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Abstract

Vividly imagining a song or a melody is a skill that many people accomplish with relatively little effort.
However, we are only beginning to understand how the brain represents, holds, and manipulates these
musical “thoughts”. Here, we decoded perceived and imagined melodies from magnetoencephalography
(MEG) brain data (N = 71) to characterize their neural representation. We found that, during perception,
auditory regions represent the sensory properties of individual sounds. In contrast, a widespread network
including fronto-parietal cortex, hippocampus, basal nuclei, and sensorimotor regions hold the melody as
an abstract unit during both perception and imagination. Furthermore, the mental manipulation of a
melody systematically changes its neural representation, reflecting volitional control of auditory images.
Our work sheds light on the nature and dynamics of auditory representations, informing future research

on neural decoding of auditory imagination.
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Introduction

Imagine your friends throwing a birthday party for you. At the climax, you begin to hear the first sounds
of a well-known tune. “Happy birthday to you...”, they cheerfully sing while you blow the candles and slice
a delicious cake. If you are like most people, you can vividly recall the tune that your friends sing for you
(1). You may even recall the voice of a cherished friend or the crowd singing painfully out of tune. Yet, we
are only beginning to understand how the brain represents, holds, and manipulates these musical

thoughts (2).

Here, we consider two kinds of auditory imagination: Recall and manipulation. During recall, we
accurately imagine previously known sounds. During manipulation, we imagine a modified version of the
original sounds. In the brain, recall engages a widespread network including superior temporal gyrus,
motor cortex, supplementary motor area, thalamus, parietal lobe, and frontal lobe (3-17), while
manipulation further involves the frontal and parietal lobes (18,19). With the exception of the visual
cortex, these brain areas are largely consistent with those engaged in visual imagery (20-22). However, it
is unclear how these regions represent imagined sounds. By representation we mean the neural activity
patterns that distinguish an auditory object from others. Understanding neural representations is crucial

for elucidating how the brain recreates and transforms auditory images in the mind’s ear.

A powerful technique to study auditory representations is multivariate pattern analysis (MVPA) (23),
where patterns of neural activity are used to decode features of mentally held objects. If neural signals
carry object-specific information, decoding accuracy is different from chance. By inspecting decoding
model coefficients, it is possible to identify the features of neural activity that underlie mental
representations. Using similar techniques, functional magnetic resonance imaging (fMRI) studies showed
sound-specific representations in primary and secondary auditory cortex (24-27) and frontoparietal
association areas (28,29) during maintenance in working memory and imagination. Other studies
demonstrated imagined sounds decoding from scalp electroencephalography (EEG) (30-32). However, it
remains unclear 1) how sound sequences are represented in auditory and association areas, 2) how these

representations evolve in time, and 3) how they change when mentally manipulated.

Here, we used MVPA of brain activity recorded with magnetoencephalography (MEG, Fig. 1a) to
investigate how perceived, imagined and mentally manipulated short auditory sequences are represented
in the brain. For each trial in the task, participants listened and then were instructed to vividly imagine a

short three-note melody (Fig. 1b). In the recall block, participants imagined the melody as presented,
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whereas in the manipulation block they imagined it backwards (e.g., A-CH#-E becomes E-C#-A). After a
delay, they heard a second melody, which was the same as the first one, its backward version or a totally
different one. Participants answered whether the second melody was the same as the first one or not
(recall block) or the inverted version of the first one or not (manipulation block). Importantly, there were

only two melodies to imagine in the task, which were backward versions of each other.
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Figure 1. Materials and methods. We used MEG (a) to record the brain activity of 71 participants while they

Testing time (s)

performed an imagery task (b). On each trial, participants heard and then imagined a short three-note melody. In
the recall block, they imagined the melody as presented, while in the manipulation block, they imagined it
backwards. Afterwards, they answered whether a test melody was the same as the first one (recall) or its backward
version (manipulation). Participants performed with high accuracy (c) in both blocks. MEG signals (d) were used to
decode melody identity. We used a time-generalization approach (e) in which models were trained at each time
point of the training trials and tested at each time point of the test trials, resulting in time-generalized accuracy
matrices. We transformed model coefficients into patterns of activation (f) and localized their brain generators.
Dashed lines mark the onset of the second (0.5s) and third (1s) sounds of the melodies.

