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Abstract 

Vividly imagining a song or a melody is a skill that many people accomplish with relatively little effort. 

However, we are only beginning to understand how the brain represents, holds, and manipulates these 

musical “thoughts”. Here, we decoded perceived and imagined melodies from magnetoencephalography 

(MEG) brain data (N = 71) to characterize their neural representation. We found that, during perception, 

auditory regions represent the sensory properties of individual sounds. In contrast, a widespread network 

including fronto-parietal cortex, hippocampus, basal nuclei, and sensorimotor regions hold the melody as 

an abstract unit during both perception and imagination. Furthermore, the mental manipulation of a 

melody systematically changes its neural representation, reflecting volitional control of auditory images. 

Our work sheds light on the nature and dynamics of auditory representations, informing future research 

on neural decoding of auditory imagination. 
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Introduction 

Imagine your friends throwing a birthday party for you. At the climax, you begin to hear the first sounds 

of a well-known tune. “Happy birthday to you…”, they cheerfully sing while you blow the candles and slice 

a delicious cake.  If you are like most people, you can vividly recall the tune that your friends sing for you 

(1). You may even recall the voice of a cherished friend or the crowd singing painfully out of tune. Yet, we 

are only beginning to understand how the brain represents, holds, and manipulates these musical 

thoughts (2). 

Here, we consider two kinds of auditory imagination: Recall and manipulation. During recall, we 

accurately imagine previously known sounds. During manipulation, we imagine a modified version of the 

original sounds. In the brain, recall engages a widespread network including superior temporal gyrus, 

motor cortex, supplementary motor area, thalamus, parietal lobe, and frontal lobe (3–17), while 

manipulation further involves the frontal and parietal lobes (18,19). With the exception of the visual 

cortex, these brain areas are largely consistent with those engaged in visual imagery (20–22). However, it 

is unclear how these regions represent imagined sounds. By representation we mean the neural activity 

patterns that distinguish an auditory object from others. Understanding neural representations is crucial 

for elucidating how the brain recreates and transforms auditory images in the mind’s ear. 

A powerful technique to study auditory representations is multivariate pattern analysis (MVPA) (23), 

where patterns of neural activity are used to decode features of mentally held objects. If neural signals 

carry object-specific information, decoding accuracy is different from chance. By inspecting decoding 

model coefficients, it is possible to identify the features of neural activity that underlie mental 

representations. Using similar techniques, functional magnetic resonance imaging (fMRI) studies showed 

sound-specific representations in primary and secondary auditory cortex (24–27) and frontoparietal 

association areas (28,29) during maintenance in working memory and imagination. Other studies 

demonstrated imagined sounds decoding from scalp electroencephalography (EEG) (30–32). However, it 

remains unclear 1) how sound sequences are represented in auditory and association areas, 2) how these 

representations evolve in time, and 3) how they change when mentally manipulated. 

Here, we used MVPA of brain activity recorded with magnetoencephalography (MEG, Fig. 1a) to 

investigate how perceived, imagined and mentally manipulated short auditory sequences are represented 

in the brain. For each trial in the task, participants listened and then were instructed to vividly imagine a 

short three-note melody (Fig. 1b). In the recall block, participants imagined the melody as presented, 
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whereas in the manipulation block they imagined it backwards (e.g., A-C#-E becomes E-C#-A). After a 

delay, they heard a second melody, which was the same as the first one, its backward version or a totally 

different one. Participants answered whether the second melody was the same as the first one or not 

(recall block) or the inverted version of the first one or not (manipulation block). Importantly, there were 

only two melodies to imagine in the task, which were backward versions of each other. 

