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Summary  23 

● The iconic, palmately compound leaves of Cannabis have attracted significant 24 

attention in the past. However, investigations into the genetic basis of leaf shape or 25 

its connections to phytochemical composition have yielded inconclusive results. This 26 

is partly due to prominent changes in leaflet number within a single plant during 27 

development, which has so far prevented the proper use of common morphometric 28 

techniques. 29 

● Here we present a new method that overcomes the challenge of nonhomologous 30 

landmarks in palmate, pinnate and lobed leaves, using Cannabis as an example. We 31 
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model corresponding pseudo-landmarks for each leaflet as angle-radius coordinates 32 

and model them as a function of leaflet to create continuous polynomial models, 33 

bypassing the problems associated with variable number of leaflets between leaves.  34 

● We analyze 341 leaves from 24 individuals from nine Cannabis accessions. Using 35 

3,591 pseudo-landmarks in modeled leaves, we accurately predict accession identity, 36 

leaflet number, and relative node number. 37 

● Intra-leaf modeling offers a rapid, cost-effective means of identifying Cannabis 38 

accessions, making it a valuable tool for future taxonomic studies, cultivar 39 

recognition, and possibly chemical content analysis and sex identification, in addition 40 

to permitting the morphometric analysis of leaves in any species with variable 41 

numbers of leaflets or lobes. 42 

 43 

Key words: Cannabis, development, geometric morphometrics, intra-leaf modeling, leaf 44 

morphology, leaf shape 45 

 46 

INTRODUCTION 47 

 48 

Cannabis sativa L. (hereafter referred to as Cannabis) is a versatile crop plant used by 49 

humans for a variety of purposes throughout history. Although today it is commonly 50 

associated with its psychoactive properties, traditional medicine has relied heavily on 51 

Cannabis, and it is also a valuable source of food and fibers (Clarke & Merlin, 2013). Genetic 52 

and archaeological evidence suggests that Cannabis was domesticated around 12,000 years 53 

ago in East Asia, initially serving as a multipurpose crop before separate selections for fiber 54 

and drug production emerged around 4,000 years ago (Ren et al., 2021). Since then, 55 

widespread cultivation has facilitated its global distribution. Throughout the 20th century, 56 

Cannabis use was largely abandoned due to its illegal status in many parts of the world. 57 

However, recent legalization for recreational and/or medicinal purposes in many countries 58 

worldwide has led to a surge in the cannabis industry (The Global Cannabis Report, 3rd 59 

Edition, 2022).  60 

 61 

Extensive Cannabis use has resulted in the development of numerous cultivars and strains 62 

that are well-suited to diverse uses and climates (Small, 2015). This significant 63 
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morphological and phytochemical diversity within the Cannabis genus poses challenges for 64 

taxonomic classification. Over the past two centuries, various taxonomic approaches based 65 

on genetics, morphology, and phytochemistry have been proposed (McPartland & Small, 66 

2020). Some scientists advocated for a polytypic classification, recognizing the presence of 67 

two (Lamarck & Poiret, 1783; Zhukovskii, 1971; Hillig, 2005a) or three (Emboden, 1974; 68 

Schultes et al., 1974; Hillig, 2005b; Clarke & Merlin, 2013) species with multiple subspecies, 69 

while others argued for a monotypic genus, considering only a single species, Cannabis 70 

sativa (Small & Cronquist, 1976; Sawler et al., 2015; Small, 2015; McPartland, 2018; 71 

McPartland & Small, 2020; Ren et al., 2021). Hillig (2005a) introduced a classification system 72 

based on biotypes, considering molecular, morphological, and phytochemical data. He 73 

proposed dividing Cannabis into two species, C. sativa and C. indica Lam., and six biotypes: 74 

C. indica as narrow-leaflet drug (NLD), wide-leaflet drug (WLD), hemp and feral biotype, and 75 

C. sativa as hemp and feral biotype. Recently, Lapierre et al. (2023) conducted a 76 

comprehensive taxonomic review of the Cannabis genus and based on available genetic 77 

data, strongly supported the theory that Cannabis is a highly diverse monotypic species. 78 

 79 

Apart from taxonomic classification, Cannabis is often categorized based on its cultivation 80 

purpose, morphology, and chemical composition. Fiber-type plants, commonly known as 81 

hemp, are primarily grown for fiber and seed production. These plants contain less than 82 

0.3% of the psychoactive compound THC (∆9-tetrahydrocannabinol), while drug-type plants, 83 

often referred to as marijuana and medicinal cannabis, can contain higher levels of THC 84 

(Hurgobin et al., 2021). Cannabis plants can also be separated based on the ratio of two 85 

major cannabinoids THC and CBD (cannabidiol) into Type I (THC dominant), Type II 86 

(balanced CBD/THC ratio), and Type III plants (CBD dominant) (Small & Beckstead, 1973). In 87 

the medicinal and recreational cannabis industries plants are normally categorized as 88 

‘sativa’, ‘indica’, or ‘hybrid’. Taller plants with narrow leaflets and high THC percentage are 89 

called ‘sativa’, while shorter and bushier plants with wider leaflets and high percentages of 90 

both CBD and THC are called ‘indica’. Plants with intermediate characters are called 91 

‘hybrids’ (McPartland & Guy, 2017). While the classification of Cannabis into ‘indica’ and 92 

‘sativa’ is not supported by genetic data, the visible differences in leaflet width have long 93 

been a significant characteristic used to visually discriminate different types of Cannabis.  94 

 95 
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Cannabis arguably possesses one of the most iconic leaves among all plants. Its palmately 96 

compound leaves with a varying number of leaflets are a popular culture symbol. Cannabis 97 

exhibits a remarkable degree of phenotypic plasticity, further accentuated by selection 98 

pressure during the domestication process (Small, 2015). Extensive variability in leaf 99 

morphology has already been described by Quimby et al. (1973) and later Anderson (1980), 100 

who was the first to quantify the width, length, and ratio of the central leaflet. This or 101 

similar methods were then commonly used in studies investigating the morphological 102 

characteristics of Cannabis species, subspecies, cultivars, biotypes and chemotypes (Small et 103 

al., 1976; de Meijer et al., 1992; de Meijer & Keizer, 1996; Hillig, 2005a; Clarke & Merlin, 104 

