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Abstract10

Since environments are constantly in flux, the brain’s ability to identify novel stimuli that fall outside11

its own internal representation of the world is crucial for an organism’s survival. Within the mammalian12

neocortex, inhibitory microcircuits are proposed to regulate activity in an experience-dependent manner13

and different inhibitory neuron subtypes exhibit distinct novelty responses. Discerning the function of14

diverse neural circuits and their modulation by experience can be daunting unless one has a biologically15

plausible mechanism to detect and learn from novel experiences that is both understandable and flexible.16

Here we introduce a learning mechanism, familiarity modulated synapses (FMSs), through which a17

network response that encodes novelty emerges from unsupervised multiplicative synaptic modifications18

depending only on the presynaptic or both the pre- and postsynaptic activity. FMSs stand apart from19

other familiarity mechanisms in their simplicity: they operate under continual learning, do not require20

specialized architecture, and can distinguish novelty rapidly without requiring feedback. Implementing21

FMSs within an experimentally-constrained model of a visual cortical circuit, we demonstrate the22

generalizability of FMSs by reproducing three distinct novelty effects recently observed in experiments:23

absolute, contextual (or oddball), and omission novelty. Additionally, our model reproduces functional24

diversity within cell subpopulations, leading to experimentally testable predictions about connectivity and25

synaptic dynamics that can produce both population-level novelty responses and heterogeneous individual26

neuron signals. Altogether, our findings demonstrate how simple plasticity mechanisms within the cortical27

circuit structure can give rise to qualitatively distinct novelty responses. The flexibility of FMSs opens28

the door to computationally and theoretically investigating how distinct synapse modulations can lead to29

a variety of experience-dependent responses in a simple, understandable, and biologically plausible setup.30

1 Introduction31

Brains of complex organisms contain internal representations of the world that are shaped by stimuli they32

have become familiar with over time. Since their environment can change rapidly, an organism’s survival33

can be dependent upon its ability to quickly identify novel stimuli. Indeed, over decades of study, effects of34

stimulus novelty have been found throughout the brain and are known to occur over many timescales [1–5]35

These effects vary from internal changes such as promoting learning and memory to behavioral adjustments36

including changes to perception, attention, and exploration [2–4]. Across sensory modalities and species,37

novel stimuli are generally associated with an increased response relative to their familiar counterparts [2, 3].38

Such novelty-responses (or their inverse, familiarity-responses) have been observed in cortical, subcortical,39

and neuromodulatory areas of the brain at both an individual cell level [6–9] and across macroscopic cell40
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populations [10–12]. Additionally, studies have distinguished responses to distinct types of novelty. For41

example, absolute novelty, when an organism is exposed to a previously unobserved stimulus [10, 13], is42

distinguished from contextual (or oddball) novelty, where a previously observed stimulus is novel only in the43

context of recently observed stimuli that may also occur from the omission of an expected stimulus [14–16].44

The mammalian neocortex is believed to play an especially important role in modeling the world around45

us and thus how it responds to these various types of novel stimuli is of great interest [3]. Within the cortex,46

what is believed to be a general purpose disinhibitory circuit is repeated across different brain regions and47

species, and many recent experimental studies have elucidated the properties of the cells within this circuit48

[17–20]. Specifically, the structure of this cortical circuit is defined by connectivity between somatostatin (SST)49

and vasoactive/intestinal peptide (VIP) expressing inhibitory interneurons as well as pyramidal excitatory50

neurons [21]. This circuit is thought to facilitate novelty responses through mutual inhibition between the51

VIP and SST populations that provides a disinhibitory pathway from VIP to excitatory cells [22]. Recent52

experimental studies have found that novelty responses vary significantly across these distinct cell populations53

[23, 24]. These studies suggest that the enhanced response of VIP cells to novel stimuli suppresses the SST54

population’s response, releasing the local excitatory population from inhibition and leading to an increased55

excitatory novelty response.56

Although broad cell classes are a useful simplification to understand the function of the cortical circuit,57

each class can be further divided into subclasses or types that differ in gene expression patterns, synaptic58

connectivity, electrical properties, and morphology [19, 25–28]. Indeed, within the excitatory, SST, and VIP59

cell populations, subpopulations that have distinct feature-coding across familiar and novel stimuli have been60

recently identified [23, 24]. Given these recent results, an open question is what biological mechanisms might61

allow populations to have such diversity in experience-dependent coding, and how this coding diversity relates62

to changes in the population’s macroscopic response to novel stimuli.63

Since the observation of the brain’s ability to rapidly detect novel stimuli, computational models have64

been used to investigate how the brain might distinguish familiar representations and evoke distinct responses65

to unfamiliar stimuli [16, 29, 30]. Many of these models rely on modifications of synaptic connections to66

encode stimuli. For example, Hopfield networks can encode familiar stimuli via lateral connections and are67

capable of recalling said stimuli using recurrent activity [31]. However, many of these computational models68

require carefully placed synaptic connections to encode distinct memories [32, 33] or strict training and69

testing phases that do not reflect an organism’s natural behavior [32, 34], both of which limit their ability70

to be implemented into more general models. Additionally, some models rely on complex non-local credit71

assignment mechanisms that are biologically unrealistic to develop their novelty-responses [35, 36].72

In this work, we introduce a mechanism that implements simple plasticity rules via synaptic modulations73

and is capable of adapting to stimuli through biologically-realistic local, unsupervised learning. Broadly, it74

relies on modulating the synapses that play a role in producing the output responses of familiar stimuli, and75

as such we refer to the mechanism as familiarity modulated synapses (FMSs). A strength of FMSs is their76

simplicity and thus generality; we show FMSs can broadly represent various synaptic plasticity effects that77

occur over different timescales. We focused on parameterizing the FMSs such that they represent biologically78

realistic plasticity mechanisms such as long-term potentiation/depression (LTP/D) [37, 38] or short-term79

synaptic plasticity (STSP) [39]. FMSs can be implemented on a set of excitatory or inhibitory synapses80

feeding from one cell population to another whose strengths and connections are randomly drawn, meaning it81

requires essentially no specialized architecture and is thus straightforward to implement into more complex82

neural network models. The mechanism also requires no specific training regimen, simply becoming adapted83

to stimuli it has seen in recent history under continuous learning, similar to how biological organisms learn.84

We first establish properties of the FMSs in the simplest possible feedforward setting. Afterwards, we85

incorporate several distinct FMS mechanisms into a model of the visual cortical circuit, with connectivity86

properties constrained from multi-patch synaptic physiology studies [20], relative cell counts from in situ87

hybridization experiments [17, 18], and additional cell properties from electrophysiology recordings [19]. We88

demonstrate the generalizability of the FMSs by modelling three distinct novelty effects: absolute [10, 13],89

contextual (oddball) [14, 15], and omission novelty [16]. Although each of these novelty effects has been90

studied in isolation, recent studies in the visual cortical circuit of mice investigate how distinct cell populations91

respond to all three types of novelty [23, 24]. The flexibility of FMSs allows for us to simultaneously capture92

the three novelty effects within our experimentally-constrained model of the cortical circuit, while also93

reproducing the diverse subpopulation coding seen in the same experiments [24].94
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Figure 1: Familiarity modulated synapses. (a) On the left, an exemple feedforward firing-rate network, where a
population of (firing-rate) input neurons, xpre, influences a population of output neurons, ypost, through a set of fixed
synaptic connections, W. On the right, the fixed synaptic connections are modified to become familiarity modulated
synapses (FMSs), i.e. W → W+W⊙Mt, allowing each synapse’s strength to be modulated over time via the matrix
Mt. (b) The two types of modulations we consider in this work: (1) associative and (2) pre-only dependent. See
Eq. (2) for explicit expressions. For an associative update rule, examples of how the behavior of neurons influences
the way their synapses are modulated (see Fig. S1a for equivalent pre-only diagram). In short, the modulations will
either strengthen (η > 0) or weaken (η < 0) the neuron connections if both the pre- and postsynaptic neuron are
firing and a synaptic connection already exists between said neurons.

Related works. Many existing models of novelty detection rely on modifications of synaptic connections95

in order to encode familiar stimuli, but often require specialized connection architectures in order to encode96

distinct memories [32, 33], do not operate under a continual learning setting [22, 32, 34, 40, 41], or rely97

on complex non-local credit assignment [35, 36, 42], all of which the FMSs avoid. Refs. [40, 41] consider98

how a firing-rate dependent learning rule, directly derived from passive and dimming-detection experiments,99

can match time-averaged and time-dependent responses. Feedforward adaptation as a means of repetition100

suppression has been previously studied previously [22, 29, 35, 42–44] and is advantageous because it does101

not require convergence to a steady state or feedback-dependent activity to distinguish stimuli [45]. Novelty102

responses on an image change detection task were reproduced using STSP-like synaptic modulations [29,103

42]. The specific form of the synaptic modulations used in this work are an unsupervised version of those104

described in Refs. [35, 36] that originated in the learning-how-to-learn machine learning literature [46].105

Many other computational models of the visual cortical circuit have been built to understand the individual106

cell population effects of disinhibition and how the circuit’s activity might change over learning [18, 22, 47–54].107

While many models of cortical circuits treat inhibitory interneurons as a unitary population [47, 54], more108

recent models have incorporated the diversity of interneuron populations, including the VIP-SST-Excitatory109

disinhibitory circuit [18, 22, 48–53]. Ref. [52] studies and models the VIP-SST-Exc. disinhibitory circuit110

in L2/3 of mice in the setting of visual context modulation and finds contextual modulation is unlikely to111

be inherited from L4 and thus may rely on local circuitry. A computational model of the cortical circuit112

constrained by electrophysiological studies that incorporates population diversity and inhibitory plasticity113

was recently used to study prediction errors in Ref. [48, 53]. Although they also investigate how connectivity114

influences the development of neuron subpopulations, the training/testing stimulus sequences are different115

from the ones we investigate here.116

Setup: familiarity modulated synapses117

In this work we consider networks of firing-rate, point-like excitatory and inhibitory neurons that can influence118

one another through synapses that we represent using weight matrices. Let W represent a set of fixed119

synapses that connects a presynaptic population of neurons to a postsynaptic population, with firing-rates at120

time t represented by the vectors xpre
t and ypost

t , respectively (Fig. 1a, left). For example, the postsynaptic121

population’s firing-rates may be related to the presynaptic population’s activity via ypost
t = ϕ (Wxpre

t ) where122

ϕ (·) ≥ 0 is a non-linear function that accounts for the postsynaptic neurons’ properties such as their firing123

threshold and maximum firing rate. We take W to be sparse and, for simplicity, take the nonzero weights to124

be drawn from a normal distribution. Furthermore, the sign of the nonzero elements of W are fixed by the125

cell-type of the presynaptic population: excitatory neurons only have positive-weight synapses so that they126
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increase postsynaptic potentials and inhibitory neurons only have negative-weight synapses.127

We modify the fixed weights to be familiarity modulated synapses (FMSs) by taking128

W → W +W ⊙Mt , (1)

where Mt represents time-dependent modulations to the synapses represented by W and ‘⊙’ is the elementwise129

product. In our exemplar network, the relation between pre- and postsynaptic activity would be ypost
t =130

ϕ ((W +W ⊙Mt)x
pre
t ) (Fig. 1a, right). We will investigate two distinct modulation mechanisms throughout131

this work that determine how Mt evolves in time,132

Mt =λMt−1 + ηypost
t (xpre

t )
T
, (associative) (2a)

Mt =λMt−1 + η1 (xpre
t )

T
/
√
n . (pre-only) (2b)

Both rules are completely unsupervised and modulate based on only information locally available to the133

synapse. The associative update, Eq. (2a), is the more general modulation rule dependent upon both the134

post- and presynaptic neuron firing rates at time t (Fig. 1b). The parameter 0 < λ < 1 controls how quickly135

the modulations return to their baseline values, while |η| determines the size of the updates. Importantly, the136

sign of η controls the sign of M and thus whether synapses are strengthened or weakened by the modulations,137

i.e. if their magnitude increases or decreases, respectively. The pre-only modulation update expression,138

Eq. (2b), is only dependent on the presynaptic firing rate, in which case the dependence on ypost
t is replaced139

with 1, the all 1’s vector, and normalized by the square root of the number of output neurons n.140

Throughout this work, all W are fixed and thus the total synapse strength is only modified through141

the Mt term. “Training” will refer to the time period where a network is exposed to certain stimuli and142

its synapses are modified solely via the unsupervised FMSs described above. Crucially, we do not allow the143

modulations to change whether a synapse is excitatory or inhibitory, i.e. if Wij ≥ 0 then Wij +WijMt,ij ≥ 0144

for all time. For simplicity, we also do not allow for new synapses to form, i.e. a synapse that doesn’t exist at145

initialization cannot be modulated.146

Biologically, we envision the modulations as various mechanisms leading to changes in the synapses that147

occur over varied timescales and biological mechanisms. The associative mechanism, Eq. (2a), could broadly148

represent long timescale synaptic changes resulting from LTP/D mechanisms. Long term potentiation or149

depression of said synapses can be implemented by changing the sign of the learning rate, η. Meanwhile, the150

modulations that are only presynapse-dependent, Eq. (2b), could represent faster modulation mechanisms151

such as STSP. With these biological mechanisms in mind, we limit the size of the modulations such that they152

do not exceed synaptic changes that have been observed in experiment (see Methods for additional details).153

2 Results154

2.1 A simple, unsupervised, feedforward novelty-detector155

To explore some basic properties of the FMSs, we first investigate their effect in a simple feedforward network156

that we show develops distinct responses to stimuli it has been exposed to before, what we refer to as familiar157

stimuli throughout this work. Many of the results we establish in the simple network with a single FMS158

mechanism generalize to the visual cortical circuit model we discuss afterwards in Sec. 2.2 with several distinct159

FMS mechanisms.160

We represent the neuronal encodings of stimuli using distinct sparse random binary vectors (Fig. 2a,161

Methods). Prior to training, we draw two sets of 8 stimuli from this distribution. During training, the stimuli162

from what becomes the familiar set will be exposed to the network while its weights undergo unsupervised163

updates via an FMS mechanism. After training, we will compare the network’s response to the familiar set164

and the other set that was held out during training, what we refer to as the novel set. Noise is added to all165

input stimuli throughout this work (Methods).166

The simple network consists of only two populations of neurons, an excitatory input population and an167

arbitrary output population,1 that are sparsely connected by synapses represented by the weight matrix W168

1In this setup, cell-type (excitatory versus inhibitory) only influences the sign of weights leaving a population. Since the
activity of the output neuron population is directly measured, results here hold for either excitatory or inhibitory output neurons.
An excitatory input population was chosen for simplicity, see the SM for the equivalent setup with inhibitory neurons as well.
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Figure 2: Familiar modulated synapses in a simple network. [a-c] Schematic of network behavior and exposure
to familiar set. (a) The familiar (red) and novel (blue) sets of stimuli that excite the input neuron population are
drawn from the same distribution, random sparse binary vectors with added noise. (b) We consider a simple two-layer
network with FMSs connecting an excitatory input population to an output neuron population. At each time step a
randomly chosen familiar stimulus excites the input population and, through the modulated synapses, causes the
output population to fire in some pattern. For the example considered in this figure, the associative modulations
weaken any synapses that connects a pre- and postsynaptic neuron that both fired for the given familiar stimulus,
e.g. an effect that could arise from LTD. (c) After training, many of the network’s synapses have been modulated,
changing its output behavior. The familiar set’s mean output activity is reduced relative to their pre-training activity.
The post-training mean output activity of the novel set is relatively unchanged. [d-g] Results from example network
and training. In this example, there are 8 familiar and 8 novel stimuli. Each familiar stimulus has been input into the
network 10 times (shuffled order) for 80 training steps total. (d) Example raw output response activity for a familiar
(red) and novel (blue) stimulus pre- and post-training. (e) Change in mean output activity of the familiar and novel
sets over training. Mean output activity across each stimulus set (dark) and individual stimuli (light) shown. (f)
Normalized mean row magnitude of the modulation term, W ⊙Mt (purple), the unmodulated weight matrix, W
(green), and total synaptic strength (green and purple) over training. Mean (dark) and individual rows (light) shown.
(g) Change in important synapse magnitude for familiar and novel inputs as a function of training time (Methods).

and with non-linearity ϕ (·) providing the output population activity (Fig. 2b). For brevity, we will refer to169

this network as the familiar modulated synapse network (FMSN). Before training, the synapse strengths are170

randomly initialized, but they are subject to modulations via an FMS mechanism, represented by the matrix171

Mt. The two modulation types of Eq. (2) and the possibility of strengthening or weakening synapses (i.e.172

the sign of η) gives four qualitatively distinct FMSs. For the example we explicitly consider here, we take the173

FMS’s modulations to be associative and weakening, meaning a synapse/weight is weakened if both its pre-174

and postsynaptic neuron are firing, e.g. it is LTD-like (Fig. 2c). This corresponds to updates via Eq. (2a)175

with η < 0. Equivalent plots for the pre-only rule, e.g. STSP-like, and synapses that are strengthened by the176

modulations, e.g. LTP-like, are provided in the SM (Fig. S1). We will later return to how these choices affect177

the results presented here.178

The FMSN develops distinct responses to familiar and novel stimuli. We use a training schedule179

where the FMSN is sequentially passed stimuli from the familiar training set several times in a random order.180

That is, at each time step, a stimulus is randomly drawn from the familiar set, noise is added to it, and it is181

input into the network. After each pass through the network, the FMSs are updated according to Eq. (2a).182
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For the example considered here, each familiar stimulus is presented to the network 10 times, for a total183

of 80 training steps. Post-training, we observe that the familiar output activity is significantly suppressed184

relative to its pre-training activity (Fig. 2d). Comparatively, the novel output activity changes little from185

the modulations, and so post-training its activity is large relative to the familiar set.2 We can understand186

how the network’s response changes during training by comparing the output activity of the familiar and187

novel sets had we stopped training after a certain number of familiar stimulus exposures. Over the course of188

training, we see the network’s response to all 8 familiar stimuli quickly weakens while its response to the 8189

stimuli of the novel set remains relatively unchanged (Fig. 2e). This happens concurrently with a growth in190

the size of the synaptic modulations and, since the modulations in this example are weakening, a smaller191

total synaptic magnitude (Fig. 2f). Eventually, the changes to the network stabilize as additional examples192

continue to be presented. The reduction of output activity for the familiar stimuli occurs concurrently with193

a sparser response to the familiar stimuli over time as well as decreased decodability of stimulus identity,194

consistent with experimental results of familiarization (Methods, Figs. S2[a-c]) [23, 24].195

Distinct ‘important synapses’ lead to distinct responses. What about the pattern of synapse196

modulation is causing this significant change in response for stimuli in the familiar set? Although almost all197

of synapses undergo some modulation during training (a byproduct of the noise added to inputs), only a small198

percentage are modulated significantly (Fig. S2d). Intuitively, a reason for the distinct output behavior could199

be that different synapses have large contributions to the output activity for members of the familiar and200

novel sets, so changing a subset of them only affects certain stimuli (Fig. 2c). For a given stimulus, we define201

its important synapses as those synapses that would be modulated according to Eq. (2a) from passing the202

stimulus through the network, before any training has occurred (Methods). With this definition, for the setup203

we consider here, each (nonzero) synapse has an approximately 2.5% chance of being an important synapse204

for a given stimulus. Prior to training, we can check that the important synapses of distinct stimuli have205

little overlap: a familiar and novel stimulus share on average only 0.14% of their important synapses. We206

can then track how the update rule of Eq. (2a) affects the important synapses of the familiar and novel sets207

differently. The total strength of the important synapses of the familiar set changes drastically, while those of208

the novel set remain relatively unchanged because of the small overlap of important synapses (Fig. 2e). It is209

the greater weakening of important synapses associated to the familiar stimuli, often bringing the neurons’210

activity below firing thresholds, that leads to their significantly smaller responses relative to the novel stimuli.211

The idea of targeted synaptic modulations as a means of encoding familiarity has been known for quite212

some time, most famously in Hopfield networks [31]. In the SM, we argue the FMSN can be approximately213

viewed as a feedforward Hopfield network, i.e. the weight modulations that encode the memory of the familiar214

inputs are on feedforward synapses and not lateral connections. A stimulus forward pass through the FMSN215

is similar to measuring its energy in the equivalent Hopfield network. Thus, familiar stimuli having a low216

mean response is similar to them being low-energy states.217

Synapse modulations change responses to stimuli in the subspace spanned by familiar stimuli.218

Since we draw the familiar and novel stimuli from the same distribution, between-stimulus correlations are219

relatively uniform across all stimuli. How would the FMSN respond to a stimulus that is more correlated220

with a familiar stimulus than the novel stimuli? More generally, one may consider what characteristics of221

stimuli determine how much they are suppressed by the learned modulations.222

In the SM, we argue that the approximate M learned over the FMSN training causes any stimulus that223

lies in the subspace spanned by the familiar set to have a decreased response relative to its pre-training224

magnitude.3 This includes the familiar stimuli themselves but also their linear combinations (Fig. 3a).225

Furthermore, since any stimulus can be decomposed into parts that lie within and perpendicular to said226

subspace, the less any stimulus lies within this familiar subspace the less its response will be suppressed by227

modulations (Figs. 3a, S3a). In other words, the more a stimulus is correlated with the familiar inputs, the228

2To evaluate the novel activity pre-training without it becoming “familiar” to the network, we treat as we would a test set
and do not modulate the synapses from its activity via Eq. (2a). The FMSN then has no memory of being exposed to it. We
emphasize this is done solely for the sake of comparison to the familiar set and is not a necessary step in training.

