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Abstract

The deregulation of complex diseases often spans multiple molecular processes. A

multimodal functional characterization of these processes can shed light on the

disease mechanisms and the effect of drugs. Thermal Proteome Profiling (TPP) is a

mass-spectrometry based technique assessing changes in thermal protein stability

that can serve as proxies of functional changes of the proteome. These unique

insights of TPP can complement those obtained by other omics technologies. Here,

we show how TPP can be integrated with phosphoproteomics and transcriptomics

in a network-based approach using COSMOS, a framework for causal integration

of multi-omics, to provide an integrated view of transcription factors, kinases and

proteins with altered thermal stability. This allowed us to recover known

mechanistic consequences of PARP inhibition in ovarian cancer cells on cell cycle

and DNA damage response in detail and to uncover new insights into drug

response mechanisms related to interferon and hippo signaling. We found that

TPP complements the other omics data and allowed us to obtain a network model

with higher coverage of the main underlying mechanisms. These results illustrate

the added value of TPP, and more generally the power of network models to

integrate the information provided by different omics technologies. We anticipate

that this strategy can be used to broadly integrate functional proteomics with

other omics to study complex molecular processes.

Keywords: Proteomics, Thermal Proteome Profiling, Biological Networks,

Multi-omics
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1. Introduction

Cellular regulation is a complex process mediated primarily by alteration in

protein activity states and abundance. These alterations can be profiled via various

omics technologies. Transcriptomics can be used to estimate the activity of

transcription factors. Profiling post-translational modifications as in state of the art

phosphoproteomics experiments is a way to explore protein function, in particular

the activity of kinases. Thermal Proteome Profiling (TPP) 1 is a functional

proteomics method that can identify shifts in protein thermal stability across

different conditions 2. Changes in thermal protein stability can reflect a series of

processes that influence protein structure and its interactions independent of

changes in protein abundance 3,4. Especially in combination with quantitative

changes measured by e.g. phosphoproteomics, TPP can be used to identify

functionally relevant alterations and link them to signaling and phenotypic

consequences 1,2. Due to the different strengths of these methods, an integrated

study would not only shed light on their complementarities, but would allow us to

explore their use in a synergistic manner.

To integrate the different layers of information encoded in each of these

modalities, a series of computational methods have been developed, many of them

making use of biological networks as integration scaffolds 5 . Depending on the

network content, different types of information can be leveraged. When networks

are built based on previous discoveries, this existing prior knowledge can be

explored systematically 6. COSMOS is a recently published method to integrate

multi-omics data and prior knowledge to extract active sub-networks in a given

functional context via causal reasoning 7. Within COSMOS, transcription factor

and kinase activities are inferred from transcriptomics and phosphoproteomics

data, respectively, and then causal paths are identified that connect the enzymes

coherently with their inferred activities 8.

As a case study, we focused on the effect of PARP inhibition on DNA damage. Poly

(ADP-ribose) polymerases (PARPs) are a family of 17 nucleoproteins, which transfer

one or multiple ADP-ribose units (pADPr) to target proteins 9. This way, a series of
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cellular processes involving DNA repair, transcription, cell fate and stress response

are regulated by PARylation 10. Upon PARP inhibition, DNA damage accumulates in

cells initiating a cell cycle arrest and ultimately apoptosis, if the damage remains

unrepaired 11. PARP inhibitors are used as drugs for targeted tumor therapy as they

target cancer cells with distinct genetic defects in DNA repair genes specifically 12.

Here, we use a TPP dataset acquired for ovarian cancer cells after incubation with a

PARP inhibitor. We hypothesized that the integration of TPP data with other omics

types will allow us to add context to the observed functional alterations and

improve our mechanistic understanding of drug response. Clinical applications

would benefit greatly from a better understanding of the differences between

certain PARP inhibitors, the influence of patients' genetic background, and

potential resistance mechanisms 12.

Towards this aim, we integrated TPP, transcriptomics and phosphoproteomics data

using the COSMOS framework in the context of PARP inhibition in ovarian cancer

cells. We adapted COSMOS by modeling a signaling cascade comprising upstream

kinases, intermediate proteins with altered thermal stability and downstream

transcription factors (Figure 1). We found that a series of changes in thermal

protein stability can be explained by deregulated kinase activities and

phosphoproteomic changes. Further, we showed that the integration of TPP data is

essential to model and extract known and novel pathways related to PARP

inhibition in detail.
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Figure 1 - Overview of the COSMOS-TPP workflow.

Preprocessing and modeling steps of the COSMOS-TPP workflow and the involved data types which

are indicated by different colours. Olaparib is an inhibitor of PARP1, an essential player in DNA

repair. Inhibition of PARP results in DNA damage that is not repaired in BRCA-mutated cells such as

UWB1.289 ovarian cancer cells inducing apoptosis, a concept known as synthetic lethality. The

different omic layers acquired after 24 hours of Olaparib treatment are processed separately and

combined as input for an integer linear programming (ILP) optimization. Additionally, different

omics information is used to filter the underlying prior-knowledge network (PKN) for example to only

consider expressed genes in the final solution. To obtain a network model describing the interplay of

Kinases (Kin), TPP hits and transcription factors (TF) two runs are merged to the final network . The

coloured circles indicate the used data types in the respective filtering step.
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2. Results

2.1 Multi-omic profiling of the response to Olaparib in ovarian cancer cells

To demonstrate the power of the proposed approach, we chose to investigate the

effect of Olaparib in UWB1.289 cells. We characterized the response of UWB1.289

cells to Olaparib using transcriptomics, phosphoproteomics and TPP data

(Supplementary Figure S1). In transcriptomics, we identified 20493 expressed

genes, from which 44 changed significantly in response to the treatment (absolute

logFC > log2(1.2) and adjusted P < 0.05). In phosphoproteomics, we identified 11615

phosphosites, 256 of which changed their abundance significantly in response to

Olaparib (absolute logFC > log2(1.2) and adjusted P < 0.05). In the TPP data, we

identified 9455 proteins, and found 76 that suffered thermal stability changes in

response to the PARPi treatment (FDR < 0.1, Supplementary Table S3). In this case,

a thermal (de)stabilization can correspond to a variety of effects ranging from drug

binding to complex formation among others 2. In summary, we generated three

independent datasets that inform about different types of molecular changes

happening in response to Olaparib.

2.2 Footprint analyses reveal complementary molecular information between

transcriptomics, phosphoproteomics and thermal proteome profiling

Next, we sought to explore if upstream regulators of the changes in transcriptomics

and phosphoproteomics could offer complementary insight to the thermal

stability changes detected through TPP. To this end, we performed a footprint

analysis to estimate kinases and transcription factor activities from the

phosphoproteomics and transcriptomics data, respectively (Supplementary Table

1, Supplementary Table 2). The analysis yielded activity estimates for 229 TFs and

170 kinases. The top 30 TFs showed a positive activity in response to the Olaparib

treatment indicating a strong transcriptional activation (Figure 3A). Process-wise

the top results comprised transcription factors involved in interferon (STATs, IRF1),

nuclear receptor (RUNX1, ESR1), DNA repair (FOXM1, FOS/JUN) and cell cycle

signaling (TFAP2C). For the phosphoproteomics data, the main deregulated kinases

were found in the ATM-ATR axis which is known to mediate DNA damage
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checkpoint signaling (Figure 3B). Additionally, the downstream activation of

numerous CDKs was also predicted by the footprint analysis, in line with the

expected cell cycle arrest that occurs in response to PARP inhibitors. Overall, both

transcription factors and kinases offered a molecular phenotype that explains the

observed cellular response.
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Figure 2 - Transcriptomics, phosphoproteomics and thermal proteome profiling data exploration.