 

Figure 1. Materials and methods. We used MEG (a) to record the brain activity of 71 participants while they 
performed an imagery task (b). On each trial, participants heard and then imagined a short three-note melody. In 
the recall block, they imagined the melody as presented, while in the manipulation block, they imagined it 
backwards. Afterwards, they answered whether a test melody was the same as the first one (recall) or its backward 
version (manipulation). Participants performed with high accuracy (c) in both blocks. MEG signals (d) were used to 
decode melody identity. We used a time-generalization approach (e) in which models were trained at each time 
point of the training trials and tested at each time point of the test trials, resulting in time-generalized accuracy 
matrices. We transformed model coefficients into patterns of activation (f) and localized their brain generators. 
Dashed lines mark the onset of the second (0.5s) and third (1s) sounds of the melodies. 

We first used a time generalized decoding technique (23) to characterize the neural dynamics of 

auditory representations. Then, we assessed whether mentally manipulating the melodies changed their 

neural representation. In the manipulation block, participants suppressed the forward pattern and 

mentally reinstated its backward version. Therefore, we predicted below-chance performance when 

training on manipulation and testing on recall and vice versa. Finally, we inspected model coefficients to 

identify the brain regions and neural activity features that discriminate between melodies and assessed 

how they changed between listening and imagination.  
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2. Results 

2.1. Behavior 

Participants (N = 71, 44 female, age = 28.77 +/- 8.43 SD) performed with high accuracy (Fig. 1c) and were 

better (OR = 1.85, CI = [1.25 - 2.72], p = .002) in the recall (96.7%, CI = [95.6 - 97.6]) than the manipulation 

(94.1%, CI = [91.9 - 95.8]) block. Incorrect trials were excluded from MEG analyses. After the experiment, 

participants rated task-related imagery vividness on a 7-point Likert scale (from -3 to 3), with 72% of them 

rating 0 or above, which ranges from mild to strong vividness (Table 1). The good task performance and 

the vividness ratings suggest the presence of melody-specific information during imagination. Behavioral 

accuracy was associated with general working memory skills (33) (Wechsler Adult Intelligence Scale – 

WAIS; recall: r(69) = 0.3, p = .012; manipulation: r(69) = 0.29, p = .016; Fig. S1). No significant relationship 

with music training was found (34) (Goldsmiths Musical Sophistication Index – GMSI; recall: r(69) = 0.13, 

p = .28; manipulation: r(69) = 0.23, p = .063; Fig. S2; see also Fig. S6 and S7 for further exploratory analyses 

on possible associations of neural decoding with behavioral accuracy, vividness ratings, and music 

training). 

Table 1. Vividness ratings at the end of the task across participants. 

Rating -3 -2 -1 0 1 2 3 

Number of 
participants 

1 4 8 10 25 12 4 

Percentage 1% 6% 11% 14% 35% 17% 6% 

 

2.1. Above-chance decoding of perceived and imagined melodies. 

To investigate the neural dynamics of musical representations, we trained logistic regression models on 

MEG sensor data (Fig. 1d) to classify melody identity (melody 1: A-C#-E vs melody 2: E-C#-A) at each time 

point of the trials. To assess whether representations recurred over time, we evaluated the models at 

each time point of the test data, resulting in time-generalized accuracy matrices (Fig. 1e). We used two 

types of testing:  Within-condition (training and testing on recall trials or training and testing on 

manipulation trials) and between-condition (training on manipulation trials and testing on recall trials or 

training on recall trials and testing on manipulation trials). The latter aimed to reveal whether mentally 

manipulating the melodies changed their neural representations. 
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We observed above-chance within-condition decoding during listening and imagination for both recall 

and manipulation (p < .001; Fig 2a; see Table S2 for full statistical report). This further confirms that mental 

representations were present during the imagination period. Furthermore, we observed below chance 

performance when training around 0.3s and testing around 1.3s and vice versa reflecting the fact that the 

first sound (starting at 0s) in one melody was the third sound (starting at 1s) in the other melody (p ≤ 

.016). This indicates that sound specific representations discriminated between melodies at these time 

points. Note that the second sound (C#) was always the same. 