3For this approximation, we have assumed that all familiar inputs are presented roughly the same number of times in a
randomized order, as is done for the FMSN training. For cases where familiar stimuli are presented in an uneven manner, the
network will respond most weakly to inputs it has been exposed to the most and those most recently presented, see the SM.
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Figure 3: Additional properties of familiarity modulated synapses. (a) Cosine distance of stimuli to the
subspace spanned by the familiar stimuli (‘familiar subspace’) versus mean output from the FMSN. Grey dots show
sparse random binary vectors (Methods). Familiar stimuli (light red), their linear combinations (dark red), and the
novel stimuli (blue) are highlighted. Grey line shows linear regression fit. (b) Growth of modulation magnitude while
being repeatedly exposed to a single familiar stimulus as a function of τdecay = 1/(1− λ), in units of time steps, and η.
Dashed grey line shows maximum modulation strength imposed by biological constraints (Methods). (c) Decay of
modulation magnitude after a single familiar stimulus exposure as function of λ and η. (d) Ability to distinguish
output magnitude distributions of familiar and novel sets (KS-test p-value) as a function of learning rate, η, and the
number of times each familiar stimulus has been exposed. [e-h] KS-test to distinguish post-training output magnitude
distributions of familiar and novel sets for the four types of modulations as a function of τdecay and η. (e) FMSN with
associative weakening modulations. The grey vertical line shows the timescale of the task, 80 time steps. (f) Same
as (e), for pre-only weakening modulations. (g) Associative strengthening modulations. (h) Pre-only strengthening
modulations.

more its response will be suppressed in the FMSN. Part of the success of the FMSN we investigate here relies229

on the fact that the familiar subspace is small relative to the full space of possible stimuli. Stimuli randomly230

drawn from the distribution that are not exposed to the network, e.g. the novel inputs, are likely to lie231

approximately perpendicular to this subspace and thus have their response relatively unchanged by training.232

Learning and decay rates strongly influence magnitude of modulation effects. For training, we233

have assumed that one stimulus is presented at each time step and time steps are separated by some ∆t that234

could be a characteristic timescale of the input stimulus sequence. Of course, biological effects such as STSP235

and LTP/D can affect synapses over significantly different timescales. How can the FMSs be adjusted to236

account for such effects? To investigate this, it is useful to recast the FMS’s decay rate, λ, as decay timescale,237

τdecay = ∆t/(1− λ). Modifying τdecay affects the time to saturation of the modulations, allowing one to tune238

both the number of stimuli and time it takes to see the modulations stabilize as well as their steady-state239

magnitude (Fig. 3b). Varying the size of the FMS’s other parameter, the learning rate η, affects the size of240

the modulations and thus the speed and magnitude of the FMSN’s change in response. For large enough η,241

the modulations encounter the biological bounds, which limit their growth in size (Fig. 3b). Relatedly, how242

long a given input influences the modulations, or, how long the FMSN “remembers” a past stimulus, is also243

affected by the decay timescale and learning rate (Fig. 3c). A single familiar input can influence responses for244

only a few time steps or thousands, a fact that will play an important role later on when we model novelty245

effects of significantly different timescales.246

The modulation learning rate can also influence how many exposures to the familiar set are needed in247
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order for the network to develop distinct responses relative to the novel set. The larger the modulations, the248

greater the change to the FMSN from a single input stimulus, leading to distinct responses in a fewer number249

of stimulus presentations (Fig. 3d). Notably, in the setup we consider here, distinct responses can develop250

after just one exposure to each familiar stimulus. Although large learning rates can lead to quicker response251

changes, when one has noisy input stimuli, a large learning rate causes the modulations to also fit the noise.252

Indeed, for fixed training time, there exists optimal learning rates for distinguishing the familiar and novel253

sets that balance this trade-off between modulations that quickly capture the stimulus signal but not the254

noise (Fig. 3e).255

What FMSN properties lead to significant differences in familiar and novel responses? So far,256

we have specifically considered the case of an FMS that has associative updates that weaken the network’s257

excitatory synapses. Of course, this covers a small subset of biological mechanisms – there are synapse258

modulations that strengthen connections, are only presynaptic dependent, and/or act on inhibitory synapses.259

The FMSs of Eq. (2) are general enough to model all these cases.260

Much of what we discussed above also holds for the presynapse-only update mechanism of Eq. (2b) that261

also weakens the excitatory synapses of the FMSN (Fig. S1). However, because of its lack of postsynaptic262

dependence to pinpoint which synapses to update, the pre-only weakening mechanism is much more susceptible263

to noise. Too large of a learning rate can overfit the noise and quickly cause all inputs to be suppressed264

(Fig. 3f). Surprisingly, we observe that distinguishing the familiar and novel outputs using modulations that265

strengthen the excitatory connections of the FMSN is significantly less effective for both associative and266

pre-only dependent FMSs (Figs. 3g,h). Note that the strengthening of excitatory synapses enhances the267

response of familiar stimuli relative to their pre-training magnitudes (Fig. S1b). We investigate what causes268

the differences between the strengthening and weakening FMSs in more detail in the SM (Figs. S3[b-j]). In269

short, we find two major contributions to the relatively poorer performance of the strengthening mechanisms:270

(1) tighter modulation bounds for strengthening imposed by experiment and (2) neurons’ non-linear behavior271

that causes firing to cutoff below certain potentials and saturate at higher potentials, built into ϕ(·). The272

latter of these effects can be partially overcome by considering an FMS that strengthens inhibitory synapses273

[22]. Stronger inhibition causes the output neurons’ responses to get smaller, a similar effect as the weakening274

of excitation we found to be the most effective above (SM, Fig. S3[b-j]).275

There are many other properties of the FMSN that can be explored that we only briefly touch upon276

here. For example, allowing modulations to further weaken or strengthen synapses beyond the bounds277

imposed by associating these modulations with LTP/D and STSP leads to even larger differences between278

the FMSN’s response to familiar and novel stimuli (Figs. S2e,f). Increasing the noise makes it harder for the279

FMS mechanism to isolate the signal, making it more difficult to distinguish novel and familiar responses280

(Fig. S2g). However, effects from noise can be overcome by exposing the network to the familiar stimuli more281

times, giving it more observations to isolate the signal. Increasing both the number of input and output282

neurons also increases the distinguishability between the familiar and novel sets (Fig. S2h). Though we leave283

a full investigation of FMS capacity for future work, we also see the FMSN is capable of becoming familiar284

with much more than 8 stimuli while still having a distinct response to novel stimuli (Figs. S2k,l). Lastly, we285

can use the FMSN to predict the most efficient coding of the sparse binary input vectors for distinguishing286

the familiar and novel sets. Lower sparsity reduces the variance in neuronal responses, and thus makes it287

easier to distinguish familiar and novel inputs, but also increases the similarity of any two stimuli because288

each one has more nonzero components. Thus, optimal sparsity is not too high or low (Fig. S2j).289

2.2 Cortical microcircuit novelty response in a stimulus change task290

We now implement the FMSs in a visual cortical circuit model to capture three distinct novelty responses291

recently observed in mice while they perform an image change detection task [23, 24]. We note that the292

primary purpose of this model is to demonstrate the flexibility of FMSs and their ability to simultaneously293

produce three novelty effects observed in the VIP population recordings [23, 24], but do not attempt to294

constrain this as the only types of plasticity that could lead to the experimentally observed results.295

Review of image change detection task and measurement. The stimuli used in the experimental task296

consist of a set of 8 familiar training images and a held out set of 8 novel images (Fig. 4a). The task consists297
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Figure 4: Image change task and visual cortical circuit: experiment and model setup. [a-c] Experimental
stimulus details. (a) Example familiar and novel image sets (reproduced, with permissions from Ref. [24]). (b) Sample
stimulus sequences showing an image change (top) and omission (bottom). (c) Typical training/imaging schedule.
Boxes represent sessions that occur on different days, each lasting an hour or two. (d) Diagram of a subset of the
visual cortical circuit showing the cell populations that were recorded in experiment. (e) Diagram of the cortical
circuit model we study in this work. The SST, VIP, and Exc. circles each represent populations of neurons connected
by weights fixed from experimental data [17, 18, 20]. Three FMS mechanisms (purple); FMSA, FMSP, and FMSAH;
are added to the network to model novelty responses. At each time step, the network receives inputs representing an
encoding of the ‘present stimulus’ being shown (blue) as well as ‘stimulus history’ information (red) in the form of an
encoding of the time since the last image presentation (Methods). (f) Many features of the cortical circuit model
are fixed by experimental literature [17, 18, 20]. (g) Mean inter-population connection strengths. Values from an
exemplar model (top) and analytically computed values (bottom) are shown (Methods). [h-j] Model stimulus details.
(h) Exemplar familiar and novel stimuli sets, drawn from a sparse random binary vector distribution. (i) Sample
present stimulus sequences showing a stimulus change (top) and omission (bottom, Methods). (j) Model training
scheduling consisting of training session on familiar stimuli, familiar ‘imaging’ session, and then novel/novel-plus
‘imaging’ sessions. At all points of training and imaging, all FMSs are continuously updated via their unsupervised
rules as stimuli are passed through the network.

of image presentations from these sets at quick, regular intervals that are separated by a grey screen (Fig. 4b).298

The same image is presented several times in a row before switching to another image within the set and299

mice are rewarded for responding to the image change by licking a water spout. During this time, neuronal300

responses from the visual cortex are recorded in hour-long sessions using two-photon calcium imaging. Mice301

are trained on what becomes a familiar set of eight images and their neuronal responses are recorded in a302

‘familiar’ imaging session after achieving a performance threshold (Fig. 4c). Shortly after, neuronal responses303

are also gathered over multiple sessions when the mice are exposed to the same task using the novel set of304

eight images. The mice’s initial exposure and exposure after at least one session to this novel set of images305

are referred to as the ‘novel’ and ‘novel-plus’ imaging sessions. Additionally, only during the imaging sessions,306

image omissions can occur, i.e. grey screen is displayed in place of a single image presentation (Fig. 4b).307

The response to various novelty effects are recorded across several transgenic lines to capture excitatory,308

SST, and VIP population responses in the visual cortex. These cell populations form the cortical microcircuit309
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discussed in the introduction whose connection probabilities and strengths have been carefully studied310

(Fig. 4d). Experimental analyses show that the effects of novelty give rise to significantly different responses311

in these three populations [23, 24], which we discuss in more detail below.312

Cortical microcircuit model. Given that we have observed the FMS mechanism yields distinct responses313

to familiar and novel stimuli, we built a model of the cortical microcircuit to study if it can develop the several314

experimentally observed novelty responses when exposed to stimulus sequences similar to that of experiment.315

Our firing-rate model consists of three groups of neurons, representing the SST, VIP, and excitatory neuron316

populations (Fig. 4e).4 The excitatory population receives inputs representing the bottom-up encoding317

of the raw stimulus sequence while the VIP population receives inputs representing top-down information318

about the history of the sequence (specifically the ‘timing’ of recent stimuli and not image identity, see319

below for additional details). We estimate connection properties between populations by aggregating results320

from several recent experimental studies. Relative cell counts are estimated from in situ hybridization321

experiments [17, 18] (Methods). An estimation of inter-population connection probabilities comes from322

multi-patch synaptic physiology [20] and the relative strength of neuron connections between populations is323

estimated from the same study, supplemented with additional cell dynamical properties from electrophysiology324

recordings [19] (Figs. 4f, g; Methods). In particular, fits of measured postsynaptic potentials are used to325

estimate unmodulated, individual synapse strengths as a function of the pre- and postsynaptic cell type326

(Fig. S4). Due to the unprecedented detail of recent experiments [17–20], coupled with necessary corrections327

from the experimental to the in-vivo setting, we believe the ’skeleton’ of the cortical circuit model represents328

one of the most accurate estimates of this system to date.329

We allow the connections in our microcircuit model to change by introducing several FMS mechanisms330

into the synapses connecting the various populations of the network. Since it is observed that the VIP cells331

drastically change their response across all three types of novelty in the experiment [24], in this work we332

focus on adding FMS mechanisms to capture their specific novelty responses. The purpose of focusing only333

on the VIP response is to demonstrate how several FMS mechanisms may collectively model distinct novelty334

responses within a single population. We leave a complete modelling of the distinct cell type responses and335

related plasticity mechanisms for future work. To capture the VIP novelty responses, we add three separate336

FMS mechanisms to the synapses onto the VIP neurons: FMSA, FMSP, and FMSAH (Fig. 4e).337

1. FMSA (Associative, Exc.→VIP) is added on the synapses going from the excitatory to the VIP cells.338

Its learning and decay rate (η and λ) are tuned to learn and retain familiarity over a timescale of hours339

to days. Since it operates on a slow timescale and is pre- and postsynaptic dependent, FMSA could model340

LTD-like effects on said synapses.341

2. FMSP (Pre-only, Exc.→VIP) is also added to the set of synapses between the excitatory and VIP342

populations, but unlike FMSA it is tuned to learn and forget on a timescale of seconds. The fast timescale343

over which it operates and its presynaptic dependence makes FMSP a natural model for STSP-like effects on344

the synapses.345

3. FMSAH (Associative, Stimulus history→VIP) is added to the synapses feeding into the VIP346

population from the stimulus history input neurons (see below). Its learning and decay rate are tuned to347

operate over long timescales, similar to the LTD-like FMSA.348

Motivations for adding these particular modulations within the circuit are discussed below.349

Model ‘image’ change stimulus. As we saw in the FMSN, modulations are entirely driven by the350

stimuli being passed to the network, so we reproduce the pattern of stimuli from the image change detection351

experiment. To represent neuronal encodings of the images used in the experiment, we again use random352

sparse binary vectors as the distinct stimuli (Fig. 4h). An ‘image’ presentation is represented by a stimulus353

4Parvalbumin (PV) expressing inhibitory neurons are not included in our cortical circuit model directly, though the inhibition
they provide to the other populations is partially accounted for from the threshold adjustments at the model’s initialization
(Methods). This important simplification is driven by the desire to build a minimal model of the data from [24], where excitatory,
VIP, and SST neurons were recorded and furthermore from the fact that VIP cells do not receive strong input from the PV
population (Fig. S4a). The blanket inhibition in our model is in part supported by the general lack of specificity of PV to
excitatory connections [55], though more recent evidence points to some levels of specificity [56].
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encoding being passed to the network for several time steps along with time-varying noise (Fig. 4i). The354

image presentation is followed by a proportional number of grey screen time steps, where the network355

receives only noisy input (Fig. 4i). This pattern repeats with a similar distribution of image change times356

used in experiment (Fig. S5a). Stimulus omissions are represented by additional grey screen time steps357

(Fig. S5b). We assume the excitatory population receives this bottom-up present stimulus input and drives the358

other populations (Fig. 4e). Additionally, we assume the microcircuit receives top-down inputs representing359

information about the recent history of the stimulus (Methods, Fig. S5c). In particular, the stimulus history360

input is an encoding of the time since the last stimulus presentation, with encodings of similar times more361

correlated than disparate times.5 This information is passed directly to the VIP cells, which are known to362

receive feedback inputs from higher cortical areas [8, 20]. Finally, time-correlated noise is injected into all363

neuron populations to represent activity from sources neglected in this model, e.g. activity from behavior364

(Methods, Fig. S5d).365

Similar to the training schedule used in experiment, we first expose the network to the familiar stimuli366

over a long training session, then gather cell responses to the task using the familiar set in what we continue367

to call an ‘imaging’ session. Immediately afterwards, we gather responses to the stimulus change task using368

the novel stimulus set, and, after additional exposure to the novel image set, gather the novel-plus responses369

(Fig. 4j, Methods). The familiar, novel, and novel-plus imaging session stimulus sequences are statistically370

identical. Importantly, the neuronal response presented here are gathered in a continuous learning setting,371

i.e. the network continues to modulate its weights via FMSA, FMSP, and FMSAH at all steps of training372

and imaging. We scan over three parameters, the learning rates for all three FMS mechanisms, to determine373

modulation rates that best match experimental observations (Methods, Fig. S5o). We emphasize that, other374

than minor adjustments to the network at initialization to ensure realistic responses, the cortical circuit375

model only undergoes unsupervised adjustments via the various FMS mechanisms from exposure to stimulus376

sequences that closely match the stimuli on which the mice were trained (Methods).377

For the purposes of comparing our model to experiment, we first focus on three distinct novelty responses378

that our model captures seen in mean VIP population responses of the experimental data [24]: (1) absolute,379

(2) contextual, and (3) omission novelty (see Fig. S6 for SST and Exc.).380

1. Absolute novelty: familiar modulation occurs despite irregular stimulus sequence. The381

change between the familiar and novel image sets represents absolute novelty – up until the novel imaging382

session the mice have never observed the set of images now used in the image change task. In both experiment383

and our model, the VIP cells respond weakly to image presentations in the session that uses the familiar set384

relative to image presentations in the session that uses the novel set (Fig. 5a). As we confirm below, for the385

cortical circuit model, the change in response is caused by FMSA, the slow-learning FMS mechanism on the386

excitatory to VIP synapses. FMSA functions almost identically to the FMSN discussed earlier: over training,387

exposure to the familiar stimuli causes the network to develop a suppressed response to them relative to388

the novel stimuli (Fig. 5b). The stimulus sequence here is quite different from that of the FMSN: a single389

stimulus is repeatedly input to the network and is often separated by noisy grey screen. Additionally, the390

postsynaptic population of FMSA, the VIP cells, receive input from several additional sources such as the SST391

population and the recurrent VIP connections. Nevertheless, over the long familiar training period, FMSA392

gradually modulates the important synapses of the familiar set more than the novel set, leading to a distinct393

response across sessions (Fig. 5b). Notably, the additional synaptic inputs and noise make modulating only394

those synapses important for the familiar set more difficult, leading to a fair amount of suppression to novel395

inputs as well. However, after these changes stabilize, we still observe distinct responses to the familiar and396

novel stimuli. Just like the FMSN, the change in stimulus response occurs concurrently with a growth in the397

modulations of FMSA over training and, since the modulation are once again weakening, an overall decrease398

in the strength of the synapses connecting the excitatory population to the VIP population (Fig. 5c).399

To confirm that it is the modulations from FMSA that cause the large difference in VIP response across400

the familiar and novel sessions, we can isolate its effect by training identical microcircuit models with different401

FMSA learning rates. Indeed we see that, as we decrease (or increase) FMSA’s learning rate and thus its402

5The primary purpose of this input is to give the microcircuit information about the recent stimulus history. A simple
neuronal circuit that counts the time steps since the last stimulus presentation, e.g. an RNN, could represent the higher cortical
areas that may produce this additional input directly from the bottom-up present stimulus input.
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Figure 5: FMSs implement three distinct novelty effects in a cortical circuit model. (a) Mean VIP
responses to image changes of the cortical circuit model (solid colored line) and experiment (grey dotted line) [24].
Top shows mean response in the familiar imaging session and bottom in the novel imaging session. Green-shaded
background represents time where changed image is presented, yellow-shaded is pre-change image. [b-d] Absolute
novelty and FMSA. (b) Exemplar mean VIP image change responses to the familiar (red) and novel (blue) sets over
training (Methods). (c) Change in FMSA (purple solid) and FMSP (purple dashed) modulations over training. Green
dotted line shows fixed portion of excitatory to VIP synapses. (d) Same as top of (a), for different FMSA learning
rates (Methods). [e-g] Contextual novelty and FMSP. (e) Normalized VIP responses around an image change event.
Yellow is pre-change image, green is changed image. (f) Same as (c), but zoomed in to show change in FMSP over an
example image change. (g) Same as bottom of (a), for different FMSP learning rates. (h) Same as (a), for mean VIP
response to image omission in a familiar session. Area between vertical dotted lines represents times where image
would normally be presented. [i-k] Omission novelty and FMSAH. (i) Change in VIP response to various encoded
times over training. Red encoded times are seen during training, blue are times when omissions are present. (j)
Change in FMSAH (purple) modulations over training. Green dotted line shows fixed portion of stimulus history to
VIP synapses. (k) Same as (h), for different FMSAH learning rates.

modulation magnitude, the response of the VIP population in the familiar sessions grows (or shrinks) as the403

overall strength of the excitatory to VIP synapses changes (Fig. 5d, S7a). Once again there is a trade off404

between modulations with too large of a learning rate that suppresses all responses and those with too small405

of a learning rate that suppresses none.406

2. Contextual novelty: fast familiarization and forgetting captures local oddball effects. In the407

experimental task, image changes represent contextual novelty – since images are repeatedly presented at408

least 10 times, when the image identity changes it represents a local oddball and is contextually novel. In409

the novel session, we observe an increased response of VIP cells to image changes relative to the pre-change410

image in both our model and the experimental data (Fig. 5a, bottom). Although smaller, the effect is411

also present in the familiar session (Fig. 5a, top). Notably, this is a very different effect than the absolute412
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novelty we discussed above; it only takes seconds for mice to establish an image as their baseline and this413

information is quickly updated to the current image being presented [24]. To model a novelty effect that414

learns and forgets quickly, FMSP is introduced. For FMSP, the presynaptic-dependent modulations make415

the most recent stimulus presentations become familiar, leading to smaller VIP response on repeats of the416

same stimulus. An image after a change is novel to FMSP, meaning the VIP response is larger because it417

is not familiarity suppressed (Fig. 5e). After the change occurs, FMSP begins suppressing the important418

synapses of the current stimulus, while those that were important for the pre-change image are gradually419

released from suppression. This rapid turnover is reflected in the significantly quicker growth and decay420

of the FMSP modulations relative to those of FMSA (Fig. 5f). Finally, as we did for FMSA, we see that421

varying the learning rate of FMSP isolates its effects on the cortical circuit response. A weaker learning rate422

changes the relative heights of the pre-change and post-change VIP responses because the image that has423

been presented several times in a row is less suppressed by modulations (Fig. 5g, S7b).424