(A) Normalized enrichment scores (NES) for top ten transcription factors and (B) top ten kinases as

proxy of enzyme activity based on transcriptomics and phosphoproteomics data. In response to

Olaparib treatment, cells react with a strong transcriptional activation and signaling around the

DNA damage checkpoint (ATM, ATR, CDK1). (C) Comparison of top transcription factors, kinases

and TPP hits overall and subsetted for proteins involved in DNA damage response. The different

protein sets show almost no overlap, but functional complementarity to a certain extent as they all

comprise several DDR members. The two overlapping proteins between the kinase and the TPP set

are CDK1 and CDK2, both with a relevant role in cell cycle arrest upon DNA damage. (D) We

compared log2 fold-changes of phosphosites on kinases, TFs and TPP proteins measured in the

phosphoproteomics experiment. TPP proteins show a significant shift (p < 0.05) towards higher

phosphosite intensities in comparison to Kinases and TFs. (E) TPP proteins further map frequently

downstream of kinases identified in the activity estimation analysis as exemplarily shown for CDK1

with four downstream TPP proteins and related significant phosphosites.

Regarding the thermal proteome profiling, the most prominent hits were CHEK2,

PARP1, RNF146, MX1, different cyclins (stabilized) and RRN3 (destabilized). We

found only a small overlap between TPP hits, transcription factors and kinases,

both across all proteins but also in proteins belonging to the DNA damage response

pathway (Figure 3C and 3D). Specifically, three proteins (CDK1, CDK2, CCNB1)

overlapped between TPP hits and kinases, and we found no overlap between

altered kinases and transcription factors. Despite the low overlap at the protein

level, we found that the three omics layers inform about changes related to DNA

damage response when we analyzed the pathways obtained from individual

over-representation analyses.

Comparison of TPP data with other omics measurements revealed a high number

of phosphorylations detected on TPP proteins (Supplementary Table S6). In detail,

the TPP hits appeared to be more phosphorylated than kinases and transcription

factors (Figure 1E), potentially indicating the relevance of the TPP hits in the

signaling context. Furthermore, determining the number of direct upstream

kinases of each TPP set revealed that 24 of the top 30 kinases are one step

upstream to at least one TPP hit. One example of the connection between
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phosphoproteomics and TP is CDK1, with a direct edge to 20 TPP hits (Figure 1F).

55 phosphosites which were measured in the phosphoproteomics experiment can

be mapped to these TPP proteins downstream of CDK1 (examples shown in Figure

3F).

All of this led us to hypothesize that the three data modalities offer complementary

molecular perspectives on the same problem, and we therefore set out to apply an

integrative approach to take advantage of the information they contain.

2.3 COSMOS robustly connects kinases and transcription factors with TPP hits

To integrate the three layers of molecular data we employed COSMOS 7, a recently

developed method that integrates multi-omics data into causal molecular

networks. To do so, it leverages the interactions that can be retrieved from prior

knowledge databases, translating them into Integer Linear Programming

constraints. Next, it solves an optimization problem that tries to extract the

smallest possible network that causally connects the maximum amount of

multi-omics measurements.

In total, we used 30 transcription factors, 30 kinases and 76 TPP measurements.

We tested different approaches to integrate the three data layers, showing that

more TPP hits can be included in the result if their activity is estimated

beforehand, as in the case of kinases and transcription factors (Supplementary

Figure S2A). As thermal stability changes do not inform about the sign of the

deregulated activity (i.e., whether a protein activity is up or down regulated), we

estimated TPP protein activity via phosphoproteomics data when possible. For the

rest of the TPP proteins, we derived their activity during optimization and

supported the activity inference with a (de-)stabilization weight (Supplementary

Figure S2A). Regarding the network structure, we obtained the best results for

networks using kinases as upstream regulators, TPP proteins as intermediate

signaling proteins and transcription factors as downstream effectors

(Supplementary Figure S2B). This COSMOS setup yielded a maximum of

integrated TPP proteins in the result network.
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Finally, we assessed the reproducibility and robustness of solutions

(Supplementary Figure S2C). Analyses with different numbers of TPP proteins and

different prior knowledge resources showed a good reproducibility of replicates, a

robust clustering of networks with TPP versus networks without TPP and an

expected influence of the prior knowledge resource. With this analysis we obtained

a molecular network able to integrate and connect the information from the three

omics layers.

2.4 Inclusion of TPP hits enhances biological information content in resulting

networks

After ensuring the robustness and reproducibility of the integrated molecular

networks, we aimed to profile the influence of TPP inclusion from a biological

point of view. We performed an overrepresentation analysis of proteins in the

networks with TPP or without TPP to identify processes which depend on the

integration of TPP data to be modeled. The expected Reactome pathways around

cell cycle and DNA damage were significant in both networks (q.value < 0.05,

hypergeometric test) but significantly more prominent in networks with TPP

(Figure 3A). Moreover, several of these DDR associated pathways such as mitotic

checkpoint signaling, TP53 signaling, DNA damage recognition were significant in

the networks with TPP exclusively. This again reinforces the complementary and

synergistic aspect of the TPP with respect to the other two data modalities here

analyzed.
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Figure 3 - Effect of TPP integration on network level.

(A) Comparison of the network-level enrichment results of networks with TPP data and networks

without TPP. The enrichment results were filtered for significant pathways (q.value < 0.05, one-tailed

Fisher’s exact test, Supplementary Table S5) and a minimum size of four nodes. We then extracted

pathways related to cell cycle or DNA damage and repair and compared their log odds-ratio between

networks with TPP and without TPP. (B) Graph representation of the network with TPP data. The

colours indicate the seven clusters identified using a fast and greedy clustering algorithm. We

performed a cluster specific enrichment of the nodes and summarized the significant pathways to one

higher level process per cluster ranging from cell cycle to interferon signaling. (C) We compared the

overlap of TPP and no TPP clusters using the jaccard index (JI). The colours refer to the respective

cluster of the network with TPP. The size of the points refers to the jaccard index for the given

comparison. The maximum overlap reached is a jaccard index of 0.28.

To extract mechanistic insights in biological processes beyond the known and well

characterized DDR, we performed a more granular cluster-based enrichment of

the networks with and without TPP. The clustering of the network with TPP data

resulted in seven clusters reflecting different biological processes (Figure 3C,

Supplementary Table S4). Top pathways per cluster ranged from expected

processes like cell cycle and DDR to new observations around interferon signaling

and YAP/TEAD signaling. The later ones were not found in the enrichment

analysis on a global level. In comparison, the clustering of the network without

TPP yielded nine clusters with a very different composition (Figure 3B). The

pairwise comparisons of clusters showed a maximum Jaccard Index of 0.28 for

clusters related to DDR and nuclear receptor signaling. This cluster based network

analysis allowed us to identify a series of PARP inhibition related processes such as

DDR and interferon signaling and highlighted the value of TPP data to model

these.
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Figure 4 - Mechanistic insight into selected molecular processes.

