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Summary

e The iconic, palmately compound leaves of Cannabis have attracted significant
attention in the past. However, investigations into the genetic basis of leaf shape or
its connections to phytochemical composition have yielded inconclusive results. This
is partly due to prominent changes in leaflet number within a single plant during
development, which has so far prevented the proper use of common morphometric
techniques.

e Here we present a new method that overcomes the challenge of nonhomologous

landmarks in palmate, pinnate and lobed leaves, using Cannabis as an example. We
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model corresponding pseudo-landmarks for each leaflet as angle-radius coordinates
and model them as a function of leaflet to create continuous polynomial models,
bypassing the problems associated with variable number of leaflets between leaves.

e We analyze 341 leaves from 24 individuals from nine Cannabis accessions. Using
3,591 pseudo-landmarks in modeled leaves, we accurately predict accession identity,
leaflet number, and relative node number.

e |Intra-leaf modeling offers a rapid, cost-effective means of identifying Cannabis
accessions, making it a valuable tool for future taxonomic studies, cultivar
recognition, and possibly chemical content analysis and sex identification, in addition
to permitting the morphometric analysis of leaves in any species with variable

numbers of leaflets or lobes.

Key words: Cannabis, development, geometric morphometrics, intra-leaf modeling, leaf

morphology, leaf shape

INTRODUCTION

Cannabis sativa L. (hereafter referred to as Cannabis) is a versatile crop plant used by
humans for a variety of purposes throughout history. Although today it is commonly
associated with its psychoactive properties, traditional medicine has relied heavily on
Cannabis, and it is also a valuable source of food and fibers (Clarke & Merlin, 2013). Genetic
and archaeological evidence suggests that Cannabis was domesticated around 12,000 years
ago in East Asia, initially serving as a multipurpose crop before separate selections for fiber
and drug production emerged around 4,000 years ago (Ren et al., 2021). Since then,
widespread cultivation has facilitated its global distribution. Throughout the 20th century,
Cannabis use was largely abandoned due to its illegal status in many parts of the world.
However, recent legalization for recreational and/or medicinal purposes in many countries
worldwide has led to a surge in the cannabis industry (The Global Cannabis Report, 3rd

Edition, 2022).

Extensive Cannabis use has resulted in the development of numerous cultivars and strains

that are well-suited to diverse uses and climates (Small, 2015). This significant
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morphological and phytochemical diversity within the Cannabis genus poses challenges for
taxonomic classification. Over the past two centuries, various taxonomic approaches based
on genetics, morphology, and phytochemistry have been proposed (McPartland & Small,
2020). Some scientists advocated for a polytypic classification, recognizing the presence of
two (Lamarck & Poiret, 1783; Zhukovskii, 1971; Hillig, 2005a) or three (Emboden, 1974;
Schultes et al., 1974; Hillig, 2005b; Clarke & Merlin, 2013) species with multiple subspecies,
while others argued for a monotypic genus, considering only a single species, Cannabis
sativa (Small & Cronquist, 1976; Sawler et al., 2015; Small, 2015; McPartland, 2018;
McPartland & Small, 2020; Ren et al., 2021). Hillig (2005a) introduced a classification system
based on biotypes, considering molecular, morphological, and phytochemical data. He
proposed dividing Cannabis into two species, C. sativa and C. indica Lam., and six biotypes:
C. indica as narrow-leaflet drug (NLD), wide-leaflet drug (WLD), hemp and feral biotype, and
C. sativa as hemp and feral biotype. Recently, Lapierre et al. (2023) conducted a
comprehensive taxonomic review of the Cannabis genus and based on available genetic

data, strongly supported the theory that Cannabis is a highly diverse monotypic species.

Apart from taxonomic classification, Cannabis is often categorized based on its cultivation
purpose, morphology, and chemical composition. Fiber-type plants, commonly known as
hemp, are primarily grown for fiber and seed production. These plants contain less than
0.3% of the psychoactive compound THC (A9-tetrahydrocannabinol), while drug-type plants,
often referred to as marijuana and medicinal cannabis, can contain higher levels of THC
(Hurgobin et al., 2021). Cannabis plants can also be separated based on the ratio of two
major cannabinoids THC and CBD (cannabidiol) into Type | (THC dominant), Type Il
(balanced CBD/THC ratio), and Type Ill plants (CBD dominant) (Small & Beckstead, 1973). In
the medicinal and recreational cannabis industries plants are normally categorized as
‘sativa’, ‘indica’, or ‘hybrid’. Taller plants with narrow leaflets and high THC percentage are
called ‘sativa’, while shorter and bushier plants with wider leaflets and high percentages of
both CBD and THC are called ‘indica’. Plants with intermediate characters are called
‘hybrids’ (McPartland & Guy, 2017). While the classification of Cannabis into ‘indica’ and
‘sativa’ is not supported by genetic data, the visible differences in leaflet width have long

been a significant characteristic used to visually discriminate different types of Cannabis.
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96  Cannabis arguably possesses one of the most iconic leaves among all plants. Its palmately
97 compound leaves with a varying number of leaflets are a popular culture symbol. Cannabis
98 exhibits a remarkable degree of phenotypic plasticity, further accentuated by selection
99 pressure during the domestication process (Small, 2015). Extensive variability in leaf
100  morphology has already been described by Quimby et al. (1973) and later Anderson (1980),
101  who was the first to quantify the width, length, and ratio of the central leaflet. This or
102  similar methods were then commonly used in studies investigating the morphological
103  characteristics of Cannabis species, subspecies, cultivars, biotypes and chemotypes (Small et
104 al., 1976; de Meijer et al., 1992; de Meijer & Keizer, 1996; Hillig, 2005a; Clarke & Merlin,
105  2013; Lynch et al., 2016; Karlov et al., 2017; Parsons et al., 2019; McPartland & Small, 2020;
106  Carlson et al., 2021; Islam et al., 2021; Jin et al., 2021a; Vergara et al., 2021; Buzna & Sala,
107  2022; Chen et al., 2022; Murovec et al., 2022), often with contradictory results. Leaf shape
108  has therefore played an important and sometimes controversial role in Cannabis taxonomy.
109  While researchers in previous Cannabis studies were aware of enormous plasticity and the
110 effect the environment has on leaf shape (Vergara et al., 2021; Murovec et al., 2022), they
111 very rarely paid attention to the effects of developmental processes, even though
112  heteroblastic changes (differences in leaf shape arising from juvenile-to-adult phase
113 transitions in the meristem) profoundly affect the arrangement and shape of Cannabis
114  leaves along the shoot. While some studies briefly mention the developmental changes of
115 leaves (Hillig, 2005a; Carlson et al., 2021; Jin et al., 2021b; Spitzer-Rimon et al., 2022), the
116  only two studies focusing on heteroblastic phase changes in leaves along the plant axis were
117  done by Heslop-Harrison and Heslop-Harrison (1958) and Hesami et al. (2023). In the lower
118  part of the shoot Cannabis leaves exhibit opposite phyllotaxy and one to three leaflets,
119  transitioning to alternate phyllotaxy and leaves with up to 11 or 13 leaflets in the upper
120  section (Hillig, 2005a; Clarke & Merlin, 2013; Small, 2015). Additionally, the changes in
121  leaflet number are not uniform between different Cannabis accessions (Hillig, 2005a). These
122  changes during development not only complicate categorization of plant accessions based
123 on leaf shape, but also prevent the use of morphometric techniques.