2013; Lynch et al., 2016; Karlov et al., 2017; Parsons et al., 2019; McPartland & Small, 2020; 105 

Carlson et al., 2021; Islam et al., 2021; Jin et al., 2021a; Vergara et al., 2021; Buzna & Sala, 106 

2022; Chen et al., 2022; Murovec et al., 2022), often with contradictory results. Leaf shape 107 

has therefore played an important and sometimes controversial role in Cannabis taxonomy. 108 

While researchers in previous Cannabis studies were aware of enormous plasticity and the 109 

effect the environment has on leaf shape (Vergara et al., 2021; Murovec et al., 2022), they 110 

very rarely paid attention to the effects of developmental processes, even though 111 

heteroblastic changes (differences in leaf shape arising from juvenile-to-adult phase 112 

transitions in the meristem) profoundly affect the arrangement and shape of Cannabis 113 

leaves along the shoot. While some studies briefly mention the developmental changes of 114 

leaves (Hillig, 2005a; Carlson et al., 2021; Jin et al., 2021b; Spitzer-Rimon et al., 2022), the 115 

only two studies focusing on heteroblastic phase changes in leaves along the plant axis were 116 

done by Heslop-Harrison and Heslop-Harrison (1958) and Hesami et al. (2023). In the lower 117 

part of the shoot Cannabis leaves exhibit opposite phyllotaxy and one to three leaflets, 118 

transitioning to alternate phyllotaxy and leaves with up to 11 or 13 leaflets in the upper 119 

section (Hillig, 2005a; Clarke & Merlin, 2013; Small, 2015). Additionally, the changes in 120 

leaflet number are not uniform between different Cannabis accessions (Hillig, 2005a). These 121 

changes during development not only complicate categorization of plant accessions based 122 

on leaf shape, but also prevent the use of morphometric techniques. 123 

 124 

Morphometrics is the quantitative analysis of shape. It includes a wide range of methods, 125 

from measuring allometric differences in dimensions like lengths, widths, and angles in 126 

relation to size (Niklas, 1994), to geometric techniques that measure shape 127 
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comprehensively, like elliptical Fourier (EFDs; Kuhl & Giardina, 1982) and landmark-based 128 

analyses (Bookstein, 1997). It can be used to classify species and to separate effects on 129 

shape arising from genetic, developmental, and environmental mechanisms (Chitwood & 130 

Sinha, 2016). Historically the field of ampelography (ἄμπελος, ‘vine’ + γράφος, ‘writing’; 131 

Ravaz, 1902; Galet, 1952; Galet & trans. Morton, 1979) relied heavily on leaf shape to 132 

distinguish grapevine varieties. Unlike Cannabis, grapevine leaves have a consistent number 133 

of lobes, sinuses, and other associated homologous points that can be used for both 134 

landmark-based and EFD morphometric analysis (Chitwood et al., 2014; Chitwood, 2021) to 135 

disentangle genetic (Demmings et al., 2019), developmental (Chitwood et al., 2016a; Bryson 136 

et al., 2020; Migicovsky et al., 2022), and environmental effects (Chitwood et al., 2016b, 137 

2021) embedded in leaf shapes.  138 

The variable number of leaflets in Cannabis (and several other species with lobed, pinnate 139 

and palmate compound leaves) precludes analysis methods that rely on homologous, 140 

comparable points to measure shape comprehensively. Methods to automatically isolate 141 

individual leaflets (Failmezger et al., 2018) or to model developmental trajectories, such as 142 

heteroblastic series (Biot et al., 2016) were proposed previously for morphometrical analysis 143 

in such cases. In Cannabis, Vergara et al. (2021) used a landmark-based approach but were 144 

limited to analyzing the central and two most distal leaflets on each side, features that all 145 

Cannabis leaves except single-leaflet leaves possess, but which excludes most of the shape 146 

variation within a leaf. 147 

 148 

Here, we seek to build on these works and conceptually extend our framework of 149 

continuously modeling leaflets within a palmate leaf. We model corresponding pseudo-150 

landmarks for each leaflet as angle-radius coordinates relative to the petiolar junction and 151 

model angle and radius as a function of leaflet number to create continuous polynomial 152 

models that bypass the problems associated with variable numbers of leaflets between 153 

leaves. This enabled us to compare leaves with different numbers of leaflets within a plant 154 

and to discern differences between genotypes rather than the heteroblastic series. 155 

Analyzing over 300 Cannabis leaves, we model theoretical leaves with nine leaflets and 156 

3,591 comparable pseudo-landmarks. Linear discriminant analysis (LDA) predicts accession, 157 

leaflet number, and relative node number with high accuracy. Intra-leaf modeling allows the 158 

application of morphometric techniques to comprehensively measure leaf shape in 159 
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Cannabis, enabling future taxonomic and developmental studies, cultivar recognition, and 160 

possibly chemical content analysis and sex identification, in addition to permitting the 161 

morphometric analysis of leaves in any species with variable numbers of leaflets or lobes. 162 

 163 

MATERIAL AND METHODS 164 

 165 

Plant material and growing conditions   166 

This study includes 24 individuals from nine accessions of Cannabis sativa L. (Table 1; Fig. 1), 167 

encompassing both wild/feral accessions and cultivated varieties with a wide distribution 168 

area. The plants were grown from seeds in a growth chamber (Fitoclima D1200PLL, Aralab, 169 

Portugal) to minimize the influence of the environment. Before sowing, the seeds were 170 

sterilized overnight in a 5% H2O2 solution with the addition of Inex-A solution (Cosmocel, 171 

Spain) at room temperature. Sterilized seeds were then transferred to Petri dishes and 172 

placed in the growth chamber for germination. Once the first leaves emerged, the seedlings 173 

were transferred to small peat pots with a pre-fertilized soil substrate (Kilomix Atami, 174 

Spain). During this phase, the environmental conditions were set to 25°C, with an 18-hour 175 

day and 6-hour night photoperiod, and a light intensity of 50 µmol m−2s−1 (Philips Master PL-176 