2.2. Volitional control over imagined melodies 

We used between-condition testing to decode the identity of the perceived melody at all timepoints in 

the trial and detect manipulation-related changes in neural representations. Thus, if during manipulation 

participants inhibited the representation of the perceived melody and reinstated the representation of its 

backward version, between-condition tests should systematically predict the opposite of the perceived 

melody, resulting in below-chance accuracy in the imagination period. Indeed, we found below-chance 

accuracy both when training on recall and testing on manipulation (p ≤ .048) and when training on 

manipulation and testing on recall (p ≤ .018; Fig. 2b; Table S1). In both cases, accuracies were lower for 

between-condition than within-condition testing (p ≤ .035; Fig. 2c). This indicates a flip in neural 

representations such that models trained in one condition consistently predicted the opposite when 

tested on the other condition.  
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Figure 2. Accuracy for (a) within-condition decoding (train and test in the same condition), (b) between-condition 
decoding (train in one condition and test on the other), and the difference between the two (c). A time-
generalization technique was used in which models were trained at each time point of the training data and tested 
at each time point of the test data. Accuracy across the diagonal is shown at the bottom of each plot. Contours and 
bold segments highlight significant clusters of above-chance or below-chance accuracy. Note how between-
condition testing yields below-chance accuracy during imagination, suggesting a flip in neural representations. 
Dashed lines mark the onset of the second (0.5s) and third (1s) sounds of the melodies. 

We also considered the possibility that representational dynamics were different between recall and 

manipulation. Indeed, when models were trained in the imagination period (~3.5 s) and tested on the 

listening period (~1.2 s) or vice versa, within-condition accuracy was lower (p ≤ .033) for manipulation 

than recall (Fig. S3). This may reflect the fact that, for the manipulation block, the representation of the 

first melody was inhibited, thus leading to lower generalization across listening and imagination. Overall, 

these findings indicate that, in the manipulation block, participants inhibited the perceived melody and 
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reinstated its backward version, resulting in a flip of neural representations. This provides evidence of 

volitional control over mental auditory representations. 

2.2. Musical sound sequences are represented in auditory, association, sensorimotor, and subcortical 

areas 

To elucidate the brain regions and neural features that distinguish between the melodies, we transformed 

the model coefficients into interpretable patterns of activation as described in (35), and localized their 

brain generators (Fig. 1f).  The resulting patterns can be interpreted as the differences in neural activity 

that discriminate between melodies and underlie successful decoding. We focused on average brain 

activity at four different periods: Three during listening (0.2s - 0.5s, 0.7s - 1s and 1.2s - 1.5s) and one during 

imagination (2s - 4s). For listening, we chose 200 to 500 ms after onset of each sound, starting at accuracy 

peaks (0.2s and 1.2s) and including sustained activity until sound offset. For the imagination period, we 

included the whole time interval due to the lower signal to noise ratio, the lack of prominent peaks, and 

the inherent temporal variability of mental images.  

2.2.1. Auditory representations during listening 

Patterns of neural activity distinguished between melodies in several brain areas. For the first sound (Fig. 

3a), we found clusters of regions in both conditions (p ≤ .006, see Table S3 for full statistical reports) with 

peak activity patterns in auditory areas such as superior temporal gyrus and Heschl’s gyrus, but also, in 

somatosensory (postcentral gyrus) and association areas (fusiform, hippocampus, retrosplenial, 

posterior cingulate, angular gyrus, inferior parietal cortex; see Tables S4 and S5 for a full report of 

anatomical regions). In addition, activity patterns in another cluster in both blocks (p < .001) peaked at 

anteromedial (orbitofrontal, anterior cingulate), posteromedial (mid-posterior cingulate), and lateral 

(inferior, middle and superior frontal gyri) prefrontal cortex, as well as insula, motor cortex (precentral 

gyrus), and subcortical structures including the basal nuclei (putamen, caudate, accumbens, pallidum) 

and the thalamus. Interestingly, after the second sound information about melody identity was present 

in association, sensorimotor, and subcortical structures (p < .005), but not in auditory areas (Fig. 3b). This 

reflects the fact that the second sound is the same in both melodies, inducing similar sensory 

representations in superior temporal cortex while maintaining distinct melody-wise representations 

across the brain. 
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Figure 3. Patterns of neural activity that discriminate between melodies during listening, as derived from decoding 

coefficients and averaged over time. Patterns are shown for three time windows: (a) Sound 1 (0.2s - 0.5s), (b) Sound 

2 (0.7s - 1s), and (c) Sound 3 (1.2s - 1.5s). The difference between sounds 1 and 3 is also shown (d). Patterns are 

depicted for two types of MEG sensors (planar gradiometers and magnetometers) and after source reconstruction. 

