

1 **Impact of Yaq-001, a non-absorbable, engineered carbon bead of controlled
2 porosity in rodent models of cirrhosis and acute on chronic liver failure**

3

4 **Authors:**

5 Jinxia Liu^{1,2#}, Jane Macnaughtan^{1#}, Yi Jin³, Frederick Clasen³, Abeba Habtesion¹,
6 Alexandra Phillips¹, Francesco De Chiara¹, Ganesh Ingavle^{4,5}, Paul Cordero-Sanchez¹,
7 Junpei Soeda¹, Jude A Oben¹, Jia Li⁶, Haifeng Wu², Lindsey Ann Edwards⁷, I. Jane Cox^{8,9},
8 Susan Sandeman⁴, Nathan Davies¹, Rajeshwar Mookerjee¹, Gautam Mehta^{1,8}, Saeed
9 Shoai³, Julian R. Marchesi¹⁰, Fausto Andreola¹, Rajiv Jalan^{1,11*}

10 [#] Both authors share first authorship.

11

12 **Affiliations:**

13 ¹ UCL Institute for Liver and Digestive Health, Upper third floor, Royal Free Campus,
14 Rowland Hill Street, Hampstead, London, NW3 2PF.

15 ² Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong,
16 226001, China.

17 ³ Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial
18 Sciences, King's College London, SE1 9RT, UK.

19 ⁴ Centre for Regenerative Medicine and Devices, School of Applied Sciences, University
20 of Brighton, Brighton, East Sussex, BN2 4GJ, UK.

21 ⁵ Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological
22 Sciences (SSBS), Symbiosis International (Deemed University), Pune 412115, India.

23 ⁶Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir
24 Alexander Fleming Building, Imperial College Road, South Kensington, London, SW7
25 2AZ.

26 ⁷ Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life
27 Sciences and Medicine, King's College London, 125 Coldharbour Lane, London SE5 9NU,
28 UK.

29 ⁸ The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111
30 Coldharbour Lane, London SE5 9NT

31 ⁹ Faculty of Life Sciences & Medicine, King's College London

32 ¹⁰ Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction,
33 St Mary's Hospital, Imperial College London, South Wharf Road, London, W2 1NY

34 ¹¹ European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain.

35

36 **Correspondence:** Rajiv Jalan, UCL Institute for Liver and Digestive Health, Upper third
37 floor, Royal Free Campus, Rowland Hill Street, Hampstead, London, NW3 2PF. Email:
38 r.jalan@ucl.ac.uk

39

40 **Keywords:** ACLF; Liver injury; organ dysfunction; LPS; endotoxemia; bacterial
41 translocation; dysbiosis; antibiotic resistance; Yaq-001

42

43 **Electronic word count:** 3991 words

44

45 **Number of figures and tables:** 7

46

47 **Conflict of Interest**

48 Rajiv Jalan is the inventor of OPA, which has been patented by UCL and licensed to
49 Mallinckrodt Pharma. He is also the founder of Yaqrin Discovery, Hepyx Limited (spin out
50 companies from University College London), and Cyberliver. He has research
51 collaborations with Yaqrin Discovery. Yaq-001 was licensed by Yaqrin Ltd. from UCL. JRM
52 has received consultancy fees from EnteroBiotix and Cultech, and speaker fees from Falk
53 Forum.

54

55 **Financial support**

56 This study was performed with support from a grant from the EU H2020, Grant Agreement
57 number: 634579 — CARBALIVE — H2020-PHC-2014-2015/H2020-PHC-2014
58 programme. JRM and the Division of Digestive Diseases at Imperial College London
59 receives financial support from the NIHR Imperial Biomedical Research Centre.

60

61 **Authors' contributions**

62 RJ, FA, JL, JM, ND - contributed to the conception and design of the study. SS and GI
63 contributed to the conception and design of the *in vitro* studies. RJ, ND, FA - provided
64 administrative, study supervision, obtained funding, material support. JL, JM, LE, YJ, FC,
65 AH, AP, FD, GI, PC, JS, JO, JL, HW, JC, SS, RM - performed experiments and
66 substantially contributed to the acquisition of data and its analysis. All authors were
67 involved in the interpretation of data. JL and JM drafted the manuscript. All authors
68 revised the manuscript critically for important intellectual content.

69

70 **Abstract**

71 **Objective:** Translocation of gut bacterial lipopolysaccharide (LPS) is associated with
72 complications of cirrhosis. Current strategies to target bacterial translocation are limited
73 to antibiotics with risk of resistance. This study aims to explore therapeutic potential of a
74 non-absorbable, engineered carbon bead, Yaq-001 in cirrhosis and acute-on-chronic liver
75 failure (ACLF) models.

76

77 **Design:** The performance of Yaq-001 was evaluated in *in vitro* studies. Two-rodent
78 models of cirrhosis (4-week, bile duct ligation (BDL): Sham (n=36); Sham-Yaq-001 (n=30);
79 BDL (n=37); BDL-Yaq-001 (n=44)) and ACLF (BDL-LPS: Sham-LPS (n=9); Sham-LPS-
80 Yaq-001 (n=10); BDL-LPS (n=16); BDL-LPS-Yaq-001(n=12)). The treated-groups
81 received Yaq-001 for 2-weeks. Samples were collected for assessment of organ and
82 immune function, transcriptomics, microbiome composition and metabolomics.

83

84 **Results:** *In vitro*, Yaq-001 exhibited rapid adsorption kinetics for endotoxin and bile acids
85 without exerting an antibiotic effect. *In vivo*, Yaq-001 produced significant improvement
86 in ALT, ammonia, liver cell death, portal pressure, markers of systemic inflammation and
87 renal function in BDL animals. Yaq-001-treated ACLF animals had significantly better
88 survival, ALT, portal pressure, brain water and creatinine. *Ex-vivo* LPS-induced reactive
89 oxygen species production in portal venous monocytes and Kupffer cell populations was
90 diminished with Yaq-001 treatment. Transcriptome analysis demonstrated a significant
91 modulation of inflammation, cell death and senescence pathways in the liver, kidneys,
92 brain and colon of Yaq-001-treated BDL rats. Yaq-001 impacted positively on the
93 microbiome composition with significant modulation of *Family Porphyromonadaceae* and
94 *Genus Barnesiella*. Urinary ¹HNMR analysis suggested a shift in metabolomic signature
95 in Yaq-001-treated BDL rats.

96

97 **Conclusions:** This study provides strong pre-clinical rationale for developing Yaq-001 for
98 treatment of patients with cirrhosis.

99

100 **Significance of this study**

101 **What is already known on this topic?**

102 Current strategies to target bacterial translocation in cirrhosis are limited to antibiotics
103 with risk of resistance. Yaq-001 is an insoluble, non-absorbable, non-antibiotic,
104 engineered carbon bead of tailored porosities, which works as an adsorbent in the gut
105 and is completely excreted after oral administration.

106

107 **What this study adds?**

- 108 1. Yaq-001 rapidly adsorbs endotoxin, ammonia and bile acids without influencing
109 bacterial growth kinetics *in vitro*.
- 110 2. Yaq-001 reduces mortality of ACLF animals and impacts positively on markers of gut
111 permeability, liver injury, portal pressure, brain and kidneys in rodent models of cirrhosis
112 and ACLF.
- 113 3. Yaq-001 administration was associated with positive impact on the composition of the
114 gut microbiota, reduction in severity of endotoxemia and ammonia, which significantly
115 reduced the severity of inflammation, cell death, signaling pathways and LPS sensitivity.

116

117 **How this study might affect research, practice or policy?**

118 The data provide the pre-clinical rationale to proceed to clinical trials in patients with
119 cirrhosis aiming to prevent the occurrence of complications.

120

121 **INTRODUCTION**

122 Gut-derived bacterial ligands, in particular endotoxin, drive a dysregulated inflammatory
123 response, which has been implicated in the complications of cirrhosis such as sepsis,
124 spontaneous bacterial peritonitis, renal dysfunction and hepatic encephalopathy¹⁻³. This
125 dysregulated inflammatory response is central in the development of acute-on-chronic
126 liver failure (ACLF)⁴. Markers of bacterial translocation such as endotoxin and bacterial
127 DNA have been shown to be associated with complications of cirrhosis and diminished
128 survival highlighting their pathogenic importance^{5,6,7}. The microbiome in cirrhosis is
129 characterized by reduced diversity and abundance of autochthonous bacteria¹. Whilst
130 antibiotics have been shown to impact positively on complications of cirrhosis, their use
131 is associated with bacterial superinfection and antibiotic resistance^{8,9}. Furthermore,
132 antibiotics reduce bacterial diversity further rendering the microbiome less resilient.

133

134 One of the consequences of bacterial translocation in cirrhosis is that the endotoxin-
135 sensing pathways in different organs are known to be primed resulting in heightened
136 susceptibility to organ injury^{3, 10}. Adsorption of free endotoxin without exerting direct
137 effects on bacterial growth kinetics, therefore has the potential to attenuate susceptibility
138 to organ injury without producing the deleterious effects on the microbiome. Considering
139 this, we developed a synthetic non-absorbable, non-antibiotic, endotoxin sequestrant and
140 generated the hypothesis that this may be a novel therapeutic strategy to restore the
141 microbiome, prevent bacterial translocation, systemic inflammation and cirrhosis
142 complications. Yaq-001 is a non-absorbable, engineered, activated carbon of bimodal
143 porosity tailored to the micro (<2nm) and meso-macroporous (30-200 nm) range and high
144 surface area¹¹⁻¹³. These properties confer a high adsorptive capacity for larger biologically
145 relevant molecules such as bacterial toxins in addition to smaller intraluminal targets. The
146 most closely associated experimental oral adsorbent is AST-120, a microporous carbon
147 bead, which has not been shown to be efficacious in patients with hepatic
148 encephalopathy¹⁴.

149

150 In this study, we sought to determine the adsorptive capacity of Yaq-001 and its effect on
151 bacterial growth kinetics in *in vitro* studies. We then evaluated the *in vivo* biological effects

152 of Yaq-001 in two animal models representing characteristics of cirrhosis and ACLF
153 respectively. We studied the effects of Yaq-001 on measures of multiorgan function,
154 systemic and portal hemodynamics, immune function, multiorgan transcriptomics and
155 microbiome composition.

156

157 **METHODS**

158 **STUDIES IN VITRO**

159 Methodological details are described in **Supplementary section**. Adsorption of
160 biomolecules of varying molecular weights (albumin, myoglobin, and caffeine) was
161 evaluated. Then, the effect of Yaq-001 on the kinetics of bacterial growth was studied for
162 *Staphylococcus aureus* (*S. aureus*) and *Escherichia coli* (*E. coli*). Scanning electron
163 microscopy was performed to characterise the beads and pore size distribution was
164 assessed using mercury porosimetry.

165

166 **STUDIES IN VIVO**

167 The methodological details are described in **Supplementary section**.

168

169 ***Study design***

170 This study aimed to characterize the therapeutic potential of Yaq-001 in models of
171 cirrhosis and ACLF. The different experiments performed are shown in **Fig.S1**. To
172 evaluate the effect of Yaq-001 in cirrhosis and for prevention of ACLF, studies in two
173 animal models were performed.

174

175 *Cirrhosis*: Sham (n=36); Sham-Yaq-001(n=30); BDL (n=37); BDL-Yaq-001 (n=44); Sham-
176 LPS (n=9).

177

178 *Prevention of ACLF*: Sham-LPS-Yaq-001 (n=10); BDL-LPS (n=16); BDL-LPS-Yaq-
179 001(n=12).

180

181 Yaq-001 (0.4 g/100 g body weight per day) was administered for 2-weeks prior to sacrifice.
182 At the time of sacrifice, mean arterial pressure (MAP) and portal pressure were measured.
183 Blood and tissues were then samples for later analysis.