L 55W, Spain). After two weeks the surviving plants were transplanted to 3.5 l pots with the 177 

same soil substrate. The light intensity was gradually increased to 300 µmol m−2s−1 over the 178 

following week, without changing the photoperiod and temperature. The onset of flowering 179 

in some Cannabis accessions is photoperiod dependent, therefore after four weeks, the 180 

photoperiod was changed to 12 hours of daylight and 12 hours of darkness, and the light 181 

intensity was gradually increased to 700 µmol m−2s−1 over the following week, while keeping 182 

the temperature at 25°C. The plants remained in these environmental conditions until the 183 

flowering stage. Plants received daily irrigation with tap water, without any application of 184 

nutrient or phytosanitary control. 185 

 186 

  187 
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Table 1 Accession details and number of leaves collected and analyzed in the study. 188 

Accession 

ID 

Accession 

type 
Location/Cultivar name 

Number of 

individuals 

Number of 

leaves 

collected 

Number of 

leaves 

analyzed 

AM15 Wild/feral Armenia, Sjunik marz, Goris town 5 90 74 

BNG Wild/feral Bangladesh, Rangpur, Carmichael College Campus 1 14 10 

FUT75 Cultivar Futura 75 2 45 30 

HU1 Wild/feral Hungary, Nyírvasvári 4 83 68 

IK Landrace India, Kerala 4 92 53 

IKL Landrace India, Kullu 4 69 47 

MAR Landrace Morocco, North Morocco 1 18 15 

MN9 Wild/feral Mongolia, Selenge aimag, Baruunburen sum 1 14 10 

RO1 Wild/feral Romania, Mangalija 2 36 34 

 189 

Leaf sampling and imaging 190 

A total of 461 leaves were sampled during the flowering stage, with the exception of 191 

individuals from the accession IK, which did not begin to flower during the two-month 192 

cultivation period. Leaves along the main axis of the plants were collected and immediately 193 

scanned using a flatbed photograph scanner (Epson Perfection V370, Japan) at 1200 dpi 194 

resolution. A piece of velvet fabric was placed between the leaf and the scanner cover to 195 

avoid any shadows. No adjustments to the angle of individual leaflets were made before 196 

scanning. Each leaf was scanned with a scale and a label indicating the node it originated 197 

from, followed by a sequential lowercase letter, since typically two leaves are present per 198 

node. Starting at the base of the plant, the first two leaves were labeled as leaves "a" and 199 

"b" from node number 1, and so on, until the shoot apex.  200 

Cannabis leaves display a marked heteroblastic, or juvenile-to-adult, leaf shape progression. 201 

Mature, juvenile leaves located on the first node at the base of the plant usually have a 202 

simple, serrated leaf. As node number increases so does the leaflet number, reaching a 203 

maximum of 9 to 13 leaflets in young, adult leaves at the growing tip. Eventually leaves 204 

transition into an inflorescence type. During this transition, the number of leaflets per leaf 205 

starts to decrease again until the top of the inflorescence. Leaves at the shoot base have 206 

opposite phyllotaxy and transition to alternate phyllotaxy in the upper section on the stem 207 

and inflorescence (Heslop-Harrison & Heslop-Harrison, 1958; Hillig, 2004; Potter, 2009; 208 
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Spitzer-Rimon et al., 2022). To ensure that only stem leaves were included in our analysis, 209 

we separated the two types (i.e., stem and inflorescence leaves) based on the point where 210 

the decrease in the number of leaflets appeared. This point determined the “total node 211 

number”, the number of nodes per plant used for further analysis. Total node number 212 

varied among individuals. To compare node positions, a relative node number was 213 

calculated, which was defined by the node position divided by the total node number for 214 

the individual plant, where zero is at the plant base and one at the last node included in the 215 

analysis (Fig. 1). Because of the nature of plant growth, the leaves at the base of the plant 216 

were frequently too senesced to be incorporated in the analysis or were entirely lost. 217 

Nevertheless, the nodes could still be identified, which allowed them to be taken into 218 

account in the calculation of relative node number. 219 

Image analysis and landmarking  220 

After eliminating damaged and deformed leaves (39), simple leaves (4), leaves with even 221 

leaflet numbers (3) and leaves with relative node values above one (57), a total of 358 222 

Cannabis leaves were used for image analysis and landmarking. Photoshop was used to 223 

separate petioles and leaflets smaller than 1 cm from the rest of the leaf. The leaf outlines 224 

were then extracted and saved using Python modules NumPy (Harris et al., 2020), 225 

Matplotlib (Hunter, 2007) and OpenCV (Bradski, 2000). The code for extracting and plotting 226 

the leaf outlines can be found on GitHub 227 

(https://github.com/BalantM/Cannabis_leaf_morpho_updated). The x and y coordinates of 228 

blade outlines and landmarks were extracted using ImageJ (Abràmoff et al., 2004). The 229 

outline was extracted using the wand tool (setting tolerance to 20 and including "smooth if 230 

thresholded" option) and the landmarks were placed using the multi-point tool.  231 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2024. ; https://doi.org/10.1101/2023.08.15.553356doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553356
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 9 of 34 
 

Fig. 1 Changes in the leaf shape and leaflet number during the development in nine 232 

Cannabis accessions. (a) Median values for all available leaflet number for each relative 233 

node number for the nine Cannabis accessions. (b) Changes in leaf shape between different 234 

developmental stages in different Cannabis accessions.  235 

 236 

Initially, landmarks were placed at the beginning and end of each leaflet, starting from the 237 

lower left side, and continuing to the lower right side of the leaf outline. Subsequently, 238 

landmarks were placed in the same order on the tips of the leaflets. The final landmark was 239 

positioned at the center of the petiolar junction (Fig. 2, second column). These landmarks 240 

delimit the boundaries of the leaflets so that equidistant pseudo-landmarks can later be 241 
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placed along the contour. The number of landmarks per leaf ranged from 10 to 28, 242 

depending on the leaflet number. The raw data containing the coordinates for leaf outlines 243 

and landmarks can be accessed on GitHub 244 

(https://github.com/BalantM/Cannabis_leaf_morpho_updated).  245 

 246 

Fig. 2 The process of modeling theoretical leaves for a leaf with (a) three leaflets from 247 

accession AM15, (b) five leaflets from accession IKL, (c) seven leaflets from accession FUT75, 248 

and (d) nine leaflets from accession IK. The first column shows the scans of the leaves, which 249 

we use to extract the outline and place the landmarks on the tip, start, and end of each 250 

leaflet and on the petiolar junction (second column). These coordinates are used to 251 

generate 200 equidistant pseudo-landmarks on each side of each leaflet, sharing the 252 

landmark on the tip of the leaflet for a total of 399 pseudo-landmarks. These coordinates 253 

are then converted into polar coordinates. Each transformed leaflet is defined with 399 254 

equidistant pseudo-landmarks, with three landmarks, two at the base and one at the tip. 255 