124

125  Morphometrics is the quantitative analysis of shape. It includes a wide range of methods,
126  from measuring allometric differences in dimensions like lengths, widths, and angles in

127 relation to size (Niklas, 1994), to geometric techniques that measure shape
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128  comprehensively, like elliptical Fourier (EFDs; Kuhl & Giardina, 1982) and landmark-based
129  analyses (Bookstein, 1997). It can be used to classify species and to separate effects on
130  shape arising from genetic, developmental, and environmental mechanisms (Chitwood &
131  Sinha, 2016). Historically the field of ampelography (dumehog, ‘vine’ + ypdadog, ‘writing’;
132  Ravaz, 1902; Galet, 1952; Galet & trans. Morton, 1979) relied heavily on leaf shape to
133 distinguish grapevine varieties. Unlike Cannabis, grapevine leaves have a consistent number
134  of lobes, sinuses, and other associated homologous points that can be used for both
135 landmark-based and EFD morphometric analysis (Chitwood et al., 2014; Chitwood, 2021) to
136  disentangle genetic (Demmings et al., 2019), developmental (Chitwood et al., 2016a; Bryson
137 et al., 2020; Migicovsky et al., 2022), and environmental effects (Chitwood et al., 2016b,
138  2021) embedded in leaf shapes.

139  The variable number of leaflets in Cannabis (and several other species with lobed, pinnate
140 and palmate compound leaves) precludes analysis methods that rely on homologous,
141  comparable points to measure shape comprehensively. Methods to automatically isolate
142  individual leaflets (Failmezger et al., 2018) or to model developmental trajectories, such as
143  heteroblastic series (Biot et al., 2016) were proposed previously for morphometrical analysis
144  in such cases. In Cannabis, Vergara et al. (2021) used a landmark-based approach but were
145 limited to analyzing the central and two most distal leaflets on each side, features that all
146  Cannabis leaves except single-leaflet leaves possess, but which excludes most of the shape
147  variation within a leaf.

148

149  Here, we seek to build on these works and conceptually extend our framework of
150 continuously modeling leaflets within a palmate leaf. We model corresponding pseudo-
151  landmarks for each leaflet as angle-radius coordinates relative to the petiolar junction and
152  model angle and radius as a function of leaflet number to create continuous polynomial
153  models that bypass the problems associated with variable numbers of leaflets between
154  leaves. This enabled us to compare leaves with different numbers of leaflets within a plant
155 and to discern differences between genotypes rather than the heteroblastic series.
156  Analyzing over 300 Cannabis leaves, we model theoretical leaves with nine leaflets and
157 3,591 comparable pseudo-landmarks. Linear discriminant analysis (LDA) predicts accession,
158 leaflet number, and relative node number with high accuracy. Intra-leaf modeling allows the

159  application of morphometric techniques to comprehensively measure leaf shape in
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160  Cannabis, enabling future taxonomic and developmental studies, cultivar recognition, and
161  possibly chemical content analysis and sex identification, in addition to permitting the
162  morphometric analysis of leaves in any species with variable numbers of leaflets or lobes.
163

164  MATERIAL AND METHODS

165

166  Plant material and growing conditions

167  This study includes 24 individuals from nine accessions of Cannabis sativa L. (Table 1; Fig. 1),
168  encompassing both wild/feral accessions and cultivated varieties with a wide distribution
169  area. The plants were grown from seeds in a growth chamber (Fitoclima D1200PLL, Aralab,
170  Portugal) to minimize the influence of the environment. Before sowing, the seeds were
171  sterilized overnight in a 5% H,0; solution with the addition of Inex-A solution (Cosmocel,
172 Spain) at room temperature. Sterilized seeds were then transferred to Petri dishes and
173  placed in the growth chamber for germination. Once the first leaves emerged, the seedlings
174  were transferred to small peat pots with a pre-fertilized soil substrate (Kilomix Atami,
175  Spain). During this phase, the environmental conditions were set to 25°C, with an 18-hour
176  day and 6-hour night photoperiod, and a light intensity of 50 umol m=s™! (Philips Master PL-
177 L 55W, Spain). After two weeks the surviving plants were transplanted to 3.5 | pots with the
178  same soil substrate. The light intensity was gradually increased to 300 pmol m=2s~* over the
179  following week, without changing the photoperiod and temperature. The onset of flowering
180 in some Cannabis accessions is photoperiod dependent, therefore after four weeks, the
181  photoperiod was changed to 12 hours of daylight and 12 hours of darkness, and the light
182  intensity was gradually increased to 700 umol m=2s7! over the following week, while keeping
183  the temperature at 25°C. The plants remained in these environmental conditions until the
184  flowering stage. Plants received daily irrigation with tap water, without any application of
185  nutrient or phytosanitary control.

186

187
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188  Table 1 Accession details and number of leaves collected and analyzed in the study.