The operation of both FMSA and FMSP on the excitatory to VIP synapses demonstrates a remarkable425

property of the FMSs: distinct types of modulations, e.g. slow and fast, can function on the same set of426

synapses simultaneously. This matches biology, where effects of LTP/D and STSP can affect the same set427

of synapses. The distinct FMSs can encode different types of novelty present in stimuli, allowing them to428

model the various novelty responses that are observed in certain neuronal populations. This allows for a429

single synaptic population to affect the postsynaptic population’s response in a way that compounds the430

various novelty effects. For example, the largest responses of the VIP cells occur when both absolute and431

contextual novelty occurs, i.e. a novel image change, which is a result of the minimal suppression from FMSA432

and FMSP simultaneously.433

3. Omission novelty: a decrease in familiar correlation causes omission ramping. Due to the434

temporal structure of the task during training, images are expected to be separated by 500 ms of grey screen.435

Omission novelty occurs when, instead of an image, additional grey screen is displayed, representing a global436

oddball. We observe a ramping response in the VIP cells of both the model and experiment when images437

are omitted (Fig. 5h). In the model, this is a result of FMSAH, the FMS mechanism on the stimulus history438

input synapses to the VIP cells. Recall that the stimulus history signal is a neuronal encoding of the time439

since the last stimulus presentation, where the encodings of similar times are more correlated than disparate440

times (Fig. 5e, Methods). Over training, FMSAH becomes familiar with encoded times-since-last-image that441

occur with no omissions, suppressing the corresponding VIP responses to the stimulus history signal. When442

omissions occur, longer-time encodings are passed to the network and the familiarity suppression is lost,443

leading to an increased response in VIP cells. The ramping occurs because the longer-time encodings have a444

less correlated representation to the familiar short-time encodings. That is, similar to what was seen in the445

FMSN, the network has formed a familiar subspace of the short-time encodings and the longer-time encodings446

that gradually get further from this subspace cause a gradual increase in the VIP response (Fig. 5i). The447

encoded-times that are novel but still close to the encoded times that are familiar, e.g. 510 ms, have their448

outputs quite suppressed. The longer encoded-times, e.g. 1000 ms, have outputs barely suppressed at all. As449

with the other FMSs we’ve investigated, this change in response occurs concurrently with a gradual growth450

in the modulations on FMSAH’s synapses over training (Fig. 5j). Additionally, the size and time of onset of451

the VIP ramping can be changed by adjusting the magnitude of FMSAH’s learning rate (Fig. 5k, S7c).452

The omission novelty responses occurring concurrently with the absolute and contextual demonstrates the453

ability to have multiple inputs into the same postsynaptic cell population with distinct synaptic dynamics.454

FMSA and FMSP operate on the excitatory to VIP synapses, while FMSAH acts on the stimulus history455

to VIP synapses and all three can produce their corresponding novelty effect in the VIP cells when the456

corresponding stimulus occurs.457

Novel images become familiar with exposure over time. Although the novel image set is initially458

unfamiliar to the mice and evokes distinct novelty-related responses across cell populations, over many459

exposures one would expect the images to gradually become familiar to the mice. Indeed, the enhanced VIP460

response to the novel images persists throughout the entire novel imaging session, but gradually disappears461

as the mice become accustom to the novel set over many sessions of exposure [23, 24]. Since our model462

is evaluated in a continuous learning setting, the FMS mechanisms are actively modulating the network’s463

response, allowing it to also adapt to the novel stimulus set over time in the same way it adapted to the464
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Figure 6: Coding diversity in the cortical circuit model. (a) Kernel regression model: input features are
convolved with learned kernels and summed to predict individual cell activity in a kernel regression model (Methods).
Top: the cortical circuit model is driven by three primary feature categories: image presentations, omissions, and
task-relevant image changes. The experimental data shares these same feature categories as well as behavioral effects
[24]. Bottom: feature categories are removed one at a time and the kernel regression model is refit to determine each
feature’s contribution to a cell’s activity, summarized by the category’s coding score. [b, c] VIP coding scores. (b)
Experimental results [24]. Left shows clustered VIP coding scores for all four feature categories across the familiar,
novel, and novel-plus sessions; middle shows cluster means; and right shows mean over all cells (Methods). (c) Same
as (b) for the cortical circuit model. (d) Normalized mean image feature kernels for the familiar (red), novel (blue),
and novel-plus sessions (purple). Dark lines show fits to model data, light lines to experimental data [24]. [e-h]
Cell-specific cortical circuit properties influences VIP cell coding. (e) Cluster-averaged novel image coding scores
as a function of the mean input each cell receives from the excitatory population during the novel session. Colors
show three different initializations, dots are cluster-averaged values, lines are linear regression fits. (f) Change in
correlation of familiar (red) and novel (blue) image coding scores with network properties. Correlation over all VIP
cells (light) and cluster-averaged values (dark). Dots are median, error bars are Q1 to Q3 over initializations. (g)
Cluster-averaged network properties across 10 different initializations. Colored dots (red, blue, green) show clusters
with distinct types of image coding, grey dots are clusters not coded to images. Grey dotted line shows equal familiar
and novel input. (h) Network properties for omission-coded clusters (pink) versus omission-agnostic clusters (grey).

familiar set during training. Hence, our model also exhibits a gradual change in response to the novel image465

set over sessions, eventually returning to a suppressed VIP response to novel set images in the novel-plus466

imaging session (Fig. S6a, top right; Methods). In the experiment, even after being exposed to the novel467

set of images, the familiar set of images still evoke a response consistent with them being familiar stimuli468

[24]. The FMSA modulations decay slowly enough that the modulatory effects of both the familiar and novel469

images can persist simultaneously (Fig. S5p). Additionally, as in experiment, the image omission response470

does not change considerably between the familiar and novel-plus sessions (Fig. S6b, top right).6471

6We do not attempt to model the suppressed omission ramping that is observed in the VIP population during the novel
session that gradually returns to familiar levels in the novel-plus session [24]. See Discussion for potential mechanisms which can
model this effect.
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Cortical circuit model’s cell subpopulations have diverse coding. Although the changes in mean472

response of our model’s cell populations is dependent upon the behavior of individual cells within these473

populations, we observe a significant variation in each neuron’s response over both stimulus features and474

experience-level. Indeed, a key finding of Ref. [24] is the emergence of functional cell subpopulations within475

the VIP, SST, and excitatory cell populations. Within each population, subpopulations are identified with476

similar changes in coding features over experience-level, as measured by a coding score metric that we briefly477

review. To determine the coding score, each cell’s response is fit using a kernel regression model [57–60].478

Several input features that may influence a cell’s response, including image presentations, image omissions,479

and task-relevant triggers such as image changes, are convolved with fit kernels to reproduce the cell’s activity480

(Fig. 6a, top; Methods). To determine the importance of a given input feature category in explaining a cell’s481

activity, the regression model is refit while omitting each category and its corresponding kernel(s). The482

coding score of a cell to a given feature category is defined as the relative amount of variance explained that483

the regression model loses by removing the feature category (Fig. 6a, bottom; Methods). This procedure is484

repeated across the 3 distinct sessions/experience-levels for 4 feature categories, resulting in a 12-dimensional485

coding-score vector for each cell. Lastly, the resulting coding score vectors of a given cell type are collected486

across mice and run through an unsupervised clustering algorithm (Fig. 6b, Methods) [24].487

We use the same analysis pipeline to analyze cell subpopulation diversity in our cortical circuit model.488

We again focus on investigating the VIP population’s activity in particular (Fig. S8 for Exc. and SST). Since489

we have no explicit behavioral effects in the network, we only code for three input feature categories: image490

presentations, omissions, and changes (‘task’). Repeating the aforementioned fitting procedure to determine491

coding scores and then clustering the data across 10 network initializations, we again observe diverse coding492

across features and experience-levels in the VIP population (Fig. 6c). Notably, the resulting kernel fits of the493

cortical microcircuit qualitatively resemble the fits on the experimental data (Fig. 6d, S8). Membership of494

the clusters are shared across the different networks, demonstrating the diversity is not due to the different495

initialization parameters or training sequences (Fig. S8f).496

Many of the same subpopulation motifs observed in experiment are also present in the microcircuit model497

[24]. Although our overall cell coding scores are larger, we observe subpopulations that have very little498

coding to any feature or can be coded to one or more features (see Sec. 4.4.3). Several clusters of cells have499

weak coding to images in the familiar session only to gain said coding in later sessions and vice versa. As500

in experiment, since the VIP population responds more strongly to image changes in the novel session, its501

average image coding score increases relative to that in the familiar and novel-plus sessions (Fig. S8c, right).502

Nevertheless, there are many features of the experimental VIP subpopulations that we do not observe in503

our model: solely novel-plus image coded clusters, a clear over representation of novel image coding, and504

significantly less diversity in omission coding.505

The FMS mechanisms we have inserted into our model evidently affect cell diversity in addition to the506

mean responses. Since the familiar and novel stimulus trains are statistically identical, without the FMS507

modulations the coding scores would be distributed across the two sessions evenly. That is, the fact that508

the excitatory to VIP synapses are not as familiarity-suppressed by FMSA causes many cells to become509

image-driven in the novel session. The effects of the FMS modulations can also be seen in the substantial510

difference in coding scores between the novel and novel-plus sessions. Since these sessions are driven by the511

same stimuli trains, there should be no statistical difference in coding scores without changes in connection512

properties due to modulations. There are several qualitative features of the experimental data we do not513

capture that are outside the scope of this work, e.g. clusters with experience-dependent omission coding. In514

the Discussion, we comment on how additional FMS mechanisms could be added to the model to produce515

such effects.516

Cell-specific synapse properties strongly influence cell coding. Having observed a diversity in517

VIP cell coding in the cortical circuit model, we analyzed what cell-specific network properties may be518

responsible for the heterogeneous coding. The point-like neurons in our model primarily differ in their519

connectivity properties and how said connectivity is acted upon by the FMS mechanisms. To determine520

what differences individual VIP neurons may have that explains their diverse coding scores, we take many521

cell-specific network properties and see how well each of these correlates with either individual cell coding522

scores or cluster-averaged coding scores (Methods). For example, if we plot the cluster-averaged novel image523

coding scores as a function of the total synaptic input a VIP cell receives from the excitatory to VIP synapses524
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during the image presentations of a novel session, we observe a statistically significant positive correlation525

(p = 0.002; Fig. 6e). Since the amount of input a given VIP cell receives is influenced by the heterogeneous526

synaptic connections and image encoding signals, this quantity is different for each VIP cell and is evidently527

reflected in the cell’s image coding scores. We repeat this procedure across 16 cell-specific network properties528

of our cortical circuit model and all 9 coding score values (Fig. S9). Additionally, we analyze how said network529

properties vary as a function of each VIP cluster (Fig. S10).530

Across all the cell-specific properties we consider, the strength of the modulated excitatory to VIP synapses531

mentioned above has the largest correlation with the novel image coding scores (Figs. 6f, S9). Similarly, if a532

given VIP cell happens to have strong input from excitatory synapses during familiar image presentations,533

it tends to have a larger familiar image coding score (Figs. 6f). As might be expected, we see the amount534

of input a cell receives in familiar session has relatively little correlation with the novel image coding score535

and vice versa. These coding score correlations can be used to determine properties that cells in a given536

cluster may share. For example, the cluster-averaged excitatory input from the familiar and novel sets537

roughly separates clusters into those that are familiar and/or novel image coded across network initializations538

(Fig. 6g).539

Interestingly, the image coding scores for the familiar and novel-plus sessions also have a strong correlation540

with how much stimulus history input the cells receive (Fig. S9). That is, in the absence of significant541

within-layer excitatory input, a result of FMSA’s suppression, the VIP cells that happen to have strong542

synapses from stimulus history sources are the most coded to images during the familiar and novel-plus543

sessions. An important distinction about the stimulus history input the VIP cells receive is that it is544

image-presentation-correlated but is uniform across all images, up to effects from noise. This lines up with545

the experimental observation that VIP cells increase image decodability during the novel session, but do not546

see a significant increase in decodability during presentations of the familiar and novel-plus sessions [24].547

Note that since these inputs do not change across images or sessions significantly, this could alternatively be548

interpreted as cells coded to familiar/novel-plus images are those closer to firing thresholds during all image549

presentations.550

Although the model’s omission coding exhibits far less experience-level diversity than what is observed in551

the data, we see how strongly connected a given VIP cell is to those cells excited during omission-encoded552

times, i.e. > 500 ms, strongly influences the omission coding (Fig. S9). Additionally, there is a slight negative553

correlation of the omission coding scores with the amount of input a VIP cell receives during non-omission554

encoded times, i.e. ≤ 500 ms. Any VIP cell that receives stimulus history input during the training session555

will have their presynaptic connections suppressed by FMSAH, meaning said inputs will not influence the556

omission response. We see the clusters that are omission-coded tend to have larger input during large encoded557

times compared to those that do not (Fig. 6h).558

3 Discussion559

In this work we have introduced familiarity modulated synapses (FMSs), a simple familiarity detection560

mechanism that relies solely on local, unsupervised synaptic modulations to encode exposure to past stimuli.561

The individual modulations of the FMS mechanisms evolve via well characterized dynamics: Hebbian or562

anti-Hebbian associative or presynaptic only dependence. We first investigated the basic properties of the563

FMS mechanism in a simple feedforward network, what we refer to as the FMSN. There we saw that,564

unlike several other familiarity-detection models, FMSs can detect novelty in a single forward pass, which565

is supported by evidence showing such stimulus distinctions can occurs rapidly in humans [61, 62]. We566

then demonstrated the generalizability of FMSs by modeling three distinct novelty novelty effects recently567

observed in a cortical disinhibitory circuit containing excitatory, VIP, and SST neurons. The connectivity of568

the cortical circuit model we develop is constrained by an aggregate of recent experimental results [17, 18, 20].569

The three separate VIP novelty effects were reproduced in a continual learning setting with experimentally570

realistic stimulus sequences. Finally, due largely to the modulations that change the network’s response over571

time, we found significant cell subpopulation diversity in our model, reproducing results that have been572

recently highlighted in the cortical disinhibitory circuit [24].573

In the cortical circuit model, we specifically focused on reproducing three distinct novelty effects seen574

in the VIP population responses. The goal of this modelling study was to demonstrate how several FMS575
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mechanisms could be combined to produce various novelty responses within a single cell population. With576

this in mind, the specific choices of where we have added FMS mechanisms and their parameterization are577

not tested against other potential plasticity configurations that could also give rise to the novelty responses.578

With the addition of plasticity elsewhere in the cortical circuit and/or further neuronal contributions to the579

model that we have neglected, plasticity that weakens the synapses feeding into the VIP neurons may not be580

necessary to produce novelty effects [22]. We leave an extensive study of how various plasticity configurations581

could give rise to all the novelty effects observed within the cortical circuit for future work (see below) [24].582

Although we do not explicitly model all the novelty effects observed in experiment, given the results we583

have seen here we can speculate on how the generalizability of FMSs would allow them to model such effects.584

The inhibition from the VIP population alone is not enough to produce the change in SST response seen585

across the familiar and novel sessions (Fig. S6). A slow strengthening FMS on the the excitatory to SST586

synapses, i.e. similar FMSA with positive learning rate, would result in a larger SST population response in587

the familiar session, similar to what is observed in the experimental data [23, 24]. A fast FMS, analogous to588

FMSP, on synapses that carry the bottom-up signal into the excitatory population could drive the observed589

increased excitatory response to image changes, very similar to what we produced in the VIP cells. We also590

do not attempt to model the suppressed omission ramping that is observed in the VIP population during the591

novel session [24]. A population of VIP neurons that have increased mean activity in a novel session, via592

an FMS mechanism similar to FMSA, could act to gate the ramping signal. If this population inhibits the593

excitatory neurons that produce the stimulus history input signal it would lead to an overall smaller input594

and thus a smaller ramping only during the novel session. Furthermore, if this VIP population activity was595

different across experience-levels, like the VIP population in our model and experiment, the inhibition to596

the history input would change between sessions, potentially leading to experience-level-dependent omission597

coding that has been observed [24] (Fig. 6b). We also note that it may be possible to observe the omission598

ramping response using a fast, STSP-like FMS in place of the LTD-like FMSAH, i.e. the ≤ 500 ms encoded599

times become familiar on a timescale of seconds rather than hours/days.600

We cannot rule out that part of the novelty responses observed in the cortical circuit may be driven by601

signals outside the visual cortex (though see Ref. [52]). Regardless, since it has been confirmed that it is not602

the specific stimuli in the familiar and novel image sets that evoke the novelty responses [24], they must be603

generated somewhere in the brain and we have demonstrated a plausible plasticity mechanism that could604

produce said responses in cell populations. We do not attempt to model the heterogeneous learning rates605

across the same synaptic population that has been observed in short-term plasticity [20]. However, since606

synapses continue to either be strengthening or weakening on average, we do not believe this will affect the607

mean population activity significantly. We also neglect effects of neuron scaling, e.g. adjusting those synapses608

not strengthened/weakened via, say, heterosynaptic LTP or LTD. The FMS’s similarity to Hopfield networks609

means modern extensions to said networks could be used in the FMSs to increase their effectiveness and/or610

capacity [63].611

As mentioned above, the FMSs’ simplicity, generality, and effectiveness in producing novelty effects makes612

them an ideal candidate for studying plasticity in future work. For example, modelling projects could scan613

over various FMS configurations and parameterizations within the cortical circuit to match the experimentally614

observed novelty responses and see if the resulting fits match or may constrain experimentally observed615

plasticity [20, 39]. On the experimental end, understanding how neuronal responses change throughout all of616

training would allow us to further characterize the types of plasticity that modulate experience-dependent617

activity. From our cortical circuit model, predictions about how connectivity and plasticity influence the618

observed cell subpopulation diversity could be tested by pairing physiological and learning studies together.619

Altogether, the effectiveness of FMSs highlights the role simple modulations within large synapse popula-620

tions may have in shaping neuronal responses to stimuli. We demonstrated the FMS relies on no specialized621

training and testing schedules and requires no carefully placed excitatory or inhibitory connections to operate.622

Our cortical circuit demonstrates two important features of the FMS mechanism: (1) its ability to operate623

with several distinct types of modulations on the same synapses, even at significantly different timescales,624

as well as (2) the ability to have multiple inputs with distinct synaptic dynamics influencing a single cell625

population. Crucially, these mechanisms allowed us to model the novelty effects that have been observed626

to occur over significantly different timescales (seconds to days) and from different sets of information on627

the same set of cells [24]. Other than a few parameters adjusted at initialization to ensure realistic input628

and firing rates (< 10), the cortical circuit’s response is driven by the FMS mechanisms, themselves only629
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containing 1 free parameter a piece: their learning rate/size of modulations. It is surprising to the authors630

that what seem like complicated novelty-responses can be captured by such straightforward modulation631

mechanisms, yet speaks towards the influence that simple synaptic changes can have on our brains.632

4 Methods633

Many quantities we consider throughout this work are sequence time-dependent, and their time dependence634

is generally denoted by a subscript t (and sometimes s), i.e. xt. Time is uniformly discretized in our setup,635

so the quantities xt and xt+1 are separated by ∆t. When unambiguous, we use I, J = 1, . . . , d to index the636

neurons of the presynaptic layer, and i, j = 1, . . . , n to index the neurons of the postsynaptic layer.637

Data availability. Supporting code for this paper can be found at:638

https://github.com/kaitken17/fms. Data from the two-photon image change detection task can be found639

at:640

https://portal.brain-map.org/explore/circuits/visual-behavior-2p.641

4.1 Familiarity Modulated Synapses and Networks642

In this section we give additional details about the FMSs and a brief introduction to the networks they’re643

used in. Additional details about the FMSN and the cortical microcircuit model can be found in Secs. 4.3644

and 4.4, respectively.645

4.1.1 Familiarity modulated synapses (FMSs)646

As in the main text, we take xt ∈ Rd to represent the presynaptic (i.e. input) neuron population firing rates647

at time t and yt ∈ Rn the postsynaptic (output) equivalent. The synaptic modulation matrix, Mt ∈ Rn×d,648

represents changes to the network’s connections induced by some general biological mechanism through649

unsupervised learning. To incorporate changes in synapses due to various modulation mechanisms, we650

allow the modulation matrix to change otherwise fixed synapses generally represented by some randomly651

initialized matrix W.7 We consider two distinct update rules for the modulations in this work. The associative652

mechanism, Eq. (2a), dependent upon both the pre- and postsynaptic firing rates, is given by653

Mt+1 = λMt + ηytx
T
t . (3)

The simpler pre-only modulation update that is only dependent upon the presynaptic firing rates, Eq. (2b), is654

Mt+1 = λMt + η1xT
t /

√
n , (4)

where 1 ∈ Rn is the all 1s vector. In the above expressions, η ∈ R is the learning rate of the modulations655

that controls the rate at which modulations are learned. Its sign determines the sign of the modulations656

and thus whether they strengthen or weaken the corresponding synapses.8 The other parameter, 0 < λ < 1,657

represents the gradual decay of changes to the weight matrix. Occasionally it will be useful to discuss the658

decay timescale τdecay, which is related to the decay rate via λ = 1−∆t/τdecay. Throughout this work, at the659

beginning of training, the modulations are initialized to be zero, i.e. M0 = 0.660

We distinguish neurons in the networks we consider between excitatory and inhibitory. A neuron that661

is excitatory is defined to have only positive weights leaving it so that it can only enhance the response of662

the postsynaptic neurons it feeds into. Similarly, an inhibitory neuron has all negative weights leaving it,663

ensuring it can only depress the postsynaptic neurons it feeds into. For this definition of excitation/inhibition664

7An alternative form of the modulations considered in Refs. [35, 36] uses an additive modulation, rather than the multiplicative
one we consider here. Essentially all results used for the FMSN generalize to this form of modulations as well (Fig. S11). See
SM for additional discussion.