We first used a time generalized decoding technique (23) to characterize the neural dynamics of
auditory representations. Then, we assessed whether mentally manipulating the melodies changed their
neural representation. In the manipulation block, participants suppressed the forward pattern and
mentally reinstated its backward version. Therefore, we predicted below-chance performance when
training on manipulation and testing on recall and vice versa. Finally, we inspected model coefficients to
identify the brain regions and neural activity features that discriminate between melodies and assessed

how they changed between listening and imagination.
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2. Results
2.1. Behavior

Participants (N = 71, 44 female, age = 28.77 +/- 8.43 SD) performed with high accuracy (Fig. 1c) and were
better (OR =1.85, Cl =[1.25-2.72], p =.002) in the recall (96.7%, Cl = [95.6 - 97.6]) than the manipulation
(94.1%, Cl = [91.9 - 95.8]) block. Incorrect trials were excluded from MEG analyses. After the experiment,
participants rated task-related imagery vividness on a 7-point Likert scale (from -3 to 3), with 72% of them
rating O or above, which ranges from mild to strong vividness (Table 1). The good task performance and
the vividness ratings suggest the presence of melody-specific information during imagination. Behavioral
accuracy was associated with general working memory skills (33) (Wechsler Adult Intelligence Scale —
WAIS; recall: r(69) = 0.3, p =.012; manipulation: r(69) = 0.29, p = .016; Fig. S1). No significant relationship
with music training was found (34) (Goldsmiths Musical Sophistication Index — GMSI; recall: r(69) = 0.13,
p =.28; manipulation: r(69) = 0.23, p = .063; Fig. S2; see also Fig. S6 and S7 for further exploratory analyses
on possible associations of neural decoding with behavioral accuracy, vividness ratings, and music

training).

Table 1. Vividness ratings at the end of the task across participants.

Rating -3 -2 -1 0 1 2 3

Number of 1 4 8 10 25 12 4
participants
Percentage 1% | 6% | 11% | 14% | 35% | 17% | 6%

2.1. Above-chance decoding of perceived and imagined melodies.

To investigate the neural dynamics of musical representations, we trained logistic regression models on
MEG sensor data (Fig. 1d) to classify melody identity (melody 1: A-C#-E vs melody 2: E-C#-A) at each time
point of the trials. To assess whether representations recurred over time, we evaluated the models at
each time point of the test data, resulting in time-generalized accuracy matrices (Fig. 1e). We used two
types of testing: Within-condition (training and testing on recall trials or training and testing on
manipulation trials) and between-condition (training on manipulation trials and testing on recall trials or
training on recall trials and testing on manipulation trials). The latter aimed to reveal whether mentally

manipulating the melodies changed their neural representations.
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We observed above-chance within-condition decoding during listening and imagination for both recall
and manipulation (p < .001; Fig 2a; see Table S2 for full statistical report). This further confirms that mental
representations were present during the imagination period. Furthermore, we observed below chance
performance when training around 0.3s and testing around 1.3s and vice versa reflecting the fact that the
first sound (starting at 0s) in one melody was the third sound (starting at 1s) in the other melody (p <
.016). This indicates that sound specific representations discriminated between melodies at these time

points. Note that the second sound (C#) was always the same.
2.2. Volitional control over imagined melodies

We used between-condition testing to decode the identity of the perceived melody at all timepoints in
the trial and detect manipulation-related changes in neural representations. Thus, if during manipulation
participants inhibited the representation of the perceived melody and reinstated the representation of its
backward version, between-condition tests should systematically predict the opposite of the perceived
melody, resulting in below-chance accuracy in the imagination period. Indeed, we found below-chance
accuracy both when training on recall and testing on manipulation (p < .048) and when training on
manipulation and testing on recall (p < .018; Fig. 2b; Table S1). In both cases, accuracies were lower for
between-condition than within-condition testing (p < .035; Fig. 2c). This indicates a flip in neural
representations such that models trained in one condition consistently predicted the opposite when

tested on the other condition.
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Figure 2. Accuracy for (a) within-condition decoding (train and test in the same condition), (b) between-condition
decoding (train in one condition and test on the other), and the difference between the two (c). A time-
generalization technique was used in which models were trained at each time point of the training data and tested
at each time point of the test data. Accuracy across the diagonal is shown at the bottom of each plot. Contours and
bold segments highlight significant clusters of above-chance or below-chance accuracy. Note how between-
condition testing yields below-chance accuracy during imagination, suggesting a flip in neural representations.
Dashed lines mark the onset of the second (0.5s) and third (1s) sounds of the melodies.

