur with no omissions, suppressing the corresponding VIP responses to the stimulus history signal. When
w3 omissions occur, longer-time encodings are passed to the network and the familiarity suppression is lost,
as  leading to an increased response in VIP cells. The ramping occurs because the longer-time encodings have a
ws  less correlated representation to the familiar short-time encodings. That is, similar to what was seen in the
us  FMSN, the network has formed a familiar subspace of the short-time encodings and the longer-time encodings
w7 that gradually get further from this subspace cause a gradual increase in the VIP response (Fig. ) The
as  encoded-times that are novel but still close to the encoded times that are familiar, e.g. 510 ms, have their
wo outputs quite suppressed. The longer encoded-times, e.g. 1000 ms, have outputs barely suppressed at all. As
o with the other FMSs we’ve investigated, this change in response occurs concurrently with a gradual growth
s in the modulations on FMSap’s synapses over training (Fig. ) Additionally, the size and time of onset of
2 the VIP ramping can be changed by adjusting the magnitude of FMSap’s learning rate (Fig. , )

453 The omission novelty responses occurring concurrently with the absolute and contextual demonstrates the
s ability to have multiple inputs into the same postsynaptic cell population with distinct synaptic dynamics.
w5 FMSa and FMSp operate on the excitatory to VIP synapses, while FMSay acts on the stimulus history
s to VIP synapses and all three can produce their corresponding novelty effect in the VIP cells when the
w7 corresponding stimulus occurs.

s INovel images become familiar with exposure over time. Although the novel image set is initially
ss0  unfamiliar to the mice and evokes distinct novelty-related responses across cell populations, over many
w0 exposures one would expect the images to gradually become familiar to the mice. Indeed, the enhanced VIP
w1 response to the novel images persists throughout the entire novel imaging session, but gradually disappears
w2 as the mice become accustom to the novel set over many sessions of exposure [23| 24]. Since our model
w3 18 evaluated in a continuous learning setting, the FMS mechanisms are actively modulating the network’s
ws  response, allowing it to also adapt to the novel stimulus set over time in the same way it adapted to the
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Figure 6: Coding diversity in the cortical circuit model. (a) Kernel regression model: input features are
convolved with learned kernels and summed to predict individual cell activity in a kernel regression model (Methods).
Top: the cortical circuit model is driven by three primary feature categories: image presentations, omissions, and
task-relevant image changes. The experimental data shares these same feature categories as well as behavioral effects
. Bottom: feature categories are removed one at a time and the kernel regression model is refit to determine each
feature’s contribution to a cell’s activity, summarized by the category’s coding score. [b, ¢] VIP coding scores. (b)
Experimental results . Left shows clustered VIP coding scores for all four feature categories across the familiar,
novel, and novel-plus sessions; middle shows cluster means; and right shows mean over all cells (Methods). (c) Same
as (b) for the cortical circuit model. (d) Normalized mean image feature kernels for the familiar (red), novel (blue),
and novel-plus sessions (purple). Dark lines show fits to model data, light lines to experimental data . [e-h]
Cell-specific cortical circuit properties influences VIP cell coding. (e) Cluster-averaged novel image coding scores
as a function of the mean input each cell receives from the excitatory population during the novel session. Colors
show three different initializations, dots are cluster-averaged values, lines are linear regression fits. (f) Change in
correlation of familiar (red) and novel (blue) image coding scores with network properties. Correlation over all VIP
cells (light) and cluster-averaged values (dark). Dots are median, error bars are Q1 to Q3 over initializations. (g)
Cluster-averaged network properties across 10 different initializations. Colored dots (red, blue, green) show clusters
with distinct types of image coding, grey dots are clusters not coded to images. Grey dotted line shows equal familiar
and novel input. (h) Network properties for omission-coded clusters (pink) versus omission-agnostic clusters (grey).

w5 familiar set during training. Hence, our model also exhibits a gradual change in response to the novel image
ws set over sessions, eventually returning to a suppressed VIP response to novel set images in the novel-plus
w7 imaging session (Fig. , top right; Methods). In the experiment, even after being exposed to the novel
ws  set of images, the familiar set of images still evoke a response consistent with them being familiar stimuli
a0 [24]. The FMSa modulations decay slowly enough that the modulatory effects of both the familiar and novel
o images can persist simultaneously (Fig. ) Additionally, as in experiment, the image omission response
a1 does not change considerably between the familiar and novel-plus sessions (Fig. , top right)ﬂ

6We do not attempt to model the suppressed omission ramping that is observed in the VIP population during the novel
session that gradually returns to familiar levels in the novel-plus session . See Discussion for potential mechanisms which can
model this effect.
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a2 Cortical circuit model’s cell subpopulations have diverse coding. Although the changes in mean
a3 response of our model’s cell populations is dependent upon the behavior of individual cells within these
aa populations, we observe a significant variation in each neuron’s response over both stimulus features and
a5 experience-level. Indeed, a key finding of Ref. [24] is the emergence of functional cell subpopulations within
s the VIP, SST, and excitatory cell populations. Within each population, subpopulations are identified with
a7 similar changes in coding features over experience-level, as measured by a coding score metric that we briefly
s review. To determine the coding score, each cell’s response is fit using a kernel regression model [57-60].
ao Several input features that may influence a cell’s response, including image presentations, image omissions,
w0 and task-relevant triggers such as image changes, are convolved with fit kernels to reproduce the cell’s activity
@ (Fig. @, top; Methods). To determine the importance of a given input feature category in explaining a cell’s
w2 activity, the regression model is refit while omitting each category and its corresponding kernel(s). The
w3 coding score of a cell to a given feature category is defined as the relative amount of variance explained that
¢ the regression model loses by removing the feature category (Fig. @, bottom; Methods). This procedure is
w5 repeated across the 3 distinct sessions/experience-levels for 4 feature categories, resulting in a 12-dimensional
a6 coding-score vector for each cell. Lastly, the resulting coding score vectors of a given cell type are collected
s across mice and run through an unsupervised clustering algorithm (Fig. |§|b, Methods) [24].

283 We use the same analysis pipeline to analyze cell subpopulation diversity in our cortical circuit model.
w0 We again focus on investigating the VIP population’s activity in particular (Fig. for Exc. and SST). Since
w0 we have no explicit behavioral effects in the network, we only code for three input feature categories: image
w1 presentations, omissions, and changes (‘task’). Repeating the aforementioned fitting procedure to determine
w2 coding scores and then clustering the data across 10 network initializations, we again observe diverse coding
a3 across features and experience-levels in the VIP population (Fig. @) Notably, the resulting kernel fits of the
a4 cortical microcircuit qualitatively resemble the fits on the experimental data (Fig. @d, . Membership of
ws  the clusters are shared across the different networks, demonstrating the diversity is not due to the different
o initialization parameters or training sequences (Fig. [S8).

a07 Many of the same subpopulation motifs observed in experiment are also present in the microcircuit model
ws  [24]. Although our overall cell coding scores are larger, we observe subpopulations that have very little
w9 coding to any feature or can be coded to one or more features (see Sec. . Several clusters of cells have
s0  weak coding to images in the familiar session only to gain said coding in later sessions and vice versa. As
s in experiment, since the VIP population responds more strongly to image changes in the novel session, its
s average image coding score increases relative to that in the familiar and novel-plus sessions (Fig. , right).
s3  Nevertheless, there are many features of the experimental VIP subpopulations that we do not observe in
se  our model: solely novel-plus image coded clusters, a clear over representation of novel image coding, and
sos  significantly less diversity in omission coding.

506 The FMS mechanisms we have inserted into our model evidently affect cell diversity in addition to the
s mean responses. Since the familiar and novel stimulus trains are statistically identical, without the FMS
sos  modulations the coding scores would be distributed across the two sessions evenly. That is, the fact that
s0  the excitatory to VIP synapses are not as familiarity-suppressed by FMS, causes many cells to become
si0  image-driven in the novel session. The effects of the FMS modulations can also be seen in the substantial
su  difference in coding scores between the novel and novel-plus sessions. Since these sessions are driven by the
sz same stimuli trains, there should be no statistical difference in coding scores without changes in connection
si3 properties due to modulations. There are several qualitative features of the experimental data we do not
siu  capture that are outside the scope of this work, e.g. clusters with experience-dependent omission coding. In
si5 the Discussion, we comment on how additional FMS mechanisms could be added to the model to produce
s such effects.

si7 Cell-specific synapse properties strongly influence cell coding. Having observed a diversity in
sis VIP cell coding in the cortical circuit model, we analyzed what cell-specific network properties may be
si0  responsible for the heterogeneous coding. The point-like neurons in our model primarily differ in their
s0 connectivity properties and how said connectivity is acted upon by the FMS mechanisms. To determine
sn what differences individual VIP neurons may have that explains their diverse coding scores, we take many
s cell-specific network properties and see how well each of these correlates with either individual cell coding
s23 scores or cluster-averaged coding scores (Methods). For example, if we plot the cluster-averaged novel image
s coding scores as a function of the total synaptic input a VIP cell receives from the excitatory to VIP synapses
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s during the image presentations of a novel session, we observe a statistically significant positive correlation
s (p = 0.002; Fig. @3) Since the amount of input a given VIP cell receives is influenced by the heterogeneous
s7  synaptic connections and image encoding signals, this quantity is different for each VIP cell and is evidently
s reflected in the cell’s image coding scores. We repeat this procedure across 16 cell-specific network properties
s20 of our cortical circuit model and all 9 coding score values (Fig. . Additionally, we analyze how said network
s properties vary as a function of each VIP cluster (Fig. [S10]).

531 Across all the cell-specific properties we consider, the strength of the modulated excitatory to VIP synapses
s mentioned above has the largest correlation with the novel image coding scores (Figs. @f, . Similarly, if a
s given VIP cell happens to have strong input from excitatory synapses during familiar image presentations,
s it tends to have a larger familiar image coding score (Figs. @f) As might be expected, we see the amount
s35  of input a cell receives in familiar session has relatively little correlation with the novel image coding score
s and vice versa. These coding score correlations can be used to determine properties that cells in a given
ss7 - cluster may share. For example, the cluster-averaged excitatory input from the familiar and novel sets
s38 roughly separates clusters into those that are familiar and/or novel image coded across network initializations
539 (Fig. @)

540 Interestingly, the image coding scores for the familiar and novel-plus sessions also have a strong correlation
sa with how much stimulus history input the cells receive (Fig.[S9). That is, in the absence of significant
se2 - within-layer excitatory input, a result of FMSa’s suppression, the VIP cells that happen to have strong
se3 synapses from stimulus history sources are the most coded to images during the familiar and novel-plus
saa sessions. An important distinction about the stimulus history input the VIP cells receive is that it is
ss  image-presentation-correlated but is uniform across all images, up to effects from noise. This lines up with
sis the experimental observation that VIP cells increase image decodability during the novel session, but do not
s see a significant increase in decodability during presentations of the familiar and novel-plus sessions [24].
ss Note that since these inputs do not change across images or sessions significantly, this could alternatively be
s0  interpreted as cells coded to familiar/novel-plus images are those closer to firing thresholds during all image
ss0  presentations.

551 Although the model’s omission coding exhibits far less experience-level diversity than what is observed in
s2  the data, we see how strongly connected a given VIP cell is to those cells excited during omission-encoded
53 times, i.e. > 500 ms, strongly influences the omission coding (Fig. . Additionally, there is a slight negative
ssa  correlation of the omission coding scores with the amount of input a VIP cell receives during non-omission
sss encoded times, i.e. < 500 ms. Any VIP cell that receives stimulus history input during the training session
sss  will have their presynaptic connections suppressed by FMSy, meaning said inputs will not influence the
ss7 - omission response. We see the clusters that are omission-coded tend to have larger input during large encoded
s times compared to those that do not (Fig. [6h).

= 3 Discussion

so  In this work we have introduced familiarity modulated synapses (FMSs), a simple familiarity detection
ssi  mechanism that relies solely on local, unsupervised synaptic modulations to encode exposure to past stimuli.
s The individual modulations of the FMS mechanisms evolve via well characterized dynamics: Hebbian or
s anti-Hebbian associative or presynaptic only dependence. We first investigated the basic properties of the
sss FMS mechanism in a simple feedforward network, what we refer to as the FMSN. There we saw that,
ss  unlike several other familiarity-detection models, FMSs can detect novelty in a single forward pass, which
s is supported by evidence showing such stimulus distinctions can occurs rapidly in humans [61}, 62]. We
s then demonstrated the generalizability of FMSs by modeling three distinct novelty novelty effects recently
sss  observed in a cortical disinhibitory circuit containing excitatory, VIP, and SST neurons. The connectivity of
s0  the cortical circuit model we develop is constrained by an aggregate of recent experimental results [17] |18, 20].
so The three separate VIP novelty effects were reproduced in a continual learning setting with experimentally
sn realistic stimulus sequences. Finally, due largely to the modulations that change the network’s response over
sz time, we found significant cell subpopulation diversity in our model, reproducing results that have been
sis recently highlighted in the cortical disinhibitory circuit [24].

574 In the cortical circuit model, we specifically focused on reproducing three distinct novelty effects seen
s,5  in the VIP population responses. The goal of this modelling study was to demonstrate how several FMS
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s mechanisms could be combined to produce various novelty responses within a single cell population. With
577 this in mind, the specific choices of where we have added FMS mechanisms and their parameterization are
ss not tested against other potential plasticity configurations that could also give rise to the novelty responses.
s With the addition of plasticity elsewhere in the cortical circuit and/or further neuronal contributions to the
20 model that we have neglected, plasticity that weakens the synapses feeding into the VIP neurons may not be
s necessary to produce novelty effects [22]. We leave an extensive study of how various plasticity configurations
s could give rise to all the novelty effects observed within the cortical circuit for future work (see below) [24].
583 Although we do not explicitly model all the novelty effects observed in experiment, given the results we
ssa  have seen here we can speculate on how the generalizability of FMSs would allow them to model such effects.
sss ' The inhibition from the VIP population alone is not enough to produce the change in SST response seen
sss across the familiar and novel sessions (Fig. . A slow strengthening FMS on the the excitatory to SST
se7 - synapses, i.e. similar FMS, with positive learning rate, would result in a larger SST population response in
s the familiar session, similar to what is observed in the experimental data 23| [24]. A fast FMS, analogous to
sso  F'MSp, on synapses that carry the bottom-up signal into the excitatory population could drive the observed
s increased excitatory response to image changes, very similar to what we produced in the VIP cells. We also
s do not attempt to model the suppressed omission ramping that is observed in the VIP population during the
52 novel session [24]. A population of VIP neurons that have increased mean activity in a novel session, via
s3 an FMS mechanism similar to FMSy, could act to gate the ramping signal. If this population inhibits the
s excitatory neurons that produce the stimulus history input signal it would lead to an overall smaller input
ss  and thus a smaller ramping only during the novel session. Furthermore, if this VIP population activity was
sos different across experience-levels, like the VIP population in our model and experiment, the inhibition to
so7  the history input would change between sessions, potentially leading to experience-level-dependent omission
s coding that has been observed [24] (Fig.[6p). We also note that it may be possible to observe the omission
s0  ramping response using a fast, STSP-like FMS in place of the LTD-like FMSay, i-e. the < 500 ms encoded
oo times become familiar on a timescale of seconds rather than hours/days.

