
1 

 

SCALiR: a web application for automating absolute quantification of 
mass spectrometry-based metabolomics data 
Stephanie L. Bishop1‡, Luis F. Ponce-Alvarez1‡, Soren Wacker1, Ryan A. Groves1, and Ian A. Lewis1* 
1Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada, T2N 1N4 

ABSTRACT: Metabolomics is an important approach for studying complex biological systems. Quantitative liquid chromatog-
raphy-mass spectrometry (LC-MS)-based metabolomics is becoming a mainstream strategy but presents several technical challeng-
es that limit its widespread use. Computing metabolite concentrations using standard curves generated from standard mixtures of 
known concentrations is a labor-intensive process which is often performed manually. Currently, there are few options for open-
source software tools that can automatically calculate metabolite concentrations. Herein, we introduce SCALiR (Standard Curve 
Application for determining Linear Ranges), a new web-based software tool specifically built for this task, which allows users to 
automatically transform LC-MS signal data into absolute quantitative data (https://www.lewisresearchgroup.org/software). The 
algorithm used in SCALiR automatically finds the equation of the line of best fit for each standard curve and uses this equation to 
calculate compound concentrations from their LC-MS signal. Using a standard mix containing 77 metabolites, we found excellent 
correlation between the concentrations calculated by SCALiR and the expected concentrations of each compound (R2 = 0.99) and 
that SCALiR reproducibly calculated concentrations of mid-range standards across ten analytical batches (average coefficient of 
variation 0.091). SCALiR offers users several advantages, including that it (1) is open-source and vendor agnostic; (2) requires only 
10 seconds of analysis time to compute concentrations of >75 compounds; (3) facilitates automation of quantitative workflows; and 
(4) performs deterministic evaluation of compound quantification limits. SCALiR provides the metabolomics community with a 
simple and rapid tool that enables rigorous and reproducible quantitative metabolomics studies. 

Metabolomics is a mainstream approach for studying com-
plex biological systems, ranging from cancer1, infectious dis-
eases2, host-microbiome interactions3, and microbial engineer-
ing4,5. The common thread among these diverse disciplines is 
that they all have a common need to accurately identify and 
quantify molecules in complex biological mixtures. Although 
such analyses are becoming more common in many metabo-
lomics facilities, collecting absolute quantitative data for me-
tabolites analyzed via routine liquid chromatography-mass 
spectrometry (LC-MS) analyses remains challenging6–8.  

One of the main complications of LC-MS is that the re-
sponse factor of each instrument varies day-to-day and sam-
ple-to-sample, and as a result, standard reference compounds 
used to calibrate signal intensities need to be acquired fre-
quently in order to enable robust quantification9. These addi-
tional logistical complications of acquiring and analyzing data 
for standard reference materials currently make absolute quan-
titative metabolomics studies the exception rather than the rule 
and limits direct comparison between datasets obtained in 
different batches. Absolute quantification of metabolite signals 
makes it possible to directly compare data across large-cohort 
studies and facilitates the analysis of metabolic flux through 
networks6. Although there are many tools and resources avail-
able for metabolomics data visualization and interpretation10, 
there is a critical gap in software for performing absolute 
quantification of metabolomics data. Several commercial tools 
such as Thermo Fisher’s TraceFinder™ and open-source soft-
ware packages such as Skyline for Small Molecules11 can de-
termine quantitative metabolomics values from raw instrumen-

tal data but require extensive user input to complete these 
analyses.  

Most quantitative metabolomics studies conduct this work 
manually. This requires fitting linear curves and removing 
points that do not fall in the linear range, which is a time-
consuming process that requires considerable analyst exper-
tise. There are no universally accepted parameters for deter-
mining the upper and lower limits of quantification (ULOQ 
and LLOQ, respectively) of a compound and ensuring lineari-
ty of the curve fitting. The LLOQ is often defined by instru-
mental baseline noise and calculated with a numerical parame-
ter such as 10% or a fixed multiple of the relative standard 
deviation of a blank matrix12–14. The LLOQ can also be calcu-
lated with a formula based on the percent deviation from the 
nominal concentration at the lowest calibrator concentration15. 
Furthermore, the process of determining the ULOQ can be 
complicated because numerical parameters of the curve fitting, 
such as homoscedasticity (equal distribution of residuals) and 
standard deviation of the regression, need to be considered to 
ensure a valid linear fit across the range of standard concentra-
tions16. These challenges make the process of fitting standard 
curves difficult to automate and results in many investigators 
choosing to omit metabolite quantification from their studies.  