For visualization, pairs of planar gradiometers were combined by taking their root mean square. Significant channels 

are highlighted with white dots. Source-level activation is shown for significant clusters. fT = “femto Tesla”. 

 

The same areas outlined above represented the melodies after the third sound (p ≤ .021; Fig. 3c). Crucially, 

representations flipped sign in auditory areas and anterior medial temporal areas (p ≤ .003; Fig.  3d) such 

that, during sound one, melody 2 elicited more positive local field potentials than melody 1, whereas for 

sound three melody 1 elicited more positive local field potentials than melody 2 (Fig. S4). This 

representational flip underlies below-chance decoding after sounds 1 and 3 (Fig. 4a) and reflects the fact 

that the two melodies are backward versions of each other. In addition, representations in the prefrontal 

cortex were more prominent after sound 1 (p ≤ .017, Fig. 3d) than sound 3, possibly indicating a more 

automatic evaluation at the end than at the beginning of the sequence (36,37). Overall, these pieces of 

evidence suggest two types of processing: One concerned with individual sound encoding in auditory and 

anterior memory regions and another one concerned with holding the melody as a sequence in 

association, sensorimotor, and subcortical structures. 
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2.2.2. Auditory representations during imagination 

In the imagination period, melodies were mainly represented in non-auditory areas including basal nuclei, 

thalamus, mid-posterior cingulate, motor, and parietal cortex (p < .001, Fig. 4a). Additional recruitment 

of inferior temporal cortex, posterior cingulate, precuneus, and auditory areas was observed in the recall 

block, and of the lateral prefrontal cortex in the manipulation block. Furthermore, representations 

changed in the left lateral prefrontal cortex during manipulation compared to recall (p = .033; Fig. 4a) with 

possible further changes in the right prefrontal cortex and retrosplenial (Fig. S5). These changes likely 

underlie the manipulation-driven representational flip identified through between-condition testing (Fig. 

2b). 

2.3. Opposite neural activity during listening compared to imagination 

Interestingly, patterns of activity switched sign (p < .001) between listening and imagination, with positive 

local fields in temporal areas becoming negative, and negative fields in anterior association, sensorimotor, 

and subcortical areas becoming positive after 2s (Fig. 4b; Fig. S4). A similar switch was reported in studies 

that decoded imagined sounds from scalp EEG (30,31) and auditory working memory content with fMRI 

(25). 
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Figure 4. (a) Patterns of neural activity that discriminate between melodies during imagination in both conditions 
(2s - 4s), as derived from decoding coefficients and averaged over time. The difference between listening and 
Imagination is also presented (b). Patterns are depicted for two types of MEG sensors (planar gradiometers and 
magnetometers) and after source reconstruction. For visualization, pairs of planar gradiometers were combined by 
taking their root mean square. Significant channels are highlighted with white dots. Source-level activation is shown 
for significant clusters. fT = “femto Tesla”. 
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Discussion 

In this study, we decoded perceived and imagined melodies from neural activity to demonstrate that 

musical sound sequences are represented in auditory, association, sensorimotor, and subcortical areas, 

and that these representations systematically change when mentally manipulated. While previous studies 

have decoded imagined sound information from brain data (24,26,29–32), here we define the nature and 

dynamics of the underlying auditory representations and show how they change during manipulation. 