601 We cannot rule out that part of the novelty responses observed in the cortical circuit may be driven by
sz signals outside the visual cortex (though see Ref. [52]). Regardless, since it has been confirmed that it is not
o3 the specific stimuli in the familiar and novel image sets that evoke the novelty responses [24], they must be
ea generated somewhere in the brain and we have demonstrated a plausible plasticity mechanism that could
6s produce said responses in cell populations. We do not attempt to model the heterogeneous learning rates
ws across the same synaptic population that has been observed in short-term plasticity [20]. However, since
e7 synapses continue to either be strengthening or weakening on average, we do not believe this will affect the
es Iean population activity significantly. We also neglect effects of neuron scaling, e.g. adjusting those synapses
o0 not strengthened/weakened via, say, heterosynaptic LTP or LTD. The FMS’s similarity to Hopfield networks
so  means modern extensions to said networks could be used in the FMSs to increase their effectiveness and/or
su capacity [63].

612 As mentioned above, the FMSs’ simplicity, generality, and effectiveness in producing novelty effects makes
ez them an ideal candidate for studying plasticity in future work. For example, modelling projects could scan
s over various FMS configurations and parameterizations within the cortical circuit to match the experimentally
eis  observed novelty responses and see if the resulting fits match or may constrain experimentally observed
s plasticity [20,39]. On the experimental end, understanding how neuronal responses change throughout all of
ez training would allow us to further characterize the types of plasticity that modulate experience-dependent
eis  activity. From our cortical circuit model, predictions about how connectivity and plasticity influence the
s10 observed cell subpopulation diversity could be tested by pairing physiological and learning studies together.
620 Altogether, the effectiveness of FMSs highlights the role simple modulations within large synapse popula-
e tions may have in shaping neuronal responses to stimuli. We demonstrated the FMS relies on no specialized
62 training and testing schedules and requires no carefully placed excitatory or inhibitory connections to operate.
23 Our cortical circuit demonstrates two important features of the FMS mechanism: (1) its ability to operate
64 with several distinct types of modulations on the same synapses, even at significantly different timescales,
s as well as (2) the ability to have multiple inputs with distinct synaptic dynamics influencing a single cell
&6 population. Crucially, these mechanisms allowed us to model the novelty effects that have been observed
s to occur over significantly different timescales (seconds to days) and from different sets of information on
e  the same set of cells [24]. Other than a few parameters adjusted at initialization to ensure realistic input
s0 and firing rates (< 10), the cortical circuit’s response is driven by the FMS mechanisms, themselves only
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60 containing 1 free parameter a piece: their learning rate/size of modulations. It is surprising to the authors
e that what seem like complicated novelty-responses can be captured by such straightforward modulation
62 mechanisms, yet speaks towards the influence that simple synaptic changes can have on our brains.

o 4 Methods

6 Many quantities we consider throughout this work are sequence time-dependent, and their time dependence
o35 18 generally denoted by a subscript ¢ (and sometimes s), i.e. x;. Time is uniformly discretized in our setup,
&6 SO the quantities x; and x;11 are separated by At. When unambiguous, we use I, J =1,...,d to index the
es7 neurons of the presynaptic layer, and 4,5 = 1,...,n to index the neurons of the postsynaptic layer.

ss Data availability. Supporting code for this paper can be found at:

6 https://github.com/kaitken17/fms. Data from the two-photon image change detection task can be found
610 ab:

e https://portal.brain-map.org/explore/circuits/visual-behavior-2p.

o 4.1 Familiarity Modulated Synapses and Networks

&3 In this section we give additional details about the FMSs and a brief introduction to the networks they're
sa used in. Additional details about the FMSN and the cortical microcircuit model can be found in Secs. [4.3]
s and [£.4] respectively.

ss 4.1.1 Familiarity modulated synapses (FMSs)

sz As in the main text, we take x; € R? to represent the presynaptic (i.e. input) neuron population firing rates
es  at time ¢t and y; € R™ the postsynaptic (output) equivalent. The synaptic modulation matrix, M; € R"*¢,
s0 represents changes to the network’s connections induced by some general biological mechanism through
es0 unsupervised learning. To incorporate changes in synapses due to various modulation mechanisms, we
o1 allow the modulation matrix to change otherwise fized synapses generally represented by some randomly
62 initialized matrix WE| We consider two distinct update rules for the modulations in this work. The associative
63 mechanism, Eq. , dependent upon both the pre- and postsynaptic firing rates, is given by

Mt+l = )\Mt —|— T]thtT . (3)
esa The simpler pre-only modulation update that is only dependent upon the presynaptic firing rates, Eq. , is
M1 =AM, +11x; /v, (4)

es  where 1 € R" is the all 1s vector. In the above expressions, 17 € R is the learning rate of the modulations
66 that controls the rate at which modulations are learned. Its sign determines the sign of the modulations
es7 and thus whether they strengthen or weaken the corresponding synapsesﬁ The other parameter, 0 < A < 1,
es represents the gradual decay of changes to the weight matrix. Occasionally it will be useful to discuss the
ss0  decay timescale Tgecay, Which is related to the decay rate via A = 1 — At / Tdecay- LThroughout this work, at the
60 beginning of training, the modulations are initialized to be zero, i.e. My = 0.

661 We distinguish neurons in the networks we consider between excitatory and inhibitory. A neuron that
62 1s excitatory is defined to have only positive weights leaving it so that it can only enhance the response of
63 the postsynaptic neurons it feeds into. Similarly, an inhibitory neuron has all negative weights leaving it,
¢ ensuring it can only depress the postsynaptic neurons it feeds into. For this definition of excitation/inhibition

7An alternative form of the modulations considered in Refs. [35]36] uses an additive modulation, rather than the multiplicative
one we consider here. Essentially all results used for the FMSN generalize to this form of modulations as well (Fig.|S11)). See
SM for additional discussion.

8Since we use the FMSs to model several distinct types of synapse modulations that have their own vocabulary for synapse
changes (e.g. depression and facilitation for STSP versus depression and potentiation for more long-term effects), we use
“strengthening” and “weakening” as a general terminology that applies across the individual mechanisms the FMSs may model.
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es to be meaningful, we also limit all firing rates in the network to be positive definite, including all input firing
e rates. Explicitly, this means the weights of our network are subject to the constraints

Neuron I Excitatory: Wir >0, (5a)
Neuron I Inhibitory: W;r <0, (5b)
67 forall:=1,...,n. Importantly, we do not allow for modulations to change the sign of weights leaving a given

es neuron. Per our definition above, this ensures that an excitatory neuron can never inhibit and vice-versa.
e0 Explicitly, this means that

Neuron I Excitatory: Wir + WirM,1. > 0, (6a)
Neuron I Inhibitory: Wir + WirtM,r: <0, (6b)
oo foralli=1,...,n and all t.
671 Several experimental studies have investigated the amount of change a given neuron can undergo through

ez mechanisms such as STSP or LTP/D. To bound the modulations to realistic values, we further restrict the
o3  modulations so they cannot enhance or depress weights beyond what has been observed in experimental
e settings. Since such changes can differ depending on the mechanism, we enforce different bounds for the
o5 associative and pre-only dependent modulations. Explicitly, we limit

M];\, lower SMiI,t < M§7 upper 7 (7&)
Mtl):’, lower SMiI,t S M]f’ upper7 (7b)

e We take Ml? P UPPEr — Mg UPPET — 1.0, so that both types of modulations can at most double the strength of
o7 the corresponding synapses. Meanwhile, we take MbA » lower _ —0.8, i.e. a synapse can at most be reduced
e to 20% of its original strength, similar to values observed in several long-term plasticity experiments (39,
o9 |64, 65] . STSP has been recently observed to almost completely suppress certain synapses [20], so we take
680 Mk}:’ lower _ _1.0. Note with these chosen values of My, the bounds are stricter than those of Eq. (6, so in
61 practice the enforcement of Eq. implies the bounds of Eq. @ are automatically met.

2 4.1.2 Familiarity modulated synapse network (FMSN)

63 As mentioned in the main text, it is useful to first understand the properties of FMSs in a simple setting. To
e this end, we investigate FMS properties in a simple two layer neural network, what we call the familiarity
s modulated synapse network (FMSN). We take the input and output layers to have d and n neurons, respectively.
ess The input and output layers are connected by weights, representing the synapses of a biological neural network.
e We will assume the synapses of the network have some underlying strength at initialization, that we denote
s by the weight matrix W € R"*%. We take W to be sparse such that its elements have magnitude

[Wir| = |wir| bir , wir ~ N (O,w2) , bir ~ Bernoulli (pw) (8)

eso  where the parameters w and py determine the magnitude of the nonzero elements and the sparsity, respectively.
o0 The sign of the nonzero elements are determined by the input neuron cell type (see Sec. above).

601 Like the synapses in the brain, we allow the individual weights in our network to be modulated over time.
sz We denote the modulations at time step ¢ by M, € R"*? i.e. the same size as the weight matrix W. The
s3 combined weights and modulation matrix yield the output neuron preactiviation values,

yt:(W+W®Mt)Xt+b, (9)

ss  where b =01 with 1 € R" is a uniform bias term that can represent neuron firing rate thresholds as well as
s other network factors neglected in this simple model (see below). The parameter b is adjusted at initialization
s6 to ensure realistic response sparsity in the output population, but is otherwise fixed throughout training, see
67 Sec. below. Finally, the output preactiviations are passed through a nonlinear function, ¢(-), representing
e the output neurons’ properties such as their firing rate threshold and maximum firing rate. Thus, the output
eo population’s activity at time ¢ is given by

Yyt = (b (yt) l (10)
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w0 where ¢(-) is applied piecewise. Throughout this work, we use a rectified tanh as the output neuron’s
71 nonlinearity,

tanh(z) forz >0,
0 for z < 0.

¢ (x) = ReTanh (z) = { (11)

72 This activation was chosen since it has three desirable properties: (1) it is positive definite which was required
w3 for cell types in our model to make sense, (2) it is bounded, and (3) it is approximately linear for 0 < z < 1,
74 S0 small positive preactivation values become small activity.

705 The FMSN’s behavior can be changed considerably by modifying the distribution of excitatory/inhibitory
706 neurons in the input neuron population. Note that since the neuron types only influence the sign of the
7 weights/synapses leaving the neurons, the cell types of the output neurons do not affect the FMSN’s behavior.
¢ When we investigate the FMSN in the main text, for simplicity, we consider a setup that only has excitatory
700 neurons in its input layer. The bias adjustment within the output population that we perform to ensure
7o realistic firing rates helps balance excitation/inhibition in the output population that only explicitly receives
m  excitatory input. We find that the bias term is always negative for the output population firing rates we
72 consider, which can be thought of a uniform inhibitory input into the output neuron population that provides
ns  E-I balance.

714 In the supplement, to understand the effect of FMSs applied to inhibitory synapses, we also consider cases
ns  where input population of the FMSN has both excitatory and inhibitory neurons in it. In these cases, the
ne  unmodulated weight matrix, W, has some columns with all positive nonzero elements and some columns
n7 - with all negative nonzero elements. We study a simple case where the FMS mechanism applies to synapses
ns  belonging to either the excitatory or inhibitory input neuron populations. Of course, it is also possible to
ne  have modulations acting on both populations, but we leave such investigations to future work. All other
=0 properties of the FMSN, including the firing rate adjustment, remain unchanged.

= 4.1.3 Cortical microcircuit network

72 A rough schematic of the cortical microcircuit network is shown in Fig. Pe. The three primary populations
=3 we consider in the network are the excitatory, SST, and VIP neuron populations. We will index variables
724 belonging to these three populations using p = E,; S, V, respectively. Lastly, we also include an additional
s population of excitatory neurons that drive the stimulus history inputs into the VIP population and represent
26 a subset of the top-down input into the cortical layer we explicitly model. We denote these additional
727 excitatory neurons by the superscript ‘hist’. We do not make any attempt to model behavioral effects related
28 to the image change task, including the licking response to the task [42].

We begin by introducing the cortical microcircuit without any FMS mechanisms added to its synapses.

The preactivation response of the excitatory, VIP, and SST populations are respectively given by

yi =Wy WhVyY 4 WE’SY§—1 +b® +n x5, (12a)
y; = Wy + WSy + WESyP ) +b° 4 nf. (12b)
yy _ WV,EytE + WV,Vy;/;l + WV,SytS + bV + ny + WV,histxlgist , (12C)

79 where WP’ represents the synapses connecting presynaptic population p’ to postsynaptic population p, b?
750 is the bias vector of population p, and n! represents additional noise injection (see Sec. below). Note
71 the three populations do not update in sync: at time ¢ the excitatory population’s activity is updated first,
= followed by the SST population, and then VIP. Asynchronous updates were found to help numerical stability.
723 This order is also biologically motivated since the canonical input to layer 2/3 from layer 4 pyramidal neurons
7 is much weaker to VIP and SST than pyramidal neurons.

735 All the preactivation responses pass through a non-linearity,

y;tD = ¢ (yf) ) for p= Ea S,V, (13)

16 where ¢ (-) = ReTanh (-), ensuring the rate remains positive definite, see Eq. (11J).
737 The excitatory and VIP populations both receive additional external input related to the stimulus change

ns  task. Specifically, x§™ and xMst represent the present stimulus input and activity of the stimulus history
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70 excitatory neurons, respectively (see Sec. below for details). Note the activity of the excitatory neurons
mo  that drive the stimulus history signal is an input to the network, so we have denoted it by x5t rather than
m yPst for clarity. Both stimulus inputs, x§%™ and x*| are fed directly into an excitatory population that in
2 turn drives the rest of the circuit through sparse synapses. The primary difference between them is that the
3 former drives an excitatory population inside the microcircuit while the latter drives an excitatory population
ne  that is assumed to reside in a higher cortical area that we do not explicitly model. The stimulus history
ns  excitatory neurons represents a subset of top-down information fed into the microcircuit and were chosen to
us  feed into the VIP population since they are known to receive feedback input [20].

747 The W»*" are sparse matrices whose elements are also drawn according to Eq. , i.e. in the same way
ns  as the weight matrix of the FMSN. Once again, the cell type of the presynaptic population p determines
n9  the sign of the nonzero wrr' elements, and thus WPF >0, WPS < 0, and WPV < 0 for all p. For a given
750 VV’”’)/7 the sparsity of the synapses (i.e. py ), magnitude of the nonzero elements (i.e. w), and relative number
= of cells in each population are all set by experimental literature [17), 18 20], see Sec. below. In short,
% for all WPP' | we take py to be the corresponding entry in Fig. and w to be the corresponding entry in
s Fig. , up to a multiplicative constant c¢. Importantly, ¢ is the same for all Wp’pl, and thus the relative
7 connection strengths between populations is completely fixed by experimental results, up to changes from
s FMSs.

756 Since WVY:ist represents an unknown subset of top-down excitatory to VIP connections, we simply sets
77 its sparsity equal to the within-layer excitatory to VIP connections. Its synaptic strength is set to a value
s comparable to the within-layer excitatory connections so that the omission ramping response has a comparable
70 magnitude to image responses.

