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ABSTRACT: Metabolomics is an important approach for studying complex biological systems. Quantitative liquid chromatog-
raphy-mass spectrometry (LC-MS)-based metabolomics is becoming a mainstream strategy but presents several technical challeng-
es that limit its widespread use. Computing metabolite concentrations using standard curves generated from standard mixtures of
known concentrations is a labor-intensive process which is often performed manually. Currently, there are few options for open-
source software tools that can automatically calculate metabolite concentrations. Herein, we introduce SCALIR (Standard Curve
Application for determining Linear Ranges), a new web-based software tool specifically built for this task, which allows users to
automatically transform LC-MS signal data into absolute quantitative data (https://www.lewisresearchgroup.org/software). The
algorithm used in SCALIR automatically finds the equation of the line of best fit for each standard curve and uses this equation to
calculate compound concentrations from their LC-MS signal. Using a standard mix containing 77 metabolites, we found excellent
correlation between the concentrations calculated by SCALIR and the expected concentrations of each compound (R? = 0.99) and
that SCALIR reproducibly calculated concentrations of mid-range standards across ten analytical batches (average coefficient of
variation 0.091). SCALIR offers users several advantages, including that it (1) is open-source and vendor agnostic; (2) requires only
10 seconds of analysis time to compute concentrations of >75 compounds; (3) facilitates automation of quantitative workflows; and
(4) performs deterministic evaluation of compound quantification limits. SCALiR provides the metabolomics community with a

simple and rapid tool that enables rigorous and reproducible quantitative metabolomics studies.

Metabolomics is a mainstream approach for studying com-
plex biological systems, ranging from cancer', infectious dis-
eases?, host-microbiome interactions®, and microbial engineer-
ing*3. The common thread among these diverse disciplines is
that they all have a common need to accurately identify and
quantify molecules in complex biological mixtures. Although
such analyses are becoming more common in many metabo-
lomics facilities, collecting absolute quantitative data for me-
tabolites analyzed via routine liquid chromatography-mass
spectrometry (LC-MS) analyses remains challenging® .

One of the main complications of LC-MS is that the re-
sponse factor of each instrument varies day-to-day and sam-
ple-to-sample, and as a result, standard reference compounds
used to calibrate signal intensities need to be acquired fre-
quently in order to enable robust quantification’. These addi-
tional logistical complications of acquiring and analyzing data
for standard reference materials currently make absolute quan-
titative metabolomics studies the exception rather than the rule
and limits direct comparison between datasets obtained in
different batches. Absolute quantification of metabolite signals
makes it possible to directly compare data across large-cohort
studies and facilitates the analysis of metabolic flux through
networks®. Although there are many tools and resources avail-
able for metabolomics data visualization and interpretation'®,
there is a critical gap in software for performing absolute
quantification of metabolomics data. Several commercial tools
such as Thermo Fisher’s TraceFinder™ and open-source soft-
ware packages such as Skyline for Small Molecules!! can de-
termine quantitative metabolomics values from raw instrumen-

tal data but require extensive user input to complete these
analyses.

Most quantitative metabolomics studies conduct this work
manually. This requires fitting linear curves and removing
points that do not fall in the linear range, which is a time-
consuming process that requires considerable analyst exper-
tise. There are no universally accepted parameters for deter-
mining the upper and lower limits of quantification (ULOQ
and LLOQ, respectively) of a compound and ensuring lineari-
ty of the curve fitting. The LLOQ is often defined by instru-
mental baseline noise and calculated with a numerical parame-
ter such as 10% or a fixed multiple of the relative standard
deviation of a blank matrix'*'*. The LLOQ can also be calcu-
lated with a formula based on the percent deviation from the
nominal concentration at the lowest calibrator concentration',
Furthermore, the process of determining the ULOQ can be
complicated because numerical parameters of the curve fitting,
such as homoscedasticity (equal distribution of residuals) and
standard deviation of the regression, need to be considered to
ensure a valid linear fit across the range of standard concentra-
tions'®. These challenges make the process of fitting standard
curves difficult to automate and results in many investigators
choosing to omit metabolite quantification from their studies.