8Since we use the FMSs to model several distinct types of synapse modulations that have their own vocabulary for synapse
changes (e.g. depression and facilitation for STSP versus depression and potentiation for more long-term effects), we use
“strengthening” and “weakening” as a general terminology that applies across the individual mechanisms the FMSs may model.
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to be meaningful, we also limit all firing rates in the network to be positive definite, including all input firing665

rates. Explicitly, this means the weights of our network are subject to the constraints666

Neuron I Excitatory: WiI ≥ 0 , (5a)

Neuron I Inhibitory: WiI ≤ 0 , (5b)

for all i = 1, . . . , n. Importantly, we do not allow for modulations to change the sign of weights leaving a given667

neuron. Per our definition above, this ensures that an excitatory neuron can never inhibit and vice-versa.668

Explicitly, this means that669

Neuron I Excitatory: WiI +WiIMiI,t ≥ 0 , (6a)

Neuron I Inhibitory: WiI +WiIMiI,t ≤ 0 , (6b)

for all i = 1, . . . , n and all t.670

Several experimental studies have investigated the amount of change a given neuron can undergo through671

mechanisms such as STSP or LTP/D. To bound the modulations to realistic values, we further restrict the672

modulations so they cannot enhance or depress weights beyond what has been observed in experimental673

settings. Since such changes can differ depending on the mechanism, we enforce different bounds for the674

associative and pre-only dependent modulations. Explicitly, we limit675

MA, lower
b ≤MiI,t ≤ MA, upper

b , (7a)

MP, lower
b ≤MiI,t ≤ MP, upper

b , (7b)

We take MA, upper
b = MP, upper

b = 1.0, so that both types of modulations can at most double the strength of676

the corresponding synapses. Meanwhile, we take MA, lower
b = −0.8, i.e. a synapse can at most be reduced677

to 20% of its original strength, similar to values observed in several long-term plasticity experiments [39,678

64, 65] . STSP has been recently observed to almost completely suppress certain synapses [20], so we take679

MP, lower
b = −1.0. Note with these chosen values of Mb, the bounds are stricter than those of Eq. (6), so in680

practice the enforcement of Eq. (7) implies the bounds of Eq. (6) are automatically met.681

4.1.2 Familiarity modulated synapse network (FMSN)682

As mentioned in the main text, it is useful to first understand the properties of FMSs in a simple setting. To683

this end, we investigate FMS properties in a simple two layer neural network, what we call the familiarity684

modulated synapse network (FMSN). We take the input and output layers to have d and n neurons, respectively.685

The input and output layers are connected by weights, representing the synapses of a biological neural network.686

We will assume the synapses of the network have some underlying strength at initialization, that we denote687

by the weight matrix W ∈ Rn×d. We take W to be sparse such that its elements have magnitude688

|WiI | = |wiI | biI , wiI ∼ N
(
0, w2

)
, biI ∼ Bernoulli (pW ) (8)

where the parameters w and pW determine the magnitude of the nonzero elements and the sparsity, respectively.689

The sign of the nonzero elements are determined by the input neuron cell type (see Sec. 4.1.1 above).690

Like the synapses in the brain, we allow the individual weights in our network to be modulated over time.691

We denote the modulations at time step t by Mt ∈ Rn×d, i.e. the same size as the weight matrix W. The692

combined weights and modulation matrix yield the output neuron preactiviation values,693

ỹt = (W +W ⊙Mt)xt + b , (9)

where b = b1 with 1 ∈ Rn is a uniform bias term that can represent neuron firing rate thresholds as well as694

other network factors neglected in this simple model (see below). The parameter b is adjusted at initialization695

to ensure realistic response sparsity in the output population, but is otherwise fixed throughout training, see696

Sec. 4.3.1 below. Finally, the output preactiviations are passed through a nonlinear function, ϕ(·), representing697

the output neurons’ properties such as their firing rate threshold and maximum firing rate. Thus, the output698

population’s activity at time t is given by699

yt = ϕ (ỹt) , (10)
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where ϕ(·) is applied piecewise. Throughout this work, we use a rectified tanh as the output neuron’s700

nonlinearity,701

ϕ (x) = ReTanh (x) ≡

{
tanh(x) for x ≥ 0 ,

0 for x < 0 .
(11)

This activation was chosen since it has three desirable properties: (1) it is positive definite which was required702

for cell types in our model to make sense, (2) it is bounded, and (3) it is approximately linear for 0 < x ≪ 1,703

so small positive preactivation values become small activity.704

The FMSN’s behavior can be changed considerably by modifying the distribution of excitatory/inhibitory705

neurons in the input neuron population. Note that since the neuron types only influence the sign of the706

weights/synapses leaving the neurons, the cell types of the output neurons do not affect the FMSN’s behavior.707

When we investigate the FMSN in the main text, for simplicity, we consider a setup that only has excitatory708

neurons in its input layer. The bias adjustment within the output population that we perform to ensure709

realistic firing rates helps balance excitation/inhibition in the output population that only explicitly receives710

excitatory input. We find that the bias term is always negative for the output population firing rates we711

consider, which can be thought of a uniform inhibitory input into the output neuron population that provides712

E-I balance.713

In the supplement, to understand the effect of FMSs applied to inhibitory synapses, we also consider cases714

where input population of the FMSN has both excitatory and inhibitory neurons in it. In these cases, the715

unmodulated weight matrix, W, has some columns with all positive nonzero elements and some columns716

with all negative nonzero elements. We study a simple case where the FMS mechanism applies to synapses717

belonging to either the excitatory or inhibitory input neuron populations. Of course, it is also possible to718

have modulations acting on both populations, but we leave such investigations to future work. All other719

properties of the FMSN, including the firing rate adjustment, remain unchanged.720

4.1.3 Cortical microcircuit network721

A rough schematic of the cortical microcircuit network is shown in Fig. 2c. The three primary populations722

we consider in the network are the excitatory, SST, and VIP neuron populations. We will index variables723

belonging to these three populations using p = E, S,V, respectively. Lastly, we also include an additional724

population of excitatory neurons that drive the stimulus history inputs into the VIP population and represent725

a subset of the top-down input into the cortical layer we explicitly model. We denote these additional726

excitatory neurons by the superscript ‘hist’. We do not make any attempt to model behavioral effects related727

to the image change task, including the licking response to the task [42].728

We begin by introducing the cortical microcircuit without any FMS mechanisms added to its synapses.
The preactivation response of the excitatory, VIP, and SST populations are respectively given by

ỹE
t = WE,EyE

t−1 +WE,VyV
t−1 +WE,SyS

t−1 + bE + nE
t + xstim

t , (12a)

ỹS
t = WS,EyE

t +WS,VyV
t−1 +WS,SyS

t−1 + bS + nS
t . (12b)

ỹV
t = WV,EyE

t +WV,VyV
t−1 +WV,SyS

t + bV + nV
t +WV,histxhist

t , (12c)

where Wp,p′
represents the synapses connecting presynaptic population p′ to postsynaptic population p, bp

729

is the bias vector of population p, and np
t represents additional noise injection (see Sec. 4.2.2 below). Note730

the three populations do not update in sync: at time t the excitatory population’s activity is updated first,731

followed by the SST population, and then VIP. Asynchronous updates were found to help numerical stability.732

This order is also biologically motivated since the canonical input to layer 2/3 from layer 4 pyramidal neurons733

is much weaker to VIP and SST than pyramidal neurons.734

All the preactivation responses pass through a non-linearity,735

yp
t = ϕ (ỹp

t ) , for p = E,S,V , (13)

where ϕ (·) = ReTanh (·), ensuring the rate remains positive definite, see Eq. (11).736

The excitatory and VIP populations both receive additional external input related to the stimulus change737

task. Specifically, xstim
t and xhist

t represent the present stimulus input and activity of the stimulus history738
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excitatory neurons, respectively (see Sec. 4.2.2 below for details). Note the activity of the excitatory neurons739

that drive the stimulus history signal is an input to the network, so we have denoted it by xhist
t rather than740

yhist
t−1 for clarity. Both stimulus inputs, xstim

t and xhist
t , are fed directly into an excitatory population that in741

turn drives the rest of the circuit through sparse synapses. The primary difference between them is that the742

former drives an excitatory population inside the microcircuit while the latter drives an excitatory population743

that is assumed to reside in a higher cortical area that we do not explicitly model. The stimulus history744

excitatory neurons represents a subset of top-down information fed into the microcircuit and were chosen to745

feed into the VIP population since they are known to receive feedback input [20].746

The Wp,p′
are sparse matrices whose elements are also drawn according to Eq. (8), i.e. in the same way747

as the weight matrix of the FMSN. Once again, the cell type of the presynaptic population p determines748

the sign of the nonzero Wp,p′
elements, and thus Wp,E ≥ 0, Wp,S ≤ 0, and Wp,V ≤ 0 for all p. For a given749

Wp,p′
, the sparsity of the synapses (i.e. pW ), magnitude of the nonzero elements (i.e. w), and relative number750

of cells in each population are all set by experimental literature [17, 18, 20], see Sec. 4.4.1 below. In short,751

for all Wp,p′
, we take pW to be the corresponding entry in Fig. S4d and w to be the corresponding entry in752

Fig. S4b, up to a multiplicative constant c. Importantly, c is the same for all Wp,p′
, and thus the relative753

connection strengths between populations is completely fixed by experimental results, up to changes from754

FMSs.755

Since WV,hist represents an unknown subset of top-down excitatory to VIP connections, we simply sets756

its sparsity equal to the within-layer excitatory to VIP connections. Its synaptic strength is set to a value757

comparable to the within-layer excitatory connections so that the omission ramping response has a comparable758

magnitude to image responses.759

All three biases are parameterized similarly to the FMSN, i.e. bp = bp1 where 1 is the all 1’s vector in the760

corresponding space. Once again, the bp are adjusted at initialization to ensure realistic response sparsities in761

all three neuron populations, see Sec. 4.4.2 below.762

Adding FMSs. So far, the network above has no FMS and thus has no way of adapting to the stimuli763

over time. We add the following three FMS mechanisms onto synapses feeding into the VIP cells,764

WV,E → WV,E +WV,E ⊙
(
M

(A)
t +M

(P)
t

)
, (14a)

WV,hist → WV,hist +WV,hist ⊙M
(AH)
t , (14b)

where the superscripts in (·) refer to distinct FMS mechanisms. Specifically, (A), (P), and (AH) respectively765

correspond to what we refer to as the FMSA, FMSP, and FMSAH mechanisms. Note we have added two766

FMS mechanisms to the same set of synapses, those going from the excitatory to the VIP population. When767

multiple sets of FMSs are present on the same synapses, we still enforce the cell-type bounds of Eq. (6). The768

three distinct modulation correspond to the three novelty responses we aim to model. They are respectively769

subject to the following update expressions,770

FMSA: M
(A)
t+1 = λ(A)M

(A)
t + η(A)yV

t

(
yE
t

)T
, (15a)

FMSP: M
(P)
t+1 = λ(P)M

(P)
t + η(P)1

(
yE
t

)T
/
√
nE , (15b)

FMSAH: M
(AH)
t+1 = λ(AH)M

(AH)
t + η(AH)yV

t

(
xhist
t

)T
. (15c)

Note that the updates are distinct, but are all of the same fundamental form we have used throughout this771

work, see Eq. (2). That is, the associative updates are dependent upon both the pre- and postsynaptic firing772

rates of the populations they connect, while the pre-only is only dependent on the presynaptic firing rates773

since we want it to represent STSP-like modulations that occur at timescales on the order of seconds. The774

three FMS mechanisms are subject to the corresponding bounds motivated from experiment discussed below775

Eq. (7). In practice, during training, the FMSA and FMSP modulations rarely come close to saturating the776

bounds imposed by experiment, while the modulations of FMSAH come close to their bounds at a much higher777

rate. For the exemplar network shown in Fig. 5, for the modulation matrix terms corresponding to nonzero778

synapses of M(A), M(P), and M(AH), only 1.5%, 0.09%, and 42% come within 50% of their bound and 0%,779

0%, and 23% come within 10% of their bound, respectively. Note for the slower modulation mechanisms,780

these rates were only calculated during roughly the last quarter of training time.781
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To adjust the parameters of the three FMSs shown above, we scan over learning rates of all three FMS782

mechanisms and determine which of these yields the best mean response fits, see Sec. 4.4.6 for additional783

details. We take τ
(A)
decay = 105 seconds, τ

(P)
decay = 1 second, and τ

(AH)
decay = 106 seconds based on the timescale of784

the corresponding biological mechanisms we wish to match onto and experimental observations (though see785

Sec. 4.4.7 for how these may change to expedite training).786

4.2 Tasks787

4.2.1 Familiarity-novelty task788

The familiarity-novelty task is used to train the FMSN discussed in Sec. 2.1. The neuronal encoding of789

different stimuli are represented by distinct random binary vectors, xα ∈ Rd, where α indexes the distinct790

stimuli. The random binary vectors are chosen to be sparse, i.e. the elements of stimuli α are given by791

xα
I = AbαI , bαI ∼ Bernoulli (pstim) , (16)

where A is some normalization factor. Since we generally use small pstim, we also ensure that there are a792

minimum number of nonzero elements for each xα.793

Prior to training, NF stimuli are generated and defined to be the familiar set, SF = {x1, . . . ,xNF}. The794

unsupervised training consists of passing the network a sequence whose elements are randomly drawn from795

the set SF (with replacement). After each sequence step, the network’s modulations are updated according796

to Eq. (2). Random Gaussian noise (iid to each element/sequence step)9, ϵ ∼ N (0, σϵ1), is added to the797

inputs before each element is passed through a ReLU function to ensure all elements are positive,798

xt = ReLU (xα + ϵ) . (17)

As mentioned in the main text, the sequence of familiar stimuli is ordered such that each element of the799

familiar set is seen every NF sequence steps. The order of the familiar set is shuffled within every NF window.800

Implicit in this training is that the time difference between successive stimuli is constant, a feature we801

relax in stimulus change detection task. The parameter λ that controls the decay can be thought of as802

corresponding to a decay length relative to number of examples.803

During and after training, we test the network’s response to both the familiar set of stimuli as well as804

a novel set of stimuli, SN = {x′1, . . . ,x′NF}, where xα ̸= x′β for all α and β. For these test responses, the805

network’s modulations are not updated after being passed through the network, so they do not affect the806

network’s response to future inputs. Measuring the network’s response at these steps is simply done for the807

sake of comparison and is not a necessary step in training.808

4.2.2 Stimulus change task809

The task we train our cortical circuit model upon is meant to imitate the image change task used in the810

experimental data we are modelling [23, 24]. At any given time, the input to the network consists of three811

distinct parts:812

1. Present stimulus: A stimulus input vector, xstim
t , representing a neuronal encoding of the current813

visual input at time t (see Figs. S5a,b for examples).814

2. Stimulus history information: Information about the recent history of the stimulus sequence,815

specifically an encoding of the amount of time that has elapsed since the last stimulus presentation,816

xhist
t (see Fig. S5c for example).817

3. Time-correlated noise: Additional noise input into each population representing contributions to818

the neuronal activity from factors neglected in our model (e.g. behavioral effects), np
t for p = E, S,V819

(Fig. S5d).820

9Results do not differ significantly from bit-flipped noise, both methods increase the dot product between two randomly
drawn stimuli, making the familiar stimuli harder to distinguish from the novel stimuli.
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All input sequences are discretized to a time length of ∆t = 1/32 s, or 31.25 ms. This time difference is821

chosen to match the experimental sampling rate.822

Before discussing the details of each of these inputs, we briefly review the experimental task, see Ref. [24]823

for significantly more details.824

Experimental image change detection task details. The image change detection stimulus sequence825

consists of image presentations in quick, regular succession. Stimuli are presented for 250 ms and then826

followed by a grey screen for 500 ms. The same image is presented several times in a row before a new image827

is chosen and the process repeats (Fig. 4b). In the experiment, mice are tasked with licking in response to an828

image change. The number of times an image is presented in a row is between 4 and 11, with the count being829

drawn from a truncated exponential distribution so that 4 image presentations in a row is the most likely.830

Additionally, there is a 3 second grace period after an image presentation before the trial restarts. Note the831

image after an image change is drawn from the entire set of possible images and as such there is a 1/8 chance832

that the same image is drawn again. These cases are not included when measuring the network response to833

image changes.834

The mice are first exposed to static grating and trained on a grating change detection task, which was835

found to improve the training time on the subsequent image change detection task. Mice are trained on the836

image change detection task from a set of 8 images that gradually become the familiar set (Fig. 4c). During837

these training sessions mice learn to perform the task. Once mice reach a particular performance threshold838

on the image change detection task using the familiar set, their neuronal responses are recorded over several839

familiar imaging sessions that are separated by at least one night of rest. Generally, the second of these840

sessions is a “passive” imaging session where they do not need to perform the task to obtain rewards (see841

Ref. [24] for exact training sequences). Afterwards, a novel set of 8 images are introduced into the same842

image change task. Without any additional training, the mices’ neuronal responses while performing the task843

are recorded over several novel imaging sessions. Once again, generally the second of these is a “passive”844

session and is omitted from this analysis. After at least one session of exposure to the novel imaging set, the845

mice’s responses while performing the same task on the novel imaging set are gathered in what is called a846

novel-plus imaging session.847

During only the imaging sessions, i.e. not included in the training sessions, each image has a 5% chance848

of being omitted. For an omissions, the grey screen continues to be displayed for the 250 ms where the image849

would have been presented (Fig. 4a, middle). There is no limit on the number of omissions that can occur in850

a row, though longer chains become increasingly rare. Omissions cannot occur for the image presentation that851

would be a change or the pre-change image. This means that all omissions, including sequences of multiple852

omissions, are surrounded on either side by the same image.853

We now discuss the three distinct parts of the input to the cortical microcircuit network.854

Present stimulus. The present stimulus sequence is constructed to represent a neuronal encoding of the855

equivalent visual stimulus of the experiment. It is constructed to closely match the statistics of the image856

change detection task the mice are trained upon. Since image presentations last 250 ms and are separated by857

500 ms of grey screen (ignoring the possibility of omissions for the moment), there are 250 ms/∆t = 8 time858

steps of the neuron encoding of the image followed by 500 ms/∆t = 16 time steps of the neuronal encoding859

of grey screen (though see below for additional details). This sequence then repeats, with the image identity860

of each 750 ms window being chosen so that image changes and omissions occur at frequencies described861

above. Different images encodings are represented by distinct random binary vectors drawn in an identical862

manner to that described in Sec. 4.2.1 above. Similar to experiment, the familiar and novel sets are chosen to863

have 8 distinct stimuli in them. All inputs have random Gaussian noise added to them. As observed in the864

experimental data, neuronal activity is low during stimulus times where the grey screen is displayed, so the865

present stimulus inputs representing grey screen encodings only consist of the added Gaussian noise discussed866

above. When an image omissions occurs, the image input is simply replaced by additional grey screen input.867