184

185 ***Analysis of biosamples***

186 Plasma levels of alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin
187 (TBIL), albumin, bile acids, creatinine, urea, ammonia, endotoxin, bacterial DNA, D-
188 lactate and brain water were measured.

189

190 Peripheral blood cells and Kupffer cell reactive oxidant species (ROS) were measured.
191 Hematoxylin-Eosin (H&E), Picosirius Red (PSR) staining and TUNEL stains were
192 performed in liver tissues. The mRNA in different organs was analyzed by using
193 nSolver4.0 software (NanoString Technologies). To define effect on the microbiome, 16s
194 microbiome study was performed. To determine the effect of Yaq-001 on modulating
195 metabolism, urinary ¹H-NMR analysis was performed.

196

197 STATISTICAL ANALYSIS

198 Based on the *in vitro* studies, we anticipated a 50% decrease in circulating endotoxin in
199 the treatment groups with an alpha error of 0.05 and power of 80%, resulting in a minimum
200 sample size of 5 animals/ group. As this study included several pathophysiological end
201 points, multiple experimental groups were included over a 5-year period. All the data
202 accrued from these studies are described in this paper. All 194 rats in eight groups from
203 three independent batches were included in the analysis as shown in **Fig.S1** and **Table**

204 **S1.**

205

206 Group comparisons for continuous variables were performed using Man-Whitney U test
207 (no-normal distribution) or unpaired t-test (normal distribution) and for categorical
208 variables by using Chi-squared test. The data were analysed using R package (R version
209 4.4.4). 16s microbiome study and circos correlation were analyzed by using Wilcoxon
210 rank sum test and spearman correlation. Software used included Graphpad Prism 9.0
211 (GraphPad software, Inc., San Diego, CA).

212

213 **RESULTS**

214 **STUDIES IN VITRO**

215 **Yaq-001 rapidly adsorbs endotoxin without influencing bacterial growth kinetics.**

216 Yaq-001 beads exhibited a consistent macroporous structure with a bead diameter within
217 the 250-500 μ m range and an internal porosity in the nanoporous range (**Fig.1A**). Mercury
218 porosimetry showed that Yaq-001 had a consistent pore size distribution plot in the meso-
219 macroporous range from 30-200 nm (**Fig.S2**). Yaq-001 rapidly adsorbed albumin
220 (66.5kDa), myoglobin (16.7kDa) and caffeine (0.194kDa) representing different sized
221 biomolecules (**Fig.1B**). Yaq-001 adsorbed LPS (18kDa) reducing the concentrations from
222 2.5 to 1.5 EU mL⁻¹ (60%) within 30 minutes. No endotoxin was detected in the control
223 solution (0 EU mL⁻¹) (**Fig.1B**). Yaq-001 also adsorbed a range of bile acids (**Fig.1C**).
224 Direct co-incubation of Yaq-001 with bacterial suspensions of either *E. coli* or *S. aureus*
225 indicated that Yaq-001 did not affect bacterial growth kinetics for either species following
226 direct contact in comparison to the antibiotic controls (**Fig.1D**).
227

228 **STUDIES IN VIVO**

229 **Studies in BDL rats**

230 ***Effect of Yaq-001 on liver injury and portal pressure***

231 BDL rat model was used to assess the effect of Yaq-001 in cirrhosis (**Fig.2A**). Significant
232 reduction in 4-week body weight was observed in BDL rats ($p<0.0001$), which was
233 prevented by administration of Yaq-001 ($p=0.045$) (**Fig.2B**). Yaq-001 was associated with
234 a significantly lower plasma ALT ($p=0.007$) (**Fig.2C**). Alkaline phosphatase, bilirubin and
235 albumin were not impacted by Yaq-001 (**Fig.S3A, B, C**). Total bile acid concentrations
236 were not different between the BDL and Sham groups and there was no significant impact
237 of Yaq-001 (**Fig.S3E**). MAP was lower in BDL animals and no effect of Yaq-001 was
238 observed (**Fig.S3F**). Yaq-001 resulted in a significant reduction in portal pressure
239 compared to untreated BDL rats [(median (IQR) 11.1 mm Hg (10.3-11.7) vs 12.4 mm Hg
240 (10.8-13.3), ($p=0.025$)] (**Fig.2C**). TUNEL assay showed significantly more intense
241 staining in the liver tissue of BDL compared to Sham rats (**Fig.2D**) ($p<0.0001$), which was
242 significantly reduced in Yaq-001-treated BDL rats compared to untreated-BDL rats

243 (p=0.025). Collagen proportionate area (CPA) was significantly higher values in BDL rats
244 (p=0.0007), which was unchanged with Yaq-001 (p=0.122) (**Fig.S3D**).
245

246 ***Effect of Yaq-001 on ammonia, organ dysfunction, endotoxemia and bacterial***
247 ***translocation***

248 *Ammonia*: Arterial and portal venous ammonia concentrations were significantly
249 increased in BDL rats (p<0.0001), which was significantly reduced by Yaq-001 [(p=0.003)
250 and (p=0.004) respectively] (**Fig.2E**). None of the animals showed signs of hepatic
251 encephalopathy.
252

253 *Kidneys*: BDL animals had significantly higher plasma creatinine (p=0.049), which was
254 significantly reduced with Yaq-001 (p=0.025) (**Fig.2F**). Urea was higher in BDL group
255 (p=0.092), which was reduced with Yaq-001 treatment (p=0.095) (**Fig.2F**).
256

257 *Gut permeability, Endotoxemia, Bacterial DNA and Cytokines*: The microbial metabolite,
258 D-lactate, a marker of gut-specific intestinal barrier damage and translocation¹⁵ was
259 significantly increased in BDL rats (p=0.032) and was significantly reduced by Yaq-001
260 (p=0.035) (**Fig.2G**). BDL rats exhibited marked endotoxemia in the portal vein and the
261 artery (p<0.0001 for each), which was significantly reduced with Yaq-001 [(p<0.0001)
262 (p=0.003) respectively] (**Fig.2H**). Portal venous bacterial DNA was detectable in
263 significantly higher number of BDL rats (p<0.05), which was markedly reduced in Yaq-
264 001 administered BDL rats (p=0.08) (**Fig.2H**). Plasma IL- β concentration were higher in
265 the BDL rats but no significant differences were observed in TNF-a, IL-6 and IL-10. No
266 significant changes were seen with Yaq-001 (**Table S2**).
267

268 **Studies in the ACLF model**

269 This experiment was performed to determine whether Yaq-001 treatment for 2-weeks
270 prevents the occurrence of ACLF when BDL animals are administered LPS (**Fig.S1**,
271 **Fig.3A**).
272

273 *Survival:* Animals were sacrificed either at coma stages (considered as a surrogate for
274 mortality) or at 6-hours post LPS. Yaq-001 significantly reduced time to coma of BDL-LPS
275 rats compared to untreated controls ($p<0.01$) (**Fig.3B**). All animals in the two Sham
276 groups were alive at 6-hours following LPS (data not shown).

277

278 *Liver:* Yaq-001 was associated with significantly lower ALT in BDL-LPS rats compared to
279 untreated rats ($p=0.004$) (**Fig.3C**). No significant effect of Yaq-001 was observed on
280 alkaline phosphatase, bilirubin and albumin (**Fig.S4 A, B, C**). The severity of fibrosis
281 measured using CPA and the body weight were unchanged (**Fig.S4D, E**).

282

283 *Systemic and Portal hemodynamics:* No significant difference in MAP was observed with
284 Yaq-001 (**Fig.S4F**) but Yaq-001 produced a significant reduction in portal pressure
285 compared to untreated controls ($p=0.003$), (**Fig.3C**).

286

287 *Brain:* Yaq-001 significantly reduced brain water compared with untreated- rats ($p=0.017$)
288 (**Fig.3D**). Arterial and portal venous ammonia concentrations were significantly increased
289 in BDL-LPS rats, which was significantly reduced in Yaq-001-treated animals [($p=0.007$)
290 and ($p=0.017$) respectively] (**Fig.3D**).

291

292 *Kidneys:* Creatinine concentrations were significantly higher in BDL-LPS animals
293 ($p=0.004$), which was significantly reduced by Yaq-001 ($p=0.03$) (**Fig.3E**).

294

295 *Cytokines:* BDL-LPS group had a significantly higher plasma IL-1 β , which was
296 significantly reduced with Yaq-001 ($p=0.003$) (**Fig.3F**). Plasma IL-10 was higher in BDL-
297 LPS and was significantly reduced with Yaq-001 ($p=0.028$) (**Fig.3F**). No significant
298 differences were observed in IL-6 or TNF- α concentrations between any of the groups
299 (**Table S2**).

300

301 **Effect of Yaq-001 on peripheral blood cells and Kupffer cells**

302 Significant increase in total leucocyte, neutrophil and monocyte counts in the artery and
303 portal vein were observed with BDL rats (**Fig.4A, B**) ($p=0.008$ and $p=0.016$ respectively),

304 which was significantly reduced with Yaq-001 in the arterial blood and insignificantly
305 reduced in the portal vein (**Fig. 4B**). To determine whether Yaq-001 impacts on the
306 response of peripheral inflammatory cells and Kupffer cells to generate reactive oxygen
307 species (ROS) to LPS *ex vivo*, studies using isolated cells incubated with LPS, were
308 performed. Yaq-001 was associated with significantly lower LPS-induced ROS production
309 in CD163⁻ Kupffer cells in BDL rats ($p=0.036$) and portal venous CD43^{hi} monocyte
310 populations of BDL rats ($p=0.029$) (**Fig.4C**).

311

312 **Transcriptomic analysis of gene expression profiles from the Liver, Colon, Brain
313 and Kidneys**

314 Multiorgan transcriptomic analysis was performed to determine the possible molecular
315 mechanisms underlying the clinical effects of Yaq-001. The four groups studied were as
316 follows: Sham (n=3), Sham-Yaq-001 (n=3), BDL (n=3) and BDL-Yaq-001 (n=4) (**Fig.5A**,
317 **Fig.6A**). All differentially expressed genes (DEGs) and related pathways in the liver, colon,
318 kidney and brain are listed in **Table S3**. The top 20 and significant DEGs are listed in
319 **Table S4**.