Based on the results of the previous clustering analysis we extracted signaling related to the identified

processes from networks with TPP to investigate it in detail. The red colour indicates TFs, kinases

and TPP nodes which were used as input, while grey indicates predicted nodes added from the prior

knowledge network during the optimization. TPP hits are indicated as stars. We chose three pathways

represented by different clusters. (A) DNA damage response and cell cycle arrest, (B) Interferon

signaling and (C) YAP/TEAD signaling.

To investigate the role of TPP proteins in more granular biological processes, we

analyzed three pathways identified in the cluster-based enrichment (Figure 3C). As

a starting point, we focused on signaling around the DNA damage checkpoint and

cell cycle arrest (Figure 4A). These processes are well-known to happen in response

to PARP inhibition and depict the biggest part of the network 11,13. Besides the

stabilization of PARP1 as a drug target, different proteins stabilized potentially

upon phosphorylation as for example CHEK2, the major downstream target of the

cell cycle arrest kinases, ATM and ATR 14. The network model also suggests the

phosphorylation of multiple cyclins and cell cycle regulating proteins (CCNB1,

CCNB2, CCNA2, BUB1B) by CDK1. At last, the TPP measurements also reflect

complex formation as indicated exemplarily by the interaction of ESPL1 and

PTTG1 which regulate the degradation of the APC/C complex during cell cycle

arrest 15.

Next we investigated interferon signaling, a known but less characterized response

to PARP inhibition 16,17. Interferon signaling is represented around the transcription

factors, RELA, STAT1, STAT2, STAT3 and IRF1 (Figure 4B). This transcriptional

response is connected and complemented by the two TPP hits MX1, OAS1 which

are activated upon interferon signaling 18,19. In this case, the thermal stabilization

can be linked to transcriptional changes upon a stimulus.

Finally, we also investigated YAP-TEAD signaling, a not reported effect upon PARP

inhibition (Figure 4C), but recently described to be central in DNA damage

response 20. The complex of the TPP protein YAP and the TEAD1 and TEAD4

transcription factors forms in the nucleus at the end of the hippo signaling
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pathway 21. The subsequently initiated transcriptional program has been shown to

contribute to an aggressive and drug resistant tumor phenotype 22.
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3. Discussion

In this work, we integrated Thermal Proteome Profiling (TPP), phosphoproteomics

and transcriptomics data from cancer cell lines subjected to drug-induced DNA

damage using a causal-network approach. Overall, our results demonstrate that

each individual omic profile carries a signal about the response of UWB1.289 cells

to the PARP inhibitor Olaparib. A detailed footprint analysis showed that the three

datasets could provide complementary insights into the molecular phenomena

occurring after PARP inhibition, and we therefore created a molecular network

that integrates them using our framework COSMOS 7.

PARP inhibitors represent a success story of modern precision medicine with

numerous approved compounds for various cancers in less than 20 years after

their discovery 12. Studies focusing on the effects of PARP inhibition at the

transcriptome, proteome, or phosphoproteome level have been widely used to

uncover synergies with other drugs, detect off-target effects, and characterize the

pharmacological properties of various inhibitors, among others 10,23–25. Here we

combine, within a network model, the information of these data modalities with

thermal proteome profiling data. Our analysis helped us determine that the

inclusion of TPP results contributed to 1) Capture known biological processes

related to PARP inhibition and 2) Propose new hypotheses about lesser-known

mechanisms of action.

TPP has been used successfully in the past for drug profiling, but it generates

complex data that are difficult to interpret and potentially benefit from integration

with other data types 1,2,26. By comparing the functional information provided by

TPP with protein activity information derived from transcriptomics and

phosphoproteomics data, we found that they complement each other in describing

biological processes. The inferred transcription factors and kinases indicate the

well-annotated players in the DNA damage response, whereas proteins with altered

thermal stability reflect less annotated parts of the signaling space with strong links

to the phosphoproteomic measurements which aligns with observations linking

functionality of phosphosites with thermal stability 3,27.
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To characterize such links and integrate the different data modalities, we used

COSMOS 7. We show that we can integrate TPP data with transcriptomics and

phosphoproteomics data and that this integration greatly improves the relevance

of the resulting networks of COSMOS. At both the global and cluster level of the

obtained networks, the inclusion of TPP enhances the reflected biological insights

into PARP inhibition.

In particular, the inclusion of TPP allows us to retrieve detailed mechanistic insight

into well-known consequences of PARP inhibition, such as DNA damage signaling

via the ATM-ATR-CHEK2 axis or cell cycle arrest via modulation of cyclin

degradation or the formation of the ESPL1-PTTG1 complex 14,15. In addition, we

detect the induction of interferon signaling at the transcriptional level as well as

less characterized effects such as signaling through the YAP1-TEAD complex

indicated by a TPP and transcriptional signal 16,17,20,21.

This study is a first example of the potential of TPP in network-based multi-omics

studies. More comprehensive data sets covering additional contexts and data

modalities would be needed to draw conclusions about the generalizability of this

approach. Given the advances in mass-spectrometry technology and throughput

capacity, we anticipate that the number of studies generating functional

proteomics datasets such as TPP will increase. We believe that generalizing this

framework and extending it to additional data types such as solubility profiling or

subcellular proteomics will be a useful step forward. Moreover, TPP data often

contain more than just binary stabilization/destabilization information, such as

effect size or distinct drug response curves, which could be used to improve

modeling assumptions or downstream interpretation of the network 28.

In summary, we believe that the use of COSMOS to analyze TPP and other omics

can help to extract mechanistic insight from these complex datasets.
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4. Methods

4.1 Experimental procedures

Cell culture and Olaparib treatment

The UWB1.289 (CRL-2945; female) cell line was accessed from internal GSK

collections and was obtained from ATCC. The cell line was additionally

authenticated using the Promega Cell ID system. The generated short tandem

repeat (STR) profiles matched exactly the expected STR profiles of the ATCC lines.

Reagents were obtained from Gibco unless stated otherwise. Cells were cultured at

37°C, 5% CO2 in 1:1 RPMI:MEGM (Lonza, #CC-3151), 3% fetal bovine serum

(FBS,Gibco), MEGM SingleQuots supplements (Lonza, #CC-4136) used without

gentamycin-amphotericin. For the Olaparib (CAS: 763113-22-0) treatment, three 15

cm dishes per condition were prepared by seeding 3‒4 x 106 cells per plate; 24

hours later medium was removed and 25 ml fresh medium containing

dimethylsulfoxide (DMSO) (Sigma) or 4uM Olaparib was applied to the cells. Cells

were incubated for indicated time (24 hours) at 37°C, 5% CO2. Cells were collected

by trypsinization, washed twice with PBS, and counted using a Casy Cell Counter

(OMNI Life Science). Cell pellets were generated containing 1–2 million cells for

either proteomic and phosphoproteomic or transcriptomic analysis.