For these reasons, there is an urgent need for software that
automatically detects the upper and lower limits of quantifica-
tion and the line of best fit for a series of standards and uses
these data to automatically calculate the concentrations of
metabolites in a sample. Herein, we introduce SCALIR
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(Standard Curve Application for determining Linear Ranges),
a new tool designed specifically for this task. This software
uses a novel algorithm that leverages a basic logarithmic prop-
erty and general characteristics of LC-MS data to automatical-
ly determine the ULOQ, LLOQ, and line of best fit for exter-
nal calibration standards. Using these values, SCALIR auto-
matically transforms LC-MS peak data into absolute quantita-
tive data. We show that SCALIR automatically generates data
comparable to those obtained via manual curve fitting by an
expert analyst. We then illustrate how the tool can be used to
correct batch effects in large cohorts and facilitate metabolic
boundary flux analysis.

EXPERIMENTAL SECTION

Preparation of mixed metabolite standards. All standard
stock solutions were prepared from compounds ordered from
Sigma-Aldrich (Oakville, ON, Canada), VWR (Edmonton,
AB, Canada), or Acros Organics (now Thermo Scientific
Chemicals, Waltham, MA, USA). See Table S1 for compound
CAS numbers. To evaluate the linear dynamic range of each
compound manually, we developed a mixed standard contain-
ing 77 compounds with variable starting concentrations and
ran a 10-point dilution series with three technical replicates
where each sequential standard was diluted 4-fold (1:4) with
50/50 (v/v) methanol (Fisher Optima™ LC/MS grade; Toron-
to, ON, Canada) and water (Fisher Optima™ LC/MS grade).
Stock standard concentrations for each compound are found in
the Supporting Information (Table S1).

Liquid chromatography-mass spectrometry. All liquid
chromatography-mass spectrometry (LC-MS) metabolomics
data were acquired at the Calgary Metabolomics Research
Facility (CMRF), according to the methods described in detail
in?°. Metabolite samples were resolved via a Thermo Scien-
tific™ Vanquish™ UHPLC (Thermo Fisher Scientific) plat-
form using hydrophilic interaction liquid chromatography
(HILIC) with a 15-minute gradient. Chromatographic separa-
tion was attained using a binary solvent mixture of 20 mM
ammonium formate at pH 3.0 in LC-MS grade water (Solvent
A) and 0.1% formic acid (% v/v) in LC-MS grade acetonitrile
(Solvent B) in conjunction with a 100 mm x 2.1 mm Syn-
cronis™ HILIC LC column (Thermo Fisher Scientific) with a
2.1um particle size. Data were acquired on a Thermo Scien-
tific™ Q Exactive™ HF (Thermo Fisher Scientific) mass
spectrometer in negative ionization mode.

Manual data analysis. All LC-MS raw data files were con-
verted to mzXML format via MSConvert GUI software'”. LC-
MS analysis was conducted in El-Maven, v.0.12.0'% with
manual peak selection using default parameters (Peak Quanti-
tation Type: Area top; Mass Cut-off unit: 10.0 ppm). All data
were then collated in Microsoft Excel, where the linear range
for each compound was calculated according to visual inspec-
tion of linearity and goodness of fit. Select performance char-
acteristics according to the U.S. FDA guidelines for bioanalyt-
ical method validation'> for measured compounds can be
found in the Supporting Information (Table S2).