For these reasons, there is an urgent need for software that 
automatically detects the upper and lower limits of quantifica-
tion and the line of best fit for a series of standards and uses 
these data to automatically calculate the concentrations of 
metabolites in a sample. Herein, we introduce SCALiR 
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(Standard Curve Application for determining Linear Ranges), 
a new tool designed specifically for this task. This software 
uses a novel algorithm that leverages a basic logarithmic prop-
erty and general characteristics of LC-MS data to automatical-
ly determine the ULOQ, LLOQ, and line of best fit for exter-
nal calibration standards. Using these values, SCALiR auto-
matically transforms LC-MS peak data into absolute quantita-
tive data. We show that SCALiR automatically generates data 
comparable to those obtained via manual curve fitting by an 
expert analyst. We then illustrate how the tool can be used to 
correct batch effects in large cohorts and facilitate metabolic 
boundary flux analysis.  

EXPERIMENTAL SECTION 
Preparation of mixed metabolite standards. All standard 

stock solutions were prepared from compounds ordered from 
Sigma-Aldrich (Oakville, ON, Canada), VWR (Edmonton, 
AB, Canada), or Acros Organics (now Thermo Scientific 
Chemicals, Waltham, MA, USA). See Table S1 for compound 
CAS numbers. To evaluate the linear dynamic range of each 
compound manually, we developed a mixed standard contain-
ing 77 compounds with variable starting concentrations and 
ran a 10-point dilution series with three technical replicates 
where each sequential standard was diluted 4-fold (1:4) with 
50/50 (v/v) methanol (Fisher Optima™ LC/MS grade; Toron-
to, ON, Canada) and water (Fisher Optima™ LC/MS grade). 
Stock standard concentrations for each compound are found in 
the Supporting Information (Table S1).  

Liquid chromatography-mass spectrometry. All liquid 
chromatography-mass spectrometry (LC-MS) metabolomics 
data were acquired at the Calgary Metabolomics Research 
Facility (CMRF), according to the methods described in detail 
in2,9. Metabolite samples were resolved via a Thermo Scien-
tific™ Vanquish™ UHPLC (Thermo Fisher Scientific) plat-
form using hydrophilic interaction liquid chromatography 
(HILIC) with a 15-minute gradient. Chromatographic separa-
tion was attained using a binary solvent mixture of 20 mM 
ammonium formate at pH 3.0 in LC-MS grade water (Solvent 
A) and 0.1% formic acid (% v/v) in LC-MS grade acetonitrile 
(Solvent B) in conjunction with a 100 mm × 2.1 mm Syn-
cronis™ HILIC LC column (Thermo Fisher Scientific) with a 
2.1µm particle size. Data were acquired on a Thermo Scien-
tific™ Q Exactive™ HF (Thermo Fisher Scientific) mass 
spectrometer in negative ionization mode. 

Manual data analysis. All LC-MS raw data files were con-
verted to mzXML format via MSConvert GUI software17. LC-
MS analysis was conducted in El-Maven, v.0.12.018 with 
manual peak selection using default parameters (Peak Quanti-
tation Type: Area top; Mass Cut-off unit: 10.0 ppm). All data 
were then collated in Microsoft Excel, where the linear range 
for each compound was calculated according to visual inspec-
tion of linearity and goodness of fit. Select performance char-
acteristics according to the U.S. FDA guidelines for bioanalyt-
ical method validation15 for measured compounds can be 
found in the Supporting Information (Table S2).  

Bacterial sample preparation and analysis. Staphylococ-
cus aureus isolates were collected by the Alberta Precision 
Laboratories (Calgary, AB, Canada) and were prepared as 
described in9. Briefly, microbes were inoculated in Mueller-

Hinton broth in 96-well plates and cultured aerobically over-
night at 37℃ in a humidified incubator with a 5% CO2 and 
21% O2 atmosphere. After reaching an optical density between 
0.35 – 0.4, culture supernatants were fixed in methanol (1:1 
v/v) and centrifuged for 5 min at 4,000 x g. The supernatants 
were then diluted 1:10 with 50% methanol before LC-MS 
analysis.  