Number of Number of

Accession  Accession Number of
Location/Cultivar name leaves leaves
ID type individuals
collected analyzed

AM15 Wild/feral  Armenia, Sjunik marz, Goris town 5 90 74
BNG Wild/feral  Bangladesh, Rangpur, Carmichael College Campus 1 14 10
FUT75 Cultivar Futura 75 2 45 30
HU1 Wild/feral  Hungary, Nyirvasvari 4 83 68
IK Landrace India, Kerala 4 92 53
IKL Landrace India, Kullu 4 69 47
MAR Landrace Morocco, North Morocco 1 18 15
MN9 Wild/feral  Mongolia, Selenge aimag, Baruunburen sum 1 14 10
RO1 Wild/feral  Romania, Mangalija 2 36 34

189

190 Leaf sampling and imaging

191 A total of 461 leaves were sampled during the flowering stage, with the exception of
192  individuals from the accession IK, which did not begin to flower during the two-month
193  cultivation period. Leaves along the main axis of the plants were collected and immediately
194  scanned using a flatbed photograph scanner (Epson Perfection V370, Japan) at 1200 dpi
195  resolution. A piece of velvet fabric was placed between the leaf and the scanner cover to
196  avoid any shadows. No adjustments to the angle of individual leaflets were made before
197  scanning. Each leaf was scanned with a scale and a label indicating the node it originated
198 from, followed by a sequential lowercase letter, since typically two leaves are present per
199 node. Starting at the base of the plant, the first two leaves were labeled as leaves "a" and

200 "b" from node number 1, and so on, until the shoot apex.

201  Cannabis leaves display a marked heteroblastic, or juvenile-to-adult, leaf shape progression.
202  Mature, juvenile leaves located on the first node at the base of the plant usually have a
203  simple, serrated leaf. As node number increases so does the leaflet number, reaching a
204 maximum of 9 to 13 leaflets in young, adult leaves at the growing tip. Eventually leaves
205 transition into an inflorescence type. During this transition, the number of leaflets per leaf
206  starts to decrease again until the top of the inflorescence. Leaves at the shoot base have
207  opposite phyllotaxy and transition to alternate phyllotaxy in the upper section on the stem

208 and inflorescence (Heslop-Harrison & Heslop-Harrison, 1958; Hillig, 2004; Potter, 2009;
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209  Spitzer-Rimon et al., 2022). To ensure that only stem leaves were included in our analysis,
210 we separated the two types (i.e., stem and inflorescence leaves) based on the point where
211 the decrease in the number of leaflets appeared. This point determined the “total node
212 number”, the number of nodes per plant used for further analysis. Total node number
213  varied among individuals. To compare node positions, a relative node number was
214  calculated, which was defined by the node position divided by the total node number for
215  theindividual plant, where zero is at the plant base and one at the last node included in the
216  analysis (Fig. 1). Because of the nature of plant growth, the leaves at the base of the plant
217  were frequently too senesced to be incorporated in the analysis or were entirely lost.
218  Nevertheless, the nodes could still be identified, which allowed them to be taken into

219  account in the calculation of relative node number.

220 Image analysis and landmarking

221  After eliminating damaged and deformed leaves (39), simple leaves (4), leaves with even
222  leaflet numbers (3) and leaves with relative node values above one (57), a total of 358
223 Cannabis leaves were used for image analysis and landmarking. Photoshop was used to
224  separate petioles and leaflets smaller than 1 cm from the rest of the leaf. The leaf outlines
225 were then extracted and saved using Python modules NumPy (Harris et al., 2020),
226  Matplotlib (Hunter, 2007) and OpenCV (Bradski, 2000). The code for extracting and plotting
227  the leaf outlines can be found on GitHub
228  (https://github.com/BalantM/Cannabis_leaf _morpho_updated). The x and y coordinates of
229  blade outlines and landmarks were extracted using Imagel) (Abramoff et al., 2004). The
230 outline was extracted using the wand tool (setting tolerance to 20 and including "smooth if

231  thresholded" option) and the landmarks were placed using the multi-point tool.
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232 Fig. 1 Changes in the leaf shape and leaflet number during the development in nine
233 Cannabis accessions. (a) Median values for all available leaflet number for each relative
234 node number for the nine Cannabis accessions. (b) Changes in leaf shape between different
235  developmental stages in different Cannabis accessions.

236

237 Initially, landmarks were placed at the beginning and end of each leaflet, starting from the
238 lower left side, and continuing to the lower right side of the leaf outline. Subsequently,
239  landmarks were placed in the same order on the tips of the leaflets. The final landmark was
240  positioned at the center of the petiolar junction (Fig. 2, second column). These landmarks

241 delimit the boundaries of the leaflets so that equidistant pseudo-landmarks can later be
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242  placed along the contour. The number of landmarks per leaf ranged from 10 to 28,
243  depending on the leaflet number. The raw data containing the coordinates for leaf outlines
244  and landmarks can be accessed on GitHub

245  (https://github.com/BalantM/Cannabis_leaf _morpho_updated).

6 0 B W8 o Wo T 4 0 5 o
Angle number

/
A
A\
} f
H { ;‘ N
\
Y
00 %0 00 w0
ngle
|
/ ~
[ %
/ }/l
200 250 300 350

247  Fig. 2 The process of modeling theoretical leaves for a leaf with (a) three leaflets from

Zo.
zo
53

246

248  accession AM15, (b) five leaflets from accession IKL, (c) seven leaflets from accession FUT75,
249  and (d) nine leaflets from accession IK. The first column shows the scans of the leaves, which
250 we use to extract the outline and place the landmarks on the tip, start, and end of each
251 leaflet and on the petiolar junction (second column). These coordinates are used to
252  generate 200 equidistant pseudo-landmarks on each side of each leaflet, sharing the
253  landmark on the tip of the leaflet for a total of 399 pseudo-landmarks. These coordinates
254  are then converted into polar coordinates. Each transformed leaflet is defined with 399
255  equidistant pseudo-landmarks, with three landmarks, two at the base and one at the tip.
256  Large points are placed every 25 pseudo-landmarks to emphasize that leaflet outlines are
257  defined by points (third column). Second degree polynomials for angles and for radius from
258  petiolar junction are then fitted through these 399 pseudo-landmarks (fourth column). A
259  modeled theoretical leaf with nine leaflets defined by 3,591 pseudo-landmarks can then be

260 modeled using the collection of 798 polynomial models for each leaf (399 polynomial


https://doi.org/10.1101/2023.08.15.553356
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.15.553356; this version posted March 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Page 11 of 34

261  models for angles and 399 for radius from petiolar junction) (fifth column) and visualized in
262  the cartesian coordinate system (sixth column).