Bacterial sample preparation and analysis. Staphylococ-
cus aureus isolates were collected by the Alberta Precision
Laboratories (Calgary, AB, Canada) and were prepared as
described in’. Briefly, microbes were inoculated in Mueller-

Hinton broth in 96-well plates and cultured aerobically over-
night at 37°C in a humidified incubator with a 5% CO, and
21% O, atmosphere. After reaching an optical density between
0.35 — 0.4, culture supernatants were fixed in methanol (1:1
v/v) and centrifuged for 5 min at 4,000 x g. The supernatants
were then diluted 1:10 with 50% methanol before LC-MS
analysis.

The concentrations of metabolites in these samples were
quantified using the mixed metabolite standards (see above),
with each point prepared as an 8-point dilution series. The
highest concentration standard was prepared as a 2-fold (1:2)
dilution in 50/50 (v/v) methanol (Fisher Optima™ LC/MS
grade) and water (Fisher Optima™ LC/MS grade) from the
stock standard concentrations described in Table S1. The next
seven dilutions were prepared as 4-fold (1:4) dilutions in the
same 50% methanol solvent. LC-MS data were acquired as
described above. Two 100 mm x 2.1 mm Syncronis™ HILIC
LC columns (Thermo Fisher Scientific) were used to analyze
multiple batches. All data were quantified manually as de-
scribed above and compared to automated data quantification
via SCALIR.

Implementation, statistical analysis, and visualization.
The SCALIR backend was implemented in Python (Version 3)
using the standard libraries pandas, numpy, and matplotlib.
The user interface was created on Streamlit and the source
code is available in GitHub
(https://github.com/LewisResearchGroup/ms-conc). All statis-
tical analysis of data was performed in Python (Version 3) or
GraphPad Prism (Version 9.5.1). Figures were created using
Python, GraphPad Prism, Adobe Illustrator (Version 27.2),
Inkscape (Version 1.2), and by directly downloading images
and screenshots from the SCALIR app.

Safety considerations. Reagents used in this investigation
do not pose any significant safety risks outside of those expe-
rienced regularly when working with moderate strength acids
and solvents.

RESULTS AND DISCUSSION

SCALIR algorithm. One of the principal challenges in
quantitative metabolomics is the lack of a standardized or de-
terministic method for computing the LLOQ and ULOQ for a
series of standards. The algorithm incorporated into SCALiR
takes advantage of a basic logarithmic property and an intrin-
sic characteristic of LC-MS signals that allows the curve fit-
ting process to be generalized. Specifically, in linear datasets
where the slope is much greater than the intercept, the log-log
transform of the linear series will have a slope approaching
one. This transformation is detailed in Eq. 1-6 below.

Robust calibration reference standards follow a relationship
wherein signal intensities (y) and metabolite concentrations
(x) are described by a linear model:

y=mXx+b (1)
where m denotes slope and b denotes the y-intercept. This
relationship can be transformed as follows:

In(y) =In(m X x + b) 2)
In(y) =1n <m (x + %)) (3)
In(y) =In(X) + In(m) 4)
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where X = x+£=(1+ b )

(mxx)

In cases where b < (m X x), in Eq. (4), X = x and becomes:

In(y) = In(x) + In(m) 5)
which can be re-written as:
y'=1Xxx+ b" (6)

where y* is the LC-MS signal in the /n scale, the slope is equal
to 1, and b* is In(m).

To illustrate this point, we calculated the intercept fraction
value, b/(m X x ), for ten metabolites across ten batches using
the average concentration of the five lowest concentration
standards of an 8-point standard curve to ensure points fell
below the ULOQ (excluding points with no signal). As shown
in Figure la, these values fall within the range (-0.1, 0.1) and
this distribution range holds for 80% of the metabolites we
measured (Figure 1b). When b « (m X x), the curve in the
linear scale (Eq. 1) is transformed into a linear curve in the /n
scale with a slope equal to 1 and the intercept equal to the /n of
the slope in the linear scale (Figure lc,d). Compounds that
exhibit deviations from this linear relationship, which result in
a less adequate fit after the /n transformation with a slope not
close to 1 and an intercept fraction value > 0 (examples
shown in Figure S1), are automatically flagged as a “failed fit”
by SCALIR.
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Figure 1. (a) Examples of intercept fraction values (b/(m X x ))
for the standard curves of ten metabolites run over ten batches. (b)
The distribution of intercept fraction values for standard curves of
all metabolites measured. (c) Examples of a set of ten standard
curves for acetyl-threonine in the linear and /n scale. Each curve
corresponds to one batch and the line of best fit equations show an
example of the slope and y-intercept from one standard curve.