We allow for at most two omissions to occur in a row.868

During the time steps representing an image presentation, there are three additional contributions to the869

stimulus sequence used to mimic the responses of experimental studies. First, to best match mice response870

data, we delay the mean onset of the image presentation stimulus by two time steps, corresponding to871
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2∆t ≈ 62 ms, relative to when we consider the image stimulus has begun display. This has the net effect of872

shifting the neuronal responses later in time relative to the image presentation time period (for example,873

see Fig. 5) and approximately matches known delays of the visual cortex to visual stimuli [66] as well as874

the experimental data [23, 24, 66]. Second, we also smooth the input stimulus with a smoothing kernel to875

represent the ramping and decay of the image response to the input sequence [66]. The smoothing kernel is the876

normalized experimental mean excitatory response, deconvolved with the experimental stimulus smoothing877

function (see Sec. 4.4.5).10 The resulting smoothing kernel from this process is shown in Fig. S5f. Third,878

for each cell we allow the onset of the image stimulus to vary by ±∆t so that not all cells receive input879

representing the image presentation at the same time step. This incorporates effects of lag times of stimulus880

responses across a population and is also useful for numerical stability so that all cells do not respond in881

unison. We incorporate all three of the above effects on a cell-by-cell basis into a stimulus kernel kstim
t . If882

xt is the random binary vector representing the current image being presented, then the full raw stimulus883

stimulus input is given by884

xstim
t = ReLU

(
kstim
t ⊙ xt + ϵ

)
, (18)

where ReLU(·) = max(·, 0) and ϵ ∼ N (0, σϵ1). See Figs. S5a,b for exemplar present stimulus input for an885

image change and image omission.886

Unless otherwise stated, the present stimulus inputs are taken to have average sparsity p = 0.05 with887

a minimum sparsity of 0.025 for any given stimulus. The input normalization was chosen so that nonzero888

elements had size 0.2. Since time-correlated noise is already injected into each population (see below), the889

present stimulus noise was taken to only be σϵ = 0.03× 0.02.890

Since mice can lick mid-sequence and this can reset the task mid-trial, the experimental distribution of891

number of presentations between a given image is thus fairly heavy tailed. Across the entire experimental892

dataset, we find there to be on average 20.4 image presentations between changes. To ensure shorter trial893

times, we truncate the maximum number of image presentations between a change to 75. This only omits894

the 2.3% of image changes on the tail, and shifts the average number of images between a change to 18.4.895

See Figs. S5g,h for a plot of the true number of image presentations until the next presentation. We do not896

find using the experimental image-change-distribution versus the idealized one that assumes no licks affects897

the mean response results significantly. However, in the cell subpopulation analysis the fitting metrics are898

dependent upon the global distribution of change occurrences and so the truncated experimental distribution899

was used in said analysis.900

Stimulus history information. As mentioned above, we also pass the network information about the901

recent history of the stimulus, in particular the time that has elapsed since the last image presentation.902

This information is assumed to be encoded in a subset of the top-down input to the cortical circuit. This903

additional input into the network is necessary to observe responses that are dependent on the relative time904

between image presentations, e.g. the omission ramps. The top-down inputs could be produced from the905

present stimulus sequence described above using, say, a simple recurrent network that counts the time steps906

since the last stimulus and encodes said information in output neuron responses that match known stimulus907

tuning properties. As our goal for this study is the effects for FMS in the local circuit, we avoid an explicit908

implementation of such history encoding and simply input it directly into the network.909

In this section, we denote the time that has elapsed since the last image presentation at time t by s, which910

is measured in seconds. For example, with no omissions, s = 500 ms immediately before the onset of the next911

image presentation. For times when the stimulus is currently being presented, s = 0. The time since the last912

image presentation is maximized after omissions, and since at most we allow for two successive omissions,913

0 ≤ s ≤ 2 seconds.914

We denote the neuronal encoding of the time s by r(s). We assume that encodings of times that are close915

together are more similar than times further apart, as measured the dot product between the two representations.916

That is, if |s− s′| < |s− s′′|, then r(s) · r(s′) > r(s) · r(s′′).917

The temporal encoding input is generated by creating a population of neurons that are each tuned to a918

particular s. For simplicity, we take the neuronal tuning curves to take the shape of a Gaussian, though our919

10In practice, smoothing the present stimulus signal from the L4 excitatory response would have been more realistic. However,
the depth differences between L2/3 and L4 did not change the excitatory response significantly, so we have just used L2/3 for
simplicity.
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results easily generalize to other tuning curves such as cosine bumps. To match experimental results, we920

assume the population of neurons’ tuning curves are centered at times that are logarithmically distributed921

and that the width of each tuning curves is proportional to their center [67–69]. Specifically, we take the922

neuron tuning centers to be logarithmically distributed between 10−2 to 101 seconds. For neuron I centered923

at time sI , its width is directly proportional to the size of the center of its tuning, σI = 1
3sI . Altogether, the924

tuning curve of neuron I is925

rI(s) = exp

(
− (s− sI)

2

2σ2
I

)
. (19)

See Fig. S5i for exmplar raw turning curves. In practice, the longest delay time between images is at most926

two seconds, so those neurons tuned to higher times are almost always silent in our setup. The resulting927

neural population responses are then each individual neuron’s response to the corresponding s (Fig. S5j).928

Due to the higher density of neurons centered to small s, the relative magnitude of the population response929

vectors decreases gradually for larger times (Fig. S5k). Notably the trend in magnitude is the opposite to930

that of the ramping response, i.e. smaller s have the largest magnitude. A verification of the decrease in931

similarity for times further apart is shown in Fig. S5l. Since we assume this history stimulus represents some932

unknown subset of the total top-down input into the VIP population, we simply set the magnitude of the cell933

activity to be comparable to the present stimulus input so that the omission ramping has a similar response934

to image presentations.935

Similar to the present stimulus input, noise is added to the stimulus history stimuli and thresholded to be936

positive definite,937

xhist
t = ReLU (r(s) + ϵ) . (20)

We note that this encoding of the history of what the mouse viewed is purposely simplistic and likely938

misses other effects that could be observed experimentally. For instance, an image that lasts longer or a939

shorter delay would not elicit a large response from the VIP cells despite these being outside of the the940

normal rhythm of the task. A more thorough encoding of the history of the task would allow the model to941

react to additional disruptions to the regular task flow, but we leave such exploration for future work.942

Time-correlated noise. To account for contributions from neurons not included in the circuit, as well as943

contributions from other task-relevant effects (e.g. behavior), the excitatory, SST, and VIP populations are944

injected with additional time-correlated noise (in addition to the noise added to the present stimulus and945

stimulus history inputs described above).946

Specifically, the noise is generated by convolving white noise with a Gaussian smoothing kernel over time,947

and then weighting the noise injected into each neuron to account for any variance the population may have948

from such effects. The continuous Gaussian smoothing kernel is given by k(t) = 1/
(
πσ2

)1/4
exp

(
−t2/2σ2

)
949

with σ = 125 ms. The discrete smoothing kernel, kt, is found by evaluating the above at kt = k (t∆t) for950

t = −(σ/∆t)2, . . . , (σ/∆t)2. Note the normalization of k(t) is chosen such that the convolution does not951

change the variance of the uncorrelated noise, e.g.
∑

s k
2
t ≈ 1. The weight accounting for how much noise is952

injected into neuron i is wi ∼ U(0, 1). Thus we have953

np
t = w ⊙ (k ∗ ñp)t , (21)

where ñp
t is the uncorrelated noise with ñp

t ∼ N (0,σp). As shown above, this noise is added to the954

preactivations of all neurons for each population. The variance of the noise for each population, σp = σp1, is955

adjusted to match experimental baselines, see Sec. 4.4.4 below.956

4.3 Familiarity modulated synapse network details957

4.3.1 Response sparsity adjustment958

With only excitatory synapses in the input later of the FMSN, all inputs to the output neuron population are959

positive and so, without any threshold/bias term, the output population would have a response rate of close960
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to 100% for every possible stimulus. Of course, such a response is not realistic over an entire population of961

neurons in the visual cortex and such excitation should be balanced by inhibition to achieve realistic response962

sparsities. This could be achieved by introducing inhibitory neurons with appropriate synaptic strengths963

into the input layer, in which case output neurons would receive somewhat balanced levels of excitation and964

inhibition. Indeed, we study such a network when we want to consider modulations on inhibitory neurons.965

However, for the FMSN investigated in the main text we choose a simpler solution that we discuss here that966

generalizes to the method we use to balance the cortical microcircuit below.967

The output neuron population’s response rate can also be adjusted by changing the population’s firing968

threshold/bias, b in Eq. (9). In this work, we only consider b = b1 with 1 ∈ Rn so that the point neurons we969

study only differ in connectivity and noise injection. For a given neuron, a negative b effectively acts as a970

uniform inhibition across all possible inputs. Across the entire output population, a negative bias allows the971

neurons to have more realistic response sparsities despite only receiving excitatory inputs.972

To adjust b to get the desired response rate, we first draw a validation set of size 100 from the same973

distribution that generates the familiar and novel sets. This entire validation set is passed through the974

network at initialization with b = 0, with no adjustment to the modulation matrix M. Given the known975

activation function, Eq. (11), from the validation set’s preactivation values the bias needed to have the desired976

response sparsity across the validation set can be exactly computed. In short, all preactivation values (across977

the stimuli of the validation set and output neurons) are sorted by value, and the bias is chosen such that the978

desired percentage of these values are above 0. Since the familiar and novel sets are drawn from the same979

distribution as the validation set, this yields a similar response rate over said sets without being directly fit980

to them. Note this procedure means that the network has the desired response sparsities at initialization,981

but the induced modulations during training can change the response rate of the novel and familiar sets982

(Fig. S2a).983

4.3.2 Decoding accuracy and dimensionality984

For the associative weakening FMSN example considering in the main text, the change in output activity985

of the familiar set significantly affects the decodability of the output signal. Post-training, decodability of986

stimulus identity within the familiar set is significantly lower (0.46±0.05) while that of the novel set is perfect987

(1.00 ± 0.0, mean± std). The difficultly in decodability is reflected in the effective dimensionality of each988

set’s output activity: the novel outputs occupy a low-dimensional space (D = 6.3± 1.5) while the familiar989

outputs are small enough that their signal is hard to distinguish from noise and thus the space they occupy is990

significantly higher dimensional (D = 48.5± 7.1, mean± std, Figs. S2b,c). Both the above properties are a991

function of the amount of modulation within the network, so the decoability/dimensionality of the familiar992

and novel sets can vary significantly by, say, changing the modulation learning rate (Figs. S2m,n).993

To compute the decoding accuracy of the familiar and novel sets, we use the same input noise that is used994

during training (see above) to create 1000 noisy versions of each stimulus. Each noisy stimulus is then passed995

through the trained network, resulting in a total of 8000 output responses across the entire familiar or novel996

set. Said responses are then labeled by their index within their set and a linear SVC is used to decode them997

using 10-fold cross validation to compute test accuracies. Specifically, we use sklearn.svm.LinearSVC with998

default parameters other than max iterations=1e5. The approximate dimensionality of the representations999

reported in the main text are computed using the participation ratio of the ratios of variance explained of1000

the resulting PCA fits.1001

4.4 Cortical microcircuit details1002

4.4.1 Microcircuit structure1003

In our model, the total strength of the collection of synapses from a given presynaptic population into a given1004

postsynaptic neuron depends on three major factors:1005

1. Connection probability: The probability for a given synapse to exist between any two cells of the1006

given pre- and postsynaptic type (Fig. S4d).1007

2. Relative cell counts: Along with the mean connection probability, the number of presynaptic cells in1008

a given population affects the mean number of inputs a given postsynaptic neuron receives. Since our1009
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network does not explicitly model true cell counts found in the visual cortex, this enters as a relative1010

value that we can then normalize by some baseline number (Fig. S4e).1011

3. Synapse strength: The strength per synapse, which we measure by the mean time-integrated1012

postsynaptic potential (PSP), see below (Figs. S4b,c).1013

When layer-specific experimental observations are available, we take the values given for L2/3 of the visual1014

cortex. The three factors above directly affect both the population count in our microcircuit model as well as1015

the explicit form of the Wp,p′
. It can also be helpful to track the mean population strength, a product of the1016

three factors above1017

rp←p′ =
np

nbaseline
× P conn.

p←p′ × ZPSP
p←p′ . (22)

In practice, we take nbaseline = nS, which gives us the inter-population connection strengths shown in Table 11018

and Fig. S4a. Although they are not explicitly included in our microcircuit model, we include data for PV1019

neurons here as well (see Discussion for further details).1020

1. Connection probability: The connection probabilities between pre- and postysnaptic populations are1021

computed from the fully adjusted connection propabilities of Ref. [20] (Fig. S4d). In said work, it was found1022

that connection strength was independent of connection probability. Additionally, excitatory connections1023

most strongly distinguished by postsynaptic connection, while inhibitory by presynaptic connection [20].1024

The adjusted connection probabilities of Ref. [20] are reported as fits that are dependent upon the distance1025

between cells in addition to the dependence on pre- and postsynaptic neuron type. Since we do not explicitly1026

simulate the spatial distribution of cells in our model, we use length scales from the experimental measurements1027

to set distance-dependent connection probabilities. Specifically, since the imaging field of the two-photon1028

experiment was 400µm× 400µm [24], we randomly generated cells locations within a two-dimensional box of1029

this size and then computed the average connection probability between all possible pairs. The connection1030

probability decay lengths were taken to be 100µm for E→I or I→E and 125µm for E→E or I→I [20]. From1031

the randomly generated cell locations, this resulted in a reduction of pmax, i.e. the connection probability if1032

the cells were right on top of one another [20], by 0.25 for E→I or I→E and 0.34 for E→E or I→I. Taking1033

into account this distance-dependent reduction yields the connection probabilities shown in Fig. S4d.1034

2. Relative cell counts: We assume the microcircuit has a ratio of cell counts of Excitatory : VIP : SST1035

found in the investigation of L2/3 of the visual cortex of mice from Ref. [18] (reproduced in Table 1, Fig. S4e).1036

However, in order to maintain a reasonable cell counts for numerical simulation, we instead use the ratio1037

nE : nS : nV = 2 : 1 : 1, and adjust each population’s outgoing synapses to account for any discrepancy in1038

their simulated cell count relative to their experimental cell count. For example, since in simulation there are1039

only twice as many excitatory to SST cells, but from experimental data their ratio is closer to 27.35 : 1, we1040

strengthen each excitatory synapse by a factor of 27.35/2 = 13.675 to account for the missing simulated cells.1041

From Fig. 4g, we see this scaling of synaptic strengths to account for the differences in cell counts in our1042

microcircuit maintains the relative population strengths.1043

3. Synapse strength: We take the time-integrated voltage over a typical postsynpatic potential (PSP)1044

pulse fit as a measure of the synaptic strength, where1045

ZPSP = PSP′unmod × Teff (23)

where PSP′unmod is the adjusted PSP amplitude when the neuron is not being facilitated or depressed from1046

STSP effects [20] and Teff is the effective time of the PSP pulse.1047

We compute an adjusted PSP amplitude that accounts for potential differences of the in vitro measurements1048

versus what we assume to be a cell’s in vivo operating potential [20]. These differences are distinct across1049

cell types, and thus can affect the relative strengths of excitation and inhibition within the cortical circuit.1050

To arrive at the adjustment factor, we assume the experimental current is proportional to the difference in1051

the experimental reversal potential and the resting potential. Furthermore, we assume the in vivo current is1052

proportional to the difference in reversal potential and the potential where we presume neurons are generally1053
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Rel. Count Post Exc. Post SST Post VIP Post PV
Pre Exc. (L2/3) 27.35 0.105 0.750 1.000 0.908

Pre SST 1.00 −0.081 −0.024 −0.356 −0.060
Pre VIP 1.67 −0.008 −0.227 −0.020 −0.004
Pre PV 1.38 −0.262 −0.107 N/A −0.353

Table 1: Relative cell counts and inter-population connection strengths of the various cell
populations. Second column shows relative cell counts for Layer 2/3, and it is assumed that 70% of Htr3a
cells are VIP [18]. Third through sixth column shows population connection strengths for various pre- and
postsynaptic combinations. See Sec. 4.4.1 for details on how relative population connection strengths are
computed. Note, although PV neurons are not included in our microcircuit model, they are included in this
table for completeness. The ‘N/A’ entry corresponds to synapses for which there is no data in Ref. [20].

close to operating, which we take to be the threshold potential. The constant of proportionality in both cases1054

is taken to be the neuron’s conductance, and thus the ratio of these differences gives the adjustment factor of1055

the PSP value, namely1056

PSP′unmod =

(
Vrev − Vthresh

V
(exp)
rev − V

(exp)
rest

)
× PSPunmod (24)

where Vrev is the estimated reversal potential of relevant channels in the presynaptic neuron, Vthresh is the1057

estimated threshold potential of the postsynpatic neuron, V
(exp)
rev is the experimentally measured reversal1058

potential that is dependent on neurotransmitters of the presynaptic neuron, and V
(exp)
rest is the experimentally1059

targeted resting potential that is presynaptic dependent.1060

From the literature, we use Vrev = 0 mV for excitatory [70] and Vrev = −82 mV for inhibitory presynaptic1061

populations [71, 72]. We determine Vthresh from electrophysiology data from the Allen Cell Types Database,1062

found at https://celltypes.brain-map.org/data [19]. Specifically, the Vthresh for each sweep and averaging1063

over all sweeps for a given specimen identification, then averaging these values across the Cre-line. We only1064

vary Vthresh by postsynaptic cell identity. The Cre-lines, total cell count, and computed Vthresh are shown in1065

Table 2.1066

Since only a small subset of synapses have experimentally measured V
(exp)
rev , we take the median value1067

across synapses of a given pre- and postsynaptic neuron type and use this across all cells. We do not find1068

this impacts the resulting V ′rest significantly. Finally, for V
(exp)
rest , we use the targeted holding potential from1069

experiment, which are −70 mV for excitatory presynaptic cells and −55 mV for inhibitory presynaptic cells.1070

Junction potential corrections of −14 mV are accounted for at all steps of this calculation [19]. Altogether,1071

these above computation yields the PSP′unmod/PSPunmod ratios shown in Fig. S4h.1072

The effective time of the PSP pulse is computed by integrating the PSP fits over time [20]. Up to an1073

amplitude correction, synapse PSPs were fit using the following function1074

FPSP (t) =

{
1

Anorm

(
1− e−t/τrise

)2
e−t/τfall t ≥ 0 ,

0 t < 0 ,
(25)

where Anorm = FPSP (Tmax) with Tmax = τrise ln (1 + τfall/τrise) is a normalization factor to ensure the1075

maximum of FPSP is equal to 1.0 [20]. Integrating this expression over time, we find the effective time of the1076

PSP fit,1077

Teff. =

∫
FPSP (t) dt =

1

Anorm

2τ3fall
(τrise + τfall) (τrise + 2τfall)

. (26)

This procedure yields the values shown in Fig. S4i.1078

We computed ZPSP for each synapse and then averaged across all synapses of the given pre- and1079

postsynaptic cell type (see Fig. S4f for count). For certain pre- and postsynaptic populations, we found the1080

fits of τfall were exceedingly high, and so any synapse with a τfall > 300 ms was omitted. In practice, this1081

only resulted in a small decrease in the number of synapses for each pre- and postsynaptic cell combination1082

(Fig. S4f).1083

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2024. ; https://doi.org/10.1101/2023.08.16.553635doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.16.553635
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cell Type Cre line Cell count Vthreshold (mV, mean±std)
Exc. Cux2-CreERT2 81 −47.4± 6.0
SST Sst-IRES-Cre 123 −41.0± 7.6
VIP Vip-IRES-Cre 97 −47.2± 8.7
PV Pvalb-IRES-Cre 217 −35.0± 8.1

Table 2: Threshold voltage estimates. Values are computed across an entire session sweep and then
averaged across a given specimen ID and then Cre-line. From the Allen Cell Types Database, found at
https://celltypes.brain-map.org/data [19].