Large points are placed every 25 pseudo-landmarks to emphasize that leaflet outlines are 256 

defined by points (third column). Second degree polynomials for angles and for radius from 257 

petiolar junction are then fitted through these 399 pseudo-landmarks (fourth column). A 258 

modeled theoretical leaf with nine leaflets defined by 3,591 pseudo-landmarks can then be 259 

modeled using the collection of 798 polynomial models for each leaf (399 polynomial 260 
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models for angles and 399 for radius from petiolar junction) (fifth column) and visualized in 261 

the cartesian coordinate system (sixth column).  262 

 263 

Reconstruction of the new modeled leaves 264 

To analyze leaves with different numbers of leaflets, pseudo-landmarks of each leaflet were 265 

modeled as 2nd degree polynomial models of angles and radius as functions of leaflet 266 

number within a leaf, in order to use the models to construct a modeled theoretical leaf 267 

with a desired number of leaflets. The Python code, presented as a Jupyter notebook with 268 

detailed description, is available on GitHub 269 

(https://github.com/BalantM/Cannabis_leaf_morpho_updated). The x and y coordinates of 270 

the leaf outline were first interpolated to create an arbitrarily high number of coordinates to 271 

increase resolution of the leaf outline. The coordinates of manually selected landmarks 272 

were then compared against the high-resolution coordinates of the leaf outline and the 273 

nearest neighboring point of the high-resolution coordinates to each original landmark was 274 

identified and specified as the new landmark point. Next, the outline and new landmark 275 

coordinates were rotated, translated, and scaled so that the central leaflet had a length of 276 

one and pointed in the same direction. The transformed points were then interpolated to 277 

generate 200 pseudo-landmarks on each side of each leaflet (from the landmark at the 278 

bottom until the tip of the leaflet), sharing the landmark on the tip of the leaflet (i.e., a total 279 

of 399 pseudo-landmarks per leaflet). These pseudo-landmarks were then converted to 280 

polar coordinates, where each point was defined by a radius and angle relative to the 281 

landmark of the petiolar junction and tip of the central leaflet (Fig. 2, third column). 282 

 283 

Using the polar coordinates of each leaflet, 2nd degree polynomial models for x (angle) and y 284 

(radius from petiolar junction) values were fit through each of the 399 corresponding 285 

pseudo-landmarks for each leaflet using the Python scipy.optimize.curve_fit function 286 

(Virtanen et al., 2020), modeling angle and radius as a function of leaflet number (Fig. 2, 287 

fourth column). Using the coefficients for 2nd degree polynomial models, we then model 288 

each pseudo-landmark as a function of leaflet number to reconstruct the new theoretical 289 

leaf with an arbitrary number of leaflets. Meaning that for each leaflet, each of the 399 x 290 

and y pseudo-landmarks (i.e., angle and radius from petiolar junction coordinates) was 291 

calculated using the 2nd degree polynomial function, with coefficients obtained from the 292 
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previous step, and the newly defined leaflet number (9 in this case). The optimal number of 293 

reconstructed leaflets was tested for the best prediction accuracy in Linear discriminant 294 

analysis modeling and the highest accuracy was achieved by reconstructing 9 leaflets (Table 295 

S1). It is important to note that the reconstructions start with the first real leaflet and end 296 

with the last real leaflet. These 9 reconstructed leaflets are then equally divided between 297 

these two points. 298 

Nine leaflets were reconstructed using the collection of coefficients of 789 2nd degree 299 

polynomial models for each leaf; the 399 models for angle were used to model theoretical x 300 

(i.e., angle) and 399 models for radius were used to model theoretical y (i.e., radius from 301 

petiolar junction) pseudo-landmarks as a function of nine leaflets. 302 

The coordinates defining the 3,591 pseudo-landmarks for each of the modeled leaves (399 303 

pseudo-landmarks for each of the 9 reconstructed leaflets) were then plotted and visually 304 

inspected. We detected 17 inaccurately modeled leaves, most likely caused by the position 305 

of the petiole landmark compared to the landmark marking the start and end landmarks of 306 

the leaflet. A total of 341 Cannabis leaves were then used in the analysis.   307 

 308 

Validation of the leaf modeling approach 309 

To validate our modeling approach, we extracted the polar coordinates of the original 310 

central leaflets (Fig. 3a) and central leaflets of the modeled leaves (Fig. 3b) and used them in 311 

Procrustes analysis using Procrustes function from scipy.spatial module (Virtanen et al., 312 

2020). Procrustes analysis minimizes the distance between all points for a set of 313 

landmarks/pseudo-landmarks between two samples through translation, rotation, and 314 

scaling, and returns new points of the two sets, superimposed to each other (Fig. 3c). We 315 

then calculated the Procrustes distance between the original central leaflet (angle and 316 

radius coordinates) to its corresponding modeled reconstruction, a measure of their 317 

similarity. The mean distance was calculated and compared to that of simulated 318 

bootstrapped mean values by resampling (10,000 resamples) through randomly sorting 319 

original leaflet coordinates against coordinates of reconstructed leaflets.  320 

 321 

  322 
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Morphometric analysis of the central leaflet shape using previously established 323 

methodologies 324 

The width-to-length ratio (W/L ratio), first described by Anderson (1980), was frequently 325 

used to describe the shape of Cannabis leaves or even differentiate between different 326 

Cannabis taxa. With previously established morphometric methods, the shape analysis of 327 

central leaflets (that all leaves share) would also be possible, using EFDs or pseudo-328 

landmarks approach. To evaluate the effectiveness of these two previous methods for the 329 

shape analysis of Cannabis leaves, we first extracted the Cartesian coordinates of central 330 

leaflets (Fig. 4a), that were previously scaled, rotated and translated, so that they were all 331 

pointing in the same direction and had the length of one. We then interpolated 200 pseudo-332 

landmarks on each side of each leaflet, sharing the landmark on the tip of the leaflet (i.e., a 333 

total of 399 pseudo-landmarks per leaflet).  334 

To measure the W/L ratio, we calculated width of the leaf (as the leaves were already 335 

normalized to length of one), calculating the minimum bounding rectangle. The distribution 336 

of widths was then plotted using Python package seaborn.kdeplot. To see if the analyzed 337 

accessions differed significantly in their W/L ratios, Kruskal-Wallis test was calculated using 338 

stats.kruskal function from the scipy.stats module. To see which of the accessions differ in 339 