The concentrations of metabolites in these samples were 
quantified using the mixed metabolite standards (see above), 
with each point prepared as an 8-point dilution series. The 
highest concentration standard was prepared as a 2-fold (1:2) 
dilution in 50/50 (v/v) methanol (Fisher Optima™ LC/MS 
grade) and water (Fisher Optima™ LC/MS grade) from the 
stock standard concentrations described in Table S1. The next 
seven dilutions were prepared as 4-fold (1:4) dilutions in the 
same 50% methanol solvent. LC-MS data were acquired as 
described above. Two 100 mm × 2.1 mm Syncronis™ HILIC 
LC columns (Thermo Fisher Scientific) were used to analyze 
multiple batches. All data were quantified manually as de-
scribed above and compared to automated data quantification 
via SCALiR.  

Implementation, statistical analysis, and visualization. 
The SCALiR backend was implemented in Python (Version 3) 
using the standard libraries pandas, numpy, and matplotlib. 
The user interface was created on Streamlit and the source 
code is available in GitHub 
(https://github.com/LewisResearchGroup/ms-conc). All statis-
tical analysis of data was performed in Python (Version 3) or 
GraphPad Prism (Version 9.5.1). Figures were created using 
Python, GraphPad Prism, Adobe Illustrator (Version 27.2), 
Inkscape (Version 1.2), and by directly downloading images 
and screenshots from the SCALiR app. 

Safety considerations. Reagents used in this investigation 
do not pose any significant safety risks outside of those expe-
rienced regularly when working with moderate strength acids 
and solvents.   

RESULTS AND DISCUSSION 
SCALiR algorithm. One of the principal challenges in 

quantitative metabolomics is the lack of a standardized or de-
terministic method for computing the LLOQ and ULOQ for a 
series of standards. The algorithm incorporated into SCALiR 
takes advantage of a basic logarithmic property and an intrin-
sic characteristic of LC-MS signals that allows the curve fit-
ting process to be generalized. Specifically, in linear datasets 
where the slope is much greater than the intercept, the log-log 
transform of the linear series will have a slope approaching 
one. This transformation is detailed in Eq. 1-6 below.  

Robust calibration reference standards follow a relationship 
wherein signal intensities (𝑦𝑦) and metabolite concentrations 
(𝑥𝑥) are described by a linear model:  
𝑦𝑦 = 𝑚𝑚 × 𝑥𝑥 + 𝑏𝑏                     (1) 

where m denotes slope and b denotes the y-intercept. This 
relationship can be transformed as follows: 

ln(𝑦𝑦) = ln(𝑚𝑚 × 𝑥𝑥 + 𝑏𝑏)                    (2) 

ln(𝑦𝑦) = ln �𝑚𝑚 �𝑥𝑥 + 𝑏𝑏
𝑚𝑚
��                    (3) 

ln(𝑦𝑦) = ln(𝑥𝑥�) +  ln(𝑚𝑚)                      (4) 
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where 𝑥𝑥� =  𝑥𝑥 + 𝑏𝑏
𝑚𝑚

= �1 +  𝑏𝑏
(𝑚𝑚 × 𝑥𝑥)

�  

In cases where b ≪ (m × 𝑥𝑥), in Eq. (4), 𝑥𝑥� → 𝑥𝑥 and becomes: 
 ln(𝑦𝑦) = ln(𝑥𝑥) +  ln(𝑚𝑚)                     (5) 

which can be re-written as: 
𝑦𝑦∗  = 1 × 𝑥𝑥 +  𝑏𝑏∗                       (6) 

where 𝑦𝑦∗ is the LC-MS signal in the ln scale, the slope is equal 
to 1, and 𝑏𝑏∗ is ln(𝑚𝑚).  