320

321 **Effect of Yaq-001 on gene expression profiles in the liver and gut in BDL rats**

322 *Liver*: Analysis of liver tissue showed 82 DEGs at the threshold of 1.2-fold change and
323 $p=0.1$ in the four groups (**Fig.5B**). Compared with the Sham group, expression of 62-
324 genes was upregulated, and 15-genes were downregulated in BDL. These significantly
325 changed genes were associated with inflammation, cell death and senescence.
326 Compared to the untreated BDL group, the expression of 7-genes was upregulated and
327 12-genes were downregulated in the Yaq-001-treated BDL group, indicating the potential
328 role of Yaq-001 in reducing inflammation, cell death and cell senescence. Furthermore,
329 2-genes were upregulated, and 4-genes downregulated in Sham-Yaq-001 group in
330 comparison to Sham group (**Fig.5C**). Functional analysis demonstrated that BDL rats had
331 enriched pathways related to inflammation, cell senescence, cell death, TLR signaling
332 and other related signaling pathways in comparison with Sham (**Fig.5D**). Yaq-001
333 treatment targeted the altered pathways compared with untreated BDL group. Additionally,

334 Yaq-001 treatment also changed the pathways in the liver when compared to Sham group,
335 demonstrating its effect in rats even without cirrhosis (**Fig.5D**).
336

337 **Colon:** 43 DEGs were identified from the colonic tissue (**Fig.5E**). 5-genes that correlated
338 with inflammation and cell death were upregulated and 15-genes were downregulated in
339 BDL compared with the Sham group. Moreover, the expression of 10-genes was
340 upregulated, and 13-genes were downregulated with Yaq-001 treatment. Only 1-gene
341 was upregulated in the Sham-Yaq-001 group, and 16-genes were downregulated with
342 Yaq-001 compared with the untreated Sham group (**Fig.5F**). Functional analysis indicated
343 that inflammation, cell senescence, cell death, TLR signaling and intracellular signaling
344 were associated with BDL in comparison with the Sham group (**Fig.5G**). Yaq-001 targeted
345 the altered pathways, indicating the potential mechanisms in the prevention of gut
346 dysfunction and permeability (**Fig.5G**).
347

348 ***Effect of Yaq-001 on gene expression profiles in the brain and kidney in BDL rats***

349 **Brain:** 17 DEGs were identified from the brain tissue (**Fig.6B**). Compared with Sham
350 group, expression of 2-genes was upregulated and 13-genes were downregulated in BDL
351 animals. These significantly changed genes were associated with inflammation, cell death,
352 and cell senescence. Compared to the untreated-BDL group, the expression of 5-genes
353 was upregulated and 2-genes were downregulated in the Yaq-001-treated BDL group
354 (**Fig.6C**). Functional analysis demonstrated that BDL rats had enriched pathways related
355 to inflammation, cell senescence, cell death, TLR signaling and intracellular signaling
356 (**Fig.6D**). Yaq-001 targeted cytokine-cytokine receptor interaction, cytosolic DNA-sensing
357 pathway, TLR signaling pathway, NOD-like receptor signaling pathway, neutrophil
358 extracellular trap formation, TGF-beta signaling pathway and cytokine-cytokine receptor
359 interaction pathways compared to untreated-BDL group (**Fig.6D**).
360

361 **Kidneys:** 30 DEGs were identified from kidney tissue (**Fig.6E**). 9-genes that correlated
362 with inflammation were downregulated in BDL. The expression of 5-genes was
363 upregulated and 4-genes were downregulated with Yaq-001 treatment compared to
364 untreated-BDL group. 5-genes were upregulated in Sham-Yaq-001 group, and 3-genes

365 were downregulated with Yaq-001 compared with untreated-Sham group (**Fig.6F**).
366 Functional analysis indicated that inflammation and TLR signaling were associated with
367 BDL in comparison with Sham (**Fig.6G**). Compared with the untreated-BDL group, Yaq-
368 001 targeted the altered pathways, indicating the potential mechanisms in the prevention
369 of renal dysfunction (**Fig.6G**).
370

371 **Effect of Yaq-001 on the gut microbiome profile**

372 The effects of Yaq-001 on the microbiome bacterial composition was assessed by
373 metataxonomics. At the family level, an abundance of six bacteria were significantly
374 changed at the threshold of 2-fold change and *Porphyromonadaceae* was significantly
375 changed ($p<0.05$) comparing BDL with Sham (**Fig.7A**). At genus level, 19 bacteria
376 including were significantly changed in abundance. *Barnesiella* was significantly changed
377 ($p<0.05$) comparing BDL with Sham group (**Fig.7B**). These changes were reversed with
378 Yaq-001 treatment compared to untreated-BDL rats (**Fig.S5A, B, Table S5 and Fig.S5C,**
379 **D**). For between groups sample diversity, PERMANOVA analysis revealed a significant
380 difference in beta diversity between groups ($R^2 = 0.32$, $p = 0.001$). Yaq-001 appeared to
381 moderately restore the beta diversity in the BDL group especially in PCoA2 axis (**Fig.S5E,**
382 **F**).
383

384 To further investigate the potential importance of the changes in the microbiome induced
385 by Yaq-001, we correlated these with all significantly changed DEGs and the top 20 DEGs
386 in the four organs. Circos plots indicated a significant correlation between them (**Fig.7C,**
387 **D and Fig.S6A, B, Fig.S6C**). *Porphyromonadaceae*, was observed to positively correlate
388 with three DEGs - TGFB2 and CASP1 in liver tissue, and FOS in colonic tissue. Also, it
389 correlated negatively with five DEGs- TGFB2, IL-18 and CCR5 in brain tissue, CXCL10
390 in colon tissue and CCL24 in kidney tissue.
391

392 **Effect of Yaq-001 on metabolomic profile**

393 Significant difference of acetate/creatinine, glycine/creatinine, lactate/creatinine,
394 betaine/breatinine, trimethylamine oxide/creatinine and bile acid/creatinine ratio were
395 observed in BDL compared to Sham. Treatment of BDL rats with Yaq-001 resulted in

396 significant resolution of acetate/creatinine, glycine/creatinine and lactate/creatinine
397 compared to the untreated BDL animals (**Fig.S7**).

398 **Discussion**

399 This study explored the role of Yaq-001 in models of cirrhosis and ACLF. The study
400 showed that Yaq-001 reduced the mortality of ACLF animals and impacted positively on
401 markers of gut permeability, liver injury, portal pressure, brain and kidneys in two BDL
402 models. These pleiotropic effects of Yaq-001 were associated with restoration of the
403 composition of the microbiome bacterial community, reduction in the severity of
404 endotoxemia and ammonia, severity of inflammation, cell death, signaling pathways and
405 LPS sensitivity. The data provide the experimental rationale to proceed to further
406 evaluation in clinical trials.

407

408 Translocation of bacteria, its products and metabolites are critically important in the
409 pathogenesis of complications of cirrhosis¹⁶⁻¹⁸. Bacterial LPS plays a key role in driving
410 systemic inflammation and the resultant organ failure in cirrhosis^{1,19}. Indeed, selective gut
411 decontamination using norfloxacin or rifaximin are the current standard of care for
412 secondary prophylaxis of patients with spontaneous bacterial peritonitis and hepatic
413 encephalopathy respectively²⁰⁻²¹. However, the use of these antibiotic strategies induces
414 the risk of antibiotic resistance.²² The data presented here provide an alternative gut-
415 restricted, non-antibiotic strategy, Yaq-001, which has the potential to diminish
416 translocation and improve organ injury. The *in vitro* studies demonstrate that Yaq-001 has
417 the optimal pore size distribution to bind intraluminal factors such as free endotoxin
418 without significant effect on bacterial growth kinetics.

419

420 Endotoxemia has also been implicated in immune dysfunction resulting in a dysregulated
421 systemic inflammatory response syndrome, which is strongly associated with the
422 progression of cirrhosis and ACLF²³. Yaq-001 reduced the severity of endotoxemia and
423 bacterial DNA positivity, which was associated with attenuated systemic inflammation.
424 Significant improvements in LPS-induced ROS production were observed in trafficking
425 portal venous monocytes suggesting that Yaq-001 had attenuated the primed state of
426 monocyte/macrophage populations within the gut-liver axis. This observed reduction in
427 LPS-induced ROS production may be important in explaining the reduction in plasma IL-
428 1 β in LPS-treated BDL rats.

429

430 Gut microbiota are important in modulating intestinal health, permeability, bacterial
431 translocation, systemic inflammation and complications of cirrhosis²⁴⁻²⁶. BDL was
432 associated with marked changes in the abundance of microbiota, which were reversed
433 by Yaq-001. In particular, the abundance of *Porphyromonadaceae* and *Barnesiella* were
434 significantly elevated in BDL rats and significantly decreased with Yaq-001. This change
435 is potentially important as *Porphyromonadaceae* is a pro-inflammatory bacterium that has
436 been positively correlated with hepatic encephalopathy²⁷ and, *Barnesiella* and
437 *Porphyromonadaceae* have been associated with liver cancer^{28,29}. Urinary NMR analysis
438 reflects the combined metabolic status of both host and microbiota. Yaq-001 was
439 associated with a distinct shift of acetate, glycine and lactate in metabolomic profile in
440 BDL rats. They are products generated by mixed acid fermentation (MAF) typically by
441 bacteria such as *Enterobacter*. MAF is not the preferred metabolic pathway for facultative
442 anaerobes and may be indicative that *Enterobacter* populations are under conditions of
443 metabolic stress in Yaq-001 treated BDL animals. As these species are often pathogenic
444 in cirrhosis, this may represent a beneficial change.

445

446 Plasma D-lactate, a marker of increased gut permeability was reduced by Yaq-001³⁰.
447 Elevated plasma D-lactate levels in cirrhosis is associated with decompensation²¹.
448 Transcriptomic analysis of colonic tissue demonstrated upregulation of genes associated
449 with necroptosis, apoptosis and inflammation in BDL animals. Functional analyses
450 pointed to modulation of colonic inflammation by Yaq-001, IL-17 signaling, which is known
451 to have diverse biological functions, promoting protective immunity against many
452 pathogens, neutrophil recruitment, antimicrobial peptide production and enhanced barrier
453 function^{31, 32}.

454

455 Yaq-001 significantly reduced the severity of liver injury and portal hypertension in both
456 models of cirrhosis and ACLF. The lack of significant differences in CPA between
457 untreated and Yaq-001-treated BDL groups suggests that the reduction in portal pressure
458 is possibly due to modulation of the dynamic component of portal hypertension, in which
459 inflammation is known to play a role^{33, 34} and proposes Yaq-001 as a potential treatment

460 for portal hypertension. Reduction in ALT levels and histology confirmed a reduction in
461 liver injury in the Yaq-001 treated animals. The reduction in liver injury in the LPS treated
462 BDL animals suggests that Yaq-001 has a particular effect on endotoxin sensitivity *in vivo*.
463 This hypothesis was tested in isolated Kupffer cells, which confirmed that LPS-induced
464 ROS production was significantly impacted by Yaq-001 treatment.

465

466 Transcriptomic analysis of liver tissue demonstrated that the upregulated genes, CXCL16,
467 CASP1 and TGFB2 in BDL rats was prevented by Yaq-001 administration. Silencing of
468 CXCL16 alleviates hepatic ischemia reperfusion injury and CXCL16 variant is also
469 associated with Hepatitis B virus related acute liver failure³⁵. CASP1 mediates pro-
470 inflammatory cytokine release and pyroptotic cell death in cirrhosis and its inhibition has
471 been shown to prevent ACLF³⁶. TGFB2 is an important mediator of cellular senescence³⁷,
472³⁸. Of note, Yaq-001 also modified necroptosis and cytosolic DNA-sensing pathways
473 representing cell death. Both pyroptosis and necroptosis are known to be activated by
474 LPS and are immunogenic forms of cell death that can trigger further cell death and lead
475 to systemic inflammation³⁹. These effects of Yaq-001 potentially explains the effect of
476 Yaq-001 in reducing liver injury^{40, 41}.

477

478 Yaq-001 administration had a significant impact on time to coma of ACLF rats, which is
479 considered as a surrogate for mortality compared to untreated controls. Yaq-001 also
480 significantly lowered portal venous and arterial ammonia levels, which was associated
481 with reduced brain water. Transcriptomic analysis of brain tissue showed that IL-18,
482 TGFB2, CCR5 and IL-23A were dysregulated in BDL rats and these were corrected by
483 Yaq-001. IL-18 is released during pyroptosis by activation of the inflammasome complex
484 in neuroinflammatory and neurodegenerative diseases⁴². The effect of Yaq-001 on
485 TGFB2 may mean that it has an impact on senescence, which is known to be associated
486 with hepatic encephalopathy. CCR5 has been implicated in neuroprotection and is novel
487 therapeutic target in stroke⁴³. The impact of Yaq-001 on IL-23A indicates possible
488 reduction in neuroinflammation.

489

490 In both cirrhosis and ACLF models, Yaq-001 reduced renal dysfunction. Transcriptomic
491 analysis of kidney tissue showed that CCL24 was downregulated in BDL rats, which was
492 prevented in the Yaq-001-treated animals. CCL24 protects renal function in the
493 development of early diabetic nephropathy by exerting an anti-inflammatory effect⁴⁴. Yaq-
494 001 impacted, in particular on the cytokine-cytokine receptor interactions and chemokine
495 and toll-like signaling pathways, which were abnormal in the BDL rats.