263

264  Reconstruction of the new modeled leaves

265  To analyze leaves with different numbers of leaflets, pseudo-landmarks of each leaflet were
266 modeled as 2" degree polynomial models of angles and radius as functions of leaflet
267  number within a leaf, in order to use the models to construct a modeled theoretical leaf
268  with a desired number of leaflets. The Python code, presented as a Jupyter notebook with
269  detailed description, is available on GitHub
270  (https://github.com/BalantM/Cannabis_leaf _morpho_updated). The x and y coordinates of
271 the leaf outline were first interpolated to create an arbitrarily high number of coordinates to
272  increase resolution of the leaf outline. The coordinates of manually selected landmarks
273  were then compared against the high-resolution coordinates of the leaf outline and the
274  nearest neighboring point of the high-resolution coordinates to each original landmark was
275 identified and specified as the new landmark point. Next, the outline and new landmark
276  coordinates were rotated, translated, and scaled so that the central leaflet had a length of
277  one and pointed in the same direction. The transformed points were then interpolated to
278  generate 200 pseudo-landmarks on each side of each leaflet (from the landmark at the
279  bottom until the tip of the leaflet), sharing the landmark on the tip of the leaflet (i.e., a total
280  of 399 pseudo-landmarks per leaflet). These pseudo-landmarks were then converted to
281  polar coordinates, where each point was defined by a radius and angle relative to the
282  landmark of the petiolar junction and tip of the central leaflet (Fig. 2, third column).

283

284  Using the polar coordinates of each leaflet, 2" degree polynomial models for x (angle) and y
285  (radius from petiolar junction) values were fit through each of the 399 corresponding
286  pseudo-landmarks for each leaflet using the Python scipy.optimize.curve fit function
287  (Virtanen et al., 2020), modeling angle and radius as a function of leaflet number (Fig. 2,
288  fourth column). Using the coefficients for 2" degree polynomial models, we then model
289  each pseudo-landmark as a function of leaflet number to reconstruct the new theoretical
290 leaf with an arbitrary number of leaflets. Meaning that for each leaflet, each of the 399 x
291 and y pseudo-landmarks (i.e., angle and radius from petiolar junction coordinates) was

292  calculated using the 2" degree polynomial function, with coefficients obtained from the


https://doi.org/10.1101/2023.08.15.553356
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.15.553356; this version posted March 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Page 12 of 34

293  previous step, and the newly defined leaflet number (9 in this case). The optimal number of
294  reconstructed leaflets was tested for the best prediction accuracy in Linear discriminant
295 analysis modeling and the highest accuracy was achieved by reconstructing 9 leaflets (Table
296  S1). It is important to note that the reconstructions start with the first real leaflet and end
297  with the last real leaflet. These 9 reconstructed leaflets are then equally divided between
298  these two points.

299  Nine leaflets were reconstructed using the collection of coefficients of 789 2" degree
300 polynomial models for each leaf; the 399 models for angle were used to model theoretical x
301 (i.e., angle) and 399 models for radius were used to model theoretical y (i.e., radius from
302  petiolar junction) pseudo-landmarks as a function of nine leaflets.

303 The coordinates defining the 3,591 pseudo-landmarks for each of the modeled leaves (399
304 pseudo-landmarks for each of the 9 reconstructed leaflets) were then plotted and visually
305 inspected. We detected 17 inaccurately modeled leaves, most likely caused by the position
306 of the petiole landmark compared to the landmark marking the start and end landmarks of
307 the leaflet. A total of 341 Cannabis leaves were then used in the analysis.

308

309 Validation of the leaf modeling approach

310 To validate our modeling approach, we extracted the polar coordinates of the original
311  central leaflets (Fig. 3a) and central leaflets of the modeled leaves (Fig. 3b) and used them in
312  Procrustes analysis using Procrustes function from scipy.spatial module (Virtanen et al.,
313  2020). Procrustes analysis minimizes the distance between all points for a set of
314 landmarks/pseudo-landmarks between two samples through translation, rotation, and
315  scaling, and returns new points of the two sets, superimposed to each other (Fig. 3c). We
316  then calculated the Procrustes distance between the original central leaflet (angle and
317 radius coordinates) to its corresponding modeled reconstruction, a measure of their
318  similarity. The mean distance was calculated and compared to that of simulated
319  bootstrapped mean values by resampling (10,000 resamples) through randomly sorting
320 original leaflet coordinates against coordinates of reconstructed leaflets.

321

322
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323  Morphometric analysis of the central leaflet shape using previously established
324  methodologies

325 The width-to-length ratio (W/L ratio), first described by Anderson (1980), was frequently
326 used to describe the shape of Cannabis leaves or even differentiate between different
327  Cannabis taxa. With previously established morphometric methods, the shape analysis of
328 central leaflets (that all leaves share) would also be possible, using EFDs or pseudo-
329 landmarks approach. To evaluate the effectiveness of these two previous methods for the
330 shape analysis of Cannabis leaves, we first extracted the Cartesian coordinates of central
331 leaflets (Fig. 4a), that were previously scaled, rotated and translated, so that they were all
332 pointing in the same direction and had the length of one. We then interpolated 200 pseudo-
333  landmarks on each side of each leaflet, sharing the landmark on the tip of the leaflet (i.e., a
334  total of 399 pseudo-landmarks per leaflet).

335 To measure the W/L ratio, we calculated width of the leaf (as the leaves were already
336 normalized to length of one), calculating the minimum bounding rectangle. The distribution
337 of widths was then plotted using Python package seaborn.kdeplot. To see if the analyzed
338  accessions differed significantly in their W/L ratios, Kruskal-Wallis test was calculated using
339  stats.kruskal function from the scipy.stats module. To see which of the accessions differ in
340 W/L ratio, we calculated Dunn’s Multiple Comparison Test with scikit_posthocs package in
341  Python (Terpilowski, 2019), using the posthoc_dunn function.