760 All three biases are parameterized similarly to the FMSN; i.e. b? = bP1 where 1 is the all 1’s vector in the
w1 corresponding space. Once again, the bP are adjusted at initialization to ensure realistic response sparsities in
w2 all three neuron populations, see Sec. below.

w3 Adding FMSs. So far, the network above has no FMS and thus has no way of adapting to the stimuli
s over time. We add the following three FMS mechanisms onto synapses feeding into the VIP cells,

WVE L WVE L WVE g (MEA) + M§P>) , (14a)
WV7hist N W\hhist + W\hhist ® MgAH) , (14b)

s where the superscripts in () refer to distinct FMS mechanisms. Specifically, (A), (P), and (AH) respectively
w6 correspond to what we refer to as the FMS,, FMSp, and FMSay mechanisms. Note we have added two
w7 FMS mechanisms to the same set of synapses, those going from the excitatory to the VIP population. When
e multiple sets of FMSs are present on the same synapses, we still enforce the cell-type bounds of Eq. @ The
70 three distinct modulation correspond to the three novelty responses we aim to model. They are respectively
7 subject to the following update expressions,

T
FMSy: M = xOMPY 4@y (yP) (15a)
FMSp:  ME) = AOMP) 4 )1 (yB) v/l (15b)
FMSan: M,(gi?) — )\(AH)MEAH) + Al (X?ist)T _ (15¢)

=  Note that the updates are distinct, but are all of the same fundamental form we have used throughout this
m  work, see Eq. . That is, the associative updates are dependent upon both the pre- and postsynaptic firing
73 rates of the populations they connect, while the pre-only is only dependent on the presynaptic firing rates
m  since we want it to represent STSP-like modulations that occur at timescales on the order of seconds. The
s three FMS mechanisms are subject to the corresponding bounds motivated from experiment discussed below
s Eq. . In practice, during training, the FMSs and FMSp modulations rarely come close to saturating the
77 bounds imposed by experiment, while the modulations of FMSxy come close to their bounds at a much higher
s rate. For the exemplar network shown in Fig. [5] for the modulation matrix terms corresponding to nonzero
7 synapses of M), M®) and MAW  only 1.5%, 0.09%, and 42% come within 50% of their bound and 0%,
w0 0%, and 23% come within 10% of their bound, respectively. Note for the slower modulation mechanisms,
m  these rates were only calculated during roughly the last quarter of training time.
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782 To adjust the parameters of the three FMSs shown above, we scan over learning rates of all three FMS
73 mechanisms and determine which of these yields the best mean response fits, see Sec. for additional
s details. We take TéeAC)ay = 10° seconds, Téfc)ay = 1 second, and TéeACZI}), = 10% seconds based on the timescale of

5 the corresponding biological mechanisms we wish to match onto and experimental observations (though see
w6 SecC. for how these may change to expedite training).

w 4.2 Tasks

s 4.2.1 Familiarity-novelty task

7 The familiarity-novelty task is used to train the FMSN discussed in Sec. 2.} The neuronal encoding of
0 different stimuli are represented by distinct random binary vectors, x® € R%, where « indexes the distinct
71 stimuli. The random binary vectors are chosen to be sparse, i.e. the elements of stimuli « are given by

¢ = AbY, b§ ~ Bernoulli (pstim) (16)

0 where A is some normalization factor. Since we generally use small pgim, we also ensure that there are a
73 minimum number of nonzero elements for each x®.

704 Prior to training, N stimuli are generated and defined to be the familiar set, Sp = {x!,...,x"*}. The
s unsupervised training consists of passing the network a sequence whose elements are randomly drawn from
6 the set Sp (with replacement). After each sequence step, the network’s modulations are updated according
7 to Eq. . Random Gaussian noise (iid to each element/sequence step)ﬂ € ~N(0,0.1), is added to the
e inputs before each element is passed through a ReLLU function to ensure all elements are positive,

x; = ReLU (x* + ¢) . (17)

0 As mentioned in the main text, the sequence of familiar stimuli is ordered such that each element of the
so familiar set is seen every Np sequence steps. The order of the familiar set is shuffled within every Nz window.
801 Implicit in this training is that the time difference between successive stimuli is constant, a feature we
g2 relax in stimulus change detection task. The parameter A that controls the decay can be thought of as
a3 corresponding to a decay length relative to number of examples.

804 During and after training, we test the network’s response to both the familiar set of stimuli as well as
a5 a novel set of stimuli, Sy = {x'!,...,x'V*}, where x® # x'# for all a and 3. For these test responses, the
ss network’s modulations are not updated after being passed through the network, so they do not affect the
sor network’s response to future inputs. Measuring the network’s response at these steps is simply done for the
ws sake of comparison and is not a necessary step in training.

a0  4.2.2 Stimulus change task

g0 The task we train our cortical circuit model upon is meant to imitate the image change task used in the
su experimental data we are modelling (23] 24]. At any given time, the input to the network consists of three
sz distinct parts:

813 1. Present stimulus: A stimulus input vector, x§'™ representing a neuronal encoding of the current
o1 visual input at time ¢ (see Figs. [S5p.b for examples).

815 2. Stimulus history information: Information about the recent history of the stimulus sequence,
816 specifically an encoding of the amount of time that has elapsed since the last stimulus presentation,
a17 xSt (see Fig. for example).

818 3. Time-correlated noise: Additional noise input into each population representing contributions to
819 the neuronal activity from factors neglected in our model (e.g. behavioral effects), n} for p = E, S,V
820 (Fig. [SBQ).

9Results do not differ significantly from bit-flipped noise, both methods increase the dot product between two randomly
drawn stimuli, making the familiar stimuli harder to distinguish from the novel stimuli.
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sn All input sequences are discretized to a time length of At = 1/32 s, or 31.25 ms. This time difference is
s22 chosen to match the experimental sampling rate.

823 Before discussing the details of each of these inputs, we briefly review the experimental task, see Ref. [24]
a4 for significantly more details.

ss  Experimental image change detection task details. The image change detection stimulus sequence
@6 consists of image presentations in quick, regular succession. Stimuli are presented for 250 ms and then
a7 followed by a grey screen for 500 ms. The same image is presented several times in a row before a new image
w8 is chosen and the process repeats (Fig. ) In the experiment, mice are tasked with licking in response to an
a0 image change. The number of times an image is presented in a row is between 4 and 11, with the count being
s drawn from a truncated exponential distribution so that 4 image presentations in a row is the most likely.
sn  Additionally, there is a 3 second grace period after an image presentation before the trial restarts. Note the
s image after an image change is drawn from the entire set of possible images and as such there is a 1/8 chance
a3 that the same image is drawn again. These cases are not included when measuring the network response to
s image changes.

835 The mice are first exposed to static grating and trained on a grating change detection task, which was
g5 found to improve the training time on the subsequent image change detection task. Mice are trained on the
s image change detection task from a set of 8 images that gradually become the familiar set (Fig. ) During
s these training sessions mice learn to perform the task. Once mice reach a particular performance threshold
a0 on the image change detection task using the familiar set, their neuronal responses are recorded over several
w0 familiar imaging sessions that are separated by at least one night of rest. Generally, the second of these
a1 sessions is a “passive” imaging session where they do not need to perform the task to obtain rewards (see
s Ref. [24] for exact training sequences). Afterwards, a novel set of 8 images are introduced into the same
a3 image change task. Without any additional training, the mices’ neuronal responses while performing the task
aa  are recorded over several novel imaging sessions. Once again, generally the second of these is a “passive”
as  session and is omitted from this analysis. After at least one session of exposure to the novel imaging set, the
as mice’s responses while performing the same task on the novel imaging set are gathered in what is called a
a7 novel-plus imaging session.

848 During only the imaging sessions, i.e. not included in the training sessions, each image has a 5% chance
ao  Of being omitted. For an omissions, the grey screen continues to be displayed for the 250 ms where the image
so  would have been presented (Fig. , middle). There is no limit on the number of omissions that can occur in
1 a row, though longer chains become increasingly rare. Omissions cannot occur for the image presentation that
g2 would be a change or the pre-change image. This means that all omissions, including sequences of multiple
g3 omissions, are surrounded on either side by the same image.

sa We now discuss the three distinct parts of the input to the cortical microcircuit network.

g5 Present stimulus. The present stimulus sequence is constructed to represent a neuronal encoding of the
ss equivalent visual stimulus of the experiment. It is constructed to closely match the statistics of the image
es7 change detection task the mice are trained upon. Since image presentations last 250 ms and are separated by
sss 500 ms of grey screen (ignoring the possibility of omissions for the moment), there are 250 ms/At = 8 time
so  steps of the neuron encoding of the image followed by 500 ms/At = 16 time steps of the neuronal encoding
so of grey screen (though see below for additional details). This sequence then repeats, with the image identity
g1 of each 750 ms window being chosen so that image changes and omissions occur at frequencies described
s2 above. Different images encodings are represented by distinct random binary vectors drawn in an identical
g3 manner to that described in Sec. above. Similar to experiment, the familiar and novel sets are chosen to
s+ have 8 distinct stimuli in them. All inputs have random Gaussian noise added to them. As observed in the
ss experimental data, neuronal activity is low during stimulus times where the grey screen is displayed, so the
g6 present stimulus inputs representing grey screen encodings only consist of the added Gaussian noise discussed
s7  above. When an image omissions occurs, the image input is simply replaced by additional grey screen input.
ss  We allow for at most two omissions to occur in a row.

869 During the time steps representing an image presentation, there are three additional contributions to the
g0 stimulus sequence used to mimic the responses of experimental studies. First, to best match mice response
en data, we delay the mean onset of the image presentation stimulus by two time steps, corresponding to
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sz 2At &~ 62 ms, relative to when we consider the image stimulus has begun display. This has the net effect of
e shifting the neuronal responses later in time relative to the image presentation time period (for example,
ee  see Fig. |5) and approximately matches known delays of the visual cortex to visual stimuli [66] as well as
a5 the experimental data |23} 24, [66]. Second, we also smooth the input stimulus with a smoothing kernel to
s represent the ramping and decay of the image response to the input sequence [66]. The smoothing kernel is the
g7 normalized experimental mean excitatory response, deconvolved with the experimental stimulus smoothing
es  function (see Sec. E The resulting smoothing kernel from this process is shown in Fig. . Third,
ero  for each cell we allow the onset of the image stimulus to vary by At so that not all cells receive input
a0 representing the image presentation at the same time step. This incorporates effects of lag times of stimulus
g1 responses across a population and is also useful for numerical stability so that all cells do not respond in
s unison. We incorporate all three of the above effects on a cell-by-cell basis into a stimulus kernel k§*m. If
s3 Xy is the random binary vector representing the current image being presented, then the full raw stimulus
s stimulus input is given by

x;" = ReLU (K}'"™ ©x; +€) | (18)

s where ReLU(+) = max(-,0) and € ~ N (0,0.1). See Figs. [S5h,b for exemplar present stimulus input for an
sss image change and image omission.

887 Unless otherwise stated, the present stimulus inputs are taken to have average sparsity p = 0.05 with
ss  a minimum sparsity of 0.025 for any given stimulus. The input normalization was chosen so that nonzero
s elements had size 0.2. Since time-correlated noise is already injected into each population (see below), the
so present stimulus noise was taken to only be o, = 0.03 x 0.02.

891 Since mice can lick mid-sequence and this can reset the task mid-trial, the experimental distribution of
sz number of presentations between a given image is thus fairly heavy tailed. Across the entire experimental
s3 dataset, we find there to be on average 20.4 image presentations between changes. To ensure shorter trial
s times, we truncate the maximum number of image presentations between a change to 75. This only omits
ss  the 2.3% of image changes on the tail, and shifts the average number of images between a change to 18.4.
s See Figs. [S5,h for a plot of the true number of image presentations until the next presentation. We do not
sor  find using the experimental image-change-distribution versus the idealized one that assumes no licks affects
ss the mean response results significantly. However, in the cell subpopulation analysis the fitting metrics are
a0 dependent upon the global distribution of change occurrences and so the truncated experimental distribution
w0 was used in said analysis.

o1 Stimulus history information. As mentioned above, we also pass the network information about the
o2 recent history of the stimulus, in particular the time that has elapsed since the last image presentation.
o3 This information is assumed to be encoded in a subset of the top-down input to the cortical circuit. This
os additional input into the network is necessary to observe responses that are dependent on the relative time
s between image presentations, e.g. the omission ramps. The top-down inputs could be produced from the
s present stimulus sequence described above using, say, a simple recurrent network that counts the time steps
o7 since the last stimulus and encodes said information in output neuron responses that match known stimulus
w8 tuning properties. As our goal for this study is the effects for FMS in the local circuit, we avoid an explicit
o0 implementation of such history encoding and simply input it directly into the network.

910 In this section, we denote the time that has elapsed since the last image presentation at time ¢ by s, which
o is measured in seconds. For example, with no omissions, s = 500 ms immediately before the onset of the next
o2 image presentation. For times when the stimulus is currently being presented, s = 0. The time since the last
o3 image presentation is maximized after omissions, and since at most we allow for two successive omissions,
e 0 < s <2 seconds.

o1 We denote the neuronal encoding of the time s by r(s). We assume that encodings of times that are close
ais  together are more similar than times further apart, as measured the dot product between the two representations.
a7 That is, if [s — §'| < |s — §"|, then r(s) - r(s") > r(s) - r(s”).

018 The temporal encoding input is generated by creating a population of neurons that are each tuned to a
oo particular s. For simplicity, we take the neuronal tuning curves to take the shape of a Gaussian, though our

10Tn practice, smoothing the present stimulus signal from the L4 excitatory response would have been more realistic. However,
the depth differences between L2/3 and L4 did not change the excitatory response significantly, so we have just used L2/3 for
simplicity.
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o0 results easily generalize to other tuning curves such as cosine bumps. To match experimental results, we
o1 assume the population of neurons’ tuning curves are centered at times that are logarithmically distributed
o2 and that the width of each tuning curves is proportional to their center [67-69]. Specifically, we take the
w3 neuron tuning centers to be logarithmically distributed between 10=2 to 10! seconds. For neuron I centered
o4 at time sy, its width is directly proportional to the size of the center of its tuning, o; = %s 7. Altogether, the

o5 tuning curve of neuron I is
2
ri(s) = exp <(581)> . (19)

2
207

s See Fig. for exmplar raw turning curves. In practice, the longest delay time between images is at most
o7 two seconds, so those neurons tuned to higher times are almost always silent in our setup. The resulting
o8 neural population responses are then each individual neuron’s response to the corresponding s (Fig. )
o0 Due to the higher density of neurons centered to small s, the relative magnitude of the population response
a0 vectors decreases gradually for larger times (Fig. [S5k). Notably the trend in magnitude is the opposite to
os1  that of the ramping response, i.e. smaller s have the largest magnitude. A verification of the decrease in
o similarity for times further apart is shown in Fig. [SB]. Since we assume this history stimulus represents some
o33 unknown subset of the total top-down input into the VIP population, we simply set the magnitude of the cell
o activity to be comparable to the present stimulus input so that the omission ramping has a similar response
o35 to image presentations.