We also considered the possibility that representational dynamics were different between recall and
manipulation. Indeed, when models were trained in the imagination period (~3.5 s) and tested on the
listening period (~1.2 s) or vice versa, within-condition accuracy was lower (p < .033) for manipulation
than recall (Fig. S3). This may reflect the fact that, for the manipulation block, the representation of the
first melody was inhibited, thus leading to lower generalization across listening and imagination. Overall,

these findings indicate that, in the manipulation block, participants inhibited the perceived melody and
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reinstated its backward version, resulting in a flip of neural representations. This provides evidence of

volitional control over mental auditory representations.

2.2. Musical sound sequences are represented in auditory, association, sensorimotor, and subcortical

areas

To elucidate the brain regions and neural features that distinguish between the melodies, we transformed
the model coefficients into interpretable patterns of activation as described in (35), and localized their
brain generators (Fig. 1f). The resulting patterns can be interpreted as the differences in neural activity
that discriminate between melodies and underlie successful decoding. We focused on average brain
activity at four different periods: Three during listening (0.2s - 0.5s, 0.7s - 1s and 1.2s - 1.5s) and one during
imagination (2s - 4s). For listening, we chose 200 to 500 ms after onset of each sound, starting at accuracy
peaks (0.2s and 1.2s) and including sustained activity until sound offset. For the imagination period, we
included the whole time interval due to the lower signal to noise ratio, the lack of prominent peaks, and

the inherent temporal variability of mental images.
2.2.1. Auditory representations during listening

Patterns of neural activity distinguished between melodies in several brain areas. For the first sound (Fig.
3a), we found clusters of regions in both conditions (p < .006, see Table S3 for full statistical reports) with
peak activity patterns in auditory areas such as superior temporal gyrus and Heschl’s gyrus, but also, in
somatosensory (postcentral gyrus) and association areas (fusiform, hippocampus, retrosplenial,
posterior cingulate, angular gyrus, inferior parietal cortex; see Tables S4 and S5 for a full report of
anatomical regions). In addition, activity patterns in another cluster in both blocks (p < .001) peaked at
anteromedial (orbitofrontal, anterior cingulate), posteromedial (mid-posterior cingulate), and lateral
(inferior, middle and superior frontal gyri) prefrontal cortex, as well as insula, motor cortex (precentral
gyrus), and subcortical structures including the basal nuclei (putamen, caudate, accumbens, pallidum)
and the thalamus. Interestingly, after the second sound information about melody identity was present
in association, sensorimotor, and subcortical structures (p < .005), but not in auditory areas (Fig. 3b). This
reflects the fact that the second sound is the same in both melodies, inducing similar sensory
representations in superior temporal cortex while maintaining distinct melody-wise representations

across the brain.
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Figure 3. Patterns of neural activity that discriminate between melodies during listening, as derived from decoding
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coefficients and averaged over time. Patterns are shown for three time windows: (a) Sound 1 (0.2s - 0.5s), (b) Sound
2 (0.7s - 1s), and (c) Sound 3 (1.2s - 1.5s). The difference between sounds 1 and 3 is also shown (d). Patterns are
depicted for two types of MEG sensors (planar gradiometers and magnetometers) and after source reconstruction.
For visualization, pairs of planar gradiometers were combined by taking their root mean square. Significant channels

are highlighted with white dots. Source-level activation is shown for significant clusters. fT = “femto Tesla”.

The same areas outlined above represented the melodies after the third sound (p <.021; Fig. 3c). Crucially,
representations flipped sign in auditory areas and anterior medial temporal areas (p < .003; Fig. 3d) such
that, during sound one, melody 2 elicited more positive local field potentials than melody 1, whereas for
sound three melody 1 elicited more positive local field potentials than melody 2 (Fig. S4). This
representational flip underlies below-chance decoding after sounds 1 and 3 (Fig. 4a) and reflects the fact
that the two melodies are backward versions of each other. In addition, representations in the prefrontal
cortex were more prominent after sound 1 (p < .017, Fig. 3d) than sound 3, possibly indicating a more
automatic evaluation at the end than at the beginning of the sequence (36,37). Overall, these pieces of
evidence suggest two types of processing: One concerned with individual sound encoding in auditory and
anterior memory regions and another one concerned with holding the melody as a sequence in

association, sensorimotor, and subcortical structures.
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2.2.2. Auditory representations during imagination