496

497 BDL animals become sarcopenic and lose weight⁴⁵, which was significantly abrogated by
498 Yaq-001. The possible mechanisms underlying this effect are likely multifactorial⁴⁶. Yaq-
499 001 reduced ammonia significantly, which has been shown to induce sarcopenia. Weight
500 loss in cirrhosis is also attributed to an increased catabolic state in the context of systemic
501 inflammatory response and thus the observed improvement in body weight may reflect
502 the diminished catabolic state with reduced inflammation⁴⁶. These data further emphasize
503 the lack of deleterious effects on nutritional status, but it is not possible to comment on
504 any effect on micronutrients and vitamins, which will need to be explored in future studies.

505

506 The data correlating the changes in the microbiota induced by administration of Yaq-001
507 with changes in the gene expression of multiple relevant pathways is particularly
508 important as it achieves the beneficial effects in the distant organs such as the liver, brain
509 and kidneys with demonstrable changes without leaving the gut. The exact mechanisms
510 by which this occurs cannot be directly inferred from the data derived from this study. One
511 possibility is that alongside LPS adsorption and modulation of other unmeasured toxins,
512 the *milieu* of the gut is changed allowing proliferation of more autochthonous bacteria⁴⁷,
513 which impacts on gut inflammation that reduces gut permeability leading to a reduction in
514 endotoxemia, systemic and organ inflammation, organ priming, improvement of organ
515 function and LPS-sensitivity. In this study, most of these changes have been described,
516 but whether this is happening in sequence has not been studied.

517

518 Limitations of this study include potential underpowering of the study for 16S rRNA gene
519 studies. The rodent microbiome is not directly analogous to the human and further clinical
520 studies will be required to verify the effects on the gut microbiome's bacterial composition.

521 Although Yaq-001 was effective in adsorbing a variety of bile acids *in vitro* and reduced
522 bile acids significantly in Sham animals, no impact on bile acids was seen in BDL animals.
523 This possibly reflects the effect of the BDL model, where no increase in bile acids was
524 observed. Studies in other models will be needed to determine the role of Yaq-001 in
525 modulating bile acid metabolism. Although, Yaq-001 was observed to impact positively
526 on the gene expression profiles of multiple pathways, their exact relevance at the protein
527 or cellular level has not been explored.

528

529 In conclusion, the data provides compelling evidence for the potential of Yaq-001 as a
530 novel therapy targeting the gut microbiome, bacterial translocation and gut permeability
531 that impacts on systemic inflammation and organ function in models of cirrhosis and
532 improves survival in ACLF. Translation to clinical studies is warranted to further assess
533 its safety and efficacy.

534

535 **Abbreviations**

536 ACLF, acute-on-chronic liver failure; LPS, lipopolysaccharides; BDL, bile duct ligation;
537 ALT, alanine aminotransferase; ALP, alkaline phosphatase; TBIL, total bilirubin; MAP,
538 mean arterial pressure; CPA, collagen proportionate area; PSR, picrosirus red ; PP, portal
539 pressure; ROS, reactive oxidant species; DEGs, differential expressed genes; KEGG,
540 Kyoto Encyclopedia of Genes and Genomes; TLR, toll-like receptor; TNF-a, tumor
541 necrosis factor-a.

542

543 **Acknowledgements**

544 We would like to thank Fraser Simpson (Department of Genetics, Evolution &
545 Environment, University College London) for his support to perform the Nanostring. The
546 urinary NMR studies were facilitated by a Medical Research Council research grant under
547 the High-throughput "omic" Science and Imaging funding scheme [MC_PC_13045].

548

549

550 **References**

551 [1] Engelmann C, Adebayo D, Oria M, De Chiara F, Novelli S, Habtesion A et al.
552 Recombinant alkaline phosphatase prevents acute on chronic liver failure. *Sci Rep*
553 2020; 10: 389.

554 [2] Michelena J, Alonso C, Martinez-Arranz I, Altamirano J, Mayo R, Sancho-Bru P et al.
555 Metabolomics discloses a new non-invasive method for the diagnosis and prognosis
556 of patients with alcoholic hepatitis. *Ann Hepatol* 2019; 18: 144-154.

557 [3] Engelmann C, Sheikh M, Sharma S, Kondo T, Loeffler-Wirth H, Zheng YB et al. Toll-
558 like receptor 4 is a therapeutic target for prevention and treatment of liver failure. *J*
559 *Hepatol* 2020; 73: 102-112.

560 [4] Moreau R, Claria J, Aguilar F, Fenaille F, Lozano JJ, Junot C et al. Blood metabolomics
561 uncovers inflammation-associated mitochondrial dysfunction as a potential
562 mechanism underlying ACLF. *J Hepatol* 2020; 72: 688-701.

563 [5] Albillos A, Martin-Mateos R, Van der Merwe S, Wiest R, Jalan R, Alvarez-Mon M.
564 Cirrhosis-associated immune dysfunction. *Nat Rev Gastroenterol Hepatol* 2022; 19:
565 112-134.

566 [6] Takaya H, Namisaki T, Sato S, Kaji K, Tsuji Y, Kaya D et al. Increased endotoxin
567 activity is associated with the risk of developing acute-on-chronic liver failure. *J Clin*
568 *Med* 2020; 9.

569 [7] Bajaj JS, Thacker LR, Fagan A, White MB, Gavis EA, Hylemon PB et al. Gut microbial
570 RNA and DNA analysis predicts hospitalizations in cirrhosis. *JCI Insight* 2018; 3.

571 [8] Fernandez J, Prado V, Trebicka J, Amoros A, Gustot T, Wiest R et al. Multidrug-
572 resistant bacterial infections in patients with decompensated cirrhosis and with acute-
573 on-chronic liver failure in Europe. *J Hepatol* 2019; 70: 398-411.

574 [9] Piano S, Singh V, Caraceni P, Maiwall R, Alessandria C, Fernandez J et al.
575 Epidemiology and effects of bacterial infections in patients with cirrhosis worldwide.
576 *Gastroenterology* 2019; 156: 1368-1380 e1310.

577 [10] Shah N, Mohamed FE, Jover-Cobos M, Macnaughtan J, Davies N, Moreau R et al.
578 Increased renal expression and urinary excretion of TLR4 in acute kidney injury
579 associated with cirrhosis. *Liver Int* 2013; 33: 398-409.

580 [11] Macnaughtan J, Ranchal I, Soeda J, Sawhney R, Oben J, Davies N et al. O091:
581 Oral therapy with non-absorbable carbons of controlled porosity (YAQ-001)
582 selectively modulates stool microbiome and its function and this is associated with
583 restoration of immune function and inflammasome activation. J Hepatol
584 2015;62:S240.

585 [12] Macnaughtan J, Ranchal I, Soeda J, Sawhney R, Oben J, Davies N et al. PTH-095
586 Oral carbon therapy is associated with a selective modulation of the microbiome in
587 cirrhotic rats which is associated with a significant reduction in inflammatory
588 activation. Gut 2015;64:A449-A450.

589 [13] Macnaughtan J, Albillos A, Kerbert A, Vargas V, Durand F, Gine P et al. O09 A double
590 blind, randomised, placebo-controlled study to assess safety and tolerability of oral
591 enterosorbent Carbalive (Yaq-001) in cirrhotic patients. Gut 2021;70:A5-A6.

592 [14] Bajaj JS, Sheikh MY, Chojkier M, Balart L, Sherker AH, Vemuru R et al. 190 AST-
593 120 (spherical carbon adsorbent) in covert hepatic encephalopathy: results of the
594 ASTUTE trial. J Hepatol 2013;58:S84.

595 [15] Riva A, Gray EH, Azarian S, Zamalloa A, McPhail MJW, Vincent RP et al. Faecal
596 cytokine profiling as a marker of intestinal inflammation in acutely decompensated
597 cirrhosis. JHEP Rep 2020; 2: 100151.

598 [16] Jalan R, Fernandez J, Wiest R, Schnabl B, Moreau R, Angeli P et al. Bacterial
599 infections in cirrhosis: a position statement based on the EASL Special Conference
600 2013. J Hepatol 2014; 60: 1310-1324.

601 [17] Borzio M, Salerno F, Piantoni L, Cazzaniga M, Angeli P, Bissoli F et al. Bacterial
602 infection in patients with advanced cirrhosis: a multicentre prospective study. Dig
603 Liver Dis 2001; 33: 41-48.

604 [18] Wong F, Piano S, Singh V, Bartoletti M, Maiwall R, Alessandria C et al. Clinical
605 features and evolution of bacterial infection-related acute-on-chronic liver failure. J
606 Hepatol 2021; 74: 330-339.

607 [19] Engelmann C, Habtesion A, Hassan M, Kerbert AJ, Hammerich L, Novelli S et al.
608 Combination of G-CSF and a TLR4 inhibitor reduce inflammation and promote
609 regeneration in a mouse model of ACLF. J Hepatol 2022; 77: 1325-1338.

610 [20] Praharaj DL, Premkumar M, Roy A, Verma N, Taneja S, Duseja A et al. Rifaximin vs.
611 norfloxacin for spontaneous bacterial peritonitis prophylaxis: a randomized controlled
612 trial. *J Clin Exp Hepatol* 2022; 12: 336-342.

613 [21] Patel VC, Lee S, McPhail MJW, Da Silva K, Guilly S, Zamalloa A et al. Rifaximin-
614 alpha reduces gut-derived inflammation and mucin degradation in cirrhosis and
615 encephalopathy: RIFSYS randomised controlled trial. *J Hepatol* 2022; 76: 332-342.

616 [22] Sheneb JL, Barton RP, Mogan KA. Role of antibiotic class in the rate of liberation of
617 endotoxin during therapy for experimental gram-negative bacterial sepsis. *J Infect*
618 *Dis* 1985; 151: 1012-1018.

619 [23] Wasmuth HE, Kunz D, Yagmur E, Timmer-Stranghner A, Vidacek D, Siewert E et
620 al. Patients with acute or chronic liver failure display "sepsis-like" immune paralysis.
621 *J Hepatol* 2005; 42: 195-201.

622 [24] Trebicka J, Bork P, Krag A, Arumugam M. Utilizing the gut microbiome in
623 decompensated cirrhosis and acute-on-chronic liver failure. *Nat Rev Gastroenterol*
624 *Hepatol* 2021; 18: 167-180.

625 [25] Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. *Gut* 2016; 65: 2035-
626 2044.

627 [26] Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease:
628 Pathophysiological basis for therapy. *J Hepatol* 2020; 72: 558-577.

629 [27] Ahluwalia V, Betrapally NS, Hylemon PB, White MB, Gillevet PM, Unser AB et al.
630 Impaired gut-liver-brain axis in patients with cirrhosis. *Sci Rep* 2016; 6: 26800.

631 [28] Jiang N, Song X, Peng YM, Wang WN, Song Z. Association of disease condition with
632 changes in intestinal flora, and plasma endotoxin and vascular endothelial growth
633 factor levels in patients with liver cancer. *Eur Rev Med Pharmacol Sci* 2020; 24:
634 3605-3613.

635 [29] Ma J, Li J, Jin C, Yang J, Zheng C, Chen K et al. Association of gut microbiome and
636 primary liver cancer: a two-sample Mendelian randomization and case-control study.
637 *Liver Int* 2023; 43: 221-233.

638 [30] Grootjans J, Thuijls G, Verdam F, Derikx JP, Lenaerts K, Buurman WA. Non-invasive
639 assessment of barrier integrity and function of the human gut. *World J Gastrointest*
640 *Surg* 2010; 2: 61-69.

641 [31] Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. *Nat Rev Immunol* 2023; 23: 38-54.

642

643 [32] He S, Cui S, Song W, Jiang Y, Chen H, Liao D *et al.* Interleukin-17 weakens the

644 NAFLD/NASH process by facilitating intestinal barrier restoration depending on the

645 gut microbiota. *mBio* 2022; 13: e0368821.