Above-chance decoding peaked after the onset of the first and third sounds and was sustained during 

imagination. The highest decoding performance was detected around the diagonal of the matrices, which 

indicates that representations were dynamic and had marginal generalization over time (23). During 

listening, this could be due to the constantly changing sensory input. During imagination, this might reflect 

temporal variability between participants. The lack of generalization further suggests that representations 

were different between listening and imagination. This contrasts with research suggesting that perceived 

and imagined sounds share neural substrates and representations. For example, both imagined and actual 

sounds activate secondary auditory areas (13) and fMRI studies decoded imagined auditory 

representations from primary and secondary auditory cortex (24–27). Moreover, some studies found that 

representations during the omission of predictable sounds are similar to those of the actual sounds 

(38,39).  

The lack of generalization in our results might arise from three factors. First, the melodies differed in the 

temporal order of their constituent sounds, which were otherwise the same. Temporal order is an abstract 

feature that might generalize less across listening and imagination than sensory features such as pitch, 

which are typically the target of decoding (e.g., 40). Second, experimental paradigms have either 

minimized the temporal variability of the imagined representations (e.g., omission studies)(38,39) or did 

not take time into account (fMRI studies)(24–27). In contrast, our design allows temporal flexibility within 

a relatively long imagination period (2s), which might introduce between-trial and between-subject 

variations that blur sound-specific representations. Finally, consistent with previous EEG and fMRI findings 

(25,30,31), representations in association, sensorimotor, and subcortical areas were opposite between 

listening and imagination (Fig. 3b). This flip could reflect a change in the direction of information flow 

across the brain, from bottom-up (listening) to top-down (imagination). Some models propose specific 

roles for different layers of the cortical sheet, with superficial pyramidal cells conveying bottom up sensory 

input, and deep pyramidal cells conveying top-down expectations (41,42). It is possible that these layer-
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specific efferent and afferent activity patterns result in detectable changes in the direction of local field 

potentials. Layer-sensitive recordings are needed to test this hypothesis. 

The fact that the melodies were backward versions of each other allowed us to dissociate the role of 

different brain areas. During listening, auditory regions encoded the sensory information of individual 

sounds such that representations were opposite after the first and third tones, and equal during the 

second sound. In contrast, association and subcortical areas (inferior and medial temporal lobe, 

ventromedial prefrontal cortex, thalamus, basal nuclei) remained stable, while representations in dorsal 

association areas (lateral prefrontal cortex) were involved only at sequence onset. Moreover, during 

imagination, association and subcortical areas were the main carriers of representations, with auditory 

and temporal areas further involved during recall; and lateral prefrontal cortex further engaged in 

manipulation. Overall, these dynamics suggest two types of processing: One concerned with the encoding 

of sound-specific sensory information in superior temporal cortex and anterior temporal areas, and 

another one concerned with the encoding, retrieval, and manipulation of auditory sequences in 

association and subcortical areas. This dissociation between the sensory and abstract properties of sound 

sequences is consistent with a previous scalp EEG study that disentangled pitch and temporal order 

representations during sound maintenance in auditory working memory  (43).  

The regions that carried auditory representations in our study overlap with those identified in previous 

neuroimaging activation studies as important for imagery in audition and other modalities (4,6–22). 

However, a discrepancy of our study is the lack of substantial melody-specific information in the 

supplementary motor area, identified as a key region for auditory imagination (44). Nevertheless, we 

found representations in the motor and somatosensory cortex, which is consistent with previous reports 

(7,45,46) and might reflect the generation of auditory expectations through motor simulation. 

Furthermore, we observed melody-specific representations in the basal nuclei, a set of areas involved in 

both cognitive and motor control that have not been identified in previous auditory imagery research. 