342

343  Linear discriminant analysis (LDA) was applied to model accession, leaflet number, and
344  relative node number as the function of central leaflet coordinate values, using the
345  LinearDiscriminantAnalysis function from the scikit-learn module in Python (Pedregosa et
346  al., 2011). To test the performance of the LDA model, the dataset was divided into two
347  parts. Since most of the analyzed leaves exhibit opposite phyllotaxy, wherein the nodes
348  were represented by two leaves (a and b) in the same developmental phase with the same
349 number of leaflets, the dataset was split into a training dataset (leaf a) comprising 180
350 leaves and a test dataset (leaf b) containing 161 leaves. The predict function from
351  LinearDiscriminantAnalysis in the scikit-learn module was used to predict the accession
352  identity, leaflet number, and relative node number, based on the central leaflet coordinate
353  values. The accuracy of the LDA model was calculated and visualized using the function

354  confusion_matrix from scikit-learn. Spearman Rank Correlation was calculated for true and
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355  predicted results for relative node number with spearmanr function from the scipy.stats
356  module.

357

358  Data analysis of modeled leaves

359 A principal component analysis (PCA) was performed on the coordinates of the modeled
360 leaves using scikit-learn module in Python and proportions of explained variance for each
361  principal component and the cumulative variance was calculated. Points representing the
362 leaves were colored by the accession identity, leaflet number, or relative node number (Fig.
363 5). To see which of the first two PCs explains most of the leaf shape variation for accessions,
364 leaflet number and relative node number, Kruskal-Wallis test was calculated using
365  stats.kruskal function from the scipy.stats module. To visualize an average leaf for each
366 accession, leaflet number, and relative node number, the average coordinate values of
367 modeled leaves were calculated for each of the categories and plotted using the Matplotlib
368 module in Python (Fig. 5).

369

370 To see if the modeled leaves can be used to model accession, leaflet number, and relative
371  node number, we followed the same steps as before for shape analysis of central leaflet.
372  Linear discriminant analysis (LDA) was applied to model accession, leaflet number, and
373  relative node number. The dataset was again split into a training and test dataset to see if
374  we were able to predict accession, leaflet number, and relative node number identity, based
375 on the coordinates of modeled leaves. The same was done on a combined dataset with
376 3990 coordinates, created by concatenating coordinates of modeled leaves and the
377  coordinates of the original central leaflets.

378

379  RESULTS

380

381 Heteroblastic changes in leaflet number along the main axis

382 Over 460 Cannabis sativa leaves were collected, scanned, and their leaflet number
383  recorded. The leaves exhibited a profound heteroblastic juvenile-to-adult progression along
384  the axis, but the changes were not uniform between the accessions (Fig. 1). In the few rare
385  cases where the leaves in the lower nodes were present, the first nodes always started with

386 a simple serrated leaf. The second leaf usually had three leaflets and the most frequent
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387 leaflet number in the third node was five. However, the leaflet number in the nodes above
388  varied dramatically between accessions. The number of nodes before the transition into the
389 inflorescence in each of the plants also varied. We therefore calculated relative node
390 number, a fractional number between 0 at the shoot base to 1 at the inflorescence
391 transition, to compare the node leaves between plants.

392

393  Validation of the leaf modeling approach

394 The modeling approach was validated by calculating the mean Procrustes distance of
395 modeled central leaflet coordinates to original central leaflet coordinates using 10,000
396  bootstrap replicas, assessing resampled means against the actual Procrustes mean value.
397 None of the 10,000 resamples yielded a mean lower than the observed Procrustes value,

398  confirming the robustness of the novel modeling approach (Fig. 3d).

399
Original central leaflet I Procrustes mean
Modeled central leaflet B Resampled means
(a) (c) (d) |
300
250
T 200
¥
(b) 150
100
50
L 001 0.02 0.03 0.04 0.05 0.06
400

401  Fig. 3 Modeling approach validation using Procrustes analysis and bootstrap resampling. The
402  (a) original and (b) modeled central leaflets in polar coordinate system were superimposed
403 (c) and Procrustes distances calculated. (d) The resampled mean was plotted as a
404  distribution (green histogram) against the actual Procrustes mean (grey vertical line).

405

406  Width-to-length (W/L) ratio and central leaflet shape analysis

407  Our results indicate that the width-to-length (W/L) ratio of central leaflets is not able to

408 differentiate well between different Cannabis leaf accessions based on this information
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409 alone (Fig. 4). While the Kruskal-Wallis test did show overall significance between accessions
410 (Table S2), Dunn’s post hoc indicated significance in leaf morphology for just one accession
411  (Table S3). The W/L ratio significantly differs from the rest only for the IK accession,
412  characterized by particularly narrow leaves (Table S3). The Kruskal-Wallis test was also
413  significant for leaflet numbers and relative node numbers (Table S2). Dunn’s post hoc
414  revealed that while we can differentiate between leaflet numbers based on the W/L ratio of

415  central leaflet, we can only separate the lower and higher relative nodes (Table S3).

@) Fig. 4 Analysis of leaf shape

-0.2

using the approach adapted

£ oo from Anderson (1980). (a)
g o
Visualization of the 341 central
0.2 . .
leaflets used in the analysis. W/L
00 02 g -08 -10 ratios plotted by (b) accession,
rrm— - (c) leaflet number and (d)
— AM15
—— BNG H
- relative node number.
— HUl
— |IKL
— IK
MAR
MN9
RO1
(0, 5“ Leaflet number
3
2.01 = 5
—
9?1.5‘ —09
8 1.01
0.5
0.0 =
(d) 1.4 Rel. node number
- 0.2
1.24 0.3
0.4
§1.0- e
£0.81 — 06
[
© 0.6/ AN =107
A — 0.8
0.4 h — 09
0z ¥ ///// ' —28
00 0.6 0.5 ) 0.4 0.3 0.2 0.1 0.0
Central leaflet W/L ratio
436