646 [33] Mookerjee RP, Sen S, Davies NA, Hodges SJ, Williams R, Jalan R. Tumour necrosis

647 factor alpha is an important mediator of portal and systemic haemodynamic

648 derangements in alcoholic hepatitis. *Gut* 2003; 52: 1182-1187.

649 [34] Mehta G, Gustot T, Mookerjee RP, Garcia-Pagan JC, Fallon MB, Shah VH *et al.*

650 Inflammation and portal hypertension - the undiscovered country. *J Hepatol* 2014;

651 61: 155-163.

652 [35] Ajmera V, Huang H, Dao D, Feld JJ, Lau DT, Patel K *et al.* Host genetic variant in

653 CXCL16 may be associated with hepatitis B virus-related acute liver failure. *Cell Mol*

654 *Gastroenterol Hepatol* 2019; 7: 477-479 e474.

655 [36] Kondo T, Macdonald S, Engelmann C, Habtesion A, Macnaughtan J, Mehta G *et al.*

656 The role of RIPK1 mediated cell death in acute on chronic liver failure. *Cell Death*

657 *Dis* 2021; 13: 5.

658 [37] Tominaga K, Suzuki HI. TGF-beta signaling in cellular senescence and aging-related

659 pathology. *Int J Mol Sci* 2019; 20.

660 [38] Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN. TGF-beta in hepatic stellate cell

661 activation and liver fibrogenesis-updated 2019. *Cells* 2019; 8.

662 [39] Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate

663 game of cell death. *Cell Mol Immunol* 2021; 18: 1106-1121.

664 [40] Kondo T, Macdonald S, Engelmann C, Habtesion A, Macnaughtan J, Mehta G *et al.*

665 The role of RIPK1 mediated cell death in acute on chronic liver failure. *Cell Death*

666 *Dis* 2021; 13: 5.

667 [41] Soffientini U, Beaton N, Baweja S, Weiss E, Bihari C, Habtesion A *et al.* The

668 lipopolysaccharide-sensing caspase(s)-4/11 are activated in cirrhosis and are

669 causally associated with progression to multi-organ injury. *Front Cell Dev Biol* 2021;

670 9: 668459.

671 [42] Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory
672 and neurodegenerative diseases. *EMBO Mol Med* 2019; 11.

673 [43] Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, Arenas
674 M et al. CCR5 is a therapeutic target for recovery after stroke and traumatic brain
675 injury. *Cell* 2019; 176: 1143-1157 e1113.

676 [44] Wang Y, Wu X, Geng M, Ding J, Lv K, Du H et al. CCL24 protects renal function by
677 controlling inflammation in podocytes. *Dis Markers* 2021; 2021: 8837825.

678 [45] Rosa CGS, Colares JR, da Fonseca SRB, Martins GDS, Miguel FM, Dias AS et al.
679 Sarcopenia, oxidative stress and inflammatory process in muscle of cirrhotic rats -
680 action of melatonin and physical exercise. *Exp Mol Pathol* 2021; 121: 104662.

681 [46] Ebadi M, Burra P, Zanetto A, Montano-Loza AJ. Current treatment strategies and
682 future possibilities for sarcopenia in cirrhosis. *J Hepatol* 2023; 78: 889-892.

683 [47] Foley MH, Walker ME, Stewart AK, O'Flaherty S, Gentry EC, Patel S et al. Bile salt
684 hydrolases shape the bile acid landscape and restrict *Clostridioides difficile* growth
685 in the murine gut. *Nat Microbiol* 2023.

686 **Figure legends**

687 **Fig.1. Physical characteristics of Yaq-001, adsorptive capacity and effect on**
688 **bacterial kinetics.** (A) Physical characteristics of Yaq-001 using scanning electron
689 microscopy demonstrating meso-macroporous domains (Scale bars: from left to right: 200
690 μm , 40 μm , 400 nm and 400 nm) (n=3). (B) Adsorption kinetics of albumin, myoglobin,
691 caffeine and endotoxin by Yaq-001 (n=3). (C) Adsorption of a range of bile acids including
692 sodium glycochenodeoxy cholate hydrate, sodium glycocholate hydrate, lithocholic acid,
693 chenodeoxycholic acid, cholic acid and deoxycholic acid by Yaq-001(n=3). (D) Growth
694 curves of *E. coli* (n=3) and *S. aureus* (n=3) in the presence of Yaq-001, amoxicillin and
695 vehicle.

696

697 **Fig.2. Effect of Yaq-001 on organ dysfunction, endotoxemia and bacterial**
698 **translocation in BDL rats.** (A) Rats underwent bile duct ligation for 4-weeks as a model
699 of cirrhosis (n=23-37/group) in Experiment 1 and the treatment groups received Yaq-001
700 for 2 weeks before sacrifice. (B) 4-week body weight in four groups: Sham (n=31), Sham-
701 Yaq-001 (n=24), BDL (n=31) and BDL-Yaq-001 (n=38) in Experiments 1 and 2.
702 Significantly lower final body weights were observed in BDL compared to Sham controls
703 ($p<0.001$). Yaq-001-treated BDL rats had a significantly higher body weights compared
704 to untreated-BDL rats ($p<0.05$). (C) Plasma alanine transaminase (ALT) concentrations
705 in Sham (n=17), Sham-Yaq-001 (n=14), BDL (n=17) and BDL-Yaq-001 (n=26) groups.
706 Portal pressure (PP) measurements in Sham (n=17), Sham-Yaq-001 (n=19), BDL (n=14)
707 and BDL-Yaq-001 (n=26) groups. Significantly higher ALT and PP were observed in BDL
708 compared to Sham controls ($p<0.0001$). Yaq-001-treated BDL rats had a significantly
709 lower ALT and PP compared to untreated-BDL rats ($p<0.01$, $p<0.05$). (D) TUNEL assay
710 of liver tissue with quantification of staining by digital image analysis. Significantly higher
711 TUNEL staining was observed in BDL compared to Sham controls ($p<0.0001$). Yaq-001-
712 treated BDL rats had a significantly lower TUNEL staining compared to untreated-BDL
713 rats ($p<0.05$) indicative of a reduction in liver cell death with Yaq-001 treatment. (E)
714 Arterial ammonia concentrations in Sham (n=7), Sham-Yaq-001 (n=5), BDL (n=19), BDL-
715 Yaq-001(n=21) groups. Portal venous ammonia concentrations in Sham (n=6), Sham-
716 Yaq-001 (n=5), BDL (n=13), BDL-Yaq-001(n=18) groups. Significantly increased arterial

717 ammonia concentrations and portal venous ammonia concentrations were observed in
718 BDL compared to Sham controls ($p<0.0001$, $p=0.0001$). Yaq-001 significantly decreased
719 arterial and portal venous ammonia concentrations in BDL rats ($p<0.01$ for both). (F)
720 Serum creatinine in Sham (n=19), Sham-Yaq-001 (n=17), BDL (n=20), BDL-Yaq-001
721 (n=17) and urea in Sham (n=28), Sham-Yaq-001 (n=23), BDL (n=30), BDL-Yaq-001
722 (n=34) groups. Yaq-001 markedly decreased serum creatinine levels in BDL rats ($p<0.05$).
723 (G) Plasma D-lactate in Sham (n=7), Sham-Yaq-001 (n=8), BDL (n=6), BDL-Yaq-001
724 (n=7). Plasma D-lactate was significantly increased in the BDL group compared with
725 Sham animals ($p<0.05$). Yaq-001 resulted in a significant reduction in plasma D-lactate
726 in BDL rats ($p<0.05$). (H) Portal venous [Sham (n=6), Sham-Yaq-001 (n=5), BDL (n=12)
727 and BDL-Yaq-001 (n=7)] and arterial endotoxin concentrations [Sham (n=6), Sham-Yaq-
728 001 (n=5), BDL (n=12) and BDL-Yaq-001 (n=7)]. Portal venous [Sham (n=6), Sham-Yaq-
729 001 (n=5), BDL (n=12) and BDL-Yaq-001 (n=13)] and arterial plasma bacterial DNA
730 positivity [Sham (n=6), Sham-Yaq-001 (n=6), BDL (n=12) and BDL-Yaq-001 (n=7)].
731 Significantly higher portal venous endotoxin and arterial endotoxin were observed in BDL
732 rats compared to Sham rats ($p<0.0001$). Significantly higher portal venous plasma
733 bacterial DNA positivity was observed in BDL rats compared to Sham rats ($p<0.05$). Yaq-
734 001 administration was associated with a significant reduction of portal venous and
735 arterial endotoxin compared to untreated-BDL rats ($p<0.0001$, $p<0.01$). Yaq-001
736 administration reduced bacterial DNA positivity, which was not statistically different
737 ($p>0.05$).
738

739 **Fig.3. Effect of Yaq-001 on multiorgan function in ACLF.** (A) Rats underwent sham
740 biliary surgery or bile duct ligation (BDL) for 4-weeks. The treated group received Yaq-
741 001 for two weeks prior to LPS injection. Animals were sacrificed either at coma stages
742 or 6 hours after LPS injection (n=9-16/group). (B) Kaplan-Meier analysis of BDL-LPS rats
743 with (n=16) or without (n=12) Yaq-001 treatment. Yaq-001 treatment significantly
744 improved the survival of BDL-LPS rats compared to untreated-BDL-LPS rats (log rank
745 test, $p=0.003$). (C) Plasma ALT concentrations in Sham-LPS (n=7), Sham-LPS-Yaq-001
746 (n=5), BDL-LPS (n=10) and BDL-LPS-Yaq-001 (n=9) groups. PP measurements in
747 Sham-LPS (n=8), Sham-LPS-Yaq-001 (n=10), BDL-LPS (n=9) and BDL-LPS-Yaq-001

748 (n=9) groups. Yaq-001-treated BDL-LPS rats had a significantly lower ALT and PP
749 compared to untreated-BDL-LPS rats (p<0.005). (D) Brain water percentage in Sham-
750 LPS (n=4), Sham-LPS-Yaq-001 (n=4), BDL-LPS (n=7), BDL-LPS-Yaq-001 (n=13) groups.
751 Arterial ammonia concentrations in Sham-LPS (n=5), Sham-LPS-Yaq-001 (n=5), BDL-
752 LPS (n=7), BDL-LPS-Yaq-001 (n=7) groups. Portal venous ammonia concentrations in
753 Sham-LPS (n=5), Sham-LPS-Yaq-001 (n=5), BDL-LPS (n=6), BDL-LPS-Yaq-001 (n=5)
754 groups. Yaq-001 decreased brain water percentage and arterial/portal venous ammonia
755 concentrations in BDL-LPS rats compared to untreated rats (p<0.05, p<0.01, p<0.05). (E)
756 Serum creatinine in Sham-LPS (n=4), Sham-LPS-Yaq-001 (n=3), BDL-LPS (n=12) and
757 BDL-LPS-Yaq-001 (n=6) groups. Serum urea in Sham-LPS (n=8), Sham-LPS-Yaq-001
758 (n=4), BDL-LPS (n=12) and BDL-LPS-Yaq-001 (n=8) groups. Yaq-001 significantly
759 decreased creatinine levels in BDL-LPS rats (p<0.05). (F) Plasma cytokines in Sham-
760 LPS (n=6), Sham-LPS-Yaq-001 (n=9), BDL-LPS (n=8) and BDL-LPS-Yaq-001 (n=8)
761 groups. Yaq-001 significantly decreased plasma IL-1 β and IL-10 concentrations in BDL-
762 LPS groups (p<0.01, p<0.05).