4.4.2 Response sparsity adjustment1084

Similar to the FMSN, the biases/threshold of the various populations are adjusted in order to set baseline1085

response sparsity at initialization. Since we consider 3 primary populations of neurons in this work, this1086

procedure amounts to the fitting the 3 parameters of the network at initialization, namely bE, bS, and bV that1087

determine the biases in Eq. (12). Again like the FMSN, since our model neglects many influences that affect1088

the firing rates of the various populations, e.g. from inputs from other layers or from PV neurons, we assume1089

that this bias adjustment partially accounts for the mean activity of other possible inputs. In particular,1090

since some populations receive fairly unbalanced inputs from excitatory or inhibitory populations (i.e. the1091

VIP population), this threshold adjustment is assumed to at least partially account for excitatory-inhibitory1092

balance. Unlike the FMSN, our microcircuit model has recurrent connections, and so any adjustment to1093

response sparsity at one time step affects the inputs and thus the response sparsity of subsequent time steps.1094

This leads us to a different bias fitting procedure to account for this additional complication. Finally, note1095

this entire procedure is performed at the network’s initialization, prior to any unsupervised training, and is1096

thus insensitive to FMS mechanism placement or parameters.1097

The neuron population thresholds (bE, bS, and bV) are adjusted using supervised training to reach a1098

certain population response sparsity over a validation set prior to training. The validation set consists of the1099

8 familiar input vectors as well as 504 additional vectors (for a total of 512) drawn from the same distribution.1100

In this work, all neurons of the same population share the same firing threshold parameter, meaning particular1101

neurons within a given population may fire more/less over the given validation set.1102

In particular, the response rate is adjusted with respect to the loss function1103

LMSE(g, ĝ) =
∑

p=E,V,S

(
gp − ĝp

gp + ϵ

)2

, (27)

where g = (gE , gV , gS) are the experimental response rates to be matched, ĝ = (ĝE , ĝV , ĝS) are the network’s1104

approximate response rates, and ϵ = 10−4 provides numerical stability. Note here we use a weighted mean1105

squared error loss so that populations with smaller response rates are treated on even footing. See Fig. S5m1106

for exemplar fit results. For a given network population p, the approximate response sparsity is computed as1107

ĝp =
1

np

np∑
i=1

σ (γỹpi ) , (28)

where σ (·) is the sigmoid function and serves as smoothed version of the step-function to enable backpropa-1108

gation, γ = 100 controls the rate of smoothing, and ỹpi is the preactiviation of neuron i, see Sec. 4.1.3.1109

As mentioned above, since the microcircuit we investigate is recurrently connected, adjusting the response1110

rate of one population influences the response rate of the other populations, so a self-consistent solution1111

across all neurons must be met. To do so, the validation set is repeatedly passed to the network and the1112

thresholds of all neuron populations are adjusted simultaneously until a self-consistent solution is found. To1113

best resemble the stimulus sequence the network will be exposed to during the stimulus change detection task,1114

the validation sequence is smoothed with a ramping function that matches the deconvolved signal. Response1115

rates are computed for the populations at the peak of the ramping function, and the thresholds of the various1116

populations are adjusted using backpropagation through time. Backpropagation is truncated to 10 time steps1117

backwards. We used ADAM with default parameters, a batch size of 128, and shuffle the validation set every1118
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10 network steps. Note we neglect the effect of the time-correlated noise that is injected into all neuron1119

populations in adjusting the firing rates. Additionally, we assume the stimulus history information during1120

images changes will be strongly suppressed, so within the validation set the corresponding part of the input1121

is just noise.1122

We use g = (0.05, 0.4, 0.2) throughout this work to represent target firing rates during an image response1123

in the novel session. We do not observe a large difference of the parameters bE, bV, and bS values across1124

different microcircuit initializations.1125

4.4.3 Response rates and variance explained1126

We note that we do not aim to exactly reproduce response rates or variance explained across cells that are1127

observed in experiment due to the significantly smaller neuron populations used throughout this work. As1128

mentioned above, for the parameters used in our cortical circuit model, individual cells receive synaptic1129

input from on order 10 to 100 other cells. Simulating larger populations of neurons would allow significantly1130

more noise to be injected into each individual cell since each cell, on average, has a smaller effect on output1131

behavior of other neurons.1132

4.4.4 Noise injection and matching baseline responses1133

From the experimental data, we see that all neuron populations exhibit a nonzero baseline mean response1134

between image stimuli (Fig. S6). Said baseline responses carry almost no information about image identity1135

or task information except within a small window after the image stimulus turns off, indicating they may1136

represent neuronal activity unrelated to the image change detection task [24]. To model the effects of these1137

baseline responses, we inject time-correlated noise directly into each neuron population. We adjust the1138

variance of this time-correlated noise to match the baseline response values observed in each population using1139

supervised training. Similar to the firing rate adjustment considered above, this again corresponds to only1140

one number per population, so this procedure fits a total of 3 parameters at the network’s initialization (and1141

occurs after the firing rate adjustment). Once again, since this procedure occurs at network initialization, it1142

is completely independent of FMS placement or parameterization.1143

We define the experimental baseline responses to be the mean population response halfway between the1144

pre-change image and the change image. With this definition, for a given population, the mean population1145

response doesn’t change much between the familiar and novel sessions, so we average across the two sessions.1146

Taking the novel session values yields baseline targets of 1.5 × 10−3, 6.1 × 10−3, and 3.4 × 10−3 for the1147

excitatory, VIP, and SST populations, respectively. Once again, we weight how well our model fits the1148

experimental data using a weighted MSE loss,1149

LMSE(δ, δ̂) =
∑

p=E,V,S

(
δp − δ̂p

δp + ϵ

)2

, (29)

where now δ = (δE , δV , δS) are the experimental baseline mean responses to be matched, δ̂ = (δ̂E , δ̂V , δ̂S)1150

are the network’s baseline mean responses. The network’s baseline responses are simply the mean over each1151

population response,1152

δp =
1

np

np∑
i=1

ypi . (30)

For simplicity, to initially fit the amount of noise injected into each population, we inject uncorrelated noise1153

with standard deviation σp. In practice, we find the addition of time-correlation causes a negligible change in1154

the networks’ baseline responses (and the kernel used to generate uncorrelated noise is chosen such that it1155

has approximately the same variance as its uncorrelated counterpart). See Fig. S5n for exemplar fit results.1156

Similar to the above firing rate adjustment, we pass uncorrelated to the network as the input stimulus1157

repeatedly until it reaches a self-consistent solution. We once again use ADAM with default parameters1158

and truncate backpropagation through time to 3 network passes backward. Both the present stimulus and1159

stimulus history information parts of the input are assumed to be just noise for the validation set. Due to1160
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additional contributions from the stimulus history input during grey screen times, the VIP baseline was found1161

to overestimate the noise needed to fit the data, so the noise injection was reduced after fitting by a fixed1162

percentage across all initializations.1163

4.4.5 Response smoothing1164

To get the raw cell responses, we convolve the output function with the same half-normal function to match1165

the responses of Ref. [24]. Explicitly,1166

g(t) =

{√
2

πσ2 exp
(
− t2

2σ2

)
t ≥ 0 ,

0 t < 0 .
(31)

with σ = 60 ms (Fig. S5a). We discretize the kernel along time steps separated by ∆t and normalize such1167

that the summed amplitude is equal to 1.0.1168

4.4.6 Fitting FMS learning rates1169

To determine the learning rates of the three FMS mechanisms we add to the microcircuit network, we perform1170

a brute-force scan over grids of learning rates and evaluate how well the resulting modulation effects fit the1171

novelty data. Note that procedure still amounts to fitting only three numbers: η(A), η(P ), and η(AH). We1172

evaluate the parameters by seeing how well their mean image change and omission responses match the1173

experimental data. Specifically, we compute the MSE loss of the mean fit to the experimental data over all1174

three cell populations,1175

LMSE (zc, zo; ẑc, ẑo) =
∑

s=F,N

∑
p=E,V,S

∑
t

ℓp
[(
zp,st,c − ẑp,st,c

)2
+ δs,F

(
zp,st,o − ẑp,st,o

)2]
(32)

where zp,st,c is the experimental mean image change response of population p in session s at time t relative1176

to the image change, ẑp,st,c is the cortical circuit model equivalent, zp,st,o is the omission equivalent, ℓp is a1177

population-dependent weight, and δs,F is a Kronecker delta function ensuring omission loss is only computed1178

during the familiar session (since we do not try to model the suppressed omission of novel sessions). We1179

take ℓV = 5 and ℓE = ℓS = 1, so that fitting the VIP response is more important than the excitatory or SST1180

populations. The sum over s represents a sum over the familiar and novel sessions. The sum over t represents1181

a sum over the relative time to the change/omission for a given mean response. We take the relative time1182

window to be 25 time steps before and after the corresponding image change/omission event, which is roughly1183

±800 ms.1184

4.4.7 Training schedule details1185

As discussed in the main text, the mices’ training schedule consists of many sessions that each last on the1186

order of one to two hours [24]. Several sessions are required for the mice to learn the task completely, meaning1187

often they have been exposed to on the order of ten hours of the image change task to achieve the task1188

performance threshold needed to progress onto imaging. Since neuronal responses are only collected after1189

this performance threshold is achieved, it is not yet known how many sessions are required for the neuronal1190

responses to the familiar image change task to stabilize.1191

For numerical tractability, we do not explicitly simulate the full tens of hours of the training sequences1192

for the microcircuit model. Instead, we expose the model cortical circuit to a shorter version of the task1193

and increase its learning rates so that it achieves stabilized responses to the familiar data over a shorter1194

simulated time. As we saw in the FMSN, higher learning rates are capable of becoming familiarized with1195

responses at a quicker rate, at the cost of fitting the noise to a greater degree. Thus, explicitly simulating full1196

training/imaging times at equivalent lower learning rates should only improve the results we have shown1197

throughout this work. Additionally, as we mentioned above, we did not find that using that exact distribution1198

of image change times affected any results outside of the cell subpopulation analysis, and thus to further1199

expedite training we reduced the number of repeated presentations that are between each image change to1200

between 4 and 9.1201
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An explicit demonstration of the training time equivalence is explored in the FMSN in Figs. S2o and S2p.1202

There, the FMSN is trained on sequences that vary in length over two orders of magnitude and it is shown1203

that, by correctly adjusting λ and η, the networks essentially develop almost identical responses despite the1204

large differences in training time. For two training sequence lengths T and T ′, the equivalence is given by1205

T → T ′ , η → T

T ′
η′ λ → (λ′)

T/T ′

. (33)

Thus, if T ′ > T , this corresponds to a reduction in the learning rate and decay rate for the longer train1206

sequence. Note the last relation is equivalent to τdecay → T ′

T τ ′decay.1207

Specifically, we train our cortical circuit models on 2000 seconds of change detection, which consists of1208

approximately 2660 total image presentations or 330 presentations of each familiar image. With the expedited1209

image change time, the training session consists of roughly 400 image change events.1210

To gather responses in cortical circuit model’s ‘imaging’ sessions, we monitor the network’s responses while1211

it continues to train. We measure the network’s responses on 250 seconds of change detection, but we take1212

advantage of batch training to allow us to gather responses to several distinct input streams simultaneously.1213

However, since the cell coding analysis is dependent on statistics over an entire session, we use the actual1214

image change distribution when collecting data for said analysis.1215

Since we would like to simulate the gradual familiarization of the novel set during the novel imaging1216

session, but we have used a larger learning rate to expedite the training procedure, we reduce the learning1217

rate of both FMSA and FMSAH during imaging sessions. There is evidence the mices’ response changes1218

between sessions even without explicit exposure to the stimuli [24]. This may be due to replay. To simulate1219

this additional familiarization that occurs between sessions, as well as additional stimulus exposure during1220

the passive session, we train the networks on the novel images for an additional session equal in length to the1221

imaging sessions, but at a higher learning rate, similar to training.1222

4.5 Cell subpopulation analysis1223

We reproduce the functional cell subtype analysis pipeline of Ref. [24] to compare our model to experimental1224

results on equal footing. Here we give a summary of said pipeline for completeness, additional details1225

and justification for certain parameters we match to the experimental analysis can be found in Ref. [24].1226

Throughout this section, we suppress indices that indicate the population and session of a given cell unless1227

needed.1228

4.5.1 Experimental data1229

We take the computed coding scores directly from Ref. [24]. The codings scores are for cells collected across1230

several different brain areas and layers. Although our cortical circuit model specifically takes cell counts and1231

connection data for L2/3, we note that the vast majority of VIP cells were found in upper cortical layers and1232

there does not appear to be a significant difference in coding scores with brain area [24].1233

The experimental coding score analysis focuses on four primary input feature categories (also called1234

‘components’): images, omissions, behavioral, and task. These feature categories are further subdivided into1235

various features that each have their own kernel and input data. For example, the image feature category1236

contains one feature for each of the eight possible images in the corresponding image set. When a feature1237

category is removed to compute its coding score (see details below), all feature kernels within that category1238

are removed. See Ref. [24] for additional details.1239

4.5.2 Model fitting1240

To understand how the various features coded in the task explain individual cell activity across the VIP, SST,1241

and excitatory populations, we fit each cell’s activity using a linear regression model with time-dependent1242

kernels. The feature categories we consider are image presentations, omitted images, and image changes.1243

With the exception of behavioral feature category, these are the same categories considered in Ref. [24].1244

Also note that the image change feature category can no longer be divided into behavior-dependent features1245

representing hits and misses.1246
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We thus define the ten time-dependent features vectors; fγ
t for γ = image1, image2, . . ., image8, omission,1247

change; to have value 1 at the onset of a given feature and to be 0 otherwise (Fig. 6a, top). These features1248

each belong to one of three feature categories; α = image, omission, change; with the eight image features1249

belonging to the ‘image’ feature category, and the omission and change features belonging to the category of1250

the same name.1251

For each cell i in each ‘imaging’ session, we fit its full session response (post smoothing, see Sec. 4.4.5), yi,t,1252

using time-dependent feature kernels, kγi,t, such that an estimate of its response is given by the convolution1253

ŷi,t =
∑
γ

(fγ ∗ kγi )t + ci , (34)

where ci is bias term. Each kernel’s width in time is matched to that used in Ref. [24]: the image, omission,1254

and change kernels persist for 0.75, 3.0, and 2.25 seconds after the corresponding feature onset, respectively.1255

The kernels kγi,t and bias terms ci are fit using ordinary least square regression with an L2 penalty (i.e.1256

ridge regression, see Ref. [24] for additional details). We evaluate the fit of the models by computing their1257

variance explained on a test set,1258

VEi = 1− VarT (yi − ŷi)

VarT (yi)
, VarT (yi) =

1

|T |
∑
t∈T

(yi,t − ȳi)
2
, (35)

where ȳi is the cell’s mean activity over the entire imaging session. Here, the T subscript on VarT indicates1259

the subset of sequence times over which the variance is computed and |T | represents the number of time1260

steps (see below). To find the optimal L2 regularization, we scan over regularization coefficients, evaluate1261

said fits, and choose the regularization that yielded the highest mean variance explained across the entire cell1262

population. Train/test splits are computed over distinct batches.1263

Since certain feature categories are quite sparse across the full input sequence (e.g. omissions and changes),1264

their corresponding feature kernels influence only a small subset of sequence time steps. To account for the1265

different possible kernel coverage over the entire sequence, below it will be useful to compute the variance1266

explained over only the subset of sequence time steps where a given feature category’s kernel(s) could have1267

possibly had an influence. Let T α be the set of time steps a feature category’s kernel(s) could have possibly1268

influenced the response given the sequence’s feature vectors fγ
t and the kernel widths in time. We define the1269

adjusted variance explained as1270

VE
α

i = 1− VarT α (yi,t − ŷi,t)

VarT α (yi,t)
, (36)

where the variance is now only computed on the subset of sequence times T α. Since |T α| is the number of1271

time steps in T α and |T | is the total number of sequence time steps in the session, |T α| < |T |, for all three1272

feature categories we consider. Specifically, |T α| < |T | ≈ 0.95, 0.19, and 0.16 for the image, omission, and1273

change categories, respectively. Lastly, note that from our definition in Eq. (35), the adjusted variance is1274

always computed relative to the mean cell activity over the entire session.1275

4.5.3 Coding scores1276

For each cell in each session, we compute its coding score with respect to each of the three feature categories1277

we introduced above. Intuitively, a category’s coding score represents how important its feature(s) are for1278

fitting the cell’s response. To compute coding score, we compare the cell’s adjusted variance explained of a1279

model fit without a given feature category’s kernel(s) to the model fit with all kernels. Explicitly, the raw1280

coding score is defined as1281

cαi =
VE

α

i,full −VE
α

i,sans α

VE
α

i,full

, (37)

where VE
α

i,full and VE
α

i,sans α are the adjusted variance explained of the models fit with all kernels and all1282

kernels except those belonging to category α, respectively.1283
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Finally, it will sometimes be useful to compare coding scores across sessions, in which case we want to1284

normalize all coding scores on equal footing. The across-session coding score of session s is defined as1285

c̄α,si =

(∣∣T α,S
∣∣

|T α,s|

)
VE

α,s

i,full −VE
α,s

i,sans α

VE
α,S

i,full

, where S = argmax
s

VE
α,s

i,full . (38)

Since we have three feature categories α and three sessions s, each cell will have a 9-dimensional across-session1286

coding score vector.1287

In experiment, a minimum variance explained is required for a nonzero coding score. Specifically,1288

VE
α,s

i,full > 0.005. Relative to the full fit variance explained, approximately 54.5%, 34.7%, and 52.1% of VIP1289

cell fits fall under this threshold in the familiar, novel, and novel-plus sessions, respectively. Since the cortical1290

microcircuit model has overall higher variance explained for all cell populations, we adjust this minimum1291

coding score threshold to compensate for the different distribution. Setting a threshold of VE
α,s

i,full > 0.0751292

results in a similar rates as experiment, namely 56%, 20%, and 54% of VIP cells across initializations fall1293

under this value.1294

4.5.4 Cell clustering1295

We use spectral clustering to cluster the set of c̄α,si for each population. In this subsection, we use ci to1296

denote the 9-dimensional coding score vector of cell i.1297

To compute the ideal number of clusters for cell population, we use two measures: the gap statistic and the1298

eigengap. For the gap statistic, we scan over cluster sizes from k = 2 to 15. We use the SpectralClustering1299

method from scikit-learn with default parameters and a given k to fit the data and compute the pairwise1300

Euclidian distance within each cluster. Let the nth cluster contain the set of cells indexed by in. Then,1301

D̄(k) =
1

k

k∑
n=1

∑
in ̸=jn

din,jn di,j = ∥ci − cj∥2 . (39)

This metric is computed for the actual clusters and compared to a baseline of shuffled data. The shuffled data1302

is the across-session coding scores shuffled across experience-level and feature categories. For the metric over1303

the shuffled data D̄s(k), the gap statistic is then D̄s(k)− D̄(k), and the optimal k is the one that maximizes1304

this metric (Fig. S8e).1305

To compute the eigengap, we compute differences in consecutive (ordered) eigenvalues of the Laplacian1306

of the coding score’s affinity matrix. Specifically, the affinity matrix has elements e−γd
2
a,b , with da,b the1307

Euclidean distance computed above. The eigengap is then the difference in eigenvalues of the Laplacian,1308

where large gaps are associated with sudden changes of the amount of similarity explained by additional1309

cluster partitions (Fig. S8d).1310

Once the optimal number of clusters is computed, we perform spectral clustering on the set of coding1311

score vectors of a given population for 150 different initial seeds. Across all these fits, we compute the1312

symmetric matrix of co-cluster probabilities for all cell pairs. This co-clustering matrix is then passed1313

through scikit-learn’s AgglomerativeClustering method, again with the optimal number of clusters1314

as determined above, with default parameters except for affinity=‘euclidean’ and linkage=‘average’.1315

Finally, cell clustered are ordered by mean across-session coding scores, with the clusters with the smallest1316

mean being ordered first.1317

4.6 Figure details1318

Figure 1 details. The equivalent plot for the pre-only dependent update rules is given in Fig. S1a.1319

Figure 2 details. The equivalent plot of 2c for strengthened modulations is shown in Fig. S1b.1320

For Figs. 2[d-g], an exemplar FMSN was trained using a set of 8 familiar stimuli. To ensure an equal1321

distribution of the familiar stimuli over the training time, a training schedule where each of the 8 familiar1322

stimuli is shown every 8 inputs is used. Note the order of the 8 examples is shuffled within every 8 inputs. The1323

FMSN has a population size of 300 input and 500 output neurons. As mentioned in the main text, we take1324
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all input neurons to be excitatory. The distribution of W elements is taken to have w = 1/300 and pW = 0.2,1325

see Eq. (8). For the stimuli, the sparse random binary vector population has pstim = 0.05, with a minimum1326

number of nonzero inputs of 1, and nonzero elements of size 0.15.11 The standard deviation of the Gaussian1327

noise added to the inputs is taken to be 0.1 times the size of the nonzero elements. We threshold is adjusted1328

at initialization such that the output population has a firing rate of 30%. The associative modulations obey1329

the bounds discussed below Eq. (7). We take η = −5× 102 and τdecay/∆t = 2× 104 so that the modulations1330

undergo practically no decay during the stimulus learning period. These parameters are used in FMSNs1331

throughout this work unless otherwise stated.1332

Note in order to track both the familiar and novel output activity throughout training, we treat them as1333

“test sets” when we pass them to the network, which distinguishes them from the sequential training set we1334

use to change the modulations of a network. For any input that belongs to the test set, we do not update1335

the synapses. In this way, we can understand what would be the network’s response to these various stimuli1336

without actually updating the network’s modulations as if it truly “saw” the stimuli during training. The full1337

familiar and novel sets were treated as test sets in order to track their output activity over training shown in1338

Fig. 2e.1339

In Fig. 2g we introduce the idea of an important synapse. An important synapse is stimulus dependent,1340

and as such a given synapse can be important for multiple stimuli. Important synapses are also defined before1341

any modulations in the network occur, and are thus independent of the FMS mechanism. We define important1342

synapses in our model as those synapses that satisfy two requirements: (1) there must be a synapse there1343

and (2) the synapse’s pre- and postsynaptic neurons both fire when the stimulus is input into the network1344

(without modulations). Formally, for a given stimulus input x, let y be the corresponding activity of the1345

output layer without any synapse modulations from FMSs. For example, for the FMSN, y = ϕ (Wx+ b), but1346

this generalizes to other possible postsynaptic expressions. The mask S that defines the important synapses1347

contained within W for stimulus x is given by1348

SIi =

{
1 WIiyixI ̸= 0 ,

0 otherwise .
(40)

Intuitively, whether or not a synapse is important tells us whether or not said synapse would be modulated1349

from an associative FMS mechanism. In practice, since we add noise to all stimuli being passed through the1350

FMSN, many synapses that are not important are also modulated.1351

Figure 3 details. Figure 3a quantifies how a vector’s distance from the familiar subspace influences its1352

output magnitude. The familiar subspace is defined as the subspace spanned by the familiar set of vectors.1353

To measure the distance of any random vector v ∈ Rd to this subspace, we orthonormalized the familiar1354

set to obtain the matrix F̃ ∈ R8×d and then formed the projection matrix onto the familiar subspace via1355

PF = F̃
(
F̃T F̃

)−1
F̃ ∈ Rd×d. A given vector’s distance from the familiar subspace is then measured by1356

calculating the cosine similarity of the vector and its projection onto the familiar subspace,1357

dF (v) =
v ·PFv

∥v∥2∥PFv∥2
. (41)

By this definition, any vector from the familiar set or any linear combination thereof has dF = 1.0. Note1358

that noise is added to all vectors before being passed through the network, and this noisy vector was used to1359

compute dF in Fig. 3a. Hence, even the noisy familiar vectors do not lie exactly in the familiar subspace.1360