Transcriptomics

Approximately 1*10^6 UWB1.289 were lysed in 650 µl Tri reagent (Thermo Fisher,

#AM9738) and bead milled with the following settings: 4 degrees Celsius, 2 cycles,

50% duty-cycle, 20 seconds, 4m/s. RNA was extracted using the RNeasy 96-well

plate kit (Qiagen, #74181) according to manufacturer’s instructions including the

DNase step. RNA concentration and integrity were assessed using a Fragment

Analyzer (Agilent). Libraries were prepared using the NEBNext Ultra II Kit

stranded (NEB, #E7760S) and NEBNext Poly(A) mRNA Magnetic Isolation Module

(NEB, #E7490) following the manufacturer’s specifications using the following

options: 600 ng of total RNA per sample (starting material), poly(A) enrichment

(mRNA isolation), 8 PCR cycles, 10 min fragmentation time. DNA concentration
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and libraries size distribution were determined on a Fragment Analyzer. Libraries

were pooled to 10 nM and sequenced on an Illumina NextSeq2000 instrument

following the manufacturer’s specifications and aiming for approximately 40*10^6

reads per library. FastQ files were generated using the software bcl2fastq (version

2.20).

Proteomics and phosphoproteomics sample preparation

Cells were lysed in 4 % SDS, DNA was digested by benzonase following dilution to 1

% SDS. Lysates were cleared by centrifugation and the supernatant snap frozen

until further processing. All samples were processed through a modified version of

the single pot solid-phase sample preparation (SP3) protocol as described

previously 29. Briefly, proteins in 2% SDS were bound to paramagnetic beads

(SeraMag Speed beads, GE Healthcare,#45152105050250,#651521050502) by

addition of ethanol to a final concentration of 50%. Contaminants were removed by

washing 4 times with 70% ethanol. Proteins were digested by resuspending in 0.1

mM HEPES (pH 8.5) containing TCEP, chloracetamide, trypsin and LysC following

o/n incubation. Derived peptides were subjected to TMT labelling. The labeling

reaction was performed in 100 mM HEPES (pH 8.5) 50 % Acetonitrile at 22 °C and

quenched with hydroxylamine. Labeled peptide extracts were combined to a single

sample per experiment.

For phosphopeptide enrichment, parallel samples were prepared as described

above. Further sample preparation was performed on the BRAVO Assaymap

(Agilent Technologies). Samples were desalted using C18-cartridges for AssayMap

(Agilent Technologies) according to the software protocol provided by the

manufacturer. In brief, samples were dissolved in 90 µl 6% TFA and loaded onto

C18 columns equilibrated with 0.1% TFA. After loading, columns were washed with

0.1% TFA, followed by elution in 80% acetonitrile 0.1% TFA. For phosphopeptide

enrichment, Fe(III)-cartridges for AssayMap (Agilent) were used on the BRAVO

Assaymap (Agilent Technologies). Cartridges were primed with 50% ACN,0,1% TFA

and equilibrated with 80% ACN, 0.1% TFA. 170µl 80% acetonitrile, 0.1% TFA were

added to eluates from the C18 desalting step, and samples were loaded onto the
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Fe(III)-cartridges. Loaded Fe(III)-cartridges were washed with 80% acetonitrile, 0.1%

TFA and phosphopeptides were eluted with 5% NH3 in water.

Thermal proteome profiling

Thermal proteome profiling was performed in live UWB1.289 cells in a 2D-TPP

setting as described before 1, 30. In brief, cells were treated with 4 different Olaparib

concentrations (0.4, 1, 4, 10 µM, or DMSO control) and incubated at 37 °C and 5%

CO2 for 24 hours, then harvested by trypsinization and centrifugation. Cells were

resuspended in PBS and transferred to 96-well polymerase chain reaction (PCR)

plates. Cells were heated for 3 min to one of the 12 tested temperatures (42.1°C,

44.1°C, 46.2°C, 48.1°C, 50.4°C, 51.9°C, 54°C, 56.1°C, 58.2°C, 60.1°C, 62.4°C, 63.9°C).

Cells were lysed with Igepal CA-630 0.8%, MgCl2 1.5 mM and benzonase 1 kU ml−1

and the aggregated proteins were removed by centrifugation through 0.45 µm filter

plates. All flow-through from two adjacent temperature treatments were combined

into a multiplexed TMT10 experiment. The database search was performed as

described before 1.

Mass spectrometry (MS) analysis

All proteomic experiments utilized TMT for relative quantification. Measurements

and analyses were performed as described before 31. TPPs and expression

proteomics samples were off-line fractionated into 24 fractions, of which 8‒24

fractions were measured. Phosphopeptide enriched samples were measured

without fractionation three consecutive times. Samples were measured on Thermo

Orbitrap instruments (Orbitrap Lumos, Q Exactive HF, Q Exactive HFX, or

Exploris). The database search was performed as described before 1; for phospho

peptide enriched samples, phosphorylation of Ser/ Thr and phosphorylation of

Tyr was further added as variable modification.
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4.2 Data analysis

Preprocessing transcriptomic data

Raw FastQ files were processed to count matrices using the cloud processing tool

DNAnexus. Adaptor trimming was carried out using Trimmomatic 32. Reads were

then mapped to the reference human genome (GRCh38.96) with STAR v. 1.3.4 33.

Picard MarkDuplicates v. 2.1.1 tool was used to identify and quantify PCR

duplicates (http://broadinstitute.github.io/picard). Reads were assigned to genes

using the command featureCounts from the software Subread to produce count

matrices. Genes were prefiltered before differential expression testing to include

only genes with more than 10 counts total across all samples. Statistics of

differential gene expression were calculated with DESeq2 34. Resulting P values

were adjusted for multiple testing. The criteria to consider a gene differentially

regulated was an adjusted P value lower than 0.05 and an absolute log2 fold change

in expression greater than 1.5.

Preprocessing proteomics data

Statistical analysis and visualization of the data were performed using the statistical

language R. Phosphoproteomics data were aggregated to individual phosphosites.

Log2 intensities were used as measure for phosphorylation and quantile

normalised for sample to sample differences. Proteomics data were filtered for

proteins with at least 2 unique quantified peptides. The log2 sum of ion intensities

was used as a measure for protein abundance. These abundance measures were

normalized using quantile normalization. Differential analysis was carried out

using a moderated t-test implemented in the limma package 35. Resulting P values

were adjusted for multiple testing. A protein was considered statistically

significantly different with an adjusted P value below 0.05 and log2 fold change

above log2(1.5) or below log2(1/1.5).

Footprinting

In order to estimate the activity of different input nodes (transcription factors

(TFs), kinases, phosphatases) the viper algorithm was used 36. For transcription
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factors, the DOROTHEA database was used to obtain TF-target interactions with a

confidence level of A, B or C 37. The interactions were downloadedusing the

OmnipathR package 38 . For the viper algorithm, fold-change values of transcripts

after limma analysis were used as input. The eset parameter was set to FALSE and

the minimum target set size was set to 25 targets for one TF. Viper was further used

to retrieve kinase/phosphatase activities. For this, normalized phosphosite

intensities were corrected for total protein changes employing a linear model with

the matched expression proteomics data. These corrected intensities were then

used for differential testing before footprinting analyses. Phosphosite-enzyme

collections were likewise downloaded with OmnipathR. Log2 fold-changes of

phosphosites were used as input on phosphosite level. As for TFs, the eset

parameter was set to FALSE and the minimum number of measured phosphosites

per kinase was set to 3. Recently, a collection of methods to perform footprinting

analyses in a comprehensive manner has been released 39.