763

764 **Fig.4. Effect of Yaq-001 on peripheral and Kupffer cell populations.** (A) Rats
765 underwent bile duct ligation for 4-weeks as a model of cirrhosis (n=4-5/group). Yaq-001
766 was administered to treated rats 2-weeks before sacrifice. Blood was sampled from the
767 artery or the portal vein and the liver was perfused to isolate Kupffer cells. (B) Absolute
768 portal venous total leukocyte, neutrophil and monocyte populations in Sham (n=5), Sham-
769 Yaq-001 (n=5), BDL (n=4) and BDL-Yaq-001 (n=4) groups. Absolute arterial total
770 leukocyte, neutrophil and monocyte populations in Sham (n=5), Sham-Yaq-001 (n=5),
771 BDL (n=5) and BDL-Yaq-001 (n=4) groups. BDL was associated with a significant
772 increase in leukocyte, neutrophil and monocyte levels in portal vein and artery compared
773 to Sham controls (p<0.05, p<0.01) respectively. Yaq-001 significantly decreased total
774 leukocyte level in artery and neutrophil levels in both portal vein and artery (p<0.05). (C)
775 Constitutive and LPS-induced ROS production in CD163-gated liver non-parenchymal
776 cell fraction (n=3-5/group), portal venous monocytes (n=3-4/group) and portal venous
777 neutrophil populations (n=3-4/group) (expressed as a percentage of the parent population)
778 in Sham, Sham-Yaq-001, BDL and BDL-Yaq-001. BDL resulted in a significant increase

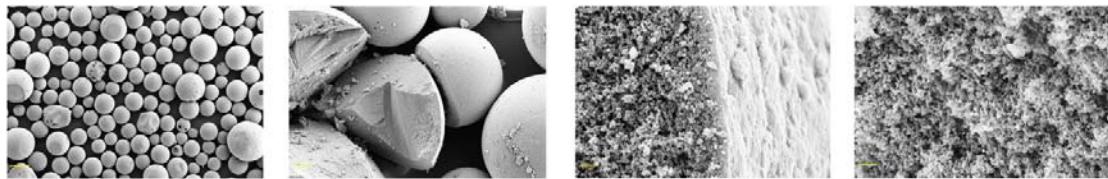
779 in LPS-induced monocyte and neutrophil ROS production ($p<0.05$). Yaq-001 significantly
780 attenuated LPS-induced ROS production both in portal venous monocytes and Kupffer
781 cell populations ($p<0.05$).
782

783 **Fig.5. Effect of Yaq-001 on gene expression profiles in the liver and gut in BDL rats.**
784 (A) Rats underwent bile duct ligation for 4-weeks as a model of cirrhosis (n=3-4/group)
785 and the treatment groups received Yaq-001 for 2-weeks before sacrifice. Liver and colon
786 were collected for transcriptomic analysis. (B) Heatmap of differentially expressed genes
787 (DEGs) in liver tissue between Sham (n=3), Sham-Yaq-001 (n=3), BDL (n=3) and BDL-
788 Yaq-001 (n=4) groups. DEGs were identified at 1.2-fold change and $p=0.1$ threshold in
789 three pairwise groups (BDL versus Sham, BDL-Yaq-001 versus BDL, Sham-Yaq-001
790 versus Sham). (C) Volcano plot of pairwise DEGs in liver among Sham (n=3), Sham-Yaq-
791 001 (n=3), BDL (n=3) and BDL-Yaq-001 (n=4) groups. The vertical dashed lines indicated
792 the threshold for 1.2-fold change. The horizontal dashed line indicated the adjusted
793 $p=0.05$ and $p=0.1$ threshold. The right part indicates up-regulation of gene expression,
794 and the left part indicates down-regulation of gene expression. The top 20 genes are
795 indicated by gene names. (D) Functional enrichment analysis of liver genes pairwise
796 based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The
797 significantly changed pathways are shown in panels including inflammation, TLR
798 signaling, cell death, cell senescence and intracellular signaling. (E) Heatmap of DEGs in
799 colonic tissue between Sham (n=3), Sham-Yaq-001(n=3), BDL (n=3) and BDL-Yaq-001
800 (n=4) groups. DEGs were identified at 1.2-fold change and $p=0.1$ threshold in three
801 pairwise groups (BDL versus Sham, BDL-Yaq-001 versus BDL, Sham-Yaq-001 versus
802 Sham). (F) Volcano plot of pairwise DEGs in colon among Sham (n=3), Sham-Yaq-001
803 (n=3), BDL (n=3) and BDL-Yaq-001 (n=4) groups. The vertical dashed lines indicated the
804 threshold for 1.2-fold change. The horizontal dashed line indicates adjusted $p=0.05$ and
805 $p=0.1$ threshold. The right part indicates up-regulation of gene expression, and the left
806 part indicates down-regulation of gene expression. The top 20 genes are indicated by
807 gene names. (G) Functional enrichment analysis of colon genes in pairwise three groups
808 based on KEGG database. The significantly changed pathways are shown in panels

809 including inflammation, TLR signaling, cell death, cell senescence and intracellular
810 signaling.

811

812 **Fig.6. Effect of Yaq-001 on gene expression profiles in the brain and kidneys in BDL**
813 **rats.** (A) Rats underwent bile duct ligation for 4-weeks as a model of cirrhosis (n=3-
814 4/group) and the treatment groups received Yaq-001 for 2-weeks before sacrifice. Brain
815 and kidneys were collected for transcriptomic analysis. (B) Heatmap of DEGs in brain
816 tissue between Sham (n=3), Sham-Yaq-001 (n=3), BDL (n=3) and BDL-Yaq-001 (n=4)
817 groups. DEGs were identified at 1.2-fold abundance difference and p=0.1 threshold in
818 three pairwise groups (BDL versus Sham, BDL-Yaq-001 versus BDL, Sham-Yaq-001
819 versus Sham). (C) Volcano plot demonstrates pairwise DEGs in the brain among Sham
820 (n=3), Sham-Yaq-001 (n=3), BDL (n=3) and BDL-Yaq-001 (n=4) groups. The vertical
821 dashed lines indicates the threshold for 1.2-fold abundance difference. The horizontal
822 dashed line indicates adjusted p=0.05 and p=0.1 threshold. The right part indicates up-
823 regulation of gene expression, and the left part indicates down-regulation of gene
824 expression. The top 20 genes are indicated by the gene names. (D) Functional
825 enrichment analysis of brain is shown pairwise for three groups based on the KEGG
826 database. The significantly changed pathways were shown in panels including
827 inflammation, TLR signaling, cell senescence and intracellular signaling. (E) Heatmap of
828 DEGs in kidney tissue between Sham (n=3), Sham-Yaq-001(n=3), BDL (n=3) and BDL-
829 Yaq-001 (n=4) groups. DEGs were identified at 1.2-fold abundance difference and p=0.1
830 threshold in three pairwise groups (BDL versus Sham, BDL-Yaq-001 versus BDL, Sham-
831 Yaq-001 versus Sham). (F) Volcano plot demonstrated pairwise DEGs in the kidney
832 among Sham (n=3), Sham-Yaq-001 (n=3), BDL (n=3) and BDL-Yaq-001 (n=4) groups.
833 The vertical dashed lines indicates the threshold for 1.2-fold abundance difference. The
834 horizontal dashed line indicates adjusted p=0.05 and p=0.1 threshold. The right part
835 indicates up-regulation of gene expression, and the left part indicates down-regulation of
836 gene expression. The Top 20 genes are indicated by the gene names. (G) Functional
837 enrichment analysis of kidney shown pairwise for three groups based on the KEGG
838 database. The significantly changed pathways are shown in panels including
839 inflammation and TLR signaling.


840

841 **Fig.7. Effect of Yaq-001 treatment on the microbiome composition.** (A) Heatmap of
842 gut microbiome associated with the effect of Yaq-001 as determined by 16S PCR at the
843 family level. The Family *Porphyromonadaceae* with asterisk was statistically differently
844 abundant between BDL (n=7) vs Sham (n=6), and between BDL-Yaq-001 (n=7) vs BDL
845 groups (n=7) (Wilcoxon rank sum test, $p<0.05$). The abundance of this family was
846 statistically higher in BDL group than in Sham group, and its abundance statistically
847 decreased in the BDL-Yaq-001 group than in the BDL group. The other six families in the
848 heatmap were with marked fold changes between BDL vs Sham, and between BDL-Yaq-
849 001 vs BDL groups ($|\log_{2}FC|>2$). Of these, five were more abundant in the BDL group
850 than in the Sham group. The abundance largely decreased in the Yaq-001-treated group.
851 In addition, of these, one family was less abundant in the BDL group than in the Sham
852 group. The abundance increased in the Yaq-001-treated group. (B) Heatmap of gut
853 microbiome at the Genus level. The Genus *Barnesiella* with asterisk was statistically
854 differently abundant between BDL vs Sham, and between BDL-Yaq-001 vs BDL groups
855 (Wilcoxon rank sum test, $p<0.05$). The abundance of this genus was statistically higher
856 in BDL group than in the Sham group, and its abundance statistically decreased in the
857 BDL-Yaq-001 group. The other 19 genera in the heatmap represent those with significant
858 fold change values between BDL vs Sham, and between BDL-Yaq-001 vs BDL groups
859 ($|\log_{2}FC|>2$). Of these, 14 were more abundant in the BDL group compared with the
860 Sham group. The abundance decreased in the Yaq-001-treated BDL group. In addition, 5
861 genera were less abundant in the BDL group than in the Sham group. Their abundance
862 increased in the Yaq-001-treated BDL animals. (C, D) Correlation plots between markedly
863 changed genes and gut microbiome at family/genus. The genes were from amongst the
864 top 20 changed genes in BDL animals with Yaq-001 treatment. Nodes represent either
865 genes (lower semi-circular part) or bacteria (upper semi-circular part) at the family and
866 genus level. The nodes are colored based on the log-fold change for the differential gene
867 expression and differences in the bacterial abundance. The red nodes indicate an
868 increase and blue nodes indicate a decrease. Edges represent the correlation coefficient
869 calculated between genes and microbial genus or family with red indicating a positive