To illustrate this point, we calculated the intercept fraction 
value, 𝑏𝑏/(𝑚𝑚 × 𝑥𝑥 ), for ten metabolites across ten batches using 
the average concentration of the five lowest concentration 
standards of an 8-point standard curve to ensure points fell 
below the ULOQ (excluding points with no signal).  As shown 
in Figure 1a, these values fall within the range (-0.1, 0.1) and 
this distribution range holds for 80% of the metabolites we 
measured (Figure 1b). When b ≪ (m × 𝑥𝑥), the curve in the 
linear scale (Eq. 1) is transformed into a linear curve in the ln 
scale with a slope equal to 1 and the intercept equal to the ln of 
the slope in the linear scale (Figure 1c,d). Compounds that 
exhibit deviations from this linear relationship, which result in 
a less adequate fit after the ln transformation with a slope not 
close to 1 and an intercept fraction value ≫ 0 (examples 
shown in Figure S1), are automatically flagged as a “failed fit” 
by SCALiR. 

 

Figure 1. (a) Examples of intercept fraction values (𝑏𝑏/(𝑚𝑚 × 𝑥𝑥 )) 
for the standard curves of ten metabolites run over ten batches. (b) 
The distribution of intercept fraction values for standard curves of 
all metabolites measured. (c) Examples of a set of ten standard 
curves for acetyl-threonine in the linear and ln scale. Each curve 
corresponds to one batch and the line of best fit equations show an 
example of the slope and y-intercept from one standard curve.  

The algorithm used by SCALiR incorporates these proper-
ties to determine the ULOQ and LLOQ for the standard curve, 
as well as an iterative fitting process to find the line of best fit. 
The goodness of fit for the standard curve is controlled by the 

residual function (𝑟𝑟) between the expected (𝑒𝑒) and observed 
(𝑜𝑜) values defined as: 

𝑟𝑟 = 1
𝑁𝑁
∑ (𝑒𝑒 − 𝑜𝑜)2𝑁𝑁
𝑖𝑖=1                      (7) 

where N is the number of points in the dataset.  
When 𝑟𝑟 is calculated to be above the experimentally deter-

mined threshold value of 0.01 (Figure S2), the point with the 
largest distance between the predicted and the experimental 
value is removed from the dataset (Figure 2). This step is re-
peated until the value of r falls below the set threshold, indi-
cating acceptable goodness of fit. 

 

Figure 2. Iterative regression algorithm for finding the linear 
range of a series of standards. (a) The best fit curve is generated 
from the dataset. (b) When the residual (r) of the curve is > 0.01, 
the farthest point from the curve (“A”) is removed and repeated 
(“B”). This step is carried out again until (c) the data allow a line-
ar regression fitting that achieves the quality threshold for r. 

SCALiR app design. The web-based application SCALiR 
(https://www.lewisresearchgroup.org/software) is designed to 
work with peak data files generated from open-source soft-
ware El-Maven18 or MINT (https://mint.resistancedb.org/) 
without further modifications. Peak data from any software 
can be used if the peak data file follows the formatting in the 
sample files accessed directly from the app. Sample data up-
load files for standards concentrations can also be accessed 
directly from the app. Instructions on how to use the app are 
explained on the web application interface and a tutorial with 
demo data files for upload can be accessed via the web inter-
face and are included in the Supporting Information. Users can 
also document issues or suggestions for the app at 
https://github.com/LewisResearchGroup/ms-conc/issues.   

Figure 3 shows key steps and features of the app. Users up-
load a comma-separated values (CSV) file containing concen-
trations of each standard as well as a CSV or Excel file with 
peak list information for standards and samples (Figure 3a). 
The user then selects which program was used to generate the 
peak list information and chooses the fixed slope, wide slope, 
or interval slope option, and can adjust the permissible values 
of the slope for the interval slope option (Figure 3b). Once the 
program is run, the user can download the standard curve pa-
rameters, including slope, intercept, and linear range minimum 
and maximum for each compound, as well as the calculated 
concentrations for standards and samples. Additionally, the 
user can view log-log plots showing the standard curve for 
each compound and download individual images of each plot 
with the option to include axis labels or leave them blank be-
fore downloading the images.  
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Figure 3. Features of the web-based application SCALiR and schematic of its iterative standard curve fitting process. Users upload stand-
ard concentrations (a) and peak list data files (b) and select settings for generating the standard curves. (c) SCALiR performs its iterative 
fitting algorithm, stopping when the fitting reaches the residual threshold (r ≤ 0.01). The remaining maximum and minimum concentration 
values are reported as the range for the linear behavior. Users can download the results for standard curve parameters, concentration data, 
and visualize individual standard curves as log-log plots. 