TPP hit calling and activity estimation

To identify significantly (de)stabilized proteins as hits in the 2D-TPP dataset, we

used a recently introduced method 40. In short, a null and an alternative model

were fitted per protein and condition. The null model reflects a no-change

hypothesis, while the alternative model describes concentration dependent protein

abundance changes with temperature based constraints. Both models were fitted

by minimizing the sum of squared residuals and compared using an F-statistic.

Significance was adjusted by a bootstrap-based false-discovery rate (FDR)

procedure. We evaluated the TPP hits by comparison with the other omic data

types and a pathway enrichment analysis. We performed a TPP activity estimation

based on causal prior knowledge links between kinases and TPP proteins. TPP hits

were compared to direct upstream kinases which were also among the top 30

regulators identified in the footprinting analysis. If the activity of all upstream

kinases of one TPP hit and their prior knowledge link to the TPP hit were

consistent, the TPP activity was inferred from this (i.e. Kinase A is active and has an

activation PKN link leading to a TPP protein, it is active as a consequence). Further,

links between kinases and TPP phosphorylation sites which were not in agreement

were removed from the PKN in a Kinase-sign filtering step. For the COSMOS
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robustness analysis, additional TPP hit sets were generated using a strict approach

evaluating curve fit (R2 > 0.8 with sigmoidal model) and effect size (logFC > 1.5) as

well as the top 100 proteins according to a stabilization score introduced by 26.

Pathway analysis

For all enrichment analyses we used the ReactomePA package 41. For the protein

activity analysis results we used the top 30 regulators as input, for the TPP hit

calling results all hits detected and on network level all nodes of the result network.

As background we chose all genes, phosphosites or proteins detected for the single

omics datasets and all nodes from the prior knowledge network for the

network-level enrichments. In the enrichPathway() function the organism was set

to "human", minGSSize was set to five and maxGSSize was set to 500. To identify

significant pathways we filtered the result with a significance cutoff of 0.05 after

multiple testing correction.

CARNIVAL/COSMOS and prior knowledge resources

To infer signaling processes, the CARNIVAL algorithm combines upstream

perturbation information (i.e. drug targets) with downstream measurements (i.e.

transcription factor (TF) activities) and a causal prior knowledge network (PKN) 42.

The enzyme activities are calculated using a footprinting method 8. The PKN

contains the signed and directed protein-protein interactions (node A

activates/inactivates node B) which are used to model signaling interactions

between measurements and perturbation input. The perturbation and

measurement input as well as the PKN are then used to minimize an objective

function in an integer linear programming (ILP) optimization. In COSMOS,

upstream kinases, phosphatases and TFs are connected with downstream

metabolites expanding the use of CARNIVAL to a multi-omics context 7.

In this study, we used a prior knowledge network which is provided as part of the

COSMOS package (30k interactions) and a second prior knowledge network based

on protein-protein interactions of metabase (117k interactions). The prior

knowledge resources were filtered and adapted as described by Dugourd et. al 7. As

measured input we used the top 30 transcription factors and kinases/phosphatases

from the activity estimation analysis as well as the 76 hits of the TPP dataset.
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Eleven of these TPP hits had an activity estimate, the others were used with a

weight reflecting (de)stabilization.

Setup of COSMOS with TPP

We first used kinases and TPP proteins as upstream nodes and transcription factors

as downstream nodes. This represents the signaling cascade in response to a

stimulus going through kinases and proteins with altered thermal stability before it

causes transcriptional adaptation. The prior knowledge then was filtered in

between runs as described by Dugourd et. al. before we performed a second run

from kinases upstream to TPP proteins and transcription factors downstream to

complete the network. Both runs were repeated once to improve the result quality.

We made the union of the two final networks, resulting in a combined complete

network. To test whether CARNIVAL's formulation in combination with the

adaptations for multi-omics introduced with COSMOS can be used this way, we

tested its reproducibility in different settings. We generated a bigger and a smaller

TPP protein set (100 and 23 hits) using alternative hit calling strategies 26. For all

three TPP sets as well as kinases and transcription factors alone (noTPP), we

produced three network replicates for each of the two prior knowledge resources.

We compared the results based on the integration of nodes and their activity

prediction.

Network enrichment analysis and comparison

For the three replicates of the network with TPP hits determined using the

F-statistic based results and three network replicates without TPP, we performed a

node enrichment analysis as described using ReactomePA 41. We compared the

results of the enrichments by calculating the log odds ratio for each pathway and

extracting pathways relevant for cell cycle and DNA damage response. A t-test was

used to determine the differences between biological processes in networks with

TPP and networks without TPP.

Clustering, cluster comparison and cluster enrichment

To retrieve a more granular view of biological processes on network level we

performed a clustering analysis. We extracted all edges identified in one replicate
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for networks with F-statistic based TPP hits and networks without TPP hits,

respectively and applied a fast and greedy clustering algorithm on the resulting

graph. The pairwise Jaccard index was used to compare the composition of the

resulting clusters of networks with TPP and without TPP. We performed a

cluster-specific enrichment analysis as described before and extracted all nodes

related to the identified processes to gain mechanistic insight.

Code availability

All code used to perform the computational analyses described is available at

https://github.com/saezlab/COSMOS-TPP.

Data availability

All raw files, search parameters and search outputs were deposited to the

ProteomeXchange Consortium via the PRIDE partner repository and will be made

accessible upon publication. RNA-seq data have been deposited in the Gene

Expression Omnibus (GEO) databank and will be made accessible upon

publication.
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8. Supplementary Materials

Tables

All supplementary tables can be found in the provided excel file.

Supplementary table 1. Kinase enrichment results

Supplementary table 2. Transcription factor enrichment results

Supplementary table 3. TPP hits and scores

Supplementary table 4. Network clustering results

Supplementary table 5. Pathway enrichment results

Supplementary table 6. TPP phosphorylation

Figures

Supplementary Figure S1 - Transcriptomics, phosphoproteomics and TPP data

(A) Volcano plot of the phosphoproteomics data after limma analysis comparing 4 uM Olaparib vs

DMSO control. (B) Volcano plot of the transcriptomics data after limma analysis comparing 4 uM

Olaparib vs DMSO control. (C) Overview of the TPP hits determined using the F-statistic based hit

calling approach comparing the number of (destabilized) and abundance changed hits.
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Supplementary Figure S2 - Robustness and reproducibility

We tried to validate whether the chosen setup (combination of runs, activity estimation and filtering

steps) can be used to model reasonable networks with COSMOS. In principle, the integer linear

programming solver optimizes towards a local optimum and the complete search space of the problem

is not known. As a consequence, multiple technical replicates of COSMOS can have similar but

slightly different optimal solutions. To assess if this solver-dependent variability can be distinguished
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from actual differences due to the used input data, we set up a small robustness analysis.

(A) We integrated TPP proteins between upstream kinases and downstream transcription factors into

the signaling cascade based on the correlation of phosphoproteomic and TPP data. Further, we

implemented a strategy for activity estimation where we inferred activities for TPP proteins via

upstream kinases and phosphorylation status. For TPP proteins without activity estimate we inferred

the activity state during the optimization supported by a weight reflecting (de)stabilization. Different

modeling setups (1-5) were tested to maximize the number of integrated TPP proteins which we

reached using activity estimations and weights. Details of the optimization process are provided in the

CARNIVAL and COSMOS publications 7,42. (B) We clustered replicate networks for different TPP set

sizes based on node activities (active, missed, inactive). All replicate runs of distinct TPP sets cluster

together. The networks separate into networks with TPP input and networks without TPP input.