In the imagination period, melodies were mainly represented in non-auditory areas including basal nuclei,
thalamus, mid-posterior cingulate, motor, and parietal cortex (p < .001, Fig. 4a). Additional recruitment
of inferior temporal cortex, posterior cingulate, precuneus, and auditory areas was observed in the recall
block, and of the lateral prefrontal cortex in the manipulation block. Furthermore, representations
changed in the left lateral prefrontal cortex during manipulation compared to recall (p = .033; Fig. 4a) with
possible further changes in the right prefrontal cortex and retrosplenial (Fig. S5). These changes likely
underlie the manipulation-driven representational flip identified through between-condition testing (Fig.

2b).
2.3. Opposite neural activity during listening compared to imagination

Interestingly, patterns of activity switched sign (p <.001) between listening and imagination, with positive
local fields in temporal areas becoming negative, and negative fields in anterior association, sensorimotor,
and subcortical areas becoming positive after 2s (Fig. 4b; Fig. S4). A similar switch was reported in studies
that decoded imagined sounds from scalp EEG (30,31) and auditory working memory content with fMRI
(25).
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Figure 4. (a) Patterns of neural activity that discriminate between melodies during imagination in both conditions
(2s - 4s), as derived from decoding coefficients and averaged over time. The difference between listening and
Imagination is also presented (b). Patterns are depicted for two types of MEG sensors (planar gradiometers and
magnetometers) and after source reconstruction. For visualization, pairs of planar gradiometers were combined by
taking their root mean square. Significant channels are highlighted with white dots. Source-level activation is shown
for significant clusters. fT = “femto Tesla”.
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Discussion

In this study, we decoded perceived and imagined melodies from neural activity to demonstrate that
musical sound sequences are represented in auditory, association, sensorimotor, and subcortical areas,
and that these representations systematically change when mentally manipulated. While previous studies
have decoded imagined sound information from brain data (24,26,29-32), here we define the nature and

dynamics of the underlying auditory representations and show how they change during manipulation.

Above-chance decoding peaked after the onset of the first and third sounds and was sustained during
imagination. The highest decoding performance was detected around the diagonal of the matrices, which
indicates that representations were dynamic and had marginal generalization over time (23). During
listening, this could be due to the constantly changing sensory input. During imagination, this might reflect
temporal variability between participants. The lack of generalization further suggests that representations
were different between listening and imagination. This contrasts with research suggesting that perceived
and imagined sounds share neural substrates and representations. For example, both imagined and actual
sounds activate secondary auditory areas (13) and fMRI studies decoded imagined auditory
representations from primary and secondary auditory cortex (24-27). Moreover, some studies found that
representations during the omission of predictable sounds are similar to those of the actual sounds

(38,39).

The lack of generalization in our results might arise from three factors. First, the melodies differed in the
temporal order of their constituent sounds, which were otherwise the same. Temporal order is an abstract
feature that might generalize less across listening and imagination than sensory features such as pitch,
which are typically the target of decoding (e.g., 40). Second, experimental paradigms have either
minimized the temporal variability of the imagined representations (e.g., omission studies)(38,39) or did
not take time into account (fMRI studies)(24-27). In contrast, our design allows temporal flexibility within
a relatively long imagination period (2s), which might introduce between-trial and between-subject
variations that blur sound-specific representations. Finally, consistent with previous EEG and fMRI findings
(25,30,31), representations in association, sensorimotor, and subcortical areas were opposite between
listening and imagination (Fig. 3b). This flip could reflect a change in the direction of information flow
across the brain, from bottom-up (listening) to top-down (imagination). Some models propose specific
roles for different layers of the cortical sheet, with superficial pyramidal cells conveying bottom up sensory

input, and deep pyramidal cells conveying top-down expectations (41,42). It is possible that these layer-
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specific efferent and afferent activity patterns result in detectable changes in the direction of local field

potentials. Layer-sensitive recordings are needed to test this hypothesis.