W/L ratio, we calculated Dunn’s Multiple Comparison Test with scikit_posthocs package in 340 

Python (Terpilowski, 2019), using the posthoc_dunn function.  341 

 342 

Linear discriminant analysis (LDA) was applied to model accession, leaflet number, and 343 

relative node number as the function of central leaflet coordinate values, using the 344 

LinearDiscriminantAnalysis function from the scikit-learn module in Python (Pedregosa et 345 

al., 2011). To test the performance of the LDA model, the dataset was divided into two 346 

parts. Since most of the analyzed leaves exhibit opposite phyllotaxy, wherein the nodes 347 

were represented by two leaves (a and b) in the same developmental phase with the same 348 

number of leaflets, the dataset was split into a training dataset (leaf a) comprising 180 349 

leaves and a test dataset (leaf b) containing 161 leaves. The predict function from 350 

LinearDiscriminantAnalysis in the scikit-learn module was used to predict the accession 351 

identity, leaflet number, and relative node number, based on the central leaflet coordinate 352 

values. The accuracy of the LDA model was calculated and visualized using the function 353 

confusion_matrix from scikit-learn. Spearman Rank Correlation was calculated for true and 354 
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predicted results for relative node number with spearmanr function from the scipy.stats 355 

module. 356 

 357 

Data analysis of modeled leaves 358 

A principal component analysis (PCA) was performed on the coordinates of the modeled 359 

leaves using scikit-learn module in Python and proportions of explained variance for each 360 

principal component and the cumulative variance was calculated. Points representing the 361 

leaves were colored by the accession identity, leaflet number, or relative node number (Fig. 362 

5). To see which of the first two PCs explains most of the leaf shape variation for accessions, 363 

leaflet number and relative node number, Kruskal-Wallis test was calculated using 364 

stats.kruskal function from the scipy.stats module. To visualize an average leaf for each 365 

accession, leaflet number, and relative node number, the average coordinate values of 366 

modeled leaves were calculated for each of the categories and plotted using the Matplotlib 367 

module in Python (Fig. 5).  368 

 369 

To see if the modeled leaves can be used to model accession, leaflet number, and relative 370 

node number, we followed the same steps as before for shape analysis of central leaflet. 371 

Linear discriminant analysis (LDA) was applied to model accession, leaflet number, and 372 

relative node number. The dataset was again split into a training and test dataset to see if 373 

we were able to predict accession, leaflet number, and relative node number identity, based 374 

on the coordinates of modeled leaves. The same was done on a combined dataset with 375 

3990 coordinates, created by concatenating coordinates of modeled leaves and the 376 

coordinates of the original central leaflets. 377 

 378 

RESULTS   379 

 380 

Heteroblastic changes in leaflet number along the main axis 381 

Over 460 Cannabis sativa leaves were collected, scanned, and their leaflet number 382 

recorded. The leaves exhibited a profound heteroblastic juvenile-to-adult progression along 383 

the axis, but the changes were not uniform between the accessions (Fig. 1). In the few rare 384 

cases where the leaves in the lower nodes were present, the first nodes always started with 385 

a simple serrated leaf. The second leaf usually had three leaflets and the most frequent 386 
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leaflet number in the third node was five. However, the leaflet number in the nodes above 387 

varied dramatically between accessions. The number of nodes before the transition into the 388 

inflorescence in each of the plants also varied. We therefore calculated relative node 389 

number, a fractional number between 0 at the shoot base to 1 at the inflorescence 390 

transition, to compare the node leaves between plants.  391 

 392 

Validation of the leaf modeling approach 393 

The modeling approach was validated by calculating the mean Procrustes distance of 394 

modeled central leaflet coordinates to original central leaflet coordinates using 10,000 395 

bootstrap replicas, assessing resampled means against the actual Procrustes mean value. 396 

None of the 10,000 resamples yielded a mean lower than the observed Procrustes value, 397 

confirming the robustness of the novel modeling approach (Fig. 3d). 398 

 399 

 400 

Fig. 3 Modeling approach validation using Procrustes analysis and bootstrap resampling. The 401 

(a) original and (b) modeled central leaflets in polar coordinate system were superimposed 402 

(c) and Procrustes distances calculated. (d) The resampled mean was plotted as a 403 

distribution (green histogram) against the actual Procrustes mean (grey vertical line). 404 

 405 

Width-to-length (W/L) ratio and central leaflet shape analysis 406 

Our results indicate that the width-to-length (W/L) ratio of central leaflets is not able to 407 

differentiate well between different Cannabis leaf accessions based on this information 408 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2024. ; https://doi.org/10.1101/2023.08.15.553356doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553356
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 16 of 34 
 

alone (Fig. 4). While the Kruskal-Wallis test did show overall significance between accessions 409 

(Table S2), Dunn’s post hoc indicated significance in leaf morphology for just one accession 410 

(Table S3). The W/L ratio significantly differs from the rest only for the IK accession, 411 

characterized by particularly narrow leaves (Table S3). The Kruskal-Wallis test was also 412 

significant for leaflet numbers and relative node numbers (Table S2). Dunn’s post hoc 413 

revealed that while we can differentiate between leaflet numbers based on the W/L ratio of 414 

central leaflet, we can only separate the lower and higher relative nodes (Table S3).  415 

Fig. 4 Analysis of leaf shape 416 

using the approach adapted 417 

from Anderson (1980). (a) 418 

Visualization of the 341 central 419 

leaflets used in the analysis. W/L 420 

ratios plotted by (b) accession, 421 

(c) leaflet number and (d) 422 

relative node number.   423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

To test whether the outline of the central leaflet can better predict the genetic and 437 

developmental identity of Cannabis leaves, we used Linear discriminant analysis (LDA) to 438 
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model each factor as a function of 399 pseudo-landmark points defining the shape of 439 

central leaflet (Fig. 5a-c). To evaluate model accuracy, accession was treated as a categorical 440 

variable, as was leaflet number, as it not only has a small number of levels (3, 5, 7, and 9 441 

leaflets), but each level is well separated from the others. To evaluate the accuracy of 442 

relative node number, we treated it as a continuous variable, due to a high number of levels 443 