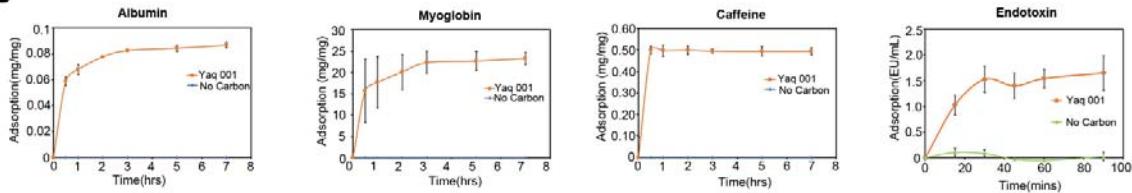
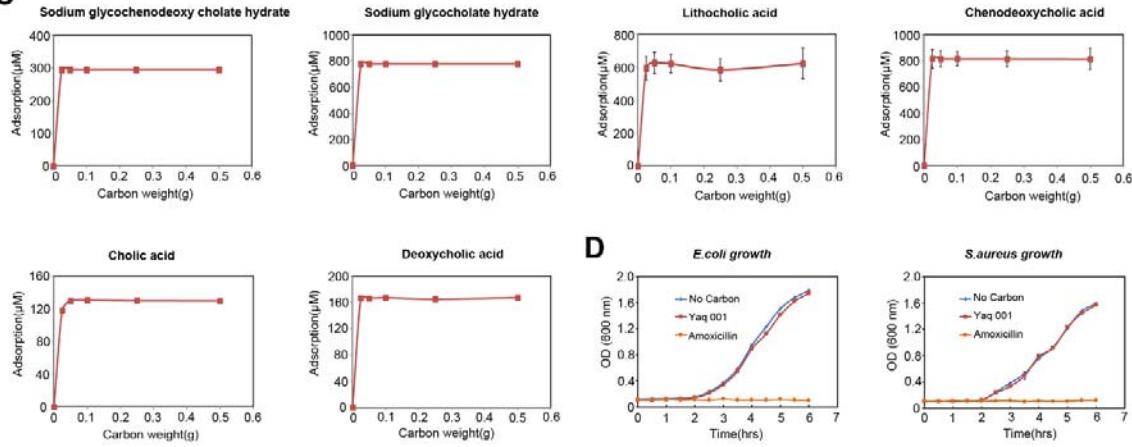
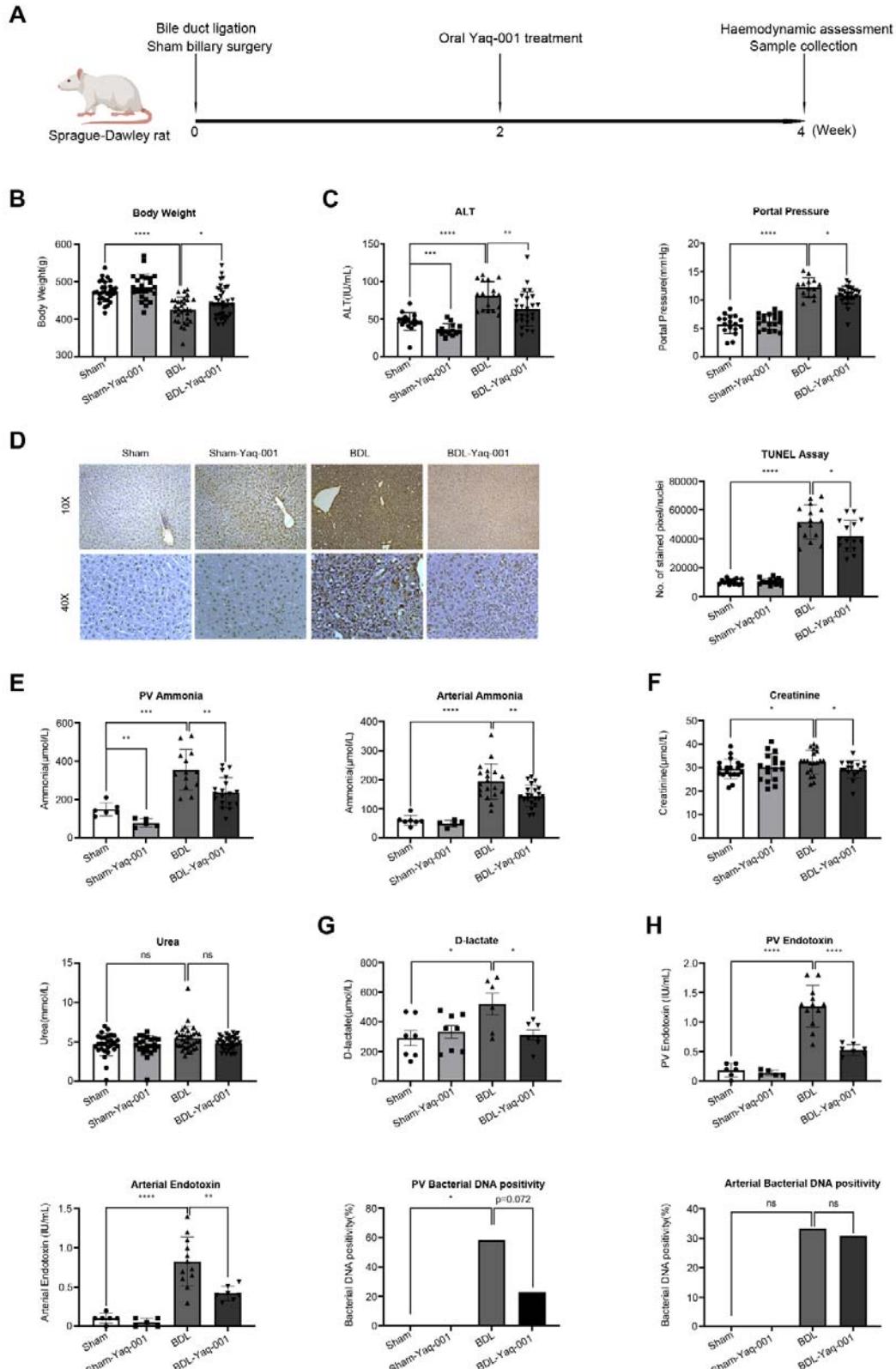

870 correlation and blue a negative correlation. Correlation coefficients greater or equal to 0.4
871 were plotted in plot C (Spearman's coefficient ≥ 0.4), and D shows all correlations.
872