From these nuclei, the putamen has been related to motor imagery (47). Moreover, the basal nuclei are 

typically studied with the hemodynamic response in fMRI, which correlates best with high gamma (> 60 

Hz) power (48) in EEG. In this study, we used instead MEG broadband signals to decode auditory objects, 

which might be why basal nuclei representations were found here but not in fMRI. Future research 

examining high gamma activity and other frequency bands will be needed to elucidate their relationship 

with the hemodynamic response. 
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The task used in this study is similar to the classical delayed match-to-sample paradigm employed in 

working memory research. An important difference, however, is that we asked participants to vividly 

imagine and mentally manipulate the melodies, whereas in working memory experiments maintenance 

strategies usually remain unspecified. Thus, while it is possible that our participants used unconscious 

maintenance strategies without imagery, the explicit task instruction, the good task performance, the 

vividness ratings, and the between-condition decoding results suggest that they engaged in active mental 

recall and manipulation. Future experiments where imagery is not required are needed to further 

elucidate the nature of maintenance strategies and the relationship of imagery with working memory.  

This caveat aside, task performance was associated with general working memory scores and the brain 

regions identified overlap with those exhibiting delay-period activity in auditory working memory, 

including the auditory cortex, the prefrontal cortex, the parietal cortex, and the medial temporal lobe 

(19,28,49,50). Moreover, auditory representations in working memory have been decoded from the 

auditory, frontal, and parietal cortices (24,28,43) and from the functional interaction of these regions 

(51,52). Most of these decoding studies, however, addressed working memory for individual sounds and 

none investigated sound manipulation. In addition, there is a tradeoff, with fMRI studies having good 

spatial but low temporal resolution, and EEG studies having good temporal but low spatial resolution. The 

use of MEG allowed a good localization of auditory representations both in space and time. 

Two methodological caveats need to be considered. First, we localized auditory representations to both 

cortical and deep brain areas (basal nuclei, thalamus, hippocampus), raising concerns given the bias 

towards the head center of beamforming algorithms (53) and the fact that activity in such areas is typically 

hard to detect with MEG. However, we eliminated the depth bias by normalizing the forward and inverse 

solutions and verified that the localized activations are consistent with sensor topographies, especially at 

the midline (e.g., Fig. 3c). In addition, differences were still found in deep structures when two conditions 

were contrasted (e.g., imagination vs listening), arguing against a depth bias which should cancel out in 

condition contrasts.  Furthermore, with implementation of appropriate controls, the use of beamformers 

has made the detection of deep sources increasingly common, including the basal nuclei, the medial 

temporal lobe, and even the cerebellum (54–57). Therefore, it is unlikely that these deep activity patterns 

are localization artifacts. The other caveat is the possibility that successful decoding is partly due to 

extracerebral, motion-related activity. However, this is also unlikely because we thoroughly cleaned the 

data from the main sources of contamination (eye movements and heartbeats), the sensor topographies 
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suggest brain generators, and beamforming algorithms are particularly good at filtering out extracerebral 

sources.  

In conclusion, our results provide evidence regarding the nature and dynamics of perceived and imagined 

sound representations in the brain and contribute to a growing body of work investigating musical 

imagery and its relationship with other modalities (2,58–63). Our findings also demonstrate the feasibility 

of decoding mental auditory representations at a fine temporal resolution with non-invasive methods. 

This opens the path to clinical applications where decoding of imagined objects is relevant (e.g., 

communication impairments). Future work might employ different recording modalities (e.g., optical 

MEG, intracranial EEG), bigger datasets (e.g., by increasing the number of trials), and models that are 

larger and account for the temporal variability in imagination (e.g., deep learning)(64) to maximize the 

decoding of auditory images.  

3. Methods 

3.1. Participants 

We recorded MEG (Fig. 1a) data from 80 participants. From these, six were excluded due to chance 

behavioral performance and three due to noisy or corrupted neural data, resulting in a final group of 71 

participants (44 female, age = 28.77 +/- 8.43 SD). Three of these participants were excluded from source 

level analyses due to absence of anatomical images.  Participants had mixed musical backgrounds with 

most of them (50) never having played a musical instrument (including voice). The other 21 participants 

had a median of 11 (IQR = [7-16]) years of musical training. In addition, participants had a median score 

of 17 (IQR = [13-26], maximum possible score = 49) in the training subscale of the Goldsmiths Musical 

Sophistication Index (GMSI) (34) and of 96 (IQR = [93-105]) in the Wechsler Adult Intelligence Scale (WAIS) 

(33). Musical expertise was not a factor in recruitment for this experiment. Participants gave their explicit 

informed consent and received a small monetary compensation. The study was approved by the 

Institutional Review Board (IRB) of Aarhus University (case number: DNC-IRB-2020-006) and conducted in 

accordance with the Helsinki declaration. 