The fact that the melodies were backward versions of each other allowed us to dissociate the role of
different brain areas. During listening, auditory regions encoded the sensory information of individual
sounds such that representations were opposite after the first and third tones, and equal during the
second sound. In contrast, association and subcortical areas (inferior and medial temporal lobe,
ventromedial prefrontal cortex, thalamus, basal nuclei) remained stable, while representations in dorsal
association areas (lateral prefrontal cortex) were involved only at sequence onset. Moreover, during
imagination, association and subcortical areas were the main carriers of representations, with auditory
and temporal areas further involved during recall; and lateral prefrontal cortex further engaged in
manipulation. Overall, these dynamics suggest two types of processing: One concerned with the encoding
of sound-specific sensory information in superior temporal cortex and anterior temporal areas, and
another one concerned with the encoding, retrieval, and manipulation of auditory sequences in
association and subcortical areas. This dissociation between the sensory and abstract properties of sound
sequences is consistent with a previous scalp EEG study that disentangled pitch and temporal order

representations during sound maintenance in auditory working memory (43).

The regions that carried auditory representations in our study overlap with those identified in previous
neuroimaging activation studies as important for imagery in audition and other modalities (4,6-22).
However, a discrepancy of our study is the lack of substantial melody-specific information in the
supplementary motor area, identified as a key region for auditory imagination (44). Nevertheless, we
found representations in the motor and somatosensory cortex, which is consistent with previous reports
(7,45,46) and might reflect the generation of auditory expectations through motor simulation.
Furthermore, we observed melody-specific representations in the basal nuclei, a set of areas involved in
both cognitive and motor control that have not been identified in previous auditory imagery research.
From these nuclei, the putamen has been related to motor imagery (47). Moreover, the basal nuclei are
typically studied with the hemodynamic response in fMRI, which correlates best with high gamma (> 60
Hz) power (48) in EEG. In this study, we used instead MEG broadband signals to decode auditory objects,
which might be why basal nuclei representations were found here but not in fMRI. Future research
examining high gamma activity and other frequency bands will be needed to elucidate their relationship

with the hemodynamic response.
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The task used in this study is similar to the classical delayed match-to-sample paradigm employed in
working memory research. An important difference, however, is that we asked participants to vividly
imagine and mentally manipulate the melodies, whereas in working memory experiments maintenance
strategies usually remain unspecified. Thus, while it is possible that our participants used unconscious
maintenance strategies without imagery, the explicit task instruction, the good task performance, the
vividness ratings, and the between-condition decoding results suggest that they engaged in active mental
recall and manipulation. Future experiments where imagery is not required are needed to further

elucidate the nature of maintenance strategies and the relationship of imagery with working memory.

This caveat aside, task performance was associated with general working memory scores and the brain
regions identified overlap with those exhibiting delay-period activity in auditory working memory,
including the auditory cortex, the prefrontal cortex, the parietal cortex, and the medial temporal lobe
(19,28,49,50). Moreover, auditory representations in working memory have been decoded from the
auditory, frontal, and parietal cortices (24,28,43) and from the functional interaction of these regions
(51,52). Most of these decoding studies, however, addressed working memory for individual sounds and
none investigated sound manipulation. In addition, there is a tradeoff, with fMRI studies having good
spatial but low temporal resolution, and EEG studies having good temporal but low spatial resolution. The

use of MEG allowed a good localization of auditory representations both in space and time.

Two methodological caveats need to be considered. First, we localized auditory representations to both
cortical and deep brain areas (basal nuclei, thalamus, hippocampus), raising concerns given the bias
towards the head center of beamforming algorithms (53) and the fact that activity in such areas is typically
hard to detect with MEG. However, we eliminated the depth bias by normalizing the forward and inverse
solutions and verified that the localized activations are consistent with sensor topographies, especially at
the midline (e.g., Fig. 3c). In addition, differences were still found in deep structures when two conditions
were contrasted (e.g., imagination vs listening), arguing against a depth bias which should cancel out in
condition contrasts. Furthermore, with implementation of appropriate controls, the use of beamformers
has made the detection of deep sources increasingly common, including the basal nuclei, the medial
temporal lobe, and even the cerebellum (54-57). Therefore, it is unlikely that these deep activity patterns
are localization artifacts. The other caveat is the possibility that successful decoding is partly due to
extracerebral, motion-related activity. However, this is also unlikely because we thoroughly cleaned the

data from the main sources of contamination (eye movements and heartbeats), the sensor topographies
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suggest brain generators, and beamforming algorithms are particularly good at filtering out extracerebral

sources.