936 Similar to the present stimulus input, noise is added to the stimulus history stimuli and thresholded to be
037 positive definite,

x5t — ReLU (r(s) + €) . (20)

038 We note that this encoding of the history of what the mouse viewed is purposely simplistic and likely
030 misses other effects that could be observed experimentally. For instance, an image that lasts longer or a
a0 shorter delay would not elicit a large response from the VIP cells despite these being outside of the the
s normal rhythm of the task. A more thorough encoding of the history of the task would allow the model to
a2 react to additional disruptions to the regular task flow, but we leave such exploration for future work.

s Time-correlated noise. To account for contributions from neurons not included in the circuit, as well as
ws contributions from other task-relevant effects (e.g. behavior), the excitatory, SST, and VIP populations are
ws injected with additional time-correlated noise (in addition to the noise added to the present stimulus and
us  stimulus history inputs described above).

047 Specifically, the noise is generated by convolving white noise with a Gaussian smoothing kernel over time,
ws and then weighting the noise injected into each neuron to account for any variance the population may have
uo from such effects. The continuous Gaussian smoothing kernel is given by k(t) =1/ (7r02)1/ * exp (—t%/20?)
o with o = 125 ms. The discrete smoothing kernel, k;, is found by evaluating the above at k; = k (tAt) for
s t=—(0/At)?,...,(0/At)%. Note the normalization of k(t) is chosen such that the convolution does not
o2 change the variance of the uncorrelated noise, e.g. > k? ~ 1. The weight accounting for how much noise is
o3  injected into neuron i is w; ~ U(0,1). Thus we have

ng =wo (kxnP), , (21)

s where 0} is the uncorrelated noise with nf ~ N (0,0”). As shown above, this noise is added to the

055  preactivations of all neurons for each population. The variance of the noise for each population, ? = ¢P1, is
o6 adjusted to match experimental baselines, see Sec. below.

o7 4.3 Familiarity modulated synapse network details
sz 4.3.1 Response sparsity adjustment

oo With only excitatory synapses in the input later of the FMSN, all inputs to the output neuron population are
wo positive and so, without any threshold/bias term, the output population would have a response rate of close
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w1 to 100% for every possible stimulus. Of course, such a response is not realistic over an entire population of
o2 neurons in the visual cortex and such excitation should be balanced by inhibition to achieve realistic response
o3 sparsities. This could be achieved by introducing inhibitory neurons with appropriate synaptic strengths
o6« into the input layer, in which case output neurons would receive somewhat balanced levels of excitation and
oss inhibition. Indeed, we study such a network when we want to consider modulations on inhibitory neurons.
o However, for the FMSN investigated in the main text we choose a simpler solution that we discuss here that
o7 generalizes to the method we use to balance the cortical microcircuit below.

968 The output neuron population’s response rate can also be adjusted by changing the population’s firing
wo threshold/bias, b in Eq. @D In this work, we only consider b = b1 with 1 € R" so that the point neurons we
o0 study only differ in connectivity and noise injection. For a given neuron, a negative b effectively acts as a
on uniform inhibition across all possible inputs. Across the entire output population, a negative bias allows the
o2 meurons to have more realistic response sparsities despite only receiving excitatory inputs.

73 To adjust b to get the desired response rate, we first draw a validation set of size 100 from the same
ona  distribution that generates the familiar and novel sets. This entire validation set is passed through the
o5 network at initialization with b = 0, with no adjustment to the modulation matrix M. Given the known
ors  activation function, Eq. , from the validation set’s preactivation values the bias needed to have the desired
o7 response sparsity across the validation set can be exactly computed. In short, all preactivation values (across
o the stimuli of the validation set and output neurons) are sorted by value, and the bias is chosen such that the
oo desired percentage of these values are above 0. Since the familiar and novel sets are drawn from the same
o0 distribution as the validation set, this yields a similar response rate over said sets without being directly fit
os1  to them. Note this procedure means that the network has the desired response sparsities at initialization,
o2 but the induced modulations during training can change the response rate of the novel and familiar sets

w3 (Fig.[S2h).

e 4.3.2 Decoding accuracy and dimensionality

s For the associative weakening FMSN example considering in the main text, the change in output activity
oss  Of the familiar set significantly affects the decodability of the output signal. Post-training, decodability of
ez stimulus identity within the familiar set is significantly lower (0.46 4-0.05) while that of the novel set is perfect
s (1.00 & 0.0, mean £ std). The difficultly in decodability is reflected in the effective dimensionality of each
w9 set’s output activity: the novel outputs occupy a low-dimensional space (D = 6.3 + 1.5) while the familiar
o0 outputs are small enough that their signal is hard to distinguish from noise and thus the space they occupy is
o1 significantly higher dimensional (D = 48.5 4+ 7.1, mean + std, Figs. 7c). Both the above properties are a
w2 function of the amount of modulation within the network, so the decoability /dimensionality of the familiar
w3 and novel sets can vary significantly by, say, changing the modulation learning rate (Figs. 7n).

994 To compute the decoding accuracy of the familiar and novel sets, we use the same input noise that is used
ws during training (see above) to create 1000 noisy versions of each stimulus. Each noisy stimulus is then passed
o6 through the trained network, resulting in a total of 8000 output responses across the entire familiar or novel
o7 set. Said responses are then labeled by their index within their set and a linear SVC is used to decode them
os using 10-fold cross validation to compute test accuracies. Specifically, we use sklearn.svm.LinearSVC with
o0 default parameters other than max_iterations=1e5. The approximate dimensionality of the representations
w0 reported in the main text are computed using the participation ratio of the ratios of variance explained of
wn  the resulting PCA fits.

w2 4.4 Cortical microcircuit details
wos  4.4.1 Microcircuit structure

w0 In our model, the total strength of the collection of synapses from a given presynaptic population into a given
1005 postsynaptic neuron depends on three major factors:

1006 1. Connection probability: The probability for a given synapse to exist between any two cells of the
1007 given pre- and postsynaptic type (Fig. [S4d).

1008 2. Relative cell counts: Along with the mean connection probability, the number of presynaptic cells in
1000 a given population affects the mean number of inputs a given postsynaptic neuron receives. Since our
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1010 network does not explicitly model true cell counts found in the visual cortex, this enters as a relative
1011 value that we can then normalize by some baseline number (Fig. [S4k).

1012 3. Synapse strength: The strength per synapse, which we measure by the mean time-integrated
1013 postsynaptic potential (PSP), see below (Figs. [Sdb,c).

s When layer-specific experimental observations are available, we take the values given for L2/3 of the visual
s cortex. The three factors above directly affect both the population count in our microcircuit model as well as
w6 the explicit form of the W2?' 1t can also be helpful to track the mean population strength, a product of the
w7 three factors above

nP
Tpep = — X P2y X Zi(S_F;,, : (22)
Nbaseline
s In practice, we take npaseline = ns, which gives us the inter-population connection strengths shown in Table
ws and Fig. [S4h. Although they are not explicitly included in our microcircuit model, we include data for PV
0 neurons here as well (see Discussion for further details).

w2z 1. Connection probability: The connection probabilities between pre- and postysnaptic populations are
2 computed from the fully adjusted connection propabilities of Ref. [20] (Fig. ) In said work, it was found
123 that connection strength was independent of connection probability. Additionally, excitatory connections
02 most strongly distinguished by postsynaptic connection, while inhibitory by presynaptic connection [20].
1025 The adjusted connection probabilities of Ref. [20] are reported as fits that are dependent upon the distance
w6 between cells in addition to the dependence on pre- and postsynaptic neuron type. Since we do not explicitly
w2 simulate the spatial distribution of cells in our model, we use length scales from the experimental measurements
s to set distance-dependent connection probabilities. Specifically, since the imaging field of the two-photon
2 experiment was 400 um x 400 pm [24], we randomly generated cells locations within a two-dimensional box of
w030 this size and then computed the average connection probability between all possible pairs. The connection
wn  probability decay lengths were taken to be 100 ym for E—I or I-E and 125 um for E=E or I—1 [20]. From
w2 the randomly generated cell locations, this resulted in a reduction of pyax, i.e. the connection probability if
013 the cells were right on top of one another [20], by 0.25 for E=I or I-E and 0.34 for E=E or I—1. Taking
0% into account this distance-dependent reduction yields the connection probabilities shown in Fig. [S4d.

w5 2. Relative cell counts: We assume the microcircuit has a ratio of cell counts of Excitatory : VIP : SST
s found in the investigation of 1.2/3 of the visual cortex of mice from Ref. [18] (reproduced in Table [1] Fig. [S4).
w3 However, in order to maintain a reasonable cell counts for numerical simulation, we instead use the ratio
we nP:nS:nY =2:1:1, and adjust each population’s outgoing synapses to account for any discrepancy in
1039 their simulated cell count relative to their experimental cell count. For example, since in simulation there are
w0 only twice as many excitatory to SST cells, but from experimental data their ratio is closer to 27.35: 1, we
e strengthen each excitatory synapse by a factor of 27.35/2 = 13.675 to account for the missing simulated cells.
e From Fig. [k, we see this scaling of synaptic strengths to account for the differences in cell counts in our
143 microcircuit maintains the relative population strengths.

wa 3. Synapse strength: We take the time-integrated voltage over a typical postsynpatic potential (PSP)
s pulse fit as a measure of the synaptic strength, where

ZPSP = PSP/ oa X Togt (23)

s where PSPy, 4 is the adjusted PSP amplitude when the neuron is not being facilitated or depressed from
i STSP effects |20] and Teg is the effective time of the PSP pulse.

1048 We compute an adjusted PSP amplitude that accounts for potential differences of the in vitro measurements
e versus what we assume to be a cell’s in vivo operating potential [20]. These differences are distinct across
wso  cell types, and thus can affect the relative strengths of excitation and inhibition within the cortical circuit.
wst  To arrive at the adjustment factor, we assume the experimental current is proportional to the difference in
2 the experimental reversal potential and the resting potential. Furthermore, we assume the in vivo current is
ws3  proportional to the difference in reversal potential and the potential where we presume neurons are generally
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Rel. Count | Post Exc. | Post SST | Post VIP | Post PV

Pre Exc. (L2/3) 27.35 0.105 0.750 1.000 0.908
Pre SST 1.00 —0.081 —0.024 —0.356 —0.060
Pre VIP 1.67 —0.008 —0.227 —0.020 —0.004
Pre PV 1.38 —0.262 —0.107 N/A —0.353

Table 1: Relative cell counts and inter-population connection strengths of the various cell
populations. Second column shows relative cell counts for Layer 2/3, and it is assumed that 70% of Htr3a
cells are VIP [18]. Third through sixth column shows population connection strengths for various pre- and
postsynaptic combinations. See Sec. for details on how relative population connection strengths are
computed. Note, although PV neurons are not included in our microcircuit model, they are included in this
table for completeness. The ‘N/A’ entry corresponds to synapses for which there is no data in Ref. [20].

wsa close to operating, which we take to be the threshold potential. The constant of proportionality in both cases
w0ss 18 taken to be the neuron’s conductance, and thus the ratio of these differences gives the adjustment factor of
wss  the PSP value, namely

Viev — Vihres

/ _ rev thresh

PSPunmod - ( (exp) _ V(exp)> X PSPunmod (24)
rev rest

sz where Ve, is the estimated reversal potential of relevant channels in the presynaptic neuron, Vipresn is the

(exp)

wss  estimated threshold potential of the postsynpatic neuron, Viey ~ is the experimentally measured reversal

V(EXP)

wse  potential that is dependent on neurotransmitters of the presynaptic neuron, and Voo

we0  targeted resting potential that is presynaptic dependent.

1061 From the literature, we use Viey = 0 mV for excitatory [70] and Viey = —82 mV for inhibitory presynaptic
wee  populations 71}, 72]. We determine Vipresh from electrophysiology data from the Allen Cell Types Database,
w3 found at https://celltypes.brain-map.org/data [19]. Specifically, the Viphresh for each sweep and averaging
wes  over all sweeps for a given specimen identification, then averaging these values across the Cre-line. We only
1065 vary Vinresh Dy postsynaptic cell identity. The Cre-lines, total cell count, and computed Vipresh are shown in
wes Table

1067 Since only a small subset of synapses have experimentally measured Vrg,’(p), we take the median value
wes  across synapses of a given pre- and postsynaptic neuron type and use this across all cells. We do not find
s this impacts the resulting V., significantly. Finally, for K(ei)t(p), we use the targeted holding potential from
wo  experiment, which are —70 mV for excitatory presynaptic cells and —55 mV for inhibitory presynaptic cells.
wn  Junction potential corrections of —14 mV are accounted for at all steps of this calculation [19]. Altogether,
wn  these above computation yields the PSP, 4/PSPunmod ratios shown in Fig. .

1073 The effective time of the PSP pulse is computed by integrating the PSP fits over time [20]. Up to an
wa  amplitude correction, synapse PSPs were fit using the following function

1 _ o—t/Tise )2 o=t/ Ttan
1—e e t>0,
FPSP (t) = {Anorm ( ) -

is the experimentally

25
0 t<0, (25)

s where Aporm = Fpsp (Tmax) With Tiax = Trise 10 (1 4+ Tan/Trise) 18 a normalization factor to ensure the
s maximum of Fpgp is equal to 1.0 |20]. Integrating this expression over time, we find the effective time of the
wrr PSP fit,

1 QTfiH

Anorm (Trise + Tfall) (Trise + 2Tfall) '

Tewr. = /Fpsp (t)dt = (26)
ws  This procedure yields the values shown in Fig. [S4].

1079 We computed ZPSP for each synapse and then averaged across all synapses of the given pre- and
s postsynaptic cell type (see Fig. for count). For certain pre- and postsynaptic populations, we found the
wer  fits of 7g were exceedingly high, and so any synapse with a 7, > 300 ms was omitted. In practice, this
ws2  only resulted in a small decrease in the number of synapses for each pre- and postsynaptic cell combination

1083 (Flg \ )

28


https://doi.org/10.1101/2023.08.16.553635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.16.553635; this version posted April 27, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cell Type Cre line Cell count | Vinreshold (mV, meantstd)
Exc. Cux2-CreERT?2 81 —47.4+6.0
SST Sst-IRES-Cre 123 —41.0+ 7.6
VIP Vip-IRES-Cre 97 —47.2+ 8.7
PV Pvalb-IRES-Cre 217 —35.0£8.1

Table 2: Threshold voltage estimates. Values are computed across an entire session sweep and then
averaged across a given specimen ID and then Cre-line. From the Allen Cell Types Database, found at
https://celltypes.brain-map.org/data [19].

wss  4.4.2 Response sparsity adjustment

s Similar to the FMSN, the biases/threshold of the various populations are adjusted in order to set baseline
w85 response sparsity at initialization. Since we consider 3 primary populations of neurons in this work, this
sz procedure amounts to the fitting the 3 parameters of the network at initialization, namely b¥, b5, and bV that
wss  determine the biases in Eq. . Again like the FMSN, since our model neglects many influences that affect
s the firing rates of the various populations, e.g. from inputs from other layers or from PV neurons, we assume
w0 that this bias adjustment partially accounts for the mean activity of other possible inputs. In particular,
w0 since some populations receive fairly unbalanced inputs from excitatory or inhibitory populations (i.e. the
w2 VIP population), this threshold adjustment is assumed to at least partially account for excitatory-inhibitory
w03 balance. Unlike the FMSN, our microcircuit model has recurrent connections, and so any adjustment to
004 Tesponse sparsity at one time step affects the inputs and thus the response sparsity of subsequent time steps.
s This leads us to a different bias fitting procedure to account for this additional complication. Finally, note
e this entire procedure is performed at the network’s initialization, prior to any unsupervised training, and is
wer  thus insensitive to FMS mechanism placement or parameters.