(9) that continuously overlap with each other. Models revealed low accuracy, as the 444 

accession was correctly determined only in 47.20% (Table 2). The LDA model for the shape 445 

of central leaflet showed no overlap for the accessions IK and MN9, but the remaining 446 

accessions showed significant overlap (Fig. 5a). The confusion matrix revealed that only two 447 

accessions were correctly identified more than half the time (AM15 – 53.13% and IK – 448 

71.43% prediction accuracy) (Fig. 5d). The LDA model showed better success when 449 

identifying the leaflet number (57.76% overall accuracy) and relative node number, where 450 

the true and predicted values show significant, but moderate correlation (rho = 0.629, p < 451 

0.0001) (Fig. 5b, c, e, f; Table 2).  452 

 453 

Table 2 Predictive power of genetic and developmental identities using the LDA model on 454 

the central leaflet shape.  455 

 
Correct 

prediction [n] 

False 

prediction [n] 

Prediction 

accuracy [%] 

Correlation 

coefficient [rho] 
p value 

Accession 76 85 47.20 NA NA 

Leaflet number 93 68 57.76 NA NA 

Relative node number NA NA NA 0.629 < 0.0001 

 456 
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 457 

Fig. 5 Accession, leaflet number and relative node numbers prediction of Cannabis leaves 458 

using the outline of central leaflets. Linear discriminant analysis (LDA) plots for (a) accession, 459 

(b) leaflet number and (c) relative node number. In the lower row, the confusion matrices 460 

show the true and predicted identities for (d) accessions, (e) leaflet number, and (f) relative 461 

node number using the LDA model on the split test and train dataset.  462 

 463 

Principal component analysis on modeled leaves (PCA)  464 

Using the outline and landmark coordinates of 341 leaves, we modeled new theoretical 465 

leaves, all with nine leaflets. Each leaf is defined by 3,591 pseudo-landmarks, which 466 

overcomes the problems associated with variable leaflet numbers and permits dimension 467 

reduction using PCA (Fig. 6a-c) and the visualization of average Cannabis leaves (Fig. 6d-f). 468 

The first and second PCs account for 85.85% and 7.25% of the shape variation, respectively 469 

(Fig. 6a-c). Examining the PC1 and PC2 with Kruskal-Wallis test reveals that that accession, 470 

leaflet number and relative node number all vary significantly along the first PC axis. The 471 

variation along the PC2 for accession and leaflet number is less pronounced, however still 472 

significant, while PC2 values for relative node numbers do not vary significantly (Fig. 6; Table 473 
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3). This indicates that the changes in leaf shape between accessions are not independent 474 

from developmental variation. That a facet of variation in accession leaf shape covaries with 475 

developmental variation across the shoot in leaflet and relative node number suggests a 476 

heterochronic mechanism by which accession differences in leaf shape arise from changes 477 

in developmental timing, and contrasts with the historical focus on changes in timing arising 478 

from plasticity (Goebel, 1908; Ashby, 1948). 479 

 480 

Table 3 Kruskal-Wallis test was used to test the leaf shape variation along PC1 and PC2 for 481 

accessions, leaflet number and relative node number. 482 

 PC1 PC2 

 H p value H p value 

Accession 112.64 p < 0.0001 18.57 p < 0.05 

Leaflet number 204.36 p < 0.0001 10.75 p < 0.05 

Relative node number 49.73 p < 0.0001 2.98 p > 0.05 

 483 

The average modeled leaf shapes show that the most pronounced change in leaf shape 484 

between the accessions and during the development corresponds to narrow vs. wide 485 

leaflets that are stereotypical descriptions of sativa vs. indica or wide- vs. narrow- leaflet 486 

drug varieties. Furthermore, the leaves with the lower number of leaflets have more acute 487 

leaflet tips, that slowly transition into acuminate. Additionally, the outer leaflets in the 488 

leaves from lower nodes (and in certain accessions) are longer, compared to the central 489 

leaflet, and become shorter higher up (Fig. 6d-e). 490 

 491 
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 492 

Fig. 6 Principal component analysis (PCA) of the accessions performed on modeled leaves 493 

using the 3,591 pseudo-landmarks (a-c). The first PC explains 85.58% and the second 7.25% 494 

of variation. The images on the right show the average modeled leaf shapes for each of the 495 

(d) nine analyzed accessions, (e) leaflet number and (f) relative node number. 496 

 497 

LDA and prediction of genetic and developmental identities on modeled leaves 498 

As in the analysis of central leaflet shape before, we used LDA to model accession, leaflet 499 

number and relative node number as a function of all 3,591 pseudo-landmark points 500 

defining the complete modeled leaves (Fig. 7). Accuracy of the model was calculated on the 501 

split dataset, treating accession and leaflet number as categorical and relative node number 502 

as continuous variable. LDA models for both accession and leaflet number were highly 503 
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accurate (73.29% and 99.38%, respectively) (Table 4), significantly improving the results 504 

obtained by analyzing solely the outline of the central leaflet (Table 2). The model for 505 

relative node number is highly accurate as well, as inferred by a highly significant 506 

Spearman’s rank correlation coefficient value between actual and predicted values (rho = 507 

0.747, p < 0.0001) (Table 4). 508 

 509 

Table 4 Predictive power of genetic and developmental identities using the LDA model on 510 

the modeled leaves.  511 

 
Correct 

prediction [n] 

False 

prediction [n] 

Prediction 

accuracy [%] 

Correlation 

coefficient [rho] 
p value 

Accession 118 43 73.29 NA NA 

Leaflet number 160 1 99.38 NA NA 

Relative node number NA NA NA 0.747 < 0.0001 

 512 

A confusion matrix reveals that the LDA model in most cases had a high accuracy for 513 

predicting accession identity (Fig. 7d; Table 4), much higher, as compared to the accuracy 514 

achieved by using only the outline of the central leaflet (Fig. 5d, Table 2). Accessions IK, RO1, 515 

and MN9 show practically no overlap in LDA space, while AM15, BNG, FUT75, HU1, IKL and 516 