Further the influence of the used prior knowledge is clearly visible (PKN).

1 no TPP proteins as input

2 TPP proteins without activity information

3 TPP with activity estimation

4 TPP with activity estimation and weights

5 TPP with activity estimation, NA values and weights

31

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.15.553354doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=7780543,10367925&pre=&pre=&suf=&suf=&sa=0,0
https://doi.org/10.1101/2023.08.15.553354
http://creativecommons.org/licenses/by-nd/4.0/


9. Bibliography

1. Savitski, M.M., Reinhard, F.B.M., Franken, H., Werner, T., Savitski, M.F.,

Eberhard, D., Martinez Molina, D., Jafari, R., Dovega, R.B., Klaeger, S., et al.

(2014). Tracking cancer drugs in living cells by thermal profiling of the

proteome. Science 346, 1255784. 10.1126/science.1255784.

2. Mateus, A., Kurzawa, N., Becher, I., Sridharan, S., Helm, D., Stein, F., Typas, A.,

and Savitski, M.M. (2020). Thermal proteome profiling for interrogating

protein interactions. Mol. Syst. Biol. 16, e9232. 10.15252/msb.20199232.

3. Potel, C.M., Kurzawa, N., Becher, I., Typas, A., Mateus, A., and Savitski, M.M.

(2021). Impact of phosphorylation on thermal stability of proteins. Nat.

Methods 18, 757–759. 10.1038/s41592-021-01177-5.

4. Tan, C.S.H., Go, K.D., Bisteau, X., Dai, L., Yong, C.H., Prabhu, N., Ozturk, M.B.,

Lim, Y.T., Sreekumar, L., Lengqvist, J., et al. (2018). Thermal proximity

coaggregation for system-wide profiling of protein complex dynamics in cells.

Science 359, 1170–1177. 10.1126/science.aan0346.

5. Babur, Ö., Luna, A., Korkut, A., Durupinar, F., Siper, M.C., Dogrusoz, U., Vaca

Jacome, A.S., Peckner, R., Christianson, K.E., Jaffe, J.D., et al. (2021). Causal

interactions from proteomic profiles: Molecular data meet pathway knowledge.

Patterns (N Y) 2, 100257. 10.1016/j.patter.2021.100257.

6. Garrido-Rodriguez, M., Zirngibl, K., Ivanova, O., Lobentanzer, S., and

Saez-Rodriguez, J. (2022). Integrating knowledge and omics to decipher

mechanisms via large-scale models of signaling networks. Mol. Syst. Biol. 18,

e11036. 10.15252/msb.202211036.

7. Dugourd, A., Kuppe, C., Sciacovelli, M., Gjerga, E., Gabor, A., Emdal, K.B.,

Vieira, V., Bekker-Jensen, D.B., Kranz, J., Bindels, E.M.J., et al. (2021). Causal

integration of multi-omics data with prior knowledge to generate mechanistic

hypotheses. Mol. Syst. Biol. 17, e9730. 10.15252/msb.20209730.

8. Dugourd, A., and Saez-Rodriguez, J. (2019). Footprint-based functional analysis

of multiomic data. Current Opinion in Systems Biology 15, 82–90.

10.1016/j.coisb.2019.04.002.

32

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.15.553354doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography
https://sciwheel.com/work/bibliography/4129
https://sciwheel.com/work/bibliography/4129
https://sciwheel.com/work/bibliography/4129
https://sciwheel.com/work/bibliography/4129
https://sciwheel.com/work/bibliography/8376341
https://sciwheel.com/work/bibliography/8376341
https://sciwheel.com/work/bibliography/8376341
https://sciwheel.com/work/bibliography/11344617
https://sciwheel.com/work/bibliography/11344617
https://sciwheel.com/work/bibliography/11344617
https://sciwheel.com/work/bibliography/4840161
https://sciwheel.com/work/bibliography/4840161
https://sciwheel.com/work/bibliography/4840161
https://sciwheel.com/work/bibliography/4840161
https://sciwheel.com/work/bibliography/11037370
https://sciwheel.com/work/bibliography/11037370
https://sciwheel.com/work/bibliography/11037370
https://sciwheel.com/work/bibliography/11037370
https://sciwheel.com/work/bibliography/13393925
https://sciwheel.com/work/bibliography/13393925
https://sciwheel.com/work/bibliography/13393925
https://sciwheel.com/work/bibliography/13393925
https://sciwheel.com/work/bibliography/10367925
https://sciwheel.com/work/bibliography/10367925
https://sciwheel.com/work/bibliography/10367925
https://sciwheel.com/work/bibliography/10367925
https://sciwheel.com/work/bibliography/6948163
https://sciwheel.com/work/bibliography/6948163
https://sciwheel.com/work/bibliography/6948163
https://doi.org/10.1101/2023.08.15.553354
http://creativecommons.org/licenses/by-nd/4.0/


9. Langelier, M.-F., Eisemann, T., Riccio, A.A., and Pascal, J.M. (2018). PARP family

enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational

modification. Curr. Opin. Struct. Biol. 53, 187–198. 10.1016/j.sbi.2018.11.002.

10. Gupte, R., Liu, Z., and Kraus, W.L. (2017). PARPs and ADP-ribosylation: recent

advances linking molecular functions to biological outcomes. Genes Dev. 31,

101–126. 10.1101/gad.291518.116.

11. Ray Chaudhuri, A., and Nussenzweig, A. (2017). The multifaceted roles of

PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18,

610–621. 10.1038/nrm.2017.53.

12. Mateo, J., Lord, C.J., Serra, V., Tutt, A., Balmaña, J., Castroviejo-Bermejo, M.,

Cruz, C., Oaknin, A., Kaye, S.B., and de Bono, J.S. (2019). A decade of clinical

development of PARP inhibitors in perspective. Ann. Oncol. 30, 1437–1447.

10.1093/annonc/mdz192.

13. Masutani, M., Nozaki, T., Wakabayashi, K., and Sugimura, T. (1995). Role of

poly(ADP-ribose) polymerase in cell-cycle checkpoint mechanisms following

gamma-irradiation. Biochimie 77, 462–465. 10.1016/0300-9084(96)88161-2.

14. Matthews, H.K., Bertoli, C., and de Bruin, R.A.M. (2022). Cell cycle control in

cancer. Nat. Rev. Mol. Cell Biol. 23, 74–88. 10.1038/s41580-021-00404-3.

15. Waizenegger, I., Giménez-Abián, J.F., Wernic, D., and Peters, J.-M. (2002).

Regulation of human separase by securin binding and autocleavage. Curr. Biol.

12, 1368–1378. 10.1016/s0960-9822(02)01073-4.

16. Vikas, P., Borcherding, N., Chennamadhavuni, A., and Garje, R. (2020).

Therapeutic potential of combining PARP inhibitor and immunotherapy in

solid tumors. Front. Oncol. 10, 570. 10.3389/fonc.2020.00570.

17. Wang, Z., Sun, K., Xiao, Y., Feng, B., Mikule, K., Ma, X., Feng, N., Vellano, C.P.,

Federico, L., Marszalek, J.R., et al. (2019). Niraparib activates interferon

signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci.