Figure 1

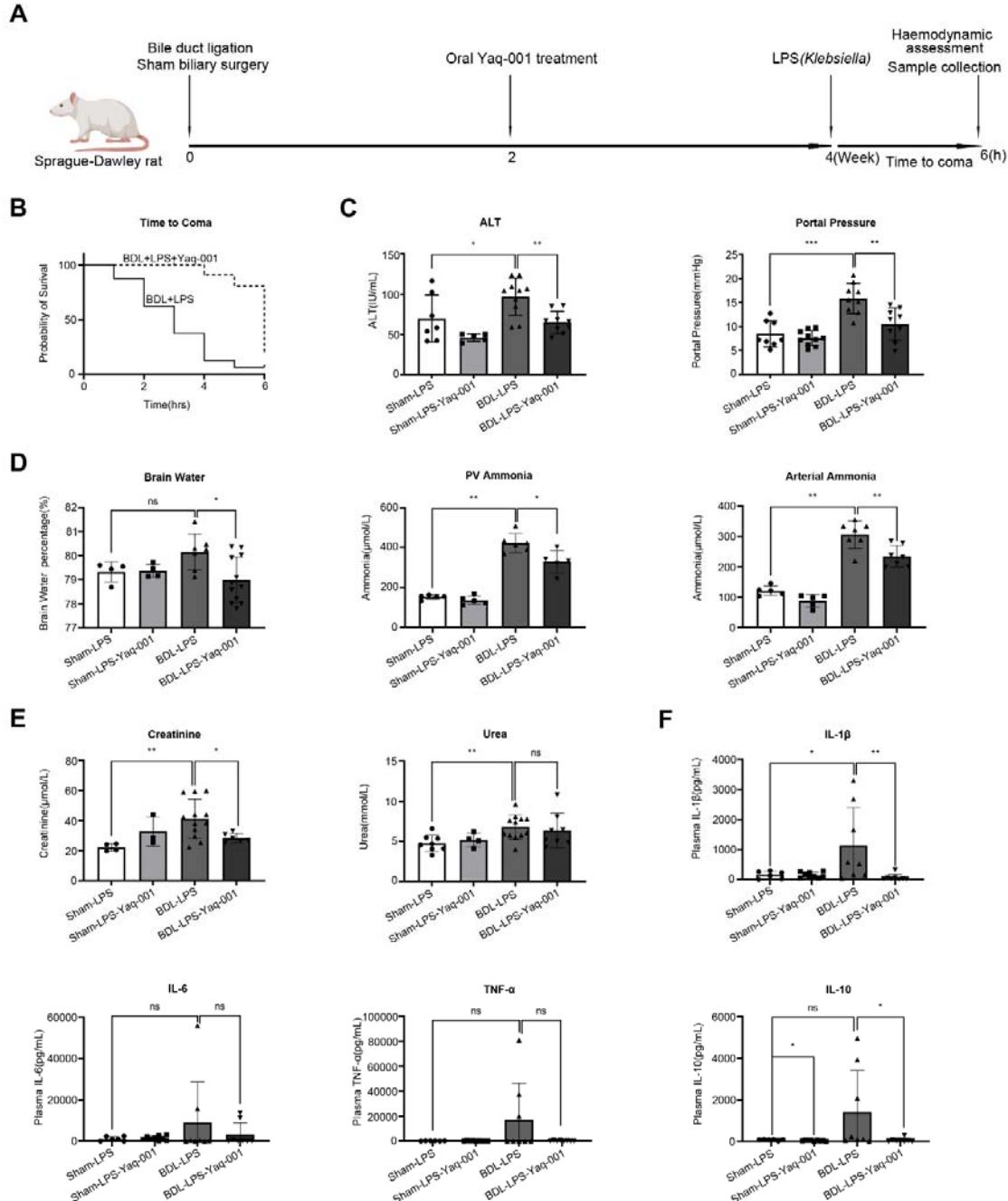

A

B

C



873


874

875

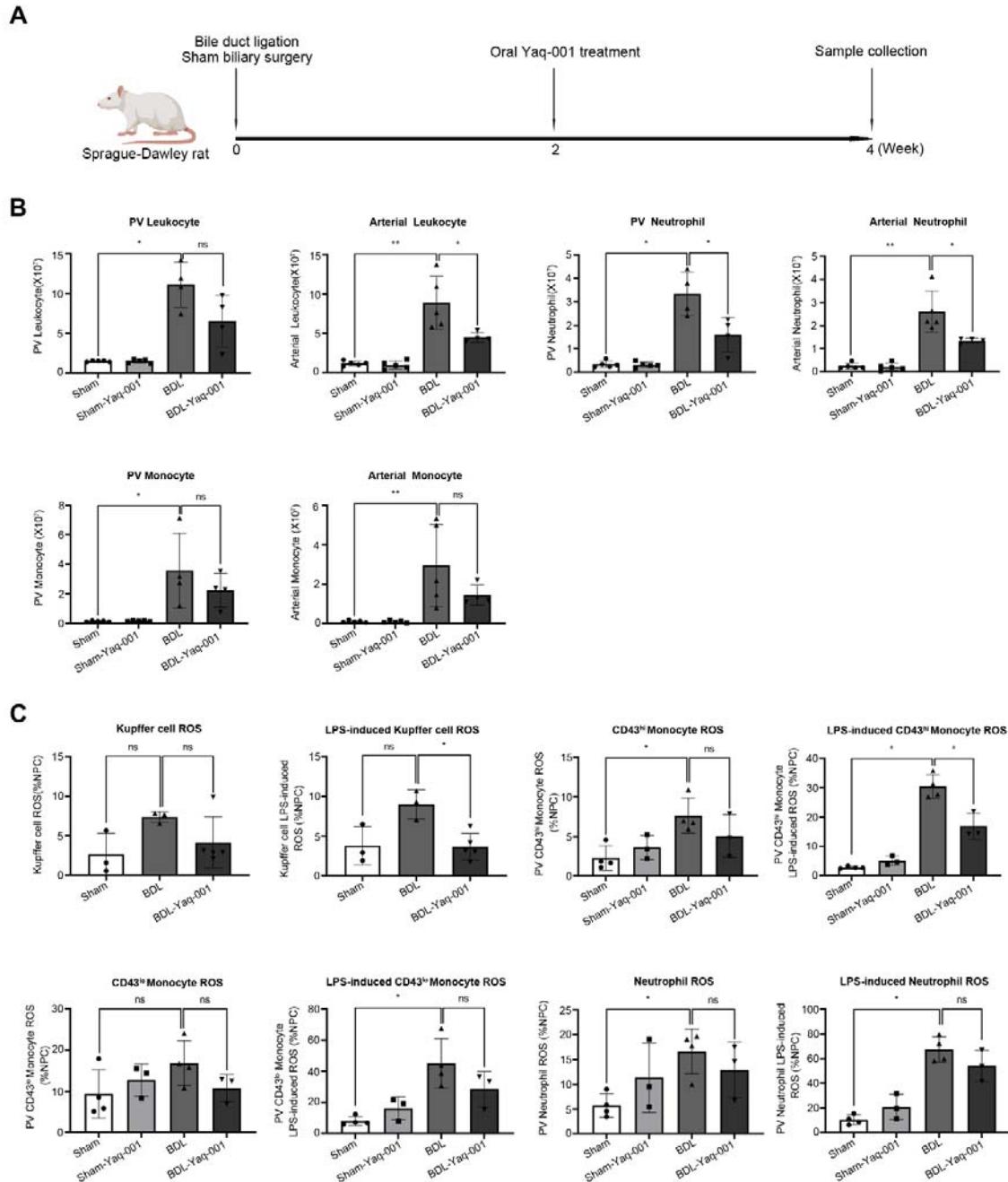

Figure 2

Figure 3

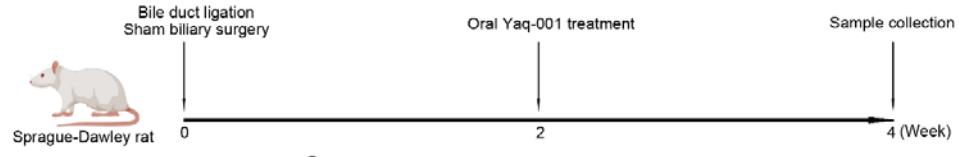


Figure 4

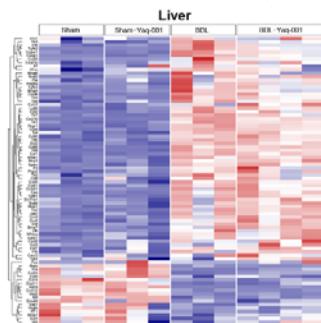
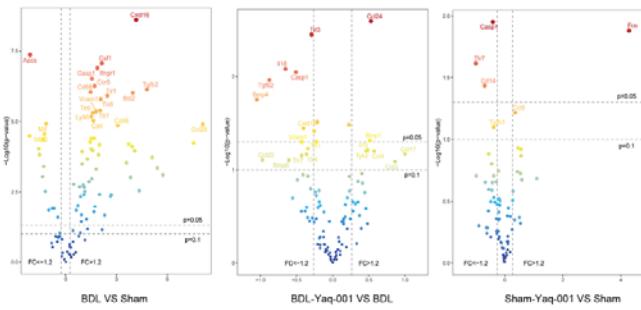
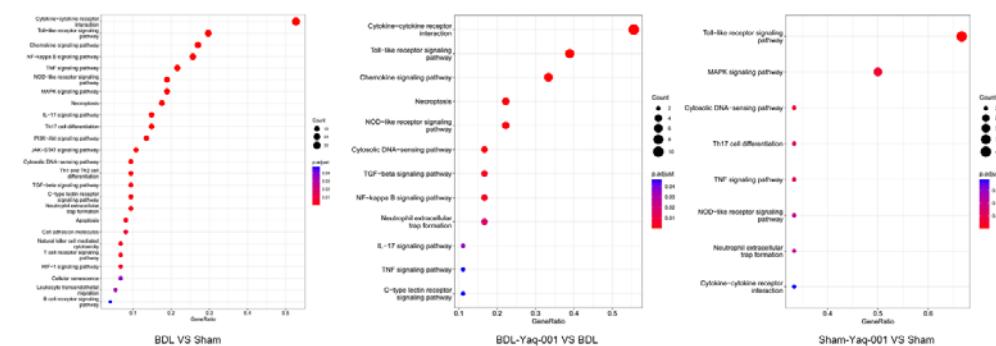
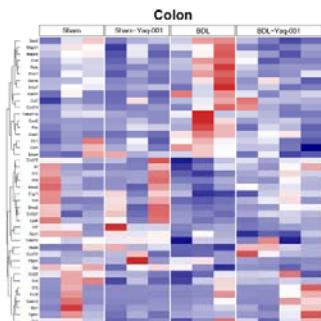
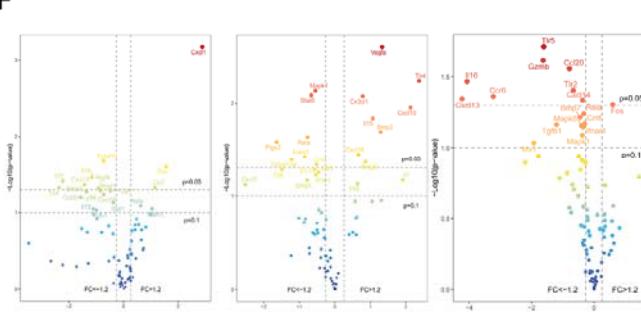


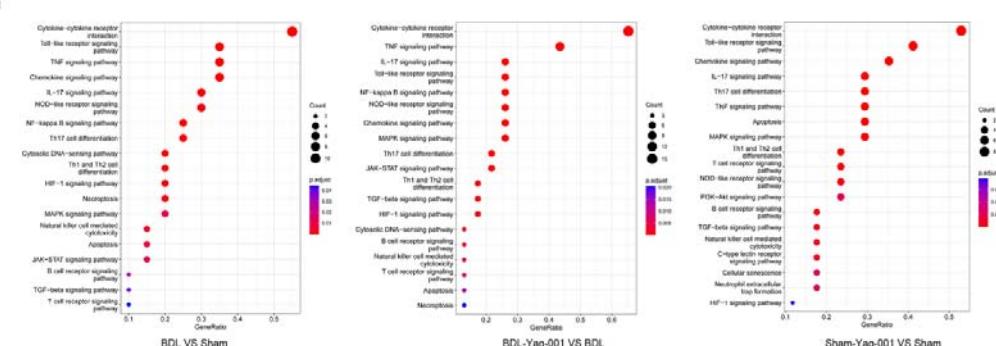
Figure 5


A

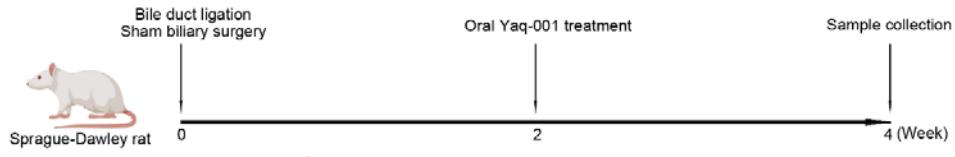

B


C


D


E

F



G

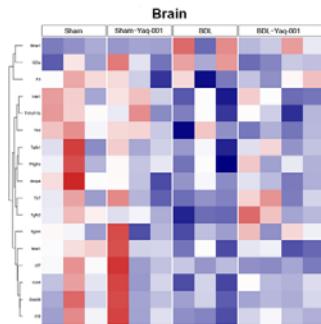
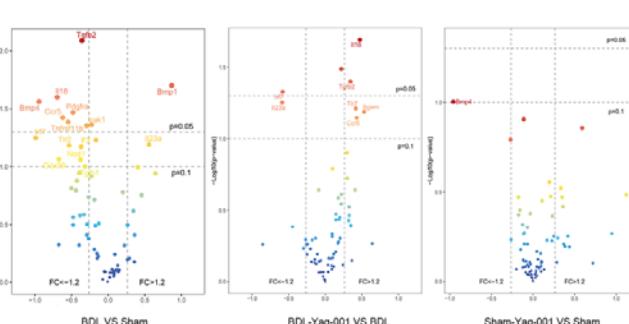
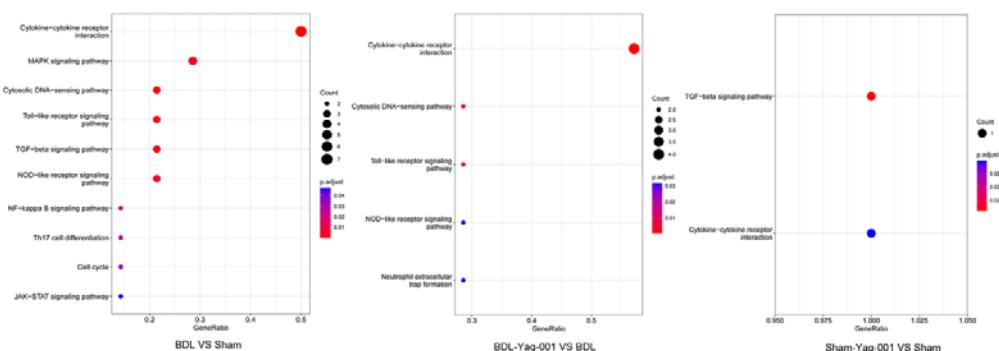
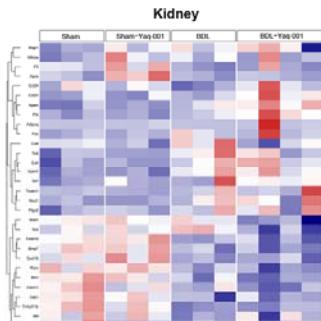
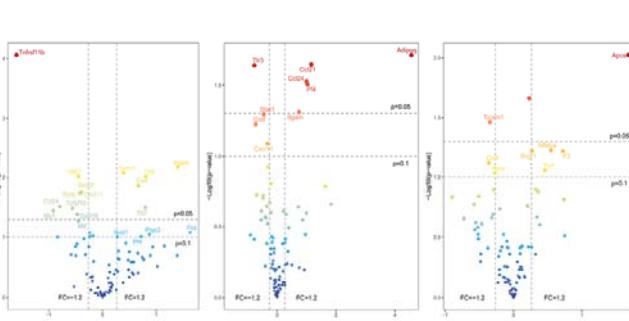


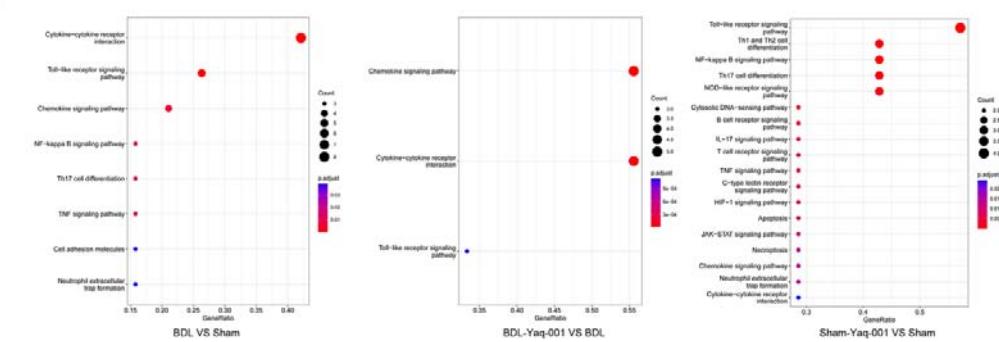
Figure 6

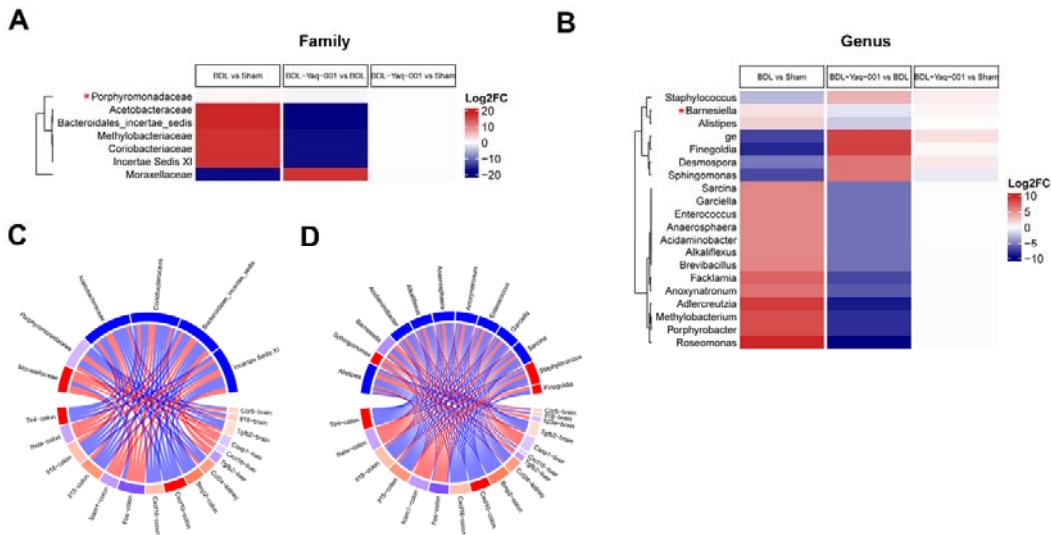

A


B


C


D


E


F

G

Figure 7

881