437 To test whether the outline of the central leaflet can better predict the genetic and

438 developmental identity of Cannabis leaves, we used Linear discriminant analysis (LDA) to
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439 model each factor as a function of 399 pseudo-landmark points defining the shape of
440 central leaflet (Fig. 5a-c). To evaluate model accuracy, accession was treated as a categorical
441 variable, as was leaflet number, as it not only has a small number of levels (3, 5, 7, and 9
442  leaflets), but each level is well separated from the others. To evaluate the accuracy of
443  relative node number, we treated it as a continuous variable, due to a high number of levels
444  (9) that continuously overlap with each other. Models revealed low accuracy, as the
445  accession was correctly determined only in 47.20% (Table 2). The LDA model for the shape
446  of central leaflet showed no overlap for the accessions IK and MN9, but the remaining
447  accessions showed significant overlap (Fig. 5a). The confusion matrix revealed that only two
448  accessions were correctly identified more than half the time (AM15 — 53.13% and IK —
449  71.43% prediction accuracy) (Fig. 5d). The LDA model showed better success when
450 identifying the leaflet number (57.76% overall accuracy) and relative node number, where
451  the true and predicted values show significant, but moderate correlation (rho = 0.629, p <
452  0.0001) (Fig. 5b, c, e, f; Table 2).

453

454  Table 2 Predictive power of genetic and developmental identities using the LDA model on

455  the central leaflet shape.

Correct False Prediction Correlation
p value
prediction [n]  prediction [n] accuracy [%] coefficient [rho]
Accession 76 85 47.20 NA NA
Leaflet number 93 68 57.76 NA NA
Relative node number NA NA NA 0.629 < 0.0001

456
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457

458  Fig. 5 Accession, leaflet number and relative node numbers prediction of Cannabis leaves
459  using the outline of central leaflets. Linear discriminant analysis (LDA) plots for (a) accession,
460 (b) leaflet number and (c) relative node number. In the lower row, the confusion matrices
461  show the true and predicted identities for (d) accessions, (e) leaflet number, and (f) relative
462  node number using the LDA model on the split test and train dataset.

463

464  Principal component analysis on modeled leaves (PCA)

465  Using the outline and landmark coordinates of 341 leaves, we modeled new theoretical
466 leaves, all with nine leaflets. Each leaf is defined by 3,591 pseudo-landmarks, which
467 overcomes the problems associated with variable leaflet numbers and permits dimension
468  reduction using PCA (Fig. 6a-c) and the visualization of average Cannabis leaves (Fig. 6d-f).
469  The first and second PCs account for 85.85% and 7.25% of the shape variation, respectively
470  (Fig. 6a-c). Examining the PC1 and PC2 with Kruskal-Wallis test reveals that that accession,
471  leaflet number and relative node number all vary significantly along the first PC axis. The
472  variation along the PC2 for accession and leaflet number is less pronounced, however still

473  significant, while PC2 values for relative node numbers do not vary significantly (Fig. 6; Table
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474  3). This indicates that the changes in leaf shape between accessions are not independent
475  from developmental variation. That a facet of variation in accession leaf shape covaries with
476  developmental variation across the shoot in leaflet and relative node number suggests a
477  heterochronic mechanism by which accession differences in leaf shape arise from changes
478  in developmental timing, and contrasts with the historical focus on changes in timing arising
479  from plasticity (Goebel, 1908; Ashby, 1948).

480

481 Table 3 Kruskal-Wallis test was used to test the leaf shape variation along PC1 and PC2 for

482  accessions, leaflet number and relative node number.

PC1 PC2
H p value H p value
Accession 112.64 p <0.0001 18.57 p <0.05
Leaflet number 204.36 p <0.0001 10.75 p <0.05
Relative node number 49.73 p <0.0001 2.98 p >0.05

483

484  The average modeled leaf shapes show that the most pronounced change in leaf shape
485 between the accessions and during the development corresponds to narrow vs. wide
486 leaflets that are stereotypical descriptions of sativa vs. indica or wide- vs. narrow- leaflet
487  drug varieties. Furthermore, the leaves with the lower number of leaflets have more acute
488 leaflet tips, that slowly transition into acuminate. Additionally, the outer leaflets in the
489 leaves from lower nodes (and in certain accessions) are longer, compared to the central
490 leaflet, and become shorter higher up (Fig. 6d-e).

491
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Fig. 6 Principal component analysis (PCA) of the accessions performed on modeled leaves
using the 3,591 pseudo-landmarks (a-c). The first PC explains 85.58% and the second 7.25%
of variation. The images on the right show the average modeled leaf shapes for each of the

(d) nine analyzed accessions, (e) leaflet number and (f) relative node number.

LDA and prediction of genetic and developmental identities on modeled leaves

As in the analysis of central leaflet shape before, we used LDA to model accession, leaflet
number and relative node number as a function of all 3,591 pseudo-landmark points
defining the complete modeled leaves (Fig. 7). Accuracy of the model was calculated on the
split dataset, treating accession and leaflet number as categorical and relative node number

as continuous variable. LDA models for both accession and leaflet number were highly
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504 accurate (73.29% and 99.38%, respectively) (Table 4), significantly improving the results
505 obtained by analyzing solely the outline of the central leaflet (Table 2). The model for
506 relative node number is highly accurate as well, as inferred by a highly significant
507 Spearman’s rank correlation coefficient value between actual and predicted values (rho =
508 0.747, p < 0.0001) (Table 4).

509

510 Table 4 Predictive power of genetic and developmental identities using the LDA model on

511 the modeled leaves.

Correct False Prediction Correlation
p value
prediction [n]  prediction [n] accuracy [%] coefficient [rho]
Accession 118 43 73.29 NA NA
Leaflet number 160 1 99.38 NA NA
Relative node number NA NA NA 0.747 < 0.0001

512

513 A confusion matrix reveals that the LDA model in most cases had a high accuracy for
514  predicting accession identity (Fig. 7d; Table 4), much higher, as compared to the accuracy
515 achieved by using only the outline of the central leaflet (Fig. 5d, Table 2). Accessions IK, RO1,
516 and MN9 show practically no overlap in LDA space, while AM15, BNG, FUT75, HU1, IKL and
517 MAR show more overlap (Fig. 7a). The model showed an almost 100% success rate in
518 determining leaflet number, again, much higher than before.