 
Figure 4. Validation of the algorithm used in SCALiR for calculating concentrations of compounds in a standard mix. (a) Comparison 
between the app calculated concentrations in standards and the actual concentrations for each compound. (b) Comparison between the 
manually calculated concentrations and actual concentrations for each compound. (c) Comparison between the app calculated concentra-
tions in the standard samples and manually calculated concentrations.
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Performance evaluation. To assess the performance of 
SCALiR, we compared the concentrations calculated by the 
app to the actual concentration values of each metabolite in an 
8-point standard dilution series (Figure 4a; supplementary 
datafile). The data shown here are from the mixed standard 
containing 77 metabolites and all validation data are shown 
with SCALiR’s fixed slope feature. Similar results were ob-
tained when we used the wide slope option. The concentration 
values calculated by the app correlated closely with the actual 
concentration values of the standards (R2 = 0.99 in the ln 
scale; Figure 4a), demonstrating that SCALiR’s algorithm 
accurately determines the linear range and concentrations of 
metabolites. This value was comparable to the correlation 
between calculated and actual concentrations obtained by an 
expert analyst that manually fitted standard curves (R2 = 0.98 
in the ln scale; Figure 4b). Thirdly, we compared SCALiR 
against concentration values generated by an expert analyst 
manually (Figure 4c). Again, we found excellent correlation 
between the concentration values calculated by SCALiR and 
those calculated by manual inspection (R2 = 0.99 in the ln 
scale; Figure 4c), indicating that SCALiR’s algorithm per-
forms very similarly to a trained analyst.  

SCALiR also demonstrated reproducible results across ten 
separate analytical batches (Table S3). We calculated that the 
average coefficient of variation (CV) for the middle four 
standards in the 8-point standard curves (Standards 3 – 6) of 
ten representative compounds was between 0.054 – 0.152, 
with an average CV of 0.091 for all ten compounds. Addition-
ally, 85% of the SCALiR-calculated concentrations of these 
standards met the US FDA guidelines stating that non-zero 
calibrators should be within ±15% of the nominal (expected) 
concentration15 (Table S3).  

Analytical challenges solved by SCALiR. One of the major 
advantages of using SCALiR is its deterministic process for 
evaluating the linear range of a standard series, which is based 
on empirically determined parameters. Manual evaluation of 
quantification limits is not only time-consuming but can lead 
to variation in data analysis results between analysts and over 
separate batches. This can result in differences in quantifica-
tion limits and affect the accuracy of the sample concentra-
tions calculated. Figure 5 shows an example of challenges that 
can occur when a standard series displays multiple linear re-
gimes, or regions of the curve that display a linear fit with a 
coefficient of determination (R2) > 0.99. Using hippurate as an 
example, we show that an 8-point standard series transformed 
to the ln scale can display two or more regions that would 
have a valid linear fit based on the coefficient of determination 
parameter (Figure 5a). However, only two of these regions 
satisfy the linear relationship between signal intensity and 
concentration required for the valid ln transformation showing 
a slope of the regression curve equal to approximately 1 
(Lower curve in Figure 5a).  

SCALiR automatically determines the region of the curve 
that both satisfies the linear relationship requirement (slope of 
the ln transformed curve = 1) and provides a high-quality fit 
(residual of the curve < 0.01) (Figure 5b). An example of a 
log-log plot downloaded from the app shows the standard 
curve of an individual metabolite, hippurate. In summary, 
SCALiR’s deterministic algorithm standardizes the process of 
determining a linear range for a standard series when multiple 
valid linear fittings are possible, and thus can lead to more 

reproducible quantitative results in a fraction of the analysis 
time of traditional methods. 

 

Figure 5. SCALiR simplifies the process for determining the line-
ar range of a standard series where there are two or more distinct 
linear regimes. The 8-point standard curve for hippurate in the 
natural logarithmic scale is shown as an example in (a), which can 
result in two possible linear regions with a high R2 value (>0.99). 
(b) Log-log plot downloaded from SCALiR, which uses a deter-
ministic fitting algorithm that sets the slope of the regression 
curve to 1.000 in the ln scale with the fixed slope option and stops 
the fitting when the residual of the curve < 0.01. 