In conclusion, our results provide evidence regarding the nature and dynamics of perceived and imagined
sound representations in the brain and contribute to a growing body of work investigating musical
imagery and its relationship with other modalities (2,58—63). Our findings also demonstrate the feasibility
of decoding mental auditory representations at a fine temporal resolution with non-invasive methods.
This opens the path to clinical applications where decoding of imagined objects is relevant (e.g.,
communication impairments). Future work might employ different recording modalities (e.g., optical
MEG, intracranial EEG), bigger datasets (e.g., by increasing the number of trials), and models that are
larger and account for the temporal variability in imagination (e.g., deep learning)(64) to maximize the

decoding of auditory images.
3. Methods
3.1. Participants

We recorded MEG (Fig. 1a) data from 80 participants. From these, six were excluded due to chance
behavioral performance and three due to noisy or corrupted neural data, resulting in a final group of 71
participants (44 female, age = 28.77 +/- 8.43 SD). Three of these participants were excluded from source
level analyses due to absence of anatomical images. Participants had mixed musical backgrounds with
most of them (50) never having played a musical instrument (including voice). The other 21 participants
had a median of 11 (IQR = [7-16]) years of musical training. In addition, participants had a median score
of 17 (IQR = [13-26], maximum possible score = 49) in the training subscale of the Goldsmiths Musical
Sophistication Index (GMSI) (34) and of 96 (IQR = [93-105]) in the Wechsler Adult Intelligence Scale (WAIS)
(33). Musical expertise was not a factor in recruitment for this experiment. Participants gave their explicit
informed consent and received a small monetary compensation. The study was approved by the
Institutional Review Board (IRB) of Aarhus University (case number: DNC-IRB-2020-006) and conducted in

accordance with the Helsinki declaration.
3.2. Stimuli

We employed short three-note melodies forming a major chord arpeggio using piano sounds (musical
pitch: A3, C#5, E6; FO: 220Hz, 554Hz, 1318Hz) synthesized with MuseScore (v3.6.2; see materials’ GitHub
repository for the actual sounds used). The sounds were arranged in ascending order in melody 1 (A-CH-

E) and descending order in melody 2 (E-C#-A). Two foil test melodies were also included: A-E-C# and E-A-


https://www.zotero.org/google-docs/?glVBBk
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C#. The inter-onset interval between individual sounds was 500ms. The sounds were normalized to peak

amplitude.
3.3. Task

The experiment was implemented in Psychopy v3.1.2 (65) (see materials’ GitHub repository for details).
On each trial (Fig. 1b), participants heard melody 1 or melody 2, together with the word “Listen” appearing
on the screen. After 2s, participants saw the word “Imagine”, which indicated that they had to vividly
reproduce the melody in their minds. There were two conditions, encompassing the two different blocks
in the experiment. In the recall block, they imagined the melody as presented whereas in the manipulation
block, they imagined it backwards. Four seconds after trial onset, participants heard a test melody, which
could be the same as the first one, its inverted version or a different melody. Participants answered
whether the second melody was the same as the first one or not (recall block) or its inverted version or
not (manipulation block). A response time limit of 3.5 seconds was set. There were 60 trials per block (30
same/inverted, 30 different/other). The trial number was displayed on the screen for 2.5s before trial
onset. A quick pause was allowed after the 30™ trial. Two practice trials were presented at the beginning

of each block. Conditions were counterbalanced across participants.
3.4. Procedure

At the beginning of the session, we explained in detail the procedure to the participants and instructed
them to vividly imagine the melodies without humming them or moving any part of the body. We made
sure the participant fully understood the nature of the task and was able to perform practice trials
correctly before the MEG recording. After giving written informed consent, the participants changed into
medical clothes, and we attached electrocardiogram (ECG) and electrooculogram (EOG) electrodes to
their skin for heartbeat and eye movement monitoring. Head shape was digitized with a Polhemus system
and head position was continuously tracked during the recording with the help of three coils. During the
task, the participant sat in the MEG chair inside a magnetically shielded room and looked at the screen
where instructions and trial information were displayed. The subjects responded to each trial by making
a button press in a response pad with their right hand. Sound stimulation was delivered through
magnetically isolated ear tubes. The task lasted approximately 20 minutes. Other experimental paradigms
testing recognition memory were recorded together with this task. Results are reported elsewhere (57).
The order of the paradigms was counterbalanced across participants. After the experiment, participants

were asked to rate the vividness of imagery during the task on a 7-point Likert scale ranging from -3 to 3.
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3.5. MEG recording and preprocessing