MAR show more overlap (Fig. 7a). The model showed an almost 100% success rate in 517 

determining leaflet number, again, much higher than before.  518 

Results of both methods revealed that leaves with only 3 leaflets are markedly different 519 

from the rest, and the prediction model on theoretical leaves consistently classified them 520 

correctly (Fig. 7e). Leaves with 5 to 9 leaflets showed less pronounced differences in shape, 521 

resulting in a slightly lower accuracy of the prediction model for these cases. However, an 522 

examination of the confusion matrix revealed that misclassifications only occurred once 523 

between leaves with neighboring leaflet numbers (7 and 9 leaflets) (Fig. 7e). The marked 524 

difference in shape of leaves with 3 leaflets from the rest may suggest that this 525 

developmental mechanism is biased towards variation at the base of the shoot. Similar to 526 

leaflet number, the confusion matrix for the relative node model reveals high rates of 527 

misclassification between the neighboring relative node numbers, as is expected, and leaves 528 

from lower nodes were very rarely classified as those from higher nodes (Fig. 5f). A 529 
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pronounced change in leaf shape occurs between the relative nodes 0.3 and 0.4, while the 530 

shape changes in later relative nodes are more gradual (Fig. 7c). 531 

 532 

 533 

Fig. 7 Accession, leaflet number and relative node numbers of Cannabis leaves can be 534 

predicted independently of each other using modeled leaves. Linear discriminant analysis 535 

(LDA) plots for (a) accession, (b) leaflet number and (c) relative node number. In the lower 536 

row, the confusion matrices show the true and predicted identities for (d) accessions, (e) 537 

leaflet number, and (f) relative node number using the LDA model on the split test and train 538 

dataset.  539 

 540 

Compared to only using the modeled leaves, the accuracy of the LDA model did not improve 541 

significantly when using a combined dataset. A confusion matrix revealed that the LDA 542 

model (Fig. S1) was slightly less successful in accession identity classification (71.43%) but 543 

was higher for leaflet number (100%). The Spearman’s rank correlation coefficient was 544 

slightly higher and highly significant (rho = 0.748, p < 0.0001) (Table 5).  545 
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Table 5 Predictive power of genetic and developmental identities using the LDA model on a 546 

combined dataset.  547 

 
Correct 

prediction [n] 

False 

prediction [n] 

Prediction 

accuracy [%] 

Correlation 

coefficient [rho] 
p value 

Accession 115 46 71.43 NA NA 

Leaflet number 161 0 100 NA NA 

Relative node number NA NA NA 0.787 < 0.0001 

 548 

DISCUSSION 549 

 550 

Like grapevines, striking variation in leaf shape (Fig. 1) has historically played a significant 551 

role in taxonomic classification of Cannabis. Leaf shape and differences in phyllotaxy were 552 

among the characters Lamarck used to describe a new Cannabis species (Lamarck & Poiret, 553 

1783). Anderson (1980) introduced a quantitative approach by quantifying the length-to-554 

width ratio of the central leaflet. Further studies using different characters—including plant 555 

height, stem diameter, achene shape, and phytochemical profiles—to characterize 556 

accessions have only confirmed the importance of leaf characteristics (Small et al., 1976; 557 

Hillig, 2005a). The central leaflet width-to-length ratio has been adopted by researchers as 558 

one of the main characters for determining species, subspecies, biotypes and chemotypes of 559 

Cannabis (Hillig, 2005a; Clarke & Merlin, 2013; McPartland & Small, 2020). However, this 560 

method is only able to capture a limited aspect of leaf shape variation, neglecting other 561 

important characteristics that we measure in this study, such as leaflet outlines, serrations, 562 

angles, and relative changes in leaflet shape across the leaf. By modeling leaflet shape as a 563 

function of leaflet number, we model theoretical leaves with the same number of leaflets 564 

for which high densities of corresponding pseudo-landmarks capture high resolution shape 565 

features (Fig. 2). To validate the modeling approach, we have compared the outline of the 566 

original central leaflet and the outline of the modeled theoretical central leaflet. The 567 

Procrustes analysis showed that the two leaflets are very similar in shape, and that the 568 

modeling is even able to preserve the serration pattern to some degree (Fig. 3c). The 569 

modeling approach validated using 10,000 bootstrap replicas confirmed the robustness of 570 

the novel modeling approach (Fig. 3d). This method can be applied not only on palmately 571 

composed leaves as in Cannabis but is also possible to use on pinnate and lobed leaves. To 572 
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demonstrate the proof of concept, we applied the method to a pinnate leaf of Cardamine 573 

flexuosa With. and lobate leaf of Quercus macrocarpa Michx. (Fig. 8), showing the method 574 

could be applied in other leaf types. However, the method needs to be improved before 575 

being applied to other species but shows the possible utility of intra-leaf modeling.  576 

 577 

Fig. 8 Intra-leaf modeling of leaflets and lobes extended to pinnate leaves: Leaves from (a) 578 

Cardamine flexuosa and (b) Quercus marcocarpa. Leaflets and lobes are defined by 100 579 

equidistant pseudo-landmarks on each side, each defined by three landmarks, two at the 580 

base and one at the tip. Large points are placed every 20 pseudo-landmarks to emphasize 581 

that leaflet outlines are defined by points. The landmarks defining the base of each leaflet or 582 

lobe are aligned to the rachis or midvein and the transformed leaflets and lobes have been 583 

oriented parallel to the rachis, as defined by the landmarks at their base. The modeled 584 

leaflets and lobes are created from 2nd degree polynomial models for each x and y 585 

coordinate value for each pseudo-landmark as a function of leaflet or lobe number. From 586 

these models, an equivalent number of modeled leaflets or lobes can be reconstructed (in 587 

this case, five), permitting morphometric analysis. 588 

 589 
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The method presented in this study can accurately determine accession based on leaf 590 

shape, regardless of its developmental stage (Fig. 7a, d). The method not only works 591 

effectively on stabilized or cloned cultivar accessions but also on wild or feral accessions 592 

cultivated from seed that can exhibit distinct plant phenotypes (Table 1), indicating its 593 

robustness and potential value in future germplasm classification. Compared to the low 594 

accuracy and prediction ability of the previously known methods (W/L ratio and shape 595 