Applications. SCALiR can alleviate common quantitative 
LC-MS challenges including batch effects and has clear utility 
for a variety of quantitative applications, including analyzing 
cellular boundary flux19–21 - an approach which is gaining trac-
tion as a foundation for clinical diagnostics2, analyzing meta-
bolic interactions within microbial communities22,23, and as-
sessing the microbial production of biofuels24,25. Batch effects 
are mainly caused by instrumental drift in signal over time and 
exacerbated by using varied analytical conditions (e.g., differ-
ent chromatography columns or solvent batches)9. In this ex-
ample, we show how SCALiR can minimize batch effects 
arising from a multiplexed strategy that uses two separate 
chromatography columns to enable high-throughput analysis 
of over 3,000 injections of the same sample of Staphylococcus 
aureus growth medium9 (Figure S3). Clear batch effects were 
apparent when we compared only the signal intensity values 
for arginine in a dataset (Figure 6a). Using SCALiR to calcu-
late concentrations of arginine in each batch, we generated a 
stable result across the repeated injections of the sample irre-
spective of the column used (Figure 6b). 
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Figure 6. Comparison of arginine (a) peak maximum values (arbi-
trary units) and (b) concentration values (µM) in samples across 
two columns in a large-scale Staphylococcus aureus isolates da-
taset with a multiplexed chromatography strategy. 

Additionally, we used SCALiR to perform a metabolic 
boundary flux analysis of the Mueller Hinton growth medium 
components consumed by S. aureus in the large-cohort study 
described previously (Figure 7). Using our quantitative ap-
proach, we revealed different metabolic phenotypes that were 
not discernible using LC-MS signal data alone. For example, 
we found that S. aureus cells mostly consume serine, arginine, 
and trehalose (Figure 7b) as opposed to using other carbon and 
nitrogen sources calculated from the normalized peak area 
(Figure 7a). Using the quantitative approach, we also observed 
that some metabolites such as glutamate and aspartate, despite 
their high availability, are not preferentially consumed by S. 
aureus (Figure 7c), which suggests a route to growth medium 
optimization. This approach also allowed us to infer the main 
metabolic routes used by the cells for optimal growth (Figure 
7d). By facilitating quantitative metabolomics studies, SCAL-
iR represents an important new tool that may soon serve as a 
new standard for a wide range of metabolomics applications, 
including biomarker discovery for a variety of diseases such as 
Alzheimer’s disease26 and cancer27, as well as studies of plant 
secondary metabolism28.  

Limitations. One limitation of SCALiR is that it can only 
compute the line of best fit for linear data and uses a logarith-
mic transformation which may not be appropriate for all da-
tasets16. Users may, however, choose to fit their data with a 
non-linear fitting using the interval slope or wide slope options 
available in the app. Additionally, as with any method used to 
calculate concentrations from a standard curve, SCALiR can 
only provide accurate values for concentrations in the respec-
tive linear range for a given compound. With these considera-
tions in mind, SCALiR provides users with a new tool to gen-
erate quantitative metabolomics data over a wide range of 
distinct compounds and concentration ranges. 
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Figure 7. Boundary flux analysis of S. aureus clinical isolates grown in Mueller Hinton (MH) growth medium. (a) Metabolite consump-
tion/secretion assessment by the ratio of peak intensities in the microbial supernatant and MH medium. (b) Metabolite consump-
tion/secretion analysis using concentration differences. (c) Nutrient availability in MH medium. (d) Proposed metabolic pathways for op-
timal S. aureus growth, according to nutrient consumption and secretion data. 

 

CONCLUSION 
Quantitative metabolomics is rapidly emerging as an im-

portant component of many metabolomics research programs; 
however, the complexity and time required to quantify metab-
olites has limited its widespread use. SCALiR provides users 
with three main advantages compared to the traditional meth-
od of manually fitting standard curves for quantitative metabo-
lomics: (1) reduced analysis time, requiring only 10 seconds to 
compute concentrations of >75 compounds; (2) automation of 
quantitative workflows with minimal training or computation-
al expertise required; and (3) deterministic evaluation of com-
pound quantification limits and line of best fit, reducing ana-
lytical subjectivity. Additionally, SCALiR is open-source and 
vendor agnostic. SCALiR fits an important need in the metab-

olomics community and opens the door to routine quantitative 
metabolomics workflows.  
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