1008 The neuron population thresholds (bF, 5%, and bY) are adjusted using supervised training to reach a
w9 certain population response sparsity over a validation set prior to training. The validation set consists of the
uoo 8 familiar input vectors as well as 504 additional vectors (for a total of 512) drawn from the same distribution.
no  In this work, all neurons of the same population share the same firing threshold parameter, meaning particular
uee  neurons within a given population may fire more/less over the given validation set.

1103 In particular, the response rate is adjusted with respect to the loss function
o - Y (L) (21)
LMSE gag = ( > ) 27
2
p=E,V,S 9 Te

u  where g = (g7, gV, ¢%) are the experimental response rates to be matched, g = (%, 3", §°) are the network’s

us  approximate response rates, and € = 10~% provides numerical stability. Note here we use a weighted mean
nos  squared error loss so that populations with smaller response rates are treated on even footing. See Fig. [SH]
nor  for exemplar fit results. For a given network population p, the approximate response sparsity is computed as

N
== PXACTAN (28)
=1

ues  where o (+) is the sigmoid function and serves as smoothed version of the step-function to enable backpropa-
uoe  gation, v = 100 controls the rate of smoothing, and ¢! is the preactiviation of neuron 7, see Sec. m

1110 As mentioned above, since the microcircuit we investigate is recurrently connected, adjusting the response
un  rate of one population influences the response rate of the other populations, so a self-consistent solution
m2 across all neurons must be met. To do so, the validation set is repeatedly passed to the network and the
m3  thresholds of all neuron populations are adjusted simultaneously until a self-consistent solution is found. To
ma  best resemble the stimulus sequence the network will be exposed to during the stimulus change detection task,
wis  the validation sequence is smoothed with a ramping function that matches the deconvolved signal. Response
me rates are computed for the populations at the peak of the ramping function, and the thresholds of the various
mr  populations are adjusted using backpropagation through time. Backpropagation is truncated to 10 time steps
ms  backwards. We used ADAM with default parameters, a batch size of 128, and shuffle the validation set every
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mo 10 network steps. Note we neglect the effect of the time-correlated noise that is injected into all neuron
0 populations in adjusting the firing rates. Additionally, we assume the stimulus history information during
uz  images changes will be strongly suppressed, so within the validation set the corresponding part of the input
22 is just noise.

1123 We use g = (0.05,0.4,0.2) throughout this work to represent target firing rates during an image response
uz  in the novel session. We do not observe a large difference of the parameters b®, bV, and b° values across
s different microcircuit initializations.

s  4.4.3 Response rates and variance explained

nz  We note that we do not aim to exactly reproduce response rates or variance explained across cells that are
us  observed in experiment due to the significantly smaller neuron populations used throughout this work. As
10 mentioned above, for the parameters used in our cortical circuit model, individual cells receive synaptic
us input from on order 10 to 100 other cells. Simulating larger populations of neurons would allow significantly
un  more noise to be injected into each individual cell since each cell, on average, has a smaller effect on output
u2  behavior of other neurons.

ui  4.4.4 Noise injection and matching baseline responses

nu  From the experimental data, we see that all neuron populations exhibit a nonzero baseline mean response
uss  between image stimuli (Fig. . Said baseline responses carry almost no information about image identity
ms  or task information except within a small window after the image stimulus turns off, indicating they may
ux represent neuronal activity unrelated to the image change detection task [24]. To model the effects of these
uss  baseline responses, we inject time-correlated noise directly into each neuron population. We adjust the
u3  variance of this time-correlated noise to match the baseline response values observed in each population using
w0 supervised training. Similar to the firing rate adjustment considered above, this again corresponds to only
ua  one number per population, so this procedure fits a total of 3 parameters at the network’s initialization (and
e occurs after the firing rate adjustment). Once again, since this procedure occurs at network initialization, it
e is completely independent of FMS placement or parameterization.

1144 We define the experimental baseline responses to be the mean population response halfway between the
s pre-change image and the change image. With this definition, for a given population, the mean population
s response doesn’t change much between the familiar and novel sessions, so we average across the two sessions.
ue  Taking the novel session values yields baseline targets of 1.5 x 1072, 6.1 x 1073, and 3.4 x 10~3 for the
s excitatory, VIP, and SST populations, respectively. Once again, we weight how well our model fits the
e experimental data using a weighted MSE loss,

msstod) - ¥ (520 )

p=E, V.S

uso  where now § = (6,6, 6%) are the experimental baseline mean responses to be matched, 6= (5E, 5V, 35)
ust  are the network’s baseline mean responses. The network’s baseline responses are simply the mean over each
us2  population response,

1 &
P _— P
6P = - Eﬂ (T (30)

us3  For simplicity, to initially fit the amount of noise injected into each population, we inject uncorrelated noise
use  with standard deviation oP. In practice, we find the addition of time-correlation causes a negligible change in
uss  the networks’ baseline responses (and the kernel used to generate uncorrelated noise is chosen such that it
uss has approximately the same variance as its uncorrelated counterpart). See Fig. for exemplar fit results.
1157 Similar to the above firing rate adjustment, we pass uncorrelated to the network as the input stimulus
uss  repeatedly until it reaches a self-consistent solution. We once again use ADAM with default parameters
uso and truncate backpropagation through time to 3 network passes backward. Both the present stimulus and
ueo  stimulus history information parts of the input are assumed to be just noise for the validation set. Due to
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ue  additional contributions from the stimulus history input during grey screen times, the VIP baseline was found
ue2 to overestimate the noise needed to fit the data, so the noise injection was reduced after fitting by a fixed
ue3 percentage across all initializations.

ues  4.4.5 Response smoothing

ues  To get the raw cell responses, we convolve the output function with the same half-normal function to match
uss  the responses of Ref. [24]. Explicitly,

o) = {\/gexlo (=) 120, (31)

0 t<0.

uer  with ¢ = 60 ms (Fig. ) We discretize the kernel along time steps separated by At and normalize such
ues that the summed amplitude is equal to 1.0.

ueo 4.4.6 Fitting FMS learning rates

uo  To determine the learning rates of the three FMS mechanisms we add to the microcircuit network, we perform
un  a brute-force scan over grids of learning rates and evaluate how well the resulting modulation effects fit the
uz  novelty data. Note that procedure still amounts to fitting only three numbers: ), n(*) and nAH). We
urs  evaluate the parameters by seeing how well their mean image change and omission responses match the
ura  experimental data. Specifically, we compute the MSE loss of the mean fit to the experimental data over all
urs  three cell populations,

Lvse (Zc,zo;im io) = Z Z Zﬁp [(ng - 25’5)2 + 5s,F (25’: - 2{’;)2} (32)

s=F,Np=E,V,S t

ue  where zﬁ ¥ is the experimental mean image change response of population p in session s at time ¢ relative
ur7  to the image change, 2 is the cortical circuit model equivalent, 2};) is the omission equivalent, (7 is a
urs  population-dependent weight, and d, r is a Kronecker delta function ensuring omission loss is only computed
ure  during the familiar session (since we do not try to model the suppressed omission of novel sessions). We
uso  take £V =5 and ¢F = (5 = 1, so that fitting the VIP response is more important than the excitatory or SST
nsr  populations. The sum over s represents a sum over the familiar and novel sessions. The sum over ¢ represents
us2  a sum over the relative time to the change/omission for a given mean response. We take the relative time
uss  window to be 25 time steps before and after the corresponding image change/omission event, which is roughly
uss 800 ms.

uss 4.4.7 Training schedule details

uss As discussed in the main text, the mices’ training schedule consists of many sessions that each last on the
usr  order of one to two hours [24]. Several sessions are required for the mice to learn the task completely, meaning
uss often they have been exposed to on the order of ten hours of the image change task to achieve the task
uss  performance threshold needed to progress onto imaging. Since neuronal responses are only collected after
ne  this performance threshold is achieved, it is not yet known how many sessions are required for the neuronal
na  responses to the familiar image change task to stabilize.

1102 For numerical tractability, we do not explicitly simulate the full tens of hours of the training sequences
ne3  for the microcircuit model. Instead, we expose the model cortical circuit to a shorter version of the task
nee and increase its learning rates so that it achieves stabilized responses to the familiar data over a shorter
nes  simulated time. As we saw in the FMSN, higher learning rates are capable of becoming familiarized with
1es  responses at a quicker rate, at the cost of fitting the noise to a greater degree. Thus, explicitly simulating full
uer  training/imaging times at equivalent lower learning rates should only improve the results we have shown
nes  throughout this work. Additionally, as we mentioned above, we did not find that using that exact distribution
ne of image change times affected any results outside of the cell subpopulation analysis, and thus to further
10 expedite training we reduced the number of repeated presentations that are between each image change to
won  between 4 and 9.
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1202 An explicit demonstration of the training time equivalence is explored in the FMSN in Figs. and [S2p.
1203 There, the FMSN is trained on sequences that vary in length over two orders of magnitude and it is shown
s that, by correctly adjusting A and 7, the networks essentially develop almost identical responses despite the
1os  large differences in training time. For two training sequence lengths T and T”, the equivalence is given by

ToT, 13- A= (W) (33)

7"
s Thus, if 77 > T, this corresponds to a reduction in the learning rate and decay rate for the longer train
o7 sequence. Note the last relation is equivalent to Tqecay — T%Téccay.

1208 Specifically, we train our cortical circuit models on 2000 seconds of change detection, which consists of
1200 approximately 2660 total image presentations or 330 presentations of each familiar image. With the expedited
120 image change time, the training session consists of roughly 400 image change events.

1211 To gather responses in cortical circuit model’s ‘imaging’ sessions, we monitor the network’s responses while
112 it continues to train. We measure the network’s responses on 250 seconds of change detection, but we take
13 advantage of batch training to allow us to gather responses to several distinct input streams simultaneously.
1214 However, since the cell coding analysis is dependent on statistics over an entire session, we use the actual
1215 image change distribution when collecting data for said analysis.

1216 Since we would like to simulate the gradual familiarization of the novel set during the novel imaging
1217 session, but we have used a larger learning rate to expedite the training procedure, we reduce the learning
s rate of both FMSa and FMSay during imaging sessions. There is evidence the mices’ response changes
210 between sessions even without explicit exposure to the stimuli [24]. This may be due to replay. To simulate
1220 this additional familiarization that occurs between sessions, as well as additional stimulus exposure during
121 the passive session, we train the networks on the novel images for an additional session equal in length to the
1222 imaging sessions, but at a higher learning rate, similar to training.

s 4.5  Cell subpopulation analysis

12 We reproduce the functional cell subtype analysis pipeline of Ref. [24] to compare our model to experimental
125 results on equal footing. Here we give a summary of said pipeline for completeness, additional details
6 and justification for certain parameters we match to the experimental analysis can be found in Ref. [24].
1227 Throughout this section, we suppress indices that indicate the population and session of a given cell unless
1228 needed.

1229 4.5.1 Experimental data

o We take the computed coding scores directly from Ref. [24]. The codings scores are for cells collected across
wn several different brain areas and layers. Although our cortical circuit model specifically takes cell counts and
1w connection data for L2/3, we note that the vast majority of VIP cells were found in upper cortical layers and
133 there does not appear to be a significant difference in coding scores with brain area [24].

1234 The experimental coding score analysis focuses on four primary input feature categories (also called
23 ‘components’): images, omissions, behavioral, and task. These feature categories are further subdivided into
136 various features that each have their own kernel and input data. For example, the image feature category
1237 contains one feature for each of the eight possible images in the corresponding image set. When a feature
23 category is removed to compute its coding score (see details below), all feature kernels within that category
1w are removed. See Ref. [24] for additional details.

240 4.5.2 Model ﬁtting

ra To understand how the various features coded in the task explain individual cell activity across the VIP, SST,
e and excitatory populations, we fit each cell’s activity using a linear regression model with time-dependent
1243 kernels. The feature categories we consider are image presentations, omitted images, and image changes.
e With the exception of behavioral feature category, these are the same categories considered in Ref. [24].
1245 Also note that the image change feature category can no longer be divided into behavior-dependent features
146 representing hits and misses.
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1247 We thus define the ten time-dependent features vectors; f; for v = imagel, image2, ..., image8, omission,
s change; to have value 1 at the onset of a given feature and to be 0 otherwise (Fig. @1, top). These features
1249 each belong to one of three feature categories; & = image, omission, change; with the eight image features
wso  belonging to the ‘image’ feature category, and the omission and change features belonging to the category of
st the same name.

1252 For each cell 7 in each ‘imaging’ session, we fit its full session response (post smoothing, see Sec. [4.4.5)), v; ¢,
1253 using time-dependent feature kernels, th’ such that an estimate of its response is given by the convolution

Jie=>_ (T xk)), +ei, (34)

~

1ss  where ¢; is bias term. Each kernel’s width in time is matched to that used in Ref. [24]: the image, omission,
s and change kernels persist for 0.75, 3.0, and 2.25 seconds after the corresponding feature onset, respectively.
1256 The kernels k”t and bias terms ¢; are fit using ordinary least square regression with an L2 penalty (i.e.
ws7 ridge regression, see Ref. [24] for additional details). We evaluate the fit of the models by computing their
1ss  variance explained on a test set,

Varr (yi — §i)

VE; = 1 —
Vary (y;)

. Varr (vi) IT\Z Vit — i), (35)

teT

1250 where g; is the cell’s mean activity over the entire imaging session. Here, the T subscript on Vars indicates
e the subset of sequence times over which the variance is computed and |7| represents the number of time
vt steps (see below). To find the optimal L2 regularization, we scan over regularization coefficients, evaluate
ez said fits, and choose the regularization that yielded the highest mean variance explained across the entire cell
ez population. Train/test splits are computed over distinct batches.

1264 Since certain feature categories are quite sparse across the full input sequence (e.g. omissions and changes),
1265 their corresponding feature kernels influence only a small subset of sequence time steps. To account for the
e different possible kernel coverage over the entire sequence, below it will be useful to compute the variance
ver  explained over only the subset of sequence time steps where a given feature category’s kernel(s) could have
e possibly had an influence. Let T be the set of time steps a feature category’s kernel(s) could have possibly
o influenced the response given the sequence’s feature vectors f; and the kernel widths in time. We define the
o adjusted variance explained as

o . Vara (yz’,t - g)zt)

VE; =1
Varre (yi:)

4

(36)

v where the variance is now only computed on the subset of sequence times 7%. Since |T%| is the number of
w2 time steps in 7 and |7 is the total number of sequence time steps in the session, |7%| < |7, for all three
v feature categories we consider. Specifically, |T%| < |T| & 0.95,0.19, and 0.16 for the image, omission, and
1272 change categories, respectively. Lastly, note that from our definition in Eq. , the adjusted variance is
1275 always computed relative to the mean cell activity over the entire session.

we  4.5.3 Coding scores

17 For each cell in each session, we compute its coding score with respect to each of the three feature categories
s we introduced above. Intuitively, a category’s coding score represents how important its feature(s) are for
1279 fitting the cell’s response. To compute coding score, we compare the cell’s adjusted variance explained of a
e model fit without a given feature category’s kernel(s) to the model fit with all kernels. Explicitly, the raw
wa coding score is defined as

VE VE;
¢ i, full = i,8ans a ’ (37)

VEz full

ez where VEZ s and VEZ sans o are the adjusted variance explained of the models fit with all kernels and all
1283 kernels except those belongmg to category «, respectively.
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1284 Finally, it will sometimes be useful to compare coding scores across sessions, in which case we want to
12ss  normalize all coding scores on equal footing. The across-session coding score of session s is defined as

——a,s ——a,s
—a,s |7'o¢,S| VEi,full - VELsans «
i - s —=a,S

|TO‘ S| VEi,full

) where S = argmaxﬁi’fin . (38)

1285 Since we have three feature categories o and three sessions s, each cell will have a 9-dimensional across-session
we7 - coding score vector.