Since simply drawing from the same distribution that generated the familiar and novel sets almost always1361

generates stimuli that are far from the familiar subspace, we generated inputs as follows. We first drew a1362

vector v′ from said distribution and also for each vector drew f ∼ U(0, 1) and a random vector from the1363

familiar set f . Then, each element of the final vector v has probability f to be the same as f , and is otherwise1364

equal to the corresponding element of v′. In this way, as f varies from 0 to 1, we interpolate between vectors1365

that are drawn from the original distribution (i.e. the novel set) to those in the familiar set. Finally, to1366

generate random vectors in the familiar subspace, 8 binary weights were drawn, their sum was normalized to1367

11Any two vectors drawn from the sparse random binary vector distribution we consider in this example have cosine similarity
of 0.14. Cosine similarity of stimuli decreases with increased sparsity and larger input dimension.
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1, and these weights determined the linear combination of familiar vectors that formed the new vector within1368

its subspace.1369

Figure 3b and 3c show how the evolution of the modulation matrix can change with different learning1370

rates, η, and decay rates, λ. Both setups use a more specialized learning schedule than those in Fig. 2.1371

Figure 3b consists of a single input vector passed over and over again to observe how quickly modulations1372

can grow and when they saturate. Figure 3c consists of a single input vector passed on the first time step1373

and then only noise afterwards. The goal of this plot is to observe how quickly the modulations created by a1374

single input can shrink over time.1375

Figure 3d shows the average result of several KS tests on a network as we scan over number of exposures1376

and the learning rate, η. With the exception of the parameters scanned over, the network and training1377

parameters used in this setup are identical to that in Figs. 2[d-g]. KS test results are averaged of log10(p)1378

over 10 distinct network/stimuli initializations. Figures 3[e-f] are the same as Fig. 3d, but now scan over the1379

FMS’s decay time constant and learning rate.1380

Figure 4 details. Additional details of the experimental training procedure can be found in Ref. [24].1381

Details of the model network (Fig. 2c) and task (Fig. 2d) can be found in Secs. 4.1.3 and 4.2.2, respectively.1382

In Fig. 4g, for synaptic matrix Wp,p′
between presynaptic population p and postsynaptic p′, the model1383

connection strength values were computed via1384

1

Np

∑
i,I

W p,p′

iI . (42)

Note here p and p′ are treated on unequal footing to account for the fact that, for a given postsynaptic cell,1385

the relative count of presynaptic inputs contributes to its total activity. The theoretical values were computed1386

via Eq. (22).1387

Figure 5 details. Unless otherwise stated, we take the cortical circuit model to have 400 excitatory, 2001388

VIP, and 200 SST neurons, though see Sec. 4.4.1 for how synaptic strength is adjusted to compensate for1389

deviations from realistic cell counts. Weights are initialized as described in Sec. 4.1.3, with multiplicative1390

constant c = 0.18. The three FMS learning rates are scanned over to determine the best fit to experimental1391

responses, see Sec. 4.4.6.1392

Figures 5a and 5h show comparisons of the mean responses of our cortical microcircuit model and responses1393

measured in experiment. We match event traces that are smoothed by a half-normal filter, see Sec. 4.4.5. See1394

Ref. [24] for significantly more details on the experimental details including details about the event extraction.1395

To extract the mean responses of the model, let the set of all times of interest (e.g. for image changes or1396

omissions) be denoted by T . We denote the mean response as1397

zpt =
∑
s∈T

N∑
i=1

ypi,t+s (43)

The full familiar and novel set responses of Fig. 5b are gathered similarly to the test sets of the FMSN.1398

That is, a test set consisting of the stimuli from the familiar and novel sets representing the image changes is1399

passed to the network at particular times during training. No temporal history or time-correlated noise input1400

is passed to the network in these test sets so that the VIP’s change in response to the present input from1401

FMSA can be isolated (the temporal history response also changes during training from FMSAH). Once again,1402

we do not update the network’s modulations during these passes, and so the microcircuit has no memory of1403

viewing these stimuli that are solely used to monitor training progress. The test set is evaluated at every1404

image change during training, specifically at the step corresponding to the peak of the smoothing kernel1405

(see Sec. 4.2.2 above). The modulation magnitudes of Fig. 5c are computed analogously to Fig. 2f and also1406

measured at each image change during training.1407

Figs. 5d, 5g, and 5k all show the mean responses as a particular FMS learning rate is varied. Networks1408

and tasks are initialized identically to those used to produced the analogous figures in Figs. 5a and 5h, the1409

only thing that changes is the corresponding FMS’s learning rate and thus its asymptotic modulations.1410
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The responses in Fig. 5e show the VIP response of a test set, evaluated in an identical manner to that1411

described for Fig. 5b above. The test set now consists of all novel stimuli with the temporal history part of1412

the input corresponding to the zero-time encoding and no noise input (since the FMSAH modulations have1413

stabilized, they no longer significantly affect the change in VIP responses for the relevant timescales shown1414

here). Test responses are again gathered at the step corresponding to the peak of the smoothing kernel. The1415

responses shown are averaged over 50 image changes measured during a novel session. Additionally, the1416

responses are normalized by the largest mean response. Fig. 5f shows the modulations of FMSP during an1417

exemplar image change of the novel imaging period. The modulation magnitudes shown are gathered at1418

every time step.1419

Fig. 5i shows an exemplar mean VIP response to all the encodings of time-since-last image from the1420

stimulus history input. These responses are once again gathered as a test set (see above), where now the1421

present stimulus and time-correlated noise inputs are taken to be zero so that the VIP’s change in response1422

from FMSAH can be isolated. Responses are gathered before and after training on the familiar image set.1423

The modulation magnitudes shown in Fig. 5j are gathered analogously to those in Fig. 5c.1424

Figure 6 details. Fig. 6a shows exemplar input features and fits over time. The top subfigure dots1425

correspond to when the corresponding input features is on, see Sec. 4.5 for additional details. The bottom1426

subfigure shows exemplar raw cell data, full kernel fit, and fit without the image kernels. Fig. 6b shows the1427

clustered VIP across-session coding scores from experiment [24]. The middle plot shows cluster-average1428

coding scores and the right plot shows average coding scores across all VIP cells. Fig. 6c shows the clustered1429

VIP coding score from the model, see Sec. 4.5 for details of how these are computed. Clustered are ordered1430

by smallest mean coding score to largest. Fig. 6d shows image kernel fits from the full kernel regression1431

model. Image kernel fits are averaged across all 8 image kernels, all VIP cells, and all initializations. Fig. 6e1432

shows fits and raw data of the cluster-aveeraged novel image (across-session) coding score as a function of a1433

cluster-averaged network property, see details of Figs. S9 and S10 for full details of this network property1434

and all others. Fits are done using linear regression and we use the resulting correlation to measure how1435

much a network property influences the value of a given across-session coding score. This plot shows only one1436

exemplar network property and one coding score, the resulting correlations across all 16 network properties we1437

investigate and all 9 coding scores can be found in Fig. S9. In Fig. 6f we show the median correlation for the1438

familiar and novel image coding scores as a function of two network properties for both the cluster-averaged1439

values and the raw cell data. Fig. 6g shows the amount of familiar and novel input cells belonging to a1440

particular cluster receive. Each point represents a single cluster for a given initialization. Points are colored1441

by whether they are familiar-coded (cluster 3), novel coded (clusters 2, 5, 7), both familiar and novel coded1442

(clusters 6, 8), or not image coded (clusters 1, 4). Fig. 6h is generated similarly, with clusters colored by1443

whether they are omission coded (clusters 4, 7, 8) or not (all other clusters).1444

Figure S1 details. Fig. S1a shows the equivalent of Fig. 1b for the pre-only modulation mechanism.1445

Figs. S1[c-f] use identical parameters to the FMSN in Fig. 2d, but with η = −5 × 100 and λ/∆t = 60.1446

Figs. S1[g-j] also use identical parameters to the FMSN in Fig. 2d, but with η = 5× 100. Figs. S1[k-n] also1447

use identical parameters to the FMSN in Fig. 2d, but with η = 1× 101 and λ/∆t = 180.1448

Figure S2 details. Figs. S2[a-d] show the additional properties of the example network shown in Figs. 2[d-g].1449

The output sparsity in Fig. S2a is thresholded above a minimum value to remove contributions from negligibly1450

small activity. In particular, we defined an output to be active if it is greater than 0.01 times the mean1451

nonzero activity at initialization across the entire validation set. For the example shown, this gives a threshold1452

of roughly 10−5. Figs. S2b,c show PCA projections of the output activity of the familiar and novel sets,1453

respectively. PCA is fit to the novel and familiar set independently in these plots. The percentages of1454

modulations shown in Fig. S2d are all relative to the number of nonzero synapses. The “modulation” curve1455

simply counts the number of synapses that have a nonzero modulation. Since this value approaches 1.0, the1456

majority of synapses that can undergo modulation have been modified, but many of these modulations are1457

quiet small and simply due to noisy activity. To compute the number of modulations that have been modified1458

by 50% and saturated the bounds of Eq. (7), we require the modulation to be above 50% of the weights1459

original magnitude and within 1% of the bounded value, respectively. Many modulations are quite close to1460

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2024. ; https://doi.org/10.1101/2023.08.16.553635doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.16.553635
http://creativecommons.org/licenses/by-nc-nd/4.0/


the bounded value but do not exactly saturate it because of the gradual decay from the λ term in Eqs. (3)1461

and (4).1462

As with the main text figure, to generate the rest of the figures in this supplemental figure we considered1463

the FMSN with: n = 500, d = 300, a training length of 80 (so that each familiar example is shown 10 times),1464

and all excitatory neurons in the input layer. Gaussian noise with a standard deviation of 0.1 times the1465

maximum input was added to all inputs. The weights are generated from a sparse half-Gaussian distribution,1466

with p = 0.2 of any connection being present. Bias is adjusted so there is a 30% firing rate at initialization.1467

Modulations decay with a timescale of τdecay/∆t = 2× 104 steps.1468

Figures S2[e-j] were generating by scanning of over various FMSN network/task parameters and performing1469

a KS test on the L1 magnitudes of the familiar and novel sets post-training. All were averaged over 101470

distinct initializations of the network and the task. Figs. S2e,f are scans over the lower and upper modulation1471

bounds with grey vertical lines representing the values that have been chosen based on LTP/D changes found1472

from experiments (see Eq. (7)). Fig. S2g scans over the noise scale, σϵ, see above Eq. (17), and the length1473

of the training sequence. Fig. S2h scans over the number of input and output cells, n and d, respectively.1474

Fig. S2i scans over FMSN initialization parameters, namely the weight sparsity, pW , see Eq. (8), and the1475

target response rate of the response sparsity adjustment, see Sec. 4.3.1. Note that for low weight sparisities,1476

the target response rates are often not met. Fig. S2j scans over the random binary vector parameters, namely1477

the sparsity, pstim and the magnitude, i.e. the equivalent of varying A, see Eq. (16).1478

Figs. S2k,l were generated by training the FMSN on different sized familiar sets. Note that we keep the1479

number of exposures to each familiar stimulus constant, namely 10 exposures to each familiar stimuli, so as1480

the size of the familiar set increases so does the training time. Since training is independent of the novel1481

set, the size of the novel set is always taken to be 128. Additionally, to put the network in a more optimal1482

parameter setting to generate distinct inputs, η = −104 was used. In Fig. S2k we use a different measure than1483

the usual KS-test because its p-values are heavily influenced by the size of the distributions being compared.1484

The fact that the mean responses of the familiar and novel sets begin to overlap for larger familiar set sizes1485

indicates that members of the two distributions become harder to distinguish from one another.1486

Figs. S2o and S2p investigate how networks trained on a different number of familiar examples evolves1487

approximately the same when their learning and decay rates are appropriately varied. We train identical1488

FMSNs on the same set of familiar images for 240, 2400, and 24000 time steps. To compensate for the1489

different number of examples each of the networks see, we lower the learning and decay rate appropriately.1490

Let η0 and λ0 be the learning and decay rates of the network with the fewest examples, the number of which1491

we denote by N0 = 240. Then, a network with N total examples has1492

η =
N0

N
η0 ; λ = (λ0)

N0/N or τdecay =
N

N0
τdecay,0 . (44)

That is, networks trained on more examples have their learning and decay rates appropriate decreased or,1493

equivalently, their decay timescale increased. Figs. S2o and S2p show the evolution of a single network on a1494

single set of familiar examples.1495

Figure S3 details. Fig. S3b tracks the magnitude of the Mt in identical networks that only differ in the1496

sign of η. The networks are identical to that used in Fig. 2, with η = 104 and η = −104. Figs. S3c, d show1497

results form the same networks, with the output magnitudes of the familiar and novel sets as a function of1498

training time. Since all input neurons are excitatory, strengthening corresponds to η > 0 and weakening1499

corresponds to η < 0. Fig. S3e, f show results from several networks with varying η magnitude. The dotted1500

unbounded magnitudes are computed by training identical networks with the modulation bounds removed.1501

Fig. S3h shows schematic of FMSN networks with both excitatory and inhibitory neurons in the input1502

layer. For the results shown in Figs. S3i,j we specifically consider a network with an equal chance of each1503

neuron in the input layer to be excitatory or inhibitory. Additionally, we increase the number of neurons in1504

the input and output layers to be 1000, and increase the percent of synapses present to be 40%. Note this1505

still means that each output neuron has only 400 synapses on average, well below what is found biologically.1506

Figure S4 details. Details of the connection strength computations shown in this figure are discussed in1507

Sec. 4.4.1 above. Figs. S4a,b show relative values that are normalized by the maximum magnitude across the1508

16 possible pre- and postsynaptic combinations.1509
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Figure S5 details. Figures S5[a-d] show exemplar plots of the three types of input into our cortical circuit1510

model, see Sec. 4.2.2. Figures S5[a-c] show the L1 magnitude of the corresponding input. Similarity in1511

Fig. S5l is simply the normalized dot product of r(s) · r(0.5).1512

Figure S6 details. The mean responses are gathered analogously to those in Figs. 5a, h.1513

Figure S7 details. Mean responses as a function of learning rate are gathered analogously to those in1514

Figs. 5d, g, k.1515

Figure S8 details. Note since the task feature category we use in our model is equivalent to the combined1516

hit and miss features used in the experimental analysis, we plot a comparison of its learned kernel to both1517

the experimental hit and miss kernels in Figs. S8b, c. Figs. S8d and S8e show the eigengap value and gap1518

statistic used to determine the number of clusters for each neuron population, see Sec. 4.5.4 for details. Since1519

there is no well-defined way of combining these two measures to choose an optimal number of clusters, an1520

optimal number of clusters was chosen by inspection of both metrics, as in experiment [24].1521

Figs. S8[f-g] show the cluster membership across the 10 different network intializations.1522

Figures S9 and S10 details. For a given VIP cell, the metrics that are plotted are as follows:1523

• Raw excitatory input: Mean of WV,E over presynaptic cells.1524

• Excitatory input (familiar): Mean of WV,E ⊙
(
1+M

(A)
t

)
xα over the familiar set, where M

(A)
t is1525

measured at the beginning of the familiar imaging session. Note M
(P)
t dependence is neglected here1526

because if varies over the entire familiar session. Including M
(P)
t does not noticeably change correlation1527

results.1528

• Excitatory input (novel): Mean of WV,E ⊙
(
1+M

(A)
t

)
x′α over the novel set, where M

(A)
t is measured1529

at the beginning of the novel imaging session.1530

• Excitatory input (novel plus): Same as above, but M
(A)
t is measured at the beginning of the novel plus1531

imaging session.1532

• Raw history input: Mean of WV,hist over presynaptic cells.1533

• History input familiar: Mean of WV,hist ⊙
(
1+M

(AH)
t

)
xhist over all encoded times ≤ 1.25 seconds1534

(i.e. those that would be passed to the network during a single omission), where M
(AH)
t is measured at1535

the beginning of the familiar imaging session.1536

• Raw history input, no omissions: Mean of WV,histxhist over encoded times when omissions are not1537

present, i.e. ≤ 0.5 seconds. Correlation results do not differ significantly for any modulated version of1538

this metric.1539

• Raw history input, omissions: Mean of WV,histxhist over encoded times that only occur during omissions,1540

i.e. 0.5 < s ≤ 1.25 seconds.1541

• Raw Exc. + history input: The sum of “raw excitatory input” and “raw history input” above.1542

• Variance explained (familiar): Variance explained of all kernel fit during the familiar session.1543

• Variance explained (novel): Same as above for the novel session.1544

• Variance explained (novel plus): Same as above for the novel-plus session.1545

• Noise inject: Amount of time-correlated noise injected into cell, i.e. w in Eq. (21).1546

• Raw SST input: Mean of WV,S over presynaptic cells.1547

• Raw VIP input: Mean of WV,V over presynaptic cells.1548

• Bias: Value of bV. Since biases are the same for all cells of a given population, this cannot correlate1549

with any coding scores but is provided for completeness.1550
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[53] Loreen Hertäg and Henning Sprekeler. “Learning prediction error neurons in a canonical interneuron1689

circuit”. In: Elife 9 (2020), e57541.1690

[54] Ian Antón Oldenburg, William D Hendricks, Gregory Handy, Kiarash Shamardani, Hayley A Bounds,1691

Brent Doiron, and Hillel Adesnik. “The logic of recurrent circuits in the primary visual cortex”. In:1692

bioRxiv (2022), pp. 2022–09.1693

[55] Sonja B Hofer, Ho Ko, Bruno Pichler, Joshua Vogelstein, Hana Ros, Hongkui Zeng, Ed Lein, Nicholas A1694

Lesica, and Thomas D Mrsic-Flogel. “Differential connectivity and response dynamics of excitatory and1695

inhibitory neurons in visual cortex”. In: Nature neuroscience 14.8 (2011), pp. 1045–1052.1696

[56] Selmaan N Chettih and Christopher D Harvey. “Single-neuron perturbations reveal feature-specific1697

competition in V1”. In: Nature 567.7748 (2019), pp. 334–340.1698

[57] Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke, EJ Chichilnisky,1699

and Eero P Simoncelli. “Spatio-temporal correlations and visual signalling in a complete neuronal1700

population”. In: Nature 454.7207 (2008), pp. 995–999.1701

[58] Simon Musall, Matthew T Kaufman, Ashley L Juavinett, Steven Gluf, and Anne K Churchland.1702

“Single-trial neural dynamics are dominated by richly varied movements”. In: Nature neuroscience 22.101703

(2019), pp. 1677–1686.1704

[59] Ben Engelhard, Joel Finkelstein, Julia Cox, Weston Fleming, Hee Jae Jang, Sharon Ornelas, Sue Ann1705

Koay, Stephan Y Thiberge, Nathaniel D Daw, David W Tank, et al. “Specialized coding of sensory,1706

motor and cognitive variables in VTA dopamine neurons”. In: Nature 570.7762 (2019), pp. 509–513.1707

[60] Nicholas A Steinmetz, Peter Zatka-Haas, Matteo Carandini, and Kenneth D Harris. “Distributed coding1708

of choice, action and engagement across the mouse brain”. In: Nature 576.7786 (2019), pp. 266–273.1709

[61] Margitta Seeck, C M Michel, N Mainwaring, R Cosgrove, H Blume, J Ives, T Landis, and D L Schomer.1710

“Evidence for rapid face recognition from human scalp and intracranial electrodes”. In: Neuroreport 8.121711

(1997), pp. 2749–2754.1712

[62] Douglas L Hintzman, David A Caulton, and Daniel J Levitin. “Retrieval dynamics in recognition and1713

list discrimination: Further evidence of separate processes of familiarity and recall”. In: Memory &1714

cognition 26.3 (1998), pp. 449–462.1715

[63] Dmitry Krotov and John J Hopfield. “Dense associative memory for pattern recognition”. In: Advances1716

in neural information processing systems 29 (2016).1717

[64] K Cho, N Kemp, J Noel, John Patrick Aggleton, MW Brown, and ZI Bashir. “A new form of long-term1718

depression in the perirhinal cortex”. In: Nature neuroscience 3.2 (2000), pp. 150–156.1719
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A Additive modulations1737

An alternative form of modulations that has also recently been considered has the modulations directly added1738

to the fixed weights rather than the multiplicative form we consider throughout this work [35, 36]. Explicitly,1739

rather than the transformation of the form of Eq. (1), these modulations affect the fixed weights via1740

W → W +Mt . (45)

The same modulation update expressions continue to be used: for the associative case, Eq. (2a), and pre-only,1741

Eq. (2b). Equivalent modulation bounds to those in Eq. (7) are enforced such that the associative and1742

pre-only modulations do not exceed biological bounds of LTP/D and STSP, respectively. Many equivalent1743

FMSN results to those in the main text and SM using this additive modulation are shown in Fig. S11.1744

B Theoretical intuition1745

Here we discuss some analytic properties of FMSs that help us understand them better. Throughout this1746

section, we will investigate both the multiplicative modulations considered in the main text as well as the1747

additive modulations that were introduced in SM Sec. A. The analytical approximations for the additive1748

modulations and their connection to Hopfield networks is more straightforward to understand, but similar1749

qualitative results hold for the multiplicative modulations. Like the analysis here, feedforward version1750

of Hopfield networks as familiarity discriminators were explored in Ref. [32], though their setup requires1751

specialized weights that take on the value of the input neurons to compute the energy function used for1752

familiarity discrimination.1753

Like the main text, let M be the modulation matrix and W be the fixed matrix of synaptic connecting1754

the input and the output. Let x1, . . . ,xm be the set of familiar inputs we would like the network to memorize.1755