3.2. Stimuli 

We employed short three-note melodies forming a major chord arpeggio using piano sounds (musical 

pitch: A3, C#5, E6; F0: 220Hz, 554Hz, 1318Hz) synthesized with MuseScore (v3.6.2; see materials’ GitHub 

repository for the actual sounds used). The sounds were arranged in ascending order in melody 1 (A-C#-

E) and descending order in melody 2 (E-C#-A). Two foil test melodies were also included: A-E-C# and E-A-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2024. ; https://doi.org/10.1101/2023.08.15.553456doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?glVBBk
https://www.zotero.org/google-docs/?JswIpb
https://doi.org/10.1101/2023.08.15.553456
http://creativecommons.org/licenses/by-nc/4.0/


C#. The inter-onset interval between individual sounds was 500ms. The sounds were normalized to peak 

amplitude. 

3.3. Task 

The experiment was implemented in Psychopy v3.1.2 (65) (see materials’ GitHub repository for details). 

On each trial (Fig. 1b), participants heard melody 1 or melody 2, together with the word “Listen” appearing 

on the screen. After 2s, participants saw the word “Imagine”, which indicated that they had to vividly 

reproduce the melody in their minds. There were two conditions, encompassing the two different blocks 

in the experiment. In the recall block, they imagined the melody as presented whereas in the manipulation 

block, they imagined it backwards. Four seconds after trial onset, participants heard a test melody, which 

could be the same as the first one, its inverted version or a different melody. Participants answered 

whether the second melody was the same as the first one or not (recall block) or its inverted version or 

not (manipulation block). A response time limit of 3.5 seconds was set. There were 60 trials per block (30 

same/inverted, 30 different/other). The trial number was displayed on the screen for 2.5s before trial 

onset. A quick pause was allowed after the 30th trial. Two practice trials were presented at the beginning 

of each block. Conditions were counterbalanced across participants.  

3.4. Procedure 

At the beginning of the session, we explained in detail the procedure to the participants and instructed 

them to vividly imagine the melodies without humming them or moving any part of the body. We made 

sure the participant fully understood the nature of the task and was able to perform practice trials 

correctly before the MEG recording. After giving written informed consent, the participants changed into 

medical clothes, and we attached electrocardiogram (ECG) and electrooculogram (EOG) electrodes to 

their skin for heartbeat and eye movement monitoring. Head shape was digitized with a Polhemus system 

and head position was continuously tracked during the recording with the help of three coils. During the 

task, the participant sat in the MEG chair inside a magnetically shielded room and looked at the screen 

where instructions and trial information were displayed. The subjects responded to each trial by making 

a button press in a response pad with their right hand. Sound stimulation was delivered through 

magnetically isolated ear tubes. The task lasted approximately 20 minutes. Other experimental paradigms 

testing recognition memory were recorded together with this task. Results are reported elsewhere (57). 

The order of the paradigms was counterbalanced across participants.  After the experiment, participants 

were asked to rate the vividness of imagery during the task on a 7-point Likert scale ranging from -3 to 3. 
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3.5. MEG recording and preprocessing 

MEG data were collected with a 306-channel (102 magnetometers, 204 planar gradiometers) Elekta 

Neuromag system and Maxwell-filtered with proprietary software. This step also involved correcting the 

data for continuous head movements. Data analyses were conducted in MNE Python (v0.24) (66). Vertical 

and horizontal eye movements as well as heartbeat artifacts were corrected with ICA in a semi-automatic 

routine. Visual inspection was used to ensure data quality. After high-pass filtering (0.05 Hz cutoff), epochs 

were extracted from -0.1s to 4s around trial onset. For source reconstruction, T1 brain anatomical images 

were collected with a 3T MRI scanner and segmented and aligned with MEG sensors using Freesurfer. 