519  Results of both methods revealed that leaves with only 3 leaflets are markedly different
520 from the rest, and the prediction model on theoretical leaves consistently classified them
521  correctly (Fig. 7e). Leaves with 5 to 9 leaflets showed less pronounced differences in shape,
522  resulting in a slightly lower accuracy of the prediction model for these cases. However, an
523 examination of the confusion matrix revealed that misclassifications only occurred once
524  between leaves with neighboring leaflet numbers (7 and 9 leaflets) (Fig. 7e). The marked
525 difference in shape of leaves with 3 leaflets from the rest may suggest that this
526  developmental mechanism is biased towards variation at the base of the shoot. Similar to
527 leaflet number, the confusion matrix for the relative node model reveals high rates of
528  misclassification between the neighboring relative node numbers, as is expected, and leaves

529 from lower nodes were very rarely classified as those from higher nodes (Fig. 5f). A
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530 pronounced change in leaf shape occurs between the relative nodes 0.3 and 0.4, while the
531 shape changes in later relative nodes are more gradual (Fig. 7c).

532
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533

534  Fig. 7 Accession, leaflet number and relative node numbers of Cannabis leaves can be
535 predicted independently of each other using modeled leaves. Linear discriminant analysis
536  (LDA) plots for (a) accession, (b) leaflet number and (c) relative node number. In the lower
537 row, the confusion matrices show the true and predicted identities for (d) accessions, (e)
538 leaflet number, and (f) relative node number using the LDA model on the split test and train
539  dataset.

540

541  Compared to only using the modeled leaves, the accuracy of the LDA model did not improve
542  significantly when using a combined dataset. A confusion matrix revealed that the LDA
543  model (Fig. S1) was slightly less successful in accession identity classification (71.43%) but
544  was higher for leaflet number (100%). The Spearman’s rank correlation coefficient was

545  slightly higher and highly significant (rho = 0.748, p < 0.0001) (Table 5).
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546  Table 5 Predictive power of genetic and developmental identities using the LDA model on a

547  combined dataset.

Correct False Prediction Correlation
p value
prediction [n]  prediction [n] accuracy [%] coefficient [rho]
Accession 115 46 71.43 NA NA
Leaflet number 161 0 100 NA NA
Relative node number NA NA NA 0.787 < 0.0001

548

549  DISCUSSION

550

551  Like grapevines, striking variation in leaf shape (Fig. 1) has historically played a significant
552  role in taxonomic classification of Cannabis. Leaf shape and differences in phyllotaxy were
553  among the characters Lamarck used to describe a new Cannabis species (Lamarck & Poiret,
554  1783). Anderson (1980) introduced a quantitative approach by quantifying the length-to-
555  width ratio of the central leaflet. Further studies using different characters—including plant
556  height, stem diameter, achene shape, and phytochemical profiles—to characterize
557 accessions have only confirmed the importance of leaf characteristics (Small et al., 1976;
558 Hillig, 2005a). The central leaflet width-to-length ratio has been adopted by researchers as
559  one of the main characters for determining species, subspecies, biotypes and chemotypes of
560 Cannabis (Hillig, 2005a; Clarke & Merlin, 2013; McPartland & Small, 2020). However, this
561 method is only able to capture a limited aspect of leaf shape variation, neglecting other
562 important characteristics that we measure in this study, such as leaflet outlines, serrations,
563 angles, and relative changes in leaflet shape across the leaf. By modeling leaflet shape as a
564  function of leaflet number, we model theoretical leaves with the same number of leaflets
565  for which high densities of corresponding pseudo-landmarks capture high resolution shape
566  features (Fig. 2). To validate the modeling approach, we have compared the outline of the
567 original central leaflet and the outline of the modeled theoretical central leaflet. The
568  Procrustes analysis showed that the two leaflets are very similar in shape, and that the
569 modeling is even able to preserve the serration pattern to some degree (Fig. 3c). The
570 modeling approach validated using 10,000 bootstrap replicas confirmed the robustness of
571  the novel modeling approach (Fig. 3d). This method can be applied not only on palmately

572  composed leaves as in Cannabis but is also possible to use on pinnate and lobed leaves. To
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573  demonstrate the proof of concept, we applied the method to a pinnate leaf of Cardamine
574  flexuosa With. and lobate leaf of Quercus macrocarpa Michx. (Fig. 8), showing the method
575 could be applied in other leaf types. However, the method needs to be improved before

576  being applied to other species but shows the possible utility of intra-leaf modeling.

(a)

°
LA oY
.'O
°
oo
[ 2%
@ o
&P
L)

"

Modeled leaflets

(b)

. *-e-o,
Y
r’o"ﬁ

°

00,
P

P

| ™

Transformed lobes

. a
L]
[

ﬂ .: 4 Yo

Modeled lobes

577

578  Fig. 8 Intra-leaf modeling of leaflets and lobes extended to pinnate leaves: Leaves from (a)
579  Cardamine flexuosa and (b) Quercus marcocarpa. Leaflets and lobes are defined by 100
580 equidistant pseudo-landmarks on each side, each defined by three landmarks, two at the
581  base and one at the tip. Large points are placed every 20 pseudo-landmarks to emphasize
582 that leaflet outlines are defined by points. The landmarks defining the base of each leaflet or
583 lobe are aligned to the rachis or midvein and the transformed leaflets and lobes have been
584  oriented parallel to the rachis, as defined by the landmarks at their base. The modeled
585 leaflets and lobes are created from 2" degree polynomial models for each x and y
586  coordinate value for each pseudo-landmark as a function of leaflet or lobe number. From
587 these models, an equivalent number of modeled leaflets or lobes can be reconstructed (in
588 this case, five), permitting morphometric analysis.

589
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590 The method presented in this study can accurately determine accession based on leaf
591 shape, regardless of its developmental stage (Fig. 7a, d). The method not only works
592  effectively on stabilized or cloned cultivar accessions but also on wild or feral accessions
593  cultivated from seed that can exhibit distinct plant phenotypes (Table 1), indicating its
594  robustness and potential value in future germplasm classification. Compared to the low
595 accuracy and prediction ability of the previously known methods (W/L ratio and shape
596 analysis of central leaflets), the newly proposed method demonstrates significantly
597  improved results (Table 2, 4, S2, $3). The combined dataset of both, data for modeled leaves
598 and outline of the central leaflet, did not return significantly better results, further
599  confirming the effectiveness of the new modelling approach.