Rep. 9, 1853. 10.1038/s41598-019-38534-6.

18. Liao, S., and Gao, S. (2022). MxA: a broadly acting effector of

interferon-induced human innate immunity. Vis. Cancer Med. 3, 2.

33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.15.553354doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/8969381
https://sciwheel.com/work/bibliography/8969381
https://sciwheel.com/work/bibliography/8969381
https://sciwheel.com/work/bibliography/4023697
https://sciwheel.com/work/bibliography/4023697
https://sciwheel.com/work/bibliography/4023697
https://sciwheel.com/work/bibliography/4255390
https://sciwheel.com/work/bibliography/4255390
https://sciwheel.com/work/bibliography/4255390
https://sciwheel.com/work/bibliography/8470509
https://sciwheel.com/work/bibliography/8470509
https://sciwheel.com/work/bibliography/8470509
https://sciwheel.com/work/bibliography/8470509
https://sciwheel.com/work/bibliography/12914634
https://sciwheel.com/work/bibliography/12914634
https://sciwheel.com/work/bibliography/12914634
https://sciwheel.com/work/bibliography/11664980
https://sciwheel.com/work/bibliography/11664980
https://sciwheel.com/work/bibliography/12914688
https://sciwheel.com/work/bibliography/12914688
https://sciwheel.com/work/bibliography/12914688
https://sciwheel.com/work/bibliography/9016033
https://sciwheel.com/work/bibliography/9016033
https://sciwheel.com/work/bibliography/9016033
https://sciwheel.com/work/bibliography/6547442
https://sciwheel.com/work/bibliography/6547442
https://sciwheel.com/work/bibliography/6547442
https://sciwheel.com/work/bibliography/6547442
https://sciwheel.com/work/bibliography/12914725
https://sciwheel.com/work/bibliography/12914725
https://doi.org/10.1101/2023.08.15.553354
http://creativecommons.org/licenses/by-nd/4.0/


10.1051/vcm/2022002.

19. Eskildsen, S., Justesen, J., Schierup, M.H., and Hartmann, R. (2003).

Characterization of the 2’-5’-oligoadenylate synthetase ubiquitin-like family.

Nucleic Acids Res. 31, 3166–3173. 10.1093/nar/gkg427.

20. Calses, P.C., Pham, V.C., Guarnaccia, A.D., Choi, M., Verschueren, E., Bakker,

S.T., Pham, T.H., Hinkle, T., Liu, C., Chang, M.T., et al. (2023). TEAD proteins

associate with DNA repair proteins to facilitate cellular recovery from DNA

damage. Mol. Cell. Proteomics 22, 100496. 10.1016/j.mcpro.2023.100496.

21. Huh, H.D., Kim, D.H., Jeong, H.-S., and Park, H.W. (2019). Regulation of TEAD

transcription factors in cancer biology. Cells 8. 10.3390/cells8060600.

22. Kim, T., Hwang, D., Lee, D., Kim, J.-H., Kim, S.-Y., and Lim, D.-S. (2017). MRTF

potentiates TEAD-YAP transcriptional activity causing metastasis. EMBO J. 36,

520–535. 10.15252/embj.201695137.

23. Stolzenburg, L.R., Ainsworth, B., Riley-Gillis, B., Pakozdi, T., Ammar, A., Ellis,

P.A., Wilsbacher, J.L., and Ramathal, C.Y. (2022). Transcriptomics reveals in

vivo efficacy of PARP inhibitor combinatorial synergy with platinum-based

chemotherapy in human non-small cell lung carcinoma models. Oncotarget

13, 1–12. 10.18632/oncotarget.28162.

24. Perez, J.M., Twigg, C.A.I., Guan, W., and Thomas, S.N. (2022). Proteomic

Analysis Reveals Low-Dose PARP Inhibitor-Induced Differential Protein

Expression in BRCA1-Mutated High-Grade Serous Ovarian Cancer Cells. J. Am.

Soc. Mass Spectrom. 33, 242–250. 10.1021/jasms.1c00215.

25. Palve, V., Knezevic, C.E., Bejan, D.S., Luo, Y., Li, X., Novakova, S., Welsh, E.A.,

Fang, B., Kinose, F., Haura, E.B., et al. (2022). The non-canonical target PARP16

contributes to polypharmacology of the PARP inhibitor talazoparib and its

synergy with WEE1 inhibitors. Cell Chem. Biol. 29, 202-214.e7.

10.1016/j.chembiol.2021.07.008.

26. Perrin, J., Werner, T., Kurzawa, N., Rutkowska, A., Childs, D.D., Kalxdorf, M.,

Poeckel, D., Stonehouse, E., Strohmer, K., Heller, B., et al. (2020). Identifying

drug targets in tissues and whole blood with thermal-shift profiling. Nat.

34

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.15.553354doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/12914725
https://sciwheel.com/work/bibliography/5311763
https://sciwheel.com/work/bibliography/5311763
https://sciwheel.com/work/bibliography/5311763
https://sciwheel.com/work/bibliography/14399224
https://sciwheel.com/work/bibliography/14399224
https://sciwheel.com/work/bibliography/14399224
https://sciwheel.com/work/bibliography/14399224
https://sciwheel.com/work/bibliography/9079323
https://sciwheel.com/work/bibliography/9079323
https://sciwheel.com/work/bibliography/4114684
https://sciwheel.com/work/bibliography/4114684
https://sciwheel.com/work/bibliography/4114684
https://sciwheel.com/work/bibliography/14399264
https://sciwheel.com/work/bibliography/14399264
https://sciwheel.com/work/bibliography/14399264
https://sciwheel.com/work/bibliography/14399264
https://sciwheel.com/work/bibliography/14399264
https://sciwheel.com/work/bibliography/14399265
https://sciwheel.com/work/bibliography/14399265
https://sciwheel.com/work/bibliography/14399265
https://sciwheel.com/work/bibliography/14399265
https://sciwheel.com/work/bibliography/12144834
https://sciwheel.com/work/bibliography/12144834
https://sciwheel.com/work/bibliography/12144834
https://sciwheel.com/work/bibliography/12144834
https://sciwheel.com/work/bibliography/12144834
https://sciwheel.com/work/bibliography/8145001
https://sciwheel.com/work/bibliography/8145001
https://sciwheel.com/work/bibliography/8145001
https://doi.org/10.1101/2023.08.15.553354
http://creativecommons.org/licenses/by-nd/4.0/


Biotechnol. 38, 303–308. 10.1038/s41587-019-0388-4.

27. Ochoa, D., Jarnuczak, A.F., Viéitez, C., Gehre, M., Soucheray, M., Mateus, A.,

Kleefeldt, A.A., Hill, A., Garcia-Alonso, L., Stein, F., et al. (2020). The functional

landscape of the human phosphoproteome. Nat. Biotechnol. 38, 365–373.

10.1038/s41587-019-0344-3.

28. Kurzawa, N., Stahl, M., Leo, I., Kunold, E., Becher, I., Audrey, A., Mermelekas,

G., Huber, W., Mateus, A., Savitski, M., et al. (2022). Deep thermal proteome

profiling for detection of proteoforms and drug sensitivity biomarkers.

BioRxiv. 10.1101/2022.06.10.495491.