1288 In experiment, a minimum variance explained is required for a nonzero coding score. Specifically,
1289 ﬁ?fin > 0.005. Relative to the full fit variance explained, approximately 54.5%, 34.7%, and 52.1% of VIP
100 cell fits fall under this threshold in the familiar, novel, and novel-plus sessions, respectively. Since the cortical
e microcircuit model has overall higher variance explained for all cell populations, we adjust this minimum
w2 coding score threshold to compensate for the different distribution. Setting a threshold of ﬁ?fiu > 0.075
103 results in a similar rates as experiment, namely 56%, 20%, and 54% of VIP cells across initializations fall
1204 under this value.

s 4.5.4 Cell clustering

=

s We use spectral clustering to cluster the set of ¢;"° for each population. In this subsection, we use ¢; to
127 denote the 9-dimensional coding score vector of cell i.

1208 To compute the ideal number of clusters for cell population, we use two measures: the gap statistic and the
19 eigengap. For the gap statistic, we scan over cluster sizes from k = 2 to 15. We use the SpectralClustering
130 method from scikit-learn with default parameters and a given k to fit the data and compute the pairwise
o Euclidian distance within each cluster. Let the nth cluster contain the set of cells indexed by i,. Then,

k
_ 1
D(k) = + Yo dig dig=llei—cll, - (39)

n=1li,#jn

1302 This metric is computed for the actual clusters and compared to a baseline of shuffled data. The shuffled data
103 is the across-session coding scores shuffled across experience-level and feature categories. For the metric over
1os  the shuffled data Dy (k), the gap statistic is then D,(k) — D(k), and the optimal k is the one that maximizes
1os  this metric (Fig. )

1306 To compute the eigengap, we compute differences in consecutive (ordered) eigenvalues of the Laplacian
1oz of the coding score’s affinity matrix. Specifically, the affinity matrix has elements e"ydi«b, with dgp the
s Euclidean distance computed above. The eigengap is then the difference in eigenvalues of the Laplacian,
1300 where large gaps are associated with sudden changes of the amount of similarity explained by additional
w0 cluster partitions (Fig. [S8d).

1311 Once the optimal number of clusters is computed, we perform spectral clustering on the set of coding
1312 score vectors of a given population for 150 different initial seeds. Across all these fits, we compute the
113 symmetric matrix of co-cluster probabilities for all cell pairs. This co-clustering matrix is then passed
e through scikit-learn’s AgglomerativeClustering method, again with the optimal number of clusters
ws  as determined above, with default parameters except for affinity=‘euclidean’ and linkage=‘average’.
e Finally, cell clustered are ordered by mean across-session coding scores, with the clusters with the smallest
1317 mean being ordered first.

s 4.6  Figure details
e Figure [1] details. The equivalent plot for the pre-only dependent update rules is given in Fig. [STh.

10 Figure [2] details. The equivalent plot of 2k for strengthened modulations is shown in Fig. [STp.

1321 For Figs. [d—g}, an exemplar FMSN was trained using a set of 8 familiar stimuli. To ensure an equal
1322 distribution of the familiar stimuli over the training time, a training schedule where each of the 8 familiar
123 stimuli is shown every 8 inputs is used. Note the order of the 8 examples is shuffled within every 8 inputs. The
124 FMSN has a population size of 300 input and 500 output neurons. As mentioned in the main text, we take

34


https://doi.org/10.1101/2023.08.16.553635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.16.553635; this version posted April 27, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s all input neurons to be excitatory. The distribution of W elements is taken to have w = 1/300 and py = 0.2,
16 see Eq. . For the stimuli, the sparse random binary vector population has pgtim = 0.05, with a minimum
1227z number of nonzero inputs of 1, and nonzero elements of size 0.15IE| The standard deviation of the Gaussian
s noise added to the inputs is taken to be 0.1 times the size of the nonzero elements. We threshold is adjusted
1320 at initialization such that the output population has a firing rate of 30%. The associative modulations obey
1330 the bounds discussed below Eq. . We take n = —5 x 102 and Tdecay /At = 2 X 10* so that the modulations
1n undergo practically no decay during the stimulus learning period. These parameters are used in FMSNs
12 throughout this work unless otherwise stated.
1333 Note in order to track both the familiar and novel output activity throughout training, we treat them as
1 “test sets” when we pass them to the network, which distinguishes them from the sequential training set we
1335 use to change the modulations of a network. For any input that belongs to the test set, we do not update
136 the synapses. In this way, we can understand what would be the network’s response to these various stimuli
13w without actually updating the network’s modulations as if it truly “saw” the stimuli during training. The full
13 familiar and novel sets were treated as test sets in order to track their output activity over training shown in
1339 Fig. Eh
1340 In Fig. 2 we introduce the idea of an important synapse. An important synapse is stimulus dependent,
1sa  and as such a given synapse can be important for multiple stimuli. Important synapses are also defined before
122 any modulations in the network occur, and are thus independent of the FMS mechanism. We define important
s synapses in our model as those synapses that satisfy two requirements: (1) there must be a synapse there
1 and (2) the synapse’s pre- and postsynaptic neurons both fire when the stimulus is input into the network
s (without modulations). Formally, for a given stimulus input x, let y be the corresponding activity of the
s output layer without any synapse modulations from FMSs. For example, for the FMSN, y = ¢ (Wx + b), but
137 this generalizes to other possible postsynaptic expressions. The mask S that defines the important synapses
148 contained within W for stimulus x is given by

SIi _ {1 Wllysz 7é 07 (40)

0 otherwise.

1340 Intuitively, whether or not a synapse is important tells us whether or not said synapse would be modulated
1o from an associative FMS mechanism. In practice, since we add noise to all stimuli being passed through the
s FMSN, many synapses that are not important are also modulated.

2 Figure |3| details. Figure [3p quantifies how a vector’s distance from the familiar subspace influences its
1353 output magnitude. The familiar subspace is defined as the subspace spanned by the familiar set of vectors.
s To measure the distance of any random vector v € R? to this subspace, we orthonormalized the familiar
s set to obtain the matrix F € R8*? and then formed the projection matrix onto the familiar subspace via

[N B
we PY =F (FTF> F € R¥™? A given vector’s distance from the familiar subspace is then measured by

1357 calculating the cosine similarity of the vector and its projection onto the familiar subspace,

v-PFv

& (v)= — Y
[vI2[PFvll2

(41)
s By this definition, any vector from the familiar set or any linear combination thereof has d* = 1.0. Note
1so  that noise is added to all vectors before being passed through the network, and this noisy vector was used to
o compute dF in Fig. . Hence, even the noisy familiar vectors do not lie exactly in the familiar subspace.

1361 Since simply drawing from the same distribution that generated the familiar and novel sets almost always
32 generates stimuli that are far from the familiar subspace, we generated inputs as follows. We first drew a
1363 vector v/ from said distribution and also for each vector drew f ~ U(0,1) and a random vector from the
1ea familiar set f. Then, each element of the final vector v has probability f to be the same as f, and is otherwise
136 equal to the corresponding element of v'. In this way, as f varies from 0 to 1, we interpolate between vectors
s that are drawn from the original distribution (i.e. the novel set) to those in the familiar set. Finally, to
ez generate random vectors in the familiar subspace, 8 binary weights were drawn, their sum was normalized to

1 Any two vectors drawn from the sparse random binary vector distribution we consider in this example have cosine similarity
of 0.14. Cosine similarity of stimuli decreases with increased sparsity and larger input dimension.
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s 1, and these weights determined the linear combination of familiar vectors that formed the new vector within
1o its subspace.

1370 Figure [3p and B show how the evolution of the modulation matrix can change with different learning
un rates, 7, and decay rates, A. Both setups use a more specialized learning schedule than those in Fig. 2]
sz Figure[3pb consists of a single input vector passed over and over again to observe how quickly modulations
133 can grow and when they saturate. Figure [3c consists of a single input vector passed on the first time step
13 and then only noise afterwards. The goal of this plot is to observe how quickly the modulations created by a
s single input can shrink over time.

1376 Figure [BH shows the average result of several KS tests on a network as we scan over number of exposures
w7 and the learning rate, n. With the exception of the parameters scanned over, the network and training
1ws  parameters used in this setup are identical to that in Figs. [d—g}. KS test results are averaged of log,,(p)
wre  over 10 distinct network/stimuli initializations. Figures [e—f] are the same as Fig. 7 but now scan over the
s FMS’s decay time constant and learning rate.

sa  Figure [4| details. Additional details of the experimental training procedure can be found in Ref. [24].
w2 Details of the model network (Fig. [2k) and task (Fig. [2H) can be found in Secs. and [4.2.2] respectively.

1383 In Fig. , for synaptic matrix WP? between presynaptic population p and postsynaptic p’, the model
s connection strength values were computed via

LS 42

N, ; i (42)

s Note here p and p’ are treated on unequal footing to account for the fact that, for a given postsynaptic cell,
s the relative count of presynaptic inputs contributes to its total activity. The theoretical values were computed

17 via Eq. .

s Figure [5| details. Unless otherwise stated, we take the cortical circuit model to have 400 excitatory, 200
10 VIP, and 200 SST neurons, though see Sec. for how synaptic strength is adjusted to compensate for
1o deviations from realistic cell counts. Weights are initialized as described in Sec. with multiplicative
o constant ¢ = 0.18. The three FMS learning rates are scanned over to determine the best fit to experimental
12 responses, see Sec.

1303 Figures [Ph and [5h show comparisons of the mean responses of our cortical microcircuit model and responses
13es  measured in experiment. We match event traces that are smoothed by a half-normal filter, see Sec. See
s Ref. [24] for significantly more details on the experimental details including details about the event extraction.
1396 To extract the mean responses of the model, let the set of all times of interest (e.g. for image changes or
ue  omissions) be denoted by 7. We denote the mean response as

N
2 = Z ny,ws (43)

seT i=1

1308 The full familiar and novel set responses of Fig. are gathered similarly to the test sets of the FMSN.
1399 That is, a test set consisting of the stimuli from the familiar and novel sets representing the image changes is
o passed to the network at particular times during training. No temporal history or time-correlated noise input
w18 passed to the network in these test sets so that the VIP’s change in response to the present input from
ue  FMSy can be isolated (the temporal history response also changes during training from FMSay). Once again,
w3 we do not update the network’s modulations during these passes, and so the microcircuit has no memory of
uu  viewing these stimuli that are solely used to monitor training progress. The test set is evaluated at every
s image change during training, specifically at the step corresponding to the peak of the smoothing kernel
s (see Sec. above). The modulation magnitudes of Fig. |5t are computed analogously to Fig. [2ff and also
uor  measured at each image change during training.

1408 Figs. [BH, B, and [k all show the mean responses as a particular FMS learning rate is varied. Networks
o and tasks are initialized identically to those used to produced the analogous figures in Figs. and [Bh, the
o only thing that changes is the corresponding FMS’s learning rate and thus its asymptotic modulations.
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1411 The responses in Fig. [be show the VIP response of a test set, evaluated in an identical manner to that
w2 described for Fig. above. The test set now consists of all novel stimuli with the temporal history part of
13 the input corresponding to the zero-time encoding and no noise input (since the FMSag modulations have
s stabilized, they no longer significantly affect the change in VIP responses for the relevant timescales shown
s here). Test responses are again gathered at the step corresponding to the peak of the smoothing kernel. The
ws responses shown are averaged over 50 image changes measured during a novel session. Additionally, the
w17 responses are normalized by the largest mean response. Fig. [5f shows the modulations of FMSp during an
s exemplar image change of the novel imaging period. The modulation magnitudes shown are gathered at
1419 every time step.

1420 Fig. 5l shows an exemplar mean VIP response to all the encodings of time-since-last image from the
un  stimulus history input. These responses are once again gathered as a test set (see above), where now the
u2 present stimulus and time-correlated noise inputs are taken to be zero so that the VIP’s change in response
123 from FMSay can be isolated. Responses are gathered before and after training on the familiar image set.
w2 The modulation magnitudes shown in Fig. [5] are gathered analogously to those in Fig. [Bf.

s Figure [6] details. Fig. [ shows exemplar input features and fits over time. The top subfigure dots
6 correspond to when the corresponding input features is on, see Sec. for additional details. The bottom
w2 subfigure shows exemplar raw cell data, full kernel fit, and fit without the image kernels. Fig. [fp shows the
s clustered VIP across-session coding scores from experiment [24]. The middle plot shows cluster-average
o coding scores and the right plot shows average coding scores across all VIP cells. Fig. [fk shows the clustered
un  VIP coding score from the model, see Sec. [L.5] for details of how these are computed. Clustered are ordered
un by smallest mean coding score to largest. Fig. [6ld shows image kernel fits from the full kernel regression
wn  model. Image kernel fits are averaged across all 8 image kernels, all VIP cells, and all initializations. Fig. [Gk
13 shows fits and raw data of the cluster-aveeraged novel image (across-session) coding score as a function of a
un  cluster-averaged network property, see details of Figs. [S9 and for full details of this network property
s and all others. Fits are done using linear regression and we use the resulting correlation to measure how
s much a network property influences the value of a given across-session coding score. This plot shows only one
wuy  exemplar network property and one coding score, the resulting correlations across all 16 network properties we
s investigate and all 9 coding scores can be found in Fig. [S9 In Fig. [6f we show the median correlation for the
w0 familiar and novel image coding scores as a function of two network properties for both the cluster-averaged
o values and the raw cell data. Fig. [0 shows the amount of familiar and novel input cells belonging to a
wa  particular cluster receive. Each point represents a single cluster for a given initialization. Points are colored
w2 by whether they are familiar-coded (cluster 3), novel coded (clusters 2, 5, 7), both familiar and novel coded
s (clusters 6, 8), or not image coded (clusters 1, 4). Fig. |§|h is generated similarly, with clusters colored by
1 whether they are omission coded (clusters 4, 7, 8) or not (all other clusters).

s Figure [S1| details. Fig. shows the equivalent of Fig. for the pre-only modulation mechanism.