The algorithm used by SCALIR incorporates these proper-
ties to determine the ULOQ and LLOQ for the standard curve,
as well as an iterative fitting process to find the line of best fit.
The goodness of fit for the standard curve is controlled by the

residual function () between the expected (e) and observed
(o) values defined as:

1
r= 52?1:1(6 —0)? (7N
where N is the number of points in the dataset.

When r is calculated to be above the experimentally deter-
mined threshold value of 0.01 (Figure S2), the point with the
largest distance between the predicted and the experimental
value is removed from the dataset (Figure 2). This step is re-
peated until the value of r falls below the set threshold, indi-
cating acceptable goodness of fit.

a

Figure 2. Iterative regression algorithm for finding the linear
range of a series of standards. (a) The best fit curve is generated
from the dataset. (b) When the residual () of the curve is > 0.01,
the farthest point from the curve (“A”) is removed and repeated
(“B”). This step is carried out again until (c) the data allow a line-
ar regression fitting that achieves the quality threshold for 7.

SCALIR app design. The web-based application SCALiR
(https://www.lewisresearchgroup.org/software) is designed to
work with peak data files generated from open-source soft-
ware El-Maven'® or MINT (https://mint.resistancedb.org/)
without further modifications. Peak data from any software
can be used if the peak data file follows the formatting in the
sample files accessed directly from the app. Sample data up-
load files for standards concentrations can also be accessed
directly from the app. Instructions on how to use the app are
explained on the web application interface and a tutorial with
demo data files for upload can be accessed via the web inter-
face and are included in the Supporting Information. Users can
also document issues or suggestions for the app at
https://github.com/LewisResearchGroup/ms-conc/issues.

Figure 3 shows key steps and features of the app. Users up-
load a comma-separated values (CSV) file containing concen-
trations of each standard as well as a CSV or Excel file with
peak list information for standards and samples (Figure 3a).
The user then selects which program was used to generate the
peak list information and chooses the fixed slope, wide slope,
or interval slope option, and can adjust the permissible values
of the slope for the interval slope option (Figure 3b). Once the
program is run, the user can download the standard curve pa-
rameters, including slope, intercept, and linear range minimum
and maximum for each compound, as well as the calculated
concentrations for standards and samples. Additionally, the
user can view log-log plots showing the standard curve for
each compound and download individual images of each plot
with the option to include axis labels or leave them blank be-
fore downloading the images.
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Figure 3. Features of the web-based application SCALIR and schematic of its iterative standard curve fitting process. Users upload stand-
ard concentrations (a) and peak list data files (b) and select settings for generating the standard curves. (c) SCALIR performs its iterative
fitting algorithm, stopping when the fitting reaches the residual threshold (» < 0.01). The remaining maximum and minimum concentration
values are reported as the range for the linear behavior. Users can download the results for standard curve parameters, concentration data,
and visualize individual standard curves as log-log plots.
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Figure 4. Validation of the algorithm used in SCALIR for calculating concentrations of compounds in a standard mix. (a) Comparison
between the app calculated concentrations in standards and the actual concentrations for each compound. (b) Comparison between the
manually calculated concentrations and actual concentrations for each compound. (c¢) Comparison between the app calculated concentra-
tions in the standard samples and manually calculated concentrations.
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Performance evaluation. To assess the performance of
SCALIR, we compared the concentrations calculated by the
app to the actual concentration values of each metabolite in an
8-point standard dilution series (Figure 4a; supplementary
datafile). The data shown here are from the mixed standard
containing 77 metabolites and all validation data are shown
with SCALiR’s fixed slope feature. Similar results were ob-
tained when we used the wide slope option. The concentration
values calculated by the app correlated closely with the actual
concentration values of the standards (R?> = 0.99 in the In
scale; Figure 4a), demonstrating that SCALiR’s algorithm
accurately determines the linear range and concentrations of
metabolites. This value was comparable to the correlation
between calculated and actual concentrations obtained by an
expert analyst that manually fitted standard curves (R*> = 0.98
in the /n scale; Figure 4b). Thirdly, we compared SCALiR
against concentration values generated by an expert analyst
manually (Figure 4c). Again, we found excellent correlation
between the concentration values calculated by SCALIR and
those calculated by manual inspection (R?> = 0.99 in the In
scale; Figure 4c), indicating that SCALIR’s algorithm per-
forms very similarly to a trained analyst.