29. Werner, T., Steidel, M., Eberl, H.C., and Bantscheff, M. (2021). Affinity

enrichment chemoproteomics for target deconvolution and selectivity

profiling. Methods Mol. Biol. 2228, 237–252. 10.1007/978-1-0716-1024-4_17.

30. Becher, I., Werner, T., Doce, C., Zaal, E.A., Tögel, I., Khan, C.A., Rueger, A.,

Muelbaier, M., Salzer, E., Berkers, C.R., et al. (2016). Thermal profiling reveals

phenylalanine hydroxylase as an off-target of panobinostat. Nat. Chem. Biol. 12,

908–910. 10.1038/nchembio.2185.

31. Zinn, N., Werner, T., Doce, C., Mathieson, T., Boecker, C., Sweetman, G.,

Fufezan, C., and Bantscheff, M. (2021). Improved Proteomics-Based Drug

Mechanism-of-Action Studies Using 16-Plex Isobaric Mass Tags. J. Proteome

Res. 20, 1792–1801. 10.1021/acs.jproteome.0c00900.

32. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer

for Illumina sequence data. Bioinformatics 30, 2114–2120.

10.1093/bioinformatics/btu170.

33. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,

Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq

aligner. Bioinformatics 29, 15–21. 10.1093/bioinformatics/bts635.

34. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

10.1186/s13059-014-0550-8.

35. Smyth, G.K. (2005). Limma: linear models for microarray data. In

35

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.15.553354doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/8145001
https://sciwheel.com/work/bibliography/7915738
https://sciwheel.com/work/bibliography/7915738
https://sciwheel.com/work/bibliography/7915738
https://sciwheel.com/work/bibliography/7915738
https://sciwheel.com/work/bibliography/13181331
https://sciwheel.com/work/bibliography/13181331
https://sciwheel.com/work/bibliography/13181331
https://sciwheel.com/work/bibliography/13181331
https://sciwheel.com/work/bibliography/15218263
https://sciwheel.com/work/bibliography/15218263
https://sciwheel.com/work/bibliography/15218263
https://sciwheel.com/work/bibliography/2739819
https://sciwheel.com/work/bibliography/2739819
https://sciwheel.com/work/bibliography/2739819
https://sciwheel.com/work/bibliography/2739819
https://sciwheel.com/work/bibliography/10676665
https://sciwheel.com/work/bibliography/10676665
https://sciwheel.com/work/bibliography/10676665
https://sciwheel.com/work/bibliography/10676665
https://sciwheel.com/work/bibliography/63413
https://sciwheel.com/work/bibliography/63413
https://sciwheel.com/work/bibliography/63413
https://sciwheel.com/work/bibliography/49324
https://sciwheel.com/work/bibliography/49324
https://sciwheel.com/work/bibliography/49324
https://sciwheel.com/work/bibliography/129353
https://sciwheel.com/work/bibliography/129353
https://sciwheel.com/work/bibliography/129353
https://sciwheel.com/work/bibliography/957251
https://doi.org/10.1101/2023.08.15.553354
http://creativecommons.org/licenses/by-nd/4.0/


Bioinformatics and Computational Biology Solutions Using R and

Bioconductor, R. Gentleman, V. J. Carey, W. Huber, R. A. Irizarry, and S.

Dudoit, eds. (Springer), pp. 397–420. 10.1007/0-387-29362-0_23.

36. Alvarez, M.J., Shen, Y., Giorgi, F.M., Lachmann, A., Ding, B.B., Ye, B.H., and

Califano, A. (2016). Functional characterization of somatic mutations in cancer

using network-based inference of protein activity. Nat. Genet. 48, 838–847.

10.1038/ng.3593.

37. Garcia-Alonso, L., Holland, C.H., Ibrahim, M.M., Turei, D., and Saez-Rodriguez,

J. (2019). Benchmark and integration of resources for the estimation of human

transcription factor activities. Genome Res. 29, 1363–1375.

10.1101/gr.240663.118.

38. Türei, D., Korcsmáros, T., and Saez-Rodriguez, J. (2016). OmniPath: guidelines

and gateway for literature-curated signaling pathway resources. Nat. Methods

13, 966–967. 10.1038/nmeth.4077.

39. Badia-I-Mompel, P., Vélez Santiago, J., Braunger, J., Geiss, C., Dimitrov, D.,

Müller-Dott, S., Taus, P., Dugourd, A., Holland, C.H., Ramirez Flores, R.O., et al.

(2022). decoupleR: ensemble of computational methods to infer biological

activities from omics data. Bioinformatics Advances 2, vbac016.

10.1093/bioadv/vbac016.

40. Kurzawa, N., Becher, I., Sridharan, S., Franken, H., Mateus, A., Anders, S.,

Bantscheff, M., Huber, W., and Savitski, M.M. (2020). A computational method

for detection of ligand-binding proteins from dose range thermal proteome

profiles. Nat. Commun. 11, 5783. 10.1038/s41467-020-19529-8.

41. Gillespie, M., Jassal, B., Stephan, R., Milacic, M., Rothfels, K., Senff-Ribeiro, A.,

Griss, J., Sevilla, C., Matthews, L., Gong, C., et al. (2022). The reactome pathway

knowledgebase 2022. Nucleic Acids Res. 50, D687–D692.

10.1093/nar/gkab1028.

42. Liu, A., Trairatphisan, P., Gjerga, E., Didangelos, A., Barratt, J., and

Saez-Rodriguez, J. (2019). From expression footprints to causal pathways:

contextualizing large signaling networks with CARNIVAL. NPJ Syst. Biol. Appl.

36

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.15.553354doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/957251
https://sciwheel.com/work/bibliography/957251
https://sciwheel.com/work/bibliography/957251
https://sciwheel.com/work/bibliography/1877669
https://sciwheel.com/work/bibliography/1877669
https://sciwheel.com/work/bibliography/1877669
https://sciwheel.com/work/bibliography/1877669
https://sciwheel.com/work/bibliography/7251122
https://sciwheel.com/work/bibliography/7251122
https://sciwheel.com/work/bibliography/7251122
https://sciwheel.com/work/bibliography/7251122
https://sciwheel.com/work/bibliography/3050563
https://sciwheel.com/work/bibliography/3050563
https://sciwheel.com/work/bibliography/3050563
https://sciwheel.com/work/bibliography/12662452
https://sciwheel.com/work/bibliography/12662452
https://sciwheel.com/work/bibliography/12662452
https://sciwheel.com/work/bibliography/12662452
https://sciwheel.com/work/bibliography/12662452
https://sciwheel.com/work/bibliography/10104585
https://sciwheel.com/work/bibliography/10104585
https://sciwheel.com/work/bibliography/10104585
https://sciwheel.com/work/bibliography/10104585
https://sciwheel.com/work/bibliography/12018473
https://sciwheel.com/work/bibliography/12018473
https://sciwheel.com/work/bibliography/12018473
https://sciwheel.com/work/bibliography/12018473
https://sciwheel.com/work/bibliography/7780543
https://sciwheel.com/work/bibliography/7780543
https://sciwheel.com/work/bibliography/7780543
https://doi.org/10.1101/2023.08.15.553354
http://creativecommons.org/licenses/by-nd/4.0/


5, 40. 10.1038/s41540-019-0118-z.

37

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.15.553354doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/7780543
https://doi.org/10.1101/2023.08.15.553354
http://creativecommons.org/licenses/by-nd/4.0/