Additionally, let x̃α for α = 1, . . . ,m be novel inputs, that also obey x̃α · x̃β = δαβ and Ex̃α = 1 for all1756

α, β = 1, . . . ,m, but also xα · x̃β = 0 for all α and β. Here we assume the novel and familiar sets are of the1757

same size, but it is straightforward to generalize what we show here for different size sets. Note since we1758

consider inputs that are positive definite, in practice the dot product between any two inputs is finite, but it1759

can approach zero as the size of the input space gets large and the sparsity is small.1760

To begin with, we establish some properties of the element-wise product that will be useful for the1761

multiplicative form of the modulations. We will often make use of the identity that shows how an outer1762

product of vectors (e.g. the modulations) act through matrix multiplication,1763 [(
yxT

)
⊙W

]
x′ = y ⊙ [W (x⊙ x′)] , (46)

from Ref. [36]. Additionally, it will be useful to compare the (L2) magnitudes of the element-wise product1764

between two stimulus vectors. Let nonzero values of the vectors be A with probability p. If the two vectors1765

are different we have1766

E∥x⊙ x′∥22 =
d∑

I=1

E (xIx
′
I)

2
=

d∑
I=1

p2 (A)
4
= dp2A4 , (47)

where we have used the fact that the only nonzero element of the element-wise product occurs when the1767

Meanwhile, if the two stimulus vectors are the same, instead we have1768

E∥x⊙ x∥22 =

d∑
I=1

E (xIxI)
2
=

d∑
I=1

p (A)
4
= dpA4 , (48)

which is larger by a factor of p. Note a similar property holds for the dot product between two vectors, where1769

E∥xTx′∥22 = d2p4A4 and E∥xTx′∥22 = d2p2A4, but now the same vector result is larger by a factor of p2.1770

Thus, in the limit that p → 0 and proper normalization of A, we make the analogous approximations1771

xα ⊙ xβ ≈ δαβx
2
α , xα ⊙ x̃β ≈ 0 , (multiplicative) (49a)

xα · xβ ≈ δαβ , xα ⊙ x̃β ≈ 0 , (additive) (49b)
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where we use the shorthand x2
α = xα ⊙ xα.1772

Let us start with an approximate setting that will serve as a rough representation for the function of the1773

FMSN. We assume that the modulations are not involved in the the feedforward pass of our network but are1774

still updated as we have described in the main text. That is, the output activity is given by y = ϕ (Wx+ b)1775

but we still update Mt via Eq. (2a) even though it has no effect on the network’s behavior. We also presume1776

the modulations do not decay, i.e. λ = 1, and that modulation are small enough such that they do not1777

encounter the biological bounds or violate the bounds of Eq. (5).1778

Over a training time where the familiar inputs are each shown N times, the associative update will lead1779

to an expected M given by a sum of m outer products1780

M = ηN
m∑

α=1

yαx
T
α . (50)

Notably, if W = I and yα = xα, i.e. if ϕ(x) = x, this would be the same form of the updates to the lateral1781

connections in a Hopfield network with an associative learning rule. Now consider how this modulation1782

matrix acts on a given familiar input (for next three equations, top: multiplicative, bottom: additive),1783

(W ⊙M)xα = ηN
m∑

β=1

yβ ⊙ [W (xβ ⊙ xα)] ≈ ηN
m∑

β=1

δαβyβ ⊙Wx2
β = ηNyα ⊙Wx2

α, , (51a)

Mxα = ηN
m∑

β=1

yβx
T
βxα ≈ ηN

m∑
β=1

yβδαβ = ηNyα , (51b)

where for the multiplicative case (top) we have used Eq. (46) for the first equality and in both lines we have1784

used the approximation of Eq. (49). Now compare this to a novel input1785

(W ⊙M) x̃α = ηN
m∑

β=1

yβ ⊙ [W (xβ ⊙ x̃α)] ≈ ηN
m∑

β=1

δαβyβ ⊙W0 = 0 , (52a)

Mx̃α = ηN
m∑

β=1

yβx
T
β x̃α ≈ ηN

m∑
β=1

xβ (0) = 0 . (52b)

Thus a familiar input yields a non-zero modulation but a novel input simply yields zero. From the above
results, we have

(W +W ⊙M)xα ≈ ỹα + ηNyα ⊙Wx2
α , (W +W ⊙M) x̃α ≈ ỹα , (53a)

(W +M)xα ≈ ỹα + ηNyα , (W +M) x̃α ≈ ỹα , (53b)

Thus we see that if η > 0 (or η < 0) the familiar preactivations grow (shrink) in size from the effects of the1786

modulations, while the novel preactivations are left approximately unchanged.1787

Let the familiar subspace be the subspace of the input stimulus space spanned by the familiar stimuli.1788

Then, since any stimulus can be decomposed into parts that lie within the familiar subspace and perpendicular1789

to it, a generalization of the above arguments shows that the modulation matrix M will yield a nonzero1790

result for any vector that has components in the familiar subspace. Since for a large input stimulus space the1791

novel inputs are close to perpendicular to the familiar subspace (so long as m ≪ d), they yield approximately1792

zero output.1793

For the additive case, we can see Eq. (53) is similar to checking the energy function of a Hopfield network1794

(up to the vector ỹα), which has been used previously as a method of familiarity detection [32]. Indeed, since1795

the activity in our network is positive-definite, taking the L1 normalization of this output is equivalent to1796

taking the dot product with 1, so it is similar to a Hopfield energy measurement with one occurrence of the1797

stimulus replaced by 1.1798

Now in practice, the modulations are involved in the forward pass, so as the modulations get updated during1799

training they affect the output. For the FMSN, y = ϕ [(M⊙W)x+Wx+ b] and thus the modulations1800

affect its own update. Notably, it is only the output activity that is affected by our approximation above,1801

and so what will change are the yα dependence of Eqs. (50) to (53). However, what causes the significantly1802

different behavior between Eqs. (51) and (52) is the input activity dependence of M, and this is unchanged1803

when we include modulations in the forward pass.1804
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C Strengthening versus weakening1805

Here we briefly discuss differences in the effectiveness of developing distinct responses to the familiar and1806

novel sets in the FMSN from strengthening and weakening modulation mechanisms. We first study the FMSN1807

in the setting we investigated in the main text, namely networks with only excitatory synapses in the input1808

layer. As a result, a strengthening (or weakening) of the synapses results in a larger (or smaller) output1809

neuron response.1810

There is a significant difference in the evolution of the Mt as a function of training time in identical1811

FMSNs that simply differ in the sign of η (Fig. S3b). Notably, Mt at roughly the same rate for the first 81812

training steps, but for the weakening mechanism the growth of Mt drops significantly after these first few1813

times steps. This is a result of the output activity being smaller, which means the updates to Mt are smaller1814

(Fig. S3c,d).1815

We can also see the effect the biological bounds have on the modulation growth. In particular, for the1816

strengthening mechanism, the evolution of Mt differs significantly with and without the biological bounds1817

(Fig. S3e,f). Notably, the weakening mechanism isn’t as strongly affected by said bounds. The fact that1818

weakening has been observed down to 20% for associative and only 200% for strengthening makes the former1819

much more effective. This is a simple comparison of ratios of novel to familiar: for weakening, 20% leads to a1820

ratio of 1/0.2 = 5 whereas strengthening to 200% leads to a ratio of only 2/1 = 2.1821

Another major difference between the strengthening and weakening mechanisms is the way the biologically-1822

motivated non-linearity, Eq. (11), acts on preactivation values. Since strengthening excitatory connections can1823

only increase a neuron’s output, but said output is bounded by the non-linearity, eventually the strengthening1824

yields diminishing returns in terms of how much a given output can change. Meanwhile, weakening excitatory1825

connections can push a neuron below its firing threshold, completely cutting off a neuron’s response. We see1826

that the evolution of preactivation values is fairly comparable between the two mechanisms (Fig. S3g).1827

Thus we have seen two major factors that cause the weakening and strengthening of excitatory synapses1828

to differ: (1) a difference in the bounds of said changes from experiment and (2) an asymmetry in the1829

FMSN of how larger/smaller output activity is handled through the neuron’s non-linearity as well as the the1830

modulation updates. Of course, we have only considered plasticity mechanisms on synapses belonging to1831

excitatory neurons thus far. For inhibitory synapses, a strengthening (or weakening) of the synapses results1832

in smaller (or larger) output neurons response, the opposite effect of the excitatory synapses. Thus we can1833

investigate if the FMSN has different behavior when introduce inhibitory neurons in the input population1834

and then make the inhibitory synapses FMSs.1835

For direct comparison to the FMSN with only excitatory synapses, we assume inhibitory plasticity obeys1836

similar bounds to what we use for STSP and LTP/D effects [20, 39]. We compare the behavior of an FMSN1837

with both excitatory and inhibitory neurons in its input when either the excitatory or inhibitory neurons1838

have a strengthening FMS mechanism on them (Fig. S3h). Consistent with our findings above, we find that1839

strengthening of the inhibitory neurons is more effects of at separating the novel and familiar distributions1840

than a strengthening of excitatory neurons (Figs. S3i,j). Since the bounds of the two FMS mechanisms are1841

identical, this difference is caused by the neuron’s non-linear behavior discussed in point (2) above.1842

D Additional figures and tables1843
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Figure S1: Pre-only weakening and associative strengthening FMSs and their behavior in the FMSN.
(a) Schematic of pre-only FMS mechanism. (b) Strengthening FMS equivalent of Fig. 2c. [c-f ] FMSN with pre-only
weakening modulations. Equivalent associative plots in Figs. 2[d-g]. (c) Example raw output response activity for a
familiar (red) and novel (blue) stimulus pre- and post-training. (d) Change in mean output activity of the familiar
and novel sets over training. The dark lines show the mean output activity across each stimulus set, the light lines
show individual stimuli. (e) Relative mean row magnitude of the modulations, W ⊙Mt (purple), the unmodulated
weight matrix, W (green), and total synaptic strength (green and purple) over training. Dark lines show means
while light lines shown individual rows. (f) Change in important synapse magnitude for familiar and novel inputs
as a function of training time (Methods). [g-j] FMSN with associative strenthening modulations. Note many trends
compared to Figs. 2[d-g] are reversed because of strengthening rather than weakening. Figures are equivalent to [c-f].
[k-n] FMSN with pre-only strenthening modulations. Figures are equivalent to [c-f].
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Figure S2: Additional properties of the FMSN. (a) Output sparsity of the novel (blue) and familiar (red)
sets as a function of training count (Methods). Dark lines show mean across entire sets, light lines show individual
members of sets. (b) PCA projection of output activity of the familiar set (Methods). Distinct colors show distinct
members of set. (c) Same as (b) for the novel set. Note the different axis scale. (d) Modulation rate of synapses of
the FMSN as a function of training time. Medium purple curve shows rate of synapses modulated at all, dark purple
shows synapses that have been weakened by 50% of their initial value, and light purple shows synapses that have their
biological bounds saturated (Methods). [e-j] Contour plots of p-values from KS test as a function of various FMSN
parameters, averaged over 10 initializations. Grey lines/marks represent values used in main text. (e) Modulation
bounds and learning rate. Specifically we consider associative weakening so we vary the lower bound that controls
how weak a synapse can be made through modulations. (f) Same as (i) for associative strengthening and thus we
vary the upper modulation bound. (g) Noise scale and number of exposures to each familiar stimulus. (h) Number of
input and output cells. (i) Synapse sparsity and firing rate at initialization. (j) Random binary vector sparsity and
magnitude. (k) Post-training median response (bars: 10th and 90th percentiles) of the FMSN’s response to familiar
(red) and novel (dark blue) sets as a function of the size of the familiar set. Pre-training novel response shown for
reference (light blue). Each familiar stimulus is shown 10 times, so training times increase for larger familiar sets.
Responses thresholded to 10−9 for visibility on plot. (l) Size of post-training modulations (dark purple) as a function
of familiar set size, with unmodulated synapses (green) and biological bounds (light purple) shown for reference. (m)
Accuracy of decoding the familiar and novel sets as a function of learning rate (Methods). (n) Output dimensionality
of familiar and novel sets as a function of learning rate (Methods). [o, p] Equivalence of FMSN training for different
sequence lengths and learning/decay rates. See Sec. 4.4.7. (o) Mean output magnitude of familiar and novel sets as a
function of normalized train time. Different colors vary the training time, learning rate, and decay rate, see Eq. (33).
(p) Same as (o), but modulation magnitudes.
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Figure S3: Familiar subspace and FMS strengthening versus weakening. (a) Visualization of familiar
subspace and how it affects the output magnitudes of different stimuli pre- and post-training. (b) The evolution of
mean modulation row magnitude for identical networks, one whose modulations are strengthened (dark line, η > 0)
and another whose modulations are weakened (light line, η < 0), as a function of training count. (c) Mean output
magnitude of the familiar (red) and novel (blue) sets as a function of training count for an FMS mechanisms that
strengthens (dark lines) and weakens (light lines) the synapses. Vertical grey line shows time where all members of
familiar set have been shown once. (d) Same as (c), but y-axis is now a linear scale. (e) Same as (c), but mean output
magnitudes after all members of the familiar set have been shown once (i.e. 8 training steps) as a function of learning
rate size. Dotted lines show results without modulation bounds of Eq. (7). Vertical grey line shows learning rate used
in (b) and (c). (f) Same as (e), but y-axis is now a linear scale. (g) Same as (e), but the pre-activation values of
output. (h) Schematic of two FMSN setups with both excitatory and inhibitory in the input neuron population. The
network on the left has FMSs on its inhibitory synapses, while the right one has FMSs on its excitatory synapses. (i)
Contour plot of p-values from KS test between post-training familiar and novel mean output activity as a function
of learning rate, η, and modulation decay rate, τdecay for the network shown in (e) with inhibitory FMSs. The grey
vertical line shows the timescale of the task, 80 steps. (j) Same as (f), but for the network with excitatory FMSs.
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Figure S4: Microcircuit population strength contributions. Many metrics computed as a function of pre-
and postynaptic cell type. All values are specific for layer 2/3 of the primary visual cortex. Although PV cells
are not explicitly included in the cortical microcircuit model, we have included them here for completeness. “N/A”
indicates synapses where no data was available, which correspond to cell-type connections that were exceedingly
sparse in experimental analyses [20]. (a) Relative between-population connection strengths, computed via Eq. (22)
and normalized by maximum magnitude. (b) Relative individual synaptic strength, as measured by time-integrated
postsynaptic potential (PSP), see (c). [c-e] Three contributions to values shown in (a), see Eq. (22). (c) Mean
time-integrated PSP, see Eq. (23). (d) Connection probabilities, from Ref.[20] (Methods). (e) Relative presynaptic
cell counts (to SST cell count) from Ref. [18]. (f) Number of synapses used to compute time-integrated PSP. Number
of omitted synapses from too large a τdecay is shown in (·). Note counts reflect total number of synapses found in
computing (d), so those connections with smaller probabilities of existing have less data. [g-i] Three contributions to
ZPSP, see (c). (g) Amplitude of PSP pulse, from Ref.[20]. (h) Adjustment factor of PSP amplitude to account for
potential differences, see Eq. (24). (i) Effective PSP time, computed from experimental PSP fits, see Eq. (26).
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Figure S5: Additional microcircuit details. [a-d] Microcircuit input details. See Sec. 4.2.2 for details. (a)
Magnitude (L1) of raw stimulus inputs during image change, xstim

t , as a function of time. Shaded colored backgrounds
correspond to distinct image presentations. (b) Same as (a), for an image omission. (c) Magnitude of stimulus
history input, xhist

t , as a function of time. Discrete points are colored by the time since last image that they encode.
(d) Exemplar time-correlated noise injections for one cell of each population. (e) Half-gaussian smoothing kernel
applied to model and experiment cell responses, see Sec. 4.4.5 [24]. Discrete points show smoothing kernel values on
discrete times separated by ∆t = 1/32 s. (f) Smoothing function (dark pink) used on model stimuli to gradually
ramp up/down stimulus response, relative to the image presentation (green background). The smoothing function is
the deconvolved mean excitatory trace, truncated to be the same number of time steps as the image width, with an
additional offset, see Eq. 18. Light pink shows the non-truncated signal. (g) Experimental distribution of number of
images from one change to the next. (h) Zoomed in version of (g). [i-l] Stimulus history input details. (i) Individual
neuron tuning functions as a function of time since last image presentation (light) with particular neurons highlighted
(dark). Grey vertical lines show times corresponding to onset of omission (0.5 s), end of omission (0.75 s), and onset
of image after a single omission (1.25 s). (j) Neural population responses corresponding to various times since last
image presentation, s, two times highlighted. (k) Magnitude (L1) of population response functions as a function
of the time since last image presentation they encode. Grey lines same as (i). (l) Similarity of various population
response functions to s = 0.5 seconds as a function of the time they encode. Grey lines same as (i). (m) Exemplar fit
of response sparsity at initialization, see Sec. 4.4.2. (n) Exemplar fit of noise baseline at initialization, see Sec. 4.4.4.
(o) Exemplar loss values from grid search over various FMS learning rates, box shows optimal values. (p) Change in
modulation magnitude from start of novel to novel-plus imaging sessions.
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Figure S6: Microcircuit image change and omission mean responses. (a) Mean image change responses.
Experimental results are shown as dotted grey line, model results are solid colored lines. Green background represents
changed image being displayed, yellow background is pre-change image. Columns show different experience-levels
(familiar, novel, novel-plus), rows show different cell populations (VIP, SST, Exc.). (b) Same as (a), but for mean
image omission responses. Area between vertical dashed black lines represents time period where an image would
usually be presented, but instead an image was omitted.
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Figure S7: Microcircuit mean responses as FMS learning rates are varied. Darker lines show larger learning
rates (i.e. stronger modulation) and lighter colored lines show smaller learning rates (i.e. weaker modulation). Notation
is otherwise identical to that of Fig. S6. (a) Mean image change response as FMSA learning rate is varied. Learning
rates correspond to ηA = 0.04, 0.08, 0.12, 0.16, 0.20. (b) Mean image change response as FMSP learning rate is varied.
Learning rates correspond to ηP = 0.04, 0.08, 0.12, 0.16, 0.20. (c) Mean omission response as FMSAH learning rate is
varied.
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Figure S8: Additional cluster results. [a-c] Feature kernel fits for VIP cells. See Fig. 6d for image kernel results.
(a) Omission kernel. (b) Task kernel, with experiment hit kernel. (c) Task kernel, with experiment miss kernel. [d-e]
Metrics to determine number of clusters. Coding scores were clustered across 10 different intializations for each cell
type. VIP (green), SST (pink), and excitatory (yellow) are shown. Vertical dotted line shows chosen cluster count.
(d) Eigengap value as a function of the number of clusters, see Sec. 4.5.4 for details. (e) Gap statistic, normalized by
maximum magnitude, as a function of the number of clusters. [f-h] Cluster membership percentages across different
network initializations. Clustered results are gathered over 10 different network initializations and the percent of cells
that of a given clustered that belong to a particular initialization are shown by distinct colors. Similar to experimental
data, distinct initialization do not explain the distinct clusters. (f) VIP population clusters. (g) SST population
clusters. (h) Excitatory population clusters. [i-j] Clustered SST and VIP population coding scores. (i) Excitatory
population. (j) SST population.
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Figure S9: How well network metrics explain VIP cell coding scores and coding score clusters. Left
column is fits over all VIP cell coding scores, right column is fits to cluster-averaged coding scores. Red, blue, and
purple corresponding to the coding scores in the familiar, novel, and novel plus sessions, respectively. Top, middle, and
bottom row are the image, omission, and task coding scores, respectively. Dot is median value across initializations,
error bar shows Q1 and Q3 values.
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Figure S10: Network metrics as a function of VIP cell cluster. Various network metrics (see Methods for
details) as a function of the VIP cluster number. Light dots show different networks, dark lines are mean across trials.
Note clusters are sorted by mean coding score vector magnitude (smallest to largest). Note that if a given network
initialization has less than 5 cells in a given cluster, its data is omitted.
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Figure S11: FMSN with additive modulations. [a-d] Equivalent plots to Figs. 2[d-g] (a) Exemplar raw output
response activity for familiar (red) and novel (blue) pre- and post-training. (b) Change in mean output of novel set
(blue) and familiar set (red) over training. (c) Change in synapse and modulation magnitudes over training. (d)
Important synapse magnitude for familiar and novel sets over training. [e-l] Equivalent plots to Figs. 3[a-h] (e) How
the distance of a stimulus from familiar subspace influences the FMSN’s mean output. (f) Change in M magnitude
over training as learning rate and decay rate are varied. (g) Same as (f), but shows decay of M magnitude. (h)
Distinguishability of familiar and novel sets post training (KS-test p-value) as a function of learning rate and number
of familiar exposures. (i) Same as (h), scan now over FMS parameters η and τdecay, for associative weakening FMS.
(j) Same as (i), for pre-only weakening FMS. (k) Same as (i), for associative strengthening FMS. (l) Same as (i), for
pre-only strengthening FMS.
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