Source reconstruction was done for the 68 participants with an available MRI. Using the boundary element 

method and a single shell mesh (5 mm resolution), volumetric forward models were created and 

subsequently inverted with linearly constrained minimum variance (LCMV) beamforming employing the 

joint gradiometer covariance across listening and imagination periods. For similar results obtained with 

the separate covariance of the listening and imagination periods see Fig. S8. Importantly, forward models 

and inverse solutions were normalized to eliminate the bias towards the center of the head inherent to 

beamformers (53). 

3.6. Decoding analysis 

We used a time-generalized decoding approach (Fig. 1d) (23) based on L1 regularized logistic regression 

to classify melody identity (melody 1 vs melody 2) at each time point of the trials, for each participant 

separately. To assess the representational dynamics, we evaluated the models at each time point of the 

test data. We did two types of testing. In within-condition testing, we trained and tested the models with 

trials of the same condition. In between-condition testing, we trained the models with trials of one 

condition (e.g., manipulation) and tested on trials of the other (e.g., recall). Five-fold cross validation was 

used for within-condition testing. To avoid biases in model fitting due to class imbalances related to the 

exclusion of incorrect trials, we used a balanced scoring strategy in which the average accuracy was 

computed separately for each class and then combined across classes.  

At the group level, we used non-parametric cluster-based permutations (67) to evaluate whether 

accuracies in the time-generalization matrices were significantly above or below chance. Here, chance 

level corresponds to 0.5 accuracy, as we classified binary melody identity from brain data. We used a two-

sided cluster-defining threshold of p = 0.05 based on one-sample t-tests (p = 0.025 one-sided, t > 1.99), 

and max sum as the cluster statistic. The cluster-level significance threshold was set at p = .05. The number 
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of permutations was 5000. The same statistical approach was used to evaluate whether within-condition 

accuracy was different from between-condition accuracy. 

3.6. Coefficient inspection 

We transformed decoding coefficients (W) into interpretable patterns of activation (A) for each 

participant using the method detailed in (35) and defined by the equation: 

𝚨𝚨 =  Σ𝑥𝑥𝐖𝐖Σ𝑦𝑦�
−1 

Where Σ𝑦𝑦�  is the covariance of model predictions and Σ𝑥𝑥 is the covariance of neural signals. 

We localized the neural generators of these patterns using the inverse solutions described in section 3.5. 

(Fig. 1f). For each voxel, the magnitude and sign of the orientation with maximum power were retained. 

For sensor activity patterns, we used cluster based permutations (see above) in the whole epoch (0-4) to 

test whether group-level activity patterns were different from zero. After projecting individual source-

level time-courses into MNI standard space, we also tested against zero the localized patterns averaged 

across time in the three listening (0.2s – 0.5s, 0.7s – 1s, 1.2s – 1.5s) and one imagination (2s – 4s) time 

windows. For all these periods, differences between recall and manipulation were also tested. 

Furthermore, we compared patterns of average activity between the listening (0s – 2s) and imagination 

(2s – 4s) periods and between sounds 1 (0.2s – 0.5s) and 3 (1.2s – 1.5s). Using the Desikan-Killiany 

parcellation (68), we obtained the significant peak activation for each region that overlapped with 

significant clusters. We report the regions with the most prominent peaks.  

Finally, in a supplemental analysis, we inspected the time courses of activity patterns in five groups of 

regions of interest (ROI) including (1) right auditory, (2) right posteroventral association, (3) right dorsal 

association, (4) left dorsal association, and (5) right anteroventral/subcortical areas (Fig. S4). We used 

cluster based permutations as described above to evaluate significant differences from zero. We display 

these patterns together with the evoked response calculated between –0.1s and 4s around trial onset, for 

each of the two melodies and the two conditions (Fig. S4). These evoked responses were source localized 

with the same inverse operator as the activity patterns derived from decoding and were subject to the 

same statistical tests. 
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