1446 Figs.[c—f] use identical parameters to the FMSN in Fig. [2d, but with = —5 x 10° and \/At = 60.
uar Figs. [g—j] also use identical parameters to the FMSN in Fig. [2d, but with = 5 x 10°. Figs. [k—n] also
g use identical parameters to the FMSN in Fig. , but with n = 1 x 10' and \/At = 180.

ws  Figure[S2]details. Figs.[S2[a-d] show the additional properties of the example network shown in Figs. 2[d-g].
uso  The output sparsity in Fig. is thresholded above a minimum value to remove contributions from negligibly
wst  small activity. In particular, we defined an output to be active if it is greater than 0.01 times the mean
us2  nonzero activity at initialization across the entire validation set. For the example shown, this gives a threshold
wss  of roughly 107°. Figs. ,c show PCA projections of the output activity of the familiar and novel sets,
use  respectively. PCA is fit to the novel and familiar set independently in these plots. The percentages of
uss  modulations shown in Fig. are all relative to the number of nonzero synapses. The “modulation” curve
wss  simply counts the number of synapses that have a nonzero modulation. Since this value approaches 1.0, the
us7 - majority of synapses that can undergo modulation have been modified, but many of these modulations are
uss  quiet small and simply due to noisy activity. To compute the number of modulations that have been modified
uso by 50% and saturated the bounds of Eq. , we require the modulation to be above 50% of the weights
ue  original magnitude and within 1% of the bounded value, respectively. Many modulations are quite close to
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uet  the bounded value but do not exactly saturate it because of the gradual decay from the A term in Eqgs. (3)
ue2  and .

1463 As with the main text figure, to generate the rest of the figures in this supplemental figure we considered
ues  the FMSN with: n = 500, d = 300, a training length of 80 (so that each familiar example is shown 10 times),
ues and all excitatory neurons in the input layer. Gaussian noise with a standard deviation of 0.1 times the
ues  maximum input was added to all inputs. The weights are generated from a sparse half-Gaussian distribution,
uer  with p = 0.2 of any connection being present. Bias is adjusted so there is a 30% firing rate at initialization.
ues  Modulations decay with a timescale of Tqecay/At = 2 x 10% steps.

1469 Figures [S2[e-j] were generating by scanning of over various FMSN network /task parameters and performing
wo a KS test on the L1 magnitudes of the familiar and novel sets post-training. All were averaged over 10
wn  distinet initializations of the network and the task. Figs.[S2p,f are scans over the lower and upper modulation
w2 bounds with grey vertical lines representing the values that have been chosen based on LTP/D changes found
s from experiments (see Eq. ) Fig. scans over the noise scale, o, see above Eq. , and the length
wn of the training sequence. Fig. [S2h scans over the number of input and output cells, n and d, respectively.
s Fig. [S2i scans over FMSN initialization parameters, namely the weight sparsity, pw, see Eq. , and the
we  target response rate of the response sparsity adjustment, see Sec. Note that for low weight sparisities,
wrr the target response rates are often not met. Fig. scans over the random binary vector parameters, namely
s the sparsity, pstim and the magnitude, i.e. the equivalent of varying A, see Eq. .

1479 Figs. [S2k,] were generated by training the FMSN on different sized familiar sets. Note that we keep the
1o number of exposures to each familiar stimulus constant, namely 10 exposures to each familiar stimuli, so as
us1  the size of the familiar set increases so does the training time. Since training is independent of the novel
us2  set, the size of the novel set is always taken to be 128. Additionally, to put the network in a more optimal
ues  parameter setting to generate distinct inputs, n = —10* was used. In Fig. we use a different measure than
s the usual KS-test because its p-values are heavily influenced by the size of the distributions being compared.
uss  The fact that the mean responses of the familiar and novel sets begin to overlap for larger familiar set sizes
uss  indicates that members of the two distributions become harder to distinguish from one another.

1487 Figs. and investigate how networks trained on a different number of familiar examples evolves
uss approximately the same when their learning and decay rates are appropriately varied. We train identical
s FMSNs on the same set of familiar images for 240, 2400, and 24000 time steps. To compensate for the
ueo different number of examples each of the networks see, we lower the learning and decay rate appropriately.
ua  Let ng and Ay be the learning and decay rates of the network with the fewest examples, the number of which
ue we denote by Ny = 240. Then, a network with IV total examples has

N N
n= WOUO 5 A= ()\O)NO/N O  Tdecay = FOTdecay,O . (44)

uis  That is, networks trained on more examples have their learning and decay rates appropriate decreased or,
s equivalently, their decay timescale increased. Figs. and show the evolution of a single network on a
s  single set of familiar examples.

us Figure details. Fig. tracks the magnitude of the M; in identical networks that only differ in the
wer  sign of . The networks are identical to that used in Fig. [2| with n = 10* and n = —10%. Figs. , d show
s results form the same networks, with the output magnitudes of the familiar and novel sets as a function of
e training time. Since all input neurons are excitatory, strengthening corresponds to > 0 and weakening
10 corresponds to n < 0. Fig. [S3k, f show results from several networks with varying  magnitude. The dotted
s unbounded magnitudes are computed by training identical networks with the modulation bounds removed.
1502 Fig. shows schematic of FMSN networks with both excitatory and inhibitory neurons in the input
1503 layer. For the results shown in Figs. [S3},j we specifically consider a network with an equal chance of each
104 neuron in the input layer to be excitatory or inhibitory. Additionally, we increase the number of neurons in
1s0s  the input and output layers to be 1000, and increase the percent of synapses present to be 40%. Note this
1506 still means that each output neuron has only 400 synapses on average, well below what is found biologically.

107 Figure details. Details of the connection strength computations shown in this figure are discussed in
08 Sec. above. Figs. [S4h,b show relative values that are normalized by the maximum magnitude across the
1500 16 possible pre- and postsynaptic combinations.
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110 Figure details. Figures [S5[a-d] show exemplar plots of the three types of input into our cortical circuit
151 model, see Sec. Figures [S5[a-c] show the L1 magnitude of the corresponding input. Similarity in
152 Fig. [S5l is simply the normalized dot product of r(s) - r(0.5).

s Figure [S6] details. The mean responses are gathered analogously to those in Figs. [Bh, h.

s Figure [S7| details. Mean responses as a function of learning rate are gathered analogously to those in
1515 FigS. , g, k.

1516 Figure details. Note since the task feature category we use in our model is equivalent to the combined
17 hit and miss features used in the experimental analysis, we plot a comparison of its learned kernel to both
s the experimental hit and miss kernels in Figs. [S8p, c. Figs. and show the eigengap value and gap
1519 statistic used to determine the number of clusters for each neuron population, see Sec. for details. Since
120 there is no well-defined way of combining these two measures to choose an optimal number of clusters, an
1521 optimal number of clusters was chosen by inspection of both metrics, as in experiment [24].

1522 Figs. [f—g] show the cluster membership across the 10 different network intializations.

152 Figures [S9] and details. For a given VIP cell, the metrics that are plotted are as follows:

1524 e Raw excitatory input: Mean of WY'E over presynaptic cells.

1525 e Excitatory input (familiar): Mean of WV-E © (1 + MﬁA)) x“ over the familiar set, where MEA) is
1526 measured at the beginning of the familiar imaging session. Note M,EP) dependence is neglected here
1527 because if varies over the entire familiar session. Including Mgp) does not noticeably change correlation
1528 results.

1529 e Excitatory input (novel): Mean of WV:E & (1 + MgA)) x'® over the novel set, where MEA) is measured
1530 at the beginning of the novel imaging session.

1531 e Excitatory input (novel plus): Same as above, but MgA) is measured at the beginning of the novel plus
1532 imaging session.

1533 e Raw history input: Mean of WVY:Pist gver presynaptic cells.

1534 e History input familiar: Mean of WV-hist & (1 + MEAH)) x"st over all encoded times < 1.25 seconds
1535 (i.e. those that would be passed to the network during a single omission), where MEAH) is measured at
1536 the beginning of the familiar imaging session.

1537 e Raw history input, no omissions: Mean of W Y:bistxhist gyer encoded times when omissions are not
1538 present, i.e. < 0.5 seconds. Correlation results do not differ significantly for any modulated version of
1539 this metric.

1540 e Raw history input, omissions: Mean of W V-histxhist oyer encoded times that only occur during omissions,
1501 i.e. 0.5 < s < 1.25 seconds.

1542 e Raw Exc. + history input: The sum of “raw excitatory input” and “raw history input” above.

1543 e Variance explained (familiar): Variance explained of all kernel fit during the familiar session.

1544 e Variance explained (novel): Same as above for the novel session.

1545 e Variance explained (novel plus): Same as above for the novel-plus session.

1546 e Noise inject: Amount of time-correlated noise injected into cell, i.e. w in Eq. (21)).

1547 e Raw SST input: Mean of WV-S over presynaptic cells.

1548 e Raw VIP input: Mean of WYV over presynaptic cells.

1549 e Bias: Value of bY. Since biases are the same for all cells of a given population, this cannot correlate
1550 with any coding scores but is provided for completeness.
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= A Additive modulations

s An alternative form of modulations that has also recently been considered has the modulations directly added
w9 to the fixed weights rather than the multiplicative form we consider throughout this work (35} 36]. Explicitly,
o rather than the transformation of the form of Eq. , these modulations affect the fixed weights via

W — W+ M,. (45)

wa  The same modulation update expressions continue to be used: for the associative case, Eq. , and pre-only,
w2 HEq. . Equivalent modulation bounds to those in Eq. are enforced such that the associative and
s pre-only modulations do not exceed biological bounds of LTP/D and STSP, respectively. Many equivalent
e FMSN results to those in the main text and SM using this additive modulation are shown in Fig.

=w B Theoretical intuition

s Here we discuss some analytic properties of FMSs that help us understand them better. Throughout this
- section, we will investigate both the multiplicative modulations considered in the main text as well as the
s additive modulations that were introduced in SM Sec. [A] The analytical approximations for the additive
9 modulations and their connection to Hopfield networks is more straightforward to understand, but similar
wso  qualitative results hold for the multiplicative modulations. Like the analysis here, feedforward version
wst  of Hopfield networks as familiarity discriminators were explored in Ref. [32], though their setup requires
ws2  specialized weights that take on the value of the input neurons to compute the energy function used for
w53 familiarity discrimination.

1754 Like the main text, let M be the modulation matrix and W be the fixed matrix of synaptic connecting
s the input and the output. Let x1,...,x,, be the set of familiar inputs we would like the network to memorize.
s Additionally, let X, for & = 1,...,m be novel inputs, that also obey X, - Xg = do3 and Ex, = 1 for all
wr o, =1,...,m, but also x, - Xg = 0 for all & and 3. Here we assume the novel and familiar sets are of the

s same size, but it is straightforward to generalize what we show here for different size sets. Note since we
o consider inputs that are positive definite, in practice the dot product between any two inputs is finite, but it
weo can approach zero as the size of the input space gets large and the sparsity is small.

1761 To begin with, we establish some properties of the element-wise product that will be useful for the
ez multiplicative form of the modulations. We will often make use of the identity that shows how an outer
wes  product of vectors (e.g. the modulations) act through matrix multiplication,

[(yx") oW]x' =y o [Wxox))], (46)

wse  from Ref. [36]. Additionally, it will be useful to compare the (L2) magnitudes of the element-wise product
s between two stimulus vectors. Let nonzero values of the vectors be A with probability p. If the two vectors
wes are different we have

d d

Elxox[3 =Y E(zah)? =Y p*(4)" = dp*A*, (47)
I=1 I=1

wer  where we have used the fact that the only nonzero element of the element-wise product occurs when the

s Meanwhile, if the two stimulus vectors are the same, instead we have

d d
Elx x| =) E(zjzr)* =) p(A)" = dpA*, (48)

I=1 I=1

weo  which is larger by a factor of p. Note a similar property holds for the dot product between two vectors, where
o ElxTx'||3 = d?p*A* and E||xTx'||2 = d?p? A%, but now the same vector result is larger by a factor of p?.
wn  Thus, in the limit that p — 0 and proper normalization of A, we make the analogous approximations

X0 O Xg & 0apX2 Xq ©@Xg =0, (multiplicative) (49a)
X X8~ 0ag, Xo ©Xg~0, (additive) (49b)
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w2 where we use the shorthand xi =X, ® Xq.

1773 Let us start with an approximate setting that will serve as a rough representation for the function of the
s FMSN. We assume that the modulations are not involved in the the feedforward pass of our network but are
s still updated as we have described in the main text. That is, the output activity is given by y = ¢ (Wx + b)
e but we still update M, via Eq. even though it has no effect on the network’s behavior. We also presume
iz the modulations do not decay, i.e. A = 1, and that modulation are small enough such that they do not
s encounter the biological bounds or violate the bounds of Eq. .

1779 Over a training time where the familiar inputs are each shown N times, the associative update will lead
s to an expected M given by a sum of m outer products

M =Ny yox (50)
a=1

ws  Notably, if W =T and y, = X,, i.e. if ¢(x) = z, this would be the same form of the updates to the lateral
we2 connections in a Hopfield network with an associative learning rule. Now consider how this modulation
ez matrix acts on a given familiar input (for next three equations, top: multiplicative, bottom: additive),

(WoM)x, =nN Z V5 O [W (x5 ©x4)] =N Z 0a8Yp © Wx% =Ny, © Wx2,, (51a)
p=1 p=1
Mx, =nN Z YAXpXo A nNZ V50as = NNYa, (51b)
p=1 p=1

wsse  where for the multiplicative case (top) we have used Eq. for the first equality and in both lines we have
s used the approximation of Eq. (49). Now compare this to a novel input

(WOM)Za =N Y ys0[W (x5 0%a)] &N > _ Sapgys © WO =0, (52a)
B=1 B=1
Mz, =N Y ysxf%a ~#nN Y x5(0) =0. (52b)
B=1 B=1

Thus a familiar input yields a non-zero modulation but a novel input simply yields zero. From the above
results, we have

(W+WoOM)x, ~¥o + 1Ny, © Wx2 | (W+WoM)X, & Yo, (53a)
(W+M)xXq Yo +1NYa, (W+M)X, & Ya, (53b)

wss  Thus we see that if 7 > 0 (or n < 0) the familiar preactivations grow (shrink) in size from the effects of the
ez modulations, while the novel preactivations are left approximately unchanged.

1788 Let the familiar subspace be the subspace of the input stimulus space spanned by the familiar stimuli.
e Then, since any stimulus can be decomposed into parts that lie within the familiar subspace and perpendicular
w0 to it, a generalization of the above arguments shows that the modulation matrix M will yield a nonzero
wa  result for any vector that has components in the familiar subspace. Since for a large input stimulus space the
e novel inputs are close to perpendicular to the familiar subspace (so long as m < d), they yield approximately
1793 zero output.

1794 For the additive case, we can see Eq. is similar to checking the energy function of a Hopfield network
wes  (up to the vector ¥,), which has been used previously as a method of familiarity detection [32]. Indeed, since
e the activity in our network is positive-definite, taking the L1 normalization of this output is equivalent to
o taking the dot product with 1, so it is similar to a Hopfield energy measurement with one occurrence of the
wes  stimulus replaced by 1.