analysis of central leaflets), the newly proposed method demonstrates significantly 596 

improved results (Table 2, 4, S2, S3). The combined dataset of both, data for modeled leaves 597 

and outline of the central leaflet, did not return significantly better results, further 598 

confirming the effectiveness of the new modelling approach. 599 

 600 

When observing the shape changes between averaged leaves for accessions and between 601 

developmental stages, the most obvious are changes in leaflet widths, similar to 602 

stereotypical classifications of sativa and indica plants or wide- vs. narrow- leaflet drug 603 

varieties. However, other important changes in shape occur, such as transition from acute 604 

to acuminate leaflet tip and changes in the relative length of outer most leaflets compared 605 

to the central leaflet, that previous methods could not successfully capture (Fig. 6d-f). The 606 

reliance on the non-quantitative leaf shape descriptors in previous methods has led to 607 

numerous cultivars with unreliable names, inconsistent genetic origins, and phytochemical 608 

profiles (Sawler et al., 2015; Schwabe & McGlaughlin, 2019; Jin et al., 2021a; Watts et al., 609 

2021). For example, Jin et al. (2021b) conducted a study on clones of 21 cultivars and found 610 

a strong negative correlation between the width and length ratios of central leaflets and 611 

CBD, and a positive correlation with THC; however, Vergara et al. (2021) and Murovec et al. 612 

(2022) were unable to confirm these findings. All three studies used low-resolution 613 

morphometric approaches. Sex of the plants also plays a crucial role in the cannabis 614 

industry, where the presence of male plants and inevitable pollination leads to decreases in 615 

cannabinoid production as plants shift the use of energy into seed development. Several 616 

methods have been employed to differentiate between male and female plants at early 617 

stages, but only genetic methods were successful so far (Toth et al., 2020; Prentout et al., 618 

2020; Campbell et al., 2021; Balant et al., 2022; Torres et al., 2022). Our results quantify the 619 

variation in leaf shape between accessions that can potentially be used to classify accessions 620 

and predict chemical profiles and plant sex faster and more accurately.  621 
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 622 

Unlike grapevine, where developmental variance is orthogonal and separate from genetic 623 

variance, in Cannabis these two factors are correlated. That the developmental source of 624 

variation is colinear with accession identity suggests that part of the differences between 625 

accession leaf shape is explained by shifts in developmental timing, or heterochrony.  626 

Cannabis plants demonstrate extreme phenotypic plasticity depending on the 627 

environmental conditions in which they grows (Small, 2015). Some Cannabis accessions are 628 

photoperiod dependent and can remain in vegetative phase for longer periods of time 629 

under long-day conditions (typically 18h darkness and 6h light), until the transition to short-630 

day (12h of darkness and 12h of light) induces the formation of the apical inflorescence. 631 

Previous investigations showed that other morphological changes, such as decrease in leaf 632 

area, number of leaflets per leaf and serration number, occur after the change in the 633 

environmental conditions one or two nodes after (Heslop-Harrison & Heslop-Harrison, 1958; 634 

Hesami et al., 2023). However, differences, especially in flowering time and growth rates 635 

between cultivars have been observed before (de Meijer & Keizer, 1996; Hillig, 2005a; 636 

Spitzer-Rimon et al., 2019; Carlson et al., 2021; Naim-Feil et al., 2021; Stack et al., 2021; 637 

Chen et al., 2022) and differences in cannabinoid profiles, leaflet index and phenological 638 

development were proposed as characteristics to discriminate between them (de Meijer & 639 

Keizer, 1996). Heterochronic shifts are apparent in the differential rates in which accessions 640 

increase leaflet number across nodes, as well as maximum and average leaflet counts across 641 

accessions (Fig. 1). Remarkably, stages in developmental timing are conserved despite being 642 

shifted. For example, a significant shape change exhibited between the leaves with 3 and 643 

leaves with 5 leaflets, with leaflets becoming more acuminate and narrower. In contrast, 644 

changes in shape between leaves with a higher number of leaflets were more gradual. 645 

Additionally, we observed a similar shift in leaf shape between the nodes 0.3 and 0.4, 646 

potentially indicating a transition between the juvenile and adult phases of leaf 647 

development. Similar results were obtained in previous research. Spitzer-Rimon et al. (2022) 648 

demonstrated that flowering buds were initiated at node 7, while Moliterni et al. (2004) 649 

analyzing a different cultivar, found developing flower buds in the 4th node, suggesting that 650 

transitions in growth phases are conserved but not synchronized across cultivars. Due to the 651 

differences in developmental timing between accessions, the use of continuous models 652 
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along the shoot could further improve the success predicting accession identity, as was the 653 

case in grapevine (Bryson et al., 2020).  654 

Conclusions 655 

In grapevine, leaf shape has long been utilized for variety identification. However, in the 656 

case of Cannabis, previous attempts were hindered by the variability in leaflet numbers. In 657 

this study, we present a pioneering method that successfully addresses this issue. By 658 

generating theoretical leaves with customizable leaflet counts, we can now employ high-659 

resolution morphometric techniques to accurately classify different wild/feral and cultivated 660 

Cannabis accessions. Through the use of 3,591 densely placed pseudo-landmarks, we were 661 

able to predict the accession identity with almost 74% accuracy. The method works well not 662 

only on stabilized cultivars, but also on phenotypically more variable wild/feral accessions 663 

grown from seed. Unifying the number of leaflets allowed us, for the first time, to make 664 

comparisons among several leaves along the main axis, enabling us to investigate 665 

developmental changes in leaf shape and detect heterochronic mechanisms influencing the 666 

leaf shape in Cannabis. The implications of this new high-resolution method in both the 667 

cannabis industry and research extend beyond its role in determining Cannabis accessions. 668 

It also offers a promising tool for developmental studies, and for studying the correlation 669 

between leaf shape and phytochemical profiles and the sex of the plants, where lower-670 

resolution methods provided inconclusive results so far. The method presented here offers 671 

a fast, effective, robust, and low-cost tool that can aid the future classification of Cannabis 672 

germplasm. Furthermore, the use of this methodology extends beyond Cannabis, and can 673 

be applied to numerous other plant species with palmate, pinnate, and lobate leaves with 674 

varying numbers of lobes and leaflets where the use of geometric morphometrics methods 675 

was not previously possible to this extent.   676 
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