SCALIR also demonstrated reproducible results across ten
separate analytical batches (Table S3). We calculated that the
average coefficient of variation (CV) for the middle four
standards in the 8-point standard curves (Standards 3 — 6) of
ten representative compounds was between 0.054 — 0.152,
with an average CV of 0.091 for all ten compounds. Addition-
ally, 85% of the SCALiR-calculated concentrations of these
standards met the US FDA guidelines stating that non-zero
calibrators should be within +£15% of the nominal (expected)
concentration'® (Table S3).

Analytical challenges solved by SCALIR. One of the major
advantages of using SCALIR is its deterministic process for
evaluating the linear range of a standard series, which is based
on empirically determined parameters. Manual evaluation of
quantification limits is not only time-consuming but can lead
to variation in data analysis results between analysts and over
separate batches. This can result in differences in quantifica-
tion limits and affect the accuracy of the sample concentra-
tions calculated. Figure 5 shows an example of challenges that
can occur when a standard series displays multiple linear re-
gimes, or regions of the curve that display a linear fit with a
coefficient of determination (R?) > 0.99. Using hippurate as an
example, we show that an 8-point standard series transformed
to the In scale can display two or more regions that would
have a valid linear fit based on the coefficient of determination
parameter (Figure 5a). However, only two of these regions
satisfy the linear relationship between signal intensity and
concentration required for the valid /n transformation showing
a slope of the regression curve equal to approximately 1
(Lower curve in Figure 5a).

SCALIR automatically determines the region of the curve
that both satisfies the linear relationship requirement (slope of
the In transformed curve = 1) and provides a high-quality fit
(residual of the curve < 0.01) (Figure 5b). An example of a
log-log plot downloaded from the app shows the standard
curve of an individual metabolite, hippurate. In summary,
SCALIR’s deterministic algorithm standardizes the process of
determining a linear range for a standard series when multiple
valid linear fittings are possible, and thus can lead to more

reproducible quantitative results in a fraction of the analysis
time of traditional methods.
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Figure 5. SCALIR simplifies the process for determining the line-
ar range of a standard series where there are two or more distinct
linear regimes. The 8-point standard curve for hippurate in the
natural logarithmic scale is shown as an example in (a), which can
result in two possible linear regions with a high R? value (>0.99).
(b) Log-log plot downloaded from SCALIR, which uses a deter-
ministic fitting algorithm that sets the slope of the regression
curve to 1.000 in the /n scale with the fixed slope option and stops
the fitting when the residual of the curve < 0.01.