1799 Now in practice, the modulations are involved in the forward pass, so as the modulations get updated during
1o training they affect the output. For the FMSN, y = ¢ [(M ©® W) x + Wx + b| and thus the modulations
s affect its own update. Notably, it is only the output activity that is affected by our approximation above,
182 and so what will change are the y, dependence of Eqgs. to . However, what causes the significantly
1803 different behavior between Egs. and is the input activity dependence of M, and this is unchanged
10s ' when we include modulations in the forward pass.
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ws C  Strengthening versus weakening

106 Here we briefly discuss differences in the effectiveness of developing distinct responses to the familiar and
187 novel sets in the FMSN from strengthening and weakening modulation mechanisms. We first study the FMSN
108 in the setting we investigated in the main text, namely networks with only excitatory synapses in the input
o layer. As a result, a strengthening (or weakening) of the synapses results in a larger (or smaller) output
180 NEUron response.

1811 There is a significant difference in the evolution of the M; as a function of training time in identical
iz FMSNs that simply differ in the sign of n (Fig. [S3p). Notably, M; at roughly the same rate for the first 8
113 training steps, but for the weakening mechanism the growth of M; drops significantly after these first few
114 times steps. This is a result of the output activity being smaller, which means the updates to M; are smaller
1815 (Flg ,d)

1816 We can also see the effect the biological bounds have on the modulation growth. In particular, for the
1817 strengthening mechanism, the evolution of M; differs significantly with and without the biological bounds
ws  (Fig. ,f). Notably, the weakening mechanism isn’t as strongly affected by said bounds. The fact that
w0 weakening has been observed down to 20% for associative and only 200% for strengthening makes the former
120 much more effective. This is a simple comparison of ratios of novel to familiar: for weakening, 20% leads to a
s ratio of 1/0.2 = 5 whereas strengthening to 200% leads to a ratio of only 2/1 = 2.

1822 Another major difference between the strengthening and weakening mechanisms is the way the biologically-
123 motivated non-linearity, Eq. , acts on preactivation values. Since strengthening excitatory connections can
124 only increase a neuron’s output, but said output is bounded by the non-linearity, eventually the strengthening
1825 yields diminishing returns in terms of how much a given output can change. Meanwhile, weakening excitatory
126 connections can push a neuron below its firing threshold, completely cutting off a neuron’s response. We see
17 that the evolution of preactivation values is fairly comparable between the two mechanisms (Fig. [S3k).

1828 Thus we have seen two major factors that cause the weakening and strengthening of excitatory synapses
w0 to differ: (1) a difference in the bounds of said changes from experiment and (2) an asymmetry in the
w0 FMSN of how larger /smaller output activity is handled through the neuron’s non-linearity as well as the the
11 modulation updates. Of course, we have only considered plasticity mechanisms on synapses belonging to
182 excitatory neurons thus far. For inhibitory synapses, a strengthening (or weakening) of the synapses results
133 in smaller (or larger) output neurons response, the opposite effect of the excitatory synapses. Thus we can
13a  investigate if the FMSN has different behavior when introduce inhibitory neurons in the input population
135 and then make the inhibitory synapses FMSs.

1836 For direct comparison to the FMSN with only excitatory synapses, we assume inhibitory plasticity obeys
1w similar bounds to what we use for STSP and LTP/D effects 20} 39]. We compare the behavior of an FMSN
138 with both excitatory and inhibitory neurons in its input when either the excitatory or inhibitory neurons
130 have a strengthening FMS mechanism on them (Fig. ) Consistent with our findings above, we find that
10 strengthening of the inhibitory neurons is more effects of at separating the novel and familiar distributions
181 than a strengthening of excitatory neurons (Figs. ,j). Since the bounds of the two FMS mechanisms are
w2 identical, this difference is caused by the neuron’s non-linear behavior discussed in point (2) above.

« D Additional figures and tables
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Figure S1: Pre-only weakening and associative strengthening FMSs and their behavior in the FMSN.
(a) Schematic of pre-only FMS mechanism. (b) Strengthening FMS equivalent of Fig. . [c-f] FMSN with pre-only
weakening modulations. Equivalent associative plots in Figs. [d—g]. (¢) Example raw output response activity for a
familiar (red) and novel (blue) stimulus pre- and post-training. (d) Change in mean output activity of the familiar
and novel sets over training. The dark lines show the mean output activity across each stimulus set, the light lines
show individual stimuli. (e) Relative mean row magnitude of the modulations, W ® M, (purple), the unmodulated
weight matrix, W (green), and total synaptic strength (green and purple) over training. Dark lines show means
while light lines shown individual rows. (f) Change in important synapse magnitude for familiar and novel inputs
as a function of training time (Methods). [g-j] FMSN with associative strenthening modulations. Note many trends
compared to Figs. d—g] are reversed because of strengthening rather than weakening. Figures are equivalent to [c-f].
[k-n] FMSN with pre-only strenthening modulations. Figures are equivalent to [c-f].
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Figure S2: Additional properties of the FMSN. (a) Output sparsity of the novel (blue) and familiar (red)
sets as a function of training count (Methods). Dark lines show mean across entire sets, light lines show individual
members of sets. (b) PCA projection of output activity of the familiar set (Methods). Distinct colors show distinct
members of set. (c) Same as (b) for the novel set. Note the different axis scale. (d) Modulation rate of synapses of
the FMSN as a function of training time. Medium purple curve shows rate of synapses modulated at all, dark purple
shows synapses that have been weakened by 50% of their initial value, and light purple shows synapses that have their
biological bounds saturated (Methods). [e-j] Contour plots of p-values from KS test as a function of various FMSN
parameters, averaged over 10 initializations. Grey lines/marks represent values used in main text. (e) Modulation
bounds and learning rate. Specifically we consider associative weakening so we vary the lower bound that controls
how weak a synapse can be made through modulations. (f) Same as (i) for associative strengthening and thus we
vary the upper modulation bound. (g) Noise scale and number of exposures to each familiar stimulus. (h) Number of
input and output cells. (i) Synapse sparsity and firing rate at initialization. (j) Random binary vector sparsity and
magnitude. (k) Post-training median response (bars: 10th and 90th percentiles) of the FMSN’s response to familiar
(red) and novel (dark blue) sets as a function of the size of the familiar set. Pre-training novel response shown for
reference (light blue). Each familiar stimulus is shown 10 times, so training times increase for larger familiar sets.
Responses thresholded to 1072 for visibility on plot. (1) Size of post-training modulations (dark purple) as a function
of familiar set size, with unmodulated synapses (green) and biological bounds (light purple) shown for reference. (m)
Accuracy of decoding the familiar and novel sets as a function of learning rate (Methods). (n) Output dimensionality
of familiar and novel sets as a function of learning rate (Methods). [0, p] Fquivalence of FMSN training for different
sequence lengths and learning/decay rates. See Sec. (0) Mean output magnitude of familiar and novel sets as a
function of normalized train time. Different colors vary the training time, learning rate, and decay rate, see Eq. .
(p) Same as (0), but modulation magnitudes.
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Figure S3: Familiar subspace and FMS strengthening versus weakening. (a) Visualization of familiar
subspace and how it affects the output magnitudes of different stimuli pre- and post-training. (b) The evolution of
mean modulation row magnitude for identical networks, one whose modulations are strengthened (dark line, n > 0)
and another whose modulations are weakened (light line, 7 < 0), as a function of training count. (¢) Mean output
magnitude of the familiar (red) and novel (blue) sets as a function of training count for an FMS mechanisms that
strengthens (dark lines) and weakens (light lines) the synapses. Vertical grey line shows time where all members of
familiar set have been shown once. (d) Same as (c), but y-axis is now a linear scale. (e) Same as (c), but mean output
magnitudes after all members of the familiar set have been shown once (i.e. 8 training steps) as a function of learning
rate size. Dotted lines show results without modulation bounds of Eq. @) Vertical grey line shows learning rate used
in (b) and (c). (f) Same as (e), but y-axis is now a linear scale. (g) Same as (e), but the pre-activation values of
output. (h) Schematic of two FMSN setups with both excitatory and inhibitory in the input neuron population. The
network on the left has FMSs on its inhibitory synapses, while the right one has FMSs on its excitatory synapses. (i)
Contour plot of p-values from KS test between post-training familiar and novel mean output activity as a function
of learning rate, 7, and modulation decay rate, Tdgecay for the network shown in (e) with inhibitory FMSs. The grey
vertical line shows the timescale of the task, 80 steps. (j) Same as (f), but for the network with excitatory FMSs.
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Figure S4: Microcircuit population strength contributions. Many metrics computed as a function of pre-
and postynaptic cell type. All values are specific for layer 2/3 of the primary visual cortex. Although PV cells
are not explicitly included in the cortical microcircuit model, we have included them here for completeness. “N/A”
indicates synapses where no data was available, which correspond to cell-type connections that were exceedingly
sparse in experimental analyses . (a) Relative between-population connection strengths, computed via Eq. (22)
and normalized by maximum magnitude. (b) Relative individual synaptic strength, as measured by time-integrated
postsynaptic potential (PSP), see (c). [c-e] Three contributions to values shown in (a), see Eq. (22). (c) Mean
time-integrated PSP, see Eq. . (d) Connection probabilities, from Ref.[20] (Methods). (e) Relative presynaptic
cell counts (to SST cell count) from Ref. . (f) Number of synapses used to compute time-integrated PSP. Number
of omitted synapses from too large a 7Tdecay is shown in (-). Note counts reflect total number of synapses found in
computing (d), so those connections with smaller probabilities of existing have less data. [g-i] Three contributions to
ZP5P see (c). (g) Amplitude of PSP pulse, from Ref.. (h) Adjustment factor of PSP amplitude to account for
potential differences, see Eq. . (i) Effective PSP time, computed from experimental PSP fits, see Eq. .
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Figure S5: Additional microcircuit details. [a-d] Microcircuit input details. See Sec. for details. (a)
Magnitude (L1) of raw stimulus inputs during image change, x;"™, as a function of time. Shaded colored backgrounds
correspond to distinct image presentations. (b) Same as (a), for an image omission. (¢) Magnitude of stimulus
history input, x5!, as a function of time. Discrete points are colored by the time since last image that they encode.
(d) Exemplar time-correlated noise injections for one cell of each population. (e) Half-gaussian smoothing kernel
applied to model and experiment cell responses, see Sec. . Discrete points show smoothing kernel values on
discrete times separated by At = 1/32 s. (f) Smoothing function (dark pink) used on model stimuli to gradually
ramp up/down stimulus response, relative to the image presentation (green background). The smoothing function is
the deconvolved mean excitatory trace, truncated to be the same number of time steps as the image width, with an
additional offset, see Eq. Light pink shows the non-truncated signal. (g) Experimental distribution of number of
images from one change to the next. (h) Zoomed in version of (g). [i-1] Stimulus history input details. (i) Individual
neuron tuning functions as a function of time since last image presentation (light) with particular neurons highlighted
(dark). Grey vertical lines show times corresponding to onset of omission (0.5 s), end of omission (0.75 s), and onset
of image after a single omission (1.25 s). (j) Neural population responses corresponding to various times since last
image presentation, s, two times highlighted. (k) Magnitude (L1) of population response functions as a function
of the time since last image presentation they encode. Grey lines same as (i). (1) Similarity of various population
response functions to s = 0.5 seconds as a function of the time they encode. Grey lines same as (i). (m) Exemplar fit
of response sparsity at initialization, see Sec. (n) Exemplar fit of noise baseline at initialization, see Sec.
(o) Exemplar loss values from grid search over various FMS learning rates, box shows optimal values. (p) Change in
modulation magnitude from start of novel to novel-plus imaging sessions.
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Figure S6: Microcircuit image change and omission mean responses. (a) Mean image change responses.
Experimental results are shown as dotted grey line, model results are solid colored lines. Green background represents
changed image being displayed, yellow background is pre-change image. Columns show different experience-levels
(familiar, novel, novel-plus), rows show different cell populations (VIP, SST, Exc.). (b) Same as (a), but for mean
image omission responses. Area between vertical dashed black lines represents time period where an image would

usually be presented, but instead an image was omitted.
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Figure S7: Microcircuit mean responses as FMS learning rates are varied. Darker lines show larger learning
rates (i.e. stronger modulation) and lighter colored lines show smaller learning rates (i.e. weaker modulation). Notation
is otherwise identical to that of Fig. (a) Mean image change response as FMSy learning rate is varied. Learning
rates correspond to na = 0.04,0.08,0.12,0.16,0.20. (b) Mean image change response as FMSp learning rate is varied.
Learning rates correspond to np = 0.04,0.08,0.12,0.16,0.20. (c) Mean omission response as FMSan learning rate is
varied.
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Figure S8: Additional cluster results. [a-c] Feature kernel fits for VIP cells. See Fig. @:1 for image kernel results.
(a) Omission kernel. (b) Task kernel, with experiment hit kernel. (c) Task kernel, with experiment miss kernel. [d-e]
Metrics to determine number of clusters. Coding scores were clustered across 10 different intializations for each cell

type. VIP (green), SST (pink), and excitatory (yellow) are shown.
(d) Eigengap value as a function of the number of clusters, see Sec. |

Vertical dotted line shows chosen cluster count.
for details. (e) Gap statistic, normalized by

maximum magnitude, as a function of the number of clusters. [f-h‘

Cluster membership percentages across different

network initializations. Clustered results are gathered over 10 different network initializations and the percent of cells

that of a given clustered that belong to a particular initialization are

shown by distinct colors. Similar to experimental

data, distinct initialization do not explain the distinct clusters. (f) VIP population clusters. (g) SST population
clusters. (h) Excitatory population clusters. [i-j] Clustered SST and VIP population coding scores. (i) Excitatory

population. (j) SST population.
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Figure S9: How well network metrics explain VIP cell coding scores and coding score clusters. Left
column is fits over all VIP cell coding scores, right column is fits to cluster-averaged coding scores. Red, blue, and
purple corresponding to the coding scores in the familiar, novel, and novel plus sessions, respectively. Top, middle, and
bottom row are the image, omission, and task coding scores, respectively. Dot is median value across initializations,
error bar shows Q1 and Q3 values.
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Figure S10: Network metrics as a function of VIP cell cluster. Various network metrics (see Methods for
details) as a function of the VIP cluster number. Light dots show different networks, dark lines are mean across trials.
Note clusters are sorted by mean coding score vector magnitude (smallest to largest). Note that if a given network
initialization has less than 5 cells in a given cluster, its data is omitted.
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Figure S11: FMSN with additive modulations. [a-d] Equivalent plots to Figs. @d—g] (a) Exemplar raw output
response activity for familiar (red) and novel (blue) pre- and post-training. (b) Change in mean output of novel set
(blue) and familiar set (red) over training. (c¢) Change in synapse and modulation magnitudes over training. (d)
Important synapse magnitude for familiar and novel sets over training. [e-1] Equivalent plots to Figs. @[a—h] (e) How
the distance of a stimulus from familiar subspace influences the FMSN’s mean output. (f) Change in M magnitude
over training as learning rate and decay rate are varied. (g) Same as (f), but shows decay of M magnitude. (h)
Distinguishability of familiar and novel sets post training (KS-test p-value) as a function of learning rate and number
of familiar exposures. (i) Same as (h), scan now over FMS parameters 1 and Tdecay, for associative weakening FMS.
(j) Same as (i), for pre-only weakening FMS. (k) Same as (i), for associative strengthening FMS. (1) Same as (i), for
pre-only strengthening FMS.
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