600

601  When observing the shape changes between averaged leaves for accessions and between
602 developmental stages, the most obvious are changes in leaflet widths, similar to
603  stereotypical classifications of sativa and indica plants or wide- vs. narrow- leaflet drug
604  varieties. However, other important changes in shape occur, such as transition from acute
605 to acuminate leaflet tip and changes in the relative length of outer most leaflets compared
606 to the central leaflet, that previous methods could not successfully capture (Fig. 6d-f). The
607 reliance on the non-quantitative leaf shape descriptors in previous methods has led to
608 numerous cultivars with unreliable names, inconsistent genetic origins, and phytochemical
609 profiles (Sawler et al., 2015; Schwabe & McGlaughlin, 2019; Jin et al., 2021a; Watts et al.,
610  2021). For example, Jin et al. (2021b) conducted a study on clones of 21 cultivars and found
611 a strong negative correlation between the width and length ratios of central leaflets and
612 CBD, and a positive correlation with THC; however, Vergara et al. (2021) and Murovec et al.
613 (2022) were unable to confirm these findings. All three studies used low-resolution
614  morphometric approaches. Sex of the plants also plays a crucial role in the cannabis
615 industry, where the presence of male plants and inevitable pollination leads to decreases in
616  cannabinoid production as plants shift the use of energy into seed development. Several
617 methods have been employed to differentiate between male and female plants at early
618  stages, but only genetic methods were successful so far (Toth et al., 2020; Prentout et al.,
619  2020; Campbell et al., 2021; Balant et al., 2022; Torres et al., 2022). Our results quantify the
620 variation in leaf shape between accessions that can potentially be used to classify accessions

621 and predict chemical profiles and plant sex faster and more accurately.
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622

623  Unlike grapevine, where developmental variance is orthogonal and separate from genetic
624  variance, in Cannabis these two factors are correlated. That the developmental source of
625 variation is colinear with accession identity suggests that part of the differences between
626  accession leaf shape is explained by shifts in developmental timing, or heterochrony.

627 Cannabis plants demonstrate extreme phenotypic plasticity depending on the
628  environmental conditions in which they grows (Small, 2015). Some Cannabis accessions are
629 photoperiod dependent and can remain in vegetative phase for longer periods of time
630 under long-day conditions (typically 18h darkness and 6h light), until the transition to short-
631 day (12h of darkness and 12h of light) induces the formation of the apical inflorescence.
632  Previous investigations showed that other morphological changes, such as decrease in leaf
633 area, number of leaflets per leaf and serration number, occur after the change in the
634  environmental conditions one or two nodes after (Heslop-Harrison & Heslop-Harrison, 1958;
635 Hesami et al., 2023). However, differences, especially in flowering time and growth rates
636 between cultivars have been observed before (de Meijer & Keizer, 1996; Hillig, 2005a;
637  Spitzer-Rimon et al., 2019; Carlson et al., 2021; Naim-Feil et al., 2021; Stack et al., 2021;
638 Chen et al., 2022) and differences in cannabinoid profiles, leaflet index and phenological
639 development were proposed as characteristics to discriminate between them (de Meijer &
640 Keizer, 1996). Heterochronic shifts are apparent in the differential rates in which accessions
641 increase leaflet number across nodes, as well as maximum and average leaflet counts across
642  accessions (Fig. 1). Remarkably, stages in developmental timing are conserved despite being
643  shifted. For example, a significant shape change exhibited between the leaves with 3 and
644 leaves with 5 leaflets, with leaflets becoming more acuminate and narrower. In contrast,
645 changes in shape between leaves with a higher number of leaflets were more gradual.
646  Additionally, we observed a similar shift in leaf shape between the nodes 0.3 and 0.4,
647 potentially indicating a transition between the juvenile and adult phases of leaf
648  development. Similar results were obtained in previous research. Spitzer-Rimon et al. (2022)
649  demonstrated that flowering buds were initiated at node 7, while Moliterni et al. (2004)
650 analyzing a different cultivar, found developing flower buds in the 4th node, suggesting that
651  transitions in growth phases are conserved but not synchronized across cultivars. Due to the

652  differences in developmental timing between accessions, the use of continuous models
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653 along the shoot could further improve the success predicting accession identity, as was the
654  case in grapevine (Bryson et al., 2020).

655  Conclusions

656 In grapevine, leaf shape has long been utilized for variety identification. However, in the
657 case of Cannabis, previous attempts were hindered by the variability in leaflet numbers. In
658  this study, we present a pioneering method that successfully addresses this issue. By
659  generating theoretical leaves with customizable leaflet counts, we can now employ high-
660 resolution morphometric techniques to accurately classify different wild/feral and cultivated
661  Cannabis accessions. Through the use of 3,591 densely placed pseudo-landmarks, we were
662  able to predict the accession identity with almost 74% accuracy. The method works well not
663  only on stabilized cultivars, but also on phenotypically more variable wild/feral accessions
664 grown from seed. Unifying the number of leaflets allowed us, for the first time, to make
665 comparisons among several leaves along the main axis, enabling us to investigate
666 developmental changes in leaf shape and detect heterochronic mechanisms influencing the
667 leaf shape in Cannabis. The implications of this new high-resolution method in both the
668  cannabis industry and research extend beyond its role in determining Cannabis accessions.
669 It also offers a promising tool for developmental studies, and for studying the correlation
670 between leaf shape and phytochemical profiles and the sex of the plants, where lower-
671  resolution methods provided inconclusive results so far. The method presented here offers
672  a fast, effective, robust, and low-cost tool that can aid the future classification of Cannabis
673  germplasm. Furthermore, the use of this methodology extends beyond Cannabis, and can
674  be applied to numerous other plant species with palmate, pinnate, and lobate leaves with
675  varying numbers of lobes and leaflets where the use of geometric morphometrics methods
676  was not previously possible to this extent.
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