Applications. SCALIR can alleviate common quantitative
LC-MS challenges including batch effects and has clear utility
for a variety of quantitative applications, including analyzing
cellular boundary flux'*! - an approach which is gaining trac-
tion as a foundation for clinical diagnostics?, analyzing meta-
bolic interactions within microbial communities?*?*, and as-
sessing the microbial production of biofuels**?. Batch effects
are mainly caused by instrumental drift in signal over time and
exacerbated by using varied analytical conditions (e.g., differ-
ent chromatography columns or solvent batches)’. In this ex-
ample, we show how SCALIR can minimize batch effects
arising from a multiplexed strategy that uses two separate
chromatography columns to enable high-throughput analysis
of over 3,000 injections of the same sample of Staphylococcus
aureus growth medium’® (Figure S3). Clear batch effects were
apparent when we compared only the signal intensity values
for arginine in a dataset (Figure 6a). Using SCALIR to calcu-
late concentrations of arginine in each batch, we generated a
stable result across the repeated injections of the sample irre-
spective of the column used (Figure 6b).
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Figure 6. Comparison of arginine (a) peak maximum values (arbi-
trary units) and (b) concentration values (uM) in samples across
two columns in a large-scale Staphylococcus aureus isolates da-
taset with a multiplexed chromatography strategy.

Additionally, we used SCALIR to perform a metabolic
boundary flux analysis of the Mueller Hinton growth medium
components consumed by S. aureus in the large-cohort study
described previously (Figure 7). Using our quantitative ap-
proach, we revealed different metabolic phenotypes that were
not discernible using LC-MS signal data alone. For example,
we found that S. aureus cells mostly consume serine, arginine,
and trehalose (Figure 7b) as opposed to using other carbon and
nitrogen sources calculated from the normalized peak area
(Figure 7a). Using the quantitative approach, we also observed
that some metabolites such as glutamate and aspartate, despite
their high availability, are not preferentially consumed by S.
aureus (Figure 7c¢), which suggests a route to growth medium
optimization. This approach also allowed us to infer the main
metabolic routes used by the cells for optimal growth (Figure
7d). By facilitating quantitative metabolomics studies, SCAL-
iR represents an important new tool that may soon serve as a
new standard for a wide range of metabolomics applications,
including biomarker discovery for a variety of diseases such as
Alzheimer’s disease®® and cancer?’, as well as studies of plant
secondary metabolism?®.

Limitations. One limitation of SCALIR is that it can only
compute the line of best fit for linear data and uses a logarith-
mic transformation which may not be appropriate for all da-
tasets'®. Users may, however, choose to fit their data with a
non-linear fitting using the interval slope or wide slope options
available in the app. Additionally, as with any method used to
calculate concentrations from a standard curve, SCALIR can
only provide accurate values for concentrations in the respec-
tive linear range for a given compound. With these considera-
tions in mind, SCALIR provides users with a new tool to gen-
erate quantitative metabolomics data over a wide range of
distinct compounds and concentration ranges.
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Figure 7. Boundary flux analysis of S. aureus clinical isolates grown in Mueller Hinton (MH) growth medium. (a) Metabolite consump-
tion/secretion assessment by the ratio of peak intensities in the microbial supernatant and MH medium. (b) Metabolite consump-
tion/secretion analysis using concentration differences. (c) Nutrient availability in MH medium. (d) Proposed metabolic pathways for op-
timal S. aureus growth, according to nutrient consumption and secretion data.

CONCLUSION

Quantitative metabolomics is rapidly emerging as an im-
portant component of many metabolomics research programs;
however, the complexity and time required to quantify metab-
olites has limited its widespread use. SCALIR provides users
with three main advantages compared to the traditional meth-
od of manually fitting standard curves for quantitative metabo-
lomics: (1) reduced analysis time, requiring only 10 seconds to
compute concentrations of >75 compounds; (2) automation of
quantitative workflows with minimal training or computation-
al expertise required; and (3) deterministic evaluation of com-
pound quantification limits and line of best fit, reducing ana-
Iytical subjectivity. Additionally, SCALIR is open-source and
vendor agnostic. SCALIR fits an important need in the metab-

olomics community and opens the door to routine quantitative
metabolomics workflows.
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