MEG data were collected with a 306-channel (102 magnetometers, 204 planar gradiometers) Elekta
Neuromag system and Maxwell-filtered with proprietary software. This step also involved correcting the
data for continuous head movements. Data analyses were conducted in MNE Python (v0.24) (66). Vertical
and horizontal eye movements as well as heartbeat artifacts were corrected with ICA in a semi-automatic
routine. Visual inspection was used to ensure data quality. After high-pass filtering (0.05 Hz cutoff), epochs
were extracted from -0.1s to 4s around trial onset. For source reconstruction, T1 brain anatomical images
were collected with a 3T MRI scanner and segmented and aligned with MEG sensors using Freesurfer.
Source reconstruction was done for the 68 participants with an available MRI. Using the boundary element
method and a single shell mesh (5 mm resolution), volumetric forward models were created and
subsequently inverted with linearly constrained minimum variance (LCMV) beamforming employing the
joint gradiometer covariance across listening and imagination periods. For similar results obtained with
the separate covariance of the listening and imagination periods see Fig. S8. Importantly, forward models
and inverse solutions were normalized to eliminate the bias towards the center of the head inherent to

beamformers (53).
3.6. Decoding analysis

We used a time-generalized decoding approach (Fig. 1d) (23) based on L1 regularized logistic regression
to classify melody identity (melody 1 vs melody 2) at each time point of the trials, for each participant
separately. To assess the representational dynamics, we evaluated the models at each time point of the
test data. We did two types of testing. In within-condition testing, we trained and tested the models with
trials of the same condition. In between-condition testing, we trained the models with trials of one
condition (e.g., manipulation) and tested on trials of the other (e.g., recall). Five-fold cross validation was
used for within-condition testing. To avoid biases in model fitting due to class imbalances related to the
exclusion of incorrect trials, we used a balanced scoring strategy in which the average accuracy was

computed separately for each class and then combined across classes.

At the group level, we used non-parametric cluster-based permutations (67) to evaluate whether
accuracies in the time-generalization matrices were significantly above or below chance. Here, chance
level corresponds to 0.5 accuracy, as we classified binary melody identity from brain data. We used a two-
sided cluster-defining threshold of p = 0.05 based on one-sample t-tests (p = 0.025 one-sided, t > 1.99),

and max sum as the cluster statistic. The cluster-level significance threshold was set at p =.05. The number
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of permutations was 5000. The same statistical approach was used to evaluate whether within-condition

accuracy was different from between-condition accuracy.
3.6. Coefficient inspection

We transformed decoding coefficients (W) into interpretable patterns of activation (A) for each

participant using the method detailed in (35) and defined by the equation:
A= 3 Wzt
x y
Where 237 is the covariance of model predictions and X, is the covariance of neural signals.

We localized the neural generators of these patterns using the inverse solutions described in section 3.5.
(Fig. 1f). For each voxel, the magnitude and sign of the orientation with maximum power were retained.
For sensor activity patterns, we used cluster based permutations (see above) in the whole epoch (0-4) to
test whether group-level activity patterns were different from zero. After projecting individual source-
level time-courses into MNI standard space, we also tested against zero the localized patterns averaged
across time in the three listening (0.2s — 0.5s, 0.7s — 1s, 1.2s — 1.5s) and one imagination (2s — 4s) time
windows. For all these periods, differences between recall and manipulation were also tested.
Furthermore, we compared patterns of average activity between the listening (0Os — 2s) and imagination
(2s — 4s) periods and between sounds 1 (0.2s — 0.5s) and 3 (1.2s — 1.5s). Using the Desikan-Killiany
parcellation (68), we obtained the significant peak activation for each region that overlapped with

significant clusters. We report the regions with the most prominent peaks.

Finally, in a supplemental analysis, we inspected the time courses of activity patterns in five groups of
regions of interest (ROI) including (1) right auditory, (2) right posteroventral association, (3) right dorsal
association, (4) left dorsal association, and (5) right anteroventral/subcortical areas (Fig. S4). We used
cluster based permutations as described above to evaluate significant differences from zero. We display
these patterns together with the evoked response calculated between —0.1s and 4s around trial onset, for
each of the two melodies and the two conditions (Fig. S4). These evoked responses were source localized
with the same inverse operator as the activity patterns derived from decoding and were subject to the

same statistical tests.
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